TW200904990A - A method of monitoring microbiological activity in process streams - Google Patents

A method of monitoring microbiological activity in process streams Download PDF

Info

Publication number
TW200904990A
TW200904990A TW097105284A TW97105284A TW200904990A TW 200904990 A TW200904990 A TW 200904990A TW 097105284 A TW097105284 A TW 097105284A TW 97105284 A TW97105284 A TW 97105284A TW 200904990 A TW200904990 A TW 200904990A
Authority
TW
Taiwan
Prior art keywords
detector
flow
flow chamber
fluid
process stream
Prior art date
Application number
TW097105284A
Other languages
Chinese (zh)
Other versions
TWI426131B (en
Inventor
Michael V Enzien
Laura E Rice
Stephen B Ashton
Original Assignee
Nalco Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39690795&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW200904990(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nalco Co filed Critical Nalco Co
Publication of TW200904990A publication Critical patent/TW200904990A/en
Application granted granted Critical
Publication of TWI426131B publication Critical patent/TWI426131B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Biological oxygen demand [BOD] or chemical oxygen demand [COD]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1893Water using flow cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/117497Automated chemical analysis with a continuously flowing sample or carrier stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • Y10T436/207497Molecular oxygen
    • Y10T436/209163Dissolved or trace oxygen or oxygen content of a sealed environment

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Toxicology (AREA)
  • Genetics & Genomics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biophysics (AREA)
  • Emergency Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

An apparatus and method for monitoring microbiological activity in a process stream by measuring dissolved oxygen is disclosed. Bulk microbiological activity and surface associated biological activity are measured using this apparatus and method.

Description

200904990 九、發明說明: 【發明所屬之技術領域】 本發明乃關於一種用於監測製程流内微生物活性之裝 置以及—種用於監測製程流内微生物活性之方法。 【先則技術】 在工業用水系統内的微生物生長會導致腐敗與表面積 垢。右生長未加以適當控制,則腐敗可能會導致不悅之氣 未且降低添加劑的功能(例如微生物可製造過氧化氫能使用 ,觸梅以提昇亮度,且可製造能影響纖維強度的纖維素)。 絲面積垢未加㈣當控制,則生成之生物膜將會干擾熱 父換’且在製紙系統的例子中,生物膜會產生使製造方法 夂!又的而求,使製程需停俥以將這些沉積物從表面加以清 ^ ’其<可能會從表面上脫_完成後的紙張或紙板產 品產生孔洞或斑點。因此,此水需以殺生物劑處理,來控 制微生物生長且防止相關問題。 工 β因為腐敗與生物膜形成在工業水系統中會造成不同之 問題·且浮游性與無梗細菌對生物控制措施亦會有不同之 反應’故其有需要就生物控制程式對這些不同模式之微生 物生長的衝擊進行監測。 典型上用於監測此水系統的標準技術係包括標準平板 法技術。廷些技術需要冗長的潛伏期且無法提供用於事先 預防的適當資料·且預防與微生物生長有關的問題。近來, 已使用三磷酸腺芽(ATP)測量作為事先預防性控制之手 段。不過’此試劑係相當昂貴且從大型水系統中只 200904990 . _ 體積作為樣本。資料收集亦不足,導致資料的明顯間隔。 因此,此方法對所關心系統内的微生物狀態僅能提供有限 的資訊。此外,這些方法典型上係用於監測浮游性細菌。 不過在某些情況下,表面可能會加以擦拭與分析以定量 生物膜細菌。這些方法係非常單調與費時。 溶氧(d〇ss〇lved oxygen,D〇)探測器已用於測量流體内 的U生物活性,因為微生物活性與耗氣新陳代謝會導致溶 ^ 氧濃度降低係廣為人知的。頒佈給R〇berts〇n等人的美國 專利第5,190,728號與第5,282,537號係揭示一種使用d〇 測量以監測工業水體内積垢的方法與裝置。不過,該方法 需要使用營養添加劑以區別非生物積垢與生物積垢,且其 並未提到在探測器表面已積垢後。要如何使探測器復新以 用於進-步之測量。此外,所揭示的方法需要氧氣的連續 供應裝置。 ' 標準的克拉克型式電化學D〇探測器具有許多限度, 其例如為:化學干擾(h2S、pH、c〇2、Nh3、s〇4、、〇、 ^ Cl〇2、Me〇H、EtOH與各種不同離子物)、頻繁的校準與薄 膜更換、緩慢的回應與讀數偏移、熱震、與通過薄膜所需 的高流量。最近被多家公司(例如為美國科羅拉多州 Loveland的HACH公司)所商業化的新類型溶氧探測器幾 乎可克服所有的這些限制,故在製程水體内的D〇可線上 測量。此新DO探測器(LD〇)係基於螢光生命期的衰退, 其中氧氣的存在會使激發螢光團的螢光生命期縮短。此螢 光團係固定在感應器表面的薄膜内,且激發係藉藍光Led 200904990 以提供。 皆頒佈給Lee等人的美國專利第5,698,412號與第 5,8 5 6,1 19號係揭示一用於監測且控制流體内生物活性的方 法’其中DO係合併酸鹼值測量以決定新陳代謝行為的轉 變·特別係關於營養物/基質耗用。 其仍需要一可靠與便利的方法來監測工業水體内的浮 游性與生物膜細菌’以確保生物控制程式可適當地控制腐 敗與有問題的生物膜。這些方法應該是無需使用試劑的. 以允許在代表那些周遭環境(最小調整)的條件下測量微生 物的活性。這些方法應該是自動化的且應該允許監測器的 通端控制、.資料的遠端取得、與生物控制程式的遠端或自 動回饋控制。理想地是這些方法將能夠區別表面與主體水 活性的微生物活性,以確保生物控制程式可適當地處理當 嘗試去控制生物膜上的微生物時。典型上所面對的逐漸提 向的挑戰。此外,這些方法應可提供沉積物(生物或非生物) 性質之資料,以確保已施加適當的控制措施。 【發明内容】 本發明係提供一種用於測量製程流内微生物活性的裝 置,其含有:(a)—含有數個開口的流動室,其中至少一個 開口係用於從該製程流引出流體的流動室入口 .且至少一 個開口係用於使流體離開該流動室的流動室出口 ;(b) 一連 結至該等開口的其中之-的DO探測器;⑷一視需要選用 的連結至該等開口的其中之一的〇Rp探測器;⑷一連結 至該等開口的其中之—的潔淨裝置;⑷—視需要選用的連 200904990 -結至流動室入口的第一導管;一視需要選用的連結至流 動室出口的第二導管;以及(g)一視需要選用的與該流動室 關聯的閥門。 本發明亦提供一種用於監測製程流内主體(總體)微生 物水活性的方法,其含有:(幻將裝置連結至一製程流,其 中該裝置係包含一含有數個開口的流動室’其中至少一個 開口係用於從該製程流引出流體的流動室入口 .且至少一 個開口係用於使流體離開該流動室的流動室出口,一連結 ' 至該等開口的其中之一的DO探測器’一視需要選用的連 結至該等開口的其中之一的〇RP探測器’一視需要選用的 連結至該等開口的其中之一的潔淨裝置,一視需要選用的 連結至流動室入口的第一導管,一視需要選用的連結至流 動室出口的第二導管,以及一視需要選用的與該流動室關 聯的閥門;(b)從該製程流將流體引入該流動室内;(C)開啟200904990 IX. INSTRUCTIONS: FIELD OF THE INVENTION The present invention relates to a device for monitoring microbial activity in a process stream and a method for monitoring microbial activity in a process stream. [Priority technology] Microbial growth in industrial water systems can lead to spoilage and surface area scale. If right growth is not properly controlled, then corruption can lead to unpleasant anger and reduce the function of the additive (for example, microbes can be used to make hydrogen peroxide, touch the plum to increase brightness, and produce cellulose that affects fiber strength) . The silk area is not added (4) When controlled, the biofilm produced will interfere with the heat father's and in the case of the paper making system, the biofilm will produce a manufacturing method! Again, the process needs to be stopped to clear the deposits from the surface. 'It may result in holes or spots from the surface of the finished paper or board product. Therefore, this water needs to be treated with a biocide to control microbial growth and prevent related problems. Because the corruption and biofilm formation in the industrial water system will cause different problems · and the planktonic and sessile bacteria will have different responses to biological control measures, so there is a need for biological control programs for these different models. The impact of microbial growth is monitored. Standard techniques for monitoring this water system are typically standard plate method techniques. These techniques require lengthy incubation periods and do not provide appropriate information for prior prevention and prevent problems associated with microbial growth. Recently, adenosine triphosphate (ATP) measurement has been used as a means of prior preventive control. However, this reagent is quite expensive and only from the large water system 200904090 . _ volume as a sample. Data collection is also insufficient, resulting in a significant separation of data. Therefore, this method provides only limited information on the state of the microorganisms in the system of interest. Moreover, these methods are typically used to monitor planktonic bacteria. However, in some cases, the surface may be wiped and analyzed to quantify biofilm bacteria. These methods are very monotonous and time consuming. Dissolved oxygen (d〇ss〇lved oxygen, D〇) detectors have been used to measure U biological activity in fluids, as microbial activity and gas-consuming metabolism lead to a decrease in dissolved oxygen concentration. U.S. Patent Nos. 5,190,728 and 5,282,537, the disclosure of each of each of each of each of each of each of However, this method requires the use of nutritional additives to distinguish between non-biofouling and biofouling, and it is not mentioned after the surface of the detector has been fouled. How to renew the detector for the step-by-step measurement. Moreover, the disclosed method requires a continuous supply of oxygen. 'Standard Clark type electrochemical D〇 detectors have many limitations, such as: chemical interference (h2S, pH, c〇2, Nh3, s〇4, 〇, ^Cl〇2, Me〇H, EtOH and A variety of different ionics), frequent calibration and film replacement, slow response and reading offset, thermal shock, and high flow rates required to pass the film. A new type of dissolved oxygen detector recently commercialized by a number of companies (e.g., HACH, Loveland, Colorado, USA) can overcome all of these limitations and can be measured on-line in process water. This new DO detector (LD〇) is based on the decay of the fluorescent lifetime, where the presence of oxygen shortens the fluorescent lifetime of the excited fluorophore. This fluorophore is attached to the film on the surface of the sensor and the excitation is provided by Blu-ray Led 200904990. U.S. Patent Nos. 5,698,412 and 5,8 5 6,1 19, both issued to Lee et al., disclose a method for monitoring and controlling biological activity in a fluid 'where the DO system is combined with a pH measurement to determine metabolic behavior. The transformation is especially about nutrient/matrix consumption. It still requires a reliable and convenient method to monitor the phytoplankton and biofilm bacteria in industrial waters to ensure that the biological control program properly controls the decay and problematic biofilm. These methods should be performed without the use of reagents to allow measurement of the activity of the microorganisms under conditions that represent those surrounding environments (minimum adjustment). These methods should be automated and should allow for remote control of the monitor, remote access to data, remote or automatic feedback control of the biological control program. Ideally these methods will be able to distinguish between surface and host water activity microbial activity to ensure that the biological control program is properly processed when attempting to control microorganisms on the biofilm. The gradual upward facing challenges that are typically faced. In addition, these methods should provide information on the nature of the sediment (biological or abiotic) to ensure that appropriate control measures have been applied. SUMMARY OF THE INVENTION The present invention provides an apparatus for measuring microbial activity in a process stream, comprising: (a) a flow chamber having a plurality of openings, wherein at least one opening is used to extract a flow of fluid from the process stream a chamber inlet. and at least one opening for exiting the flow chamber outlet of the flow chamber; (b) a DO detector coupled to the opening of the opening; (4) optionally connecting to the opening One of the 〇Rp detectors; (4) a cleansing device connected to one of the openings; (4) - optionally the first conduit 200904990 - the first conduit to the inlet of the flow chamber; a second conduit to the outlet of the flow chamber; and (g) a valve associated with the flow chamber as desired. The present invention also provides a method for monitoring microbial water activity of a body (overall) within a process stream, comprising: (the magical device is coupled to a process stream, wherein the device comprises a flow chamber having a plurality of openings therein, wherein at least An opening is for a flow chamber inlet for extracting fluid from the process stream. and at least one opening is for exiting the flow chamber outlet of the flow chamber, a DO detector coupled to one of the openings A 〇RP detector connected to one of the openings as needed; a cleaning device connected to one of the openings, optionally selected as a connection to the inlet of the flow chamber a conduit, optionally a second conduit coupled to the outlet of the flow chamber, and optionally a valve associated with the flow chamber; (b) introducing fluid from the process flow into the flow chamber; (C) opening

該裝置的閥門以允許將流體引入該流動室内;(d)以該DO 探測器至少測量一次該製程流的DO濃度,且在每次測量 前該DO探測器的表面加以潔淨;(e)關閉裝置的閥門以防 止流體被引入該流動室内;以該DO探測器至少測量一 -人1置内流體的DO濃度,且在每次測量前該D〇探測器 的表面加以潔淨;(g)計算步驟(d)與步驟(f)間的AD〇讀數; 且(h)至少將步驟(g)的該△〇〇值與該製程流内的微生物主 體(總體)活性加以關聯。 本發明亦揭:供一種用於浪j f製程流内與表面相關的微 生物活性的方法,其含有:⑷將裝置連結至—製程流,其 8 200904990 中該裝置係包含一含有數個開口的流動室,其中至少一個 開口係用於從該製程流引出流體的流動室入口。且至少一 個開口係用於使流體離開該流動室的流動室出口,一連結 至該等開口的其中之一的DO探測器’一視需要選用的連 結至該等開口的其中之—的〇Rp探測器,一視需要選用的 連結至該等開口的其中之一的潔淨裝置,一視需要選用的 連結至流動室入口的第一導管,一視需要選用的連結至流 動室出口的第二導管’以及一視需要選用的與該流動室關 聯的閥門;(b)從該製程流將流體引入該流動室内;(c)開啟a valve of the device to allow fluid to be introduced into the flow chamber; (d) at least one DO concentration of the process flow is measured with the DO detector, and the surface of the DO detector is cleaned prior to each measurement; (e) closed a valve of the device to prevent fluid from being introduced into the flow chamber; the DO detector is configured to measure at least the DO concentration of the fluid in the one-person 1 and the surface of the D-detector is cleaned before each measurement; (g) calculation The AD〇 reading between step (d) and step (f); and (h) correlating at least the Δ〇〇 value of step (g) with the microbial body (overall) activity within the process stream. The invention also discloses a method for the microbial activity associated with a surface in a wave process, comprising: (4) linking the device to a process stream, wherein in 8200904990 the device comprises a flow comprising a plurality of openings A chamber, wherein at least one of the openings is for a flow chamber inlet for extracting fluid from the process stream. And at least one opening is for the fluid to exit the flow chamber outlet of the flow chamber, and a DO detector connected to one of the openings is optionally connected to the opening of the openings. a detector, optionally a cleaning device coupled to one of the openings, optionally a first conduit coupled to the inlet of the flow chamber, optionally a second conduit coupled to the outlet of the flow chamber 'and a valve associated with the flow chamber as needed; (b) introducing fluid from the process flow into the flow chamber; (c) opening

該褒置的閥門以允許將流體引入該流動室内;以該DO 探測器至少測量一次該製程流的DO濃度,且在每次測量 前該DO探測器並未加以潔淨;(e)將該do探測器的表面 加以潔淨;(f)以該DO探測器至少測量一次該裝置内流體 的兩個DO濃度。且視需要選用地是在每次測量前將該D〇 探測器表面加以潔淨;(g)計算步驟(d)與步驟(f)間的AD〇 。貝數,且(h)至少將步驟(g)的該△£)〇值與表面相關的微生 物活性加以關聯。 山本發明進一步係提供一種方法以同時監測主體(總體) Μ生物活性與表面相關的微生物活性。 【實施方式】 術語之定義: ”DO"係指溶氧。The disposed valve allows for introduction of fluid into the flow chamber; the DO detector measures the DO concentration of the process flow at least once, and the DO detector is not cleaned prior to each measurement; (e) the do The surface of the detector is cleaned; (f) the DO detector is used to measure at least two DO concentrations of the fluid in the device. And optionally, the surface of the D 探测器 detector is cleaned before each measurement; (g) the AD 间 between step (d) and step (f) is calculated. The number of shells, and (h) correlates at least the Δ£) enthalpy of step (g) with surface-related microbial activity. The present invention further provides a method for simultaneously monitoring the biological activity of a subject (overall) Μ biological activity in relation to a surface. [Embodiment] Definition of terms: "DO" means dissolved oxygen.

DO 。探測器儀包括▲夠測量溶氧的任何類型探測器。 探測器較佳係發光溶氧探測g (”D〇探測器")。"ld〇 200904990 :指發光溶氧。LDO探測器係基於螢光生命期衰退以測量 '合氧'中氧氣的存在會使激發螢光團的螢光生命期縮 短。此螢光團係固定在感應器表面的薄膜β,且激發係藉 ▲光 (I光—極體)以提供。[DO探測器可從美國科羅 拉多州L〇Veland公司取得。該探測器通常係具有可取得測 量值的感應頭。DO. The detector includes ▲ any type of detector capable of measuring dissolved oxygen. The detector is preferably a luminescent dissolved oxygen detector g ("D〇 detector"). "ld〇200904990: refers to luminescent dissolved oxygen. The LDO detector is based on fluorescence lifetime decay to measure oxygen in 'oxygen' There is a shortening of the fluorescence lifetime of the excited fluorophore. This luminescent group is attached to the film β on the surface of the inductor, and the excitation is provided by ▲ light (I-polar). [DO detector can be Obtained by L〇Veland, Colorado, USA. The detector is typically an inductive head with measurable measurements.

/ i, # "ORP”係指氧化還原電位。〇Rp探測器係可從美國麻 薩諸塞州HolUston的Waichem公司取得。 "REDOX"係指氧化還原狀態。 OFM係指光學積垢監測儀。用於欲監測之特定方法 的任何適當光學積垢皆π / 予檟垢白可使用。此包括任何之一般沈積監 測儀,其例如為石英晶體微天平。 閥門係指可調節流體流動的任何裝置。 ’’潔淨裝置"係指能夠清潔H D〇 #測器纟面 ORP探測器表面之表面的任何裝置。 表杠流包括在工業製程 1 «a 丹例如為從 U氏製程導管中所取出的流體,以及來自造紙製 的流體。 相 較佳具體實例·· 曰製程流内#微生物活性可藉冑測溶氧消&以間接 置’此係因為溶氧消耗係直接與細胞在好氧呼吸條件下 產生的ATP數量有關,且細胞所產生的Ατρ數量可與誃 製程流内的微生物活性水平加以關聯。本發明所描述的^ 法對具有⑯DO水平的製程流並不適當,其中好氧呼吸並 200904990 不是微生物細胞能源產生的主要途徑。 從製程流所收集的DO測量值應使用製程流的壓力. 溫度與鹽分值以轉化成百分比飽和度。此有助於基於這些 參數的製程擾動以將資料正規化。溫度的修正是特別重要 的’因為欲分析的製程流溫度在停止流動條件過程令將會 下降攝氏1-10度’其係發生在當流體不再被引人流動室内 時。 為了提高溶氧消耗與微生物活性間相互關係的整體 性,製程流體的REDOX狀態必須加以氧化,以使氧氣消 耗不是化學氧化方法的結果。像是酸鹼值的因素會影響到 製程水體的REDOX狀態。在高酸鹼值條件下,例如具有 超過9.5酸鹼值的製程水體。即使在高氧化還原條件下仍 會造成製程流體内有機材料的氧化。 因此,製程流的ORP較佳應係連同D〇濃度一起測量, 以確保溶氧消耗主要係與微生物活性。而不是與製程流的 化學性質有關。 其已發展一種裝置以實際地測量製程流内的溶氧。例 如為ORP探測器的其他分析裝置亦可與此裝置結合。 如圖1中所示,裝置係含有(丨)流動室;(2)D〇探測器; 視需要選用的(3)ORP探測器;與(7)潔淨裝置。 (1)桃動室係具有數個開口。這些開口係用於允許流體 流過(1)流動室。開口的大小與形狀可加以改變;特別地是 製程流的類型應加以考慮。 200904990 圖3顯示(i)流動室係含有(13)入口與(14)出口。開口 的直徑應夠大以允許來自製程流的流體可輕易地流過流 動至,且避免(1)流動室的阻塞,以及D〇探測器與(3)〇Rp 才木測器表面上的非生物積垢。因此,(1)流動室的直徑將取 決於像是製程流類型的許多因素。 (1)流動室開口亦用於允許像是(2)D〇探測器、(3)〇Rp 探測益'及/或(7)潔淨裝置的各種不同裝置與流動室連結,/ i, # "ORP" refers to the redox potential. The 〇Rp detector is available from Waichem, HolUston, Mass., "REDOX" refers to the redox state. OFM refers to optical fouling monitoring Any suitable optical fouling for the particular method to be monitored can be used π / 槚 白 white. This includes any general deposition monitor, such as a quartz crystal microbalance. Valves are fluid flow adjustable Any device. ''Clean device'' means any device capable of cleaning the surface of the ORP detector surface of the HD〇# detector. The bar flow is included in the industrial process 1 «a Dan, for example, from the U-process conduit The fluid to be taken out, as well as the fluid from the paper making process. The preferred embodiment is · 曰 Process flow #microbial activity can be measured by means of 溶 溶 消 以 以 以 以 以 以 此 此 此 此 因为 因为 因为 因为 因为 因为 因为 因为 因为 因为 因为 因为 因为 因为 因为 因为 因为The amount of ATP produced under oxygen breathing conditions is related, and the amount of Ατρ produced by the cells can be correlated with the level of microbial activity in the 誃 process stream. The method described in the present invention has a 16DO level. The flow is not appropriate, and aerobic respiration and 200904990 are not the main pathways for microbial cell energy production. The DO measurements collected from the process stream should use the pressure of the process stream. Temperature and salt values are converted to percent saturation. Helps process disturbances based on these parameters to normalize the data. Temperature correction is especially important 'because the process flow temperature to be analyzed will drop 1-10 degrees Celsius during the stop flow condition process' When the fluid is no longer introduced into the flow chamber. In order to increase the integrity of the relationship between dissolved oxygen consumption and microbial activity, the REDOX state of the process fluid must be oxidized so that oxygen consumption is not the result of a chemical oxidation process, such as a pH value. The factors affect the REDOX state of the process water. Under high pH conditions, for example, process waters with a pH greater than 9.5. Even under high redox conditions, the oxidation of organic materials in the process fluid will occur. The ORP of the process stream should be measured along with the concentration of D〇 to ensure that the dissolved oxygen consumption is mainly related to microbial activity. Rather than being related to the chemical nature of the process stream, it has developed a device to actually measure dissolved oxygen in the process stream. Other analytical devices such as ORP detectors can also be combined with this device. As shown in Figure 1, the device Contains (丨) flow chambers; (2) D〇 detectors; (3) ORP detectors as needed; and (7) clean devices. (1) The peach chamber has several openings. Allowing fluid to flow through (1) the flow chamber. The size and shape of the opening can be varied; in particular, the type of process flow should be considered. 200904990 Figure 3 shows (i) the flow chamber contains (13) inlet and (14) The diameter of the opening should be large enough to allow fluid from the process stream to flow easily through, and to avoid (1) clogging of the flow chamber, as well as the D〇 detector and (3) 〇Rp on the surface of the detector. Abiotic fouling. Therefore, (1) the diameter of the flow cell will depend on many factors such as the type of process flow. (1) The flow cell opening is also used to allow connection of various devices such as (2) D〇 detectors, (3) 〇Rp Detective' and/or (7) clean devices to the flow cell,

以測侍製程流的一或多個測量值。像是酸鹼儀的其他裝置 亦可與流動室合併。 特別的是(2)D〇探測器及/或(3)〇Rp探測器係與流 動室連通。 在一具體實例中,(2)D〇探測器與(3)〇RP係連結至(1) 至。捸測器可以一般熟習技藝之人士所知的各種不同 流動 方法連結至⑴流動室開口之其中之一。連接可經由任何類 型的固定及/或安裝裝置等以發生。例如,可將一單元安裝 至(1)流動室、且探測器/裝置可經由此單元插入且鎖定在 正確的位置上。 如圖3中所示,探測器係與(1)流動室的壁面齊平。 在一具體實例巾,該⑺D0探測器的至少一部分以及 視需要選用的(3)ORp探測器係突入該流動室内。 在另-具體實例中,⑺D0探測器係含有D〇感應頭, 其中該DO感應頭的至少一部分係突入該流動室内,且其 中視需要選用的該(3)〇RP探測器係含有〇Rp感應頭,且 其中該ORP感應頭的至少—部分係突人該流動室内。 12 200904990 在另一具體實例中,探測器應以使不會顯著地阻隔流 體流過(1)流動室的方式定向。 在另一具體實例中,(2)D〇探測器與(3)〇Rp探測器係 彼此面對面放置。 圖2係顯示裝置的額外特徵。更明確地,圖2係顯示 第一導官、與(4)第一導管連結之閥門、與(4)第一導管 連結之(15)放流、(1)流動室、(2)D〇探測器、(3)〇Rp探測To measure one or more measurements of the process flow. Other devices like acid and alkali can also be combined with the flow cell. In particular, the (2) D〇 detector and/or the (3) Rp detector are in communication with the flow chamber. In one embodiment, the (2) D〇 detector and the (3) 〇RP are coupled to (1) to. The detector can be coupled to one of the (1) flow chamber openings by a variety of different flow methods known to those skilled in the art. The connection can occur via any type of securing and/or mounting device or the like. For example, a unit can be mounted to (1) the flow chamber and the detector/device can be inserted through this unit and locked in the correct position. As shown in Figure 3, the detector is flush with the wall of the (1) flow chamber. In a specific example towel, at least a portion of the (7) D0 detector and optionally a (3) ORp detector system protrude into the flow chamber. In another embodiment, the (7) D0 detector includes a D〇 sensing head, wherein at least a portion of the DO sensing head protrudes into the flow chamber, and wherein the (3) 〇RP detector system optionally includes 〇Rp sensing. a head, and wherein at least a portion of the ORP sensing head is in the flow chamber. 12 200904990 In another embodiment, the detector should be oriented in such a way as not to significantly block the flow of fluid through the (1) flow chamber. In another embodiment, the (2) D〇 detector and the (3) Rp detector are placed face to face with each other. Figure 2 is an additional feature of the display device. More specifically, FIG. 2 shows the first guide, the valve connected to the (4) first conduit, (15) the first conduit connected (15), (1) the flow chamber, and (2) the D〇 detection. , (3) 〇Rp detection

器、⑺潔淨裝置、與該⑺潔淨裝置聯通之(9)電磁線圈、 以及(5)第二導管。 (4)第一導管與(5)第二導管係連結至該(ι)流動室的一 或多個開口、以及製程流的外殼。連結可經由一般熟習技 藝之人士所知的各種不同方法以發生。例如,(4)第一導管 可以管送至製程流内。 & (4)第一導管係用於將來自製程流的流體輸送、及/或 轉移至⑴流動室、及/或例如為0FM的其他裝置。⑷第一 2管可以任何可促進流體從製程流移動至⑴流動室的方式 =將:二重力或像是泉浦的基於能源之機制可從製程 -中將&體引進裝置所包含的⑴流動室内。 、在另一具體實例中,放流(15)可以與(4)第—導管結合, 以防止進入製程流内的流體的倒流,限制。 —管係作為通過(1)流動室的流體的出口路徑, 且亦作為留存來自製程流的流體的儲庫。特別地θ 筮-道拉卞付别地疋’可對 一 δ加以空間定向,以便當監測是在停4 & 件下時、η ^ 1于止洲·動之條 /;,L至可維持流體在(1)流動室内以供分析。例 13 200904990 如,(5)第二導管的定向係使重力可將流體保留於流動室 内。 在另一具體實例中,(5)第二導管亦可作為放流之用。 (6)閥門係與(1)流動室結合。特別地是,閥門係以 可達成其所欲功能之方式與(1)流動室聯通。(6)閥門可控制 /調節來自製程流的流體進入(1)流動室的流動。 在一具體實例中,(6)閥門係經由(4)第一導管與(1)流 動室結合。特別地是,(6)閥門係以在關閉位置時能夠限制 流動、且當(6)閥門在開啟情況時可允許流動的此一方式與 (4)第一導管整合/連接。 在另一具體實例中,(6)閥門可以調節進入〇FM&/或(1) 流動室内的流體的流動。 在另一具體實例中’(6)閥門的直徑需夠大,才不會因 此妨礙含有大量固體的製程水的流動。 〜在另—具體實例中,⑹閥門亦可防止流體離開⑴流動 室或(5)第二導管,以便在關閉流動條件下的讀數可發生。 在另一具體實例中,閥門的直徑是至少丨英吋。 在另一具體實例中,(6)閥門是球閥。 在另-具體實例中,⑷閥門係手動、電動或氣動運作。 在另一具體實例中,球(6)閥係手動、電動或氣動運作。 一圖2與4係顯示可以連結至(1)流動室開口之一的(巧潔 =裝置。⑺潔淨裝置係用於潔淨(2)1>〇探測器及/或(3)〇RP 探測器表面兩者之表面,且裝置的定向應使其可達成此功 能。(7)潔淨裝置亦可潔淨與(1)流動室結合之其他裝置。 14 200904990 在一具體實例甲,(7)潔淨裝置係橫越(1)流動室之面 積。 在另一具體實例中,(7)潔淨裝置係能夠橫越(1)流動室 之面積,以潔淨像是(2)D〇探測器、(3)〇Rp探測器、或可 與(1)流動室結合之其他類型分析儀器之一或多個裝置/探 測器。 在另一具體實例中,(7)潔淨裝置係含有(8)刮刷或刷 子。 在另體:T例* ’⑺潔淨裝置係藉(9)刮刷電磁線圈 2運作。(9)電磁線圈係接受來自以邏輯加以程式化的控制 器的指令,其將指示何時需潔淨且何時不需潔淨。 如圖4中所示,(8)刮刷係以同時相對於(2)DO探測器 與(3)〇RP探測器為垂直的方向橫越⑴流動室以放置。 將一或多個(11)擋板加入⑴流動室内可提高⑴流動室 之面積。i 5係顯示一改良後的流動室。明確地,構件係 與流動室結合,且構件係含有超過一個之擋板。構件可以 各種方式與流動室結合。能提高表面積的其他物件亦可以 相似之方式應用。 在-具體實例中,⑽構件係藉(12)承接器的輔助以鎖 緊在⑴流動室上。構件係具有接收來自該製程流流動的( 構件入口,以及連結至(1)流動室之出口。 在-具體實例中,⑷第-導管係連結至(10)構件 非直接至(1)流動室。 在另-具體實例中,⑽構件可具有一或多個⑴)擒 15 200904990 板0 °亥裝置可建構以監測主體微生物水活性.表面相關之 微生物活性或其之組合。 B.監測在製程流内的主體微生物活性 其係揭示—種用於監測製程流内主體(總體)微生物活 !·生的方法主體(總體)微生物活性係指在主體製程流中的 U生物活性’像是製程流内的浮游性微生物與無柄微生 物。 ^程"’L内的主體微生物活性係藉測量製程流的DO濃 度以決疋。其他參數亦可連同此分析以應用。本方法更明 確地係包含下述之步驟:⑷將裝置連結至—製程流,其中 X 4置係匕3含有數個開口的流動室,其中至少一個開 口係用於從該製程流引出流體的流動室入口。且至少一個 開口係用於使流體離開該流動室的流動室出口,一連結至 該等開口的其中之一的D〇探測器,一視需要選用的連結 至該等開口的其中之—# 〇Rp探測器,—視需要選用的連 結至該等開口的其中之—的潔淨裝置,—視需要選用的連 結至流動室入口的第一導管,一視需要選用的連結至流動 至出口的第二導管,以及一視需要選用的與該流動室關聯 的閥門;(b)從該製程流將流體引入該流動室内;開啟該 裝置的閥門以允許將流體引入該流動室内;(d)以該D〇探 測器至少測量一次該製程流的D〇濃度,且在每次測量前 該DO探測器的表面加以潔淨;(e)關閉該裝置的閥門以防 止流體被引入該流動室内;以該DO探測器至少測量一 16 200904990 次該裝置内流體的DO濃度,且在每次測量前該do探測 器的表面加以潔淨;(g)計算步驟(d)與步驟(f)間的讀 數;且(h)至少將步驟(g)的該ΔΕ)〇值與該製程流内的主體(總 體)微生物活性加以關聯。 此方法可應用在各種不同類型的製程流上。 在一具體實例中,該製程流係來自由製紙製程、冷卻 水製程、食品或飲料製程與基於休閒之製程所組成的群集 中所選出之製程。 ', (7) a cleaning device, (9) an electromagnetic coil in communication with the (7) cleaning device, and (5) a second conduit. (4) The first conduit and (5) the second conduit are coupled to one or more openings of the (1) flow chamber and the outer casing of the process stream. The linkage can occur by a variety of different methods known to those of ordinary skill in the art. For example, (4) the first conduit can be piped into the process stream. & (4) The first conduit is used for fluid transport of future self-contained flow streams, and/or transfer to (1) flow chambers, and/or other devices such as 0FM. (4) The first 2 tubes can be used to promote the movement of fluid from the process flow to (1) the flow chamber = will: two gravity or the energy-based mechanism like Quanpu can be introduced from the process - the middle of the & introduces the device (1) Flowing room. In another embodiment, the discharge (15) can be combined with the (4) first conduit to prevent backflow of fluid into the process stream, limiting. - The piping acts as an outlet path for the fluid passing through the (1) flow chamber and also serves as a reservoir for retaining fluid from the process stream. In particular, θ 筮 - Dao Lai 卞 别 疋 ' can be spatially oriented to a δ, so that when the monitoring is under the 4 & η ^ 1 in the stop The fluid is maintained in the (1) flow chamber for analysis. Example 13 200904990 For example, (5) the orientation of the second conduit allows gravity to retain fluid within the flow chamber. In another embodiment, (5) the second conduit can also be used as a drain. (6) The valve system is combined with (1) the flow chamber. In particular, the valve is in communication with (1) the flow chamber in a manner that achieves its intended function. (6) The valve controls/adjusts the flow of fluid from the process stream into (1) the flow chamber. In one embodiment, the valve (6) is coupled to the (1) flow chamber via the (4) first conduit. In particular, (6) the valve is integrated/connected with the (4) first conduit in a manner that is capable of restricting flow when in the closed position and allowing flow when (6) the valve is open. In another embodiment, the (6) valve can regulate the flow of fluid into the 〇FM&/or (1) flow chamber. In another embodiment, the diameter of the valve (6) is large enough to not interfere with the flow of process water containing a large amount of solids. ~ In another embodiment, (6) the valve also prevents fluid from exiting (1) the flow chamber or (5) the second conduit so that readings under closed flow conditions can occur. In another embodiment, the diameter of the valve is at least 丨 吋. In another embodiment, the (6) valve is a ball valve. In another embodiment, (4) the valve operates manually, electrically or pneumatically. In another embodiment, the ball (6) valve operates manually, electrically or pneumatically. Figures 2 and 4 show the connection to one of the (1) flow cell openings (Qiao Jie = device. (7) Clean device for clean (2) 1 > 〇 detector and / or (3) 〇 RP detector The surface of both surfaces, and the orientation of the device should be such that it can achieve this function. (7) The cleaning device can also clean other devices combined with (1) the flow chamber. 14 200904990 In a specific example A, (7) clean device Crossing (1) the area of the flow cell. In another embodiment, (7) the clean device is capable of traversing (1) the area of the flow cell to clean the image as (2) D〇 detector, (3) 〇Rp detector, or one or more devices/detectors of other types of analytical instruments that can be combined with (1) a flow chamber. In another embodiment, (7) the cleaning device contains (8) a wiper or brush In the other body: T case * '(7) The clean device is operated by (9) scraping the electromagnetic coil 2. (9) The electromagnetic coil receives an instruction from a logically programmed controller that will indicate when it needs to be clean and When it is not necessary to clean. As shown in Figure 4, (8) the wiper is simultaneously relative to (2) DO detector and (3) 〇R The P detector traverses (1) the flow chamber in a vertical direction for placement. The addition of one or more (11) baffles to the (1) flow chamber increases (1) the area of the flow chamber. The i5 system shows a modified flow chamber. The component is combined with the flow cell, and the component contains more than one baffle. The component can be combined with the flow cell in various ways. Other objects that can increase the surface area can be applied in a similar manner. In the specific example, (10) the component is borrowed. (12) The aid of the adapter is locked to the (1) flow chamber. The member has an outlet for receiving the flow from the process (member inlet, and connected to the (1) flow chamber. In the specific example, (4) - The conduit is coupled to the (10) member and not directly to the (1) flow chamber. In another embodiment, the (10) member may have one or more (1)) 擒 15 200904990 plate 0 ° device can be constructed to monitor host microbial water activity Surface-related microbial activity or a combination thereof B. Monitoring of host microbial activity in the process stream is revealed by the method used to monitor the main body (total) microbial activity in the process stream! Overall) Microbial activity refers to the biological activity of U in the main process stream, such as planktonic and sessile microorganisms in the process stream. The main microbial activity in the process is measured by the DO concentration of the process stream. Other parameters may also be applied in conjunction with this analysis. The method more specifically includes the following steps: (4) linking the device to a process stream, wherein the X 4 system 3 has a flow chamber with several openings, wherein At least one opening is for a flow chamber inlet for extracting fluid from the process stream, and at least one opening is for exiting the flow chamber outlet of the flow chamber, a D〇 detector coupled to one of the openings Depending on the need to connect to the opening - # 〇 Rp detector, - optionally selected to be connected to the opening of the cleaning device, - optionally connected to the entrance of the flow chamber a first conduit, optionally connected to a second conduit flowing to the outlet, and optionally a valve associated with the flow chamber; (b) introducing fluid from the process stream a flow chamber; opening a valve of the device to allow fluid to be introduced into the flow chamber; (d) measuring at least one D〇 concentration of the process flow with the D〇 detector, and applying the surface of the DO detector before each measurement (e) closing the valve of the device to prevent fluid from being introduced into the flow chamber; the DO detector is configured to measure at least one of the 16 DOF concentrations of the fluid in the device, and the surface of the do detector before each measurement Purifying; (g) calculating the reading between step (d) and step (f); and (h) associating at least the ΔΕ) enthalpy of step (g) with the bulk (total) microbial activity within the process stream . This method can be applied to a variety of different types of process flows. In one embodiment, the process stream is from a process selected from the group consisting of a papermaking process, a cooling water process, a food or beverage process, and a leisure-based process. '

主體水微生物活性係藉檢查在開放流動與停止流動條 件間DO濃度的變化(ΔΓ)〇)以測量。其他參數亦可連同此 分析以應用。更明確地是藉檢查副,將可決定d〇的消 耗速率。DO的消耗速率然後可與該製程流内的微生物活 性加以關聯,但當0RP係連同D〇測量—起測量時.關聯 的整體性將更佳,此係因為當製程流流體@ _X狀態 並非氧化時.DO測量可能會受影響。 開放流動條件係發生於製程流流體可通過流動室時, =可藉與流動室聯通的分析儀器。特別是用於測量流體〇〇 浪度的DO探測器以測量。 停止流體條件係指製程汚、士 衣程机/爪體不再進入流動室時。在 停止流動條件下,流體倍雒 係維持在流動室内。且流動室將監 測流體的DO濃度。 像疋在步驟(d)的開放流動鉻The bulk water microbial activity is measured by examining the change in DO concentration (ΔΓ) between the open flow and the stop flow conditions. Other parameters can also be applied along with this analysis. More specifically, by checking the pair, the rate of consumption of d〇 can be determined. The rate of DO consumption can then be correlated with the microbial activity within the process stream, but when the 0RP system is measured along with the D〇 measurement, the overall integrity of the correlation will be better because the process flow fluid @_X state is not oxidized. The DO measurement may be affected. Open flow conditions occur when the process flow fluid can pass through the flow chamber, an analytical instrument that can be connected to the flow chamber. In particular, DO detectors for measuring fluid enthalpy are measured. Stop fluid condition means that the process foul, the machine/claw is no longer entering the flow cell. The fluid train is maintained in the flow chamber under stopped flow conditions. And the flow chamber will monitor the DO concentration of the fluid. Open flow chrome like 疋 in step (d)

* _ 動條件下,製程流流體的DO 浪度應測量一段足夠長的蚌„ τ , ^ 扪時間,以得到製程流DO濃度的 正確S貝數。此可以取一或多個 夕调讀數。—般熟習技藝之人士 17 200904990 將能夠決定在不過度實驗下,為得到正確製程流讀數所需 取得的讀數量,以及為得到正確製程流讀數所需採取的讀 數間隔。 °* _ Under dynamic conditions, the DO wave of the process flow fluid should be measured for a period of time 蚌 τ , ^ 足够 long enough to obtain the correct S-beat number of the process flow DO concentration. This can take one or more evening readings. As a person skilled in the art 17 200904990 will be able to determine the number of readings required to obtain the correct process flow reading without undue experimentation, and the reading interval required to obtain the correct process flow reading.

^像是在步驟(f)的停止流動條件下,在流動室内流體的 第一次DO測量前。應經過一段足夠長的時間,以碴保在 該流體内的一或多個微生物品種將具有足夠時間以消粍該 流體内的溶氧。此段時間可以改變且取決於一或多個: 素’其可以包括欲監測的製程類型。以及在實施本發明方 法前所使用的微生物計晝的效力。例如在製紙工業中,若 製程水係被微生物所高度㈣,則微生物將耗費較少的時 間以消耗DO。微生物類型(例如為冑菌或絲狀菌)亦可能影 響D Ο消耗速率與水平。 ' 在-具體實例中,於開放流動條件下與停止流動條子 下所進行的測量係採取相同的時間間隔。在另一具體實令 中’於開放流動條件τ與停止流動條件下所進行的測量^ 在同一段時間Τ進行且採取相同的時間間⑮。 ’ 製程流可以連續、間歇、或只監測一次。連 提供即時條件,故製程产内 "1 衷缸桃内的系統擾動可輕易偵測。 ADO可以各種不同方式加以計算。 八體實例中,1體微生物活性係藉取得在連續水 流動(開放流動條件)階段過程中。對比於當製程水藉關閉 閥門以停止時的停止流動條件下d〇 I度 、、 量。換句話說,基於牛驟 以測 基於步驟(d)與步驟(〇的D〇濃度 係用於計算ADO讀數。 辰度取大變化 18 200904990 - 在另一具體實例中,ADO值係藉取得來自步驟(d)的平 均DO測量值與來自步驟(f)的最小DO水平以決定。 在另一具體實例中,ADO值係藉取得來自步驟(d)的最 高測量值與來自步驟(f)的最小DO水平以決定。 在另一具體實例中,ADO值係藉取得來自步驟(d)的最 後測量值與來自步驟(0的最小DO水平以決定。 在另一具體實例中’用於步驟(d)與步驟⑴的測量持續 時間與測量間隔是相同的。 Γ 在進一步之具體實例中,步驟(d)與步驟⑴的測量持續 時間可以是從約5至240分鐘。 在更進一步之具體實例中’步驟(d)與步驟⑴的測量持 - 續時間是3 0分鐘,且係在相等的間隔下記錄$次。 在更進一步之具體實例中,在步驟(d)與步驟⑴的測量 記錄前’表面需加以刮刷乾淨且跟隨30秒的延遲。 製程流的ORP可連同製程流的D0濃度一起測量。 在一具體實例中,方法係進一步含有在步驟(句與步驟 ‘ (0至少測量ORP —次。且在每次測量前清潔〇Rp探測器 之表面。 在另一具體實例中,若ORP值下降至低於預定之水平 時’可將一或多個氧化劑加入至製程流中。 在另一具體實例中,若〇RP值下降至低於預定之水 平,則然後連同ORP測量所測量的D〇測量值將不包括在 △DO的計算上。更明轉地’藉著排除這些測量值,製 作者可更清楚地察覺DO消耗究竟是與微生物活性或製王程 J9 200904990 流化學性質有關。 在另一具體實例中,若預定水平係低於約i〇〇mV,則 然後可將DO測量值加以排除,此係因為當⑽在此範圍 内τ λ條件典型上並非氧化。且溶氧消耗係可能與製程 流内的化學條件有關。 〇 許夕不同的方式以回應製程流内總(主體)微生 在-體實例中,當總(主體)微生物水平係高於或大 ^製程良好運作所需之預定水平時,其作法包括加入有效 罝的殺生物劑。以將微生物水平下降至所需的水平。 权生物劑可以是氧化及/或非氧化態。 關於造紙製程,殺生物劑係選自由異噻唑啉、戊二醛、 二漠氮基丙酿胺、胺基甲酸醋、四級銨化合物、次氯酸納、 一氧化氯、過氧乙酸、臭氧、氣胺、漠_胺美 酸鹽)、溴-氯-二甲基乙内醯脲、_患 、 土 斤 T 土 〇^醞脲一氯·一甲基乙内醯脲、單 ?胺、與銨鹽以及包括二曱基乙内醯脲、胺基酸、三聚氰 酉义琥ί白醯亞胺與尿素的安定劑合併使用的次氯酸鈉以 及其之組合所組成的群集。 、、使用或夕個控制器以實施對製程流内微生物活 2水平的回應。更明確地,該控制器可程式化以接受來自 製程流。例如為D〇探測器的資料。基於輸入控制器(例如 為程控邏輯控制器)的邏輯以計算剔。且根據剔以實 。應其可包括像是啟動將殺生物劑或沉積控制聚合物 飼入製程流内的泵浦的各種不同動作。 20 200904990 ’控制器是以網路為基礎。 中,該控制器可與下述之至少其中之 、DO探測器、潔淨裝置、閥門或其 在力一具體實例中,控制考#々 控㈣係接交來自該DO探測器 的輸入且實施程式化於該控制器内的所欲程序。 争统㈣具體實例中,控制器是一控制器系統。,'控制器^Like the stop flow condition of step (f), before the first DO measurement of the fluid in the flow chamber. A period of time should be sufficient to ensure that one or more microbial species within the fluid will have sufficient time to dissipate dissolved oxygen within the fluid. This period of time can vary and depends on one or more: primes, which can include the type of process to be monitored. And the efficacy of the microbial count used prior to carrying out the method of the invention. For example, in the paper industry, if the process water system is heightened by microorganisms (4), the microorganisms will spend less time consuming DO. Microbial types (such as sputum or filamentous bacteria) may also affect the rate and level of D Ο consumption. In the specific example, the measurements taken under open flow conditions and under the stop flow sliver are taken at the same time interval. In another specific implementation, the measurement performed under the open flow condition τ and the stop flow condition is performed for the same period of time and takes the same time 15 . The process stream can be continuously, intermittently, or only monitored once. Even if the immediate conditions are provided, the system disturbance in the process can be easily detected. ADO can be calculated in a variety of different ways. In the eight-body example, one-body microbial activity was obtained during the continuous water flow (open flow conditions) stage. This is compared with the amount of d〇I, when the process water is stopped by stopping the valve to stop. In other words, based on the step (d) and the step (the D〇 concentration of 〇 is used to calculate the ADO reading. The large change in the brightness is 18 200904990 - in another specific example, the ADO value is obtained from The average DO measurement of step (d) is determined by the minimum DO level from step (f). In another embodiment, the ADO value is obtained by taking the highest measurement from step (d) and from step (f) The minimum DO level is determined. In another embodiment, the ADO value is obtained by taking the last measured value from step (d) and the minimum DO level from step (0). In another specific example, 'for the step ( d) The measurement duration and the measurement interval are the same as in step (1). Γ In a further specific example, the measurement duration of step (d) and step (1) may be from about 5 to 240 minutes. The measurement of step 'd' and step (1) is 30 minutes, and is recorded at equal intervals. In a further specific example, the measurement records in step (d) and step (1) Front 'surface needs to be scraped The brush is clean and follows a 30 second delay. The ORP of the process flow can be measured along with the D0 concentration of the process stream. In a specific example, the method is further included in the step (sentence and step ' (0 at least measure ORP - times. The surface of the 〇Rp detector is cleaned before each measurement. In another embodiment, one or more oxidants may be added to the process stream if the ORP value falls below a predetermined level. In another embodiment If the 〇RP value falls below a predetermined level, then the measured D〇 measurement along with the ORP measurement will not be included in the calculation of ΔDO. More clearly, by excluding these measurements, the producer can It is more clearly perceived that DO consumption is related to microbial activity or flow chemistry of J9 200904990. In another embodiment, DO measurements can then be excluded if the predetermined level is below about i〇〇mV This is because when (10) is within this range, the τ λ condition is typically not oxidized, and the dissolved oxygen consumption may be related to the chemical conditions in the process stream. 〇 夕 不同 Different ways to respond to the total process flow (main In the micro-in vivo example, when the total (main body) microbial level is higher than or greater than the predetermined level required for good operation of the process, the practice includes adding an effective bismuth biocide to lower the microbial level to the The level of biologic agent may be in an oxidized and/or non-oxidized state. Regarding the papermaking process, the biocide is selected from the group consisting of isothiazoline, glutaraldehyde, diammonium amide, amino carboxylic acid vinegar, and fourth grade. Ammonium compound, sodium hypochlorite, chlorine monoxide, peroxyacetic acid, ozone, aeroline, sulphate, bromo-chloro-dimethyl sulphonate, _ suffering, snail T Hydrazine-chloro-monomethylammonium carbazide, mono-amine, and ammonium salts, and stabilizers including dimercapto-sodium carbazide, amino acid, cyanuric sulphate, and urea A cluster of sodium hypochlorite used in combination and a combination thereof. , or use a controller to implement a response to the level of microbial activity in the process stream. More specifically, the controller can be programmed to accept streams from the process. For example, the data of the D〇 detector. The ticks are calculated based on the logic of the input controller (eg, a programmed logic controller). And according to the truth. It may include various actions such as initiating a pump that feeds the biocide or deposition control polymer into the process stream. 20 200904990 The controller is based on the Internet. The controller may be combined with at least one of the following, a DO detector, a clean device, a valve, or a specific example thereof, the control test (4) is connected to the input from the DO detector and the program is implemented. The desired program in the controller. In the specific example, the controller is a controller system. , 'controller

=與類似之術語係指操作員或具有例如為處理器、記憶 表置、陰極影像管、液a顧 豕^液日日顯不态、電漿顯示器、觸控螢幕 或其他監視器、及/杏装# έ日杜夕< μ 及或其他組件之組件的電子裝置。在特定 月况下,控制器可以與一或多 疋應用之積體電路、 械:―或多個硬體線路裝置、及/或-或多個機 於^ ^ ° Ά作。某些或所有的控制器系統功能可以位 Γ例如為網路飼服器的中心位置,以便與局域網路、廣域 、祠路、無線網路、網際 笼脾、s L , 微波鏈路、紅外線鏈路= and similar terms refer to the operator or have, for example, a processor, a memory meter, a cathode image tube, a liquid, a liquid crystal display, a plasma display, a touch screen or other monitor, and / Apricot ##日杜夕<μ and other components of the electronic components of the assembly. Under certain months, the controller can be integrated with one or more applications, such as: or multiple hardware devices, and/or multiple devices. Some or all of the controller system functions can be located, for example, in the center of the network feeder for LAN, wide area, wireless network, wireless network, internet cage, s L, microwave link, infrared link

在一具體實例中 在另一具體實例 一聯通:ORP探測器 之組合。 2通。此外’亦可以包括像是信號調節器或系統監測器 的/、他組件以便於信號處理演算。 在另一具體實例令,所欲之程序是提醒操作工負責監 測製程流之人員且處理該製程流。 、 在另一具體實例t,若該細到達預定之水平時,所 2之程序係包括將有效數量之殺生物劑加人至製程流内。 破生物劑是氧化性及/或非氧化性。 光學積垢監測儀(OFM)可以連同該流動室—起使用以 決定發生於製程流内所累積沉積物的性質/起源。 21 200904990 在-具體實例中’本發明的方法係進 該製程流聯通的光學積垢監測儀;從該製程流 :光!:垢監測儀内’·以光學積垢監輪i量沉積物形 :,错將於光學積垢監測儀内沉積物形成 内的_所決定的微生物活性加以關聯以決定沉積= 型,視需要將與該OJPM以及至少D〇搜、、 知^測is聯通的控卷彳哭 程式化。以回應該沉積形成輿 钔㈣器 P⑽風“㈣成與微生物活性間的關聯而將一 或夕個化學物種加入至該製程流内。 在進一步之具體實例中,若 所m'n丄 右該關聯才日出在光學積垢上 所形成的》儿積物本性是微生物 物劑。例如,當0FM上有甘則化學物種將含有殺生 殺生物劍 ^ , 其ΔΕ>〇高時,然後可將 产的微生物、# =製程桃内以抑制沉積物形成且降低製程 的被生物活性。殺生物劑是氧化性及/或非氧化性。 成太進一步之具體實例中,當該關聯指出該沈積形 貝/微生物時,化學物種將是沉積物控制化學品。 上有沈積且其伽低時1後將沉積物控 二::入至製程流内以抑制沉積物形成將是-種採行 二!為一般熟習技藝之人士所知的不同類型的沉 、ιμΓ學品;例如,其係有在製紙過程中有助於防止 -積物形成的抗樹脂劑以及沉積控制聚合物。 物活性 與表面相關的微生物活 性,例如,生物膜。'曰微生物表面的微生物活 ,、表面4目關的製程流之微生物活性係藉測量製程流的 22 200904990 DO濃度以決定。其他參數亦可連同此分析以應用。本方 法更明確地係包含下述之步驟:(a)將裝置連結至一製程 流’其中該裝置係包含一含有數個開口的流動室,其中至 少一個開口係用於從該製程流引出流體的流動室入口 .且 至少一個開口係用於使流體離開該流動室的流動室出口, 一連結至該等開口的其中之一的DO探測器,一視需要選 用的連結至該等開口的其中之一的0RP探測器,一視需要 選用的連結至該等開口的其中之一的潔淨裝置,一視需要 選用的連結至流動室入口的第一導管,一視需要選用的連 結至流動室出口的第二導管’以及_視需要選用的與該流 動室關聯的閥門;(b)從該製程流將流體引入該流動室内; (c)開啟該裝置的閥門以允許將流體引入該流動室内;(d)以 該DO探測器至少測量一次該製程流的D〇濃度,且在每 次測量前該 DO楝測器並未加以潔淨;(e)將該D〇探測In a specific example, in another embodiment, a communication: a combination of ORP detectors. 2 pass. In addition, it can also include / for components such as signal conditioners or system monitors to facilitate signal processing calculations. In another specific example, the desired procedure is to alert the operator to the person responsible for monitoring the process flow and to process the process flow. In another embodiment t, if the fine reaches a predetermined level, the procedure of 2 includes adding an effective amount of biocide to the process stream. The biocide is oxidizing and/or non-oxidizing. An optical fouling monitor (OFM) can be used in conjunction with the flow chamber to determine the nature/origin of deposits that accumulate in the process stream. 21 200904990 In the specific example, the method of the present invention is incorporated into the optical fouling monitor of the process flow communication; from the process flow: light!: in the scale monitor, the amount of sediment is formed by the optical scale :, the error will be related to the determined microbial activity in the deposit formation in the optical scale monitor to determine the deposition = type, if necessary, will be connected with the OJPM and at least D〇 search, and know The volume is crying stylized. Adding one or a chemical species to the process stream in association with the formation of the P(四)器 P(10) wind "(4) into the process stream. In a further specific example, if m'n丄 right The association is formed on the optical scale. The nature of the accumulation is microbial agent. For example, when there is a sugar on the 0FM, the chemical species will contain the killing and killing sword, and its ΔΕ> 〇 high, then Produced microorganisms, # = process peaches to inhibit sediment formation and reduce the biological activity of the process. Biocides are oxidizing and / or non-oxidizing. In a further concrete example, when the relationship indicates the sedimentary shape / Microorganisms, the chemical species will be sediment control chemicals. When there is deposition and its gamma is low, then the sediment is controlled by two:: into the process flow to inhibit sediment formation will be - the species of the second! Different types of sinking materials known to those skilled in the art; for example, they are anti-resin agents and deposition control polymers which help prevent the formation of deposits during papermaking. micro- Activity, for example, biofilm. 'Microbial activity on the surface of the microbe, and microbial activity on the surface of the process flow is determined by measuring the concentration of the process flow 22 200904990 DO. Other parameters can be applied in conjunction with this analysis. The method more specifically comprises the steps of: (a) joining the device to a process stream 'where the device comprises a flow chamber containing a plurality of openings, at least one of which is for extracting fluid from the process stream a flow chamber inlet. and at least one opening for exiting the flow chamber outlet of the flow chamber, a DO detector coupled to one of the openings, optionally connected to the openings One of the 0RP detectors, optionally a cleaning device connected to one of the openings, optionally a first conduit connected to the inlet of the flow chamber, optionally connected to the outlet of the flow chamber a second conduit 'and _ optionally a valve associated with the flow chamber; (b) introducing fluid from the process flow into the flow chamber; (c) opening the device a valve to allow fluid to be introduced into the flow chamber; (d) at least one D〇 concentration of the process flow is measured with the DO detector, and the DO detector is not cleaned prior to each measurement; (e) D〇 detection

群集中所選出的製程 ^程流係來自由製紙製程、冷卻水 、與娛樂休閒為主之製程所組成的The process selected in the cluster is composed of a process consisting of papermaking process, cooling water, and entertainment-based processes.

過程中·於擦拭前與 23 200904990 擦拭後立即取得的D0 ;則量值差異以計算。其他參數亦可 連同此分析以應用。當〇Rp連同D〇測量一起測量時,綱 2生物膜活性的關聯整體性將較佳,此係因為當製程流流 立的REDOX狀態為非氧化態時,d〇測量可能會受影響。 開放流動條件係發生於製程流流體可通過流動^寺, 亡:猎與流動室聯通的分析儀器·特別是用於測量流體D〇 /辰度的DO探測器以測量。 rDuring the process, before the wiping and 23 200904990, the D0 obtained immediately after wiping; Other parameters can also be applied along with this analysis. When 〇Rp is measured along with the D〇 measurement, the correlation integrity of the biofilm activity of the gangue 2 will be better, because the d〇 measurement may be affected when the REDOX state of the process flow is non-oxidized. The open flow conditions occur in the process flow fluid can be measured by the flow ^ temple, the death: hunting and flow chamber communication analytical instrument, especially the DO detector for measuring the fluid D〇 / Chen. r

V •在例如為步驟(d)與步驟(f)的開放流動條件下,若生物 膜會累積。則於消丨吾Α . 心D〇别.應經歷足夠長的時間以然後 使其有充份的時間令生物腔 ^生物膜的累積發生。此段時間可根據 °因素以改變’其包括欲監測的製程類型。以及在 明方法前所使用的微生物計畫的效力。例如在製 、、氏業中,若製程水係被微生物所高度污染 耗費較少的時間以消耗D0。微生物類型(例如為真^: 狀囷)亦可能影響D〇消耗速率與水平。 在—具體實例中,於開放流動條件下與停止流動條件 下所進仃的測量係採取相同的時間間隔 二於開放流動條件下與停止流動條件下所進行的::: 在同一段時間下進行且採取相同的時間間隔。 係 接供艮^ L可以連續、間歇、或只監測一次。連續監鄉可 P時條件’故製程流内的系統擾動可輕易谓測。 △ DO可以各種不同方式加以計算。 測旦體實例中’細值係藉取得步驟⑷的最小恥 J里與來自步驟(f)的平均D〇測量值以決定。 24 200904990 在另一異體實例中’ ADO值係藉取得來自步驟⑷的最 小測量值與來自步驟(f)的最高D 〇水平以決定。 在另一昙體實例中,ADO值係藉取得來自步驟(d)的最 後測量值與來自步驟(f)的最高DO水平以決定。 在另一具體實例中,DO測量係在選定的時間間隔内. 於流動連續下進行且記錄5次,但在任何一個這些測量之 前並未以刮刷來清潔探測器。 在另一具體實例中,於選定的時間間隔屆滿前丨分鐘 將探測器加以潔淨。且進行且記錄2次連續的測量。 里 製程流的ORP可連同製程流的do濃度一起測量。 在-具體實例中,方法係進-步含有在步驟⑷與步驟 ⑴至少測* ORP -次。且在每次測量前清潔〇Rp探泪" 之表面’其中⑽探測器在步驟⑷内並未刮刷潔淨,^ 視需要選用地是該ORP探測器係在步驟⑺内刮刷潔淨。春 ⑽值下降至低於預定水平時,視需要將—或多個氧^ 加入至製程流内。 i 在另-具體實例中,若該〇RP值下降至低於預定之水 平’則然後連同ORP測量所測量的D〇測量值將不包括在 =決定製程流微生物活性的则的計算上。更明確地, 藉著排除這些測量值,劁 J里值I程操作者可更清楚地察覺D〇消 耗九兄疋與微生物活性或製程流化學性質有關。 實例巾,若預定水平係低於約1 GO mV,則 内時,!::l測1值加以排除,此係因為當0处在此範圍 U典型上並非氧化。且溶氧消耗係可能與製程 25 200904990 流内的化學條件有關。 在另一具體實例中,DO探測器、〇Rp探測器 之組合係藉含有刮刷的潔淨裝置以潔淨。 ’、 在另具體實例中,刮刷係、將探測器表面到拭兩次。 β取許夕不同的方式以回應製程流内與表面 微生物水平。 W β 在-具體實例中,當與表面相關的微生物水平係高於 或大^製程良好運作所需之預定水平時,其作法包括加入 有效量的殺生物劑。以將微生物水平下降至所需水平。 殺生物劑可以是氧化及/或非氧化態。 1 關於造紙製程’殺生物劑係選自由㈣料、戊二搭、 -廣氮基丙醯胺、胺基甲酸§旨、四級銨化合物、次氣酸納、 二乳化氣、過氧乙酸、臭氧、氣胺、SUW (溴-胺基磺 &鹽)肩-氯甲基乙内醯脲、二氣-二曱基乙内醯脲、單 氯胺/、釦鹽以及包括二甲基乙内醯脲、胺基酸、三聚氰 酸琥ίό I亞胺與尿素的安定劑合併使用的次氣酸納.以 及其之組合所組成的群集。 可以使用一或多個控制器以實施對製程流内微生物活 性水平的回應。更明確地,該控制器可程式化以接受來自 衣私々丨L。例如為DO探測器的資料、基於輸入控制器(例如 為程控邏輯控制器)的邏輯以計算ΔΕ)〇。且根據ΔΕ>〇以實 把回應其可包括像是啟動將殺生物劑飼入製程流内的系 浦的各種不同動作。 在一具體實例中,控制器是以網路為基礎。 26 200904990 在另-具體實例中,該控制器可與下述之 一聯通:ORP探測器、D〇探 其中之 之組合。 彳益心裝置、閥門或其 在另-具體實例中,控制器係接受來自該D〇探 的輸入信:,且實施程式化於該控制器内的所欲程序 /在另具體實例中,控制器是—控制器系統。 系統”與類似之術語係指操作M或具有例如 工制器 裝置、陰極影像管、液晶顯 ·、、' ° 5己憶 或其他監視器。及/或二::之二漿器、觸控螢幕 :情況::控制器可以與-或多個特定應用之積體= 式或々鼻法、一或多個硬體線路裝置、及 =整Γ以操作。某些或所有的控制器系統功== 如為網路何服◎的中心位置,以便與局域_、廣域 、.罔路、無線網路、網際網路連接、微波鍵路 j域 等聯通。此外,亦可以白括 、,外線鏈路 i. i... 的其他組件以便於信號處理演算。 乎、,充现冽裔 一具體實例中,所欲之程序是提醒操作工負責臣亡 '视之人員且處理該製程流。 、皿 數:該…達預定…時,所 太 ^括將有效數量之殺生物劑加人至 殺生物劑是氧化性及/或非氧化性。 机。 光學積垢監測儀(OFM)可以連同該流 決定發生於製程流内所累積沉積物的性質/起源、域用以 在一具體實例中,本發明的方法係進一步含有提供與 27 200904990 =程流聯通的光學積垢監測儀;從該製程流將 _U、. 字積垢監測儀測量沉積物拟 成,藉將於光學積垢監測儀内 7 内的細~決定的微生成。與從該製程流 刊.… 性加以關聯以決定沉積物的類 孓,視而要將與該〇fm以及至少 程式化。以回應該沉積形成㈣生物::器聯通的控制器 式……t 办戚與倣生物活性間的關聯而將一 或夕個化予物種加入至該製程流内。 在進一步之具體實例中,若該關聯指出在光學積垢上 所形成的沉積物本性是微 上 物叫。心a 時,則化學物種將含有殺生 殺I物_上有沈積且其ADo高時,然後可將 j的微I物a該製%流内以抑制沉積物形成且降低製程 刀… 性。殺生物劑是氧化性及/或非氧化性。 成本步之具體實例中,當該關聯指出該沈積形 例士」喊生物時’化學物種將是沉積物控制化學品。 :二_至Γ尤積且其_低時,然後將沉積物控 二施::程流内以抑制沉積物形成將是-種採行 :有各種為一般熟習技藝之人士V • If the biofilm accumulates under open flow conditions such as step (d) and step (f). In the case of 丨 丨 Α 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心 心. This period of time can be changed according to the factor of 'which includes the type of process to be monitored. And the efficacy of the microbial plan used prior to the method. For example, in the manufacturing industry, if the process water system is highly contaminated by microorganisms, it takes less time to consume D0. The type of microorganism (for example, true:: 囷) may also affect the rate and level of D〇 consumption. In the specific example, under the open flow conditions and the measurement system under the stop flow conditions, the same time interval is taken under the open flow condition and the stop flow condition::: in the same period of time And take the same time interval. The connection can be continuous, intermittent, or only monitored once. Continuous monitoring can be used for P-conditions, so system disturbances in the process flow can be easily measured. △ DO can be calculated in a variety of different ways. The fine value in the denier example is determined by taking the minimum shame J of step (4) and the average D〇 measurement from step (f). 24 200904990 In another variant, the ADO value is determined by taking the minimum measured value from step (4) and the highest D 〇 level from step (f). In another example of the carcass, the ADO value is determined by taking the last measured value from step (d) and the highest DO level from step (f). In another embodiment, the DO measurement is performed at selected time intervals. The flow is continuously performed and recorded 5 times, but the detector is not cleaned by wiping before any of these measurements. In another embodiment, the detector is cleaned minutes before the expiration of the selected time interval. And carry out and record 2 consecutive measurements. The ORP of the process stream can be measured along with the do concentration of the process stream. In a specific example, the method further comprises measuring at least ORP-times in steps (4) and (1). And clean the surface of the Rp tears before each measurement. (10) The detector is not wiped clean in step (4). ^ Optionally, the ORP detector is wiped clean in step (7). When the value of spring (10) drops below a predetermined level, - or more oxygen is added to the process stream as needed. i In another embodiment, if the 〇RP value drops below a predetermined level, then the measured D〇 measurement along with the ORP measurement will not be included in the calculation of = the process microbial activity. More specifically, by excluding these measurements, the operator of the I J value I can more clearly perceive that D 〇 九 九 疋 is related to microbial activity or process flow chemistry. For example towels, if the predetermined level is less than about 1 GO mV, then the value of !::1 is excluded, because when 0 is in this range U is typically not oxidized. The dissolved oxygen consumption may be related to the chemical conditions in the process 25 200904990. In another embodiment, the combination of the DO detector and the 〇Rp detector is cleaned by a cleaning device containing a wiper. In another embodiment, the wiper is applied and the surface of the detector is wiped twice. Beta takes a different approach in response to process flow and surface microbial levels. W β In the specific example, when the level of microorganisms associated with the surface is higher than or greater than the predetermined level required for good operation of the process, the practice includes adding an effective amount of the biocide. To reduce the level of microorganisms to the desired level. The biocide can be in an oxidized and/or non-oxidized state. 1 Regarding the papermaking process, the biocide is selected from the group consisting of (four) materials, pentane, azo-azidoamine, urethane, quaternary ammonium compounds, sodium hypogaslate, two emulsion gases, peracetic acid, Ozone, aerochlorin, SUW (bromo-amino sulfonate & salt) shoulder-chloromethylhydantoin, di-halo-indenyl carbazide, monochloramine /, deducting salt and including dimethyl A cluster of endogenous urea, aminic acid, aramidium iyanide, a stabilizer of urea, and a combination of urea and a combination thereof. One or more controllers can be used to effect a response to the level of microbial activity within the process stream. More specifically, the controller can be programmed to accept from the private sector. For example, the data for the DO detector, based on the logic of the input controller (for example, a programmed logic controller) to calculate ΔΕ)〇. And responding according to ΔΕ> can include various actions such as initiating a system for feeding the biocide into the process stream. In one embodiment, the controller is based on a network. 26 200904990 In another embodiment, the controller can be in communication with one of the following: an ORP detector, a combination of D. The controller, the valve or its other embodiment, the controller accepts an input from the D: and implements the desired program programmed in the controller/in another embodiment, the control The controller is the controller system. "System" and similar terms refer to operation M or have, for example, a craft device, a cathode ray tube, a liquid crystal display, a '° 5 recall or other monitor, and/or a second:: a second paste, touch Screen: Situation: The controller can be operated with or - or a combination of specific applications = one or more hardware devices, and one or more hardware devices. Some or all of the controller system functions == If you are in the center of the network, in order to communicate with the local area, wide area, wireless network, wireless network, Internet connection, microwave domain j domain, etc. The other components of the external link ii.. are convenient for signal processing calculations. In the specific example of the descendant, the desired procedure is to remind the operator to be responsible for the death of the personnel and to process the process flow. Number of dishes: When the ... is scheduled, the inclusion of an effective amount of biocide to the biocide is oxidative and/or non-oxidizing. The optical fouling monitor (OFM) can be used together with the number of dishes. The flow determines the nature/origin of the deposits accumulated in the process stream, the domain is used in a In an embodiment, the method of the present invention further comprises providing an optical fouling monitor connected to 27 200904990 = process flow; from the process flow, the _U, . word scale monitor is used to measure deposits, and the optical is The fine-decision micro-generation in the scale monitor 7 is related to the type of sediment from the process flow to determine the sediment, and it is necessary to program the 〇fm and at least to correct it. Deposition to form (4) biological:: the controller of the device is connected to the process and the biological activity is added to the species to be added to the process stream. In a further specific example, if the association It is pointed out that the sediment formed on the optical scale is microscopic. When the heart is a, the chemical species will contain the killing agent. When there is deposition and its ADo is high, then the micro-I of j can be The % flow is used to inhibit the formation of deposits and to reduce the resistance of the process. The biocide is oxidizing and/or non-oxidizing. In the specific example of the cost step, when the correlation indicates that the sedimentary form is "calling a creature" 'Chemical species will be sediment control chemistry Product. : 2 _ Γ Γ 积 且 且 且 且 且 且 且 且 且 且 且 且 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积 沉积

積物控制化學品;例如,皇孫古η“ 个類H .V Μ Μ, ^ ^ '…、有在製紙過程中有助於防止 積物形成的抗樹脂劑以及沉積控制聚合物。 監測::生物活一起 生物活.㈣方法係包含=置 及與叫^ 該裝置係包含將裝置連結至該製程流,其中 3有數個開口的流動室,其中至少一個開 28 200904990 口係用於從該製程流引出流體的流動室入口 .且至少一個 開口係用於使流體離開該流動室的流動室出口,一連結立 該等開口的其中之一的DO探測器,一視需要選用的連結 至該等開口的其中之一的ORP探測器’一視需要選用的連 結至s亥專開口的其中之一的潔淨裝置’一視需要選用的連 結至流動室入口的第一導管,一視需要選用的連結至流動 至出口的弟一導管’以及一視需要選用的與該流動室關聯 的閥門;(b)從該製程流將流體引入該流動室内;(c)開啟該Chemical control chemicals; for example, Huang Sungu η "Class H.V Μ Μ, ^ ^ '..., anti-resin agent and deposition control polymer that helps prevent the formation of deposits during papermaking. Monitoring:: The biological activity is alive with the biological activity. (4) The method comprises: setting and calling the device. The device comprises connecting the device to the process flow, wherein 3 has a plurality of open flow chambers, wherein at least one opening 28 200904990 is used for the process a flow chamber inlet that draws fluid and at least one opening for exiting the flow chamber outlet of the flow chamber, a DO detector joining one of the openings, optionally connected to the DO detector One of the openings of the ORP detector 'should be selected as one of the clean devices connected to one of the openings of the shai'. The first conduit to be connected to the inlet of the flow chamber is selected as needed. a conduit to the outlet to the outlet and a valve associated with the flow chamber; (b) introducing fluid from the process stream into the flow chamber; (c) opening the valve

\. 裝置的閥門以允許將流體引入該流動室内;以該〇〇探 測器至少測量一次該製程流的兩種D0濃度,且在每次測 量前該DO探測器並未加以潔淨;(e)將該d〇探測器的表 面加以潔淨;(f)以該D〇探測器至少測量一次該裝置内流 體的DO濃度。視需要選用地是在每次測量前將該D〇探 測器表面加以潔淨;(g)關閉該裝置的閥門以防止流體被引 入該流動室内;(h)以該DO探測器至少測量一次該裝置内 流體的DO》農纟,在每次測量前將該D〇探測器表面加以 潔淨,(0計算步驟(f)與步驟(h)間的Δ〇〇讀數。且至少將 A ADO值與該製程流内的該主體微生物活性加以關聯; 計算步驟(d)與步驟⑴間的则讀數。且至少將該Δϋ〇值 與該製程流内的該與表面相關的微生物活性加以關聯 在另-具體實例中,監測係建立以使操作者可在 微生物活性(常態模式)及/或與表面有關的活 :丨切換/開關。圖8係經由流程圖以說明此機制的一具體J) 29 200904990 - 在另一具體實例中,製程係進一步含有在步驟(d).步 驟(0與步驟(h)至少測量一次ORP,其中〇Rp探測器在步 驟(d)中並未加以到拭乾淨’視需要選用地是其中該〇Rp 振測器係在步驟(f)中加以刮拭乾淨’且其中〇Rp探測器在 步驟(h)中係加以刮拭乾淨;如果ORP值下降至低於預定 水平時,視需要將一或多個氧化劑加入至該製程流内;且 若該ORP值下降至低於預定水平,則在計算該ΔΙχ>值時 視需要不使用該DO測量值。 f 在另一具體實例中,來自製程流的沉積形成亦可以連 同此方法一起監測。更明確地,本發明的方法係進一步含 有提供與該製程流聯通的光學積垢監測儀;從該製程流將 流體引入該光學積垢監測儀内;以光學積垢監測儀測量沉 積物Φ成,藉將於光學積垢監測儀内沉積物形成。與從該 衣程机内的ADO所決定的微生物活性加以關聯以決定沉積 ^的類型;視需要將控制器程式化,以回應該沉積形成與 微生物活性間的該關聯而將一或多個化學物種加入至該製 I 程流内。 下述之實施例並非意指限制。 實施例 實施例1 經由第一導管將製程流 將調節進入流動室内的流動 及一或多個閥門可防止製程 在於製程流内的固體所造成 引入流動室内。一或多個閥門 。與第一導管結合的放流,以 流内的倒流’或有助於控制存 的阻塞。在開放流動條件下, 30 200904990 門門定位將允許抓體通過流動室。D〇探測器、〇Rp探測 器與潔淨裝置(例如為刮刷)係連結至流動室。流體將通過 用於分析的流動室。 根據監測(主體/表面相y 人、 衣φ相關/組合),閥門將轉動至開啟位 置/或關閉位置,以允許流體進人流動室内,且d〇濃度及 /或ORP係根據前文中所提處理程序之立中之一以紀錄。 通過流動室的流體將經由放流以離開。流進放流的流體可 排放回至製程流内’例如進入製紙製程的成漿池内。圖9 係提供-流動室裝置的概要圖,且製程流係流過流動 置。 OFM監測器亦可與製程流連結。一或多個闕門將調節 進入OFM内的流動。圖1〇係提供一與〇fm監測器連結 的流動室裝置的概要圖,且製程流係流過流動室裝置與 OFM。a valve of the device to allow fluid to be introduced into the flow chamber; the D0 concentration of the process flow is measured at least once by the helium detector, and the DO detector is not cleaned prior to each measurement; (e) The surface of the d〇 detector is cleaned; (f) the DO concentration of the fluid in the device is measured at least once by the D〇 detector. Optionally, the surface of the D〇 detector is cleaned prior to each measurement; (g) the valve of the device is closed to prevent fluid from being introduced into the flow chamber; (h) the device is measured at least once with the DO detector DO of the internal fluid, the surface of the D〇 detector is cleaned before each measurement, (0 calculates the Δ〇〇 reading between step (f) and step (h), and at least the A ADO value and The host microbial activity in the process stream is correlated; the reading between step (d) and step (1) is calculated, and at least the Δϋ〇 value is associated with the surface-related microbial activity in the process stream. In an example, the monitoring system is established to allow the operator to be in microbial activity (normal mode) and/or surface related activity: 丨 switching/switching. Figure 8 is a flow chart to illustrate a specific J) 29 200904990 - In another embodiment, the process system further comprises at least one ORP measurement in step (d). (0 and step (h), wherein the 〇Rp detector is not wiped clean in step (d) as needed The land of choice is the 〇Rp The detector is wiped clean in step (f) and wherein the 〇Rp detector is wiped clean in step (h); if the ORP value falls below a predetermined level, one or more An oxidant is added to the process stream; and if the ORP value falls below a predetermined level, the DO measurement is not used as needed in calculating the ΔΙχ> value. f In another embodiment, deposition from the process stream Formation may also be monitored in conjunction with this method. More specifically, the method of the present invention further comprises providing an optical fouling monitor in communication with the process stream; introducing fluid from the process stream into the optical scale monitor; The scale monitor measures sediment Φ formation by depositing deposits in the optical scale monitor. It is associated with the microbial activity determined by ADO in the machine to determine the type of deposit; control is required as needed The program is programmed to incorporate one or more chemical species into the process stream in response to the association between deposition formation and microbial activity. The following examples are not meant to be limiting. Example 1 The flow of the process into the flow chamber and the one or more valves via the first conduit will prevent the process from being introduced into the flow chamber by solids within the process stream. One or more valves. The discharge associated with the first conduit , in the flow of the backflow 'or help to control the blockage. Under open flow conditions, 30 200904990 door positioning will allow the body to pass through the flow chamber. D〇 detector, 〇Rp detector and clean device (for example The wiper is attached to the flow chamber. The fluid will pass through the flow chamber for analysis. According to the monitoring (body/surface phase y person, garment φ correlation/combination), the valve will be rotated to the open position/or closed position to allow the fluid Enter the mobile chamber and the concentration and/or ORP is recorded according to one of the procedures outlined in the previous section. The fluid passing through the flow chamber will exit via the discharge. The fluid flowing into the discharge stream can be vented back into the process stream, e.g., into the pulping tank of the papermaking process. Figure 9 is a schematic diagram of a flow cell assembly, with the process flow flowing through the flow. The OFM monitor can also be coupled to the process stream. One or more of the tricks will regulate the flow into the OFM. Figure 1 is a schematic view of a flow cell assembly coupled to a 〇fm monitor, and the process flow is passed through the flow chamber assembly and the OFM.

根據製程流内之微生物活性水平及/或沉積物,可將能 改正問題的適當化學品加人至製程流内。例如,控制器可 將信號傳輸至泵浦以啟動與進料機制有關的電磁線圈。 實施例2 來自位於德國之造紙廄造紙製程水的側流係允許流經 過監測裝置(每秒2升)。此工廠係製造塗佈與未塗佈之不 含機械木线且係、使用穩定氧化劑以用於生物控制。監則 裝置上的閥門係以6〇 &鐘的間隔開啟與關閉,以起始且 停止進入流動室監測室之流動。〇Rp與⑽值係以J分 鐘的間隔測量。來自〇RP肖LD◦監測裝置的資料將藉資 31 200904990 料記錄器以收集,且送至網路伺服器以顯示在網站上。資 料將從網站下載且經分析以決定生物控制程式與加工條件 對微生物活性的影響。Depending on the level of microbial activity and/or sediment within the process stream, appropriate chemicals that correct the problem can be added to the process stream. For example, the controller can transmit a signal to the pump to initiate a solenoid associated with the feed mechanism. Example 2 A lateral flow system from a papermaking process water in Germany was allowed to flow through a monitoring device (2 liters per second). This factory manufactures coated and uncoated mechanical wood lines and uses a stable oxidant for biological control. The valves on the unit are opened and closed at 6 〇 & clock intervals to initiate and stop the flow into the flow chamber monitoring chamber. The 〇Rp and (10) values are measured at intervals of J minutes. Information from the 〇RP LD◦ monitoring device will be borrowed from the 2009 200990 material recorder for collection and sent to the web server for display on the website. The information will be downloaded from the website and analyzed to determine the impact of biological control programs and processing conditions on microbial activity.

\ 在此申請案中,本發明係與OFM合併使用以決定可 疑沉積物之本性/起源.例如,如果高沈積與活性時,其有 可能沉積物本性為生物。相反地,如果高沈積且低微生物 活性時生物將不太可能造成沉積,且解決問題的努力 應朝向其他方面。® 6中所提供的實施例係示範機器停俥 對ORP、微生物活性、與滞留製程水内之沈積⑽⑷的影 響。微生物活性係以△〇〇來報告。機器係在8月4日停俥了 此事件後不久在△〇〇上有急劇的提高,其與〇Rp上的降 低以及藉OFM所測量的表面積垢的提高一致。這些資料 意謂基於氧化劑的程式並非不變的,且在此意外事件中已 不足以控制微生物生長與沉積形成。表面沉積的顯微鏡檢 視相了包括絲狀細菌之高密度微生物。 實施例3 “自位於美國之造紙廠造紙製程纟的側流係允許流經 過巧裝置(每秒〇.25升)。此工廠頻繁地改變紙製品的纖 ’隹内a ’其對生物控制程式的性能將會有劇烈的衝擊。明 ^也此工廢係使用可提高製程水系統齒素需求的八_ 、、置…則裝置上的閥門係以30分鐘的間隔開啟與關閉, 以起始且停止進入流動室監測室之流動。ORP與LD0值 :以?分鐘的間隔測量。來自〇Rp與⑽監測裝置的資 料係藉資料&絲· # 、 ' 。〜、m 乂收集、或下载至提供著監測裝置軟體 32 200904990 之電腦。 在女裝JUT /則裝置後不久,製程改變對基於測量、 '物活性水平與以〇FM所測量的表面積垢的生物控制 :弋性此的景/喜可立刻觀察出。圖7中所提供的實施例係 :範纖維含量改變對⑽、微生物活性、與沈積(〇FM)的 曰微生物活性係以LD〇(。/。飽和)報告,且在開放流動 条件過私中背景LD〇與在停止流動條件過程中所測量 間的較大差異顯示較高之微生物活性。這些資料意謂當使 0等級同氧化劑需求裝置時,基於氧化劑的程式 铬不足以控制微生物生長與沉積形成。因此’程式應加以 。正以改良此特別等級製造過程中的沉積控制。 實施例4 溶氧監測儀係連續地測量樣本水㈣溶氧。監測程式 ::Μ(程控邏輯控制器)以控制,其將讀取且保留所測 刮3 兀*成。PLC亦控制將感應器表面 \ 球閥。 條止水〜通過樣本室的動力 有二種基本監_式可用:主體微生物活性_八)模 係Γ及/與表面相關之微生物活性(SAMA)模式。兩種模式 盘 個變數以將程式設定在特定之應用需要:X、xt 時XU。更明確地’ χ是以分鐘計的球閥 時間,Xt是在時間χ内 才「I、關閉 a τ 内所儲存的LDO讀數數目, 疋LDO讀數間的間隔。卷 Atl ^ ^备球閥開啟且樣本流動時,LD〇 項數應㈣敎地㈣樣本 〇 則07狀態。當球閥關閉 33 200904990 且樣本停止流動時’在關閉流動室内的溶氧將傾向於藉與 有機物質反應而耗損。 在BMA模式中,所有的讀數皆係在探測器已擦拭乾 淨後立刻進行。藉著反映新陳代謝過程中的溶氧消耗,ΔΕ)〇 值可提供樣本體内微生物活性的測量。 在S ΑΜΑ模式中,對閥門開啟週期的第一部份,電極 並未加以擦拭。在這段時間内,可能會有生物膜累積於電 極表面上。然後將電極擦拭乾淨,且其差異將顯示在週期 的第一部份内所累積的生物膜水平。當球閥關閉時,讀數 將如同ΒΜΑ模式般讀取。 34 200904990 表I-BMA模式 時間(分鐘) 進展 事件 讀數 樣本流動 00:00 開始 球閥開啟 流動 01:00 Xti-01:00 擦拭 01:30 Xti - 00:30 讀取LDO 1 03:00 2Xti-01:00 擦拭 03:30 2Xti - 00:30 讀取LDO 2 05:00 3Xti-01:00 擦拭 05:30 3Xti - 00:30 讀取LDO 3 07:00 4Xti —01:00 擦拭 07:30 4Xti - 00:30 讀取LDO 4 09:00 5Xti-01:00 擦拭 09:30 5Xti-00:30 讀取LDO 5 10:00 5Xti 球閥關閉 停止 11:00 6Xti-01:00 擦拭 11:30 6Xti - 00:30 讀取LDO 6 13:00 7Xti-01:00 擦拭 13:30 7Xti - 00:30 讀取LDO 7 15:00 8Xti-01:00 擦拭 15:30 8Xti - 00:30 讀取LDO 8 17:00 9Xti-01:00 擦拭 17:30 9Xti-00:30 讀取LDO 9 19:00 lOXti-01:00 擦拭 19:30 lOXti-00:30 讀取LDO 10 20:00 lOXti 週期完成 MAX=讀數1>5之平均 MIN=6>10以外的最小讀數 活性:In this application, the invention is used in conjunction with OFM to determine the nature/origin of a suspect deposit. For example, if high deposition and activity, it is likely that the deposit is inherently biological. Conversely, organisms will be less likely to cause deposition if high deposition and low microbial activity, and efforts to solve the problem should be directed toward other aspects. The example provided in ® 6 is the demonstration of the effect of machine stoppage on ORP, microbial activity, and deposition (10)(4) in retention process water. Microbial activity is reported as Δ〇〇. The machine was shut down on August 4 and there was a sharp increase in Δ〇〇 shortly after this event, which was consistent with the decrease in 〇Rp and the increase in surface area scale measured by OFM. These data mean that the oxidant-based program is not constant and is not sufficient to control microbial growth and sediment formation in this accident. Microscopic examination of surface deposits includes high density microorganisms including filamentous bacteria. Example 3 "The flow system from the papermaking process in the paper mills in the United States allows flow through a sleek device (25 liters per second). This factory frequently changes the fiber's fiber's internals' to its biological control program. The performance will have a violent impact. Ming ^ also use this system to improve the process water system teeth demand eight _,, ... the valve on the device is opened and closed at 30 minute intervals to start And stop flowing into the flow cell monitoring room. ORP and LD0 values: measured at intervals of ? minute. Data from 〇Rp and (10) monitoring devices are collected by data & silk · # , ' . . , m 乂 , or downloaded To the computer providing the monitoring device software 32 200904990. Shortly after the women's JUT / device, the process changes the biological control based on the measurement, the level of activity and the surface area scale measured by 〇FM: the nature of this / It can be observed immediately. The examples provided in Figure 7 are: Fan fiber content change (10), microbial activity, and sedimentation (〇FM) 曰 microbial activity is reported as LD〇 (·· saturation), and Open flow conditions The large difference between the measured LD〇 and the measurement during the stop flow condition shows a higher microbial activity. These data mean that the oxidant-based programmed chromium is not sufficient to control microbial growth and deposition when the level 0 is the same as the oxidant demand device. Forming. Therefore, the program should be applied to improve the deposition control during this special grade manufacturing process. Example 4 The dissolved oxygen monitor continuously measures the sample water (4) dissolved oxygen. Monitoring program:: Μ (programmed logic controller) Control, it will read and retain the measured scrap 3 兀 * into. PLC also controls the sensor surface \ ball valve. Strip water ~ through the sample chamber power has two basic monitoring _ type available: main microbial activity _ eight) Moulding and/or surface-related microbial activity (SAMA) mode. Two modes are used to set the program to the specific application needs: X, Xt, XU. More specifically 'χ is the ball valve time in minutes , Xt is "I, close the number of LDO readings stored in a τ, 疋 LDO reading interval." Volume Atl ^ ^ When the ball valve is open and the sample is flowing, the number of LD items should be (4)敎Ground (4) Sample 07 07 state. When the ball valve closes 33 200904990 and the sample stops flowing, 'dissolved oxygen in the closed flow chamber will tend to be depleted by reacting with organic matter. In BMA mode, all readings are in the detector. It has been wiped clean and immediately. By reflecting the dissolved oxygen consumption in the metabolic process, the ΔΕ) 〇 value provides a measure of the microbial activity in the sample. In the S ΑΜΑ mode, the first part of the valve opening cycle, the electrode Not wiped. During this time, biofilm may accumulate on the electrode surface. The electrode is then wiped clean and the difference will show the level of biofilm accumulated in the first part of the cycle. When the ball valve is closed, the reading will be read like the ΒΜΑ mode. 34 200904990 Table I-BMA Mode Time (minutes) Progress Event Reading Sample Flow 00:00 Start Ball Valve Open Flow 01:00 Xti-01:00 Wipe 01:30 Xti - 00:30 Read LDO 1 03:00 2Xti-01 :00 Wipe 03:30 2Xti - 00:30 Read LDO 2 05:00 3Xti-01:00 Wipe 05:30 3Xti - 00:30 Read LDO 3 07:00 4Xti —01:00 Wipe 07:30 4Xti - 00:30 Read LDO 4 09:00 5Xti-01:00 Wipe 09:30 5Xti-00:30 Read LDO 5 10:00 5Xti Ball Valve Closes Stop 11:00 6Xti-01:00 Wipe 11:30 6Xti - 00 :30 Read LDO 6 13:00 7Xti-01:00 Wipe 13:30 7Xti - 00:30 Read LDO 7 15:00 8Xti-01:00 Wipe 15:30 8Xti - 00:30 Read LDO 8 17: 00 9Xti-01:00 Wipe 17:30 9Xti-00:30 Read LDO 9 19:00 lOXti-01:00 Wipe 19:30 lOXti-00:30 Read LDO 10 20:00 lOXti Cycle Complete MAX=Read 1&gt Minimum average activity outside the average MIN=6>10 of 5:

BMA=MAX-MIN 35 200904990 表ΙΙ-SAMA模式(讀數1-7)與BMA模式 時間(分鐘) 進展 事件 讀數 樣本流動 00:00 開始 球閥開啟 流動 04:30 Xti-01:30 讀取LDO 1 12:030 2Xti 讀取LDO 2 18:00 3Xti 讀取LDO 3 24:00 4Xti 言買取LDO ‘ 4 30:00 5Xti 讀取LDO 5 30:30 5Xti + 0:30 擦拭2次 31:00 5Xti+ 1:00 讀取LDO 5 31:20 5Xti-01:20 讀取LDO 7 球閥關閉 停止 35:00 X+(Xti-01:00) 擦拭 35:30 X+(Xti - 00:30) 讀取LDO 41:00 X+(2Xti-01:00) 擦拭 41:30 X+(2Xti - 00:30) 讀取LDO 9 47:00 X+(3Xti-01:00) 擦拭 47:30 X+(3Xti - 00:30) 讀取LDO 10 53:00 X+(4Xti-01:00) 擦拭 53:30 X+(4Xti - 00:30) 讀取LDO 11 59:00 X+(5Xti-01:00) 擦拭 59:30 X+(5Xti - 00:30) 讀取LDO 12 60:00 2X 週期完成 36 200904990 BMIN =讀數5 BMAX=讀數6&7之平均 MIN=8> 1 2以外的最小讀數 活性:BMA=MAX-MIN 35 200904990 Table-SAMA Mode (Reading 1-7) and BMA Mode Time (minutes) Progress Event Reading Sample Flow 00:00 Start Ball Valve Open Flow 04:30 Xti-01:30 Read LDO 1 12 :030 2Xti Read LDO 2 18:00 3Xti Read LDO 3 24:00 4Xti Buy LDO ' 4 30:00 5Xti Read LDO 5 30:30 5Xti + 0:30 Wipe 2 times 31:00 5Xti+ 1:00 Read LDO 5 31:20 5Xti-01:20 Read LDO 7 Ball Valve Shutdown Stop 35:00 X+(Xti-01:00) Wipe 35:30 X+(Xti - 00:30) Read LDO 41:00 X+( 2Xti-01:00) Wipe 41:30 X+(2Xti - 00:30) Read LDO 9 47:00 X+(3Xti-01:00) Wipe 47:30 X+(3Xti - 00:30) Read LDO 10 53 :00 X+(4Xti-01:00) Wipe 53:30 X+(4Xti - 00:30) Read LDO 11 59:00 X+(5Xti-01:00) Wipe 59:30 X+(5Xti - 00:30) Read Take LDO 12 60:00 2X cycle completion 36 200904990 BMIN = reading 5 BMAX = reading 6 & 7 average MIN = 8 > 1 2 outside the minimum reading activity:

BMA=BMAX-MIN S AMA=BMAX-BMIN 【圖式簡單說明】 圖1係顯示一包合请#^ hBMA=BMAX-MIN S AMA=BMAX-BMIN [Simple diagram of the diagram] Figure 1 shows a package of please #^ h

視兩# 至、D〇探測器、潔淨裝置與 視而要4用的0RP探測器的袭置之概略圖。A schematic diagram of the attack of the #RP detectors, the cleansing device, and the 0RP detector used for the purpose.

圖2係顯示一安裝至休M 圖,壯 在外殼内之背板上的裝置之概略 呈右刦丨#上& D〇奴測15、ORP探測器、 門。 以裝置、第-導管、第二導管與閥 圖3係顯示一包含D〇抑 置的裝置之概略圖。 、〇RP探測器與潔淨裝 -二包含流動室,探測器、DO探測器 有刮刷之潔淨裝置的裝置之概略圖。 圖。圖5係顯示—用於提高表面積的流動室與構件的概略 圖6倍龜-士, 體)微生物活性所收集的資料’其係關於主體(總 刃居性與表面積垢。 圖7係顯示在 體)微生物、车^ t 物活性與表面積垢 圖8 ^(车黯一 你顯不用於監測 紙廠中所收集的資料,其係關於主體(總 主體微生物活性及/或表面相關之 37 200904990 微生物活性的流程圖。 圖9係說明本發明之一具體實例,其中係具有一與DO 探測器、0RP探測器與潔淨裝置相關之流動室。 圖1 0係說明本發明之一具體實例,其中係具有一 OFM 以及一與DO探測器、ORP探測器與潔淨裝置相關之流動 室。 【主要元件符號說明】 (1) 流動室Figure 2 shows the outline of a device mounted on the back panel in the outer casing of the housing. The right robber #上& D〇 slave test 15, ORP detector, door. The device, the first catheter, the second catheter, and the valve are shown in Fig. 3 as a schematic diagram of a device including a D〇 inhibition. , 〇 RP detector and clean equipment - two contain flow chambers, detectors, DO detectors, schematic diagrams of devices with wiping clean devices. Figure. Figure 5 shows the data collected from the microbial activity of the flow chamber and components used to increase the surface area. The data collected by the body is related to the main body (total edge and surface area scale. Figure 7 shows Microbial, carb activity and surface area scale Figure 8 ^ (The car is not used to monitor the data collected in the paper mill, it is related to the main body (total body microbial activity and / or surface related 37 200904990 microorganisms Flowchart of Activity Figure 9 illustrates an embodiment of the invention having a flow chamber associated with a DO detector, an OV detector, and a cleaning device. Figure 10 illustrates a specific embodiment of the invention, wherein It has an OFM and a flow chamber associated with the DO detector, ORP detector and clean device. [Main component symbol description] (1) Flow chamber

(2) DO探測器 (3) ORP探測器 (4) 第一導管 (5) 第二導管 (6) 閥門 (7) 潔淨裝置 (8) 刮刷或刷子 (9) 電磁線圈或刮刷電磁線圈 (10) 構件 (11) 擋板 (12) 承接器 (13) 入口 (14) 出口 (15) 放流 38(2) DO detector (3) ORP detector (4) First conduit (5) Second conduit (6) Valve (7) Clean device (8) Scratch or brush (9) Solenoid or scraping solenoid (10) Member (11) Baffle (12) Receiver (13) Inlet (14) Outlet (15) Release 38

Claims (1)

200904990 十、申請專利範圍: 1.一種用於測量製程流内微生物活性的裝置,其含有: a•一含有數個開口的流動室,其中至少一個開口係用 於從該製程流引出流體的流動室入口。且至少〜個開口係 用於使流體離開該流動室的流動室出口; b·—連結至該等開口的其中之一的DO探測器; c·一視需要選用的連結至該等開口的其中之〜的〇Rp 探測器;200904990 X. Patent application scope: 1. A device for measuring microbial activity in a process stream, comprising: a• a flow chamber containing a plurality of openings, wherein at least one opening is used to extract the flow of fluid from the process stream Room entrance. And at least ~ openings are used to cause fluid to exit the flow chamber outlet of the flow chamber; b. - a DO detector coupled to one of the openings; c. optionally connected to the openings ~ 〇Rp detector; K. d. —連結至該等開口的其中之一的潔淨裝置; e•一視需要選用的連結至流動室入口的第一導管. f. 一視需要選用的連結至流動室 «j矛〜導管;以 g.—矾冩要選用的與該流動 2.如申請專利範圍帛1帛之裝置,其 &lt; 含有刮刷或刷子。 、”、净' 裝置係 3·如申請專利範園 的至少一部分以及視f ‘ ,&quot;中該探測器 室内。 ^要選用的0处探測器係伸入該流動 4. 如申請專利範圍第&quot;員之裝置 至該第一導管。 中該間門係連接 5. 如申請專利範圍第^ 其中視需要該球閥是翕&amp; 、裝置八中該閥門是球閥, 動、電動或手動運作域閱 6. 如申請專利範團第丨 運作球閥。 DO探測器.肖〇Rp押、$之裝置’係進-步含有與該 幻对器以及該冑淨裝置之該等組件之 39 200904990 至少一者聯通的控制器。 7. 如申請專利範圍第1項之方法,其中該流動室係含 有一或多個擒板。 8. —種用於監測製程流内主體(總體)微生物水活性的 方法,其含有: a.將裝置連結至一製程流,其中該裝置係包含一含有 數個開口的流動室,其中至少一個開口係用於從該製程流 引出流體的流動室入口。且至少一個開口係用於使流體離 開該流動室的流動室出口,_連結至該等開口的其中之一 的DO探測器,一視需要選用的連結至該等開口的其中之 一的ORP探測器,一視需要選用的連結至該等開口的其中 之一的潔淨裝置,一視需要選用的連結至流動室入口的第 一導管,一視需要選用的連結至流動室出口的第二導管, 以及一視需要選用的與該流動室關聯的閥門; b_從該製程流將流體引入該流動室内; c.開啟該裝置的閥門以允許將流體引入該流動室内; ‘ d.以該DO探測器至少測量一次該製程流的D〇濃度, 且在每次測量前該DO探測器的表面加以潔淨; e·關閉該裝置的閥門以防止流體被引入該流動室内; f_以該DO探測器至少測量一次該裝置内流體的D〇濃 度,且在每次測量前該DO探測器的表面加以潔淨; g. 計算步驟(d)與步驟(f)間的ado讀數;且 h. 至少將步驟(g)的該△〇0值與該製程流内的主體(總 體)微生物活性加以關聯。 40 200904990 . 9.如中請專·㈣Μ之方法,其中該監測是連續 式或間歇式。 10·如申請專利範圍第8項之方法,係進一步含有在 步驟⑷與⑺間允許充份的時間,以便當存在微生物活性 夺….、、;後將會有充伤的時間使一或多個微生物種可消耗 流動室内的氧氣。 11. 如申請專利範圍第8項之方法’係進一步含有在 步驟⑷與步驟⑴至少測* 0RP 一次,且在每次測量前擦 ί 拭ORP探測器表面;當0RP值下降至低於預定水平時, 視需要將一或多個氧化劑加入至製程流内;及若該〇RP值 下降至低於預定水平時,則在計算該AD〇值時視需要不使 . 用該DO測量值。 12. 如申請專利範圍第u項之方法,其中該預定水平 係低於約1〇〇 mV。 13. 如申請專利範圍第8項之方法,其中該ADO值係 藉取得來自步驟(d)的平均DO測量值與來自步驟(f)的最小 I DO水平以決定。 14. 如申請專利範圍第8項之方法,其中該ADO值係 藉取得來自步驟(d)的最高測量值與來自步驟(f)的最小DO 水平以決定。 1 5 ·如申請專利範圍第8項之方法,其中該ADO值係 藉取得來自步驟(d)的最後測量值與來自步驟(f)的最小DO 水平以決定。 16·如申請專利範圍第8項之方法,係進一步包括提 41 200904990 供與下列之至少一者聯通的程式化控制器·· 〇Rp探測器、 DO探測Is、潔淨裝置或其之組合。 17. 如申凊專利範圍第16項之方法,其中該控制器係 接受來自該DO探測器的輸入信號,且實施程式化於該控 制器内的所欲程序。 18. 如申請專利範圍第17項之方法,其中該控制器是 以網路為基礎。K. d. — a cleaning device attached to one of the openings; e• a first conduit to be connected to the inlet of the flow chamber as required. f. A connection to the flow chamber «j spears as needed a catheter; a device to be selected in g.- 矾冩 and the flow 2. As claimed in the scope of the patent, the &lt; contains a wiper or brush. , ", net" device system 3 · such as at least part of the patent application garden and view the f ', &quot; in the detector room. ^ 0 detectors to be selected into the flow 4. As claimed &quot;The device of the member to the first conduit. The connection between the door and the door is 5. In the scope of the patent application, where the ball valve is 翕&amp;, the device is a ball valve, the electric, electric or manual operation domain Read 6. If the patent application group is the third to operate the ball valve. DO detector. Xiao Wei Rp, $ device's step-by-step with the magic device and the components of the cleaning device 39 200904990 at least one 7. The method of claim 1 wherein the method of claim 1 wherein the flow chamber comprises one or more seesaws. 8. A method for monitoring microbial water activity of a host (overall) in a process stream And comprising: a. joining the apparatus to a process stream, wherein the apparatus comprises a flow chamber having a plurality of openings, wherein at least one opening is for a flow chamber inlet for extracting fluid from the process stream. and at least one opening system a flow chamber outlet for directing fluid away from the flow chamber, a DO detector coupled to one of the openings, an optional ORP detector coupled to one of the openings, as desired A cleaning device selected to be attached to one of the openings, optionally a first conduit coupled to the inlet of the flow chamber, optionally a second conduit coupled to the outlet of the flow chamber, and optionally a valve associated with the flow chamber; b_ introducing fluid from the process flow into the flow chamber; c. opening a valve of the device to allow fluid to be introduced into the flow chamber; 'd. measuring the DO detector at least once The D〇 concentration of the process stream, and the surface of the DO detector is cleaned before each measurement; e) closing the valve of the device to prevent fluid from being introduced into the flow chamber; f_ measuring the device at least once with the DO detector The D〇 concentration of the internal fluid, and the surface of the DO detector is cleaned before each measurement; g. Calculate the ado reading between step (d) and step (f); and h. at least the step (g) △〇0 The value is related to the host (total) microbial activity within the process stream. 40 200904990 . 9. The method of the application (4), wherein the monitoring is continuous or intermittent. 10. If the scope of patent application is 8 The method further comprises allowing sufficient time between steps (4) and (7) such that, in the presence of microbial activity, there will be a time of filling such that one or more microbial species can consume oxygen in the flow chamber. 11. The method of claim 8 further comprises measuring at least *0RP once in step (4) and step (1), and wiping the surface of the ORP detector before each measurement; when the 0RP value falls below a predetermined level One or more oxidants are added to the process stream as needed; and if the 〇RP value falls below a predetermined level, the DO measurement is not used as needed to calculate the AD 〇 value. 12. The method of claim 5, wherein the predetermined level is less than about 1 〇〇 mV. 13. The method of claim 8, wherein the ADO value is determined by taking an average DO measurement from step (d) and a minimum I DO level from step (f). 14. The method of claim 8, wherein the ADO value is determined by taking the highest measured value from step (d) and the minimum DO level from step (f). The method of claim 8, wherein the ADO value is determined by taking the last measured value from step (d) and the minimum DO level from step (f). 16) The method of claim 8, further comprising a program controller for communicating with at least one of the following: a Rp detector, a DO probe, a clean device, or a combination thereof. 17. The method of claim 16, wherein the controller accepts an input signal from the DO detector and implements a desired program programmed into the controller. 18. The method of claim 17, wherein the controller is network based. 19·如申請專利範圍第17項之方法,其中該所欲之程 序是提醒操作工或負責監測製程流之人員且處理該製程 流。 1 7項之方法,其中該程序包括 •將有效量的殺生物劑加入至製 20.如申請專利範圍第 當該ADO到達預定水平時 程流内。 項之方法,其中該製程流係 、食品或飲料製程、與娛樂 中所選出的製程。 21.如申請專利範圍第8 來自由製紙製程、冷卻水製程 休閒為主之製程所組成的群集 θ .如申請專利範圍第8項之方法,係進一步含有: 製程流聯通的光學積垢監測儀;從該製程流將流 =:Τ垢監測儀内;以該光學積垢監測儀測量沉 該製程流内的積垢監測儀内沉積物形成.與從 積物的類==生物活性加以關聯以決定沉 與微生物、、*性心·制程式化。以回應該沉積形成 製程流内:關聯而將—或多個化學物種加入至該 42 200904990 24.如申請專利範圍第22 出該沉積物形成本性為非微生 控制化學品。 23.如申請專利範圍第22 出該沉積形成本性為微生物 劑,其中該殺生物劑是氧化性 項之方法,其中若該關聯指 時,則該化學物種為殺生物 及/或非氧化性。 項之方法,其中若該關聯指 物時,則化學物種為沉積物19. The method of claim 17, wherein the desired procedure is to alert the operator or the person responsible for monitoring the process flow and to process the process flow. The method of claim 7, wherein the program comprises: • adding an effective amount of the biocide to the system. 20. As claimed in the patent application, the ADO reaches a predetermined level of time flow. The method of the process, wherein the process flow, the food or beverage process, and the process selected in the entertainment. 21. For example, the scope of the patent application is from the cluster consisting of a papermaking process and a cooling water process leisure process. The method of claim 8 further includes: an optical fouling monitor of the process flow communication. From the process flow will be flow =: within the scale monitor; the optical scale monitor is used to measure the formation of deposits in the scale monitor in the process stream. Associated with the class == biological activity of the product In order to determine the sinking and microbes, * sex system. In the process of forming a process stream, it is associated with - or a plurality of chemical species are added to the 42 200904990. 24. The deposit form forms a non-microbial control chemical as claimed in claim 22 . 23. The method of claim 22, wherein the deposit is in the form of a microbial agent, wherein the biocide is a method of oxidizing, wherein if the association is indicative, the chemical species is biocidal and/or non-oxidizing. The method of the item, wherein if the finger is associated, the chemical species is a sediment 關的微生物活性的 25·如申請專利範圍第8項之方法,係進一步含有回 應該製程流内總體(主體)微生物水平;其中當微生物水平 係高於或大於製程良好運作所需之預定水平時,其作法包 括加入有效量的殺生物劑.以將微生物水平下降至所需水 平。 7 2 6. —種用於測量製程流内與表面相 方法,其含有: a. 將裝置連結至一製程流,其中該裝置係包含一含有 數個開口的流動室,其中至少一個開口係用於從該製程流 引出流體的流動室入口。且至少一個開口係用於使流體離 開该流動至的流動室出口,—連結至該等開口的其中之— 的D0探測器,一視需要選用的連結至該等開口的其中之 一的ORP探測器,一視需要選用的連結至該等開口的其中 之一的潔淨裝置,一視需要選用的連結至流動室入口的第 一導管,一視需要選用的連結至流動室出口的第二導管, 以及一視需要選用的與該流動室關聯的閥門; b. 從該製程流將流體引入該流動室内; c•開啟該裝置的閥門以允許將流體引入該流動室内; 43 200904990 d. 以該DO探測器至少測量—次該製程流的d〇濃度, 且在每次測量前該DO探測器並未加以潔淨; e. 將該DO探測器的表面加以潔淨; f. 以該DO探測器至少測量一次該裝置内流體的兩個 DO /辰度視$要選用地是在每次測量前將該⑽探測器 表面加以潔淨; g. 計算步驟(d)與步驟(f)間的Δ〇〇讀數;且 h·至少將步驟(g)的該細值與表面相關的生物活性加 以關聯。 27. 如申請專利範圍第%項之方法,係進一步含有在 步驟⑷與步驟(f)至少測量〇Rp 一次,其中在步驟⑷中〇抑 探測器並未加以擦拭乾淨,視需要在步驟⑴中該⑽p探測 -係I拭乾淨’當0Rp值下降至低於預定水平時,視需要 夺或多個氧化劑加入至製程流内;及若該值下降至 低於預疋水平時’則在計算該ΔΕ)〇值時視需要不使用該⑽ 測量值。 28. 如申甲專利範圍第26項之方法,其中該LDO探測 器的表面係藉使用含有刮刷的潔淨裝置擦拭兩次以 潔淨。 29. 如申請專利範圍第%項之方法,其中該監測是連 續式的。 3〇.=申請專利範圍第26項之方法,係進一步包括在 2⑷别充許有充份的時間,以便若生物膜有累積,則能 有充份的時間令生物膜的累積發生。 200904990 ‘ 31·如申請專利範圍帛26項之方法,其中該刷值係 藉取得步驟⑷的最小D〇測量值與來自步驟⑴的平均d〇 測量值以決定。 32·如申請專利範圍第26項之方法,其中該则值係 藉取得來自步驟⑷的最小測量值與來自步驟⑴的最高D〇 水平以決定。 33. 如申請專利範圍第26項之方法,其中該λ〇〇值係 藉取得來自步驟⑷的最後測量值與來自步驟⑴的最高d〇 水平以決定。 34. 如申請專利範圍第26項之方法,係進一步包括提 供與下列之至少-者聯通的程式化控制器:D〇探測器、〇Rp - 探測器、潔淨裝置或其之組合。 35. 如申請專利範圍帛34項之方法,其中該控制器係 接受來自該DO探測器及0PR探測器的輸入信號,且實施 程式化於該控制器内的所欲程序。 36. 如申請專利範圍第34項之方法,其中該控制器是 以網路為基礎。 37. 如申凊專利範圍第35之方法,其中該程序是提醒 操作工或負責監測製程流之或人員。 —“38•如申請專利範圍第35項之方法,其中該程序包括 若微生物活性太高時,將殺生物劑加入至該系統内。 39.如申請專利範圍第26項之方法,係進一步含有: 提供與該製程流聯通的光學積垢監測儀;從該製程流將流 體引入該光學積垢監測儀内;以該光學積垢監測儀測量沉 45 200904990 積物形成;藉將於該光學積垢監測儀内沉積物形成。與從 &quot;亥製程流内的ΔϋΟ所決定的微生物活性加以關聯以決定沉 積物的類型;視需要將控制器程式化以回應該沉積形成 與微生物活性間的該關聯而將一或多個化學物種加入至該 製程流内。</ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The method includes adding an effective amount of a biocide to reduce the microbial level to a desired level. 7 2 6. A method for measuring process in-stream and surface phase, comprising: a. connecting a device to a process stream, wherein the device comprises a flow chamber having a plurality of openings, wherein at least one opening is used A flow chamber inlet for extracting fluid from the process stream. And at least one opening is used to cause fluid to exit the flow cell outlet to which the flow flows, - a D0 detector coupled to one of the openings, an optional ORP probe coupled to one of the openings a first means for attaching to one of the openings, optionally a first conduit connected to the inlet of the flow chamber, optionally a second conduit connected to the outlet of the flow chamber, as desired. And a valve associated with the flow chamber as desired; b. introducing fluid from the process flow into the flow chamber; c• opening a valve of the device to allow fluid to be introduced into the flow chamber; 43 200904990 d. The detector measures at least the concentration of d〇 of the process stream, and the DO detector is not cleaned before each measurement; e. cleans the surface of the DO detector; f. at least measures the DO detector The two DO/Chen of the fluid in the device at a time is selected to clean the surface of the detector (10) before each measurement; g. Calculate the Δ〇〇 reading between step (d) and step (f) And h · at least the fine values associated with the surface of the biological activity of step (g) is added to associate. 27. The method of claim 5, further comprising measuring at least one of 〇Rp in step (4) and step (f), wherein in step (4) the detonating detector is not wiped clean, if necessary in step (1) The (10)p detection-system I wipe clean' when the 0Rp value drops below a predetermined level, if necessary, or multiple oxidants are added to the process stream; and if the value falls below the pre-depreciation level, then the calculation is When ΔΕ) 〇, the (10) measurement value is not used as needed. 28. The method of claim 26, wherein the surface of the LDO detector is cleaned by wiping twice with a cleaning device containing a wiper. 29. The method of claim 5, wherein the monitoring is continuous. 3〇.= The method of applying for the scope of patent No. 26 is further included in 2(4) for a sufficient period of time so that if the biofilm accumulates, there is sufficient time for the accumulation of biofilm to occur. 200904990 ‘31. The method of claim 26, wherein the brush value is determined by taking the minimum D〇 measurement of step (4) and the average d〇 measurement from step (1). 32. The method of claim 26, wherein the value is determined by taking a minimum measured value from step (4) and a highest D〇 level from step (1). 33. The method of claim 26, wherein the λ〇〇 value is determined by taking the last measured value from step (4) and the highest d〇 level from step (1). 34. The method of claim 26, further comprising providing a stylized controller in communication with at least one of: a D〇 detector, a Rp-detector, a clean device, or a combination thereof. 35. The method of claim 34, wherein the controller accepts input signals from the DO detector and the 0PR detector and implements a desired program programmed into the controller. 36. The method of claim 34, wherein the controller is based on a network. 37. The method of claim 35, wherein the procedure is to alert the operator or to monitor the process flow or personnel. - "38. The method of claim 35, wherein the procedure comprises adding a biocide to the system if the microbial activity is too high. 39. The method of claim 26, further comprising Providing an optical fouling monitor connected to the process flow; introducing a fluid from the process flow into the optical scale monitor; measuring the formation of the deposit by the optical scale monitor; and using the optical product Deposit formation in the scale monitor. Correlation with microbial activity determined by ΔϋΟ in the &quot;Hai process stream to determine the type of deposit; program the controller as needed to reflect the formation of deposits and microbial activity One or more chemical species are added to the process stream in association. 40.如申睛專利範圍第39項之方法,其中若該關聯指 出忒沉積形成本性為微生物時,則該化學物種為殺生物 劑,其中視需要該殺生物劑是氧化性及/或非氧化性。 /1·如申請專利範圍第26項之方法係進一步含有回應 該製程流内表面相關之微生物水平;纟中當微生物水平係 高於或大於製程良好運作所需之預定水平時,其作法包括 加入有效量的殺生物劑·以將微生物水平下降至所需水 及與表面 一含有數 製程流引 流體離開 中之一的 其中之一 的其中之 口的第一 導管 以 42. —種監測於該製程流内主體微生物活性以 相關的微生物活性的方法,其係包含·· a.將裝置連結至製程流’其中該裝置係包含 個開口的流動室…至少一個開口係用於從該 出流體的流動室入口。且至少—個開口係用於使 。亥流動室的流動室出口,一連結至該等開口的其 D〇探測器,-視需要選用的連結至該等開口的 :〇处探測器…視需要選用的連結至該等開口 -的潔淨裝置,-視需要選用的連結至流動室入 導管,一視需要選用的連結至流動室出口的第二 及—視需要選用的與該流動室關聯的間門; 46 200904990 b·從該製程流將流體引入該流動室内; c. 開啟該裝置的閥門以允許將流體引入該流動室内; d. 以該DO探測器至少測量一次該製程流的兩種DO濃 度,且在每次測量前該DO探測器並未加以潔淨; e_將該DO探測器的表面加以潔淨; f.以該DO探測器至少測量一次該裝置内流體的do濃 度·視需要選用地是在每次測量前將該DO探測器表面加 以潔淨;40. The method of claim 39, wherein if the association indicates that the strontium deposition is a microorganism, the chemical species is a biocide, wherein the biocide is oxidizing and/or non-oxidizing as needed. Sex. /1· The method of claim 26 further contains a microbiological level associated with the surface of the process stream; when the microbial level is higher or higher than the predetermined level required for good operation of the process, the practice includes An effective amount of biocide, wherein the first conduit is lowered to a level of one of the desired water and one of the surfaces of the fluid containing one of the plurality of process streams, and is monitored in the process. A method for the activity of a host microorganism in a stream with associated microbial activity, comprising: a. linking the device to a process stream 'where the device is a flow chamber containing an opening ... at least one opening for flow from the fluid Room entrance. And at least one opening is used to make. The outlet of the flow chamber of the flow chamber, a D〇 detector connected to the openings, - optionally selected to be connected to the openings: a detector at the helium ... optionally attached to the openings - clean a device, optionally connected to the flow cell inlet conduit, a second selected connection to the flow chamber outlet as needed, and optionally a door associated with the flow chamber; 46 200904990 b. From the process flow Introducing a fluid into the flow chamber; c. opening a valve of the device to allow fluid to be introduced into the flow chamber; d. measuring at least one DO concentration of the process flow with the DO detector, and the DO prior to each measurement The detector is not cleaned; e_ cleans the surface of the DO detector; f. at least one of the DO concentrations of the fluid in the device is measured with the DO detector. If necessary, the DO is selected before each measurement. The surface of the detector is cleaned; 1.. g,關閉該裝置的閥門以防止流體被引入該流動室内; h_以該DO探測器至少測量一次該裝置内流體的D〇濃 度’在每次測量前將該DO探測器表面加以潔淨; 1·計算步驟(f)與步驟(h)間的ADO讀數。且至少將該Δ〇〇 值與s亥製程流内的該主體微生物活性加以關聯; j·計算步驟(d)與步驟(f)間的ado讀數.且至少將該aD〇 值與該製程流内的該與表面相關的微生物活性加以關聯。 43. 如申請專利範圍第42項之方法,係進一步包括: 提供與該製程流聯通的光學積垢監測儀;從該製程流將流 體引入該光學積垢監測儀内;以該光學積垢監測儀測量沉 積物形成‘,藉將於該光學積垢監測儀内沉積物形成.與從 該製程流内來自步驟⑴及/或步驟⑴的AD〇所決定的微生 物活性加以關聯以決定沉積物的類型;視需要將控制器程 式化.以回應該沉積形成與微生物活性間的該關聯而將一 或多個化學物種加入至該製程流内。 44. 如申請專利範圍第42項之方法,係進—步含有在 47 200904990 步驟(d)、步驟⑴與步驟(…至少測量〇Rp 一次,其中在步 驟(d)中ORP探測器並未加以擦拭乾淨,視需要在步驟⑴ 中該0RP探測器係擦拭乾淨,且其中在步驟(h)中探 測器係擦拭乾淨;當ORP值下降至低於預定水平時,視需 要將-或多個氧化劑加入至該製程流内;若該0RP值下降 至低於預定水平時’則在計算該△〇0 a時視需要不使用該 DO測量值。 45. 如申請專利範圍第26頊之古Φ# 0項之方法’其中該監測是連 續式或間歇式。 46. 如申請專利範圍第25炤十七、t ., ^項之方法’其中該製程是造 紙製程且該殺生物劑係選自由显 母㈡田兵嚜唑琳、戊二搭、二漠氮 基丙醢胺、胺基甲酸酯、四铋 敬知化合物、次乳酸納、二氧 化氣、過氧乙酸、臭氧、氣吐 ,. a “ 氣胺、溴·胺基磺酸鹽、溴-氯-二 甲基乙内醯脲、二氣--&amp; —甲基乙内醯脲、單氯胺、與銨鹽以 及包括二甲基乙内醯脲、脸其絲 _ %基酸、二聚氰酸、琥珀醯亞胺 與尿素的安定劑合併使用的二今备 -人氣酸鈉,以及其之組合所組 成的群集。 47. 如申請專利範圍第Ε 1項之方法,其中該製程是造 紙製程且該臧生物劑係選自 疋曰田異噻唑啉、戊二醛、二溴氮 基丙醯胺、胺基甲酸酯、 四級鉍化合物、次氣酸鈉、二氣 化氣、過氧乙酸、臭氧、氯 乳私、溴-胺基磺酸鹽、溴-氣·二 甲基乙内醢脲、二氣_ - φ # 甲基&amp; Κ -甲基乙内醯脲、單氯胺、與銨鹽以 及包栝二甲基乙内醯脲、胗糞缺 土知·、二聚氰酸、琥珀醯亞胺 與尿素的安定劑合併使用 人氣S文納,以及其之组合所組 48 200904990 成的群集。 十一、圖式: 如次頁 C1. g, close the valve of the device to prevent fluid from being introduced into the flow chamber; h_ at least once to measure the concentration of D〇 in the device with the DO detector' Clean; 1. Calculate the ADO reading between step (f) and step (h). And at least correlating the Δ〇〇 value with the host microbial activity in the shai process stream; j· calculating the ado reading between step (d) and step (f) and at least the aD 与 value and the process stream This surface-related microbial activity is correlated. 43. The method of claim 42, further comprising: providing an optical fouling monitor in communication with the process stream; introducing fluid from the process stream into the optical scale monitor; and monitoring the optical scale The meter measures deposit formation' by deposit formation in the optical scale monitor. Associated with microbial activity determined from the AD(R) from step (1) and/or step (1) in the process stream to determine deposits Type; the controller is programmed as needed to add one or more chemical species to the process stream in response to this association between deposition formation and microbial activity. 44. For the method of claim 42 of the patent scope, the method further comprises: step (d), step (1) and step (... at least measuring 〇Rp once in 47 200904990, wherein the ORP detector is not used in step (d) Wipe clean, wipe the 0RP detector cleanly in step (1) as needed, and in the step (h) the detector is wiped clean; when the ORP value falls below a predetermined level, - or more oxidants as needed Adding to the process flow; if the 0RP value falls below a predetermined level, then the DO measurement value is not used when calculating the Δ〇0 a. 45. As in the patent application section 26顼古Φ# Method 0 of 'where the monitoring is continuous or intermittent. 46. For example, the method of claim 25, the method of the item ^, wherein the process is a papermaking process and the biocide is selected from the Mother (2) Tian Bing, oxazolidine, glutarylene, bis-nitrilopropylamine, urethane, tetrazine compound, sub-lactate, dioxane, peracetic acid, ozone, vomiting. a “Gasamine, bromo-aminosulfonate, bromo-chloro-di Methyl carbendazim, digas--&amp;-methyl carbendazim, monochloramine, and ammonium salts, and including dimethyl carbendazim, face _ % acid, cyanuric acid a method comprising a combination of amber sulphite and a stabilizer for urea, a sodium sulphate, and a combination thereof. 47. The method of claim 1, wherein the process is a papermaking process The bismuth agent is selected from the group consisting of 疋曰田isothiazoline, glutaraldehyde, dibromoazopropionamide, urethane, quaternary phosphonium compound, sodium hypogasate, digasification gas, peracetic acid , ozone, chloropredomyl, bromo-amino sulfonate, bromine-gas dimethyl carbendazim, digas _ - φ # methyl &amp; Κ - methyl carbendazim, monochloramine, Combined with ammonium salts and bagged dimethyl acetyl carbazide, sputum slag, cyanuric acid, amber succinimide and urea stabilizers, popular S Wenner, and combinations thereof 48 200904990 Clustered into. XI, schema: as the next page C 4949
TW097105284A 2007-02-16 2008-02-15 A method of monitoring microbiological activity in process streams TWI426131B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/675,726 US8012758B2 (en) 2007-02-16 2007-02-16 Method of monitoring microbiological activity in process streams

Publications (2)

Publication Number Publication Date
TW200904990A true TW200904990A (en) 2009-02-01
TWI426131B TWI426131B (en) 2014-02-11

Family

ID=39690795

Family Applications (3)

Application Number Title Priority Date Filing Date
TW102137482A TWI484036B (en) 2007-02-16 2008-02-15 A method of monitoring microbiological activity in process streams
TW097105284A TWI426131B (en) 2007-02-16 2008-02-15 A method of monitoring microbiological activity in process streams
TW102137479A TWI493039B (en) 2007-02-16 2008-02-15 A method of monitoring microbiological activity in process streams

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW102137482A TWI484036B (en) 2007-02-16 2008-02-15 A method of monitoring microbiological activity in process streams

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW102137479A TWI493039B (en) 2007-02-16 2008-02-15 A method of monitoring microbiological activity in process streams

Country Status (15)

Country Link
US (1) US8012758B2 (en)
EP (1) EP2115157B1 (en)
JP (1) JP5317990B2 (en)
KR (1) KR101387036B1 (en)
CN (1) CN101245312B (en)
AR (1) AR071536A1 (en)
AU (1) AU2008216152B2 (en)
BR (1) BRPI0807325B1 (en)
CA (1) CA2678247C (en)
CL (1) CL2008000488A1 (en)
MX (1) MX2009008713A (en)
NZ (1) NZ579561A (en)
RU (1) RU2477320C2 (en)
TW (3) TWI484036B (en)
WO (1) WO2008101089A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9161543B2 (en) 2011-10-21 2015-10-20 Nalco Company Biocontrol through the use of chlorine-stabilizer blends

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981679B2 (en) * 2007-02-16 2011-07-19 Nalco Company Method of monitoring bulk (total) microbiological activity in process streams
US7949432B2 (en) * 2007-02-16 2011-05-24 Nalco Company Method of monitoring surface associated microbiological activity in process streams
US20090242484A1 (en) 2008-04-01 2009-10-01 Ana-Mariana Urmenyi Environmentally friendly hybrid microbiological control technologies for cooling towers
WO2009143511A1 (en) * 2008-05-23 2009-11-26 Kemira Oyj Chemistry for effective microbe control with reduced gas phase corrosiveness in pulp & paper processing systems
US8429952B1 (en) * 2010-02-02 2013-04-30 Campbell Scientific, Inc. Sensor with antifouling control
CN102985551B (en) * 2010-03-19 2015-06-24 巴克曼实验室国际公司 Processes using antibiotic alternatives in bioethanol production
KR101813934B1 (en) 2011-06-02 2018-01-30 엘지이노텍 주식회사 A light emitting device and a light emitting devcie package
CN109303064A (en) * 2011-10-21 2019-02-05 纳尔科公司 By using the improved BIOLOGICAL CONTROL of chloro- stabilizer blend
FI126240B (en) 2011-12-02 2016-08-31 Kemira Oyj Method and device for monitoring and controlling the state of a process
CA3085086C (en) 2011-12-06 2023-08-08 Delta Faucet Company Ozone distribution in a faucet
US8613837B2 (en) 2012-01-24 2013-12-24 Nalco Company Detection and quantification of nucleic acid to assess microbial biomass in paper defects and machine felts
US9908796B2 (en) 2012-10-23 2018-03-06 Ecolab Usa Inc. Use of oxidizing and non-oxidizing biocides for control of bacteria tolerant to stabilized-oxidant treatment
US9410288B2 (en) 2013-08-08 2016-08-09 Ecolab Usa Inc. Use of nanocrystaline cellulose and polymer grafted nanocrystaline cellulose for increasing retention in papermaking process
US9034145B2 (en) 2013-08-08 2015-05-19 Ecolab Usa Inc. Use of nanocrystaline cellulose and polymer grafted nanocrystaline cellulose for increasing retention, wet strength, and dry strength in papermaking process
US9303360B2 (en) 2013-08-08 2016-04-05 Ecolab Usa Inc. Use of nanocrystaline cellulose and polymer grafted nanocrystaline cellulose for increasing retention in papermaking process
US9834730B2 (en) 2014-01-23 2017-12-05 Ecolab Usa Inc. Use of emulsion polymers to flocculate solids in organic liquids
US9909219B2 (en) 2014-04-14 2018-03-06 Ecolab Usa Inc. Slurry biocide
US9810676B2 (en) * 2015-01-12 2017-11-07 Ecolab Usa Inc. Apparatus for, system for and methods of maintaining sensor accuracy
US11608516B2 (en) 2015-04-15 2023-03-21 Ecolab Usa Inc. Method for determination of diversity and viability thresholds used to assess microorganisms in process samples
US9696244B2 (en) * 2015-06-11 2017-07-04 Western Energy Support and Technology, Inc Inline sampling for multi-phase flow
US10570347B2 (en) 2015-10-15 2020-02-25 Ecolab Usa Inc. Nanocrystalline cellulose and polymer-grafted nanocrystalline cellulose as rheology modifying agents for magnesium oxide and lime slurries
US10280714B2 (en) 2015-11-19 2019-05-07 Ecolab Usa Inc. Solid chemicals injection system for oil field applications
CN108463437B (en) 2015-12-21 2022-07-08 德尔塔阀门公司 Fluid delivery system comprising a disinfection device
WO2018217889A1 (en) 2017-05-23 2018-11-29 Ecolab Usa Inc. Injection system for controlled delivery of solid oil field chemicals
CA3064009A1 (en) 2017-05-23 2018-11-29 Ecolab Usa Inc. Dilution skid and injection system for solid/high viscosity liquid chemicals
FI128324B (en) * 2017-06-21 2020-03-31 Kemira Oyj Method for manufacturing a fibrous web
WO2019018150A1 (en) 2017-07-17 2019-01-24 Ecolab USA, Inc. Rheology-modifying agents for slurries
RU179657U1 (en) * 2017-08-25 2018-05-21 Федеральное государственное бюджетное учреждение науки Институт теоретической и экспериментальной биофизики Российской академии наук (ИТЭБ РАН) DEVICE FOR BIOFILM BIOPHENISM IN LIGHTING OF PIPELINES AND EXPOSURE OF DISINFECTANTS TO BIOFILMS IN FLOW SYSTEMS
CN111182971B (en) * 2017-10-03 2022-08-30 阿威尔斯医疗公司 Devices, systems, and methods for determining the concentration of microorganisms and the sensitivity of microorganisms to anti-infective agents based on redox reactions
FI130064B (en) 2017-12-08 2023-01-13 Kemira Oyj Method for predicting or controlling microbial status of a paper or board making process
RU194989U1 (en) * 2018-04-27 2020-01-10 Федеральное государственное бюджетное учреждение науки Институт теоретической и экспериментальной биофизики Российской академии наук (ИТЭБ РАН) DEVICE FOR THE GROWTH OF BIOFILM ON THE INTERIOR SURFACE OF PIPELINES AND THE INFLUENCE OF DISINFECTANTS ON THE BIOFILMS IN FLOWING CIRCULATION SYSTEMS
CN112119040B (en) 2018-06-13 2022-12-30 Ay实验室有限公司 System and method for monitoring biocide treated process water by oxygen sensor
CN115230888B (en) * 2022-09-20 2023-02-14 广州映博智能科技有限公司 Remote control robot based on gyroscope

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3510406A (en) 1964-11-17 1970-05-05 Pennwalt Corp Method and apparatus for measuring rate of consumption of dissolved gas in a liquid
US3510106A (en) 1968-02-01 1970-05-05 Tamper Inc Liner assembly
US3731522A (en) 1970-09-30 1973-05-08 Robertshaw Controls Co Method and apparatus for determining oxygen consumption rate in sewage
JPS5558461A (en) * 1978-10-25 1980-05-01 Hitachi Ltd Oxygen utilizing analysis device
US5190728A (en) 1991-10-21 1993-03-02 Nalco Chemical Company Apparatus for monitoring fouling in commercial waters
JP3120505B2 (en) * 1991-10-31 2000-12-25 株式会社島津製作所 Aerobic microorganism measuring method and measuring device
JP3144911B2 (en) * 1992-10-14 2001-03-12 株式会社ミツカングループ本社 Microbial membrane activation method
GB9206796D0 (en) 1992-03-27 1992-05-13 Thames Water Utilites Limited Apparatus and method for monitoring condition of a biomass
US5552319A (en) 1993-07-20 1996-09-03 Biochem Technology, Inc. Apparatus and method for monitoring and controlling biological activity in wastewater and controlling the treatment thereof
RU2053300C1 (en) * 1993-12-17 1996-01-27 Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Strain of bacterium rhodococcus rhodochrous - a producer of nitrile hydratase
JPH08131161A (en) * 1994-11-08 1996-05-28 Food Design Gijutsu Kenkyu Kumiai Feeding culture of exponential function for plant culture, calculation of coefficient of growth of culture material and plant tissue culture device
US5576481A (en) 1995-10-02 1996-11-19 Ashland, Inc. Method and apparatus for detecting microbiological fouling in aqueous systems
MY129784A (en) * 1996-01-22 2007-04-30 Biochem Technology Inc Method for monitoring biological activity in fluids
GB2312278B (en) * 1996-04-19 1998-03-04 Boghos Awanes Manook Organic and/or biological pollution monitoring of liquids based on UV/visible light absorbtion/scatter and dissolved oxygen measurements
JP2002112761A (en) * 2000-10-06 2002-04-16 Toshiba Corp Microorganism assay sensor
US6475394B2 (en) 2000-12-13 2002-11-05 Ondeo Nalco Company Pseudo-fouling detector and use thereof to control an industrial water process
JP2003302392A (en) * 2002-04-05 2003-10-24 Hitachi Ltd Water quality measurement apparatus of suspension and water quality control apparatus
CN101076723A (en) 2003-07-11 2007-11-21 Pda安全解决方案有限公司 Remote monitoring system for water
JP4458469B2 (en) * 2004-06-04 2010-04-28 応用地質株式会社 Anaerobic microorganism collection device and collection method
US7078201B2 (en) 2004-12-01 2006-07-18 Burmaster Brian M Ethanol fermentation using oxidation reduction potential

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9161543B2 (en) 2011-10-21 2015-10-20 Nalco Company Biocontrol through the use of chlorine-stabilizer blends

Also Published As

Publication number Publication date
RU2477320C2 (en) 2013-03-10
AR071536A1 (en) 2010-06-30
AU2008216152A1 (en) 2008-08-21
US20080199901A1 (en) 2008-08-21
US8012758B2 (en) 2011-09-06
JP2010518823A (en) 2010-06-03
AU2008216152B2 (en) 2013-05-02
KR20080076706A (en) 2008-08-20
CA2678247A1 (en) 2008-08-21
CN101245312A (en) 2008-08-20
NZ579561A (en) 2011-11-25
EP2115157A4 (en) 2013-08-21
CA2678247C (en) 2015-09-29
RU2009133045A (en) 2011-03-27
MX2009008713A (en) 2009-10-19
TWI484036B (en) 2015-05-11
TWI426131B (en) 2014-02-11
TW201402824A (en) 2014-01-16
TWI493039B (en) 2015-07-21
CL2008000488A1 (en) 2008-08-29
JP5317990B2 (en) 2013-10-16
BRPI0807325A2 (en) 2018-09-25
BRPI0807325B1 (en) 2022-06-07
EP2115157B1 (en) 2020-01-15
WO2008101089A3 (en) 2008-10-09
WO2008101089A2 (en) 2008-08-21
EP2115157A2 (en) 2009-11-11
KR101387036B1 (en) 2014-04-18
CN101245312B (en) 2013-03-13
TW201406962A (en) 2014-02-16

Similar Documents

Publication Publication Date Title
TW200904990A (en) A method of monitoring microbiological activity in process streams
TW200925581A (en) A method of monitoring bulk (total) microbiological activity in process streams
RU2486510C2 (en) Method of monitoring of microbial activity related to surface in process flows