TW200904770A - Low melting point, deep UV penetrating glass - Google Patents

Low melting point, deep UV penetrating glass Download PDF

Info

Publication number
TW200904770A
TW200904770A TW96126690A TW96126690A TW200904770A TW 200904770 A TW200904770 A TW 200904770A TW 96126690 A TW96126690 A TW 96126690A TW 96126690 A TW96126690 A TW 96126690A TW 200904770 A TW200904770 A TW 200904770A
Authority
TW
Taiwan
Prior art keywords
glass
low
oxide
ultraviolet
deep
Prior art date
Application number
TW96126690A
Other languages
Chinese (zh)
Inventor
Bing-Yuh Shy
han-min Xu
Original Assignee
Univ Nat United
Bing-Yuh Shy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat United, Bing-Yuh Shy filed Critical Univ Nat United
Priority to TW96126690A priority Critical patent/TW200904770A/en
Publication of TW200904770A publication Critical patent/TW200904770A/en

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

This invention provides a low melting point, deep UV penetrating glass, which is mainly composed of 45 to 75 mol% of diphosphorus pentoxide (P.sub.2O.sub.5); 0 to 5 mol% of diboron trioxide ( B.sub.2O.sub.3); 10 to 60 mol% of zinc oxide (ZnO); 0 to 5mol% of alkali metal oxides (shown as R.sub.2O); 0.5 to 40 mol% of alkali earth metal oxides (shown as RO); 0.5 to 8mol% of aluminum oxide (Al.sub.2O.sub.3); 0 to 5 mol% of fluorides (CaF.sub.2, MgF.sub.2 and so on); 0 to 6 mol% of chlorides (ZnCl.sub.2, CaCl.sub.2 and so on).

Description

200904770 九、發明說明: 【發明所屬之技術領域】 本發明係與玻璃技術領域有關,更詳而言之是指 -一種低熔深紫外線穿透玻璃者_。 【先前技術】 按’波長小於380nm之光線稱為紫外線 (Ultraviolet Radiation),紫外線依照其波長範為又 可分為 UV-A (315 〜380nm)、UV-B (280 〜315nm), 及UV-C (1〇〇〜280 nm)三類。太陽光中所含之紫外 線經大氧層後’ UV-C大多被吸收,因此能到達地面的 主要是UV-A及UV-B,而其中又以UV-A最多,約佔UV 之98%。若大氣中臭氧層遭到破壞,則uv-B及UV-C 到達地面之量將顯著增加’而對人體之健康造成危 害。紫外線會肇致皮膚曬傷、老化、皮膚癌,眼睛之 眼膜炎、視網膜退化、白内障等症狀。其中尤以波長 250-260nm的紫外線對於生物體的威脅更為顯著,會 造成免疫系統的傷害,及DNA的破壞。相反地,在醫 學與工業上也利用波長為254 nm來進行消毒與殺菌的 工作。因此,需要具有能穿透此波長紫外線及適當熱 膨脹係數之玻璃材料以封合並作為紫外殺菌燈之燈 罩。 200904770 除了應用於紫外殺菌燈外,紫外線穿透玻璃也廣 泛應用在作為光譜分析設備之光學元件,以及各種醫 療與工業上之各種製程上。如半導體、液晶面板製作 等蹲影製程設備之uv透射窗;各幾用於印刷、固化或 烘乾等製程之UV燈罩;或作為uv傳輸及感測元件。 其中能穿透波長更短紫外光,即深紫外光(Deep UV, DUV’ 100〜300nm)之材料,在半導體製程之發展需求 上扮演著極為重要之角色。 在深紫外光穿透材料方面,石英玻璃(quartz glass)在性能上極適於作為UV穿透玻璃,其紫外光 吸收邊約在170nm左右,但是其價格高昂、溶製溫度 高’製作困難,並且其熱膨脹係數很低,使其在與其 他金屬或陶瓷基材進行封裝時,遭到困難。氟化詞 (CaF2)單晶也是極佳的深紫外光穿透材料’但是caF2 單晶成長困難、加工製造不易,因此其價格亦十分昂200904770 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to the field of glass technology, and more specifically to a low-depth ultraviolet-ray penetrating glass. [Prior Art] Lights whose wavelength is less than 380 nm are called ultraviolet (Ultraviolet Radiation), and ultraviolet rays can be further classified into UV-A (315 to 380 nm), UV-B (280 to 315 nm), and UV- according to their wavelength ranges. C (1〇〇~280 nm) three categories. UV rays contained in the sunlight pass through the large oxygen layer. UV-C is mostly absorbed, so UV-A and UV-B can reach the ground, and UV-A is the most, accounting for 98% of UV. . If the ozone layer in the atmosphere is destroyed, the amount of uv-B and UV-C reaching the ground will increase significantly' and cause harm to human health. Ultraviolet rays can cause skin sunburn, aging, skin cancer, eye masking, retinal degeneration, cataracts and other symptoms. Among them, ultraviolet rays with a wavelength of 250-260 nm are more harmful to organisms, causing damage to the immune system and DNA damage. Conversely, the use of wavelengths of 254 nm for sterilization and sterilization is also used in medicine and industry. Therefore, it is desirable to have a glass material that can penetrate this wavelength of ultraviolet light and a suitable coefficient of thermal expansion to seal the lampshade as an ultraviolet germicidal lamp. 200904770 In addition to UV germicidal lamps, UV-through glass is also widely used in optical components as a spectral analysis device, as well as in a variety of medical and industrial processes. Such as semiconductor, LCD panel production and other uv transmission window of the film processing equipment; each of the UV lampshade for printing, curing or drying processes; or as a uv transmission and sensing components. Among them, materials that can penetrate shorter wavelengths of ultraviolet light, that is, deep ultraviolet (DUV' 100~300 nm), play an extremely important role in the development of semiconductor processes. In terms of deep ultraviolet light penetrating materials, quartz glass is very suitable as a UV penetrating glass in terms of performance, and its ultraviolet absorption edge is about 170 nm, but its price is high and the melting temperature is high. And its coefficient of thermal expansion is very low, making it difficult to package with other metal or ceramic substrates. The fluorinated word (CaF2) single crystal is also an excellent deep ultraviolet light penetrating material. However, the caF2 single crystal is difficult to grow and is difficult to process, so the price is also very high.

責,而目前在紫外穿透光纖(UV - transmitting fibeiO 應用上極具潛力之氟化物玻璃(Fluoride giasses;), 其吸收邊波長(截止波長)約在170〜200 nm左右。其 特性是由D. Ehrt等人研究提出,“uvtransmissi()n and radiation-induced defects in phosphate and fluoride-phosphate glasses” , J. Non-Cryst Solids, 263&264(2000)240-250.然而氟化物玻璃在 原料之貯存與製程條件之控制上,均極為嚴苛,在熔 200904770 製時並有F揮發所造成對環境之影響等問題。B.Responsible, and currently in the ultraviolet penetrating fiber (UV-transmitting fibeiO application of fluoride glass (Fluoride giasses;), its absorption edge wavelength (cutoff wavelength) is about 170~200 nm. Its characteristics are by D Ehrt et al., "UVtransmissi()n and radiation-induced defects in phosphate and fluoride-phosphate glasses", J. Non-Cryst Solids, 263 & 264 (2000) 240-250. However, fluoride glass is in the raw material. The control of storage and process conditions are extremely strict. In the process of melting 200904770, there are problems such as the environmental impact caused by F volatilization.

Karmakar 等人於 “UV transparency and structure of fluorophosphates glasses” , Mater. Lett·, 57 (2002)953一-958.中指出,其所發展之氟鱗酸鹽玻璃 之,紫外截止波長(lmm厚)在285〜315 nm之間,且 當氣化物含量超過36 mol%時,其截止波長將隨氟化 物含量之增多而降低。此玻璃系統之紫外截止波長仍 太高。 此外,美國發明專利第4,792,535號提供一種硼 鋁矽酸鹽玻璃,其對254nm紫外線之穿透率(1賴厚) 可達80〜85% ’熱膨脹係數5· 6〜6. 2 χ1(Γ6/Χ,其 熔製溫度1400〜1600〇C,其主要組成之重量百分率為 58〜62%8)〇2;15〜18%62〇3;11.5〜14.5%人12〇3。又,美 國發明公開案第2004/0132604號提出紫外線截止波 長(2mm厚)在280 ~ 325 rnn之間之硼矽酸鹽玻璃,其 主要組成之重量百分率為60〜75% Si〇2;l(M5% β2〇3; 5〜15% Na2〇; 5〜10% Κ2〇以及0〜1. 7% Ti〇2。此玻璃之 截止波長隨Ti〇2含量之增加而增大。此類玻璃之熔製 溫度較高,紫外線穿透率及其紫外線截止波長均仍需 改善。 【發明内容】 本發明之主要目的即在提供一種低熔深紫外線穿 透玻璃’其係磷酸鹽系玻璃而具有優良的紫外穿透 200904770 性,可供各種需令紫外線穿透或傳輸之裝置使用,且, 其具有足夠大的熱膨漲係數’可與熱膨漲係數較高的 金屬或陶瓷基材進行封裝。 緣是,為違成前述之目的,本發明係提供一種低 熔〉未紫外線穿透玻璃,主要由五氧化二磷(P2〇5 )、氧化 鋅(ZnO)、鹼土金屬氧化物(以R0表示)、鹼金屬氧化 物(以10表示)、及玻璃改質氧化物等成分所組成。 【實施方式】 以下,茲舉本發明若干較佳實施例,並配合圖式 做進一步之詳細說明如後: 本發明之低溶深紫外線(DUV )穿透玻璃,係鱗酸 鹽系玻璃,主要由五氧化二磷(HO5)、氧化鋅(Zn〇)、 驗土金屬氧化物(以R〇表示)、驗金屬氧化物(以r2〇 表示)、玻璃改質氧化物等成分所組成,鹼土金屬氧化 物如氧化鈣(CaO)、氧化鋇(BaO)、氧化鎂(Mg〇)、氧化 錄(SrO),鹼金屬氧化物如氧化鈉(Na2〇)、氧化鋰 (LhO)、氧化鉀([Ο),玻璃改質氧化物係氧化鋁 (Ah〇3)、三氧化二硼(β2〇3)、氯化物(ZnCl2、CaCl2 等)、 氟化皱及氟化鎂(CaF2、MgF2等)。 而各該組成成分之莫耳百分率如下: 五氧化二磷(P2〇5) 45〜75% 氧化鋅(ZnO) 10〜55% 鹼金屬氧化物 0〜5. 0 % 200904770 0. 5 〜40% 〇· 5 〜8· 0% 0 〜5. 0% 0〜&·〇% 0 〜6. 0% 鹼土金屬氧化物 氧化鋁(Al2〇3) 氧化硼(B2〇3) 氟化物 氯化物 玻璃中五氧化二磷含量對於玻璃之化學耐久性及 UV之穿透性有顯著的影響。五氧化二鱗含量增多,對 於玻璃之UV穿透性有正面的效應,但太高的五氧化二 磷含量,對於玻璃之化學耐久性卻有負面的效應。五 氧化二磷含量約在55〜65%,玻璃有較佳的化學耐久 性。 鹼金屬氧化物可降低玻璃的熔製溫度,但對於玻 璃之化學耐久性及UV之穿透性均有不利之影響。鹼土 金屬氧化物可改善玻璃之化學耐久性,但會使紫外穿 透率下降。此外,鹼土金屬氧化物亦會影響玻璃之熱 膨脹係數,如氧化鹤之加入,將使玻璃之熱膨脹係數 提高。氧化鋁可有效的提高玻璃之化學耐久性,提高 玻璃之轉移溫度’降低玻璃之熱膨脹係數,但也會使 玻璃之熔製溫度升高。此外’太多的氧化鋁之添加也 會降低玻璃在紫外光與可見光區之穿透率,並使紫外 截止波長往長波長方向移動。氧化鋅可提高玻璃之紫 外線穿透率。氟化物及氯化物之添加,可降低玻璃中 OH之含量,而提高玻璃之紫外線穿透率,並降低紫外 200904770 截止波長。 製作本發明低熔深紫外線穿透玻璃時,係依前揭 組成成分將原料調配與混合,再將混合均勻之粉末裝 填於氧化鋁或白金坩堝中,置入爐中以1000〜1200% 之溫度(視玻璃組成而定)恆溫持溫1〜5小時,以使各 成份完全熔融並達均質化。然後將熔融之玻璃液傾倒 於金屬模中成型’經退火後再拋光而得。玻璃之熱性 質一玻璃轉換溫度(Tg)、玻璃軟化溫度(Td)及熱膨脹係 數(α )二者’是用熱機械分析儀(TMA)檢測。玻璃的化 學耐久性是將拋光後之試片浸潰於50<χ之去離子水 中’以求其溶出速率(Dissolution Rate, DR)。溶出 速率是指在單位時間内,玻璃單位表面積之重量損失 (g/cm2-min)。光學性質的檢測是將試片先經過碳化發 砂紙研磨’再以含〇. 3μιη氧化鋁粉之拋光液拋光,製 成厚度為2mm之玻璃試片,於室溫下以紫外—可見光譜 儀(Shimadzu UV-2410PC UV-VIS Recording Spectrophotometer)進行 測試。 本發明低熔深紫外線穿透玻璃之紫外穿透特性, 可由下各較佳實施例明示: 如圖一所示’實施例1及實施例2為含60%之五 氧化二鱗之低熔紫外線遮蔽玻璃之穿透光譜,其氧化 錄之含量分別為5%及30%。實施例1玻璃對254nm紫 外線之穿透率高達〜92%,紫外線截止波長21〇 nm。 200904770 實施例2氧化鳃含量提高,使254nm紫外線之穿透率 降至〜85% ’但也使紫外線截止波長降低至200 nm左 右。 圖二中實施例3 it實施例6為添加不同量氧化鋁 之低熔深紫外線穿透玻璃之穿透光譜圖。其含有2〇% 之氧化鳃’氧化鋁之含量則依序為〇%、3· 〇%、5· 〇%及 7. 0%。氧化鋁可有效地改善玻璃之化學耐久性,但會 降低玻璃之紫外光穿透率。實施例4和實施例5中, 氧化鋁之含量小於5. 〇%之玻璃,其對254nm紫外線之 穿透率由〜90%緩慢下降至〜80%。但當氧化鋁之含量 超過5· (U,如實施例6,其對254nm紫外線之穿透率 則巨幅下降。 圖二係本發明實施例3 (熔融時間1小時)之低丈 深紫外線遮蔽玻璃組成經不同時間熔融後玻璃之穿多 光譜圖。熔融時間增長玻璃對254nm紫外線之穿透^ 下降,但卻會提高短波長紫外線之穿透率,亦即使負 外線截止波長往短波長方向移動。 由上可知,本發明所提供之低熔深紫外線穿透减 其有極優良的化學耐久性及適當的熱膨脹係數, ::金屬基材作封裝’並可供各種用以穿透或傳輔 七、光之裝置使用,亦可製作為平板、棒狀、管狀, =製成光纖,或加工成其它形態,以供各種實務應 200904770 【圖式簡單說明】 圖一係本發明較佳實施例卜實施例2中組成含莫 耳百分率60%之五氧化二磷系列中含不同量鹼土金屬 氧化物之紫外穿透光譜圖。 圖二係本發明較佳實施例 同量氧化鋁之穿透光譜圖。 3至實施例6中添加不 圖三係本發明較佳實施例 璃之穿透光譜圖。 3經不同時間熔融後玻 【主要元件符號說明】 無圖號 12Karmakar et al., "UV transparency and structure of fluorophosphates glasses", Mater. Lett., 57 (2002) 953-958. It is stated that the UV cut-off wavelength (lmm thick) of the developed fluorofluorate glass is Between 285 and 315 nm, and when the vapor content exceeds 36 mol%, the cut-off wavelength will decrease as the fluoride content increases. The UV cutoff wavelength of this glass system is still too high. In addition, U.S. Patent No. 4,792,535 provides a boroaluminosilicate glass having a transmittance of ultraviolet light at 254 nm (1 Å thick) of up to 80 to 85% 'thermal expansion coefficient of 5·6 to 6. 2 χ1(Γ6/ Χ, its melting temperature is 1400~1600〇C, its main composition weight percentage is 58~62% 8) 〇2; 15~18%62〇3; 11.5~14.5% person 12〇3. Further, U.S. Patent Publication No. 2004/0132604 proposes a boobate glass having an ultraviolet cutoff wavelength (2 mm thick) between 280 and 325 rnn, and the main composition thereof has a weight percentage of 60 to 75% Si〇2; M5% β2〇3; 5~15% Na2〇; 5~10% Κ2〇 and 0~1. 7% Ti〇2. The cut-off wavelength of this glass increases with the increase of Ti〇2 content. The melting temperature is high, and the ultraviolet transmittance and the ultraviolet cut-off wavelength are still required to be improved. SUMMARY OF THE INVENTION The main object of the present invention is to provide a low-depth ultraviolet-ray penetrating glass, which is excellent in phosphate-based glass. The UV penetration 200904770 is available for a variety of devices that require UV transmission or transmission, and has a sufficiently large thermal expansion coefficient to be packaged with a metal or ceramic substrate with a high thermal expansion coefficient. The reason is that, for the purpose of the foregoing, the present invention provides a low melting > non-UV penetrating glass, mainly composed of phosphorus pentoxide (P2〇5), zinc oxide (ZnO), alkaline earth metal oxide (represented by R0). ), alkali metal oxides (indicated by 10), and glass The composition of the modified oxide and the like is as follows. [Embodiment] Hereinafter, some preferred embodiments of the present invention will be described, and further detailed description will be given with reference to the following: The low-dense deep ultraviolet (DUV) penetrating glass of the present invention , scaly acid-based glass, mainly composed of phosphorus pentoxide (HO5), zinc oxide (Zn 〇), soil metal oxide (represented by R )), metal oxide (represented by r2 )), glass modification Composition of components such as oxides, alkaline earth metal oxides such as calcium oxide (CaO), barium oxide (BaO), magnesium oxide (Mg〇), oxidation record (SrO), alkali metal oxides such as sodium oxide (Na2〇), Lithium oxide (LhO), potassium oxide ([Ο), glass modified oxide-based alumina (Ah〇3), boron trioxide (β2〇3), chloride (ZnCl2, CaCl2, etc.), fluoridation and Magnesium fluoride (CaF2, MgF2, etc.). The molar percentage of each component is as follows: phosphorus pentoxide (P2〇5) 45~75% zinc oxide (ZnO) 10~55% alkali metal oxide 0~5 0 % 200904770 0. 5 〜40% 〇· 5 〜8· 0% 0 〜5. 0% 0~&·〇% 0 ~6. 0% Alkaline Earth Metal Oxide Aluminium oxide (Al2〇3) Boron oxide (B2〇3) The content of phosphorus pentoxide in fluoride chloride glass has a significant effect on the chemical durability of glass and the penetration of UV. The content of pentoxide is increased. The UV penetration of glass has a positive effect, but the too high phosphorus pentoxide content has a negative effect on the chemical durability of the glass. The phosphorus pentoxide content is about 55~65%, and the glass has better Chemical durability. Alkali metal oxides reduce the melting temperature of the glass, but have an adverse effect on the chemical durability of the glass and the penetration of UV. Alkaline earth metal oxides improve the chemical durability of glass, but reduce the UV penetration. In addition, alkaline earth metal oxides also affect the thermal expansion coefficient of the glass. For example, the addition of oxidized crane will increase the thermal expansion coefficient of the glass. Alumina can effectively increase the chemical durability of the glass and increase the transfer temperature of the glass, which lowers the thermal expansion coefficient of the glass, but also increases the melting temperature of the glass. In addition, the addition of too much alumina also reduces the transmittance of the glass in the ultraviolet and visible regions and shifts the ultraviolet cutoff wavelength toward the long wavelength. Zinc oxide increases the UV penetration of the glass. The addition of fluoride and chloride reduces the OH content of the glass, increases the UV transmittance of the glass, and lowers the UV 200904770 cut-off wavelength. When the low-melting deep ultraviolet penetrating glass of the present invention is prepared, the raw materials are blended and mixed according to the composition of the prior composition, and the uniformly mixed powder is filled in alumina or platinum crucible, and placed in a furnace at a temperature of 1000 to 1200%. (depending on the composition of the glass) The temperature is maintained at a constant temperature for 1 to 5 hours to completely melt and homogenize the components. The molten glass liquid is then poured into a metal mold to form an 'annealed and then polished. The thermal properties of the glass - glass transition temperature (Tg), glass softening temperature (Td) and thermal expansion coefficient (α ) are measured by a thermomechanical analyzer (TMA). The chemical durability of the glass is obtained by immersing the polished test piece in 50 <deionized deionized water' for its dissolution rate (DR). The dissolution rate refers to the weight loss (g/cm2-min) of the unit surface area of the glass per unit time. The optical properties were tested by first grinding the carbonized sandpaper and then polishing it with a polishing solution containing 〇. 3μιη alumina powder to make a glass test piece with a thickness of 2 mm. At room temperature, the UV-visible spectrometer (Shimadzu) UV-2410PC UV-VIS Recording Spectrophotometer) was tested. The ultraviolet penetrating property of the low-melting deep ultraviolet penetrating glass of the present invention can be clearly illustrated by the following preferred embodiments: As shown in Fig. 1, 'Example 1 and Example 2 are low-melting ultraviolet rays containing 60% of pentoxide scales. The breakthrough spectrum of the masked glass has an oxidation record of 5% and 30%, respectively. The transmittance of the glass of Example 1 to the 254 nm ultraviolet line was as high as ~92%, and the ultraviolet cutoff wavelength was 21 〇 nm. 200904770 Example 2 The cerium oxide content was increased to reduce the 254 nm UV transmittance to ~85%' but also reduced the UV cutoff wavelength to around 200 nm. Example 3 in Figure 2 is an example of a breakthrough spectrum of a low-melting, deep-UV-through glass with different amounts of alumina added. The content of cerium oxide alumina containing 2% by weight is 〇%, 3%, 5%, and 7% by weight. Alumina is effective in improving the chemical durability of glass, but it reduces the UV transmittance of glass. In Example 4 and Example 5, the glass having an alumina content of less than 5% by weight has a slow decrease in the transmittance of 254 nm ultraviolet rays from ~90% to ~80%. However, when the content of alumina exceeds 5·(U, as in Example 6, the transmittance of ultraviolet light at 254 nm is greatly decreased. Fig. 2 is a low-depth ultraviolet shielding of Example 3 (melting time of 1 hour) of the present invention. The glass composition is multi-spectral after the melting of the glass at different times. The melting time increases the penetration of the glass to the 254 nm ultraviolet light, but it increases the transmittance of the short-wavelength ultraviolet light, and even the negative external line cut-off wavelength moves to the short wavelength direction. It can be seen from the above that the low-depth ultraviolet light penetration provided by the invention has excellent chemical durability and appropriate thermal expansion coefficient, and the metal substrate is packaged and can be used for various penetration or transmission. VII. The device of light can be made into flat plate, rod shape, tubular shape, made into optical fiber, or processed into other forms for various practical applications. 200904770. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a preferred embodiment of the present invention. The ultraviolet penetrating spectrum of the different amounts of alkaline earth metal oxides in the phosphorus pentoxide series containing 60% of the molar percentage in Example 2 is shown in Figure 2. Figure 2 is the same amount of alumina in the preferred embodiment of the present invention. Transmissive spectra. Example 3 to FIG. 6 is not added to the three-line transmission spectrum of the preferred embodiment of FIG embodiment of the present invention is glass. After different durations molten glass 3 The main reference numerals in FIG. 12 described None

Claims (1)

200904770 十、申請專利範園: 1· 一種低熔深紫外線穿透玻璃,主要由五氧化二 磷(Pz〇5)、氧化鋅(Zn〇)、鹼土金屬氧化物(以r〇表 示)、驗金屬氧化物(以R2〇表示)、玻璃改質氧化物 等成分所組成。 2. 如申請專利範圍第1項所述之低熔深紫外線穿 透玻璃’其中鹼土金屬氧化物係氧化鈣(Ca0)、氧化鋇 (BaO)、氧化鎂(MgO)或氧化勰(SrO)。 3. 如申請專利範圍第1項所述之低熔深紫外線穿 透玻璃’其中鹼金屬氧化物係氧化鈉(NhO)、氧化鋰 (LhO)或氧化鉀(K2〇)。 4. 如申請專利範圍第1項所述之低熔深紫外線穿 透玻璃,其中玻璃改質氧化物係氧化鋁(Α1ζ〇3)、氧化 鐵硼(Β2〇3)、氟化物(CaF2、MgF2等)或氯化物(ZnCl2、 CaCl2 等)。 5.如申請專利範圍第4項所述之低溶深紫外線穿 透玻璃,其中玻璃改質氧化物係可同時含有氧化鋁、 氟化物及氣化物。 6.如申請專利範圍第1項所述之低熔深紫外線穿 透玻璃,其中各組成物成分範圍(莫耳百分率)如下: 45 ~ 75% 五氧化二磷(p2〇5) 10 ~ 55% 氧化鋅(ZnO) 0〜5.0% 鹼金屬氧化物(以R2〇表示) 13 200904770 ο. 0· 7. 透玻璃 70%。 8. 透玻璃 65% 。 5〜40% 鹼土金屬氧化物(以RO表示) 5〜8. 0%氧化鋁(Al2〇3) 〜5· 0% 氧化硼(b2〇3) ~ 5.0一% 氟化物(CaF2、MgF2 等) 〜6.0% 氣化物(ZnCl2、CaCl2 等) 如申請專利範圍第6項所述之低熔深紫外線穿 ’其中五氧化二磷(P2〇s)較佳之組成範圍為5〇〜 如申請專利範圍第7項所述之低熔深紫外線穿 ’其中五氧化二磷(P2〇s)更佳之組成範圍為55〜 9. 如申請專利範圍第6項所述之低熔深紫外線穿 透玻璃,其中氧化鋅(Zn〇)較佳之組成範圍為2〇〜4丨 % ° 10. 如申請專利範圍第9項所述之低熔深紫外綠 穿透玻璃,其中氧化鋅(Zn0)更佳之組成範圍為3〇〜4( % 0 11 ·如申明專利範圍第6項所述之低熔深紫外線 穿透玻璃,其中氧化鋁(A12〇3)較佳之組成範圍為2〇〜 5.0%。 12·如申請專利範圍第U項所述之低熔深紫外線 穿透玻璃,其中氧化銘(Al2〇3)更佳(組成範圍為35〜 4. 5% 〇 200904770 13·如申請專利範圍第1項所述之低熔深紫外線 穿透玻璃’其中紫外線UV截止波長係小於230 nm, 較佳為小於215 nm,最佳為小於2 〇 5 nm。 14. 如申請專利輯圍第1項所述之低熔深紫外缚 穿透玻璃’其中對於254 111„紫外光之穿透率(厚度2mn〇 係大於70%、較佳為大於8〇%,最佳為大於9〇%。 15. 如申請專利範圍第丨項所述之低熔深紫外線 穿透玻璃,其可與金屬基材作封裝。 .如申請專利範圍帛丨㊆所述之低溶深紫外線 璃其可供各種用以穿透或傳輸紫外光之裝置 項所述之低熔深紫外線 棒狀、管狀,或抽製成 17·如申請專利範圍第1 穿透玻璃’其▼製作為平板、 光纖,或加工成其它形態。 15200904770 X. Application for patent garden: 1. A low-melting deep ultraviolet penetrating glass, mainly composed of phosphorus pentoxide (Pz〇5), zinc oxide (Zn〇), alkaline earth metal oxide (expressed as r〇), It consists of a metal oxide (represented by R2〇) and a glass-modified oxide. 2. The low-melting-depth ultraviolet penetrating glass as described in claim 1 wherein the alkaline earth metal oxide is calcium oxide (Ca0), barium oxide (BaO), magnesium oxide (MgO) or strontium oxide (SrO). 3. The low-melting-depth ultraviolet penetrating glass as described in claim 1 wherein the alkali metal oxide is sodium oxide (NhO), lithium oxide (LhO) or potassium oxide (K2〇). 4. The low-melting-depth ultraviolet penetrating glass according to claim 1, wherein the glass-modified oxide is alumina (Α1ζ〇3), iron oxide boron (Β2〇3), and fluoride (CaF2, MgF2). Etc) or chloride (ZnCl2, CaCl2, etc.). 5. The low-solubility ultraviolet-ray transmissive glass according to claim 4, wherein the glass-modified oxide system contains both alumina, fluoride and vapor. 6. The low-depth ultraviolet-ray penetrating glass according to claim 1, wherein the composition range of each composition (% of moles) is as follows: 45 to 75% phosphorus pentoxide (p2〇5) 10 to 55% Zinc Oxide (ZnO) 0~5.0% Alkali metal oxide (expressed as R2〇) 13 200904770 ο. 0· 7. 70% transparent glass. 8. Translucent glass 65%. 5~40% Alkaline earth metal oxide (expressed as RO) 5~8. 0% alumina (Al2〇3) ~5· 0% boron oxide (b2〇3) ~ 5.0%% fluoride (CaF2, MgF2, etc.) ~6.0% vapor (ZnCl2, CaCl2, etc.) as described in the scope of claim 6 of the low-deep-dense ultraviolet light penetration, wherein the preferred composition range of phosphorus pentoxide (P2〇s) is 5〇~ as claimed in the patent scope The low-deep-dense ultraviolet ray through which the seventh aspect is described, wherein the composition of phosphorus pentoxide (P2 〇s) is more preferably 55 to 9. The low-depth ultraviolet-ray penetrating glass according to claim 6 of the patent application, wherein the oxidation The preferred composition range of zinc (Zn〇) is 2〇~4丨% ° 10. The low-melting deep ultraviolet green penetrating glass according to claim 9 of the patent application, wherein the zinc oxide (Zn0) has a better composition range of 3 〇~4 (% 0 11 · The low-depth ultraviolet-ray penetrating glass as described in claim 6 of the patent scope, wherein the preferred composition range of alumina (A12〇3) is 2〇~5.0%. 12·If applying for a patent The low-depth ultraviolet-ray penetrating glass described in the scope of item U, in which the oxidation (Al2〇3) is better (the composition range is 35) 4. 5% 〇200904770 13·Low-deep-dense ultraviolet penetrating glass as described in claim 1 wherein the ultraviolet UV cut-off wavelength is less than 230 nm, preferably less than 215 nm, and most preferably less than 2 〇5 Nm. 14. The low-deep-dark UV-shielded glass as described in the first paragraph of the patent application, wherein the transmittance of ultraviolet light for 254 111 „the thickness of 2mn〇 is greater than 70%, preferably greater than 8〇. %, preferably greater than 9〇%. 15. The low-deep-depth ultraviolet penetrating glass as described in the scope of claim 2, which can be packaged with a metal substrate. Low-solubility deep-violet glass which can be used for various types of devices for penetrating or transmitting ultraviolet light, such as low-dark-dark rods, tubulars, or drawn into a 17th article. Made as a flat sheet, fiber optic, or processed into other forms.
TW96126690A 2007-07-20 2007-07-20 Low melting point, deep UV penetrating glass TW200904770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96126690A TW200904770A (en) 2007-07-20 2007-07-20 Low melting point, deep UV penetrating glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96126690A TW200904770A (en) 2007-07-20 2007-07-20 Low melting point, deep UV penetrating glass

Publications (1)

Publication Number Publication Date
TW200904770A true TW200904770A (en) 2009-02-01

Family

ID=44722527

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96126690A TW200904770A (en) 2007-07-20 2007-07-20 Low melting point, deep UV penetrating glass

Country Status (1)

Country Link
TW (1) TW200904770A (en)

Similar Documents

Publication Publication Date Title
CZ287067B6 (en) Crystal glass exhibiting high light transmittance, free of lead and barium
KR920003223B1 (en) Uv transmitting glass
JP2008088019A (en) Glass composition
JP2009096662A (en) Glass composition
JPH03137036A (en) Rapidly fading, highly refractive index photoenantiotropic glass
KR20070117683A (en) Ultraviolet absorbing glass, glass tube for fluorescent lamp using same, and method for producing ultraviolet absorbing glass for fluorescent lamp
KR102018648B1 (en) Ultraviolet transmiting and visible-light absorbing glass and ultraviolet transmiting and visible-light absorbing filter
JP2016040220A (en) Infrared transmitting glass
JP2007290899A (en) Glass composition
JP2759653B2 (en) Solarization-resistant glass microsheet
WO2017094869A1 (en) Glass
EP0881995B9 (en) Strong uv absorbing glass
Chopra et al. UV–vis spectroscopic Investigation on γ-irradiated alkali aluminoborate glasses
CN114409253B (en) Ultraviolet-transmitting glass
JP5904864B2 (en) UV-visible transmission glass
TW200904770A (en) Low melting point, deep UV penetrating glass
JP2015093819A (en) Glass for medical container
JPWO2017030110A1 (en) High transmission glass
JP4237920B2 (en) UV blocking glass
JP2015093820A (en) Glass for medical container
JP2014185056A (en) Ultraviolet transmitting glass
RU2280625C1 (en) Color filter glass
JP6523408B2 (en) Ultraviolet transmission visible light absorption glass and ultraviolet transmission visible light absorption filter
JP2018150190A (en) Glass for radiation detection
KR101211168B1 (en) Coating materials to intercept the ultravioleta lay and coating method for lamp