TW200904645A - Printhead integrated circuit with high droplet ejector density - Google Patents

Printhead integrated circuit with high droplet ejector density Download PDF

Info

Publication number
TW200904645A
TW200904645A TW096144804A TW96144804A TW200904645A TW 200904645 A TW200904645 A TW 200904645A TW 096144804 A TW096144804 A TW 096144804A TW 96144804 A TW96144804 A TW 96144804A TW 200904645 A TW200904645 A TW 200904645A
Authority
TW
Taiwan
Prior art keywords
print head
nozzle
array
nozzles
print
Prior art date
Application number
TW096144804A
Other languages
Chinese (zh)
Other versions
TWI380909B (en
Inventor
Kia Silverbrook
Original Assignee
Silverbrook Res Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silverbrook Res Pty Ltd filed Critical Silverbrook Res Pty Ltd
Publication of TW200904645A publication Critical patent/TW200904645A/en
Application granted granted Critical
Publication of TWI380909B publication Critical patent/TWI380909B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • B41J2/155Arrangement thereof for line printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14072Electrical connections, e.g. details on electrodes, connecting the chip to the outside...
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14387Front shooter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14459Matrix arrangement of the pressure chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/11Embodiments of or processes related to ink-jet heads characterised by specific geometrical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/20Modules

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)

Abstract

A printhead integrated circuit (IC) with a planar array of droplet ejectors, each having data distribution circuitry, a drive transistor, a printing fluid inlet, an actuator, a chamber and a nozzle, the chamber being configured to hold printing fluid adjacent the nozzle so that the drive transistor activates the actuator to eject a droplet of the printing fluid through the nozzle. The array has more than 700 of the droplet ejectors per square millimeter. With a high density of droplet ejectors fabricated on a wafer substrate, the nozzle array has a high nozzle pitch and the printhead has a very high 'true' print resolution - i. e. the high number of dots per inch is achieved by a high number of nozzles per inch.

Description

200904645 九、發明說明 【發明所屬之技術領域】 本發明關於列印領域,特別是關於一種用於高解析度 列印的噴墨列印頭。 【先前技術】 列印影像的品質絕大部分取決於印表機的解析度,因 此,不斷地努力改善印表機的列印解析度。列印解析度密 切地取決於液滴體積和印表機在媒介基材上可尋址( addressable )位置的間隔。噴墨頭上各噴嘴之間的間隔不 須像媒介基材上各可尋址位置之間的間隔一樣地小。在一 個可尋址位置處列印一點的噴嘴和在鄰近可尋址位置處列 印一點的噴嘴,可間隔任何距離。不管列印頭上各噴嘴之 間的間隔,列印頭相對於媒介的運動、或媒介相對於列印 頭的運動、或上述兩種運動,會允許列印頭噴射液滴在每 一可尋址位置。載極端的狀況,由於列印頭和媒介之間適 當的相對運動,相同的噴嘴可以列印相鄰的液滴。 媒介相對於列印頭的過量運動,會降低列印速率。在 頁寬列印頭的情況,掃描列印頭對一整包媒介的多次通過 、或媒介多次通過列印頭,會減少每分鐘列印頁數的列印 速率。 此外’各噴嘴可沿著媒介饋給路徑或在掃描方向被隔 開’所以媒介上各可尋址位置小於相鄰噴嘴的物理間隔。 可瞭解的是在紙路徑或掃描方向的一大段內間隔地設至多 -4 - 200904645 個噴嘴,違反了袖珍設計。更重要的是’饋給紙時需要小 心地控制媒介位置,和精密地印表機控制噴嘴發射次數。 就頁寬列印頭而言,大噴嘴陣列的問題更大。在一大 段紙路徑中間隔地設至多個噴嘴,噴嘴陣列就需要具有相 對大的區域。藉由定義,噴嘴陣列必須在媒介寬度延伸, 但是噴嘴陣列在媒介饋給方向中的尺寸應該儘可能地小。 在媒介饋給方向中延伸相對長距離的陣列,需要複雜的列 印滾筒,該等滾筒維持整個陣列中噴嘴和媒介表面之間的 間隔。一些印表機設計在列印頭對面使用寬廣的真空滾筒 ,以得到媒介所需的控制。有鑑於此議題,有在列印頭上 增加噴嘴密度(亦即每單位面積的噴嘴數目)的強烈動機 ,以增加印表機的可尋址位置和解析度,同時保持陣列( 在媒介饋給方向)的小寬度。 【發明內容】 因此,本發明提供一種用於噴墨印表機的列印頭,該 列印頭包含: 配置在相鄰列中的一陣列噴嘴,每一噴嘴具有噴射孔 和用於將列印流體噴射經過該噴射孔的對應致動器,每一 致動器具有在該等列之橫方向彼此相隔開的電極;和 驅動電路,用於將電力傳輸至該等電極;其中 在相鄰列中之該等致動器的該等電極具有相反的極性 ’所以在相鄰列中之該等致動器具有相反的電流流動方向 200904645 藉由使在相鄰列之電極的極性相反,可將 力平面內的穿孔保持在相鄰列的外側邊緣。此 間的一排狹窄阻抗性橋部’移動至電流不流過 。此從致動器驅動電路消除橋部的阻抗。藉由 印頭積體電路之電力供給側的致動器的阻抗性 整個陣列所有噴嘴的液滴噴射特徵呈一致。 較佳地,在每一列中之該等電極從其相鄰 該列之橫方向偏移,所以每個第二致動器的該 。在另一較佳的形式中,該偏移小於40微米 的形式中,該偏移小於3 0微米。較佳地,該 製造在長形晶圓基板上,該晶圓基板平行於該 列而延伸,且該驅動電路是在該晶圓基板之 CMOS層,沿著該晶圓基板的長邊緣供給電力 等CMOS層。在另一較佳的形式中,該CMOS 電力平面的頂部金屬層,其帶有正電壓,所以 的該等電極連接至形成在該電力平面內之孔中 又一較佳的形式中,該CMOS層具有供底部金 致動器用的驅動場效電晶體(FET )。較佳地 層具有厚度小於0.3微米的金屬層。 在一些實施例中’該等致動器是加熱器元 該列印流體內產生蒸汽泡泡,使得從該噴射孔 印流體的液滴。較佳地,該等加熱器元件是懸 電極之間的樑,所以該等加熱器元件是浸没在 內。較佳地,該等噴射孔是橢圓形,且噴射孔 CMOS之電 將各穿孔之 橋部的位置 減少遠離列 損失,可使 的致動器往 等電極共線 。在特別佳 陣列噴嘴被 陣列的該等 一表面上的 和資料給該 層具有形成 具有負電壓 的導孔。在 屬層內每一 ,該 CMOS 件,用於在 噴射出該列 架在其個別 列印流體 長軸平行 -6 - 200904645 於該樑的縱軸。在另一較佳形式中’該等列其中一列內之 該等噴射孔的該等長軸和相鄰列內之該等噴射孔的該等長 軸共線,所以該等列其中一列內的每一噴嘴和該相鄰列內 其中一噴嘴對齊。較佳地,相鄰噴射孔的長軸相隔開小於 5 0微米。在另一較佳形式中,相鄰噴射孔的長軸相隔開小 於2 5微米。在特別佳的形式中,相鄰噴射孔的長軸相隔 開小於1 6微米。 在特別的實施例中,在媒介饋給方向的橫方向中’該 列印頭具有每吋多於1 600個噴嘴(npi )的噴嘴節距。在 較佳實施例中,該噴嘴節距是大於3〇〇〇 npi。在特別佳的 實施例中,該列印頭具有之每吋點數(d p i )的列印解析 度,等於該噴嘴節距。在特定實施例中,該列印頭是頁寬 列印頭,其被建構用於列印A4尺寸媒介。較佳地’該陣 列具有多於100000個噴嘴。 因此,本發明提供一種用於印表機的噴墨列印頭,其 能以不同的列印解析度列印在基材上,該噴墨列印頭包含 一陣列的噴嘴,每一噴嘴具有噴射孔和用於將列印流 體噴射經過該噴射孔的對應致動器;和 一列印引擎控制器,用於將列印資料送至該陣列的噴 嘴;其中 在使用期間,藉由將列印資料分配給該陣列之至少二 噴嘴之間的單一噴嘴,該列印引擎控制器可選擇性地降低 該列印解析度。 200904645 本發明認知到一些列印工作不需要列印頭的最好解析 度…-較低的解析度完全適合於待列印文件的目的。此情況 在列印頭具有非常高解析度(例如大於1 200 dpi)時是特 別地真實。藉由選擇較低的解析度,列印引擎控制器( PEC )可將具有較少噴嘴之列印頭中二或更多個橫向相鄰 (但不需接觸)的噴嘴當作單一虛擬噴嘴。然後該等相鄰 噴嘴共享列印資料---虛擬噴嘴所要求的點(dots )被每一 實際的噴嘴輪流列印。此用於延長所有噴嘴的作業壽命。 較佳地,設置該二噴嘴在該陣列中的位置,使得該二 噴嘴在該列印頭相對於該基材之運動的橫方向中是最接近 的鄰居。較佳地,該列印引擎控制器平等地分享該列印資 料給該陣列中的該二噴嘴。在另一較佳形式中,該二噴嘴 中心相隔開小於2 0微米。在特別佳的形式中,該列印頭 是頁寬列印頭,且該二噴嘴中心在該媒介饋給方向的橫方 向中相隔開小於16微米。在特定的實施例中,該二噴嘴 中心在該媒介饋給方向的橫方向中相隔開小於8微米。在 特殊實施例中,該列印頭在該媒介饋給方向的橫方向中, 具有的噴嘴節距是每吋多於1 600個噴嘴(npi)。在較佳 實施例中,該噴嘴節距是大於3 000 npi。在特別佳的實施 例中,該列印頭具有之每吋點數(dpi )的列印解析度, 等於該噴嘴節距。在特定實施例中,該列印頭被建構用於 列印A4尺寸媒介,且該列印頭具有多於1 00000個噴嘴。 在一些實施例中當以較低的列印解析度列印時,該印 表機以較高的列印速率作業。較佳地,該較高的列印速率 -8- 200904645 是每分鐘多於60頁。在較佳的形式中,該列印引擎控制 器以高頻振動矩陣將該等相鄰噴嘴所列印的彩色平面半調 色(halftone ),該高頻振動矩陣被最佳化用於每一噴射 液滴的橫向移位。 因此,本發明提供一種噴墨列印頭,包含: 一陣列的噴嘴,配置在相鄰的列中;每一噴嘴具有噴 射孔、用於容置列印流體的腔室、和對應的致動器;該致 動器用於將該列印流體噴射經過該噴射孔;每一腔室具有 個別的入口以再塡注列印流體,該列印流體被該致動器噴 射;和 列印流體供給通道,其平行該等相鄰列而延伸’以經 由該等個別入口供給列印流體至該陣列中每一噴嘴的致動 器;其中 建構在該等相鄰列其中一列內之該等噴嘴入口 ’使其 再塡注流率不同於經過該等相鄰列之另一列內之該等噴嘴 入口的再塡注流率。 本發明建構的噴嘴使得一側的墨水供給通道塡注數列 。因爲供給通道不只供給一側的一列噴嘴,所以上述建構 允許列印頭表面上的噴嘴密度較大。但是因爲每列之經過 入口的流率不同,所以離供給通道較遠的列不會有顯著較 長的再塡注時間。 較佳地,建構在該等相鄰列其中一列內之該等噴嘴入 口 ’使其再塡注流率不同於經過該等相鄰列之另一列內之 該等噴嘴入口的再塡注流率,所以陣列中所有噴嘴的腔室 200904645 再塡注時間大致均句。在另一較佳形式中,最靠近供給通 道之列的入口,比遠離供給通道之列更狹窄。在一些實施 例中,在供給通道兩側的任一側上,有二相鄰列的噴嘴。 較佳地’入口具有流動阻尼構造。在特別佳的形式中 ’流動阻尼構造是柱,設計該柱的位置,使其產生流動障 礙。在一列之入口內的柱和在其他列之入口內的柱,產生 不同程度的障礙。較佳地,柱在柱的側面和入口側壁之間 產生泡泡陷阱或捕捉器。較佳地,柱擴散傳播列印流體內 的壓力脈衝,以降低噴嘴之間串擾。 在一些實施例中,該等致動器是加熱器元件,用於在 該列印流體內產生蒸汽泡泡,使得從該噴射孔噴射出該列 印流體的液滴。較佳地,該等加熱器元件是懸架在其個別 電極之間的樑,所以該等加熱器元件是浸没在該列印流體 內。較佳地,該等噴射孔是橢圓形,且噴射孔的長軸平行 於該樑的縱軸。較佳地,相鄰噴射孔的長軸相隔開小於50 微米。在另一較佳形式中,相鄰噴射孔的長軸相隔開小於 25微米。在特別佳的形式中,相鄰噴射孔的長軸相隔開小 於1 6微米。 在特別的實施例中,在媒介饋給方向的橫方向中,該 列印頭具有每吋多於1 600個噴嘴(npi )的噴嘴節距。在 較佳實施例中,該噴嘴節距是大於3 000 npi。在特別佳的 實施例中,該列印頭具有之每吋點數(dpi )的列印解析 度,等於該噴嘴節距。在特定實施例中,該列印頭是頁寬 列印頭,其被建構用於列印A4尺寸媒介。較佳地’該陣 -10- 200904645 列具有多於1 00000個噴嘴。 因此,本發明提供一種噴墨列印頭,包含: 一陣列的噴嘴,配置在一系列的列中;每一噴嘴具有 噴射孔、用於保持列印流體的腔室、和加熱器元件;該加 熱器元件用於在腔室所容置的該列印流體內產生蒸汽泡泡 ,以將該列印流體的液滴噴射經過該噴射孔;其中 該噴嘴、該加熱器元件、和該腔室全部是長形構造, 該等長形構造具有長的尺寸,該長的尺寸分別超越各長形 構造的其他尺寸;和 該噴嘴、該加熱器、和該腔室之個別長的尺寸是平行 的,且垂直於該列方向而延伸。 爲了增加列的噴嘴密度,每一噴嘴組件…-腔室、噴射 孔、和加熱器元件都被建構成長形構造,該等長形構造在 列方向的橫方向全部對齊。此提昇了列的噴嘴節距或每吋 的噴嘴數(npi),同時允許保持足夠大之腔室容積和液 滴體積,以供合適的顏料密度之用。此亦避免在紙饋給方 向(在頁寬印表機的情況)或在掃描方向(在掃描列印頭 的情況)擴展大距離的需要。 較佳地,該陣列中的每一列相對於其相鄰列偏移,所 以一列中該等噴嘴的該等長的尺寸沒有一者,不和該相鄰 列中該等長的尺寸的任意者共線的。在另一較佳的形式中 ,該列印頭是頁寬列印頭,用於列印至在媒介饋給方向饋 給通過列印頭的媒介基材,所以該等噴嘴之該等長的尺寸 ,平行於該媒介饋給方向。 -11 - 200904645 較佳地,每個第二噴嘴之長的尺寸是在登錄中。在特 別佳的形式中,所有該等噴嘴的該等噴射孔形成在平坦的 頂部層中,該頂部層局部界定該腔室;該頂部層具有外部 表面,該外部表面除了該等噴射孔以外’其餘是平坦的。 在特別佳的形式中,該陣列的噴嘴形成在下面之基板上’ 該基板平行於該頂部層而延伸’且藉由在該頂部層和該基 板之間延伸的側壁局部界定該腔室,設計該側壁的形狀’ 使得該側壁的內部表面至少局部呈橢圓形。較佳地’除了 供列印流體用的入口開口以外,該側壁呈橢圓形。在特別 佳的形式中’在該等列其中之一列內之該等噴嘴的短軸和 在該媒介饋給方向之該相鄰列中該等噴嘴的短軸局部重疊 。在另一較佳的形式中’該等噴射孔呈橢圓形。 較佳地,該等加熱器元件是懸架在其個別電極之間的 樑,所以在使用期間,該等加熱器元件是浸没在該列印流 體內。較佳地,該加熱器元件所產生之該蒸汽泡泡在平行 於該噴射孔的橫剖面呈橢圓形。 在一些實施例中,該列印頭更包含鄰接於該陣列的供 給通道,該陣列係平行該等列而延伸。在較佳的形式中’ 該陣列的噴嘴是第一陣列的噴嘴,且第二陣列的噴嘴形成 在該供給通道的其他側;該第二陣列是該第一陣列的鏡射 影像,但相對於該第一陣列偏移,所以在該第一陣列中之 該等噴射孔的長軸沒有一者,不和該第二陣列之長軸其中 任意者共線的。較佳地,在該第一陣列中之該等噴射孔的 該等長軸,從該第二陣列中之該等噴射孔的該等長軸,往 -12 - 200904645 該媒介饋給方向的橫方向偏移達小於20微米。在特別佳 的形式中,該偏移約爲8微米。在一些實施例中,該列印 頭在該媒介饋給方向的橫方向中,具有的噴嘴節距是每吋 多於1 6 0 0個噴嘴(n p i )。在特別佳的形式中,該基板在 媒介饋給方向的寬度小於3毫米。 因此,本發明提供一種噴墨列印頭,包含: 一陣列的噴嘴,用於當列印媒介在相對於該列印頭的 列印方向中運動時,將列印流體的液滴噴射至該列印媒介 上;其中 在該陣列中的該等噴嘴,在該列印方向的垂直方向中 ,彼此相隔開達小於1 〇微米。 由於噴嘴在該列印方向的垂直方向中相隔開小於10 微米,所以列印頭具有非常高的「真實」列印解析度---亦 即藉由每吋的高噴嘴數達到每吋的高點數。 較佳地,在該列印方向的垂直方向中彼此相隔開達小 於1 0微米之該陣列中的該等噴嘴,在該列印方向中也彼 此相隔開達小於1 5 0微米。 在另一較佳形式中,該陣列每平方毫米具有超過700 個噴嘴。 較佳地,該陣列的噴嘴被支撐在複數單片晶圓基板上 ,每一單片晶圓基板支撐超過1 00 00個該等噴嘴。在另一 較佳形式中,每一單片晶圓基板支撐超過1 2000個該等噴 嘴。在特別佳的形式中,該複數單片晶圓基板被端對端地 安裝,以形成供安裝在印表機內的頁寬列印頭,建構該印 -13- 200904645 表機以在媒介饋給方向饋給媒介通 具有超過1 00000個該等噴嘴,且 方向的橫方向中延伸200毫米至3 中,該陣列具有超過140000個該等 選擇性地,該列印頭更包含複 嘴的每一者之用,該等致動器配置 器具有在該等列的橫方向彼此相隔 個別驅動電晶體和一電源供應器; 在相鄰列中之該等致動器的該 ,所以在相鄰列中之該等致動器具 。較佳地,在每一列中之該等電極 列之橫方向偏移,所以每個第二致 在特別佳的實施例中,該等小液滴 晶圓基板上,該長形晶圓基板平行 而延伸,且沿著該晶圓基板的長邊 在一些實施例中,該列印頭具 PEC ),用於將列印資料送至該陣3 在使用期間,藉由將列印資料 噴嘴之間的單一噴嘴,該列印引擎 該列印解析度。較佳地,設置該二 ,使得該二噴嘴在該列印頭相對於 橫方向中是最接近的鄰居。在特別 擎控制器平等地分享該列印資料給 較佳地,該二噴嘴中心相隔開小於 過該列印頭;該列印頭 該列印頭在該媒介饋給 30毫米。在一些實施例 差噴嘴。 數致動器分別供該等噴 在相鄰列內,每一致動 開的電極,用於連接至 其中 等電極具有相反的極性 有相反的電流流動方向 從其相鄰的致動器往該 動器的該等電極共線。 噴射器被製造在一長形 於該等致動器之該等列 緣供給電力和資料。 有一列印引擎控制器( ?!J的噴嘴;其中 分配給該陣列之至少二 控制器可選擇性地降低 噴嘴在該陣列中的位置 列印媒介基材之運動的 佳的形式中,該列印引 該陣列中的該二噴嘴。 40微米。 -14- 200904645 在特別佳的形式中,該列印頭是頁寬列印頭’且該二 噴嘴中心在該媒介饋給方向的橫方向中相隔開小於1 6微 米。較佳地,該等相鄰噴嘴中心在該媒介饋給方向的橫方 向中相隔開小於8微米。較佳地,該列印頭在該媒介饋給 方向的橫方向中,具有的噴嘴節距是每吋多於16〇〇個噴 嘴(np i )。在另一較佳的形式中,該噴嘴節距大於3 0 0 〇 npi 〇 因此,本發明提供一種用於噴墨列印頭的列印頭積體 電路,該列印頭積體電路包含: 一單片晶圓基板,其支撐一陣列的小液滴噴射器,用 於將列印流體的液滴噴射至列印媒介上,每一液滴噴射器 具有噴嘴和致動器,該致動器用於將列印流體的液滴噴射 經過該噴嘴;其中 該陣列具有超過1 0000個該等小液滴噴射器。 由於大數目的小液滴噴射器製造在單一晶圓上,所以 噴嘴陣列具有高的噴嘴節距,且該列印頭具有非常高的「 真實」列印解析度一-亦即藉由每吋的高噴嘴數達到每吋的 高點數。 較佳地,該陣列具有超過1 2000個該等小液滴噴射器 。在另一較佳的形式中,該列印媒介在相對於該列印頭的 列印方向中運動;且在該陣列中的該等噴嘴,在該列印方 向的垂直方向中,彼此相隔開達小於1 0微米。在特別佳 的形式中,在該列印方向的垂直方向中,彼此相隔開達小 於1 0微米之該陣列中的該等噴嘴,在該列印方向中也彼 -15- 200904645 此相隔開達小於1 5 0微米。 在較佳的實施例中,該陣列每平方毫米具有超過700 個該等小液滴噴射器。在特別佳的形式中,該等致動器配 置在相鄰列內,每一致動器具有在該等列的橫方向彼此相 隔開的電極,用於連接至個別驅動電晶體和一電源供應器 ;在相鄰列中之該等致動器的該等電極具有相反的極性, 所以在相鄰列中之該等致動器具有相反的電流流動方向。 在又一較佳的形式中,在每一列中之該等電極從其相鄰的 致動器往該列之橫方向偏移,所以每個第二致動器的該等 電極共線。 在特定的實施例中,該單片晶圓基板是長形的,且平 行於該等致動器之該等列而延伸,所以在使用時,沿著該 晶圓基板的長邊緣供給電力和資料。在一些形式中,該噴 墨列印頭包含複數列印頭積體電路,且另包含一列印引擎 控制器(PEC ),用於將列印資料送至該陣列的小液滴噴 射器;其中,在使用期間,藉由將列印資料分配給該陣列 之至少二小液滴噴射器之間的單一小液滴噴射器,該列印 引擎控制器可選擇性地降低該列印解析度。較佳地,設置 該二噴嘴在該陣列中的位置,使得該二噴嘴在該列印頭相 對於列印媒介基材之運動的橫方向中是最接近的鄰居。在 特別較佳的形式中’該列印引擎控制器平等地分享該列印 資料給該陣列中的該二噴嘴。選擇性地,該二噴嘴中心相 隔開小於40微米。在特別佳的實施例中,該列印頭是頁 寬列印頭,且該二噴嘴中心在該媒介饋給方向的橫方向中 -16- 200904645 相隔開小於1 6微米。在又一較佳的形式中,該等相鄰噴 嘴中心在該媒介饋給方向的橫方向中相隔開小於8微米。 在一些實施例中,該噴墨列印頭包含複數列印頭積體 電路,其被端對端地安裝’以形成供印表機用的頁寬列印 頭,建構該印表機以在媒介饋給方向饋給媒介通過該列印 頭;該列印頭具有超過1 〇〇〇〇〇個該等噴嘴,且該列印頭 在該媒介饋給方向的橫方向中延伸200毫米至33 0毫米。 在另一較佳的形式中,該陣列具有超過140000個該等噴 嘴。 較佳地,該陣列的小液滴噴射器在該媒介饋給方向的 橫方向中,具有的噴嘴節距是每吋多於1600個噴嘴(npi )。較佳地,該噴嘴節距大於3 000 npi。 因此,本發明提供一種用於噴墨列印頭的列印頭積體 電路,該列印頭積體電路包含: 一平面陣列的小液滴噴射器,每一小液滴噴射器具有 資料分布電路、驅動電晶體、列印流體入口、致動器、腔 室和噴嘴;建構腔室用以將列印流體保持在鄰近該噴嘴, 所以在使用期間,該驅動電晶體驅動該致動器,以將該列 印流體的小液滴噴射經過該噴嘴;其中 該陣列每平方毫米具有超過700個該等小液滴噴射器 〇 由於製造在晶圓基板上高密度的小液滴噴射器,所以 該噴嘴陣列具有高的噴嘴節距,且該列印頭具有非常高的 「真實」列印解析度亦即藉由每吋的高噴嘴數達到每吋 -17- 200904645 的高點數。 較佳地,當該列印媒介在相對於該列印頭的列印方向 中運動時,該陣列將列印流體的的液滴噴射至列印媒介上 ;和在該陣列中的該等噴嘴,在該列印方向的垂直方向中 ,彼此相隔開達小於1 〇微米。在另一較佳的形式中,在 該列印方向的垂直方向中,彼此相隔開達小於1 0微米的 該等噴嘴,在該列印方向中也彼此相隔開達小於1 5 0微米 〇 在本發明的特定實施例中,噴墨列印頭內使用複數個 列印頭積體電路,每一列印頭積體電路具有超過1 0000個 該等小液滴噴射器,且較佳地,超過1 2000個該等噴嘴單 位晶胞。 在一些實施例中,列印頭積體電路是長形的,且被端 對端地安裝,所以該列印頭具有超過1 00000個該等小液 滴噴射器,且該列印頭在該媒介饋給方向的橫方向中延伸 2 00毫米至3 3 0毫米。在另一較佳的形式中,該列印頭具 有超過140000個該等小液滴噴射器。 在一些較佳的形式中,該等致動器配置在相鄰列內, 每一致動器具有在該等列的橫方向彼此相隔開的電極,用 於連接至對應的驅動電晶體和一電源供應器;其中 在相鄰列中之該等致動器的該等電極具有相反的極性 ,所以在相鄰列中之該等致動器具有相反的電流流動方向 〇 較佳地,在這些實施例中,在每一列中之該等電極從 -18- 200904645 其相鄰的致動器往該列之橫方向偏移,所以每個第二致_ 器的該等電極共線。在另一較佳的形式中’該長形晶® ® 板平行於該等致動器之該等列而延伸,且沿著該晶圓基板 的長邊緣供給電力和資料。 在特定的實施例中,列印頭包含列印引擎控制器( PEC),其用於將列印資料送至該陣列的噴嘴;其中 在使用期間,藉由將列印資料分配給該陣列之至少二 噴嘴之間的單一噴嘴’該列印引擎控制器可選擇性地降低 該列印解析度。 較佳地,設置該二噴嘴在該陣列中的位置’使得該二 噴嘴在該列印頭相對於列印媒介基材之運動的橫方向+胃 最接近的鄰居。在另一較佳的形式中’該列印引擎控制器 平等地分享該列印資料給該陣列中的該二噴嘴。較佳地, 該二噴嘴中心相隔開小於40微米。在特別佳的形式中, 該列印頭是頁寬列印頭’且該二噴嘴中心在該媒介饋給方 向的橫方向中相隔開小於1 6微米。在又一較佳的形式中 ,該等相鄰噴嘴中心在該媒介饋給方向的橫方向中相隔開 小於8微米。 在一些形式中,該列印頭在該媒介饋給方向的橫方向 中,具有的噴嘴節距是每吋多於1600個噴嘴(npi)。較 佳地,該噴嘴節距大於3 000 nPi。 因此,本發明提供一種頁寬噴墨列印頭,包含: 一陣列的小液滴噴射器’用於將列印流體的液滴噴射 至列印媒介上,該列印媒介被饋給通過在媒介饋給方向中 -19- 200904645 的該列印頭;每一液滴噴射器具有噴嘴、和用於將列印流 體的液滴噴射經過該噴嘴的致動器;其中 該陣列具有超過1 00000個該等小液滴噴射器,且該 陣列在該媒介饋給方向的橫方向中延伸200毫米至3 3 0毫 米。 具有在媒介寬度延伸之大數目噴嘴的頁寬列印頭,提 供高噴嘴節距和非常高「真實」列印解析度---亦即藉由每 吋高數目的噴嘴獲得每吋高數目的點。 較佳地,該陣列具有超過1 40000個該等小液滴噴射 器。在另一較佳形式中,該等噴嘴在該媒介饋給方向的垂 直方向中彼此相隔開達小於1 0微米。在特別佳的形式中 ,在該媒介饋給方向的垂直方向中,彼此相隔開達小於10 微米的該等噴嘴,在該媒介饋給方向中也彼此相隔開達小 於1 5 0微米。 在特定的實施例中,該陣列小液滴噴射器被支撐在複 數單片晶圓基板上,每一單片晶圓基板支撐超過1 0000個 小液滴噴射器,且較佳是超過12000個小液滴噴射器。在 這些實施例中,希望該陣列每平方毫米具有超過700個小 液滴噴射器。 選擇性地,該等致動器配置在相鄰列內,每一致動器 具有在該等列的橫方向彼此相隔開的電極,用於連接至個 別驅動電晶體和一電源供應器;其中 在相鄰列中之該等致動器的該等電極具有相反的極性 ’所以在相鄰列中之該等致動器具有相反的電流流動方向 -20- 200904645 。較佳地,在每一列中之該等電極從其相鄰的致動器往該 列之橫方向偏移,所以每個第二致動器的該等電極共線。 在特別佳的實施例中,該等小液滴噴射器被製造在一長形 晶圓基板上,該長形晶圓基板平行於該等致動器之該等列 而延伸,且沿著該晶圓基板的長邊緣供給電力和資料。 在一些實施例中,該列印頭具有一列印引擎控制器( PEC ),用於將列印資料送至該陣列的噴嘴;其中 在使用期間,藉由將列印資料分配給該陣列之至少二 噴嘴之間的單一噴嘴,該列印引擎控制器可選擇性地降低 該列印解析度。較佳地,設置該二噴嘴在該陣列中的位置 ,使得該二噴嘴在該列印頭相對於列印媒介基材之運動的 橫方向中是最相鄰。在特別佳的形式中,該列印引擎控制 器平等地分享列印資料給該陣列中的該二噴嘴。較佳地, 該二噴嘴中心相間隔小於40微米。 在特別佳的形式中,該列印頭是頁寬列印頭’且該二 噴嘴中心在該媒介饋給方向的橫方向中相隔開小於1 6微 米。較佳地,該等相鄰噴嘴中心在該媒介饋給方向的橫方 向中相隔開小於8微米。較佳地’該列印頭在該媒介饋給 方向的橫方向中,具有的噴嘴節距是每吋多於1600個噴 嘴(npi)。在另一較佳形式中,該噴嘴節距大於3000 1^1 〇 因此,本發明提供一種用於噴墨印表機的列印頭積體 電路,該列印頭積體電路包含: —單片晶圓基板,其支撐一陣列的小液滴噴射器’用 -21 - 200904645 於將列印流體的液滴噴射至列印媒介上,每一液滴 具有噴嘴和致動器,該致動器用於將列印流體的液 經過該噴嘴;藉由一連串的光微影蝕刻和沉積步驟 陣列形成在該單片晶圓基板上:該等步驟涉及光成 ,其將曝光區域曝露於光,該光被聚焦以投射圖案 片基板上;其中 該陣列具有超過10000個該等小液滴噴射器, 等小液滴噴射器使其被該曝光區域所包圍。 本發明配置該噴嘴陣列,使得小液滴噴射器密 高,且減少所需曝光步驟的數目。 較佳地,該曝光區域小於900 mm2。較佳地, 晶圓基板被該曝光區域所包圍。在另一較佳的形式 光成像裝置是步進機,其將整個罩幕同時曝光。選 ,該光成像裝置是掃描器,其將狹窄帶寬(band) 描經過該曝光區域,以將罩幕曝光。 較佳地,該單片晶圓基板支撐超過1 2 0 0 0個小 射器。在這些實施例中,希望該陣列每平方毫米具 700個小液滴噴射器。 ‘ 在一些實施例中,列印頭積體電路被組裝至具 類似列印頭積體電路的頁寬列印頭,用於將列印流 滴噴射至列印媒介上,該列印媒介被饋給通過在媒 方向中的該列印頭;其中 該陣列具有超過1 00000個該等小液滴噴射器 陣列在該媒介饋給方向的橫方向中延伸2 0 0毫米至 噴射器 滴噴射 ,將該 像裝置 至該單 建構該 度非常 該單片 中,該 擇性地 的光掃 液滴噴 有超過 有其他 體的液 介饋給 ,且該 3 3 0毫 -22- 200904645 米。在另一較佳的形式中,該等噴嘴在該媒介饋給方向的 垂直方向中彼此相隔開達小於1 0微米。較佳地,該列印 頭具有超過1 40000個該等小液滴噴射器。在特別佳的形 式中’在該媒介饋給方向的垂直方向中彼此相隔開達小於 10微米的該等噴嘴,在該媒介饋給方向中也彼此相隔開達 小於1 5 0微米。 選擇性地,該等致動器配置在相鄰列內,每一致動器 具有在該等列的橫方向彼此相隔開的電極,用於連接至個 別驅動電晶體和一電源供應器;其中 在相鄰列中之該等致動器的該等電極具有相反的極性 ,所以在相鄰列中之該等致動器具有相反的電流流動方向 。較佳地,在每一列中之該等電極從其相鄰的致動器往該 列之橫方向偏移,所以每個第二致動器的該等電極共線。 在特別佳的實施例中,該等小液滴噴射器被製造在一長形 晶圓基板上,該長形晶圓基板平行於該等致動器之該等列 而延伸,且沿著該晶圓基板的長邊緣供給電力和資料。 在一些實施例中,該列印頭具有一列印引擎控制器( PEC ),用於將列印資料送至該陣列的噴嘴;其中 在使用期間,藉由將列印資料分配給該陣列之至少二 噴嘴之間的單一噴嘴,該列印引擎控制器可選擇性地降低 該列印解析度。較佳地,設置該二噴嘴在該陣列中的位置 ,使得該二噴嘴在該列印頭相對於列印媒介基材之運動的 橫方向中是最接近的鄰居。在特別佳的形式中,該列印引 擎控制器平等地分享該列印資料給該陣列中的該二噴嘴。 -23- 200904645 較佳地,該二噴嘴中心相隔開小於40微米。 在特別佳的形式中,該列印頭是頁寬列印頭,且該 噴嘴中心在該媒介饋給方向的橫方向中相隔開小於1 6微 米。較佳地,該等相鄰噴嘴中心在該媒介饋給方向的橫方 向中相隔開小於8微米。較佳地,該列印頭在該媒介饋給 方向的橫方向中,具有的噴嘴節距是每吋多於1600個噴 嘴(npi )。在另一較佳形式中,該噴嘴節距大於3〇〇〇 npi 【實施方式】 使用和2005年10月11日申請之USSN 11 /246687號 案(我們的檔案號MNN001US)所述相冏的微影蝕刻和沉 積步驟,製造附圖所示的列印頭積體電路(1C )。茲將該 案的內容倂入做參考。一般的工作者會瞭解附圖所示的列 印頭積體電路具有腔室、噴嘴、和加熱器電極結構,其需 要使用和2005年10月11日申請之USSN 11/246687號案 (我們的檔案號MNN001US)圖中所示者不同的曝光遮罩 。但是形成懸臂樑加熱器元件、腔室、和噴射孔的製程步 驟則維持相同。同樣地,以和2 0 0 5年10月1 1日申請之 USSN 1 1 /246687號案(我們的檔案號MNN001US)所討 論者相同的方式形成互補式金氧半導體(CMOS)層,除 了驅動場效電晶體(FET )以外。因爲加熱器元件的較高 密度,所以驅動FET需要比較小。 -24- 200904645 連結列印頭積體電路 申請人已發展出一些列印頭裝置,其使用一系列的列 印頭積體電路’該等列印頭積體電路連結在一起以形成頁 寬列印頭。依此方式,列印頭積體電路可組合成列印頭, 使用該等列印頭的應用範圍從寬格式列印至具有內建印表 機的相機和手機。各列印頭積體電路端對端地安裝在支撐 構件上,以形成頁寬列印頭。支撐構件將列印頭積體電路 安裝至印表機內,且將墨水分配至個別積體電路。USSN 1 1 /2 93 820號案描述了此類型列印頭的例子,茲將該案的 說明倂入做交互參考。 應瞭解的是,本文所提及的用語「墨水」應解釋爲任 何的列印流體,除非內文清楚地表示其只是用於影像列印 媒介的著色劑。列印頭積體電路可同樣地噴射隱性( invisible)墨水、黏劑、藥劑、或其他功能化的流體。 圖1A顯示頁寬列印頭100的示意圖,其具有安裝至 支撐構件94的系列列印頭積體電路92。彎曲側96允許其 中一個列印頭積體電路92的噴嘴、和在紙饋給方向中相 鄰列印頭積體電路的噴嘴重疊。重疊每一列印頭積體電路 92的噴嘴,提供了橫越二個列印頭積體電路92之間接合 處的連續列印。此避免在列印結果中的「帶(banding ) 」。以此方式連結各列印頭積體電路,僅使用不同數目的 列印頭積體電路便可製作任何所欲長度的列印頭。 列印頭積體電路92之端對端的配置,需要供給電力 和資料至沿著每一列印頭積體電路92長側的結合墊。 -25- 200904645 2006年10月10日申請之11/544764號案(我們的檔案號 PUA001US )中詳細地描述此等連接、和具有列印引擎控 制器(PEC )之連結積體電路的控制。 3200 dpi列印頭槪要 圖1B顯示申請人最近硏發的3 200 dpi (點/吋)列印 頭上噴嘴陣列的剖面。列印頭具有「真實(true )」32 00 dpi解析度,因爲噴嘴節距是3200 dpi,而不是具有3200 dpi可尋址位置但是噴嘴節距小於200 dpi的印表機。圖 1 B所示的剖面顯示噴嘴陣列的八個單位晶胞,且移除頂 部層。爲了例示的目的,已顯示噴射孔2的輪廓。「單位 晶胞(unit cell)」是噴嘴陣列的最小重複單元,且具有 二個完整的液滴噴射器、和在該等完整噴射器兩側中任一 側上之四個「半液滴噴射器」。圖2顯示一個單位晶胞。 噴嘴列在媒介進給方向8的橫向延伸。中間四列的噴 嘴是一個顏料通道4。墨水供給供給通道6兩中的任一側 有二列延伸。來自晶圓相對側的墨水經由墨水饋給管1 4 流至墨水供給通道6。上和下墨水供給通道1 〇、1 2是分離 的顏料通道(雖然用於較大的顔料密度,但是其可列印相 同顏色的墨水---例如CCMMY列印頭)。 供給通道6上方的列20、22在媒介饋給方向8係橫 向地偏置。供給通道6下方的列24、26沿著媒介的方向 做類似地偏置。再者’列2 0、2 2和列2 4、2 6相對於彼此 係相互偏置。因此’列2 0至2 6在媒介饋給方向之橫向的 -26- 200904645 組合噴嘴節距,是任何個別列之噴嘴節距的四分之一。沿 著每一列的噴嘴節距約爲32微米(公稱31.75微米)’ 因此一個顏料通道之全部列的組合噴嘴節距約爲8微米( 公稱7.93 75微米)。此等於3200 npi的噴嘴節距,因此 列印頭具有「真實(true)」3200 dpi的解析度。 單位晶胞(unit cell) 圖2是噴嘴陣列的一個單位晶胞。每一單位晶胞具有 相當於四個液滴噴射器(二個完整的液滴噴射器和在該等 完整噴射器兩側的四個「半液滴噴射器」)。液滴噴射器 是噴嘴、腔室、驅動FET、和用於單一微機電(MEMS ) 流體噴射裝置驅動電路。一般的工作者會瞭解:爲了方便 ,液滴噴射器通常單純地指噴嘴;但是從使用的內容可瞭 解,此用語是否僅指噴射孔或整個MEMS裝置。 由墨水饋給管1 4經由上墨水供給通道1 0饋給上二噴 嘴列18。下噴嘴列16是不同顏料通道,其由供給通道6 饋給。每一噴嘴具有結合的腔室28和在電極34和36之 間延伸的加熱器元件3 0。各腔室呈橢圓形且彼此偏置,所 以其短軸(minor axes)在媒介饋給方向的橫向重疊。此 結構允許腔室容積 '噴嘴面積、和加熱器尺寸實質地相同 於上述2005年10月11日申請之USSN 11/246687號參考 案(我們的檔案MNN 0 0 1 U S )所示的I 6 0 0 dp i列印頭。 同樣地,腔室壁3 2維持4微米厚,且接點3 4、3 6的面積 仍然是10微米xl〇微米。 -27- 200904645 圖3顯示組成噴嘴陣列的單位晶胞複製圖案。每一單 位晶胞3 8橫越晶圓平移達寬度X °相鄰列互呈鏡相且平移 達半個寬度:〇.5x = y 。如上所述’此提供用於一顏料通 道(20、22、24、26 )之列的組合噴嘴節距0_25x。在所 示的實施例中,x = 31.75且 y = 7.9375。此提供3200 dpi 的解析度,而不會減少加熱器、腔室、或噴嘴的尺寸。因 此,當在3200 dpi作業時,列印密度比2005年10月1 1 日申請之USSN 11/246687號參考案(我們的檔案MNN 001US)之1 600 dpi列印頭還高;或者列印頭可在1600 dpi作業,以延長噴嘴具有良好列印密度的壽命。下文會 進一步討論列印頭的此項特徵。 加熱器接點配置 加熱器元件3 0和個別接點3 4、3 6的尺寸,相同於 2005年10月11日申請之USSN 11/2 46687號參考案(我 們的檔案MNN 001US)之1 600 dpi列印頭。然而’因爲 有二倍的接點數目,所以有二倍的FET接點(負接點)數 目,該等FET接點中斷「電力平面(帶正電壓的CMOS金 屬層)」。電力平面(power plane)中之孔的高密度,在 各孔之間的薄金屬片產生高阻抗。此阻抗有損列印頭的整 體效率,且會減少一些加熱器相對於其他加熱器的驅動脈 衝。 圖4是晶圓、C Μ Ο S驅動電路5 6、和加熱器的剖面示 意圖。每一列印頭積體電路的驅動電路5 6被製造在晶圓 -28- 200904645 基板48上呈數個金屬層40、42、44、45’介電材 43、47將該等金屬層分離,導孔46穿過各層以建 求的層間連接。驅動電路56具有供每一致動器30 動FET (場效電晶體)58,FET 58的源極54連接 平面40 (連接至電源供應器之位置電壓(position )的金屬層),且汲極52連接至接地平面42(在 或接地的金屬層)。此外,電極34、30或各致動f 每一者連接至接地平面42和電力平面40。 電力平面40通常是最上面的金屬層,且接地: 是在電力平面下面的第一層(被介電層41分離) 器30、墨水腔室28、噴嘴2被製造在電力平面金 的頂部。蝕刻穿過此層形成孔46,所以負電極3 4 至接地平面,墨水流道1 4可從晶圓基板4 8的背部 墨水腔室2 8。因爲噴嘴密度增加,所以這些孔或穿 平面之穿孔(punctuation)的密度也增加。因爲穿 平面之穿孔的較大密度,所以穿孔之間的間隙變小 過這些間隙之金屬層薄橋,是相對高電阻的點。因 平面連接至沿著列印頭積體電路一側的供應器,所 列印頭積體電路非供應器側上之致動器的電流,可 通過一連串的這些阻抗間隙。至非供應器側致動器 的寄生電阻,會影響其驅動電流和極度地影響這些 液滴噴射特性。 列印頭使用數種對策來解決此問題。首先,相 致動器具有相反的電流流動方向,亦即,其中一列 料41 ' 丨立所要 用的驅 ;至電力 voltage 0電壓 蓉30的 平面42 。致動 屬層40 可連接 延伸至 過電力 過電力 了。穿 爲電力 以流至 能必須 所增加 噴嘴的 鄰列的 的電極 -29- 200904645 極性在相鄰列做改變。爲了列印頭此方面的目的,與供給 通道6相鄰的兩列噴嘴,應認爲是如圖5 A所示單一列’ 而不是如先前圖式所示地交錯。兩列A、B沿著列印頭積 體電路的長度縱向地延伸。全部的負電極34沿著二相鄰 列A、B的外側邊緣。從一側(稱爲邊緣62 )供給電力’ 且電流在流經兩列中的加熱器元件3 0之前,電流只通過 一排薄的阻抗性金屬區段64。因此,在列A中的電流流 動方向和在列B中的電流流動方向相反。 對應的電路圖例示此組態的好處。因爲列A之各負電 極34間的薄區段的阻抗Ra,所以電源供應器V +電壓下 降。然而,全部加熱器3 0的正電極3 6相對於接地係在相 同的電壓(VA = VB )。電壓在橫越二列 A、B的全部加熱 器30 (分別爲阻抗RHA、RHB )時下降。歹!J A、B的電路 中刪除了列B之各負電極34間的薄橋部66的阻抗RB » 圖5B顯示如果二相鄰列之電極極性不是相反的情況 。在此情況中,列B的整排阻抗性區段66呈現在電路中 。供應器電壓V +經過阻抗RA後下降至VA---列A之正電 極3 6的電壓。從該處經過列A加熱器的阻抗R η a後,電 壓下降至接地。然而,電壓v a經過列B負電極3 4之間薄 區段66的阻抗RB,在列B正電極36的電壓從VA降至 VB。因此,經過列B加熱器3 0的電壓下降是小於列A的 電壓下降。此會改變驅動脈衝,且因此改變液滴噴射特性 〇 用於維持電力平面之整合性的第二個對策是將每列中 -30- 200904645 的相鄰電極對(p a i r )相交錯。參考圖6 ’現在 3 4相交錯,所以每一第二電極橫向地位移至列。 加熱器接點3 4和3 6同樣地相錯開。此用於使貫 面40之各孔間的間隙64、66更寬。較寬的間隙 的電阻抗,且遠離列印頭積體電路隻電源供應器 器的電壓下降較小。圖7顯示電力平面40的較 在交錯列4 1、4 4中的電極3 4對應於供給通道6 顏料通道。交錯列4 2、4 3關於兩側中任一側上 道的一半噴嘴---由供給通道1〇所饋給的顏料和 道12所饋給顏料通道。應瞭解的是五顏料通道 體電路具有九列負電極,其能誘發離電源供應器 噴嘴中的加熱器的電阻。各負電極之間的間隙變 減少該等件系所產生的阻抗。此促進整個噴嘴陣 噴射特性更均勻。 有效率的製造 上述的特性增加了晶圓上噴嘴的密度。每一 電路約22毫米長、小於3毫米寬、且能支撐超 個噴嘴。此代表了申請人之〗6 0 0 d p i列印頭積體 2005年1〇月11日申請之USSN 11 /246687號案 檔案MNN 001US)的例子)中噴嘴的數目大幅 事實上,製造成如圖12所示尺寸之3200 dpi列 陣列,具有1 2 8 0 0個噴嘴。 因爲整個噴嘴陣列都位在用於將罩幕(光罩 各負電極 相鄰列的 穿電力平 具有較少 側的加熱 大區段。 所饋給之 之顏料通 由供給通 列印頭積 側最遠之 寬,大幅 列之液滴 個別積體 過 10000 電路(見 (我們的 池增力口。 印頭噴嘴 )曝光之 -31 - 200904645 微影步進機(stepper )或掃描器的曝光範圍內,所以這麼 多(多於10000個)噴嘴的微影製造有效率。圖14示意 地顯示光微影步進機。光源1 02發射特殊波長的平行射線 104穿過罩幕106,該罩幕具有待傳輸至積體電路92的圖 案。圖案被聚焦穿過用於縮小特徵的透鏡108,並被投射 至承載積體電路(或所謂的「晶粒」)92的晶圓工作台 1 1 〇上。被光1 04照射之晶圓工作台1 1 0的區域稱爲曝光 區1 1 2。不幸的是曝光區1 1 2的尺寸受到限制,以維持投 射圖案的準確度整個晶圓盤不能同時被曝光。絕大部分 的微影步進機具有小於30毫米χ30毫米的曝光區。一個主 要的製造者(荷蘭的ASML)所製造的步進機具有22毫米 χ22毫米的曝光區,其爲業界的典型。 步進機曝光一個晶粒或晶粒的一部分,然後步進至另 一個晶粒或同一晶粒的另一部分。在單一片基板上具有儘 可能多的噴嘴,有利於袖珍的列印頭設計,且有利於支撐 件上各積體電路的組合體以彼此精確的關係最小化。本發 明建構的噴嘴陣列,使超過1 0000噴嘴位在曝光區內。事 實上,整個積體電路可位在曝光區內,所以單一片基板可 設有超過14000個噴嘴,而不必就每一圖案步進和再對準 〇 一般的工作者會瞭解,上述技術可應用於以光微影掃 描器製造噴嘴陣列。圖15Α至15C示意掃描器的作業。在 掃描器中,光源102發射光104的較狹窄射束,其寬度仍 足以照射罩幕1 06的整個寬度。狹窄射束1 04被聚焦穿過 -32- 200904645 較小的透鏡108,且被投射至安裝再曝光區112內之積體 電路9 2的一部份。罩幕1 〇 6和晶圓工作台1 1 〇在相反方 向彼此相對運動,所以罩幕的圖案被掃描通過整個曝光區 ]1 2 ° 顯然地,此類型的光成像裝置也適於有效率地製造具 有大數目噴嘴的列印頭積體電路。 平坦外部噴嘴表面 如上所述,依據2005年 10月11日申請之USSN 1 1/246687 (我們的檔案MNN 001US)號交互參考案所列 之步驟製造列印頭積體電路。只有改變曝光罩幕圖案’以 提供不同的腔室和加熱器組態。如2005年1 0月1 1日申 請之USSN 11/246687 (我們的檔案MNN 001US)號案中 所描述者,頂部層和腔室壁是整合的構造---合適頂部和壁 材料的單一電漿提升化學蒸鍍沉積(PECVD )。合適的頂 部材料可爲氮化矽、氧化矽、氧氮化矽、氮化鋁等。頂部 和壁被沉積在犧牲光阻劑之台架(scaffold)層上,以在 CMOS之鈍化層上形成整合的構造。 圖8顯示蝕刻進入犧牲層72內的圖案。該圖案由腔 室壁32和柱狀構造68 (下文討論)組成,其全部具均勻 厚度。在所示的實施例中,壁和柱的厚度是4微米。這些 構造是相對地薄,所以當所沉積的頂部和壁材料冷卻時, 頂部層70的內表面中幾乎沒有凹陷(如果有的話)。蝕 刻圖案中的厚構造,將保持相對大體積的頂部/壁材料。 -33- 200904645 當材料冷卻和收縮時,外表面向內拉,以產生凹陷。 這些凹陷使得外表面不平坦,其不利於列印頭的維護 。如果擦拭或抹掉列印頭,紙塵和其他污物會留在凹陷內 。如圖9所示,頂部層72的外表面是平坦且無特徵的, 除了噴嘴2以外。藉由擦拭或抹掉,更容易移除灰塵和已 乾燥的墨水。 再塡注墨水流 參考圖1 0,除了在陣列的縱長向末端的入口供給較少 的噴嘴以外,每一墨水入口供給四個噴嘴。在起始的注給 期間和在氣泡阻塞的情況,隨機的噴嘴入口 1 4是有利的 〇 如流動線74所示,至遠離入口 14之腔室28的再塡 注流比至緊鄰供給通道6之腔室2 8的再塡注流更長。爲 了均勻液滴噴射特徵,希望陣列中每一噴嘴有相同的墨水 再塡注時間。 如圖11所示,鄰近腔室的入口 76和遠離腔室的入口 78設計成不同尺寸。同樣地,柱狀構造68的位置設計成 對鄰近噴嘴入口 76和遙遠噴嘴入口 78提供不同水準的流 動限制。入口的尺寸和柱的位置可調整流體阻力(drag ) ,所以陣列中全部噴嘴的再塡注時間是均勻的。也可設計 柱的位置,以阻尼腔室2 8內蒸汽泡泡所產生的壓力脈衝 。運動經過入口的阻尼脈衝,防止各噴嘴之間的流體串擾 (cross talk )。再者,在柱6 8和入口 76、78之側面間的 -34- 200904645 間隙8 0、8 2,可做爲墨水再塡注流中所含之較大氣泡的有 效氣泡陷阱或捕捉器(trap)。 延長的噴嘴壽命 圖1 2顯示噴嘴陣列中一顏料通道的剖面,其具有 3 200 dpi解析度所需的尺寸。應瞭解的是,「真實」3200 dpi是非常高的解析度---比照相品質還好。此解析度超越 許多列印工作。通常1 600 dpi解析度比較適當。有鑑於此 ,藉由共享二相鄰噴嘴之間的列印資料,列印頭積體電路 犧牲了解析度。以此方式,通常送至1 600 dpi列印頭中一 個噴嘴的列印資料,被取代性地送至3200 dpi列印頭中相 鄰的噴嘴。此模式的操作使噴嘴的壽命延長二倍以上,且 允許印表機以非常高的列印速率作業。在3200 dpi模式中 ,印表機以60 ppm (全彩A4 )列印,且在1 600 dpi模式 中,速率趨近120 ppm。 1 600 dpi模式的附加利益是:能使用具有列印引擎控 制器(PEC )和撓性印刷電路板之此列印頭積體電路,其 僅能建構於1 600 dpi解析度。 如圖12所示,噴嘴8 3和噴嘴8 4橫向地偏移只有 7.93 75微米。兩噴嘴以絕對關係進一步隔開,但是在紙饋 給方向的位移可說明噴嘴啓動(firing )順序的時間點( timing)。因爲相鄰噴嘴之間8微米的橫向移位是小的, 所以爲了呈現的目的,可以忽略該移位。但是,藉由使高 頻振動(dither )最佳化(如果希望的話),可解決該移 -35- 200904645 位。 氣泡、腔室、和噴嘴匹配 圖1 3是噴嘴陣列的放大視圖。噴射孔和腔室壁兩者 皆爲橢圓形。將長軸配置成平行於媒介饋給方向,可允許 在饋給方向之橫向中高的噴嘴節距,同時維持需要的腔室 容積。再者’配置腔室的短軸使該等短軸在橫方向重疊, 此也改善了噴嘴包裝密度。 加熱器3 0是在其個別電極3 4和3 6之間延伸的懸臂 樑。長形樑加熱器元件產生氣泡,其大致呈橢圓形(在平 行於晶圓平面的剖面)。匹配氣泡90、腔室28、和噴射 孔2,可促進能量效率液滴噴射。對「自我冷卻」列印頭 而言,低能量液滴噴射是重要的。 結論 顯示在圖中的列印頭積體電路,提供「真實」3 2 00 dpi解析度、和比1 600 dpi列印速率還高很多之列印速率 的選擇。分享較低解析度的列印資料延長噴嘴壽命’且提 供現存1 600 dpi列印引擎控制器和撓性印刷電路板的相容 性。均勻厚度的腔室壁圖案有平坦的外部噴嘴表面’其較 無阻塞的傾向。此外’致動器接觸組態和長形噴嘴構造’ 提供媒介饋給方向之橫方向上的高噴嘴節距’同時保持平 行於媒介饋給方向的薄噴嘴陣列。 所述的特定實施例在各方面只做例示用’且絕無限制 -36- 200904645 寬廣發明槪念之精神和範圍之意。 【圖式簡單說明】 圖〗A是連結列印頭積體電路構造的示意圖; 圖1B本發明列印頭積體電路上噴嘴陣列的局部平面 視圖; 圖2是噴嘴陣列的單位晶胞; 圖3顯示組成噴嘴陣列之單位晶胞的複製圖案; 圖4是穿過噴嘴之CMOS層和加熱器元件的示意剖面 圖, 圖5 A示意地顯示在相鄰致動器列具有相反電極性之 電極配置; 圖5B示意地顯示在相鄰致動器列具有典型電極性之 電極配置; 圖6顯示圖1之列印頭積體電路的電極組態; 圖7顯示CMOS層之電力平面的剖面; 圖8顯示蝕刻進入頂/側壁層之犧牲台架層的圖案; 圖9顯示在蝕刻噴嘴孔以後之頂部的外表面; 圖1 〇顯示噴嘴的墨水供給流動; 圖11顯示不同列中至各腔室的不同入口; 圖1 2顯示用於一顏料通道的噴嘴間隔; 圖1 3顯示具有匹配橢圓形通道和噴射孔之噴嘴陣列 的放大視圖; 圖14是光微影步進機的示意圖;和 -37- 200904645 圖1 5 A至 【主要元件符 2 :(噴身 2 :噴嘴 6 :(墨7」 8 :媒介 1 0 :上墨 1 2 :下墨 14·墨水 14.墨水 1 4 :噴嘴 1 6 :下噴 1 8 :上噴 20 :歹!J 22 :列 24 :列 26 :列 28 :腔室 3 0 :加熱 3 0 :致動 32 :腔室 34 :(負 36 :(正 1 5 C示意地例示光微影步進機的的作業 號說明】 "孔 c )供給通道 (紙)饋給方向 水供給通道 水供給通道 饋給管 流道 入口 嘴列 嘴列 器元件 器 壁 )電極(接點) )電極(接點) -38- 200904645 3 8 :單位封包 40:電力平面(金屬層) 41:介電層(材料) 41 :列 42 :接地平面(金屬層) 42 :列 43:介電層(材料) 43 :列 44 :金屬層 44 :列200904645 IX. Description of the Invention [Technical Field] The present invention relates to the field of printing, and more particularly to an ink jet printing head for high resolution printing. [Prior Art] The quality of printed images depends largely on the resolution of the printer, so efforts are constantly being made to improve the print resolution of the printer. The print resolution is closely dependent on the droplet volume and the spacing of the printer's addressable locations on the media substrate. The spacing between the nozzles on the ink jet head need not be as small as the spacing between the addressable locations on the media substrate. A nozzle that prints a point at an addressable location and a nozzle that prints a dot at an addressable location can be separated by any distance. Regardless of the spacing between the nozzles on the printhead, the movement of the printhead relative to the media, or the movement of the media relative to the printhead, or both, allows the printhead to eject droplets at each addressable position. At the extremes of the load, the same nozzle can print adjacent droplets due to the proper relative motion between the print head and the media. Excessive movement of the media relative to the print head reduces the print rate. In the case of a page-width printhead, scanning the printhead for multiple passes of a single packet of media, or by passing the media multiple times through the printhead, reduces the print rate per minute of printed pages. Furthermore, each nozzle may be spaced along the media feed path or in the scan direction so that each addressable location on the medium is less than the physical spacing of adjacent nozzles. It can be understood that at most -4 - 200904645 nozzles are spaced apart in a large section of the paper path or scanning direction, which violates the pocket design. More importantly, the paper needs to be carefully controlled to feed the paper, and the precision printer controls the number of nozzle firings. The problem with large nozzle arrays is greater in terms of page width print heads. To a plurality of nozzles spaced apart in a large length of paper path, the nozzle array needs to have relatively large areas. By definition, the nozzle array must extend across the width of the media, but the size of the nozzle array in the media feed direction should be as small as possible. Extending a relatively long distance array in the media feed direction requires a complex print cylinder that maintains the spacing between the nozzle and the media surface throughout the array. Some printers are designed to use a wide vacuum drum across the printhead to get the control needed for the media. In view of this issue, there is a strong incentive to increase the nozzle density (ie the number of nozzles per unit area) on the print head to increase the addressable position and resolution of the printer while maintaining the array (in the medium feed direction) ) Small width. SUMMARY OF THE INVENTION Accordingly, the present invention provides a printhead for an inkjet printer comprising: an array of nozzles disposed in adjacent columns, each nozzle having an ejection orifice and for arranging columns Printing fluid is ejected through corresponding actuators of the ejection orifice, each actuator having electrodes spaced apart from each other in the lateral direction of the columns; and a drive circuit for transmitting electrical power to the electrodes; wherein adjacent columns are present The electrodes of the actuators have opposite polarities' so that the actuators in adjacent columns have opposite current flow directions 200904645 by making the polarities of the electrodes in adjacent columns opposite The perforations in the force plane remain at the outer edges of adjacent columns. A row of narrow impedance bridges between these 'moves until the current does not flow. This eliminates the impedance of the bridge from the actuator drive circuit. The impedance of the actuator on the power supply side by the head integrated circuit is uniform in the droplet ejection characteristics of all the nozzles of the entire array. Preferably, the electrodes in each column are offset from the lateral direction of their adjacent columns, so that of each of the second actuators. In another preferred form, in the form of the offset less than 40 microns, the offset is less than 30 microns. Preferably, the fabrication is on an elongated wafer substrate, the wafer substrate extends parallel to the column, and the driving circuit is on the CMOS layer of the wafer substrate, and the power is supplied along the long edge of the wafer substrate. Wait for the CMOS layer. In another preferred form, the top metal layer of the CMOS power plane has a positive voltage, so that the electrodes are connected to another preferred form of the aperture formed in the power plane, the CMOS The layer has a drive field effect transistor (FET) for the bottom gold actuator. Preferably, the layer has a thickness of less than 0. 3 micron metal layer. In some embodiments, the actuators are heater elements that create a vapor bubble within the printing fluid such that droplets of fluid are printed from the ejection orifice. Preferably, the heater elements are beams between the suspension electrodes so that the heater elements are submerged. Preferably, the ejection holes are elliptical, and the electric power of the ejection holes CMOS reduces the position of the bridge portions of the perforations away from the column loss, so that the actuators can be collinear to the equal electrodes. The particularly good array nozzles are formed on the surface of the array by the sum of the layers to form a via having a negative voltage. Within each of the sub-layers, the CMOS device is used to eject the column in its individual printed fluid with a long axis parallel to -6 - 200904645 on the longitudinal axis of the beam. In another preferred form, the major axes of the injection holes in one of the columns and the major axes of the injection holes in adjacent columns are collinear, such that in one of the columns Each nozzle is aligned with one of the nozzles in the adjacent column. Preferably, the major axes of adjacent injection holes are spaced apart by less than 50 microns. In another preferred form, the major axes of adjacent orifices are spaced less than 25 microns apart. In a particularly preferred form, the major axes of adjacent orifices are separated by less than 16 microns. In a particular embodiment, the printhead has a nozzle pitch of more than 1 600 nozzles (npi) per turn in the transverse direction of the media feed direction. In the preferred embodiment, the nozzle pitch is greater than 3 〇〇〇 npi. In a particularly preferred embodiment, the print head has a print resolution per dot (d p i ) equal to the nozzle pitch. In a particular embodiment, the printhead is a pagewidth printhead that is configured to print an A4-size medium. Preferably, the array has more than 100,000 nozzles. Accordingly, the present invention provides an ink jet printhead for a printer that can be printed on a substrate with different print resolutions, the ink jet printhead comprising an array of nozzles, each nozzle having a spray hole and a corresponding actuator for ejecting the print fluid through the spray hole; and a print engine controller for feeding the print data to the nozzle of the array; wherein during use, by printing Data is distributed to a single nozzle between at least two nozzles of the array, and the print engine controller can selectively reduce the print resolution. 200904645 The present invention recognizes that some printing jobs do not require the best resolution of the print head... - a lower resolution is perfectly suited for the purpose of the document to be printed. This situation is especially true when the print head has a very high resolution (for example, greater than 1 200 dpi). By selecting a lower resolution, the print engine controller (PEC) can treat two or more laterally adjacent (but not touching) nozzles in a printhead with fewer nozzles as a single virtual nozzle. The adjacent nozzles then share the printed material - the dots required by the virtual nozzle are alternately printed by each actual nozzle. This is used to extend the working life of all nozzles. Preferably, the position of the two nozzles in the array is set such that the two nozzles are the closest neighbors in the transverse direction of the movement of the print head relative to the substrate. Preferably, the print engine controller shares the print data equally to the two nozzles in the array. In another preferred form, the two nozzle centers are separated by less than 20 microns. In a particularly preferred form, the printhead is a pagewidth printhead and the centers of the two nozzles are spaced less than 16 microns apart in the transverse direction of the media feed direction. In a particular embodiment, the two nozzle centers are spaced apart by less than 8 microns in the transverse direction of the media feed direction. In a particular embodiment, the printhead has a nozzle pitch of more than 1 600 nozzles per n (npi) in the transverse direction of the media feed direction. In the preferred embodiment, the nozzle pitch is greater than 3 000 npi. In a particularly preferred embodiment, the print head has a print resolution per dot (dpi) equal to the nozzle pitch. In a particular embodiment, the printhead is configured to print an A4 size media and the printhead has more than 100,000 nozzles. In some embodiments, when printing at a lower print resolution, the printer operates at a higher print rate. Preferably, the higher printing rate -8-200904645 is more than 60 pages per minute. In a preferred form, the print engine controller halves the color planes printed by the adjacent nozzles in a high frequency vibration matrix, the high frequency vibration matrix being optimized for each The lateral displacement of the jetted droplets. Accordingly, the present invention provides an ink jet printhead comprising: an array of nozzles disposed in adjacent columns; each nozzle having an ejection orifice, a chamber for receiving a printing fluid, and a corresponding actuation The actuator is for injecting the printing fluid through the injection hole; each chamber has an individual inlet to re-print the printing fluid, the printing fluid is ejected by the actuator; and the printing fluid supply a channel extending parallel to the adjacent columns to provide an actuator for printing a fluid to each nozzle in the array via the respective inlets; wherein the nozzle inlets are formed in one of the adjacent columns 'The re-injection flow rate is different from the re-injection flow rate through the nozzle inlets in the other column of the adjacent columns. The nozzle constructed in accordance with the present invention allows the ink supply channels on one side to be in a series. Since the supply passage is not only supplied to one row of nozzles on one side, the above construction allows the nozzle density on the surface of the print head to be large. However, because the flow rate through each inlet of the column is different, the columns that are further away from the supply channel do not have significantly longer re-injection times. Preferably, the nozzle inlets constructed in one of the adjacent columns have a reflow rate that is different from the reflow rate of the nozzle inlets in another column of the adjacent columns. Therefore, the chambers of all the nozzles in the array 200904645 re-injection time is roughly the same. In another preferred form, the inlet closest to the column of supply channels is narrower than the column away from the supply channel. In some embodiments, there are two adjacent rows of nozzles on either side of the supply channel. Preferably the 'inlet has a flow damped configuration. In a particularly good form, the 'flow damped construction is a column that is designed to create a flow barrier. Columns in the inlet of one column and columns in the inlets of other columns create varying degrees of obstacles. Preferably, the column creates a bubble trap or trap between the side of the column and the inlet side wall. Preferably, the column diffuses to propagate pressure pulses within the print fluid to reduce crosstalk between the nozzles. In some embodiments, the actuators are heater elements for generating a vapor bubble within the printing fluid such that droplets of the printing fluid are ejected from the ejection orifice. Preferably, the heater elements are beams suspended between their individual electrodes so that the heater elements are submerged within the printing fluid. Preferably, the injection holes are elliptical and the major axis of the injection holes is parallel to the longitudinal axis of the beam. Preferably, the major axes of adjacent injection holes are separated by less than 50 microns. In another preferred form, the major axes of adjacent orifices are separated by less than 25 microns. In a particularly preferred form, the major axes of adjacent orifices are spaced less than 16 microns apart. In a particular embodiment, the printhead has a nozzle pitch of more than 1 600 nozzles per n (npi) in the lateral direction of the media feed direction. In the preferred embodiment, the nozzle pitch is greater than 3 000 npi. In a particularly preferred embodiment, the print head has a print resolution per dot (dpi) equal to the nozzle pitch. In a particular embodiment, the printhead is a pagewidth printhead that is configured to print an A4-size medium. Preferably, the array of --10-200904645 has more than 1,000,000 nozzles. Accordingly, the present invention provides an ink jet printhead comprising: an array of nozzles disposed in a series of columns; each nozzle having an ejection orifice, a chamber for holding a printing fluid, and a heater element; a heater element for generating a vapor bubble in the printing fluid contained in the chamber to eject a droplet of the printing fluid through the ejection orifice; wherein the nozzle, the heater element, and the chamber All are elongate configurations having a long dimension that exceeds the other dimensions of each elongate configuration; and the nozzle, the heater, and the individual elongated dimensions of the chamber are parallel And extending perpendicular to the column direction. In order to increase the nozzle density of the columns, each of the nozzle assemblies ... - chambers, orifices, and heater elements are constructed to have an elongate configuration that is all aligned in the lateral direction of the column direction. This increases the nozzle pitch of the column or the number of nozzles per turn (npi) while allowing a sufficiently large chamber volume and droplet volume to be maintained for proper pigment density. This also avoids the need to extend the large distance in the paper feed direction (in the case of a page width printer) or in the scanning direction (in the case of scanning a print head). Preferably, each column in the array is offset relative to its adjacent column, so that none of the equal lengths of the nozzles in a column does not match any of the same length dimensions in the adjacent column. Collinear. In another preferred form, the printhead is a pagewidth printhead for printing to a media substrate fed through the printhead in a media feed direction, such that the nozzles are of equal length Dimensions, parallel to the media feed direction. -11 - 200904645 Preferably, the length of each second nozzle is in registration. In a particularly preferred form, the spray holes of all of the nozzles are formed in a flat top layer that partially defines the chamber; the top layer has an outer surface that is other than the spray holes The rest is flat. In a particularly preferred form, the nozzles of the array are formed on a lower substrate 'the substrate extends parallel to the top layer' and the chamber is partially defined by sidewalls extending between the top layer and the substrate, the design The shape of the side wall is such that the inner surface of the side wall is at least partially elliptical. Preferably, the side wall is elliptical except for the inlet opening for the printing fluid. In a particularly preferred form, the minor axes of the nozzles in one of the columns are partially overlapped with the minor axes of the nozzles in the adjacent column of the media feed direction. In another preferred form, the ejection orifices are elliptical. Preferably, the heater elements are beams suspended between their individual electrodes such that during use, the heater elements are submerged within the print fluid. Preferably, the vapor bubble generated by the heater element is elliptical in cross section parallel to the injection hole. In some embodiments, the printhead further includes a supply channel adjacent the array, the array extending parallel to the columns. In a preferred form, the nozzles of the array are nozzles of the first array, and the nozzles of the second array are formed on the other side of the supply channel; the second array is a mirror image of the first array, but relative to The first array is offset such that none of the long axes of the ejection holes in the first array are collinear with any of the long axes of the second array. Preferably, the isometric axes of the ejection holes in the first array, from the long axes of the ejection holes in the second array, to the transverse direction of the medium feeding direction -12 - 200904645 The direction offset is less than 20 microns. In a particularly preferred form, the offset is about 8 microns. In some embodiments, the print head has a nozzle pitch of more than 16,000 nozzles per n (n p i ) in the transverse direction of the media feed direction. In a particularly preferred form, the substrate has a width in the media feed direction of less than 3 mm. Accordingly, the present invention provides an ink jet printhead comprising: an array of nozzles for ejecting droplets of printing fluid to a printing medium as it moves in a printing direction relative to the printing head The printing medium; wherein the nozzles in the array are spaced apart from each other by less than 1 〇 micrometer in the vertical direction of the printing direction. Since the nozzles are spaced less than 10 microns apart in the vertical direction of the printing direction, the print head has a very high "true" print resolution - that is, by the number of high nozzles per turn reaching the height of each turn Points. Preferably, the nozzles in the array spaced apart from each other by less than 10 microns in the vertical direction of the printing direction are also spaced apart from each other by less than 150 microns in the printing direction. In another preferred form, the array has more than 700 nozzles per square millimeter. Preferably, the array of nozzles is supported on a plurality of monolithic wafer substrates, each of which supports more than 10000 of the nozzles. In another preferred form, each single wafer substrate supports more than 12,000 of the nozzles. In a particularly preferred form, the plurality of monolithic wafer substrates are mounted end-to-end to form a pagewidth printhead for mounting in a printer, and the printer is constructed to feed in the media-13-200904645 The direction feed medium feed has more than 100,000 of these nozzles, and the direction of the transverse direction extends 200 mm to 3, the array has more than 140,000 such selective, the print head further includes each of the double nozzles For one purpose, the actuator configurators have separate drive transistors and a power supply in the lateral direction of the columns; the actuators in adjacent columns are so adjacent The actuating devices in the column. Preferably, the columns of electrodes in each column are offset in the lateral direction, so in each of the second preferred embodiments, the elongated wafer substrates are parallel on the droplet substrates. Extending, and along the long side of the wafer substrate, in some embodiments, the print head has a PEC) for feeding print data to the array 3 during use, by printing a data nozzle A single nozzle between the print engines that prints the resolution. Preferably, the two are arranged such that the two nozzles are the closest neighbors in the printhead relative to the transverse direction. Preferably, the print controller shares the print data equally. Preferably, the two nozzle centers are spaced apart from the print head; the print head feeds the print head at 30 mm. In some embodiments the nozzle is poor. The number actuators are respectively sprayed in adjacent columns, each of the uniformly open electrodes for connection to the electrodes having opposite polarities and opposite current flow directions from their adjacent actuators toward the movement The electrodes of the device are collinear. The injectors are fabricated to supply power and data at the edges of the elongated actuators. a column of engine controllers (?!J nozzles; wherein at least two controllers assigned to the array selectively reduce the position of the nozzles in the array in a preferred form of printing media substrate, the column The two nozzles in the array are printed. 40 microns. -14- 200904645 In a particularly preferred form, the print head is a page width print head 'and the center of the two nozzles is in the transverse direction of the medium feed direction Preferably, the adjacent nozzle centers are spaced apart by less than 8 microns in the transverse direction of the media feed direction. Preferably, the print head is transverse to the media feed direction. The nozzle pitch has more than 16 nozzles per nozzle (np i ). In another preferred form, the nozzle pitch is greater than 300 〇 npi 〇 Therefore, the present invention provides a method for A printhead integrated circuit of an ink jet print head, the print head integrated circuit comprising: a single wafer substrate supporting an array of small droplet ejectors for ejecting droplets of printing fluid To the print medium, each droplet ejector has a nozzle and actuation The actuator is for ejecting droplets of printing fluid through the nozzle; wherein the array has more than 10,000 of the droplet ejection injectors. Since a large number of droplet ejection injectors are fabricated on a single wafer, Therefore, the nozzle array has a high nozzle pitch, and the print head has a very high "true" print resolution - that is, the number of high nozzles per turn reaches the high number of dots per turn. The array has more than 1 2000 such small droplet ejectors. In another preferred form, the printing medium moves in a printing direction relative to the printing head; and such in the array The nozzles are spaced apart from each other by less than 10 μm in the vertical direction of the printing direction. In a particularly preferred form, the array is spaced apart from each other by less than 10 μm in the vertical direction of the printing direction. The nozzles are also spaced apart by less than 150 microns in the printing direction. In a preferred embodiment, the array has more than 700 such droplet ejections per square millimeter. In a particularly good form, such actuation Arranged in adjacent columns, each actuator having electrodes spaced apart from each other in the lateral direction of the columns for connection to individual drive transistors and a power supply; such actuations in adjacent columns The electrodes of the device have opposite polarities, so the actuators in adjacent columns have opposite current flow directions. In yet another preferred form, the electrodes in each column are adjacent thereto The actuators are offset in the lateral direction of the column so that the electrodes of each of the second actuators are collinear. In a particular embodiment, the monolithic wafer substrate is elongate and parallel to the The columns of the actuators extend such that, in use, power and data are supplied along the long edges of the wafer substrate. In some forms, the ink jet printhead includes a plurality of print head integrated circuits, And further comprising a print engine controller (PEC) for feeding the print data to the array of droplet discharge ejector; wherein, during use, at least two liquids are dispensed by the print data to the array Single droplet ejector between drop ejector, the print Engine controller selectively reducing the resolution printing. Preferably, the position of the two nozzles in the array is such that the two nozzles are the closest neighbors in the transverse direction of the movement of the print head relative to the print medium substrate. In a particularly preferred form, the print engine controller shares the print data equally to the two nozzles in the array. Optionally, the two nozzle centers are separated by less than 40 microns. In a particularly preferred embodiment, the printhead is a pagewidth printhead and the centers of the two nozzles are spaced apart by less than 16 microns in the transverse direction of the media feed direction -16-200904645. In still another preferred form, the adjacent nozzle centers are spaced apart by less than 8 microns in the transverse direction of the media feed direction. In some embodiments, the inkjet printhead includes a plurality of printhead integrated circuits that are mounted end-to-end to form a pagewidth printhead for a printer to construct the printer to The medium feed direction feeds the medium through the print head; the print head has more than one of the nozzles, and the print head extends 200 mm to 33 in the transverse direction of the medium feed direction 0 mm. In another preferred form, the array has more than 140,000 of the nozzles. Preferably, the array of droplet discharges has a nozzle pitch of more than 1600 nozzles per n (npi) in the transverse direction of the media feed direction. Preferably, the nozzle pitch is greater than 3 000 npi. Accordingly, the present invention provides a printhead integrated circuit for an inkjet printhead, the printhead integrated circuit comprising: a planar array of small droplet ejector, each droplet ejector having a data distribution a circuit, a drive transistor, a print fluid inlet, an actuator, a chamber, and a nozzle; a chamber is constructed to hold the print fluid adjacent the nozzle, so the drive transistor drives the actuator during use, Spraying small droplets of the printing fluid through the nozzle; wherein the array has more than 700 such small droplet ejectors per square millimeter, due to the high density of small droplet ejectors fabricated on the wafer substrate, The nozzle array has a high nozzle pitch and the print head has a very high "true" print resolution, i.e., a high number of nozzles per 吋-17-200904645 by the number of high nozzles per turn. Preferably, when the printing medium moves in a printing direction relative to the printing head, the array ejects droplets of the printing fluid onto the printing medium; and the nozzles in the array In the vertical direction of the printing direction, they are spaced apart from each other by less than 1 〇 micrometer. In another preferred form, the nozzles spaced apart from each other by less than 10 μm in the vertical direction of the printing direction are also spaced apart from each other by less than 150 μm in the printing direction. In a particular embodiment of the invention, a plurality of print head integrated circuits are used within the ink jet print head, each of the print head integrated circuits having more than 1,000,000 such small droplet ejectors, and preferably, exceeding 1 2000 such nozzle unit cells. In some embodiments, the printhead integrated circuit is elongate and mounted end to end, so the printhead has more than 100,000 such small droplet ejectors, and the printhead is The media feed direction extends from 200 mm to 340 mm in the lateral direction. In another preferred form, the printhead has more than 140,000 such small droplet ejectors. In some preferred forms, the actuators are disposed in adjacent columns, each actuator having electrodes spaced apart from each other in the lateral direction of the columns for connection to a corresponding drive transistor and a power source a supply; wherein the electrodes of the actuators in adjacent columns have opposite polarities, so the actuators in adjacent columns have opposite current flow directions, preferably in these implementations In the example, the electrodes in each column are offset from the adjacent actuators of -18-200904645 in the lateral direction of the column, so that the electrodes of each of the second actuators are collinear. In another preferred form, the elongate®® plate extends parallel to the columns of the actuators and supplies power and data along the long edges of the wafer substrate. In a particular embodiment, the printhead includes a print engine controller (PEC) for feeding print data to the nozzles of the array; wherein during printing, the print data is assigned to the array A single nozzle between at least two nozzles' print engine controller can selectively reduce the print resolution. Preferably, the position of the two nozzles in the array is set such that the two nozzles are in the transverse direction of the movement of the print head relative to the printing medium substrate + the closest neighbor of the stomach. In another preferred form, the print engine controller equally shares the print data to the two nozzles in the array. Preferably, the two nozzle centers are separated by less than 40 microns. In a particularly preferred form, the printhead is a pagewidth printhead' and the center of the two nozzles are spaced apart by less than 16 microns in the transverse direction of the media feed direction. In still another preferred form, the centers of the adjacent nozzles are spaced apart by less than 8 microns in the transverse direction of the media feed direction. In some forms, the printhead has a nozzle pitch of more than 1600 nozzles per n (npi) in the transverse direction of the media feed direction. Preferably, the nozzle pitch is greater than 3 000 nPi. Accordingly, the present invention provides a pagewidth inkjet printhead comprising: an array of small droplet ejector 'for ejecting droplets of printing fluid onto a printing medium, the printing medium being fed through Media feed direction -19-200904645 of the print head; each drop ejector has a nozzle, and an actuator for ejecting droplets of the print fluid through the nozzle; wherein the array has more than 10,000 The droplet ejection injectors, and the array extends 200 mm to 330 mm in the lateral direction of the medium feed direction. A page-width printhead with a large number of nozzles extending across the width of the media, providing a high nozzle pitch and a very high "true" print resolution - that is, a high number of turns per inch of high number of nozzles point. Preferably, the array has more than 140,000 such small droplet ejectors. In another preferred form, the nozzles are spaced apart from each other by less than 10 microns in a vertical direction of the media feed direction. In a particularly preferred form, the nozzles spaced apart from each other by less than 10 microns in the vertical direction of the media feed direction are also spaced apart from each other by less than 150 microns in the media feed direction. In a particular embodiment, the array droplet ejection device is supported on a plurality of monolithic wafer substrates, each monolithic wafer substrate supporting more than 100,000 droplet ejection injectors, and preferably more than 12,000 Small droplet ejector. In these embodiments, it is desirable for the array to have more than 700 droplet ejection devices per square millimeter. Optionally, the actuators are disposed in adjacent columns, each actuator having electrodes spaced apart from each other in the lateral direction of the columns for connection to an individual drive transistor and a power supply; The electrodes of the actuators in adjacent columns have opposite polarities' so that the actuators in adjacent columns have opposite current flow directions -20-200904645. Preferably, the electrodes in each column are offset from their adjacent actuators in the lateral direction of the column so that the electrodes of each of the second actuators are collinear. In a particularly preferred embodiment, the droplet ejection injectors are fabricated on an elongate wafer substrate that extends parallel to the columns of the actuators and along the The long edge of the wafer substrate supplies power and data. In some embodiments, the printhead has a print engine controller (PEC) for feeding print data to the nozzles of the array; wherein during use, at least the print data is dispensed to the array A single nozzle between the two nozzles, the print engine controller selectively reducing the print resolution. Preferably, the position of the two nozzles in the array is such that the two nozzles are most adjacent in the transverse direction of movement of the print head relative to the printing medium substrate. In a particularly preferred form, the print engine controller shares the printed material equally to the two nozzles in the array. Preferably, the two nozzles are spaced apart by less than 40 microns. In a particularly preferred form, the printhead is a pagewidth printhead' and the center of the two nozzles are spaced less than 16 microns apart in the transverse direction of the media feed direction. Preferably, the adjacent nozzle centers are spaced apart by less than 8 microns in the lateral direction of the media feed direction. Preferably, the print head has a nozzle pitch of more than 1600 nozzles per turn (npi) in the transverse direction of the media feed direction. In another preferred form, the nozzle pitch is greater than 3000 1^1. Accordingly, the present invention provides a printhead integrated circuit for an ink jet printer comprising: - a single a wafer substrate supporting an array of small droplet ejectors '--21 - 200904645 for ejecting droplets of printing fluid onto a printing medium, each droplet having a nozzle and an actuator, the actuation For passing liquid of the printing fluid through the nozzle; forming on the monolithic wafer substrate by a series of photolithographic etching and deposition steps: the steps involve photo-forming, exposing the exposed area to light, The light is focused to project onto the patterned substrate; wherein the array has more than 10,000 of such small droplet ejectors, such as a small droplet ejector that is surrounded by the exposed area. The present invention configures the nozzle array such that the small droplet ejector is dense and reduces the number of exposure steps required. Preferably, the exposed area is less than 900 mm2. Preferably, the wafer substrate is surrounded by the exposed area. In another preferred form, the optical imaging device is a stepper that simultaneously exposes the entire mask. Optionally, the light imaging device is a scanner that draws a narrow band through the exposed area to expose the mask. Preferably, the single wafer substrate supports more than 12,000 ejector. In these embodiments, it is desirable for the array to have 700 small droplet ejectors per square millimeter. In some embodiments, the printhead integrated circuit is assembled to a pagewidth printhead having a similar printhead integrated circuit for ejecting a print drop onto a print medium, the print medium being Feeding through the printhead in the media direction; wherein the array has more than 100,000 such dropletlet injector arrays extending 200 mm in the transverse direction of the media feed direction to the injector drop jet, The image device is placed in the single piece to the single piece, and the selective light sweeping droplet is sprayed with a liquid medium that is more than the other body, and the 3 3 0 -22 - 200904645 meters. In another preferred form, the nozzles are spaced apart from each other by less than 10 microns in the vertical direction of the media feed direction. Preferably, the print head has more than 140,000 such small droplet ejectors. In a particularly preferred form, the nozzles, which are spaced apart from one another by less than 10 microns in the vertical direction of the media feed direction, are also spaced apart from each other by less than 150 microns in the media feed direction. Optionally, the actuators are disposed in adjacent columns, each actuator having electrodes spaced apart from each other in the lateral direction of the columns for connection to an individual drive transistor and a power supply; The electrodes of the actuators in adjacent columns have opposite polarities, so the actuators in adjacent columns have opposite current flow directions. Preferably, the electrodes in each column are offset from their adjacent actuators in the lateral direction of the column so that the electrodes of each of the second actuators are collinear. In a particularly preferred embodiment, the droplet ejection injectors are fabricated on an elongate wafer substrate that extends parallel to the columns of the actuators and along the The long edge of the wafer substrate supplies power and data. In some embodiments, the printhead has a print engine controller (PEC) for feeding print data to the nozzles of the array; wherein during use, at least the print data is dispensed to the array A single nozzle between the two nozzles, the print engine controller selectively reducing the print resolution. Preferably, the position of the two nozzles in the array is set such that the two nozzles are the closest neighbors in the transverse direction of the movement of the print head relative to the printing medium substrate. In a particularly preferred form, the print engine controller shares the print data equally to the two nozzles in the array. -23- 200904645 Preferably, the two nozzle centers are separated by less than 40 microns. In a particularly preferred form, the printhead is a pagewidth printhead and the nozzle centers are spaced less than 16 microns apart in the transverse direction of the media feed direction. Preferably, the adjacent nozzle centers are spaced apart by less than 8 microns in the lateral direction of the media feed direction. Preferably, the printhead has a nozzle pitch of more than 1600 nozzles per n (npi) in the transverse direction of the media feed direction. In another preferred form, the nozzle pitch is greater than 3 〇〇〇 npi. [Embodiment] The use of the USSN 11 /246687 (Our file number MNN001US) filed on October 11, 2005, is used. The lithography etching and deposition steps produce the print head integrated circuit (1C) shown in the drawing. I would like to refer to the contents of this case for reference. The general worker will understand that the print head integrated circuit shown in the drawing has a chamber, a nozzle, and a heater electrode structure, which requires the use of USSN 11/246687 filed on October 11, 2005 (our File number MNN001US) The different exposure masks shown in the figure. However, the process steps for forming the cantilever heater element, the chamber, and the injection orifice remain the same. Similarly, a complementary metal oxide semiconductor (CMOS) layer is formed in the same manner as discussed in USSN 1 1 /246687 (our file number MNN001US) filed on October 1, 2005, except for the driver. Outside the field effect transistor (FET). Because of the higher density of the heater elements, the drive FET needs to be relatively small. -24- 200904645 Link Printhead Integrated Circuit Applicants have developed a number of printhead devices that use a series of printhead integrated circuits to connect the printhead integrated circuits to form a page width column Print head. In this manner, the print head integrated circuits can be combined into a print head, and the application range of the print heads can be printed from a wide format to a camera and mobile phone having a built-in printer. Each of the print head integrated circuits is mounted end to end on the support member to form a page width print head. The support member mounts the print head assembly circuit into the printer and distributes the ink to the individual integrated circuits. An example of this type of print head is described in USSN 1 1 /2 93 820, and the description of the case is hereby incorporated by reference. It should be understood that the term "ink" as used herein shall be interpreted to mean any printing fluid, unless the context clearly indicates that it is merely a coloring agent for image printing media. The print head integrated circuit can similarly inject ink, adhesive, medicament, or other functional fluid. 1A shows a schematic view of a pagewidth printhead 100 having a series of print head integrated circuits 92 mounted to a support member 94. The curved side 96 allows the nozzles of one of the print head integrated circuits 92 to overlap with the nozzles of the adjacent print head integrated circuits in the paper feed direction. The nozzles of each of the print head integrated circuits 92 are overlapped to provide continuous printing across the joint between the two print head integrated circuits 92. This avoids "banding" in the printed results. In this manner, the individual print head circuits are connected, and only a different number of print head integrated circuits can be used to make any print head of any desired length. The end-to-end configuration of the print head integrated circuit 92 requires the supply of power and data to the bond pads along the long side of each of the print head integrated circuits 92. The control of these connections, and the connected integrated circuit with the print engine controller (PEC), is described in detail in the application No. 11/544764 (our file number PUA001US) filed on October 10, 2006. 3200 dpi print heads Figure 1B shows a section of the nozzle array on the 3 200 dpi (dot/吋) print head that the applicant has recently issued. The printhead has a "true" 32 00 dpi resolution because the nozzle pitch is 3200 dpi instead of a printer with a 3200 dpi addressable position but a nozzle pitch of less than 200 dpi. The cross-section shown in Figure 1 B shows eight unit cells of the nozzle array and the top layer is removed. The outline of the injection hole 2 has been shown for the purpose of illustration. "Unit cell" is the smallest repeating unit of the nozzle array and has two complete droplet ejector, and four "half droplet jets" on either side of the complete ejector "". Figure 2 shows a unit cell. The nozzles extend in the transverse direction of the media feed direction 8. The nozzles in the middle four rows are a pigment channel 4. There are two columns extending on either side of the ink supply supply passage 6. The ink from the opposite side of the wafer flows to the ink supply path 6 via the ink feed tube 14. The upper and lower ink supply channels 1 〇, 1 2 are separate pigment channels (although for larger pigment densities, they can print the same color of ink - for example, CCMMY print heads). The columns 20, 22 above the feed channel 6 are laterally offset in the media feed direction 8. The columns 24, 26 below the supply channel 6 are similarly biased in the direction of the media. Further, 'column 20, 2 2 and columns 2 4, 2 6 are mutually offset with respect to each other. Thus, the combined nozzle pitch of columns -26-200904645 in the lateral direction of the media feed direction is one quarter of the nozzle pitch of any individual column. The nozzle pitch along each column is approximately 32 microns (nominal 31. 75 microns)' Therefore the combined nozzle pitch of all columns of a pigment channel is approximately 8 microns (nominal 7. 93 75 microns). This is equal to the nozzle pitch of 3200 npi, so the print head has a "true" resolution of 3200 dpi. Unit cell Figure 2 is a unit cell of a nozzle array. Each unit cell has the equivalent of four droplet ejectors (two complete droplet ejectors and four "half droplet ejectors" on either side of the complete injectors). The droplet ejector is a nozzle, chamber, drive FET, and drive circuit for a single microelectromechanical (MEMS) fluid ejection device. The average worker will understand that for convenience, the droplet ejector is usually referred to simply as a nozzle; however, it is clear from the use of the content, whether the term refers only to the orifice or the entire MEMS device. The upper feeding nozzle row 18 is fed from the ink feed pipe 14 via the upper ink supply passage 10. The lower nozzle row 16 is a different pigment channel that is fed by the feed channel 6. Each nozzle has a combined chamber 28 and a heater element 30 extending between the electrodes 34 and 36. The chambers are elliptical and offset from one another such that their minor axes overlap laterally in the direction of media feed. This configuration allows the chamber volume 'nozzle area, and the heater size to be substantially the same as I 6 0 shown in the above-referenced USSN 11/246687 application filed on October 11, 2005 (our file MNN 0 0 1 US). 0 dp i print head. Similarly, the chamber wall 32 is maintained at 4 microns thick, and the area of the joints 34, 36 is still 10 microns x 10 microns. -27- 200904645 Figure 3 shows the unit cell replication pattern that makes up the nozzle array. Each unit cell 38 traverses the wafer to a width of X ° and the adjacent columns are mirrored and translated by half a width: 〇. 5x = y. As described above, this provides a combined nozzle pitch of 0_25x for a pigment channel (20, 22, 24, 26). In the illustrated embodiment, x = 31. 75 and y = 7. 9375. This provides a resolution of 3200 dpi without reducing the size of the heater, chamber, or nozzle. Therefore, when operating at 3200 dpi, the print density is higher than the 1 600 dpi print head of USSN 11/246687 (Our file MNN 001US) filed on October 1, 2005; or the print head It can be operated at 1600 dpi to extend the life of the nozzle with a good print density. This feature of the print head is discussed further below. The heater contacts are configured with the heater element 30 and the individual contacts 3 4, 3 6 in the same size as the USS 11/2 46687 reference filed on October 11, 2005 (our file MNN 001US). Dpi print head. However, because there are twice the number of contacts, there are twice the number of FET contacts (negative contacts), and the FET contacts interrupt the "power plane (CMOS metal layer with positive voltage)". The high density of the holes in the power plane creates a high impedance between the thin metal sheets between the holes. This impedance detracts from the overall efficiency of the printhead and reduces the drive pulse of some heaters relative to other heaters. Fig. 4 is a cross-sectional view showing a wafer, a C Μ 驱动 S driving circuit 56, and a heater. The drive circuit 56 of each of the print head integrated circuits is fabricated on the wafer -28-200904645 substrate 48 by a plurality of metal layers 40, 42, 44, 45' dielectric materials 43, 47 separating the metal layers, The vias 46 pass through the layers to create an inter-layer connection. The drive circuit 56 has a FET (Field Effect Transistor) 58 for each actuator, and the source 54 of the FET 58 is connected to the plane 40 (a metal layer connected to the positional voltage of the power supply), and the drain 52 Connect to ground plane 42 (metal layer at or ground). Furthermore, the electrodes 34, 30 or each actuation f are each connected to a ground plane 42 and a power plane 40. The power plane 40 is typically the uppermost metal layer and is grounded: a first layer (separated by the dielectric layer 41), an ink chamber 28, and a nozzle 2, which are under the power plane, are fabricated on top of the power plane gold. Etching through this layer forms apertures 46, such that the negative electrode 34 is to the ground plane, and the ink flow path 14 can be from the back of the wafer substrate 48 to the ink chamber 28. As the nozzle density increases, the density of the punctuation of these holes or planes also increases. Because of the large density of the perforations in the plane, the gap between the perforations becomes smaller than the thin layer of the metal layer of these gaps, which is a relatively high resistance point. Since the plane is connected to the supply along the side of the print head integrated circuit, the current of the actuator on the non-supply side of the print head integrated circuit can pass through a series of these impedance gaps. The parasitic resistance to the non-supply side actuator affects its drive current and greatly affects these droplet ejection characteristics. The printhead uses several countermeasures to solve this problem. First, the phase actuators have opposite current flow directions, i.e., one of the rows of material 41' stands for the drive 42 to the plane 42 of the power voltage 0. Actuator layer 40 can be connected to extend to over-current. Electrodes that flow into electricity to flow to adjacent columns that must be added to the nozzle -29- 200904645 Polarity changes in adjacent columns. For the purposes of this aspect of the print head, the two rows of nozzles adjacent to the supply passage 6 should be considered to be a single column as shown in Figure 5A rather than being staggered as shown in the previous figures. The two columns A, B extend longitudinally along the length of the printhead integrated circuit. All of the negative electrodes 34 are along the outer edges of the adjacent columns A, B. Current is supplied from one side (referred to as edge 62) and current flows through a row of thin resistive metal segments 64 before the current flows through heater elements 30 in both columns. Therefore, the direction of current flow in column A and the direction of current flow in column B are opposite. The corresponding circuit diagram illustrates the benefits of this configuration. Because of the impedance Ra of the thin section between the negative electrodes 34 of the column A, the power supply V + voltage drops. However, the positive electrode 36 of all heaters 30 is at the same voltage (VA = VB) with respect to the ground. The voltage drops as it traverses all of the heaters 30 of the two columns A and B (resistances RHA, RHB, respectively). bad! The impedance RB of the thin bridge portion 66 between the negative electrodes 34 of the column B is deleted in the circuits of J A and B. Fig. 5B shows the case where the polarity of the electrodes of the two adjacent columns is not reversed. In this case, the entire row of resistive sections 66 of column B are presented in the circuit. The supply voltage V + drops through the impedance RA and drops to the voltage of the positive electrode 36 of VA--column A. From there, after passing through the impedance R η a of the column A heater, the voltage drops to ground. However, the voltage v a passes through the impedance RB of the thin section 66 between the column B negative electrode 34, and the voltage at the column B positive electrode 36 falls from VA to VB. Therefore, the voltage drop across column B heater 30 is less than the voltage drop across column A. This will change the drive pulse, and thus the droplet discharge characteristics. 第二 A second strategy for maintaining the integrity of the power plane is to interlace the adjacent pairs of electrodes (p a i r ) in -30-200904645 in each column. Referring to Figure 6 'the current 3 4 phases are staggered, so each second electrode is laterally displaced to the column. The heater contacts 3 4 and 3 6 are also staggered. This serves to make the gaps 64, 66 between the apertures of the face 40 wider. The electrical impedance of the wider gap is smaller and the voltage drop from the power supply of the print head integrated circuit is smaller. Figure 7 shows that the electrode 34 of the power plane 40 in the staggered columns 4 1 , 4 4 corresponds to the feed channel 6 pigment channel. The staggered columns 4 2, 4 3 are about half of the nozzles on either side of the two sides - the pigments fed by the supply channels 1 and the channels 12 are fed to the pigment channels. It will be appreciated that the five-pigment channel body circuit has nine columns of negative electrodes that induce electrical resistance from the heaters in the power supply nozzles. The gap between the negative electrodes becomes less the impedance produced by the components. This promotes a more uniform spray pattern throughout the nozzle array. Efficient Manufacturing The above characteristics increase the density of the nozzles on the wafer. Each circuit is approximately 22 mm long, less than 3 mm wide, and can support more than one nozzle. This represents the number of nozzles in the case of the applicant's version of the USS 11/246687 file (MNN 001US) filed on January 11th, 2005.) A 3200 dpi array of sizes shown in Figure 12 with 1,280 nozzles. Because the entire nozzle array is located in the heating section for the mask (the adjacent power lines of the negative electrodes of the mask have fewer sides). The pigment fed is fed by the feed head side. The farthest width, the large number of droplets of individual accumulations over 10,000 circuits (see (our pool booster. Head nozzle) exposure -31 - 200904645 lithography stepper (stepper) or scanner exposure range Internally, so many (more than 10,000) nozzle lithography is efficient. Figure 14 shows schematically a photolithography stepper. Light source 102 emits a special wavelength of parallel rays 104 through the mask 106, the mask There is a pattern to be transmitted to the integrated circuit 92. The pattern is focused through the lens 108 for reducing the features and projected onto the wafer stage 1 1 carrying the integrated circuit (or so-called "die") 92 The area of the wafer table 110 illuminated by the light 104 is called the exposure area 1 1 2. Unfortunately, the size of the exposure area 112 is limited to maintain the accuracy of the projected pattern. At the same time exposed. Most of the lithography stepper There is an exposure area of less than 30 mm χ 30 mm. A stepper made by a major manufacturer (ASML of the Netherlands) has an exposure area of 22 mm χ 22 mm, which is typical in the industry. The stepper exposes a grain or crystal Part of the granules, then stepped to another granule or another part of the same granule. Having as many nozzles as possible on a single piece of substrate facilitates the design of the pocket print head and facilitates the integration of the support pieces The combination of circuits is minimized in a precise relationship with each other. The nozzle array constructed by the present invention allows more than 100,000 nozzles to be located in the exposure area. In fact, the entire integrated circuit can be located in the exposure area, so a single substrate can be set. There are more than 14,000 nozzles, and it is not necessary to step and realign each pattern. The above techniques can be applied to the fabrication of nozzle arrays using photolithographic scanners. Figures 15A through 15C illustrate the operation of the scanner. In the scanner, light source 102 emits a narrower beam of light 104 that is still wide enough to illuminate the entire width of mask 106. Narrow beam 104 is focused through -32-200904645 The lens 108 is projected onto a portion of the integrated circuit 92 that is mounted in the re-exposed area 112. The mask 1 〇 6 and the wafer table 1 1 相对 move relative to each other in opposite directions, so the pattern of the mask is Scanning through the entire exposure area] 1 2 ° Obviously, this type of optical imaging device is also suitable for efficiently producing a print head integrated circuit with a large number of nozzles. Flat external nozzle surface as described above, according to October 2005 The printhead integrated circuit is manufactured by the steps listed in the USSN 1 1/246687 (our file MNN 001US) cross-reference filed on the 11th. Only change the exposure mask pattern' to provide different chamber and heater configurations. As described in USSN 11/246687 (our file MNN 001US) filed on October 1st, 2005, the top layer and the chamber wall are integrated constructions - a single type of suitable top and wall material Pulp lift chemical vapor deposition (PECVD). Suitable top materials can be tantalum nitride, tantalum oxide, hafnium oxynitride, aluminum nitride, and the like. The top and walls are deposited on a scaffold layer of sacrificial photoresist to form an integrated construction on the passivation layer of the CMOS. FIG. 8 shows a pattern etched into the sacrificial layer 72. The pattern consists of a chamber wall 32 and a columnar structure 68 (discussed below), all of which have a uniform thickness. In the illustrated embodiment, the thickness of the walls and posts is 4 microns. These configurations are relatively thin so that there is little depression, if any, in the inner surface of the top layer 70 as the deposited top and wall materials cool. The thick construction in the etched pattern will maintain a relatively large volume of top/wall material. -33- 200904645 When the material cools and contracts, the outer surface is pulled inward to create a depression. These depressions make the outer surface uneven, which is detrimental to the maintenance of the print head. If you wipe or erase the print head, paper dust and other contaminants will remain in the recess. As shown in Figure 9, the outer surface of the top layer 72 is flat and featureless except for the nozzle 2. It is easier to remove dust and dried ink by wiping or wiping off. Refilling the ink flow Referring to Figure 10, four nozzles are supplied for each ink inlet except that fewer nozzles are supplied to the entrance of the longitudinal end of the array. During the initial injection and in the case of bubble blockage, a random nozzle inlet 14 is advantageous, such as shown by flow line 74, to a re-flow ratio of chamber 28 remote from inlet 14 to immediately adjacent supply channel 6. The refilling flow of the chamber 28 is longer. For uniform droplet ejection characteristics, it is desirable for each nozzle in the array to have the same ink re-injection time. As shown in Figure 11, the inlet 76 adjacent the chamber and the inlet 78 remote from the chamber are designed to be different sizes. Likewise, the cylindrical configuration 68 is positioned to provide different levels of flow restriction to adjacent nozzle inlet 76 and remote nozzle inlet 78. The size of the inlet and the position of the column adjust the fluid drag so that the re-injection time of all nozzles in the array is uniform. The position of the column can also be designed to dampen the pressure pulses generated by the steam bubbles in chamber 28. A damping pulse that moves through the inlet prevents fluid crosstalk between the nozzles. Furthermore, the gaps between the column 68 and the sides of the inlets 76, 78, -34-200904645, 80, 8 2, can be used as effective bubble traps or traps for the larger bubbles contained in the ink refilling stream ( Trap). Extended nozzle life Figure 1 2 shows a section of a pigment channel in the nozzle array with the dimensions required for 3 200 dpi resolution. It should be understood that the "real" 3200 dpi is a very high resolution - better than the photographic quality. This resolution goes beyond many printing jobs. Usually a resolution of 1 600 dpi is appropriate. In view of this, by sharing the printed data between two adjacent nozzles, the print head integrated circuit sacrifices resolution. In this manner, the print data typically sent to one of the 1 600 dpi print heads is instead sent to the adjacent nozzles in the 3200 dpi print head. This mode of operation extends the life of the nozzle by more than two times and allows the printer to operate at very high print rates. In 3200 dpi mode, the printer prints at 60 ppm (full color A4) and in the 1 600 dpi mode, the rate approaches 120 ppm. An additional benefit of the 1 600 dpi mode is the ability to use this printhead integrated circuit with a print engine controller (PEC) and a flexible printed circuit board that can only be constructed at 1 600 dpi resolution. As shown in Figure 12, the nozzle 83 and the nozzle 8 4 are laterally offset only 7. 93 75 microns. The two nozzles are further spaced apart in absolute relationship, but the displacement in the paper feed direction may indicate the timing of the firing sequence. Since the lateral displacement of 8 microns between adjacent nozzles is small, this shift can be ignored for purposes of presentation. However, by optimizing the high frequency dither (if desired), the shift can be resolved from -35 to 200904645. Bubbles, Chambers, and Nozzle Matching Figure 13 is an enlarged view of the nozzle array. Both the injection hole and the chamber wall are elliptical. Configuring the long axis parallel to the media feed direction allows for a high nozzle pitch in the lateral direction of the feed direction while maintaining the desired chamber volume. Furthermore, the short axis of the configuration chamber causes the short axes to overlap in the lateral direction, which also improves the nozzle packing density. Heater 30 is a cantilever beam that extends between its individual electrodes 34 and 36. The elongate beam heater element produces bubbles that are generally elliptical (in a section parallel to the plane of the wafer). Matching the bubble 90, the chamber 28, and the ejection orifice 2 promotes energy efficient droplet ejection. Low energy droplet ejection is important for a "self-cooling" print head. Conclusion The printhead integrated circuit shown in the figure provides a choice of "real" 3 2 00 dpi resolution and a much higher print rate than the 1 600 dpi print rate. Sharing lower resolution prints extends nozzle life' and provides compatibility with existing 1 600 dpi print engine controllers and flexible printed circuit boards. A uniform thickness of the chamber wall pattern has a flat outer nozzle surface' which is less prone to blockage. In addition, the 'actuator contact configuration and the elongated nozzle configuration' provide a high nozzle pitch in the lateral direction of the media feed direction while maintaining a thin nozzle array that is parallel to the media feed direction. The specific embodiments described are intended to be illustrative only and not restrictive of the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1B is a schematic view showing the construction of a joint print head circuit; FIG. 1B is a partial plan view of the nozzle array on the print head integrated circuit of the present invention; FIG. 2 is a unit cell of the nozzle array; 3 shows a replica pattern of a unit cell constituting a nozzle array; FIG. 4 is a schematic cross-sectional view of a CMOS layer and a heater element passing through a nozzle, and FIG. 5A schematically shows electrodes having opposite polarity in adjacent actuator columns FIG. 5B schematically shows an electrode configuration having a typical electrode polarity in an adjacent actuator column; FIG. 6 shows an electrode configuration of the print head integrated circuit of FIG. 1; FIG. 7 shows a cross section of a power plane of the CMOS layer; Figure 8 shows the pattern of the sacrificial mesa layer etched into the top/sidewall layer; Figure 9 shows the outer surface at the top after etching the nozzle holes; Figure 1 shows the ink supply flow of the nozzle; Figure 11 shows the different columns to the cavity Figure 1 2 shows a nozzle spacing for a pigment channel; Figure 13 shows an enlarged view of a nozzle array with matching elliptical channels and orifices; Figure 14 is a schematic illustration of a photolithography stepper; And -37- 200904645 Fig. 1 5 A to [Main component 2 : (spray body 2 : nozzle 6 : (ink 7) 8 : medium 1 0 : inking 1 2 : lower ink 14 · ink 14. Ink 1 4 : Nozzle 1 6 : Lower spray 1 8 : Upper spray 20 : 歹 ! J 22 : Column 24 : Column 26 : Column 28 : Chamber 3 0 : Heating 3 0 : Actuation 32 : Chamber 34 : (Negative 36 : (Positive 1 5 C schematically illustrates the operation number of the photolithography stepper] " hole c) supply channel (paper) feed direction water supply channel water supply channel feed pipe flow channel inlet nozzle nozzle Array element wall) electrode (contact) electrode (contact) -38- 200904645 3 8 : unit package 40: power plane (metal layer) 41: dielectric layer (material) 41: column 42: ground plane ( Metal layer) 42 : column 43: dielectric layer (material) 43 : column 44 : metal layer 44 : column

46 :(導)?L 4 7 :介電層(材料) 4 8 :晶圓基板 5 2 :汲極 5 4 :源極 56: (CMOS)驅動電路 5 8 :場效電晶體 62 :邊緣 64 :阻抗性金屬區段 64 :間隙 6 6 :橋部 66 :阻抗性區段 6 6 :間隙 68 :柱(狀構造) -39 200904645 7 0 :頂部層 72 :犧牲層 7 4 :流動線 76 :入口 78 :入口 80 :間隙 82 :間隙 83 :噴嘴 84 :噴嘴 90 :氣泡 92 :列印頭積體電路 94 :支撐構件 96 :彎曲側 9 8 :結合墊 100 :頁寬列印頭 1 0 2 :光源 104 :光(射線) 106 :罩幕 1 0 8 :透鏡 110:晶圓工作台 112 :曝光區 -40-46 : (guide)? L 4 7 : dielectric layer (material) 4 8 : wafer substrate 5 2 : drain 5 4 : source 56 : (CMOS) drive circuit 5 8 : field effect transistor 62 : edge 64 : resistive metal segment 64: Clearance 6 6 : Bridge 66 : Impedance section 6 6 : Clearance 68 : Column (structure) - 39 200904645 7 0 : Top layer 72 : Sacrificial layer 7 4 : Flow line 76 : Entrance 78 : Entrance 80 : Gap 82: gap 83: nozzle 84: nozzle 90: bubble 92: print head integrated circuit 94: support member 96: curved side 9 8: bond pad 100: page width print head 1 0 2 : light source 104: light ( Ray) 106: mask 1 0 8 : lens 110: wafer table 112: exposure area - 40-

Claims (1)

200904645 十、申請專利範圍 1. 一種用於噴墨列印頭的列印頭積體電路,該列印 頭積體電路包含: 一平面陣列的小液滴噴射器,每一小液滴噴射器具有 資料分布電路、驅動電晶體、列印流體入口、致動器、腔 室和噴嘴;建構腔室用以將列印流體保持在鄰近該噴嘴, 所以在使用期間,該驅動電晶體啓動該致動器,以將該列 印流體的小液滴噴射經過該噴嘴;其中 該陣列每平方毫米具有超過700個該等小液滴噴射器 〇 2 ·如申請專利範圍第1項所述用於噴墨列印頭的列 印頭積體電路,其中,在使用期間,當該列印媒介在相對 於該列印頭的列印方向中運動時,該陣列將列印流體的的 液滴噴射至列印媒介上;和在該陣列中的該等噴嘴,在該 列印方向的垂直方向中,彼此相隔開達小於1 0微米。 3- 如申請專利範圍第2項所述用於噴墨列印頭的列 印頭積體電路,其中,在該列印方向的垂直方向中,彼此 相隔開達小於1 0微米的該等噴嘴,在該列印方向中也彼 此相隔開達小於1 5 0微米。 4- 如申請專利範圍第1項所述用於噴墨列印頭的列 印頭積體電路,其中該陣列的噴嘴單位晶胞被支撐在複數 單片晶圓基板上,每一單片晶圓基板支撐超過1 0000個該 等噴嘴單位晶胞。 5.如申請專利範圍第4項所述用於噴墨列印頭的列 -41 - 200904645 印頭積體電路,其中每一單片晶圓基板支撐超過1 2 000個 該等噴嘴單位晶胞。 6. 一種噴墨列印頭,包含如申請專利範圍第1項所 述一系列噴墨列印頭積體電路,其被端對端地安裝’其中 ,該列印頭具有超過1 〇 〇 〇 〇 〇個該等小液滴噴射器’且該 列印頭在該媒介饋給方向的橫方向中延伸200毫米至330 毫米。 7. 如申請專利範圍第6項所述噴墨列印頭,其中該 陣列具有超過140000個該等小液滴噴射器。 8. 如申請專利範圍第1項所述用於噴墨列印頭的列 印頭積體電路,其中該等致動器配置在相鄰列內,每一致 動器具有在該等列的橫方向彼此相隔開的電極’用於連接 至對應的驅動電晶體和一電源供應器;其中 在相鄰列中之該等致動器的該等電極具有相反的極性 ,所以在相鄰列中之該等致動器具有相反的電流流動方向 〇 9. 如申請專利範圍第8項所述用於噴墨列印頭的列 印頭積體電路,其中在每一列中之該等電極從其相鄰的致 動器往該列之橫方向偏移,所以每個第二致動器的該等電 極共線。 1 〇 .如申請專利範圍第8項所述用於噴墨列印頭的列 印頭積體電路,其中該等小液滴噴射器被製造在一長形晶 圓基板上,該長形晶圓基板平行於該等致動器之該等列而 延伸,且沿著該晶圓基板的長邊緣供給電力和資料。 -42- 200904645 1 1 .如申請專利範圍第6項所述噴墨列印頭,更包含 一列印引擎控制器(PEC ),用於將列印資料送至該 陣列的噴嘴;其中 在使用期間,藉由將列印資料分配給該陣列之至少二 噴嘴之間的單一噴嘴’該列印引擎控制器可選擇性地降低 該列印解析度。 12.如申請專利範圍第〗1項所述噴墨列印頭,其中 設置該二噴嘴在該陣列中的位置,使得該二噴嘴在該列印 頭相對於列印媒介基材之運動的橫方向中是最接近的鄰居 〇 1 3 .如申請專利範圍第1 2項所述噴墨列印頭,其中 該列印引擎控制器平等地分享該列印資料給該陣列中的該 二噴嘴。 14.如申請專利範圍第1 3項所述噴墨列印頭,其中 該二噴嘴中心相隔開小於40微米。 1 5 .如申請專利範圍第1 4項所述噴墨列印頭,其中 該列印頭是頁寬列印頭,且該二噴嘴中心在該媒介饋給方 向的橫方向中相隔開小於1 6微米。 1 6 .如申請專利範圍第I 3項所述噴墨列印頭,其中 該等相鄰噴嘴中心在該媒介饋給方向的橫方向中相隔開小 於8微米。 17·如申請專利範圍第Π項所述噴墨列印頭,其中 該列印頭在該媒介饋給方向的橫方向中,具有的噴嘴節距 -43- 200904645 是每吋多於1 600個噴嘴(npi)。 1 8 .如申請專利範圍第1 7項所述噴墨列印頭,其中 該噴嘴節距大於3 000 npi。 -44-200904645 X. Patent Application Range 1. A print head integrated circuit for an ink jet print head, the print head integrated circuit comprising: a planar array of small droplet ejectors, each small droplet ejector Having a data distribution circuit, a drive transistor, a print fluid inlet, an actuator, a chamber, and a nozzle; a chamber is constructed to hold the print fluid adjacent to the nozzle, so during use, the drive transistor initiates the And ejecting small droplets of the printing fluid through the nozzle; wherein the array has more than 700 such small droplet ejectors per square millimeter ·2; for spraying as described in claim 1 a printhead integrated circuit of an ink jet print head, wherein, during use, the array ejects droplets of the printing fluid to the printing medium as it moves in a printing direction relative to the printing head The print media; and the nozzles in the array are spaced apart from each other by less than 10 microns in the vertical direction of the print direction. The print head integrated circuit for an ink jet print head according to claim 2, wherein the nozzles are spaced apart from each other by less than 10 μm in a vertical direction of the printing direction They are also spaced apart from each other by less than 150 μm in the printing direction. 4- The print head integrated circuit for an ink jet print head according to claim 1, wherein the nozzle unit cell of the array is supported on a plurality of monolithic wafer substrates, each monolithic crystal The circular substrate supports more than 1,000,000 of these nozzle unit cells. 5. The column-41 - 200904645 print head integrated circuit for an ink jet print head according to claim 4, wherein each of the single wafer substrates supports more than 1 2 000 of the nozzle unit cells . 6. An ink jet print head comprising a series of ink jet print head integrated circuits as described in claim 1 of the patent application, which is mounted end-to-end, wherein the print head has more than 1 〇〇〇 One of the small droplet ejectors' and the printhead extends 200 mm to 330 mm in the transverse direction of the medium feed direction. 7. The inkjet printhead of claim 6 wherein the array has more than 140,000 such droplet ejection injectors. 8. The print head integrated circuit for an ink jet print head according to claim 1, wherein the actuators are disposed in adjacent columns, and each actuator has a cross in the columns The electrodes 'separated from each other' are connected to a corresponding drive transistor and a power supply; wherein the electrodes of the actuators in adjacent columns have opposite polarities, so in adjacent columns The actuators have opposite current flow directions 〇9. The print head integrated circuit for an ink jet print head according to claim 8 wherein the electrodes in each column are from the phase The adjacent actuators are offset in the lateral direction of the column so that the electrodes of each of the second actuators are collinear. The print head integrated circuit for an ink jet print head according to claim 8, wherein the small droplet ejectors are fabricated on an elongated wafer substrate, the elongated crystal The circular substrate extends parallel to the columns of the actuators and supplies power and data along the long edges of the wafer substrate. -42-200904645 1 1. The inkjet print head of claim 6, further comprising a print engine controller (PEC) for feeding the print data to the nozzle of the array; wherein during use The print engine controller can selectively reduce the print resolution by assigning print data to a single nozzle between at least two nozzles of the array. 12. The ink jet print head of claim 1, wherein the position of the two nozzles in the array is set such that the two nozzles are transverse to the movement of the print head relative to the print medium substrate. The ink jet print head described in claim 12, wherein the print engine controller equally shares the print data to the two nozzles in the array. 14. The ink jet printhead of claim 13 wherein the two nozzle centers are spaced apart by less than 40 microns. The inkjet print head according to claim 14, wherein the print head is a page width print head, and the center of the two nozzles are spaced apart by less than 1 in a lateral direction of the medium feed direction. 6 microns. The ink jet print head of claim 1, wherein the adjacent nozzle centers are spaced apart by less than 8 μm in the transverse direction of the medium feed direction. 17. The inkjet printhead of claim 3, wherein the printhead has a nozzle pitch of -43-200904645 of more than 1 600 per turn in a lateral direction of the medium feed direction. Nozzle (npi). 18. The ink jet print head of claim 17, wherein the nozzle pitch is greater than 3 000 npi. -44-
TW096144804A 2007-07-30 2007-11-26 Printhead integrated circuit with high droplet ejector density TWI380909B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AU2007/001061 WO2009015406A1 (en) 2007-07-30 2007-07-30 Inkjet printhead with opposing actuator electrode polarities

Publications (2)

Publication Number Publication Date
TW200904645A true TW200904645A (en) 2009-02-01
TWI380909B TWI380909B (en) 2013-01-01

Family

ID=40303786

Family Applications (8)

Application Number Title Priority Date Filing Date
TW096144799A TW200904641A (en) 2007-07-30 2007-11-26 Printhead with high nozzle pitch tranverse to print direction
TW096144797A TWI464073B (en) 2007-07-30 2007-11-26 Inkjet printers with elongate chambers, nozzles and heaters
TW096144801A TW200904644A (en) 2007-07-30 2007-11-26 Printhead integrated circuit with more than 10000 nozzles
TW096144806A TWI402179B (en) 2007-07-30 2007-11-26 Pagewidth printhead with more than 100000 nozzles
TW096144795A TW200904643A (en) 2007-07-30 2007-11-26 Printhead with multiple nozzles sharing single nozzle data
TW096144809A TW200904647A (en) 2007-07-30 2007-11-26 Printhead IC with more than 10000 nozzles in the exposure area of a photo-imaging device
TW096144793A TWI465347B (en) 2007-07-30 2007-11-26 Inkjet printhead with opposing actuator electrode polarities
TW096144804A TWI380909B (en) 2007-07-30 2007-11-26 Printhead integrated circuit with high droplet ejector density

Family Applications Before (7)

Application Number Title Priority Date Filing Date
TW096144799A TW200904641A (en) 2007-07-30 2007-11-26 Printhead with high nozzle pitch tranverse to print direction
TW096144797A TWI464073B (en) 2007-07-30 2007-11-26 Inkjet printers with elongate chambers, nozzles and heaters
TW096144801A TW200904644A (en) 2007-07-30 2007-11-26 Printhead integrated circuit with more than 10000 nozzles
TW096144806A TWI402179B (en) 2007-07-30 2007-11-26 Pagewidth printhead with more than 100000 nozzles
TW096144795A TW200904643A (en) 2007-07-30 2007-11-26 Printhead with multiple nozzles sharing single nozzle data
TW096144809A TW200904647A (en) 2007-07-30 2007-11-26 Printhead IC with more than 10000 nozzles in the exposure area of a photo-imaging device
TW096144793A TWI465347B (en) 2007-07-30 2007-11-26 Inkjet printhead with opposing actuator electrode polarities

Country Status (3)

Country Link
EP (1) EP2173561B1 (en)
TW (8) TW200904641A (en)
WO (1) WO2009015406A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398364B (en) * 2010-10-22 2013-06-11 Microjet Technology Co Ltd Multi-color inkjet head module
TWI398359B (en) * 2010-10-22 2013-06-11 Microjet Technology Co Ltd Single color inkjet head module
TWI472436B (en) * 2011-03-23 2015-02-11 Microjet Technology Co Ltd Inkjet head structure
TWI472438B (en) * 2011-03-23 2015-02-11 Microjet Technology Co Ltd Inkjet head structure
CN102689513B (en) 2011-03-23 2015-02-18 研能科技股份有限公司 Ink gun structure
TWI472437B (en) * 2011-03-23 2015-02-11 Microjet Technology Co Ltd Inkjet head structure
TWI468303B (en) * 2011-03-23 2015-01-11 Microjet Technology Co Ltd Inkjet head structure
TWI472440B (en) * 2012-08-27 2015-02-11 Microjet Technology Co Ltd Page-width arrayprinting device
CN103625111B (en) * 2012-08-27 2016-09-28 研能科技股份有限公司 Page width ink jet printing equipment
TWI556983B (en) * 2013-09-26 2016-11-11 研能科技股份有限公司 Jet-printing unit interchangeable between inkjet printing device and page-width array printing device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412410A (en) * 1993-01-04 1995-05-02 Xerox Corporation Ink jet printhead for continuous tone and text printing
US5719602A (en) * 1995-01-20 1998-02-17 Hewlett-Packard Company Controlling PWA inkjet nozzle timing as a function of media speed
US6336714B1 (en) * 1996-02-07 2002-01-08 Hewlett-Packard Company Fully integrated thermal inkjet printhead having thin film layer shelf
US6203145B1 (en) * 1999-12-17 2001-03-20 Eastman Kodak Company Continuous ink jet system having non-circular orifices
KR100408270B1 (en) * 2000-07-26 2003-12-01 삼성전자주식회사 Bubble-jet type ink-jet printhead
TWI232802B (en) * 2001-02-15 2005-05-21 Benq Corp High density jetting apparatus
TW503179B (en) * 2001-05-07 2002-09-21 Benq Corp Ink jetting device having bubble valve and the method thereof
US20050206679A1 (en) * 2003-07-03 2005-09-22 Rio Rivas Fluid ejection assembly
EP1693217B1 (en) * 2005-02-16 2009-01-14 Seiko Epson Corporation Liquid ejecting apparatus and platen unit
US7744195B2 (en) * 2005-10-11 2010-06-29 Silverbrook Research Pty Ltd Low loss electrode connection for inkjet printhead
US7735975B2 (en) * 2005-10-26 2010-06-15 Seiko Epson Corporation Liquid ejecting apparatus, recording apparatus, and field generating unit

Also Published As

Publication number Publication date
TW200904646A (en) 2009-02-01
WO2009015406A1 (en) 2009-02-05
TW200904644A (en) 2009-02-01
TWI465347B (en) 2014-12-21
TW200904643A (en) 2009-02-01
EP2173561B1 (en) 2013-03-27
TWI380909B (en) 2013-01-01
EP2173561A4 (en) 2011-09-14
EP2173561A1 (en) 2010-04-14
TW200904642A (en) 2009-02-01
TW200904647A (en) 2009-02-01
TWI464073B (en) 2014-12-11
TW200904639A (en) 2009-02-01
TW200904641A (en) 2009-02-01
TWI402179B (en) 2013-07-21

Similar Documents

Publication Publication Date Title
TWI402179B (en) Pagewidth printhead with more than 100000 nozzles
US7798603B2 (en) Printhead with high nozzle pitch tranverse to print direction
US7712876B2 (en) Inkjet printhead with opposing actuator electrode polarities
JPH08238769A (en) Ink jet print head
US20070229600A1 (en) Liquid ejecting print head, liquid ejecting device including the same, and image forming apparatus including the same
US8485628B2 (en) Printer with resolution reduction by nozzle data sharing
US7845765B2 (en) Inkjet printers with elongate chambers, nozzles and heaters
US7841695B2 (en) Printhead IC with more than 10000 nozzles in the exposure area of a photo-imaging device
US7775630B2 (en) Printhead integrated circuit with high droplet ejector density
US7784902B2 (en) Printhead integrated circuit with more than 10000 nozzles
JP4587453B2 (en) Ink jet recording head and ink jet recording apparatus
US7824010B2 (en) Pagewidth printhead with more than 100000 nozzles
JP5692881B2 (en) Ink jet print head having common conductive path in nozzle plate
US7794061B2 (en) Inkjet printhead with non-uniform nozzle chamber inlets
JP2015110340A (en) Inkjet nozzle assembly accompanying drip direction control by independently-operable roof paddle
JP2023091561A (en) Head chip, liquid jet head and liquid jet recording device
JP4211779B2 (en) Ink ejection device
TWI499514B (en) Inkjet nozzle assembly with drop directionality control via independently actuable roof paddles
TWI525001B (en) Inkjet printhead having common conductive track on nozzle plate