TW200905412A - Lithographic apparatus and sensor calibration method - Google Patents

Lithographic apparatus and sensor calibration method Download PDF

Info

Publication number
TW200905412A
TW200905412A TW097115127A TW97115127A TW200905412A TW 200905412 A TW200905412 A TW 200905412A TW 097115127 A TW097115127 A TW 097115127A TW 97115127 A TW97115127 A TW 97115127A TW 200905412 A TW200905412 A TW 200905412A
Authority
TW
Taiwan
Prior art keywords
grid
substrate
auxiliary
sensor system
excitation
Prior art date
Application number
TW097115127A
Other languages
Chinese (zh)
Other versions
TWI396054B (en
Inventor
Der Pasch Engelbertus Antonius Fransiscus Van
Emiel Jozef Melanie Eussen
Stefan Gertrud Marie Hendriks
Erik Roelof Loopstra
Jacob Willem Vink
Ruud Antonius Catharina Maria Beerens
Lodewijk Alexander Schijvenaars
Zutphen Tom Van
Original Assignee
Asml Netherlands Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asml Netherlands Bv filed Critical Asml Netherlands Bv
Publication of TW200905412A publication Critical patent/TW200905412A/en
Application granted granted Critical
Publication of TWI396054B publication Critical patent/TWI396054B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70516Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A method for calibrating an auxiliary sensor system is provided. The auxiliary sensor system measures a position of a grating relative to a reference, the grating forming part of an encoder measurement system. The encoder measurement system is adapted to measure a position of a substrate table of a lithographic apparatus and further comprises a sensor mounted to the substrate table. The method comprises exciting the grating to make a movement in at least one measurement direction of the auxiliary sensor system, obtaining an auxiliary sensor system output signal from the sensor system during the movement, and adjusting a parameter of the auxiliary sensor system based on the output signal obtained during the movement to thereby calibrate the auxiliary sensor system.

Description

200905412 九、發明說明: 【發明所屬之技術領域】 本發明係關於用於校準輔助感測器系統之方法、微影裝 置及用以量測物件之位置的位置量測系統。 【先前技術】 微影裝置為將所要圖案施加至基板上(通常施加至基板 之目私#刀上)的機器。微影裝置可用於(例如)積體電路 (ic)之製造中。在該狀況下,圖案化設備(其或者被稱作光 罩或主光罩)可用以產生待形成於IC之個別層上的電路圖 案。可將此圖案轉印至基板(例如,石夕晶圓)上之目標部分 (例如,包括晶粒之一部分、一個晶粒或若干晶粒)上。圖 案之轉印通常係經由成像至提供於基板上之韓射敏感材料 (抗蝕Μ)層上。一般而言,單一基板將含有經順次圖案化 之鄰近目標部分的網路。習知微影裝置包括:所謂的步進 器’其中藉由-次性將整個圖案曝光至目標部分上來照射 每-目標部分;及所謂的掃描器,其中藉由在給定方向 (”掃描”方向)上經由輻射光束而掃描圖案同時平行或反平 行於此方向而同步地掃描基板來照射每—目標部分。亦有 可能藉由將圖案屢印至基板上來將圖案自圖案化設備轉印 至基板。 在微影裝置中已提議利用編碼器量測系統來量測基板平 口之位置。此外’基板平台可具備編碼器感測器,其將量 測光束引導至格柵。格栅可連接至微影裝置之結構,諸 如,微影裝置之度量衡框架。然而,參考結構可能經受振 130317.doc 200905412 動或其他機械干擾,此可導致附著至其之格拇的振動。自 然地,該等振動可能導致編碼器量測系統之不精確性,因 為格柵相躲其所要位置之移位可能導致對應編碼器之妹 出的誤差。 °胃 為了處理此問題,可提供輔助感測器系統以量測格柵相 對於參考之位置。藉由針對如由輔助感測器系統所提供之 ,柵^位置偏差來校正編碼Μ統之讀出,可增加編碼器 里測系統之量測精確性,藉此可能地減少所提及之振動或 其他干擾的效應。 / 【發明内容】 需要促進輔助感測器系統之校準。 之=本發明之一實施例,提供-種校準輔助感測器夺统 之方法。輔助感測器系.统可用以量測格柵相對於七 置,格柵形成用以量測微影裝置之基 / 立 量測系絲认 D之位置之編碼器 、j系、、先的一部分,其中編 至糸統進一步包含安裝 主基板台之感測器。該方法包含: 衣 •激勵格柵以在輔助感測器系統之至 移動; 里測方向上進行 •在移動期間自感測器系統獲得輔助 號;及 4 j窃糸統輪出信 •基於移動期間所獲得之輸出信號來 之灸奴 用正輔助感測器系絲 >數,以藉此校準輔助感測器系統。 /、、’’ 在本發明之另一實施例中,提— 含: 檀微影裝置,其包 130317.doc 200905412 ’照明系統,照明系統經組態以調節輻射光束; ’支撐件,支撐件經建構以支撐圖案化設備,圖案化設備 能夠在輻射光束之橫截面中向輻射光束賦予圏案以形成 經圖案化輻射光束; y •基板台,基板台經建構以固持基板;及 •投影系統,投影系統經組態以將經圖案化輻射光束投影 至基板之目標部分上。 /微影裝置進一步包含用以量測基板台位置之編碼器量測 :統。編碼器量測系統包含安裝至基板台之感測器及包 含格栅之感測器目帛。輔助感測器系統經提供以量測格樹 相對於參考之位置’且激勵設備經提供以激勵格柵。微影 裝置經配置以: •藉由激勵設備來激勵格柵,以藉此在輔助感測器系統之 至少一量測方向上移動格栅; •在移動期間自感測器系統獲得輔助感測器系統輪出信 號;及 •自所獲得輸出信號調整輔助感測器系統之參數,以藉此 校準輔助感測器系統。 八根據本發明之另一實施例,提供—種微影裝置,其包 •照明系統,照明系統經組態以調節輻射光束; •支撐件,支撐件經建構以支撐圖案化設備,圖案化設備 能夠在輻射光束之橫截面甲向輻射光束賦予圖案以开^成 經圖案化輻射光束; 130317.doc 200905412 •基板台’基板台經建構以固持基板;及 •投影系統,投影系統經組態以將經圖案化輻射光束投影 至基板之目標部分上。 微影裝置進一步包含用以量測基板台及支撐件中之一者 之位置的編碼器量測系統。編碼器量測系統包含安裝至基 板台及支撐#中之一者之感;則器,及包含㈣冊之感測器目 標。輔助感測器系統經提供以量測格柵相對於參考之位 置,且激勵設備經提供以激勵格柵。微影裝置經配置以: •藉由激勵設備來激勵格栅,以藉此在感測器系統之至少 一量測方向上移動格柵; •在移動期間自輔助感測器系統獲得辅助感測器系統輸出 信號;及 自所獲得輸出信號調整輔助感測器系統之參數,以藉此 校準辅助感測器系統。 根據本發明之又一實 ^ ,一'從叩从菫測物件之位 的位置量測系統’位置量測系統包含安裝至物件之感則 器乂包含格柵之感測器目標。位置量測系統進—步包含 用以量測格柵相對於參考之位置的辅助感測器系統,= 以激勵格柵之激勵設備。位置量測系統經配置以: •藉由激勵設備來激勵格柵’以藉此在輔助感測 至少一量測方向上移動格柵; 、、’ •在移動期間自感測器系統獲得輔助感測器 號;及 询出# •自所獲得輸出信號調整辅助感測器系統之 W藉此 130317.doc 200905412 校準輔助感測器系統。 根據本發明之再-實施例,提供—種校準增量感測器系 統之方法,感測器系統用以量測格柵相對於參考之位置。 格柵為用以量測物件之位置之編碼器量測系統的一部分。 編碼器量測系統進-步包含安裝至物件之感測器。該方法 包含: •激勵格柵以在感调j器系.统之至少、—量測方向上進行移 動; •在移動期間自感測器系統獲得感測器系統輸出信號;及 基於移動期間所獲得之輸出信號來調整感測器系統之參 數,以藉此校準感測器系統。 【實施方式】 現將參看隨附示意性圖式而僅藉由實例來描述本發明之 實施例’在該等圖式中’對應參考符號指示對應部分。 圖1不意性地描繪根據本發明之一實施例的微影裝置。 該裝置包括:照明系統(照明器)IL,其經組態以調節輕射 光束B(例如,UV輻射或任何其他適當輻射);光罩支撐結 構(例如,光罩台)MT,其經建構以支撐圖案化設備(例 如,光罩)MA且連接至第一定位設備pM,第一定位設備 PM經組態以根據某些參數來精確地定位圖案化設備。該 裝置亦包括基板台(例如,晶圓台)|丁或"基板支撐件",其 經建構以固持基板(例如,塗覆抗蝕劑之晶圓)评且連接至 第一定位設備PW,第二定位設備pw經組態以根據某些參 數來精確地定位基板。該裝置進一步包括投影系統(例 130317.doc 200905412 如,折射投影透鏡系統)PS,其經組態以將由圖案化設備 MA賦予至輻射光束3之圖案投影至基板w之目標部分c(例 如’包括一或多個晶粒)上。 照明系統比可包括用於引導、成形或控制輻射之各種類 型的光學組件,諸如,折射、反射、磁性、電磁、靜電或 其他類型之光學組件,或其任何組合。 光罩支撐結構Μ 丁支樓(亦即,承載)圖案化設備ma。光 ,支撐結構MT以視圖案化設備财之定向、微影裝置之設 ^及其他條件(諸如’圖案化設備MA是否固持於真空或低 (氣體、空氣或預定氣體混合物)壓力環境中)而定的方式來 固持圖案化設備MA。光罩支擇結構Μτ可使用機械、真 空、靜電或其他夾持技術來固持圖案化設備ma。光罩支 撐結構MT可為(例如)框架或台,其可根據需要而為固定或 可移動的。光罩支撑結構⑽可確保圖案化設備MA(例如) 相對於投影L統PS而處於所要位置。可認為本文對術語 ,’主光罩"或"光罩,,之任何使用均與更通用之術語”圖案 備”同義。 本文所使用之術語”圖岽化执供 〇 圑茶化5又備應被廣泛地解釋為指代 :用以在輻射光束之橫截面中向輕射光束賦予圖案以便在 土板:之目標部分C中形成圖案的任何設備。應注意,例 右被賦予至輕射光束Β之圖案包括相移特徵或所謂的 助特徵,則該圖案可能不會精確地對應於基板w 中的所要圖案。通常,被賦予至㈣光束Β之圖; 將對應於目標部分C中所形成之設備(諸如,積體電路 130317.doc 200905412 的特定功能層。 圖案化設備MA可為透射或反射的。圖案化設備之實例 包括先罩 '可程式化鏡㈣列,及可程式化⑽面板。光 罩在从影術中為熟知的,且自扭$上 括諸如二元交變相移及衰減 相移之光罩類型’以及各種混合光罩類型。可程式化鏡面 陣列之-實例使用小鏡面之矩陣配置,該等小鏡面中之每 一者可個別地傾斜,以僮. 1更在不同方向上反射入射輻射光 束。傾斜鏡面將圖幸賊+ μ 〃賦予於由鏡面矩陣所反射之輻射光束 中。 本文所使用之影系統”應被廣泛地解釋為涵蓋任 何類型之投影系統,包括折射、反射、反射折射、磁性、 電磁及靜電光學系統或其任何組合,其適合於所使用之曝 光輻射,或適合於諸如浸沒液體之使用或真空之使用的其 他因素。可認為本文對術語,,投影透鏡,,之任何使用均與更 通用之術語,,投影系統,,同義。 如此處所描縿,該裝置為透射類型(例如,纟用透射光 罩)。或者,該裂置可為反射類型(例如,使用如以上所提 及之類型的可程式化鏡面陣列,或使用反射光罩)。 微影裝置可為具有兩個(雙平台)或兩個以上基板台或"基 板支撐件(及/或兩個或兩個以上光罩台或"光罩支撐件 的類型。在該等”多平台”機器中,可並行地使用額外台或 支撐件或可在一或多個台或支撐件上執行預備步驟,同 時將-或多個其他台或切件用於曝光。 微影裝置亦可為如下類型:其中基板W之至少-部分可 I303I7.doc 200905412 由具有相對較高折射率之液體(例如,水)覆蓋,以便填充 投影系統PS與基板w之間的空間。亦可將浸沒液體施加至 微影裝置中之其他空間,例如,光罩MA與投影系統PS之 間°浸沒技術可用以增加投影系統PS之數值孔徑。如本文 所使用之術語”浸沒"不意謂諸如基板w之結構必須浸漬於 液體中’而是僅意謂液體在曝光期間位於投影系統PS與基 板W之間。 參看圖1,照明器IL自輻射源SO接收輻射光束。舉例而 吕’當輻射源S◦為準分子雷射器時,輻射源so與微影裝 置可為單獨實體。在該等狀況下,不認為輻射源s〇形成微 影裝置之一部分’且輻射光束B借助於包括(例如)適當引 導鏡面及/或光束放大器之光束傳送系統BD而自輻射源s〇 傳遞至照明器IL。在其他狀況下,例如,當輻射源s〇為汞 燈時,輻射源SO可為微影裝置之整體部分。輻射源及 照明器IL連同光束傳送系統BD(在需要時)可被稱作輻射系 統。 照明器IL可包括經組態以調整輻射光束b之角強度分布 的調整器AD。通常’可調整照明器IL之瞳孔平面中之強 度分布的至少外部徑向範圍及/或内部徑向範圍(通常分別 被稱作σ外部及σ内部)。此外,照明器比可包括各種其他 組件’諸如,積光器IN及聚光器CO。照明器江可用以調 節轄射光束B ’以在其橫截面中具有所要均一性及強度分 布〇 輕射光束B入射於被固持於光罩支撐結構(例如,光罩台 130317.doc 13- 200905412 MT)上之圖案化設備(例如,光罩MA)上,且由圖案化設備 MA圖案化。在橫穿光罩μα後,輻射光束b穿過投影系統 PS,投影系統PS將光束Β聚焦至基板w之目標部分匚上。 借助於第二定位設備PW及位置感測器IF(例如,干涉量測 設備、線性編碼器,或電容性感測器),基板台wt可精確 地移動,例如,以便在輻射光束3之路徑中定位不同目標 部分C。類似地,第一定位設備讀及另一位置感測器(其 未在圖1中被明確地描繪)可用以(例如)在自光罩庫之機械 擷取之後或在掃描期間相對於輻射光束路徑來精確地 定位光罩MA。一般而t,可借助於形成第一定位設備pM 之一部分的長衝程模組(粗略定位)及短衝程模組(精細定 位)來實現光罩台Μτ之移動。類似地,可使用形成第二定 位器PW之一部分的長衝程模組及短衝程模組來實現基板 台WT或"基板支撐件”之移動。在步進器(與掃描器相對)之 狀況下,光罩台MT可僅連接至短衝程致動器,或可為固 定的。可使用光罩對準標記M1、M2&基板對準標記Η、 P2來對準光罩ΜΑ及基板W。儘管如所說明之基板對準桿 記PI、Ρ2佔用專用目標部分,但其可位於目標部分之間: 空間中(此等被稱為切割道對準標記)。類似地,在一個以 上晶粒提供於光罩ΜΑ上之情形中,光罩對準標記可位於 吞亥專晶粒之間。 所描繪裝置可用於以下模式中之至少一者中. 1.在步進模式中,在將被賦予至輻射光束β之整個圖案 次性投影至目標部分c上時,使光罩台Μτ或”光罩支撐 130317.doc 14 200905412 件”及基板台wt或”基板支撐件"保持基本上靜止(亦即,單 次靜態曝光)。接著,使基板台貨丁或”基板支撐件"在χ及/ 或Υ方向上移位,使得可曝光不同目標部分C。在步進模 式中,曝光場之最大尺寸限制單次靜態曝光中所成像之目 標部分C的尺寸。 2_在掃描模式中,在將被賦予至輻射光束Β之圖案投影 至目標部分c上時,同步地掃描光罩台ΜΤ或”光罩支撐件" 及基板台WT或"基板支樓件"(亦即,單次動態曝光)。可藉 由投影系統PS之放大率(縮小率)及影像反轉特性來判定基 板台w Τ或”基板支撐件”相對於光罩台Μ τ或"光罩支撐件" 之速度及方向。在掃描模式巾,曝光場之最Α尺寸限制單 次動態曝光中之目標部分的寬度(在非掃描方向上),而掃 描運動之長度判定目標部分之高度(在掃描方向上)。 3·在另-模式中,在將被賦予至輕射光束之圖案投影至 目標部分C上時,使光罩台游或”光罩支撐件”保持基本上 靜止’從而固持可程式化圖案化設備,且移動或掃描基板 台WT或"基板支撺件„。在此模式中,通常使用脈衝式轄 射源,且在基板台WT或”基板支撐件,,之每_移動之後或 在掃描期間的順次㈣脈衝之間根據f要而 備。此操作模式可易於應用於利用可程式化圖案 化叹備(諸如,如以上所提及之 之無光罩微影術。 式化鏡面陣列) 吏用對以上所描述之使用模式之組合及/或變化或 π王不同的使用模式。 130317.doc -15 - 200905412 圖2高度示意性地描繪本文中亦被指示為基板平台之晶 圓平台w τ。基板平台w τ固持待經由投影系統p s所照射: 基板w。為了量測基板平台WT之位£,提供:編碼器, 其包含格柵GT’格柵GT包含一維或二維圖案;及編碼器 感測器ES ’其可包含用以產生被引導至格柵之光束之 光源與用則貞測返回於編碼器感測器ES處之光束之感測器 的組合。基板平台WT之移位將導致編碼器感測器Es相對 於格柵GT之移位,其歸因於格柵上之一維或二維圖案而 將提供由編碼器感測SES所提供之信號的對應改變,因為 返回至感測器ES之光學能量將歸因於格柵GT之元素(諸 如,線、條紋 '點,等等)的通路而更改。在此實施例 中,格柵GT連接至度量衡框架MF,其可提供微影裝置之 參考結構。投影系統PS亦可以剛性方式或藉由主動或被動 之剛性或彈性座架(未圖示)而由度量衡框架1^11?固持。 問題為度量衡框架MF可能經受振動、干擾或其他效 應,其可能導致格柵GT相對於參考(在此實例中為投影系 統PS,或更精確地為投影系統PS之光軸Αχ)而移動。格柵 GT之該等移動可能導致由編碼器(格柵GT為其一部分)所 進行之量測的不精確性。格柵GT之移位的其他原因可能 存在且可能(例如)在熱膨脹等等中被發現。 為了能夠在一定程度上補償該等效應,可提供輔助感測 器系統ASS,其量測格柵GT相對於參考(在此實例中為投 影系統PS,更精確地為投影系統PS之光軸aX)之位置。輔 助感測器系統ASS又可包含量測輔助系統部分ASP1相對於 1303I7.doc •16- 200905412 輔助系統部分ASP2之位置的編碼器。輔助系統部分八卯2 可(例如)連接至投影系統PS之下游投影透鏡的透鏡座架。 對輔助感測器系統ASS之解析度的需求可能較高,且可相 當於或低於基板平台WT之定位精確性需求,^為輔^ 測器系統A S S之任何量測誤差將導致基板平台w τ相對於投 影系統PS或其光軸AX之量測誤差。因此,輔助感測器系 統燃之週期性校準可為需要或所需的。輔助感測器系統 ASS可(例如)包含增量編碼器(諸如,光學增量編碼器),作 亦可使用其他類型之感測器,諸如,電容性感測器、電感 性感測器(例如,渦電流、LVDT(線性可變絲變壓哭))、 干涉計。在增量編碼器之狀況下,各種效應可能導致4 =確=例如’光強度及反射變化、—信號週期内之非線 專等。為了能夠考慮到該等效應,可能需要週期性校 準。 本發明可用以處理與將輔助感測器系統烟校準 1.: 精確性位準相關聯的挑戰。輔助感測器系統:SS :替移=影褒置外之校準可能不為可行選擇,因為移除 情為,根據本發明==被校準考慮在内。實 測…州 心樣’可藉由激勵格柵以在輔助感 而益系統ASS之至少一量測方200905412 IX. INSTRUCTIONS: FIELD OF THE INVENTION The present invention relates to a method for calibrating an auxiliary sensor system, a lithography apparatus, and a position measuring system for measuring the position of an object. [Prior Art] A lithography apparatus is a machine that applies a desired pattern onto a substrate (usually applied to a substrate of a substrate). The lithography apparatus can be used, for example, in the manufacture of integrated circuits (ic). In this case, a patterning device (which may be referred to as a reticle or main reticle) can be used to create a circuit pattern to be formed on individual layers of the IC. This pattern can be transferred to a target portion (e.g., including a portion of a die, a die, or a plurality of dies) on a substrate (e.g., a Shihwa wafer). The transfer of the pattern is typically via imaging onto a layer of Korean-sensitive material (resist) provided on a substrate. In general, a single substrate will contain a network of sequentially patterned adjacent target portions. Conventional lithography apparatus includes: a so-called stepper 'where each of the target portions is illuminated by exposing the entire pattern onto the target portion by a second time; and a so-called scanner, wherein by "scanning" in a given direction The pattern is scanned on the direction via the radiation beam while scanning the substrate in parallel or anti-parallel in this direction to illuminate each of the target portions. It is also possible to transfer the pattern from the patterning device to the substrate by printing the pattern onto the substrate. It has been proposed in an lithography apparatus to utilize an encoder measurement system to measure the position of the substrate level. Further, the substrate platform can be provided with an encoder sensor that directs the measuring beam to the grid. The grid can be attached to the structure of the lithography apparatus, such as a metrology framework of the lithography apparatus. However, the reference structure may be subject to vibrations or other mechanical disturbances which may result in vibrations attached to its thumb. Naturally, such vibrations may cause inaccuracies in the encoder measurement system, as shifting the grid away from its desired position may result in errors in the corresponding encoder. ° Stomach To address this issue, an auxiliary sensor system can be provided to measure the position of the grid relative to the reference. By correcting the readout of the coding system for the gate position deviation as provided by the auxiliary sensor system, the measurement accuracy of the encoder measurement system can be increased, thereby possibly reducing the mentioned vibration. Or other interference effects. / SUMMARY OF THE INVENTION There is a need to facilitate calibration of an auxiliary sensor system. = An embodiment of the invention provides a method of calibrating an auxiliary sensor. The auxiliary sensor system can be used to measure the grid relative to the seven places, and the grid forms an encoder for measuring the position of the lithography device, the position of the measuring wire, and the position of the D. In part, the system to the SiS further includes a sensor for mounting the main substrate table. The method comprises: a garment/excitation grid to move in the auxiliary sensor system; a direction of the inner measurement; an auxiliary number obtained from the sensor system during the movement; and a message from the stolen wheel The output signal obtained during the period is used by the moxibustion slave to assist the sensor wire> number to thereby calibrate the auxiliary sensor system. In another embodiment of the present invention, the present invention includes: a sand lithography apparatus, package 130317.doc 200905412 'illumination system, the illumination system is configured to adjust a radiation beam; 'support, support Constructed to support a patterned device, the patterned device is capable of imparting a pattern to the radiation beam in a cross section of the radiation beam to form a patterned radiation beam; y • a substrate stage, the substrate stage is constructed to hold the substrate; and • a projection system The projection system is configured to project the patterned radiation beam onto a target portion of the substrate. The lithography apparatus further includes an encoder measurement for measuring the position of the substrate table. The encoder measurement system includes a sensor mounted to the substrate stage and a sensor containing the grid. An auxiliary sensor system is provided to measure the position of the grid tree relative to the reference' and the excitation device is provided to excite the grid. The lithography apparatus is configured to: • excite the grid by an excitation device to thereby move the grid in at least one measurement direction of the auxiliary sensor system; • obtain an auxiliary sensing from the sensor system during movement The system rotates the signal; and • adjusts the parameters of the auxiliary sensor system from the obtained output signal to thereby calibrate the auxiliary sensor system. According to another embodiment of the present invention, there is provided a lithography apparatus comprising: a lighting system, the illumination system configured to adjust a radiation beam; • a support member configured to support the patterned device, the patterning device A pattern can be applied to the radiation beam in a cross section of the radiation beam to open the patterned radiation beam; 130317.doc 200905412 • The substrate stage substrate is constructed to hold the substrate; and • the projection system is configured to The patterned radiation beam is projected onto a target portion of the substrate. The lithography apparatus further includes an encoder measurement system for measuring the position of one of the substrate stage and the support. The encoder measurement system includes the sense of being mounted to one of the base station and the support #; the device, and the sensor target containing (4). An auxiliary sensor system is provided to measure the position of the grid relative to the reference and the excitation device is provided to energize the grid. The lithography apparatus is configured to: • excite the grid by an excitation device to thereby move the grid in at least one measurement direction of the sensor system; • obtain an auxiliary sensing from the auxiliary sensor system during movement The system output signal; and adjusting the parameters of the auxiliary sensor system from the obtained output signal to thereby calibrate the auxiliary sensor system. In accordance with yet another aspect of the present invention, a position measuring system from the position of the object is measured. The position measuring system includes a sensor mounted to the object and includes a sensor target of the grid. The position measurement system further includes an auxiliary sensor system for measuring the position of the grid relative to the reference, = an excitation device for exciting the grid. The position measurement system is configured to: • energize the grille by the excitation device to thereby move the grid in at least one direction of the sense sensing; ,, • • gain a sense of assistance from the sensor system during movement Detector number; and inquiry # • From the obtained output signal adjustment auxiliary sensor system to calibrate the auxiliary sensor system by 130317.doc 200905412. In accordance with yet another embodiment of the present invention, a method of calibrating an incremental sensor system for measuring the position of a grid relative to a reference is provided. The grid is part of an encoder measurement system for measuring the position of the object. The encoder measurement system further includes a sensor mounted to the object. The method comprises: • an excitation grid to move in at least a measurement direction of the sense system; • a sensor system output signal obtained from the sensor system during movement; and based on the movement period The resulting output signal is used to adjust the parameters of the sensor system to thereby calibrate the sensor system. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described by way of example only with reference to the accompanying drawings. 1 unintentionally depicts a lithography apparatus in accordance with an embodiment of the present invention. The apparatus includes an illumination system (illuminator) IL configured to condition a light beam B (eg, UV radiation or any other suitable radiation); a reticle support structure (eg, a reticle stage) MT constructed To support the patterned device (eg, reticle) MA and to the first positioning device pM, the first positioning device PM is configured to accurately position the patterned device according to certain parameters. The device also includes a substrate stage (eg, a wafer table), a Ding or "substrate support", which is constructed to hold a substrate (eg, a resist coated wafer) and is coupled to the first positioning device PW, the second positioning device pw is configured to accurately position the substrate according to certain parameters. The apparatus further includes a projection system (eg, 130317.doc 200905412, eg, a refractive projection lens system) PS configured to project a pattern imparted to the radiation beam 3 by the patterning device MA onto a target portion c of the substrate w (eg, including One or more grains). The illumination system ratio can include various types of optical components for guiding, shaping, or controlling radiation, such as refractive, reflective, magnetic, electromagnetic, electrostatic, or other types of optical components, or any combination thereof. The reticle support structure Μ 支 ( (ie, carrying) patterned device ma. Light, the support structure MT is oriented in the orientation of the patterning device, the lithography device and other conditions (such as 'whether the patterned device MA is held in a vacuum or low (gas, air or predetermined gas mixture) pressure environment) A fixed way to hold the patterned device MA. The mask-retaining structure Μτ can hold the patterned device ma using mechanical, vacuum, electrostatic or other clamping techniques. The reticle support structure MT can be, for example, a frame or table that can be fixed or movable as desired. The reticle support structure (10) ensures that the patterning device MA, for example, is in a desired position relative to the projection L system PS. Any use of the term 'main mask" or "mask," may be considered synonymous with the more general term "pattern". As used herein, the term "patterning" is intended to be interpreted broadly to refer to the pattern used to impart a pattern to a light beam in the cross section of the radiation beam for the target portion of the soil plate: Any device that forms a pattern in C. It should be noted that the pattern given to the light beam Β by the example right includes a phase shifting feature or a so-called assisting feature, which may not exactly correspond to the desired pattern in the substrate w. , is assigned to (iv) a map of the beam; it will correspond to the device formed in the target portion C (such as the specific functional layer of integrated circuit 130317.doc 200905412. The patterned device MA can be transmissive or reflective. Patterning device Examples include a hood 'programmable mirror (four) column, and a programmable (10) panel. The reticle is well known in the art of shadowing, and self-twisting includes a reticle type such as binary alternating phase shift and attenuated phase shift' And a variety of mixed reticle types. The programmable mirror array - the example uses a small mirror matrix configuration, each of which can be individually tilted to reflect the incident radiation beam in different directions. The tilted mirror imparts the image of the thief + μ 〃 to the radiation beam reflected by the mirror matrix. The shadow system used herein should be interpreted broadly to cover any type of projection system, including refraction, reflection, catadioptric, Magnetic, electromagnetic, and electrostatic optical systems, or any combination thereof, suitable for the exposure radiation used, or other factors such as the use of immersion liquids or the use of vacuum. Any term, projection lens, any of these may be considered herein. The use is synonymous with more general terminology, projection system, as described herein, the device is of a transmissive type (eg, a transmissive reticle). Alternatively, the rupture may be of a reflective type (eg, using the above) A programmable mirror array of the type mentioned, or using a reflective mask.) The lithography device can have two (dual platforms) or more than two substrate stages or "substrate supports (and/or two or Two or more reticle stages or types of reticle supports. In such "multi-platform" machines, additional stages or supports may be used in parallel or in one A preliminary step is performed on a plurality of stages or supports while at the same time - or a plurality of other stages or cuts are used for exposure. The lithographic apparatus may also be of the type wherein at least a portion of the substrate W may be I303I7.doc 200905412 A liquid of higher refractive index (eg, water) is covered to fill the space between the projection system PS and the substrate w. The immersion liquid can also be applied to other spaces in the lithography apparatus, for example, the reticle MA and the projection system PS The immersion technique can be used to increase the numerical aperture of the projection system PS. As used herein, the term "immersion" does not mean that the structure of the substrate w must be immersed in the liquid, but rather only means that the liquid is located in the projection system during exposure. Between PS and substrate W. Referring to Figure 1, illuminator IL receives a radiation beam from radiation source SO. For example, when the radiation source S◦ is a quasi-molecular laser, the radiation source so and the lithography device can be separate entities. Under such conditions, the source s〇 is not considered to form part of the lithographic apparatus' and the radiation beam B is transmitted from the source s to the beam source BD by means of, for example, a suitable guiding mirror and/or beam amplifier. Illuminator IL. In other situations, for example, when the source of radiation is a mercury lamp, the source of radiation SO can be an integral part of the lithography apparatus. The radiation source and illuminator IL together with the beam delivery system BD (when needed) may be referred to as a radiation system. The illuminator IL can include an adjuster AD configured to adjust the angular intensity distribution of the radiation beam b. Typically, at least the outer radial extent and/or the inner radial extent (commonly referred to as σ outer and σ inner, respectively) of the intensity distribution in the pupil plane of the illuminator IL can be adjusted. In addition, the illuminator ratio can include various other components such as the concentrator IN and the concentrator CO. The illuminator can be used to adjust the ray beam B' to have a desired uniformity and intensity distribution in its cross section. The light beam B is incident on the reticle support structure (eg, reticle stage 130317.doc 13-200905412) The patterning device (eg, reticle MA) on the MT) is patterned by the patterned device MA. After traversing the reticle μα, the radiation beam b passes through the projection system PS, and the projection system PS focuses the beam 至 onto the target portion 基板 of the substrate w. By means of the second positioning device PW and the position sensor IF (for example an interference measuring device, a linear encoder, or a capacitive sensor), the substrate table wt can be moved precisely, for example in the path of the radiation beam 3 Locate the different target parts C. Similarly, the first positioning device read and another position sensor (which is not explicitly depicted in Figure 1) can be used, for example, with respect to the radiation beam after mechanical extraction from the reticle library or during scanning. The path to accurately position the reticle MA. Typically, t, the movement of the mask table Μτ can be achieved by means of a long stroke module (rough positioning) and a short stroke module (fine positioning) forming part of the first positioning device pM. Similarly, the movement of the substrate table WT or the "substrate support" can be achieved using a long stroke module and a short stroke module forming part of the second positioner PW. The condition of the stepper (as opposed to the scanner) Next, the reticle stage MT can be connected only to the short-stroke actuator, or can be fixed. The reticle alignment marks M1, M2 & substrate alignment marks Η, P2 can be used to align the mask ΜΑ and the substrate W. Although the substrate alignment bars PI, Ρ2 occupy a dedicated target portion as illustrated, they may be located between the target portions: in space (this is referred to as a scribe line alignment mark). Similarly, in more than one die In the case of a reticle, the reticle alignment mark can be located between the dies. The depicted device can be used in at least one of the following modes: 1. In step mode, in the step mode When the entire pattern imparted to the radiation beam β is sub-projected onto the target portion c, the mask table Μτ or "mask support 130317.doc 14 200905412" and the substrate table wt or "substrate support" remain substantially stationary (ie, a single static exposure). Next, the substrate stage or "substrate support" is displaced in the χ and / or Υ directions so that different target portions C can be exposed. In the step mode, the maximum size of the exposure field is limited to a single static exposure. The size of the imaged target portion C. 2_In the scan mode, when the pattern to be applied to the radiation beam 投影 is projected onto the target portion c, the reticle stage or "mask support" is synchronously scanned and Substrate table WT or "substrate support"" (i.e., single dynamic exposure). The speed and direction of the substrate stage w or "substrate support" relative to the mask stage τ or " reticle support" can be determined by the magnification (reduction ratio) and image reversal characteristics of the projection system PS. . In the scan mode towel, the final size of the exposure field limits the width of the target portion in a single dynamic exposure (in the non-scanning direction), and the length of the scanning motion determines the height of the target portion (in the scanning direction). 3. In the other mode, when the pattern to be given to the light beam is projected onto the target portion C, the reticle or "mask support" is kept substantially stationary" to maintain the programmable patterning Equipment, and moving or scanning the substrate table WT or <substrate support „. In this mode, a pulsed ray source is usually used, and after the substrate table WT or “substrate support, every _ move or in The sequential (four) pulses during the scan are prepared according to f. This mode of operation can be readily applied to the use of programmable patterning sighs (such as, for example, reticle lithography as mentioned above. Mirrored arrays) using a combination of the modes of use described above and/or Or change or π king different usage patterns. 130317.doc -15 - 200905412 Figure 2 is a highly schematic depiction of a crystal platform w τ , also referred to herein as a substrate platform. The substrate platform w τ is held to be illuminated by the projection system p s : substrate w. In order to measure the position of the substrate platform WT, an encoder is provided, which comprises a grid GT' grid GT comprising a one- or two-dimensional pattern; and an encoder sensor ES' which may be included to generate a guided grid The source of the beam of the grid is combined with a sensor that senses the beam returning to the encoder sensor ES. Shifting of the substrate platform WT will result in displacement of the encoder sensor Es relative to the grid GT, which will provide a signal provided by the encoder sensing SES due to one or two dimensional patterns on the grid The corresponding change is because the optical energy returned to the sensor ES will be altered due to the path of the elements of the grid GT (such as lines, fringe 'points, etc.). In this embodiment, the grid GT is coupled to a metrology frame MF that provides a reference structure for the lithography apparatus. The projection system PS can also be held by the metrology frame 1 11 11 in a rigid manner or by an active or passive rigid or resilient mount (not shown). The problem is that the metrology framework MF may be subject to vibration, interference or other effects that may cause the grid GT to move relative to the reference (in this example, the projection system PS, or more precisely the optical axis of the projection system PS). Such movement of the grid GT may result in inaccuracies in the measurement by the encoder (the grid GT is part of it). Other causes of displacement of the grid GT may exist and may be found, for example, in thermal expansion or the like. In order to be able to compensate for these effects to some extent, an auxiliary sensor system ASS can be provided, which measures the grid GT relative to the reference (in this example the projection system PS, more precisely the optical axis aX of the projection system PS) ) The location. The auxiliary sensor system ASS may in turn comprise an encoder that measures the position of the auxiliary system portion ASP1 relative to the position of the auxiliary system portion ASP2. The auxiliary system portion gossip 2 can, for example, be connected to a lens mount of a projection lens downstream of the projection system PS. The resolution of the auxiliary sensor system ASS may be high and may be equivalent to or lower than the positioning accuracy requirement of the substrate platform WT. Any measurement error of the auxiliary system ASS will result in the substrate platform w The measurement error of τ with respect to the projection system PS or its optical axis AX. Therefore, periodic calibration of the auxiliary sensor system can be required or required. The auxiliary sensor system ASS can, for example, include an incremental encoder (such as an optical incremental encoder), as can other types of sensors, such as capacitive sensors, inductive sensors (eg, Eddy current, LVDT (linear variable filament pressure crying), interferometer. In the case of incremental encoders, various effects may result in 4 = indeed = for example, 'light intensity and reflection variation, - non-linearity within the signal period. In order to be able to take into account these effects, periodic calibration may be required. The present invention can be used to handle challenges associated with assisting the sensor system smoke calibration 1.: accuracy level. Auxiliary sensor system: SS: Replacement = calibration outside the imaging may not be a viable option, as the removal is taken into account, according to the invention == is calibrated. The actual measurement of the state can be achieved by stimulating the grid to at least one measure of the auxiliary system ASS.

干音㈣… 方向(在此實例中為圖2中由MD 輔助不之量測方向)上進行移動、在移動期間自 助感㈣統ASS獲得辅助感 因此所獲得之輸出信號來調整辅 :…基於 而執行校準。為了執行校準 ^系統似之參數The dry sound (4)... The direction (in this example, the MD-assisted measurement direction in Figure 2) is moved, and the self-sense is sensed during the movement. (4) The ASS obtains the auxiliary sense and thus the output signal obtained is adjusted to adjust: And perform calibration. In order to perform calibration ^ system-like parameters

可調整輔助感測器系統ASS 1303I7.doc 17 200905412 種> 數,例如,雷射功率、雷射波長、增益及/或其 又’可校準輔助感測器系統ASS之非線性,因為辅 助感測器系統輸出信號之圖案可與移動比較,&導出辅助 ,、彳二系統ASS與其所要回應相比之任何回應偏差。 知因於格柵GT至度量衡框架^^^之安裝的高硬度,及將 因此為格柵GT之該移動所需要的較高力,可與格栅之共 振頻率同步地提供激勵,以藉此以相對較低力來提供格桃 移動之相對較大振幅。其實例提供於圖从中,其中與格柵 之共振同步地提供脈衝式激勵力EF,格柵藉此提供如圖 3 A所描綠之移位D。 或者,可藉由階梯函數(如圖3B所描繪)或脈衝函數(如 圖3C所描繪)來提供激勵以產生格栅之共振。 本發明之本文所揭示態樣亦可應用於所謂的雙平台微影 裝置之量測平台中。又,在量測循環期間,量測基板W之 表面上及/或基板台WT上的對準標記。輔助感測器系統 ASS可能(但未必)需要提供在一或多個水平方向上之量 測。 圖4示意性地展示格柵(3丁及投影系統“之俯視圖。在此 實例中,提供兩個輔助感測器系統ASSp,輔助感測 器系統ASS1及辅助感測器系統ASS2,然而,在其他實施 例中,可提供更多輔助感測$。輔助感測器系統人如量 測在量測方向MD1上格柵G Τ相對於投影系統p s之位置, 而輔助感測器系統ASS2量測在第二量測方向md2上格柵 GT相對於投影系統ps之位置。在此實 J τ 第一量測方 I30317.doc 200905412 向MD1及第二量測方向MD2彼此垂直,兩個量測方向沿格 栅GT之表面且在晶圓平台WT之移動方向上。 圖4進一步展示藉由激勵々EF來提供格柵GT之激勵的激 勵設備ED,力之方向使得格柵歸因於激勵力之移動相對 於第一量測方向MD1及第二量測方向MD2而在大體上杉度 之角度下。藉此,格栅GT之單—移動可足以提供格拇仍 在約第一量測方向Mm及第二量測方向MD2上之移動’且Adjustable auxiliary sensor system ASS 1303I7.doc 17 200905412 kinds of numbers, for example, laser power, laser wavelength, gain and/or its 'calibratable auxiliary sensor system ASS nonlinearity, because of the sense of assistance The pattern of the output signal of the detector system can be compared to the movement, & export assistance, and any response bias of the second system ASS compared to the response. Knowing the high hardness of the installation of the grid GT to the metrology frame ^^^, and thus the higher force required for the movement of the grid GT, the excitation can be provided in synchronism with the resonant frequency of the grid, thereby Provide a relatively large amplitude of the movement of the peach with a relatively low force. An example thereof is provided from which the pulsed excitation force EF is provided in synchronism with the resonance of the grid, whereby the grid provides a displacement D as shown in Fig. 3A. Alternatively, the excitation can be provided by a step function (as depicted in Figure 3B) or a pulse function (as depicted in Figure 3C) to produce a resonance of the grid. The aspects of the invention disclosed herein may also be applied to a measurement platform of a so-called dual platform lithography apparatus. Also, the alignment marks on the surface of the substrate W and/or on the substrate stage WT are measured during the measurement cycle. Auxiliary Sensor System ASS may (but does not necessarily) need to provide measurements in one or more horizontal directions. Fig. 4 schematically shows a top view of a grid (3D and projection system.) In this example, two auxiliary sensor systems ASSp, an auxiliary sensor system ASS1 and an auxiliary sensor system ASS2 are provided, however, In other embodiments, more auxiliary sensing can be provided. The auxiliary sensor system person measures the position of the grid G Τ relative to the projection system ps in the measurement direction MD1, and the auxiliary sensor system ASS2 measures In the second measuring direction md2, the position of the grid GT relative to the projection system ps. Here, the first measuring unit I30317.doc 200905412 is perpendicular to the MD1 and the second measuring direction MD2, and the two measuring directions are Along the surface of the grid GT and in the direction of movement of the wafer platform WT. Figure 4 further shows an excitation device ED that provides excitation of the grid GT by exciting the 々EF, the direction of the force causing the grid to be attributed to the excitation force The movement is relative to the first measurement direction MD1 and the second measurement direction MD2 at an angle of substantially the cedar angle. Thereby, the single-movement of the grid GT can be sufficient to provide the lattice thumb still in the first measurement direction Mm and The second measurement direction moves in the direction MD2' and

允許自相同移動校準第一輔助感測器系統八以丨及第二辅 助感測器系統ASS2。 應用各種致動 -一〜时 .m !双勒器、 氣體流動致動器(提供(例如)脈衝式氣體流動)、抽吸氣動 致動器、壓電致動器、平銘叙士“ 移動力(traverse p0wer)激勵串致 動器(其中在格柵上拉動之串具備平移力,以根據需要而 藉由串來增加牽引)、電磁致動器、聲學致動器,等等。 在以上實射,已假定致動器作用於格柵Μ。然而, 可提供許多其他可能性:例如, U 绞動器有可能存在於微影 裝置之透鏡座架處。在一此微The first auxiliary sensor system is allowed to calibrate the second auxiliary sensor system ASS2 from the same movement. Application of various actuation-one-time.m! double-drill, gas flow actuator (providing (for example) pulsed gas flow), suction pneumatic actuator, piezoelectric actuator, Ping Mingxu "moving A traverse p0wer excites a string actuator (where the string pulled on the grid has a translational force to increase traction by string as needed), an electromagnetic actuator, an acoustic actuator, etc. Real shot, it has been assumed that the actuator acts on the grid. However, many other possibilities are available: for example, a U-retractor may be present at the lens mount of the lithography apparatus.

—傲〜裴置叹计中,投影系統PS 之透鏡中的一或多者可具備包含 . .. .. + ^ 動器之主動透鏡座架以 疋位所嫡述之透鏡。藉由致動 癥仇士々, 7 x寻级動益以(例如)提供對 應:格栅之共振頻率的頻率,振動圖案可產生於投影系統 PS,且因此產生於度量衡框架及/或格栅中,其可能因 此導致格柵共振。作為$ 、 b -備、…* 例,致動器(換言之,激勵 6又備)可作用於度量衡 糊 盥格栅CT夕m (例如)度量衡框架在 /、格柵GT之共振模式極 双(具可導致格柵共振)的 130317.doc ,19· 200905412 (非共振或共振)頻率下振動。 f g在上文中已關於基板平台WT及基板平台定位而描 述根據本發明之原,但此處所描述之主要内容可相等地 良好應用於亦被稱作支擇件之光罩平台MT的定位。 卜在上文中,已參考格柵GT之共振。該共振可包 含任何共振模式,其中提供格栅GT在各別量測方向MD、 MD1、MD2上之移動。移動方向可包含大體上垂直於投影 系統PS之光軸αχ的方向。 '上文可能不僅制於微影裝置,在任何情況下,校準方 /句可應用於里測格柵位置之任何輔助感測器系統,格柵 形成編碼器量測系統之一部分。 儘管在此本文t可特定地參考微影裝置在K製造中之使 f,但應理解,本文所描述之微影裝置可具有其他應用, 諸如製々積體光學系統、用於磁域記憶體之導引及偵測 圖案;平板顯示器、液晶顯示器⑽)、薄臈磁頭,等 等。熟習此項技術者應瞭解,在該等替代應用之情境中, 可認為本文對術語”晶圓”或”晶粒"之任何使用分別與更通 用之術語"基板”或"目標部分”同義。可在曝光之前或之後 在(例如)軌道(通常將抗蝕劑層施加至基板且顯影經 蝕劑之工具)、声吾俺丁目β ^^ 度里衡工具及/或檢測工具中處理本文所提 及之基板。適用時,可將本文之揭示應用於該等及呈他基 板處理工具。另外,可將基板處理一次以上,(例如)以便 二:層Γ使得本文所使用之術語基板亦可指代已經含 有多個經處理層之基板。 J30317.doc 20· 200905412 儘官以上可特定地參考在光學微影術之情境中對本發明 之實施例的使用,但應瞭解,本發明可用於其他應用(例 如,壓印微影術)中,且在情境允許時不限於光學微影 術。在壓印微影術中,圖案化設備中之構形界定形成於基 板上之圖案。可將圖案化設備之構形壓入被供應至基板之 抗蝕d層中,在基板上,抗蝕劑藉由施加電磁輻射、熱、 壓力或其組合而固化。在抗蝕劑固化之後,將圖案化設備 移出抗姓劑’從而在其中留下圖案。 本文所使用之術語,,輻射”及”光I"涵蓋所有類型之電磁 輻射,包括紫外線(uv)輻射(例如,具有為或約365。⑺、 248 nm、193 nm、157 11111或126 nm之波長)及遠紫外線 (EUV)輕射(例如,具有在5⑽至⑼謹之範圍内的波長); 以及粒子束(諸如,離子束或電子束)。 術語"透鏡”在情境允許時可指代各種類型之光學組件中 之任-者或組合’包括折射、反射、磁性、電磁及靜電光 學組件。 e X上已描述本發明之特定實施例,但應瞭解,可以 與所描述之方式不同的其他方式來實踐本發明。舉例而 言,本發明可採取如下形式:電腦程式,其含有描述如以 揭丁之方法之機盗可讀指令的一或多個序列;或資料 儲存媒體(例如,半導體記憶體、磁碟或光碟),其具有儲 存於其中之該電腦程式。 以上描述意欲為說明性而非限制性的。因此,對於熟習 此項技術者而言將顯而異目 s . 易見的疋,可在不脫離以下所闡明 130317.doc •21 - 200905412 之本發明進行 置之—部分的 的時序圖; 别系統及激勵 之申請專利範圍之料的情況下對如所 修改。 田现 【圖式簡單說明】 圖1描繪根據本發明之—眘 貫施例的微影襞s 圖2描繪根據本發明之— κ 實施例之微影裝 不意圖; 圖3A至圖3C描繪格柵及其激勵圖案之移動 圖4描繪根據本發明之—實施例之輔助量 設備的示意性俯視圖。 【主要元件符號說明】 AD 調整器 ASP1 輔助系統部分 ASP2 輔助系統部分 ASS 輔助感測器系統 ASS1 輔助感測器系統 ASS2 輔助感測器系統 AX 光軸 B 輻射光束 BD 光束傳送系統 C 目標部分 CO 聚光器 D 移位 ED 激勵設備 EF 脈衝式激勵力 130317.doc 200905412 ES 編碼器感測器 GT 格柵 IF 位置感測器 IL 照明系統 IN 積光器 Ml 光罩對準標記 M2 光罩對準標記 MA 圖案化設備 MD 量測方向 MD1 第一量測方向 MD2 第二量測方向 MF 度量衡框架 MT 光罩平台 PI 基板對準標記 P2 基板對準標記 PM 第一定位設備 PS 投影系統 PW 第二定位設備 SO 韓射源 W 基板 WT 基板台 X 方向 Y 方向 130317.doc -23-In the arrogance, one or more of the lenses of the projection system PS may have a lens including the active lens mount of the . . . . By actuating the enemy, the 7 x homing action provides, for example, a frequency corresponding to the resonant frequency of the grid, the vibration pattern can be generated by the projection system PS, and thus from the metrology frame and/or the grid It may therefore cause the grid to resonate. As an example of $, b -, ..., *, the actuator (in other words, the excitation 6 is available) can be applied to the metrology paste grid CT m (for example) the metrology frame at /, the resonance mode of the grid GT is extremely double ( Vibration at a frequency of 130317.doc, 19·200905412 (non-resonant or resonant) that can cause grid resonance). Fc has been described above with respect to the substrate platform WT and substrate platform positioning, but the main content described herein can equally well be applied to the positioning of the reticle stage MT, also referred to as a support. In the above, reference has been made to the resonance of the grid GT. The resonance may comprise any resonance mode in which the movement of the grid GT in the respective measurement directions MD, MD1, MD2 is provided. The direction of movement may comprise a direction substantially perpendicular to the optical axis αχ of the projection system PS. 'The above may not only be made to the lithography device, but in any case, the calibrated square/sentence can be applied to any auxiliary sensor system that measures the position of the grid, and the grid forms part of the encoder measurement system. Although reference herein may be made with particular reference to the lithographic apparatus in the manufacture of K, it should be understood that the lithographic apparatus described herein may have other applications, such as making a plenum optical system for magnetic domain memory. Guide and detection patterns; flat panel displays, liquid crystal displays (10)), thin heads, and the like. Those skilled in the art should understand that in the context of such alternative applications, any use of the terms "wafer" or "die" may be considered in this context with the more general term "substrate" or "target portion "Synonymous. Can be used before or after exposure in, for example, orbital (usually applying a layer of resist to the substrate and developing the etchant), sonar, and the tool and/or inspection tool Processing the substrates referred to herein. Where applicable, the disclosure herein can be applied to such and other substrate processing tools. Additionally, the substrate can be processed more than once, for example, so that the two layers are used to make the terms used herein The substrate may also refer to a substrate that already contains a plurality of treated layers. J30317.doc 20· 200905412 The use of embodiments of the invention in the context of optical lithography may be specifically referenced above, but it should be understood that the invention Can be used in other applications (eg, embossing lithography) and is not limited to optical lithography where context permits. In embossing lithography, the configuration in the patterning device defines a pattern formed on the substrate. The patterning device can be configured to be pressed into a resist d layer that is supplied to the substrate, and the resist is cured by applying electromagnetic radiation, heat, pressure, or a combination thereof on the substrate. Thereafter, the patterned device is removed from the anti-surname agent' to leave a pattern therein. The terms, radiation, and "light I" as used herein encompass all types of electromagnetic radiation, including ultraviolet (uv) radiation (eg, having Or about 365. (7), 248 nm, 193 nm, 157 11111, or 126 nm wavelengths) and far ultraviolet (EUV) light shots (eg, having wavelengths in the range of 5 (10) to (9)); and particle beams (such as, Ion beam or electron beam. The term "lens" may mean any or all of the various types of optical components as the context permits, including refractive, reflective, magnetic, electromagnetic, and electrostatic optical components. The present invention has been described in terms of a particular embodiment of the invention, but it is understood that the invention may be practiced otherwise than as described. For example, the present invention can take the form of a computer program containing one or more sequences describing a pirate readable instruction such as a method of singularity; or a data storage medium (eg, a semiconductor memory, a disk or A disc) having the computer program stored therein. The above description is intended to be illustrative, and not restrictive. Therefore, it will be apparent to those skilled in the art. It is obvious that the present invention can be carried out without departing from the following description of the invention of 130317.doc • 21 - 200905412; The system and the application of the patent for the scope of the patent application are modified as described. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 depicts a lithography s s in accordance with the present invention. FIG. 2 depicts a lithographic mounting according to the κ embodiment of the present invention; FIG. 3A to FIG. Movement of the grid and its excitation pattern Figure 4 depicts a schematic top view of an auxiliary amount device in accordance with an embodiment of the present invention. [Main component symbol description] AD regulator ASP1 auxiliary system part ASP2 auxiliary system part ASS auxiliary sensor system ASS1 auxiliary sensor system ASS2 auxiliary sensor system AX optical axis B radiation beam BD beam transmission system C target part CO aggregation Lighter D Shift ED Stimulating device EF Pulsed excitation force 130317.doc 200905412 ES Encoder sensor GT Grille IF Position sensor IL Illumination system IN Light concentrator Ml Mask alignment mark M2 Mask alignment mark MA patterning device MD measuring direction MD1 first measuring direction MD2 second measuring direction MF measuring and measuring frame MT mask platform PI substrate alignment mark P2 substrate alignment mark PM first positioning device PS projection system PW second positioning device SO Han source W substrate WT substrate table X direction Y direction 130317.doc -23-

Claims (1)

200905412 十、申請專利範圍: 1. 一種用於校準_ 系統經調適以量:列:測器糸統之方法,該輔助感測器 柵形成-用以、~格柵相對於-參考之-位置,該格 碼器量測微料置之—基板台之—位置之編 一安萝、、邛分,該編碼器量測系統進一步包含 =該基板台之感測器,該方法包含: 上進行在該輔助感測㈡統之至少-量測方向 系統輸出信:門】4辅助感測器系統獲得-輔助感測器 基於該移動期間所獲得 測器系統之一夂數 Μ雨出信號來調整該輔助感 2. 如請…以藉此校準該辅助感測器系統。 執法’其中與該格柵之—共振頻率同步地 執仃該格栅之該激勵。 I 之方法’其中該激勵包含藉由-階梯函數或 :长項】之方法’其中該移動在一大體上沿 置之該基板台之-移動平面的方向上。 “裝 5. 如請求項1之方法,苴中噹來去* 參考為-微影裝置投影透鏡 及微影裝置對準量測設備中之—者。 6. :請求項丨之方法’其中該輔助感测器系統之一 該調整包含調整該輔助感測器系統之-雷射功率、一雷 射波長、一增益及一偏移中的至少—者。 7. 如請求们之方法,其中該量測方向包含彼此大體上垂 脈衝函數來激勵該格柵 130317.doc 200905412 直之第一量測方向及第二量測方向,且其中該移動相對 於該第一量測方向及該第二量測方向而在大體上Μ 一角度下。 如:求項1之方法,其中藉由一氣動致動器、一液壓致 動器~~氣體流動致動器、一抽吸氣動致動器、一壓電 器 平移動力激勵串致動器、一電磁致動器及— 聲學致動器中之至少一者來激勵該格栅。 9. f、 10. 如唄求項1之方法’其中該格柵之該激勵包含激勵該微 衫裝置之一透鏡座架致動器。 11. 如蛸求項1之方法,其中該格柵之該激勵包含在該投影 透鏡或該格栅之一共振頻率下致動一度量衡框架。/ 一種微影裝置,其包含: 一照明系統,該照明系統經組態以調節一輻射光束; 一支揮件,該支揮件經建構以支樓m設備該 圖案化設備能夠在該輕射光束之橫截面中向該轄射光束 賦予一圖案以形成一經圖案化輻射光束; 一基板台,該基板台經建構以固持一基板; -投影系統’該投影系統經組態以將該經圖案化輻射 光束投影至該基板之一目標部分上· -編碼器量測系統’該編碼器量測系統經調適以量測 基板台位置 w亥編石馬器吾泪丨丨1 e a人 一 3為ϊ測糸統包含一安裝至該基板 台之感測器及一包含一格栅之感測器目標; -輔助感測器系統,該輔助感測器系統經調適以量測 該格柵相對於一參考之一位置;及 130317.doc -2- 200905412 激勵備,該激勵設備經調適以激勵該格柵,其中 該微影裝置經配置以: 藉由該激勵備來激勵該格柵以藉此在該輔助感 測15系統之至少—量測方向上移動該格柵; σ在δ亥移動期間自該輔助感測器系統獲得-輔助感測 器系統輸出信號;及 自β亥所獲付輸出信號調整該辅助感測器系統之一參 $,以藉此校準該輔助感測器系統。 «求項11之微衫裝置,其中該激勵設備經調適以與該 格柵之—共振頻率同步地執行該激勵。 13. 如s青求項11之微影奘罢 一 衣置,其中該激勵設備經調適以根據 -階梯函數或一脈衝函數來執行該格柵之該激勵。 14. 如晴求項丨j之微影 史壯 裝置’其中該移動在一大體上沿該微 衫襞置之該基板台之— 抄劲平面的方向上。 15. 如請求項丨i之微影 ^ ^ ^ 裝置,其中該參考為一微影裝置投影 i 透鏡或-微影裝置對準量測設備。 16. 如請求項11之微影穿窨甘士 士 ...^ 裝置’其中該微影裝置經調適以藉由 杈準該感測器系統之一 及-偏移中之至少一 / 雷射波長、一增益 準。 者來執行該輔助感測器系統之校 17. 如睛求項^之微影 上# 、置,其中該量測方向包含彼此大體 罝之第一量剛方合Β货__ θ , 設備經調適以相=方向,且其中該激勵 而在大體上45度之」角Γ向及該第二量測方向 角度下移動該格柵。 130317.doc 200905412 1 8 ·如吻求項11之微影裝置,其中該激勵設備包含一氣動致 動器 液壓致動器、一氣體流動致動器、一抽吸氣動 致動器、一壓電致動器、一平移動力激勵串致動器、一 電磁致動器及一聲學致動器中之至少一者。 19.如凊求項11之微影裝置’其中該激勵設備經調適以藉由 激勵忒微影裝置之一透鏡座架致動器來激勵該格栅。 2〇·如喷求項11之微影裝置,其中該激勵設備經調適以藉由 在该投影透鏡或該格柵之—共振頻率下致動一度量衡框 架來激勵該格栅。 21. —種微影裝置,其包含·· 照明系統’該照明系統經組態以調節一輻射光束; 支樓件’該支撐件經建構以支撐一圖案化設備,該 圖案化設備能夠在該輻射光束之橫截面中向該輻射光束 賦予一圖案以形成一經圖案化輻射光束; 一基板台,該基板台經建構以固持一基板; 才又景》系統,該投影系統經組態以將該經圖案化輻射 光束投影至該基板之一目標部分上; 編碼器量測系統,該編碼器量測系統用以量測該基 板。及邊支樓件中之一者的一位置,該編碼器量測系統 包含一安裝至該基板台及該支撐件中之該一者的感測 器,及一包含一格柵的感測器目標; 一辅助感測器系統,該輔助感測器系統用以量測該格 栅相對於一參考之一位置,‘及 —激勵設備,該激勵設備經調適以激勵該格柵,其中 130317.doc 200905412 钱微势衮置經配置以: !由該激勵設備來激勵該袼柵,以藉此在該 測益系統之至少—量測方向上移動該格柵; 在該移動期間自該辅助感測器系統獲 器系統輸出信號,·及 祠助攻測 自该所獲得輸出信號調整該輔助感測器系統之—泉 數,以藉此校準該輔助感測器系統。 , 22. 23. -種用以量測—物件之一位置的位置量測系統, 量測系統包含: £ 一感測器,該感測器安裝至該物件; -感測器目標’該感測器目標包含一格栅; ;輔助感測态系統’該輔助感測器系統經調適以量測 該格柵相對於一參考之一位置;及 -激勵設備’該激勵設備經調適以激勵該格柵,該位 置量測系統經配置以: 藉由該激勵設備來激勵該格柵,以藉此在該輔助感 測器系統之至少一量測方向上移動該格栅; ⑽在該移動期間自該輔助感測器系統獲得一輔助感測 益系統輸出信號;及 自該所獲得輸出k號調整該輔助感測n统之一參 數’以藉此校準該輔助感測器系統。 。用於校準一增$感測斋系統之方法,其中該增量感 測器系統經調適以量測一格柵相對於一參考之一位置, 該格柵形成—用以量測-物件之-位置之編碼器量測系 130317.doc 200905412 統的一部分,該編碼器量測系統進一步包含一安裝至該 物件之感測器,該方法包含: 激勵該格栅以在該感測器系統之至少一量測方向上進 行一移動; 在該移動期間自該感測器系統獲得一感測器系統輸出 信號;及 基於該移動期間所獲得之該輸出信號來調整該感測器 系統之一參數,以藉此校準該感測器系統。 130317.doc200905412 X. Patent application scope: 1. A method for calibration _ system is adapted to the amount: column: detector system, the auxiliary sensor grid is formed - used, ~ grid relative to - reference - position The encoder is configured to measure the micro-material--the substrate-position of the Anlu, and the sub-division, and the encoder measurement system further comprises a sensor for the substrate table, the method comprising: In the auxiliary sensing (2) system at least - measuring direction system output signal: door] 4 auxiliary sensor system acquisition - auxiliary sensor based on one of the detector systems obtained during the movement to adjust the rain signal This auxiliary sense 2. Please... thereby calibrate the auxiliary sensor system. The law enforcement' executes the excitation of the grid in synchronism with the resonant frequency of the grid. The method of I wherein the excitation comprises a method by a -step function or a term "the term" wherein the movement is in a direction substantially along the plane of movement of the substrate stage. "Installation 5. As in the method of claim 1, the middle and the right * refer to - the lithography device projection lens and the lithography device alignment measurement device - 6. The method of requesting the item 'where the auxiliary One of the sensor systems includes adjusting at least one of a laser power, a laser wavelength, a gain, and an offset of the auxiliary sensor system. 7. The method of claiming, wherein the amount The direction of measurement includes a substantially vertical pulse function to excite the grid 130317.doc 200905412 to a first measurement direction and a second measurement direction, and wherein the movement is relative to the first measurement direction and the second measurement direction The method of claim 1 is the method of claim 1, wherein a pneumatic actuator, a hydraulic actuator, a gas flow actuator, a suction pneumatic actuator, and a piezoelectric device are used. Translating at least one of a dynamic excitation string actuator, an electromagnetic actuator, and an acoustic actuator to excite the grid. 9. f, 10. The method of claim 1 wherein the grid Excitation includes actuating a lens mount actuator of the micro-shirt device. The method of claim 1, wherein the excitation of the grid comprises actuating a metrology frame at a resonant frequency of the projection lens or the grid. / A lithography apparatus comprising: an illumination system, the illumination The system is configured to adjust a radiation beam; a wave member configured to support the m device; the patterning device is capable of imparting a pattern to the ray beam in a cross section of the light beam to form a pattern a patterned radiation beam; a substrate stage configured to hold a substrate; - a projection system configured to project the patterned radiation beam onto a target portion of the substrate - encoding The measuring system of the encoder is adapted to measure the position of the substrate. The position of the substrate is whipped. The eagle is a 感 一 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含And a sensor target including a grid; an auxiliary sensor system adapted to measure a position of the grid relative to a reference; and 130317.doc -2- 200905412 Preparation, the incentive The apparatus is adapted to energize the grid, wherein the lithography apparatus is configured to: actuate the grid by the excitation device to thereby move the grid in at least a measurement direction of the auxiliary sensing 15 system; σ obtains an auxiliary sensor system output signal from the auxiliary sensor system during the δ-Hay movement; and adjusts one of the auxiliary sensor systems from the output signal received by βH to thereby calibrate the auxiliary A sensor system. The micro-shirt device of claim 11, wherein the excitation device is adapted to perform the excitation in synchronism with the resonance frequency of the grid. 13. If the smear of the item 11 is lithographed The excitation device is adapted to perform the excitation of the grid according to a step function or a pulse function. 14. If the lithography of the item 丨j is in the direction of the plane of the substrate which is substantially along the substrate of the micro-shirt. 15. The lithography ^ ^ ^ device of claim 丨i, wherein the reference is a lithography projection i lens or a lithography device alignment measurement device. 16. The lithography of claim 11 is carried out by a Gansu... ^ device wherein the lithography device is adapted to align one of the sensor systems and at least one of the offsets/laser wavelength, A gain is accurate. To perform the operation of the auxiliary sensor system. 17. If the eye is on the lithography of the item, the measurement direction includes the first quantity of the 彼此__ θ, which is substantially the same as each other. The grid is adapted to phase = direction, and wherein the excitation moves the grid at a substantially 45 degree angle and an angle of the second measurement direction. 130317.doc 200905412 1 8 The lithography apparatus of claim 11, wherein the excitation device comprises a pneumatic actuator hydraulic actuator, a gas flow actuator, a suction pneumatic actuator, a piezoelectric At least one of an actuator, a translational power excitation string actuator, an electromagnetic actuator, and an acoustic actuator. 19. The lithography apparatus of claim 11, wherein the excitation device is adapted to energize the grid by exciting one of the lens mount actuators of the lithography apparatus. 2. The lithography apparatus of claim 11, wherein the excitation device is adapted to energize the grid by actuating a metrology frame at a resonant frequency of the projection lens or the grid. 21. A lithography apparatus comprising: an illumination system configured to adjust a radiation beam; a support member configured to support a patterned device, the patterning device being capable of A cross-section of the radiation beam imparts a pattern to the radiation beam to form a patterned radiation beam; a substrate stage configured to hold a substrate; the system is configured to The patterned radiation beam is projected onto a target portion of the substrate; an encoder measurement system for measuring the substrate. And a position of one of the side support members, the encoder measuring system includes a sensor mounted to the one of the substrate table and the support member, and a sensor including a grille An auxiliary sensor system for measuring a position of the grid relative to a reference, and an excitation device adapted to excite the grid, wherein 130317. Doc 200905412 The money micro-potentiometer is configured to: • energize the grid by the excitation device to thereby move the grid in at least the measurement direction of the benefit system; from the sense of assistance during the movement The detector system receives the output signal of the system, and the assisting test adjusts the number of springs of the auxiliary sensor system from the obtained output signal to thereby calibrate the auxiliary sensor system. , 22. 23. A position measurement system for measuring the position of an object, the measurement system comprising: a sensor, the sensor is mounted to the object; - the sensor target The detector target includes a grid; an auxiliary sensing system adapted to measure a position of the grid relative to a reference; and an excitation device adapted to energize the a grid, the position measuring system configured to: actuate the grid by the excitation device to thereby move the grid in at least one direction of measurement of the auxiliary sensor system; (10) during the movement Obtaining an auxiliary sense system output signal from the auxiliary sensor system; and adjusting the auxiliary sense n system parameter 'from the obtained output k number to thereby calibrate the auxiliary sensor system. . A method for calibrating an incremental sensor system, wherein the incremental sensor system is adapted to measure a position of a grid relative to a reference, the grid forming - for measuring - the object - Position encoder measurement system 130317.doc 200905412, the encoder measurement system further comprising a sensor mounted to the object, the method comprising: energizing the grid to be at least at the sensor system Performing a movement in a direction of measurement; obtaining a sensor system output signal from the sensor system during the movement; and adjusting one of the parameters of the sensor system based on the output signal obtained during the movement, Thereby calibrating the sensor system. 130317.doc
TW097115127A 2007-05-08 2008-04-24 Lithographic apparatus and sensor calibration method TWI396054B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/797,901 US7999912B2 (en) 2007-05-08 2007-05-08 Lithographic apparatus and sensor calibration method

Publications (2)

Publication Number Publication Date
TW200905412A true TW200905412A (en) 2009-02-01
TWI396054B TWI396054B (en) 2013-05-11

Family

ID=39969212

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097115127A TWI396054B (en) 2007-05-08 2008-04-24 Lithographic apparatus and sensor calibration method

Country Status (5)

Country Link
US (1) US7999912B2 (en)
JP (1) JP4778981B2 (en)
KR (1) KR100953929B1 (en)
CN (1) CN101303535B (en)
TW (1) TWI396054B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8760615B2 (en) 2007-05-24 2014-06-24 Asml Netherlands B.V. Lithographic apparatus having encoder type position sensor system
US8687166B2 (en) * 2007-05-24 2014-04-01 Asml Netherlands B.V. Lithographic apparatus having an encoder position sensor system
EP2264409B1 (en) * 2009-06-19 2015-10-07 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
NL2004681A (en) * 2009-07-06 2011-01-10 Asml Netherlands Bv Imprint lithography apparatus.
NL2004735A (en) * 2009-07-06 2011-01-10 Asml Netherlands Bv Imprint lithography apparatus and method.
JP5757397B2 (en) * 2010-03-29 2015-07-29 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
US20130182235A1 (en) * 2012-01-12 2013-07-18 Nikon Corporation Measurement system that includes an encoder and an interferometer
CN102540765A (en) * 2012-02-13 2012-07-04 志圣科技(广州)有限公司 Device and method for positioning printed circuit board (PCB) of high-accuracy parallel light exposure machine
WO2013160016A1 (en) * 2012-04-26 2013-10-31 Asml Netherlands B.V. Lithography apparatus and device manufacturing method
TWI690482B (en) * 2013-12-31 2020-04-11 佳能奈米科技股份有限公司 Asymmetric template shape modulation for partial field imprinting
DE102015113548A1 (en) * 2015-07-24 2017-01-26 Schott Ag High-precision method for determining the thermal expansion
CN105974746B (en) * 2016-05-31 2018-05-25 东莞市威力固电路板设备有限公司 Double-station exposure method
JP2018113371A (en) * 2017-01-12 2018-07-19 株式会社ニューフレアテクノロジー Charged particle beam lithography apparatus and charged particle beam lithography method
CN107843227B (en) * 2017-12-09 2020-04-10 连云港杰瑞电子有限公司 Method for improving precision of encoder based on calibration technology
CN111272075B (en) * 2020-03-26 2021-06-25 同济大学 Local deviation detection system and method for track system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW527526B (en) 2000-08-24 2003-04-11 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and device manufactured thereby
US7289212B2 (en) * 2000-08-24 2007-10-30 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufacturing thereby
EP1231514A1 (en) 2001-02-13 2002-08-14 Asm Lithography B.V. Measurement of wavefront aberrations in a lithographic projection apparatus
US7002137B2 (en) * 2001-08-30 2006-02-21 Gsi Lumonics Corporation Reference point talbot encoder
JP4222926B2 (en) * 2002-09-20 2009-02-12 エーエスエムエル ネザーランズ ビー.ブイ. Device inspection
US6936386B2 (en) * 2003-10-17 2005-08-30 United Microelectronics Corp. Reticle alignment procedure
US7126109B2 (en) * 2004-06-14 2006-10-24 Gsi Group Corporation Encoder scale error compensation employing comparison among multiple detectors
US7256871B2 (en) 2004-07-27 2007-08-14 Asml Netherlands B.V. Lithographic apparatus and method for calibrating the same
KR20060121304A (en) * 2005-05-24 2006-11-29 삼성전자주식회사 Apparatus for exposing a semiconductor substrate
KR100869306B1 (en) * 2005-09-13 2008-11-18 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
US20080278702A1 (en) 2008-11-13
CN101303535B (en) 2011-02-09
KR100953929B1 (en) 2010-04-22
JP4778981B2 (en) 2011-09-21
JP2009027141A (en) 2009-02-05
US7999912B2 (en) 2011-08-16
TWI396054B (en) 2013-05-11
KR20080099183A (en) 2008-11-12
CN101303535A (en) 2008-11-12

Similar Documents

Publication Publication Date Title
TW200905412A (en) Lithographic apparatus and sensor calibration method
JP4742136B2 (en) Lithographic apparatus and apparatus manufacturing method
JP4937079B2 (en) Lithographic apparatus and method
KR101297231B1 (en) Lithographic apparatus, calibration method, device manufacturing method and computer program product
JP6069509B2 (en) Quantitative reticle distortion measurement system
JP4745292B2 (en) Lithographic apparatus including a wavefront sensor
JP2008139289A (en) Manufacturing method of lithographic apparatus and device
TW200807175A (en) A method of characterising the transmission losses of an optical system
JP2009016820A (en) Control system, lithographic projection apparatus, method of controlling support structure, and computer program product
JP2009156862A (en) Position measurement system and lithographic apparatus
JP6884869B2 (en) Lithography equipment, lithography projection equipment and device manufacturing method
JP6957692B2 (en) Lithography equipment
TW200818258A (en) Lithographic apparatus, method of calibrating a lithographic apparatus and device manufacturing method
JP2018536187A (en) Proximity sensor, lithographic apparatus, and device manufacturing method
TW201126274A (en) Lithographic apparatus and device manufacturing method
TWI417680B (en) Lithographic apparatus and device manufacturing method
JP2007173814A (en) Lithographic apparatus with built-in pressure shield, and device manufacturing method
TW201011476A (en) Projection system, lithographic apparatus, method of projecting a beam of radiation onto a target and device manufacturing method
JP2010524231A (en) Illumination system for illuminating a patterning device and method of manufacturing an illumination system
JP6082471B2 (en) Object positioning system, lithographic apparatus, and device manufacturing method
JP5600138B2 (en) Positioning device, positioning method and device manufacturing method
TWI725039B (en) Position measurement system, lithographic apparatus and position measurement method
JP6817468B2 (en) Sensors, lithography equipment, and device manufacturing methods
JP4951008B2 (en) Lithographic apparatus having an encoder configured to define a zero level
JP4567658B2 (en) Device manufacturing method and computer program product