TW200904642A - Inkjet printers with elongate chambers, nozzles and heaters - Google Patents

Inkjet printers with elongate chambers, nozzles and heaters Download PDF

Info

Publication number
TW200904642A
TW200904642A TW096144797A TW96144797A TW200904642A TW 200904642 A TW200904642 A TW 200904642A TW 096144797 A TW096144797 A TW 096144797A TW 96144797 A TW96144797 A TW 96144797A TW 200904642 A TW200904642 A TW 200904642A
Authority
TW
Taiwan
Prior art keywords
array
nozzle
nozzles
print head
column
Prior art date
Application number
TW096144797A
Other languages
Chinese (zh)
Other versions
TWI464073B (en
Inventor
Kia Silverbrook
Original Assignee
Silverbrook Res Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silverbrook Res Pty Ltd filed Critical Silverbrook Res Pty Ltd
Publication of TW200904642A publication Critical patent/TW200904642A/en
Application granted granted Critical
Publication of TWI464073B publication Critical patent/TWI464073B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • B41J2/155Arrangement thereof for line printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14072Electrical connections, e.g. details on electrodes, connecting the chip to the outside...
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14387Front shooter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14459Matrix arrangement of the pressure chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/11Embodiments of or processes related to ink-jet heads characterised by specific geometrical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/20Modules

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)

Abstract

An inkjet printhead with an array of nozzles arranged in a series of rows, each nozzle having an ejection aperture, a chamber for holding printing fluid and a heater element for generating a vapor bubble in the printing fluid contained by the chamber to eject a drop of the printing fluid through the ejection aperture. The nozzle, the heater element and the chamber are all elongate structures that have a long dimension that exceeds their other dimensions respectively. The respective long dimensions of the nozzle, the heater element and the chambers are parallel and extend normal to the row direction. To increase the nozzle density of the array, each of the nozzle components - the chamber, the ejection aperture and the heater element are configured as elongate structures that are all aligned transverse to the direction of the row. This raises the nozzle pitch, or nozzle per inch (npi), of the row while allowing the chamber volume and therefore drop volume to stay large enough for a suitable color density. It also avoids the need to spread the over a large distance in the paper feed direction (in the case of pagewidth printers) or in the scanning direction (in the case of scanning printheads).

Description

200904642 九、發明說明 【發明所屬之技術領域】 本發明關於列印領域,特別是關於一種用於高解析度 列印的噴墨列印頭。 【先前技術】 列印影像的品質絕大部分取決於印表機的解析度,因 此’不斷地努力改善印表機的列印解析度。列印解析度密 切地取決於液滴體積和印表機在媒介基材上可尋址 (addressable)位置的間隔。噴墨頭上各噴嘴之間的間隔不 須像媒介基材上各可尋址位置之間的間隔一樣地小。在一 個可尋址位置處列印一點的噴嘴和在鄰近可尋址位置處列 印一點的噴嘴,可間隔任何距離。不管列印頭上各噴嘴之 間的間隔,列印頭相對於媒介的運動、或媒介相對於列印 頭的運動、或上述兩種運動,會允許列印頭噴射液滴在每 一可尋址位置。載極端的狀況,由於列印頭和媒介之間適 當的相對運動,相同的噴嘴可以列印相鄰的液滴。 媒介相對於列印頭的過量運動,會降低列印速率。在 頁寬列印頭的情況,掃描列印頭對一整包媒介的多次通過 、或媒介多次通過列印頭,會減少每分鐘列印頁數的列印 速率。 此外,各噴嘴可沿著媒介饋給路徑或在掃描方向被隔 開,所以媒介上各可尋址位置小於相鄰噴嘴的物理間隔。 可瞭解的是在紙路徑或掃描方向的一大段內間隔地設至多 個噴嘴,違反了袖珍設計。更重要的是,饋給紙時需要小 -4- 200904642 心地控制媒介位置’和精密地印表機控制噴嘴發射次數。 就頁寬列印頭而言’大噴嘴陣列的問題更大。在一大 段紙路徑中間隔地設至多個噴嘴,噴嘴陣列就需要具有相 對大的區域。藉由定義’噴嘴陣列必須在媒介寬度延伸, 但是噴嘴陣列在媒介饋給方向中的尺寸應該儘可能地小。 在媒介饋給方向中延伸相對長距離的陣列,需要複雜的列 印滾筒’該等滾筒維持整個陣列中噴嘴和媒介表面之間的 間隔。一些印表機設計在列印頭對面使用寬廣的真空滾筒 ,以得到媒介所需的控制。有鑑於此議題,有在列印頭上 增加噴嘴密度(亦即每單位面積的噴嘴數目)的強烈動機, 以增加印表機的可尋址位置和解析度,同時保持陣列(在 媒介饋給方向)的小寬度。 【發明內容】 因此,本發明提供一種用於噴墨印表機的列印頭,該 列印頭包含: 配置在相鄰列中的一陣列噴嘴,每一噴嘴具有噴射孔 和用於將列印流體噴射經過該噴射孔的對應致動器,每一 致動器具有在該等列之橫方向彼此相隔開的電極;和 驅動電路,用於將電力傳輸至該等電極;其中 在相鄰列中之該等致動器的該等電極具有相反的極性 ,所以在相鄰列中之該等致動器具有相反的電流流動方向 〇 藉由使在相鄰列之電極的極性相反,可將CMOS之電 力平面內的穿孔保持在相鄰列的外側邊緣。此將各穿孔之 -5- 200904642 間的一排狹窄阻抗性橋部,移動至電流不流過橋部的位置 。此從致動器驅動電路消除橋部的阻抗。藉由減少遠離列 印頭積體電路之電力供給側的致動器的阻抗性損失’可使 整個陣列所有噴嘴的液滴噴射特徵呈一致。 較佳地,在每一列中之該等電極從其相鄰的致動器往 該列之橫方向偏移,所以每個第二致動器的該等電極共線 。在另一較佳的形式中,該偏移小於40微米。在特別佳的 形式中,該偏移小於3 〇微米。較佳地,該陣列噴嘴被製造 在長形晶圓基板上,該晶圓基板平行於該陣列的該等列而 延伸,且該驅動電路是在該晶圓基板之一表面上的CMOS 層,沿著該晶圓基板的長邊緣供給電力和資料給該等 CMOS層。在另一較佳的形式中,該CMOS層具有形成電 力平面的頂部金屬層’其帶有正電壓,所以具有負電壓的 該等電極連接至形成在該電力平面內之孔中的導孔。在又 一較佳的形式中,該CMOS層具有供底部金屬層內每一致 動器用的驅動場效電晶體(FET)。較佳地,該CMOS層具 有厚度小於〇 . 3微米的金屬層。 在一些實施例中,該等致動器是加熱器元件,用於在 該列印流體內產生蒸汽泡泡’使得從該噴射孔噴射出該列 印流體的液滴。較佳地,該等加熱器元件是懸架在其個別 電極之間的樑,所以該等加熱器元件是浸没在該列印流體 內。較佳地,該等噴射孔是橢圓形,且噴射孔的長軸平行 於該樑的縱軸。在另一較佳形式中,該等列其中一列內之 該等噴射孔的該等長軸和相鄰列內之該等噴射孔的該等長 -6 - 200904642 軸共線,所以該等列其中一列內的每一噴嘴和該相鄰列內 其中一噴嘴對齊。較佳地,相鄰噴射孔的長軸相隔開小於 5 〇微米。在另一較佳形式中,相鄰噴射孔的長軸相隔開小 於25微米。在特別佳的形式中’相鄰噴射孔的長軸相隔開 小於1 6微米。 在特別的實施例中’在媒介饋給方向的橫方向中’該 列印頭具有每吋多於1 600個噴嘴(npi)的噴嘴節距。在較佳 實施例中,該噴嘴節距是大於3 0 〇 0 η p i。在特別佳的實施 例中,該列印頭具有之每吋點數(d p i)的列印解析度’等於 該噴嘴節距。在特定實施例中’該列印頭是頁寬列印頭’ 其被建構用於列印A 4尺寸媒介。較佳地’該陣列具有多 於100000個噴嘴。 因此,本發明提供一種用於印表機的噴墨列印頭,其 能以不同的列印解析度列印在基材上,該噴墨列印頭包含 一陣列的噴嘴,每一噴嘴具有噴射孔和用於將列印流 體噴射經過該噴射孔的對應致動器;和 —列印引擎控制器’用於將列印資料送至該陣列的噴 嘴;其中 在使用期間,藉由將列印資料分配給該陣列之至少二 噴嘴之間的單一噴嘴,該列印引擎控制器可選擇性地降低 @列印解析度。 本發明認知到一些列印工作不需要列印頭的最好解析 度-一較低的解析度完全適合於待列印文件的目的。此情 200904642 況在列印頭具有非常高解析度(例如大於1 200 dpi)時是特 別地真實。藉由選擇較低的解析度,列印引擎控制器 (P E C )可將具有較少噴嘴之列印頭中二或更多個橫向相鄰( 但不需接觸)的噴嘴當作單一虛擬噴嘴。然後該等相鄰噴 嘴共享列印資料___虛擬噴嘴所要求的點(dots)被每一實際 的噴嘴輪流列印。此用於延長所有噴嘴的作業壽命。 較佳地,設置該二噴嘴在該陣列中的位置,使得該二 噴嘴在該列印頭相對於該基材之運動的橫方向中是最接近 的鄰居。較佳地,該列印引擎控制器平等地分享該列印資 料給該陣列中的該二噴嘴。在另一較佳形式中,該二噴嘴 中心相隔開小於20微米。在特別佳的形式中,該列印頭是 頁寬列印頭,且該二噴嘴中心在該媒介饋給方向的橫方向 中相隔開小於1 6微米。在特定的實施例中,該二噴嘴中心 在該媒介饋給方向的橫方向中相隔開小於8微米。在特殊 實施例中,該列印頭在該媒介饋給方向的橫方向中,具有 的噴嘴節距是每吋多於1 600個噴嘴(npi)。在較佳實施例中 ,該噴嘴節距是大於3000 npi。在特別佳的實施例中,該 列印頭具有之每吋點數(dpi)的列印解析度,等於該噴嘴節 距。在特定實施例中,該列印頭被建構用於列印A4尺寸 媒介,且該列印頭具有多於1 00000個噴嘴。 在一些實施例中當以較低的列印解析度列印時,該印 表機以較高的列印速率作業。較佳地,該較高的列印速率 是每分鐘多於60頁。在較佳的形式中,該列印引擎控制器 以高頻振動矩陣將該等相鄰噴嘴所列印的彩色平面半調色 -8- 200904642 (halftone),該高頻振動矩陣被最佳化用於每一噴射液滴 的橫向移位。 因此,本發明提供一種噴墨列印頭,包含: 一陣列的噴嘴,配置在相鄰的列中;每一噴嘴具有噴 射孔、用於容置列印流體的腔室、和對應的致動器;該致 動器用於將該列印流體噴射經過該噴射孔;每一腔室具有 個別的入口以再塡注列印流體,該列印流體被該致動器噴 射;和 列印流體供給通道,其平行該等相鄰列而延伸,以經 由該等個別入口供給列印流體至該陣列中每一噴嘴的致動 器;其中 建構在該等相鄰列其中一列內之該等噴嘴入口 ’使其 再塡注流率不同於經過該等相鄰列之另一列內之該等噴嘴 入口的再塡注流率。 本發明建構的噴嘴使得一側的墨水供給通道塡注數列 。因爲供給通道不只供給一側的一列噴嘴,所以上述建構 允許列印頭表面上的噴嘴密度較大。但是因爲每列之經過 入口的流率不同,所以離供給通道較遠的列不會有顯著較 長的再塡注時間。 較佳地,建構在該等相鄰列其中一列內之該等噴嘴入 口,使其再塡注流率不同於經過該等相鄰列之另一列內之 該等噴嘴入口的再塡注流率,所以陣列中所有噴嘴的腔室 再塡注時間大致均勻。在另一較佳形式中’最靠近供給通 道之列的入口,比遠離供給通道之列更狹窄。在一些實施 -9- 200904642 例中,在供給通道兩側的任一側上,有二相鄰列的噴嘴。 較佳地,入口具有流動阻尼構造。在特別佳的形式中 ,流動阻尼構造是柱,設計該柱的位置,使其產生流動障 礙。在一列之入口內的柱和在其他列之入口內的柱,產生 不同程度的障礙。較佳地,柱在柱的側面和入口側壁之間 產生泡泡陷阱或捕捉器。較佳地,柱擴散傳播列印流體內 的壓力脈衝,以降低噴嘴之間串擾。 在一些實施例中,該等致動器是加熱器元件,用於在 該列印流體內產生蒸汽泡泡,使得從該噴射孔噴射出該列 印流體的液滴。較佳地,該等加熱器元件是懸架在其個別 電極之間的樑,所以該等加熱器元件是浸没在該列印流體 內。較佳地,該等噴射孔是橢圓形,且噴射孔的長軸平行 於該樑的縱軸。較佳地,相鄰噴射孔的長軸相隔開小於5 0 微米。在另一較佳形式中,相鄰噴射孔的長軸相隔開小於 25微米。在特別佳的形式中,相鄰噴射孔的長軸相隔開小 於16微米。 在特別的實施例中,在媒介饋給方向的橫方向中,該 列印頭具有每吋多於1 600個噴嘴(npi)的噴嘴節距。在較佳 實施例中,該噴嘴節距是大於3000 npi。在特別佳的實施 例中,該列印頭具有之每吋點數(dpi)的列印解析度,等於 該噴嘴節距。在特定實施例中,該列印頭是頁寬列印頭, 其被建構用於列印A4尺寸媒介。較佳地,該陣列具有多 於100000個噴嘴。 因此,本發明提供一種噴墨列印頭,包含: -10- 200904642 一陣列的噴嘴’配置在~系列的列中;每一噴嘴具有 噴射孔、用於保持列印流體的腔室、和加熱器元件;該加 熱器元件用於在腔室所容置的該列印流體內產生蒸汽泡泡 ,以將該列印流體的液滴噴射經過該噴射孔;其中 該噴嘴、該加熱器元件、和該腔室全部是長形構造, 該等長形構造具有長的尺寸,該長的尺寸分別超越各長形 構造的其他尺寸;和 該噴嘴、該加熱器、和該腔室之個別長的尺寸是平行 的,且垂直於該列方向而延伸。 爲了增加列的噴嘴密度,每一噴嘴組件---腔室、噴 射孔、和加熱器元件都被建構成長形構造,該等長形構造 在列方向的橫方向全部對齊。此提昇了列的噴嘴節距或每 吋的噴嘴數(npi),同時允許保持足夠大之腔室容積和液滴 體積,以供合適的顏料密度之用。此亦避免在紙饋給方向 (在頁寬印表機的情況)或在掃描方向(在掃描列印頭的情 況)擴展大距離的需要。 較佳地,該陣列中的每一列相對於其相鄰列偏移’所 以一列中該等噴嘴的該等長的尺寸沒有一者’不和該相鄰 列中該等長的尺寸的任意者共線的。在另一較佳的形式中 ,該列印頭是頁寬列印頭,用於列印至在媒介饋給方向饋 給通過列印頭的媒介基材,所以該等噴嘴之該等長的尺寸 ,平行於該媒介饋給方向。 較佳地,每個第二噴嘴之長的尺寸是在登錄中。在特 別佳的形式中’所有該等噴嘴的該等噴射孔形成在平坦的 -11 - 200904642 頂部層中,該頂部層局部界定該腔室;該頂部層具有外部 表面,該外部表面除了該等噴射孔以外,其餘是平坦的。 在特別佳的形式中,該陣列的噴嘴形成在下面之基板上, 該基板平行於該頂部層而延伸,且藉由在該頂部層和該基 板之間延伸的側壁局部界定該腔室,設計該側壁的形狀, 使得該側壁的內部表面至少局部呈橢圓形。較佳地,除了 供列印流體用的入口開口以外,該側壁呈橢圓形。在特別 佳的形式中,在該等列其中之一列內之該等噴嘴的短軸和 在該媒介饋給方向之該相鄰列中該等噴嘴的短軸局部重疊 。在另一較佳的形式中,該等噴射孔呈橢圓形。 較佳地,該等加熱器元件是懸架在其個別電極之間的 樑,所以在使用期間,該等加熱器元件是浸没在該列印流 體內。較佳地,該加熱器元件所產生之該蒸汽泡泡在平行 於該噴射孔的橫剖面呈橢圓形。 在一些實施例中,該列印頭更包含鄰接於該陣列的供 給通道,該陣列係平行該等列而延伸。在較佳的形式中, 該陣列的噴嘴是第一陣列的噴嘴,且第二陣列的噴嘴形成 在該供給通道的其他側;該第二陣列是該第一陣列的鏡射 影像,但相對於該第一陣列偏移,所以在該第一陣列中之 該等噴射孔的長軸沒有一者,不和該第二陣列之長軸其中 任意者共線的。較佳地,在該第一陣列中之該等噴射孔的 該等長軸’從該第二陣列中之該等噴射孔的該等長軸,往 該媒介饋給方向的橫方向偏移達小於2 0微米。在特別佳的 形式中,該偏移約爲8微米。在一些實施例中,該列印頭 -12- 200904642 在該媒介饋給方向的橫方向中’具有的噴嘴節距是每吋多 於1 600個噴嘴(npi)。在特別佳的形式中,該基板在媒介饋 給方向的寬度小於3毫米。 因此,本發明提供一種噴墨列印頭,包含: 一陣列的噴嘴,用於當列印媒介在相對於該列印頭的 列印方向中運動時,將列印流體的液滴噴射至該列印媒介 上;其中 在該陣列中的該等噴嘴,在該列印方向的垂直方向中 ,彼此相隔開達小於1 0微米。 由於噴嘴在該列印方向的垂直方向中相隔開小於1 〇微 米,所以列印頭具有非常高的「真實」列印解析度…-亦 即藉由每吋的高噴嘴數達到每吋的高點數。 較佳地,在該列印方向的垂直方向中彼此相隔開達小 於1 0微米之該陣列中的該等噴嘴,在該列印方向中也彼此 相隔開達小於1 50微米。 在另一較佳形式中,該陣列每平方毫米具有超過7 00 個噴嘴。 較佳地,該陣列的噴嘴被支撐在複數單片晶圓基板上 ,每一單片晶圓基板支撐超過10000個該等噴嘴。在另一 較佳形式中,每一單片晶圓基板支撐超過1 2000個該等噴 嘴。在特別佳的形式中,該複數單片晶圓基板被端對端地 安裝,以形成供安裝在印表機內的頁寬列印頭,建構該印 表機以在媒介饋給方向饋給媒介通過該列印頭;該列印頭 具有超過1 00000個該等噴嘴,且該列印頭在該媒介饋給方 -13- 200904642 向的橫方向中延伸200毫米至330毫米。在一些實施例中’ 該陣列具有超過140000個該等噴嘴。 選擇性地,該列印頭更包含複數致動器分別供該等噴 嘴的每一者之用,該等致動器配置在相鄰列內,每一致動 器具有在該等列的橫方向彼此相隔開的電極,用於連接至 個別驅動電晶體和一電源供應器;其中 在相鄰列中之該等致動器的該等電極具有相反的極性 ,所以在相鄰列中之該等致動器具有相反的電流流動方向 。較佳地,在每一列中之該等電極從其相鄰的致動器往該 列之橫方向偏移,所以每個第二致動器的該等電極共線。 在特別佳的實施例中,該等小液滴噴射器被製造在一長形 晶圓基板上,該長形晶圓基板平行於該等致動器之該等列 而延伸,且沿著該晶圓基板的長邊緣供給電力和資料。 在一些實施例中,該列印頭具有一列印引擎控制器 (PEC),用於將列印資料送至該陣列的噴嘴;其中 在使用期間,藉由將列印資料分配給該陣列之至少二 噴嘴之間的單一噴嘴’該列印引擎控制器可選擇性地降低 該列印解析度。較佳地,設置該二噴嘴在該陣列中的位置 ,使得該二噴嘴在該列印頭相對於列印媒介基材之運動的 橫方向中是最接近的鄰居。在特別佳的形式中,該列印引 擎控制器平等地分享該列印資料給該陣列中的該二噴嘴。 較佳地,該二噴嘴中心相隔開小於4 0微米。 在特別佳的形式中,該列印頭是頁寬列印頭,且該二 噴嘴中心在該媒介饋給方向的橫方向中相隔開小於1 6微米 -14- 200904642 。較佳地,該等相鄰噴嘴中心在該媒介饋給方向的橫方向 中相隔開小於8微米。較佳地,該列印頭在該媒介饋給方 向的橫方向中,具有的噴嘴節距是每吋多於1600個噴嘴 (npi)。在另一較佳的形式中,該噴嘴節距大於3000 npi。 因此,本發明提供一種用於噴墨列印頭的列印頭積體 電路,該列印頭積體電路包含: 一單片晶圓基板,其支撐一陣列的小液滴噴射器,用 於將列印流體的液滴噴射至列印媒介上,每一液滴噴射器 具有噴嘴和致動器,該致動器用於將列印流體的液滴噴射 經過該噴嘴;其中 該陣列具有超過1 0000個該等小液滴噴射器。 由於大數目的小液滴噴射器製造在單一晶圓上’所以 噴嘴陣列具有高的噴嘴節距,且該列印頭具有非常高的「 真實」列印解析度---亦即藉由每吋的高噴嘴數達到每吋 的商點數。 較佳地,該陣列具有超過1 2 0 0 0個該等小液滴噴射器 。在另一較佳的形式中’該列印媒介在相對於該列印頭的 列印方向中運動;且在該陣列中的該等噴嘴’在該列印方 向的垂直方向中,彼此相隔開達小於1 0微米。在特別佳的 形式中,在該列印方向的垂直方向中’彼此相隔開達小於 1 0微米之該陣列中的該等噴嘴’在該列印方向中也彼此相 隔開達小於150微米。 在較佳的實施例中’該陣列每平方毫米具有超過700 個該等小液滴噴射器。在特別佳的形式中,該等致動器配 -15- 200904642 置在相鄰列內,每一致動器 隔開的電極,用於連接至個 :在相鄰列中之該等致動器 所以在相鄰列中之該等致動 在又一較佳的形式中,在每 致動器往該列之橫方向偏移 電極共線。 在特定的實施例中,該 行於該等致動器之該等列而 晶圓基板的長邊緣供給電力 墨列印頭包含複數列印頭積 控制器(PEC),用於將列印 器;其中,在使用期間,藉 至少二小液滴噴射器之間的 擎控制器可選擇性地降低該 二噴嘴在該陣列中的位置, 於列印媒介基材之運動的橫 別較佳的形式中,該列印引 料給該陣列中的該二噴嘴。 開小於4 0微米。在特別佳的 印頭,且該二噴嘴中心在該 開小於1 6微米。在又一較佳 在該媒介饋給方向的橫方向 在一些實施例中,該噴 :具有在該等列的橫方向彼此相 別驅動電晶體和一電源供應器 的該等電極具有相反的極性’ 器具有相反的電流流動方向。 一列中之該等電極從其相鄰的 ,所以每個第二致動器的該等 單片晶圓基板是長形的,且平 延伸,所以在使用時’沿著該 和資料。在一些形式中’該噴 體電路,且另包含一列印引擎 資料送至該陣列的小液滴噴射 由將列印資料分配給該陣列之 單一小液滴噴射器,該列印引 列印解析度。較佳地’設置該 使得該二噴嘴在該列印頭相對 方向中是最接近的鄰居。在特 擎控制器平等地分享該列印資 選擇性地,該二噴嘴中心相隔 實施例中,該列印頭是頁寬列 媒介饋給方向的橫方向中相隔 的形式中,該等相鄰噴嘴中心 中相隔開小於8微米。 墨列印頭包含複數列印頭積體 -16- 200904642 電路’其被端對端地安裝,以形成供印表機用的頁寬列印 頭’建構該印表機以在媒介饋給方向饋給媒介通過該列印 頭;該列印頭具有超過100000個該等噴嘴’且該列印頭在 該媒介饋給方向的橫方向中延伸200毫米至330毫米。在另 一較佳的形式中,該陣列具有超過1 400〇〇個該等噴嘴。 較佳地,該陣列的小液滴噴射器在該媒介饋給方向的 橫方向中,具有的噴嘴節距是每吋多於1600個噴嘴(npi)。 較佳地,該噴嘴節距大於3000 npi。 因此,本發明提供一種用於噴墨列印頭的列印頭積體 電路,該列印頭積體電路包含: 一平面陣列的小液滴噴射器,每一小液滴噴射器具有 資料分布電路、驅動電晶體、列印流體入口、致動器、腔 室和噴嘴;建構腔室用以將列印流體保持在鄰近該噴嘴’ 所以在使用期間,該驅動電晶體驅動該致動器,以將該列 印流體的小液滴噴射經過該噴嘴;其中 該陣列每平方毫米具有超過700個該等小液滴噴射器 〇 由於製造在晶圓基板上高密度的小液滴噴射器,所以 該噴嘴陣列具有高的噴嘴節距,且該列印頭具有非常高的 「真實」列印解析度---亦即藉由每吋的高噴嘴數達到每 吋的高點數。 較佳地,當該列印媒介在相對於該列印頭的列印方向 中運動時,該陣列將列印流體的的液滴噴射至列印媒介上 ;和在該陣列中的該等噴嘴,在該列印方向的垂直方向中 -17 - 200904642 ,彼此相隔開達小於1 0微米。在另一較佳的形式中,在該 列印方向的垂直方向中,彼此相隔開達小於1 〇微米的該等 噴嘴,在該列印方向中也彼此相隔開達小於1 5 0微米。 在本發明的特定實施例中,噴墨列印頭內使用複數個 列印頭積體電路,每一列印頭積體電路具有超過10000個 該等小液滴噴射器,且較佳地,超過12000個該等噴嘴單 位晶胞。 在一些實施例中,列印頭積體電路是長形的’且被端 對端地安裝,所以該列印頭具有超過1〇〇〇〇〇個該等小液滴 噴射器,且該列印頭在該媒介饋給方向的橫方向中延伸 2 0 0毫米至3 3 0毫米。在另一較佳的形式中,該列印頭具有 超過1 4000 0個該等小液滴噴射器。 在一些較佳的形式中,該等致動器配置在相鄰列內, 每一致動器具有在該等列的橫方向彼此相隔開的電極,用 於連接至對應的驅動電晶體和一電源供應器;其中 在相鄰列中之該等致動器的該等電極具有相反的極性 ,所以在相鄰列中之該等致動器具有相反的電流流動方向 〇 較佳地,在這些實施例中,在每一列中之該等電極從 其相鄰的致動器往該列之橫方向偏移,所以每個第二致動 器的該等電極共線。在另一較佳的形式中’該長形晶圓基 板平行於該等致動器之該等列而延伸’且沿著該晶圓基板 的長邊緣供給電力和資料。 在特定的實施例中,列印頭包含列印引擎控制器 -18- 200904642 (P£C),其用於將列印資料送至該陣歹IJ的噴嘴;其中 在使用期間’藉由將列印資料分配給該陣列之至少二 噴嘴之間的單一噴嘴’該列印引擎控制器可選擇性地降低 該列印解析度。 較佳地,設置該二噴嘴在該陣列中的位置,使得該二 噴嘴在該列印頭相對於列印媒介基材之運動的橫方向中是 最接近的鄰居。在另一較佳的形式中,該列印引擎控制器 平等地分享該列印資料給該陣列中的該二噴嘴。較佳地, 該二噴嘴中心相隔開小於4〇微米。在特別佳的形式中,該 列印頭是頁寬列印頭,且該二噴嘴中心在該媒介饋給方向 的橫方向中相隔開小於1 6微米。在又一較佳的形式中’該 等相鄰噴嘴中心在該媒介饋給方向的橫方向中相隔開小於 8微米。 在一些形式中,該列印頭在該媒介饋給方向的橫方向 中,具有的噴嘴節距是每吋多於1 600個噴嘴(npi)。較佳地 ,該噴嘴節距大於3000 npi。 因此,本發明提供一種頁寬噴墨列印頭,包含: 一陣列的小液滴噴射器,用於將列印流體的液滴噴射 至列印媒介上,該列印媒介被饋給通過在媒介饋給方向中 的該列印頭;每一液滴噴射器具有噴嘴、和用於將列印流 體的液滴噴射經過該噴嘴的致動器;其中 該陣列具有超過〗00000個該等小液滴噴射器,且該陣 列在該媒介饋給方向的橫方向中延伸200毫米至3 3 0毫米。 具有在媒介寬度延伸之大數目噴嘴的頁寬列印頭,提 -19- 200904642 供高噴嘴節距和非常高「真實」列印解析度-…亦即藉由 每吋高數目的噴嘴獲得每吋高數目的點。 較佳地,該陣列具有超過14〇〇〇〇個該等小液滴噴射器 。在另一較佳形式中,該等噴嘴在該媒介饋給方向的垂直 方向中彼此相隔開達小於1 〇微米。在特別佳的形式中,在 該媒介饋給方向的垂直方向中,彼此相隔開達小於1 0微米 的該等噴嘴,在該媒介饋給方向中也彼此相隔開達小於 1 5 0微米。 在特定的實施例中,該陣列小液滴噴射器被支撐在複 數單片晶圓基板上,每一單片晶圓基板支撐超過10000個 小液滴噴射器,且較佳是超過1 2000個小液滴噴射器。在 這些實施例中,希望該陣列每平方毫米具有超過700個小 液滴噴射器。 選擇性地,該等致動器配置在相鄰列內’每一致動器 具有在該等列的橫方向彼此相隔開的電極,用於連接至個 別驅動電晶體和一電源供應器;其中 在相鄰列中之該等致動器的該等電極具有相反的極性 ,所以在相鄰列中之該等致動器具有相反的電流流動方向 。較佳地,在每一列中之該等電極從其相鄰的致動器往該 列之橫方向偏移’所以每個第二致動器的該等電極共線。 在特別佳的實施例中,該等小液滴噴射器被製造在一長形 晶圓基板上,該長形晶圚基板平行於該等致動器之該等列 而延伸,且沿著該晶圓基板的長邊緣供給電力和資料。 在一些實施例中,該列印頭具有一列印引擎控制器 -20- 200904642 (PEC) ’用於將歹lj印資料送至該陣列的噴嘴;其中 在使用期間,藉由將列印資料分配給該陣列之至少二 噴嘴之間的單一噴嘴,該列印引擎控制器可選擇性地降低 該列印解析度。較佳地,設置該二噴嘴在該陣列中的位置 ,使得該二噴嘴在該列印頭相對於列印媒介基材之運動的 橫方向中是最相鄰。在特別佳的形式中,該列印引擎控制 器平等地分享列印資料給該陣列中的該二噴嘴。較佳地, 該二噴嘴中心相間隔小於40微米。 在特別佳的形式中,該列印頭是頁寬列印頭,且該二 噴嘴中心在該媒介饋給方向的橫方向中相隔開小於1 6微米 。較佳地,該等相鄰噴嘴中心在該媒介饋給方向的橫方向 中相隔開小於8微米。較佳地,該列印頭在該媒介饋給方 向的橫方向中,具有的噴嘴節距是每吋多於1600個噴嘴 (npi)。在另一較佳形式中,該噴嘴節距大於3000 npi。 因此,本發明提供一種用於噴墨印表機的列印頭積體 電路,該列印頭積體電路包含: 一單片晶圓基板,其支撐一陣列的小液滴噴射器,用 於將列印流體的液滴噴射至列印媒介上,每一液滴噴射器 具有噴嘴和致動器,該致動器用於將列印流體的液滴噴射 經過該噴嘴;藉由一連串的光微影蝕刻和沉積步驟,將該 陣列形成在該單片晶圓基板上;該等步驟涉及光成像裝置 ’其將曝光區域曝露於光,該光被聚焦以投射圖案至該單 片基板上;其中 該陣列具有超過1 0 0 0 0個該等小液滴噴射器,建構該 -21 - 200904642 等小液滴噴射器使其被該曝光區域所包圍。 本發明配置該噴嘴陣列,使得小液滴噴射器密度非常 高,且減少所需曝光步驟的數目。 較佳地’該曝光區域小於900 mm2。較佳地,該單片 晶圓基板被該曝光區域所包圍。在另一較佳的形式中,該 光成像裝置是步進機,其將整個罩幕同時曝光。選擇性地 ’該光成像裝置是掃描器,其將狹窄帶寬(band)的光掃描 經過該曝光區域,以將罩幕曝光。 較佳地’該單片晶圓基板支撐超過1 2 0 0 0個小液滴噴 射器。在這些實施例中,希望該陣列每平方毫米具有超過 7 0 0個小液滴噴射器。 在一些實施例中,列印頭積體電路被組裝至具有其他 類似列印頭積體電路的頁寬列印頭,用於將列印流體的液 滴噴射至列印媒介上,該列印媒介被饋給通過在媒介饋給 方向中的該列印頭;其中 該陣列具有超過1 00000個該等小液滴噴射器,且該陣 列在該媒介饋給方向的橫方向中延伸200毫米至330毫米。 在另一較佳的形式中,該等噴嘴在該媒介饋給方向的垂直 方向中彼此相隔開達小於1 0微米。較佳地,該列印頭具有 超過1 400 〇〇個該等小液滴噴射器。在特別佳的形式中,在 該媒介饋給方向的垂直方向中彼此相隔開達小於10微米的 該等噴嘴,在該媒介饋給方向中也彼此相隔開達小於150 微米。 選擇性地,該等致動器配置在相鄰列內,每一致動器 -22- 200904642 具有在該等列的橫方向彼此相隔開的電極’用於連接至個 別驅動電晶體和一電源供應器;其中 在相鄰列中之該等致動器的該等電極具有相反的極性 ,所以在相鄰列中之該等致動器具有相反的電流流動方向 。較佳地,在每一列中之該等電極從其相鄰的致動器往該 列之橫方向偏移,所以每個第二致動器的該等電極共線。 在特別佳的實施例中,該等小液滴噴射器被製造在一長形 晶圓基板上,該長形晶圚基板平行於該等致動器之該等列 而延伸,且沿著該晶圓基板的長邊緣供給電力和資料。 在一些實施例中,該列印頭具有一列印引擎控制器 (PEC),用於將歹U印資料送至該陣歹U的噴嘴;其中 在使用期間,藉由將列印資料分配給該陣列之至少二 噴嘴之間的單一噴嘴,該列印引擎控制器可選擇性地降低 該列印解析度。較佳地,設置該二噴嘴在該陣列中的位置 ,使得該二噴嘴在該列印頭相對於列印媒介基材之運動的 橫方向中是最接近的鄰居。在特別佳的形式中,該列印引 擎控制器平等地分享該列印資料給該陣列中的該二噴嘴。 較佳地,該二噴嘴中心相隔開小於40微米。 在特別佳的形式中,該列印頭是頁寬列印頭,且該二 噴嘴中心在該媒介饋給方向的橫方向中相隔開小於1 6微米 。較佳地,該等相鄰噴嘴中心在該媒介饋給方向的橫方向 中相隔開小於8微米。較佳地,該列印頭在該媒介饋給方 向的橫方向中,具有的噴嘴節距是每吋多於1600個噴嘴 (npi)。在另一較佳形式中,該噴嘴節距大於3 000 npi。 -23- 200904642 【實施方式】 使用和2005年1〇月11日申請之USSN 11/246687號案( 我們的檔案號MNN 0 0 1 U S)所述相同的微影蝕刻和沉積步 驟’製造附圖所示的列印頭積體電路(1C)。茲將該案的內 容倂入做參考。一般的工作者會瞭解附圖所示的列印頭積 體電路具有腔室、噴嘴、和加熱器電極結構,其需要使用 和2005年10月11日申請之USSN 11/246687號案(我們的檔 案號MNN001US)圖中所示者不同的曝光遮罩。但是形成 懸臂樑加熱器元件、腔室、和噴射孔的製程步驟則維持相 同。同樣地,以和ΜΝΝ001US所討論者相同的方式形成 互補式金氧半導體(CMOS)層,除了驅動場效電晶體(FET) 以外。因爲加熱器元件的較高密度,所以驅動FET需要 比較小。 連結列印頭積體電路 申請人已發展出一些列印頭裝置,其使用一系列的列 印頭積體電路,該等列印頭積體電路連結在一起以形成頁 寬列印頭。依此方式,列印頭積體電路可組合成列印頭, 使用該等列印頭的應用範圍從寬格式列印至具有內建印表 機的相機和手機。各列印頭積體電路端對端地安裝在支撐 構件上,以形成頁寬列印頭。支撐構件將列印頭積體電路 安裝至印表機內,且將墨水分配至個別積體電路。USSN 1 1 /2 93 8 20號案描述了此類型列印頭的例子’茲將該案的 -24- 200904642 說明倂入做交互參考。 應瞭解的是’本文所提及的用語「墨水」應解釋爲任 何的列印流體’除非內文清楚地表示其只是用於影像列印 媒介的著色劑。列印頭積體電路可同樣地噴射隱性 (invisible)墨水、黏劑、藥劑、或其他功能化的流體。 圖1A顯示頁寬列印頭100的示意圖,其具有安裝至支 撐構件94的系列列印頭積體電路92。彎曲側96允許其中一 個列印頭積體電路92的噴嘴、和在紙饋給方向中相鄰列印 頭積體電路的噴嘴重疊。重疊每一列印頭積體電路92的噴 嘴,提供了橫越二個列印頭積體電路92之間接合處的連續 列印。此避免在列印結果中的「帶(b a n d i n g)」。以此方 式連結各列印頭積體電路,僅使用不同數目的列印頭積體 電路便可製作任何所欲長度的列印頭。 列印頭積體電路92之端對端的配置,需要供給電力和 資料至沿著每一列印頭積體電路9 2長側的結合墊。2 0 0 6年 10月1〇日申請之11/544764號案(我們的檔案號PUA001US) 中詳細地描述此等連接、和具有列印引擎控制器(PEC)之 連結積體電路的控制。 3200 dpi列印頭槪要 圖1B顯示申請人最近硏發的3 200 dpi(點/吋)列印頭 上噴嘴陣列的剖面。列印頭具有「真實 (true)」3200 dpi 解析度,因爲噴嘴節距是3200 dpi,而不是具有3200 dpi 可尋址位置但是噴嘴節距小於2〇〇 dpi的印表機。圖1B所 -25- 200904642 示的剖面顯示噴嘴陣列的八個單位晶胞,且移除頂部層。 爲了例示的目的,已顯示噴射孔2的輪廓。「單位晶胞 (unit cell)」是噴嘴陣列的最小重複單元,且具有二個完 整的液滴噴射器 '和在該等完整噴射器兩側中任一側上之 四個「半液滴噴射器」。圖2顯示一個單位晶胞。 噴嘴列在媒介進給方向8的橫向延伸。中間四列的噴 嘴是一個顏料通道4。墨水供給供給通道6兩中的任一側有 二列延伸。來自晶圓相對側的墨水經由墨水饋給管1 4流至 墨水供給通道6。上和下墨水供給通道1 〇、1 2是分離的顏 料通道(雖然用於較大的顏料密度,但是其可列印相同顏 色的墨水---例如CCMMY列印頭)。 供給通道6上方的列2 0、2 2在媒介饋給方向8係橫向地 偏置。供給通道6下方的列24、26沿著媒介的方向做類似 地偏置。再者,列2 0、2 2和列2 4、2 6相對於彼此係相互偏 置。因此,列20至26在媒介饋給方向之橫向的組合噴嘴節 距,是任何個別列之噴嘴節距的四分之一。沿著每一列的 噴嘴節距約爲32微米(公稱31.75微米)’因此一個顏料通道 之全部列的組合噴嘴節距約爲8微米(公稱7.9375微米)。此 等於3 200 npi的噴嘴節距’因此列印頭具有「真實(true) 」32 00 dpi的解析度。 單位晶胞(unit cell) 圖2是噴嘴陣列的一個單位晶胞。每一單位晶胞具有 相當於四個液滴噴射器(二個完整的液滴噴射器和在該等 -26- 200904642 完整噴射器兩側的四個「半液滴噴射器」)。液滴噴射器 是噴嘴、腔室、驅動FET、和用於單—微機電(MEMS)流 體噴射裝置驅動電路。一般的工作者會瞭解:爲了方便, 液滴噴射器通常單純地指噴嘴;但是從使用的內容可瞭解 ’此用語是否僅指噴射孔或整個MEMS裝置。 由墨水饋給管1 4經由上墨水供給通道1 〇饋給上二噴嘴 列18。下噴嘴列16是不同顏料通道,其由供給通道6饋給 。每一噴嘴具有結合的腔室28和在電極34和36之間延伸的 加熱器元件3 0。各腔室呈橢圓形且彼此偏置,所以其短軸 (minor axes)在媒介饋給方向的橫向重疊。此結構允許腔 室容積、噴嘴面積、和加熱器尺寸實質地相同於上述2005 年10月11日申請之USSN 1 1 /2466 8 7號參考案(我們的檔案 MNN 001US)所示的1 600 dpi列印頭。同樣地,腔室壁32 維持4微米厚,且接點34、36的面積仍然是1〇微米 X 10 微米。 圖3顯示組成噴嘴陣列的單位晶胞複製圖案。每一單 位晶胞3 8橫越晶圓平移達寬度X。相鄰列互呈鏡相且平移 達半個寬度:〇.5χ = y 。如上所述’此提供用於一顏料通 道(20、22、24、26)之列的組合噴嘴節距0.25x。在所示的 實施例中,x=31.75且 y = 7.93 75。此提供3200 dpi的解析 度,而不會減少加熱器、腔室、或噴嘴的尺寸。因此,當 在3200 dpi作業時’列印密度比2005年10月1 1日申請之 USSN 1 1 /246687號參考案(我們的檔案 MNN 001US)之 1 600 dpi列印頭還高;或者列印頭可在160〇 dpi作業,以 -27- 200904642 延長噴嘴具有良好列印密度的壽命。下文會進一步討論列 印頭的此項特徵。 加熱器接點配置 加熱器元件30和個別接點34、3 6的尺寸,相同於2005 年10月11日申請之USSN 1 1 /2466 8 7號參考案(我們的檔案 MNN 00 1US)之1 600 dpi列印頭。然而,因爲有二倍的接 點數目,所以有二倍的FET接點(負接點)數目,該等FET 接點中斷「電力平面(帶正電壓的CMOS金屬層)」。電力 平面(power plane)中之孔的高密度,在各孔之間的薄金屬 片產生高阻抗。此阻抗有損列印頭的整體效率,且會減少 一些加熱器相對於其他加熱器的驅動脈衝。 圖4是晶圓、CMOS驅動電路56、和加熱器的剖面示 意圖。每一列印頭積體電路的驅動電路56被製造在晶圓基 板48上呈數個金屬層40、42、44、45’介電材料41、43、 47將該等金屬層分離,導孔46穿過各層以建立所要求的層 間連接。驅動電路56具有供每一致動器30用的驅動FET( 場效電晶體)58,FET 58的源極54連接至電力平面40(連接 至電源供應器之位置電壓(position volt age)的金屬層),且 汲極52連接至接地平面42(在0電壓或接地的金屬層)。此 外,電極34、36或各致動器30的每一者連接至接地平面42 和電力平面40。 電力平面40通常是最上面的金屬層,且接地平面42是 在電力平面下面的第一層(被介電層41分離)。致動器30、 -28- 200904642 墨水腔室28、噴嘴2被製造在電力平面金屬層40的頂部。 蝕刻穿過此層形成孔46,所以負電極34可連接至接地平面 ,墨水流道14可從晶圓基板48的背部延伸至墨水腔室28。 因爲噴嘴密度增加,所以這些孔或穿過電力平面之穿孔 (punctuation)的密度也增加。因爲穿過電力平面之穿孔的 較大密度,所以穿孔之間的間隙變小了。穿過這些間隙之 金屬層薄橋,是相對高電阻的點。因爲電力平面連接至沿 著列印頭積體電路一側的供應器,所以流至列印頭積體電 路非供應器側上之致動器的電流,可能必須通過一連串的 這些阻抗間隙。至非供應器側致動器所增加的寄生電阻, 會影響其驅動電流和極度地影響這些噴嘴的液滴噴射特性 〇 列印頭使用數種對策來解決此問題。首先,相鄰列的 致動器具有相反的電流流動方向,亦即,其中一列的電極 極性在相鄰列做改變。爲了列印頭此方面的目的,與供給 通道6相鄰的兩列噴嘴,應認爲是如圖5 A所示單一列,而 不是如先前圖式所示地交錯。兩列A、B沿著列印頭積體 電路的長度縱向地延伸。全部的負電極3 4沿著二相鄰列A 、B的外側邊緣。從—側(稱爲邊緣62)供給電力,且電流 在流經兩列中的加熱器元件3 0之前,電流只通過一排薄的 阻抗性金屬區段64。因此,在列A中的電流流動方向和 在列B中的電流流動方向相反。 對應的電路圖例示此組態的好處。因爲列A之各負 電極34間的薄區段的阻抗,所以電源供應器V +電壓下 -29- 200904642 降。然而,全部加熱器30的正電極36相對於接地係在相同 的電壓(VA = VB)。電壓在橫越二列A、B的全部加熱器30( 分別爲阻抗RHA、RHB)時下降。列A、B的電路中刪除了 列B之各負電極34間的薄橋部66的阻抗RB。 圖5B顯示如果二相鄰列之電極極性不是相反的情況 。在此情況中,列B的整排阻抗性區段66呈現在電路中。 供應器電壓V +經過阻抗RA後下降至VA---列A之正電極 3 6的電壓。從該處經過列A加熱器的阻抗RHA後,電壓 下降至接地。然而,電壓VA經過列B負電極34之間薄區 段66的阻抗RB,在列B正電極36的電壓從VA降至VB。 因此,經過列B加熱器30的電壓下降是小於列A的電壓 下降。此會改變驅動脈衝,且因此改變液滴噴射特性。 用於維持電力平面之整合性的第二個對策是將每列中 的相鄰電極對(pair)相交錯。參考圖6,現在各負電極3 4相 交錯,所以每一第二電極橫向地位移至列。相鄰列的加熱 器接點34和36同樣地相錯開。此用於使貫穿電力平面40之 各孔間的間隙64、66更寬。較寬的間隙具有較少的電阻抗 ,且遠離列印頭積體電路隻電源供應器側的加熱器的電壓 下降較小。圖7顯示電力平面40的較大區段。在交錯列41 、44中的電極34對應於供給通道6所饋給之顏料通道。交 錯列42、43關於兩側中任一側上之顏料通道的一半噴嘴---由供給通道1 0所饋給的顏料和由供給通道1 2所饋給顏料 通道。應瞭解的是五顏料通道列印頭積體電路具有九列負 電極,其能誘發離電源供應器側最遠之噴嘴中的加熱器的 -30- 200904642 電阻。各負電極之間的間隙變寬,大幅減少該等件系所產 生的阻抗。此促進整個噴嘴陣列之液滴噴射特性更均勻。 有效率的製造 上述的特性增加了晶圓上噴嘴的密度。每一個別積體 電路約22毫米長、小於3毫米寬、且能支撐超過10000個噴 嘴。此代表了申請人之1 600 dpi列印頭積體電路(見20〇5 年10月11日申請之USSN 11 /2 46687號案(我們的檔案MNN 001US)的例子)中噴嘴的數目大幅地增加。事實上,製造 成如圖1 2所示尺寸之3 200 dpi列印頭噴嘴陣列,具有 1 2 8 0 0個噴嘴。 因爲整個噴嘴陣列都位在用於將罩幕(光罩)曝光之微 影步進機(stepper)或掃描器的曝光範圍內,所以這麼多( 多於10000個)噴嘴的微影製造有效率。圖14示意地顯示光 微影步進機。光源1〇2發射特殊波長的平行射線104穿過罩 幕106,該罩幕具有待傳輸至積體電路92的圖案。圖案被 聚焦穿過用於縮小特徵的透鏡1〇8,並被投射至承載積體 電路(或所謂的「晶粒」)92的晶圓工作台1 1〇上。被光1〇4 照射之晶圓工作台110的區域稱爲曝光區112。不幸的是曝 光區112的尺寸受到限制,以維持投射圖案的準確度…整 個晶圓盤不能同時被曝光。絕大部分的微影步進機具有小 於30毫米 X 30毫米的曝光區。一個主要的製造者(荷蘭 的ASML)所製造的步進機具有22毫米 X 22毫米的曝光區 ,其爲業界的典型。 -31 - 200904642 步進機曝光一個晶粒或晶粒的一部分’然後步進至另 一個晶粒或同一晶粒的另一部分。在單一片基板上具有儘 可能多的噴嘴,有利於袖珍的列印頭設計’且有利於支撐 件上各積體電路的組合體以彼此精確的關係最小化。本發 明建構的噴嘴陣列,使超過1 0 0 0 0噴嘴位在曝光區內。事 實上,整個積體電路可位在曝光區內,所以單一片基板可 設有超過14000個噴嘴,而不必就每一圖案步進和再對準 〇 一般的工作者會瞭解,上述技術可應用於以光微影掃 描器製造噴嘴陣列。圖15A至15C示意掃描器的作業。在 掃描器中,光源102發射光104的較狹窄射束,其寬度仍足 以照射罩幕106的整個寬度。狹窄射束104被聚焦穿過較小 的透鏡108,且被投射至安裝再曝光區112內之積體電路92 的一部份。罩幕1 06和晶圓工作台1 1 0在相反方向彼此相對 運動,所以罩幕的圖案被掃描通過整個曝光區U2。 顯然地,此類型的光成像裝置也適於有效率地製造具 有大數目噴嘴的列印頭積體電路。 平坦外部噴嘴表面 如上所述,依據2005年10月11日申請之 USSN 1 1/246687(我們的檔案MNN 001US)號交互參考案所列之 步驟製造列印頭積體電路。只有改變曝光罩幕圖案,以提 供不同的腔室和加熱器組態。如MNN 001US中所描述者 ,頂部層和腔室壁是整合的構造---合適頂部和壁材料的 -32- 200904642 單一電漿提升化學蒸鍍沉積(PECVD)。合適的頂部材料可 爲氮化砂、氧化砂、氧氮化砂、氮化銘等。頂部和壁被沉 積在犧牲光阻劑之台架(scaffold)層上,以在CMOS之鈍 化層上形成整合的構造。 圖8顯示蝕刻進入犧牲層72內的圖案。該圖案由腔室 壁32和柱狀構造68(下文討論)組成,其全部具均勻厚度。 在所示的實施例中,壁和柱的厚度是4微米。這些構造是 相對地薄,所以當所沉積的頂部和壁材料冷卻時,頂部層 7 0的內表面中幾乎沒有凹陷(如果有的話)。蝕刻圖案中的 厚構造,將保持相對大體積的頂部/壁材料。當材料冷卻 和收縮時,外表面向內拉,以產生凹陷。 這些凹陷使得外表面不平坦,其不利於列印頭的維護 。如果擦拭或抹掉列印頭,紙塵和其他污物會留在凹陷內 。如圖9所示,頂部層72的外表面是平坦且無特徵的,除 了噴嘴2以外。藉由擦拭或抹掉,更容易移除灰塵和已乾 燥的墨水。 再塡注墨水流 參考圖1 〇,除了在陣列的縱長向末端的入口供給較少 的噴嘴以外’每一墨水入口供給四個噴嘴。在起始的注給 期間和在氣泡阻塞的情況,隨機的噴嘴入口 1 4是有利的。 如流動線7 4所示,至遠離入口 1 4之腔室2 8的再塡注流 比至緊鄰供給通道6之腔室28的再塡注流更長。爲了均勻 液滴噴射特徵,希望陣列中每一噴嘴有相同的墨水再塡注 -33- 200904642 時間。 如圖11所示,鄰近腔室的入口 76和遠離腔室的入口 78 設計成不同尺寸。同樣地’柱狀構造68的位置設計成對鄰 近噴嘴入口 76和遙遠噴嘴入口 78提供不同水準的流動限制 。入口的尺寸和柱的位置可調整流體阻力(drag) ’所以陣 列中全部噴嘴的再塡注時間是均勻的。也可設計柱的位置 ,以阻尼腔室2 8內蒸汽泡泡所產生的壓力脈衝。運動經過 入口的阻尼脈衝’防止各噴嘴之間的流體串擾(cross talk) 。再者,在柱6 8和入口 7 6、7 8之側面間的間隙8 0、8 2 ’可 做爲墨水再塡注流中所含之較大氣泡的有效氣泡陷阱或捕 捉器(trap)。 延長的噴嘴壽命 圖1 2顯示噴嘴陣列中一顏料通道的剖面,其具有3 2 0 0 dpi解析度所需的尺寸。應瞭解的是,「真實」3200 dpi 是非常高的解析度---比照相品質還好。此解析度超越許 多列印工作。通常1 600 dpi解析度比較適當。有鑑於此, 藉由共享二相鄰噴嘴之間的列印資料,列印頭積體電路犧 牲了解析度。以此方式,通常送至1 600 dpi列印頭中一個 噴嘴的列印資料,被取代性地送至3200 dpi列印頭中相鄰 的噴嘴。此模式的操作使噴嘴的壽命延長二倍以上,且允 許印表機以非常高的列印速率作業。在3200 dpi模式中, 印表機以60 ppm(全彩A4)列印,且在1 600 dpi模式中,速 率趨近120 ppm。 -34- 200904642 1 6 00 dpi模式的附加利益是:能使用具有列印引擎控 制器(PEC)和撓性印刷電路板之此列印頭積體電路,其僅 能建構於1 600 dpi解析度。 如圖12所示,噴嘴83和噴嘴84橫向地偏移只有7.93 75 微米。兩噴嘴以絕對關係進一步隔開,但是在紙饋給方向 的位移可說明噴嘴啓動(firing)順序的時間點(timing)。因 爲相鄰噴嘴之間8微米的橫向移位是小的,所以爲了呈現 的目的,可以忽略該移位。但是,藉由使高頻振動 (d i t h e r)最佳化(如果希望的話),可解決該移位。 氣泡、腔室、和噴嘴匹配 圖1 3是噴嘴陣列的放大視圖。噴射孔和腔室壁兩者皆 爲橢圓形。將長軸配置成平行於媒介饋給方向,可允許在 饋給方向之橫向中高的噴嘴節距,同時維持需要的腔室容 積。再者,配置腔室的短軸使該等短軸在橫方向重疊,此 也改善了噴嘴包裝密度。 加熱器30是在其個別電極34和36之間延伸的懸臂樑。 長形探加熱器元件產生氣泡’其大致呈橢圓形(在平行於 晶圓平面的剖面)。匹配氣泡90、腔室2 8、和噴射孔2,可 促進能量效率液滴噴射。對「自我冷卻」列印頭而言,低 能量液滴噴射是重要的。 結論 顯示在圖中的列印頭積體電路,提供「真實」3 2 0 0 -35- 200904642 dpi解析度、和比1 600 dpi列印速率還高很多之列印速率 的選擇。分享較低解析度的列印資料延長噴嘴壽命,且提 供現存1 6 0 0 dp i列印引擎控制器和撓性印刷電路板的相容 性。均勻厚度的腔室壁圖案有平坦的外部噴嘴表面,其較 無阻塞的傾向。此外,致動器接觸組態和長形噴嘴構造’ 提供媒介饋給方向之橫方向上的高噴嘴節距’同時保持平 行於媒介饋給方向的薄噴嘴陣列。 所述的特定實施例在各方面只做例示用’且絕無限制 寬廣發明槪念之精神和範圍之意。 【圖式簡單說明】 圖1 A是連結列印頭積體電路構造的示意圖; 圖1 B本發明列印頭積體電路上噴嘴陣列的局部平面 視圖, 圖2是噴嘴陣列的單位晶胞; 圖3顯示組成噴嘴陣列之單位晶胞的複製圖案; 圖4是穿過噴嘴之CMOS層和加熱器元件的示意剖面 圖; 圖5 A示意地顯示在相鄰致動器列具有相反電極性之 電極配置; 圖5B示意地顯示在相鄰致動器列具有典型電極性之 電極配置; 圖6顯示圖1之列印頭積體電路的電極組態; 圖7顯示CMOS層之電力平面的剖面; -36- 200904642 圖8顯示餓刻進入頂/側壁層之犧牲台架層的圖案; 圖9顯示在蝕刻噴嘴孔以後之頂部的外表面; 圖1 〇顯不噴嘴的墨水供給流動; 圖11顯示不同列中至各腔室的不同入口; 圖12顯示用於一顏料通道的噴嘴間隔; 圖1 3顯示具有匹配橢圓形通道和噴射孔之噴嘴陣列的 放大視圖; 圖14是光微影步進機的示意圖;和 圖1 5 A至1 5 C示意地例示光微影步進機的的作業。 【主要元件符號說明】 2 :(噴射)孔(圖1B) 2 :噴嘴(圖4) 6 :(墨水)供給通道 8 :媒介(紙)饋給方向 1 0 :上墨水供給通道 1 2 :下墨水供給通道 1 4 :墨水饋給管(圖1 B) 1 4 :墨水流道(圖4) 14:噴嘴入口(圖1〇) 1 6 :下噴嘴列 1 8 :上噴嘴列 2 0 ·列 22 :列 -37- 200904642 24 :列 26 :列 28 :腔室 3 0 :加熱器元件(圖2 ) 3 〇 :致動器(圖4 ) 3 2 __腔室壁 3 4 :(負)電極(接點) 3 6 :(正)電極(接點) 3 8 :單位封包 40 :電力平面(金屬層) 4 1 :介電層(材料)(圖4) 41 :列(圖7) 42:接地平面(金屬層)(圖4) 42 ·•列(圖 7) 43 :介電層(材料)(圖4) 43 :列(圖7) 44 :金屬層(圖4) 44 :列(圖7) 46 :(導)孔 47:介電層(材料) 4 8 :晶圓基板 5 2 :汲極 5 4 :源極 56: (CMOS)驅動電路 -38 200904642 5 8 :場效電晶體 62 :邊緣 64 :阻抗性金屬區段 6 4 :間隙(圖6 ) 6 6 :橋部(圖5 A) 66 :阻抗性區段(圖5B) 6 6 :間隙(圖6 ) 68 :柱(狀構造) 7 〇 :頂部層 72 :犧牲層 74 :流動線 76 :入口 78 :入口 8 0 :間隙 82 :間隙 8 3 :噴嘴 8 4 :噴嘴 90 :氣泡 92 :列印頭積體電路 94 :支撐構件 9 6 :彎曲側 9 8 :結合墊 1〇〇 :頁寬列印頭 102 :光源 -39 200904642 104 :光(射線) 106 :罩幕 1 0 8 :透鏡 1 1 〇 :晶圓工作台 1 1 2 :曝光區200904642 IX. Description of the Invention [Technical Field] The present invention relates to the field of printing, and more particularly to an ink jet print head for high resolution printing. [Prior Art] The quality of printed images depends largely on the resolution of the printer, so 'continuous efforts are being made to improve the print resolution of the printer. The print resolution is closely dependent on the droplet volume and the spacing of the printer's addressable locations on the media substrate. The spacing between the nozzles on the ink jet head need not be as small as the spacing between the addressable locations on the media substrate. A nozzle that prints a point at an addressable location and a nozzle that prints a dot at an addressable location can be separated by any distance. Regardless of the spacing between the nozzles on the printhead, the movement of the printhead relative to the media, or the movement of the media relative to the printhead, or both, allows the printhead to eject droplets at each addressable position. At the extremes of the load, the same nozzle can print adjacent droplets due to the proper relative motion between the print head and the media. Excessive movement of the media relative to the print head reduces the print rate. In the case of a page-width printhead, scanning the printhead for multiple passes of a single packet of media, or by passing the media multiple times through the printhead, reduces the print rate per minute of printed pages. In addition, each nozzle can be spaced along the media feed path or in the scan direction so that each addressable location on the media is less than the physical spacing of adjacent nozzles. It can be understood that there are many nozzles spaced apart in a large section of the paper path or scanning direction, which violates the pocket design. What's more, feeding the paper requires a small -4-200904642 heart control media position' and a precision printer to control the number of nozzle firings. The problem with large nozzle arrays is greater in terms of page width print heads. To a plurality of nozzles spaced apart in a large length of paper path, the nozzle array needs to have relatively large areas. By defining the 'nozzle array must extend across the width of the medium, but the size of the nozzle array in the medium feed direction should be as small as possible. Extending a relatively long distance array in the media feed direction requires a complex print cylinder' that maintains the spacing between the nozzle and the media surface throughout the array. Some printers are designed to use a wide vacuum drum across the printhead to get the control needed for the media. In view of this issue, there is a strong incentive to increase the nozzle density (ie the number of nozzles per unit area) on the print head to increase the addressable position and resolution of the printer while maintaining the array (in the medium feed direction) ) Small width. SUMMARY OF THE INVENTION Accordingly, the present invention provides a printhead for an inkjet printer comprising: an array of nozzles disposed in adjacent columns, each nozzle having an ejection orifice and for arranging columns Printing fluid is ejected through corresponding actuators of the ejection orifice, each actuator having electrodes spaced apart from each other in the lateral direction of the columns; and a drive circuit for transmitting electrical power to the electrodes; wherein adjacent columns are present The electrodes of the actuators have opposite polarities, so the actuators in adjacent columns have opposite current flow directions. By making the polarities of the electrodes in adjacent columns opposite, The perforations in the power plane of the CMOS remain at the outer edges of adjacent columns. This moves a row of narrow impedance bridges between -5 and 200904642 of each perforation to a position where current does not flow through the bridge. This eliminates the impedance of the bridge from the actuator drive circuit. The droplet ejection characteristics of all the nozzles of the entire array can be made uniform by reducing the resistive loss of the actuator on the power supply side away from the print head integrated circuit. Preferably, the electrodes in each column are offset from the adjacent actuators in the lateral direction of the column so that the electrodes of each of the second actuators are collinear. In another preferred form, the offset is less than 40 microns. In a particularly preferred form, the offset is less than 3 〇 microns. Preferably, the array nozzle is fabricated on an elongated wafer substrate, the wafer substrate extending parallel to the columns of the array, and the driving circuit is a CMOS layer on a surface of the wafer substrate, Power and data are supplied to the CMOS layers along the long edges of the wafer substrate. In another preferred form, the CMOS layer has a top metal layer forming a power plane with a positive voltage, so the electrodes having a negative voltage are connected to vias formed in the holes in the power plane. In yet another preferred form, the CMOS layer has a drive field effect transistor (FET) for each of the actuators in the bottom metal layer. Preferably, the CMOS layer has a thickness less than 〇.  3 micron metal layer.  In some embodiments, The actuators are heater elements, A steam bubble is generated in the printing fluid to cause droplets of the printing fluid to be ejected from the ejection orifice. Preferably, The heater elements are beams that are suspended between their individual electrodes, Therefore, the heater elements are immersed in the printing fluid. Preferably, The injection holes are elliptical. And the long axis of the injection hole is parallel to the longitudinal axis of the beam. In another preferred form, The long axes of the injection holes in one of the columns are collinear with the equal lengths -6 - 200904642 axes of the injection holes in adjacent columns, Therefore, each nozzle in one of the columns is aligned with one of the nozzles in the adjacent column. Preferably, The long axes of adjacent injection holes are separated by less than 5 〇 microns. In another preferred form, The long axes of adjacent injection holes are separated by less than 25 microns. In a particularly preferred form, the major axes of adjacent orifices are separated by less than 16 microns.  In a particular embodiment 'in the transverse direction of the media feed direction' the printhead has a nozzle pitch of more than 1 600 nozzles per n (npi). In a preferred embodiment, The nozzle pitch is greater than 3 0 〇 0 η p i. In a particularly preferred embodiment, The print head has a print resolution of 'd p i' equal to the nozzle pitch. In a particular embodiment, the printhead is a pagewidth printhead' that is configured to print an A4-size medium. Preferably, the array has more than 100,000 nozzles.  therefore, The present invention provides an ink jet print head for a printer It can be printed on the substrate with different print resolutions. The ink jet print head includes an array of nozzles, Each nozzle has an injection orifice and a corresponding actuator for injecting a print fluid through the injection orifice; And - the print engine controller is used to send the print data to the nozzle of the array; During use, By dispensing print data to a single nozzle between at least two nozzles of the array, The print engine controller can selectively reduce @print resolution.  The present invention recognizes that some printing jobs do not require the best resolution of the print head - a lower resolution is well suited for the purpose of the document to be printed. This situation 200904642 is particularly true when the print head has a very high resolution (eg greater than 1 200 dpi). By choosing a lower resolution, The print engine controller (P E C ) treats two or more laterally adjacent (but not touching) nozzles in a printhead with fewer nozzles as a single virtual nozzle. The adjacent nozzles then share the dots required to print the data ___ virtual nozzles to be printed by each actual nozzle in turn. This is used to extend the working life of all nozzles.  Preferably, Setting the position of the two nozzles in the array, The two nozzles are the closest neighbors in the transverse direction of the movement of the printhead relative to the substrate. Preferably, The print engine controller equally shares the print data to the two nozzles in the array. In another preferred form, The two nozzle centers are separated by less than 20 microns. In a particularly good form, The print head is a page width print head. And the centers of the two nozzles are spaced apart by less than 16 microns in the transverse direction of the medium feed direction. In a particular embodiment, The two nozzle centers are spaced apart by less than 8 microns in the transverse direction of the media feed direction. In a particular embodiment, The print head is in the lateral direction of the medium feed direction, It has a nozzle pitch of more than 1 600 nozzles per 吋 (npi). In a preferred embodiment, The nozzle pitch is greater than 3000 npi. In a particularly preferred embodiment, The print head has a print resolution per dot (dpi). Equal to the nozzle pitch. In a particular embodiment, The printhead is constructed to print A4 size media. And the print head has more than 100,000 nozzles.  In some embodiments, when printing at a lower print resolution, The printer operates at a higher print rate. Preferably, This higher print rate is more than 60 pages per minute. In a preferred form, The print engine controller halves the color planes printed by the adjacent nozzles in a high frequency vibration matrix -8- 200904642 (halftone), The dither matrix is optimized for lateral displacement of each of the ejected droplets.  therefore, The invention provides an inkjet print head, contain:  An array of nozzles, Configured in adjacent columns; Each nozzle has a spray hole, a chamber for accommodating the printing fluid, And corresponding actuators; The actuator is configured to spray the printing fluid through the injection hole; Each chamber has an individual inlet to re-print the printing fluid, The printing fluid is ejected by the actuator; And printing the fluid supply channel, Extending parallel to the adjacent columns, Actuating an actuator for printing fluid to each of the nozzles through the individual inlets; The nozzle inlets constructed in one of the adjacent columns have a reflow rate that is different from the reflow rate of the nozzle inlets in the other column of the adjacent columns.  The nozzle constructed in accordance with the present invention allows the ink supply channels on one side to be in a series. Because the supply channel is not only supplied to one row of nozzles on one side, Therefore, the above construction allows the nozzle density on the surface of the print head to be large. But because the flow rate of each column passes through the inlet, Therefore, columns that are farther from the supply channel do not have significantly longer re-injection times.  Preferably, Constructing the nozzle inlets in one of the adjacent columns, Re-injecting the flow rate is different from the re-injection rate of the nozzle inlets in the other column of the adjacent columns, Therefore, the chamber re-injection time of all the nozzles in the array is approximately uniform. In another preferred form, the entrance closest to the supply channel, It is narrower than the one far from the supply channel. In some implementations -9- 200904642, On either side of the supply channel, There are two adjacent columns of nozzles.  Preferably, The inlet has a flow damped configuration. In a particularly good form, The flow damping structure is a column, Design the position of the column, Make it a flow barrier. a column in the entrance of a column and a column in the entrance of the other column, Produce varying degrees of barriers. Preferably, The column creates a bubble trap or trap between the side of the column and the side wall of the inlet. Preferably, The column diffusion propagates pressure pulses within the printed fluid, To reduce crosstalk between nozzles.  In some embodiments, The actuators are heater elements, Used to generate steam bubbles in the printing fluid, The droplets of the printing fluid are ejected from the ejection orifice. Preferably, The heater elements are beams that are suspended between their individual electrodes, Therefore, the heater elements are immersed in the printing fluid. Preferably, The injection holes are elliptical. And the long axis of the injection hole is parallel to the longitudinal axis of the beam. Preferably, The long axes of adjacent injection holes are separated by less than 50 microns. In another preferred form, The long axes of adjacent injection holes are separated by less than 25 microns. In a particularly good form, The long axes of adjacent injection holes are separated by less than 16 microns.  In a particular embodiment, In the horizontal direction of the media feed direction, The print head has a nozzle pitch of more than 1 600 nozzles per n (npi). In a preferred embodiment, The nozzle pitch is greater than 3000 npi. In a particularly preferred embodiment, The print head has a print resolution per dot (dpi). Equal to the nozzle pitch. In a particular embodiment, The print head is a page width print head.  It is constructed to print A4 size media. Preferably, The array has more than 100,000 nozzles.  therefore, The invention provides an inkjet print head, contain:  -10- 200904642 An array of nozzles 'configured in the ~ series of columns; Each nozzle has an injection hole, a chamber for holding the printing fluid, And heater elements; The heater element is for generating a steam bubble in the printing fluid contained in the chamber, Spraying droplets of the printing fluid through the injection holes; Where the nozzle, The heater element, And the chamber is all elongated,  The elongated structures have a long dimension. The long dimensions respectively exceed the other dimensions of each elongate configuration; And the nozzle, The heater, And the individual long dimensions of the chamber are parallel, And extending perpendicular to the column direction.  In order to increase the nozzle density of the column, Each nozzle assembly --- chamber, Spray hole, And the heater elements are constructed to form an elongated structure, The elongate structures are all aligned in the lateral direction of the column direction. This increases the nozzle pitch of the column or the number of nozzles per turn (npi). At the same time, it is allowed to maintain a sufficiently large chamber volume and droplet volume, For use with suitable pigment density. This also avoids the need to extend the large distance in the paper feed direction (in the case of a page wide printer) or in the scanning direction (in the case of scanning a print head).  Preferably, Each column in the array is offset from its adjacent column' such that none of the equal lengths of the nozzles in a column is collinear with any of the equally sized dimensions in the adjacent column. In another preferred form, The print head is a page width print head. For printing to a media substrate that feeds through the print head in the direction of media feed, So the length of the nozzles is the same length, Feed the direction parallel to the medium.  Preferably, The length of each second nozzle is the size of the login. In a particularly preferred form, the ejection orifices of all of the nozzles are formed in a flat top layer of -11 - 200904642, The top layer partially defines the chamber; The top layer has an outer surface, The outer surface is apart from the injection holes, The rest is flat.  In a particularly good form, The nozzles of the array are formed on the underlying substrate,  The substrate extends parallel to the top layer, And partially defining the chamber by a sidewall extending between the top layer and the substrate, Design the shape of the side wall,  The inner surface of the side wall is at least partially elliptical. Preferably, In addition to the inlet opening for the printing fluid, The side wall is elliptical. In a particularly good form, The minor axes of the nozzles in one of the columns are partially overlapped with the minor axes of the nozzles in the adjacent column of the media feed direction. In another preferred form, The injection holes are elliptical.  Preferably, The heater elements are beams that are suspended between their individual electrodes, So during use, The heater elements are immersed in the print stream. Preferably, The vapor bubble generated by the heater element is elliptical in cross section parallel to the injection hole.  In some embodiments, The print head further includes a supply channel adjacent to the array. The array extends parallel to the columns. In a preferred form,  The nozzles of the array are nozzles of the first array, And the nozzles of the second array are formed on the other side of the supply channel; The second array is a mirror image of the first array, But relative to the first array offset, Therefore, none of the long axes of the injection holes in the first array, Not collinear with any of the long axes of the second array. Preferably, The isometric axes of the ejection orifices in the first array from the isometric axes of the ejection orifices in the second array, The lateral direction of the feed direction of the medium is less than 20 microns. In a particularly good form, This offset is approximately 8 microns. In some embodiments, The print head -12-200904642 has a nozzle pitch in the transverse direction of the medium feed direction of more than 1 600 nozzles per minute (npi). In a particularly good form, The substrate has a width in the medium feed direction of less than 3 mm.  therefore, The invention provides an inkjet print head, contain:  An array of nozzles, Used when the printing medium moves in the printing direction relative to the print head, Spraying a droplet of the printing fluid onto the printing medium; Where the nozzles in the array, In the vertical direction of the printing direction, They are separated from each other by less than 10 microns.  Since the nozzles are spaced apart by less than 1 〇 micrometer in the vertical direction of the printing direction, Therefore, the print head has a very high "real" print resolution... - that is, the number of high dots per turn is reached by the number of high nozzles per turn.  Preferably, The nozzles in the array spaced apart from each other by less than 10 microns in the vertical direction of the printing direction, They are also spaced apart from each other by less than 1 50 microns in the printing direction.  In another preferred form, The array has more than 700 nozzles per square millimeter.  Preferably, The array of nozzles is supported on a plurality of monolithic wafer substrates, Each single wafer substrate supports more than 10,000 of these nozzles. In another preferred form, Each single wafer substrate supports more than 12,000 of these nozzles. In a particularly good form, The plurality of monolithic wafer substrates are mounted end to end, To form a page wide print head for mounting in a printer, Constructing the printer to feed the medium through the print head in the medium feed direction; The print head has more than 100,000 of these nozzles. And the print head extends 200 mm to 330 mm in the lateral direction of the medium feed side -13-200904642. In some embodiments the array has more than 140,000 of these nozzles.  Selectively, The print head further includes a plurality of actuators for each of the nozzles, The actuators are arranged in adjacent columns, Each of the actuators has electrodes spaced apart from each other in the lateral direction of the columns, For connecting to individual drive transistors and a power supply; Where the electrodes of the actuators in adjacent columns have opposite polarities, Therefore, the actuators in adjacent columns have opposite current flow directions. Preferably, The electrodes in each column are offset from their adjacent actuators in the lateral direction of the column, So the electrodes of each second actuator are collinear.  In a particularly preferred embodiment, The droplet ejection injectors are fabricated on an elongated wafer substrate. The elongated wafer substrate extends parallel to the columns of the actuators, And supplying power and data along the long edge of the wafer substrate.  In some embodiments, The print head has a print engine controller (PEC). a nozzle for feeding printed data to the array; During use, The print engine controller can selectively reduce the print resolution by assigning print data to a single nozzle between at least two nozzles of the array. Preferably, Setting the position of the two nozzles in the array, The two nozzles are the closest neighbors in the transverse direction of the movement of the printhead relative to the print media substrate. In a particularly good form, The print engine controller shares the print data equally to the two nozzles in the array.  Preferably, The two nozzle centers are separated by less than 40 microns.  In a particularly good form, The print head is a page width print head. And the center of the two nozzles is spaced apart by less than 16 micrometers -14 - 200904642 in the transverse direction of the medium feeding direction. Preferably, The adjacent nozzle centers are spaced apart by less than 8 microns in the transverse direction of the media feed direction. Preferably, The print head is in the lateral direction of the medium feed direction, It has a nozzle pitch of more than 1600 nozzles per n (npi). In another preferred form, The nozzle pitch is greater than 3000 npi.  therefore, The present invention provides a print head integrated circuit for an ink jet print head, The print head integrated circuit includes:  a single wafer substrate, It supports an array of small droplet ejector, For spraying droplets of the printing fluid onto the printing medium, Each droplet ejector has a nozzle and an actuator, The actuator is for spraying droplets of the printing fluid through the nozzle; Where the array has more than 1 0000 of such small droplet ejectors.  Since a large number of small droplet ejectors are fabricated on a single wafer', the nozzle array has a high nozzle pitch, And the print head has a very high "real" print resolution - that is, the number of quotient points per 达到 by the number of high nozzles per turn.  Preferably, The array has more than 12,000 of these small droplet ejectors. In another preferred form, the printing medium moves in a printing direction relative to the printing head; And the nozzles ' in the array are in the vertical direction of the printing direction, They are separated from each other by less than 10 microns. In a particularly good form, The nozzles in the array which are spaced apart from each other by less than 10 μm in the vertical direction of the printing direction are also spaced apart from each other by less than 150 μm in the printing direction.  In a preferred embodiment, the array has more than 700 such droplet ejectors per square millimeter. In a particularly good form, These actuators are placed in adjacent columns with -15-200904642. Separated electrodes per actuator, Used to connect to one: The actuators in adjacent columns are thus actuated in adjacent columns. In yet another preferred form, The electrodes are collinearly offset in the lateral direction of the column by each actuator.  In a particular embodiment, The row is provided in the columns of the actuators and the long edge of the wafer substrate is supplied to the ink jet printhead comprising a plurality of print head product controllers (PECs), Used to print the printer; among them, During use, The position of the two nozzles in the array can be selectively reduced by a controller between at least two droplet ejection injectors,  In a preferred form of motion of the print media substrate, The print is directed to the two nozzles in the array.  Open less than 40 microns. In a particularly good printhead, And the center of the two nozzles is less than 16 microns at the opening. In still another preferred aspect of the media feed direction, in some embodiments, The spray: The electrodes having the drive crystals and a power supply in the lateral direction of the columns have opposite polarities and have opposite current flow directions.  The electrodes in a column are adjacent to them, So the monolithic wafer substrates of each of the second actuators are elongated, And extended, So when using it, follow the information. In some forms 'the spray circuit, And a further print engine data is sent to the array for droplet ejection by a single droplet ejector that distributes the print data to the array. This prints the print resolution. Preferably, the two nozzles are arranged such that the two nozzles are the closest neighbors in the opposite direction of the print head. The printer is equally shared by the controller, optionally The two nozzle centers are separated by an embodiment, The print head is in the form of a page width column in which the media feed direction is spaced apart. The centers of the adjacent nozzles are separated by less than 8 microns.  The ink print head comprises a plurality of print heads -16- 200904642 circuit 'which is installed end to end, The printer is constructed to form a page width printhead for the printer to feed the medium through the print head in the media feed direction; The printhead has more than 100,000 of these nozzles' and the printhead extends 200 mm to 330 mm in the transverse direction of the media feed direction. In another preferred form, The array has more than 1 400 该 of these nozzles.  Preferably, The small droplet ejector of the array is in the lateral direction of the medium feed direction, It has a nozzle pitch of more than 1600 nozzles per n (npi).  Preferably, The nozzle pitch is greater than 3000 npi.  therefore, The present invention provides a print head integrated circuit for an ink jet print head, The print head integrated circuit includes:  a small array of droplet ejector, Each droplet ejector has a data distribution circuit, Driving the transistor, Print the fluid inlet, Actuator, Chamber and nozzle; Constructing a chamber to hold the printing fluid adjacent to the nozzle' so during use, The drive transistor drives the actuator, Spraying a small droplet of the printing fluid through the nozzle; Wherein the array has more than 700 such small droplet ejectors per square millimeter 〇 due to the high density of small droplet ejectors fabricated on the wafer substrate, So the nozzle array has a high nozzle pitch, And the print head has a very high "true" print resolution - that is, the number of high points per turn is reached by the number of high nozzles per turn.  Preferably, When the printing medium moves in a printing direction relative to the print head, The array ejects droplets of the printing fluid onto the printing medium; And the nozzles in the array, In the vertical direction of the printing direction -17 - 200904642 , They are separated from each other by less than 10 microns. In another preferred form, In the vertical direction of the printing direction, The nozzles spaced apart from each other by less than 1 〇 micron, They are also spaced apart from each other by less than 150 microns in the printing direction.  In a particular embodiment of the invention, A plurality of print head integrated circuits are used in the ink jet print head, Each of the print head integrated circuits has more than 10,000 such small droplet ejectors, And preferably, More than 12,000 of these nozzle unit cells.  In some embodiments, The print head integrated circuit is elongated and is mounted end to end. So the print head has more than one such small droplet ejector, And the print head extends from 200 mm to 340 mm in the lateral direction of the medium feed direction. In another preferred form, The printhead has more than 14,000 such small droplet ejectors.  In some preferred forms, The actuators are arranged in adjacent columns,  Each actuator has electrodes spaced apart from each other in the lateral direction of the columns, For connecting to a corresponding driving transistor and a power supply; Where the electrodes of the actuators in adjacent columns have opposite polarities, Therefore, the actuators in adjacent columns have opposite current flow directions 较佳 Preferably, In these embodiments, The electrodes in each column are offset from the adjacent actuators in the lateral direction of the column, So the electrodes of each of the second actuators are collinear. In another preferred form, the elongate wafer substrate extends parallel to the columns of the actuators and supplies power and data along the long edges of the wafer substrate.  In a particular embodiment, The print head contains the print engine controller -18- 200904642 (P£C), It is used to send the printed material to the nozzle of the array IJ; The print engine controller can selectively reduce the print resolution during use by assigning print data to a single nozzle between at least two nozzles of the array.  Preferably, Setting the position of the two nozzles in the array, The two nozzles are the closest neighbors in the transverse direction of movement of the printhead relative to the print media substrate. In another preferred form, The print engine controller equally shares the print data to the two nozzles in the array. Preferably,  The two nozzle centers are separated by less than 4 microns. In a particularly good form, The print head is a page width print head. And the centers of the two nozzles are spaced apart by less than 16 microns in the transverse direction of the medium feed direction. In yet another preferred form, the adjacent nozzle centers are spaced apart by less than 8 microns in the transverse direction of the media feed direction.  In some forms, The print head is in the lateral direction of the medium feed direction, It has a nozzle pitch of more than 1 600 nozzles per n (npi). Preferably, The nozzle pitch is greater than 3000 npi.  therefore, The invention provides a page width inkjet print head, contain:  An array of small droplet ejector, Used to eject droplets of the printing fluid onto the print medium, The print medium is fed to the print head passing in the medium feed direction; Each droplet ejector has a nozzle, And an actuator for ejecting droplets of the printing fluid through the nozzle; Where the array has more than 00000 such small droplet ejectors, And the array extends 200 mm to 330 mm in the lateral direction of the medium feeding direction.  a pagewidth printhead having a large number of nozzles extending across the width of the media, -19-200904642 High nozzle pitch and very high "true" print resolution - ... that is, a high number of points per turn by a high number of nozzles.  Preferably, The array has more than 14 such small droplet ejectors. In another preferred form, The nozzles are spaced apart from each other by less than 1 〇 micrometer in the vertical direction of the medium feed direction. In a particularly good form, In the vertical direction of the medium feed direction, The nozzles spaced apart from each other by less than 10 microns, They are also spaced apart from each other by less than 150 microns in the medium feed direction.  In a particular embodiment, The array droplet ejector is supported on a plurality of monolithic wafer substrates. Each single wafer substrate supports more than 10,000 small droplet ejectors, More preferably, it is more than 12,000 small droplet ejectors. In these embodiments, It is desirable for the array to have more than 700 small droplet ejectors per square millimeter.  Selectively, The actuators are disposed in adjacent columns. 'Each actuator has electrodes spaced apart from each other in the lateral direction of the columns, For connecting to a separate drive transistor and a power supply; Where the electrodes of the actuators in adjacent columns have opposite polarities, Therefore, the actuators in adjacent columns have opposite current flow directions. Preferably, The electrodes in each column are offset from their adjacent actuators in the lateral direction of the column so that the electrodes of each of the second actuators are collinear.  In a particularly preferred embodiment, The droplet ejection injectors are fabricated on an elongated wafer substrate. The elongated wafer substrate extends parallel to the columns of the actuators, And supplying power and data along the long edge of the wafer substrate.  In some embodiments, The print head has a print engine controller -20- 200904642 (PEC) 'for feeding the 歹lj print data to the nozzle of the array; During use, By dispensing print data to a single nozzle between at least two nozzles of the array, The print engine controller can selectively reduce the print resolution. Preferably, Setting the position of the two nozzles in the array, The two nozzles are positioned most adjacent in the transverse direction of movement of the printhead relative to the print media substrate. In a particularly good form, The print engine controller shares the printed material equally to the two nozzles in the array. Preferably,  The two nozzle centers are spaced less than 40 microns apart.  In a particularly good form, The print head is a page width print head. And the center of the two nozzles is spaced apart by less than 16 microns in the transverse direction of the medium feed direction. Preferably, The adjacent nozzle centers are spaced apart by less than 8 microns in the transverse direction of the media feed direction. Preferably, The print head is in the lateral direction of the medium feed direction, It has a nozzle pitch of more than 1600 nozzles per n (npi). In another preferred form, The nozzle pitch is greater than 3000 npi.  therefore, The present invention provides a print head integrated circuit for an ink jet printer. The print head integrated circuit includes:  a single wafer substrate, It supports an array of small droplet ejector, For spraying droplets of the printing fluid onto the printing medium, Each droplet ejector has a nozzle and an actuator, The actuator is for spraying droplets of the printing fluid through the nozzle; By a series of photolithography etching and deposition steps, Forming the array on the monolithic wafer substrate; The steps involve a light imaging device that exposes the exposed area to light, The light is focused to project a pattern onto the single substrate; Where the array has more than 1 000 such small droplet ejectors, Construct a small droplet ejector such as -21 - 200904642 to be surrounded by the exposed area.  The invention configures the nozzle array, Making the droplet ejector very dense, And reduce the number of exposure steps required.  Preferably, the exposed area is less than 900 mm2. Preferably, The monolithic wafer substrate is surrounded by the exposed area. In another preferred form, The light imaging device is a stepper, It exposes the entire mask at the same time. Optionally, the optical imaging device is a scanner, It scans a narrow band of light through the exposed area, To expose the mask.  Preferably, the single wafer substrate supports more than 12,000 droplet ejection injectors. In these embodiments, It is desirable that the array have more than 700 small droplet ejectors per square millimeter.  In some embodiments, The print head integrated circuit is assembled to a page wide print head having other similar print head integrated circuits. Used to eject droplets of the printing fluid onto the print medium, The print medium is fed to the print head passing in the medium feed direction; Where the array has more than 100,000 such small droplet ejectors, And the array extends 200 mm to 330 mm in the lateral direction of the medium feeding direction.  In another preferred form, The nozzles are spaced apart from each other by less than 10 microns in the vertical direction of the media feed direction. Preferably, The printhead has more than 1 400 such small droplet ejectors. In a particularly good form, The nozzles are spaced apart from each other by less than 10 microns in the vertical direction of the medium feed direction, They are also spaced apart from each other by less than 150 microns in the media feed direction.  Selectively, The actuators are arranged in adjacent columns, Each actuator -22-200904642 has electrodes 'separated from each other in the lateral direction of the columns for connection to a separate drive transistor and a power supply; Where the electrodes of the actuators in adjacent columns have opposite polarities, Therefore, the actuators in adjacent columns have opposite current flow directions. Preferably, The electrodes in each column are offset from their adjacent actuators in the lateral direction of the column, So the electrodes of each second actuator are collinear.  In a particularly preferred embodiment, The droplet ejection injectors are fabricated on an elongated wafer substrate. The elongated wafer substrate extends parallel to the columns of the actuators, And supplying power and data along the long edge of the wafer substrate.  In some embodiments, The print head has a print engine controller (PEC). a nozzle for feeding the U-printed material to the array U; During use, By dispensing print data to a single nozzle between at least two nozzles of the array, The print engine controller can selectively reduce the print resolution. Preferably, Setting the position of the two nozzles in the array, The two nozzles are the closest neighbors in the transverse direction of the movement of the printhead relative to the print media substrate. In a particularly good form, The print engine controller shares the print data equally to the two nozzles in the array.  Preferably, The two nozzle centers are separated by less than 40 microns.  In a particularly good form, The print head is a page width print head. And the center of the two nozzles is spaced apart by less than 16 microns in the transverse direction of the medium feed direction. Preferably, The adjacent nozzle centers are spaced apart by less than 8 microns in the transverse direction of the media feed direction. Preferably, The print head is in the lateral direction of the medium feed direction, It has a nozzle pitch of more than 1600 nozzles per n (npi). In another preferred form, The nozzle pitch is greater than 3 000 npi.  -23- 200904642 [Embodiment] The same lithography etching and deposition step as described in USSN 11/246687 (our file number MNN 0 0 1 US) filed on January 11th, 2005 The print head integrated circuit (1C) is shown. I would like to refer to the content of this case for reference. The average worker will understand that the printhead integrated circuit shown in the drawing has a chamber, nozzle, And heater electrode structure, It is necessary to use an exposure mask different from that shown in the figure of USSN 11/246687 (our file number MNN001US) filed on October 11, 2005. But forming a cantilever beam heater element, Chamber, The process steps with the injection holes remain the same. Similarly, Forming a complementary metal oxide semiconductor (CMOS) layer in the same manner as discussed in ΜΝΝ001US, In addition to driving field effect transistors (FETs). Because of the higher density of the heater elements, Therefore, driving the FET needs to be relatively small.  Linking print head integrated circuit Applicants have developed a number of print head devices, It uses a series of print head integrated circuits, The print head assembly circuits are joined together to form a pagewidth print head. In this way, The print head integrated circuit can be combined into a print head.  Applications that use these printheads range from wide format printing to cameras and phones with built-in printers. Each of the print head integrated circuits is mounted end to end on the support member, To form a page width print head. The support member mounts the print head integrated circuit into the printer, And the ink is distributed to the individual integrated circuits. The example of this type of print head is described in USSN 1 1 /2 93 8 20'. The description of the case -24-200904642 is incorporated into the cross-reference.  It should be understood that the term "ink" as used herein shall be interpreted to mean any printing fluid 'unless the context clearly indicates that it is merely a coloring agent for image printing media. The print head integrated circuit can similarly inject invisible ink, Adhesive, Pharmacy, Or other functional fluids.  Figure 1A shows a schematic view of a pagewidth printhead 100, It has a series of print head integrated circuits 92 mounted to the support members 94. The curved side 96 allows the nozzle of one of the print head integrated circuits 92, It overlaps with the nozzle of the adjacent print head integrated circuit in the paper feed direction. The nozzles of each of the print head integrated circuits 92 are overlapped, A continuous print across the junction between the two print head integrated circuits 92 is provided. This avoids "b a n d i n g" in the printed result. In this way, the respective print head integrated circuits are connected. Print heads of any desired length can be made using only a different number of print head integrated circuits.  The end-to-end configuration of the print head integrated circuit 92, It is necessary to supply power and data to the bond pads along the long side of each of the print head integrated circuits 92. These connections are described in detail in Case No. 11/544764 (our file number PUA001US) filed on October 1st, 2nd, 2016. And control of the connected integrated circuit with the print engine controller (PEC).  3200 dpi print head Fig. 1B shows a section of the nozzle array on the 3 200 dpi (dot/吋) print head that the applicant has recently issued. The print head has a "true" 3200 dpi resolution. Because the nozzle pitch is 3200 dpi, Instead of a printer with a 3200 dpi addressable position but a nozzle pitch of less than 2〇〇 dpi. Figure 1B -25- 200904642 shows a section showing eight unit cells of the nozzle array, And remove the top layer.  For the purpose of illustration, The outline of the injection hole 2 has been shown. The "unit cell" is the smallest repeating unit of the nozzle array. It has two complete droplet ejector 's and four "half droplet ejector" on either side of the complete ejector. Figure 2 shows a unit cell.  The nozzles extend in the transverse direction of the media feed direction 8. The nozzles in the middle four rows are a pigment channel 4. Either side of the ink supply supply path 6 has two columns extending. The ink from the opposite side of the wafer flows to the ink supply path 6 via the ink feed tube 14. Upper and lower ink supply channels 1 〇, 1 2 is a separate pigment channel (although for larger pigment density, However, it can print the same color of ink - for example, CCMMY print head).  The column 20 above the supply channel 6 2 2 is laterally offset in the medium feed direction 8 series. Column 24 below the supply channel 6, 26 is similarly biased along the direction of the medium. Furthermore, Column 2 0, 2 2 and column 2 4, 2 6 are mutually offset relative to each other. therefore, The combined nozzle pitch of columns 20 to 26 in the transverse direction of the media feed direction, Is one quarter of the nozzle pitch of any individual column. The nozzle pitch along each column is approximately 32 microns (nominal 31. 75 μm) so the combined nozzle pitch of all columns of a pigment channel is approximately 8 microns (nominal 7. 9375 microns). This is equal to a nozzle pitch of 3 200 npi' so the print head has a resolution of "real" 32 00 dpi. Unit cell Figure 2 is a unit cell of a nozzle array. Each unit cell has four droplet dischargers (two complete droplet ejector and four "half droplet ejector" on either side of the -26-200904642 complete injector). The droplet ejector is a nozzle, a chamber, a drive FET, and a drive circuit for a single-micro electromechanical (MEMS) fluid ejection device. A general worker will understand that for convenience, a droplet ejector is generally referred to simply as a nozzle; however, from the content used, it is understood whether this term refers only to the orifice or the entire MEMS device. The ink feed tube 14 is fed to the upper two nozzle array 18 via the upper ink supply passage 1 . The lower nozzle row 16 is a different pigment channel that is fed by the feed channel 6. Each nozzle has a combined chamber 28 and a heater element 30 extending between the electrodes 34 and 36. The chambers are elliptical and offset from one another so their minor axes overlap laterally in the media feed direction. This configuration allows the chamber volume, nozzle area, and heater size to be substantially the same as the 1 600 dpi shown in the above-referenced USSN 1 1 / 2466 8 7 (Of file MNN 001US) filed on October 11, 2005. Print the head. Similarly, the chamber wall 32 is maintained 4 microns thick and the area of the contacts 34, 36 is still 1 〇 microns x 10 microns. Figure 3 shows a unit cell replica pattern constituting a nozzle array. Each unit cell 38 translates across the wafer to a width X. Adjacent columns are mirrored and translated by half a width: 〇. 5χ = y. As described above, this provides a combined nozzle pitch of 0 for a pigment channel (20, 22, 24, 26). 25x. In the illustrated embodiment, x = 31. 75 and y = 7. 93 75. This provides a resolution of 3200 dpi without reducing the size of the heater, chamber, or nozzle. Therefore, the print density at the 3200 dpi operation is higher than the 1 600 dpi print head of USSN 1 1 /246687 (Our file MNN 001US) filed on October 1, 2005; or print The head can be operated at 160 〇 dpi and the -27-200904642 extended nozzle has a good print density life. This feature of the print head is discussed further below. The heater contacts are arranged to have the dimensions of the heater element 30 and the individual contacts 34, 36, as in the reference of USSN 1 1 / 2466 8 7 (Our file MNN 00 1US) filed on October 11, 2005. 600 dpi print head. However, because there are twice the number of contacts, there are twice the number of FET contacts (negative contacts) that interrupt the "power plane (CMOS metal layer with positive voltage)". The high density of the holes in the power plane creates a high impedance in the thin metal sheet between the holes. This impedance detracts from the overall efficiency of the printhead and reduces the drive pulses of some heaters relative to other heaters. 4 is a cross-sectional view of a wafer, a CMOS drive circuit 56, and a heater. The drive circuit 56 of each of the print head integrated circuits is fabricated on the wafer substrate 48 by a plurality of metal layers 40, 42, 44, 45' dielectric materials 41, 43, 47 separating the metal layers, vias 46. Pass through the layers to establish the required interlayer connections. The drive circuit 56 has a drive FET (field effect transistor) 58 for each actuator 30, and the source 54 of the FET 58 is connected to the power plane 40 (a metal layer connected to the position volt age of the power supply) And the drain 52 is connected to the ground plane 42 (a metal layer at zero voltage or ground). In addition, each of the electrodes 34, 36 or each actuator 30 is coupled to a ground plane 42 and a power plane 40. The power plane 40 is typically the uppermost metal layer and the ground plane 42 is the first layer below the power plane (separated by the dielectric layer 41). Actuator 30, -28- 200904642 Ink chamber 28, nozzle 2 is fabricated on top of power plane metal layer 40. Etching through this layer forms apertures 46 such that negative electrode 34 can be connected to the ground plane and ink flow path 14 can extend from the back of wafer substrate 48 to ink chamber 28. As the nozzle density increases, the density of these holes or punctuations through the power plane also increases. Because of the large density of perforations that pass through the power plane, the gap between the perforations becomes smaller. A thin layer of metal layer that passes through these gaps is a relatively high resistance point. Since the power plane is connected to the supply along the side of the printhead integrated circuit, the current flowing to the actuator on the non-supply side of the printhead integrated circuit may have to pass through a series of these impedance gaps. The parasitic resistance added to the non-supply side actuator affects its drive current and affects the droplet ejection characteristics of these nozzles. 〇 The print head uses several countermeasures to solve this problem. First, the actuators of adjacent columns have opposite current flow directions, i.e., the polarity of the electrodes in one column changes in adjacent columns. For the purposes of this aspect of the print head, the two rows of nozzles adjacent to the supply passage 6 are considered to be a single column as shown in Figure 5A, rather than being staggered as shown in the previous figures. The two columns A, B extend longitudinally along the length of the printhead integrated circuit. All of the negative electrodes 34 are along the outer edges of the two adjacent columns A, B. Power is supplied from the side (referred to as edge 62) and current flows through only a row of thin resistive metal segments 64 before the current flows through the heater elements 30 in the two columns. Therefore, the direction of current flow in column A and the direction of current flow in column B are opposite. The corresponding circuit diagram illustrates the benefits of this configuration. Because of the impedance of the thin section between the negative electrodes 34 of column A, the power supply V+ voltage drops below -29-200904642. However, the positive electrode 36 of all heaters 30 is at the same voltage (VA = VB) with respect to the ground. The voltage drops as it traverses all of the heaters 30 of the two columns A and B (resistances RHA, RHB, respectively). The impedance RB of the thin bridge portion 66 between the negative electrodes 34 of the column B is deleted in the circuits of the columns A and B. Fig. 5B shows the case where the polarity of the electrodes of two adjacent columns is not reversed. In this case, the entire row of resistive sections 66 of column B are presented in the circuit. The supply voltage V + drops through the impedance RA to the voltage of the positive electrode 3 6 of VA--column A. After passing through the impedance RHA of the column A heater, the voltage drops to ground. However, the voltage VA passes through the impedance RB of the thin section 66 between the column B negative electrodes 34, and the voltage at the column B positive electrode 36 falls from VA to VB. Therefore, the voltage drop across column B heater 30 is less than the voltage drop across column A. This will change the drive pulse and thus the droplet ejection characteristics. A second strategy for maintaining the integrity of the power plane is to interleave pairs of adjacent electrodes in each column. Referring to Figure 6, each of the negative electrodes 34 is now staggered so that each second electrode is laterally displaced to the column. The adjacent columns of heater contacts 34 and 36 are likewise staggered. This serves to make the gaps 64, 66 between the holes through the power plane 40 wider. The wider gap has less electrical impedance and the voltage drop from the heater on the power supply side of the printhead integrated circuit is smaller. FIG. 7 shows a larger section of the power plane 40. The electrodes 34 in the staggered columns 41, 44 correspond to the pigment channels fed by the feed channel 6. The misaligned columns 42, 43 are about half of the nozzles of the pigment channels on either side of the sides - the pigment fed by the supply channel 10 and the pigment channel fed by the supply channel 12. It will be appreciated that the five-pigment channel printhead integrated circuit has nine columns of negative electrodes that induce the -30-200904642 resistance of the heater in the nozzle furthest from the power supply side. The gap between the negative electrodes is widened, greatly reducing the impedance generated by the components. This promotes more uniform droplet ejection characteristics throughout the nozzle array. Efficient Manufacturing The above characteristics increase the density of the nozzles on the wafer. Each individual integrated circuit is approximately 22 mm long, less than 3 mm wide, and can support more than 10,000 nozzles. This represents the applicant's 1 600 dpi print head integrated circuit (see the example of USSN 11 /2 46687 (our file MNN 001US) filed on October 11, 2005). increase. In fact, an array of 3 200 dpi print head nozzles of the size shown in Figure 12 was fabricated with 1 2 800 nozzles. Since the entire nozzle array is located within the exposure range of the lithography stepper or scanner used to expose the mask (mask), the lithography manufacturing efficiency of so many (more than 10,000) nozzles is efficient. . Figure 14 shows schematically a photolithography stepper. The light source 112 transmits a parallel ray 104 of a particular wavelength through the mask 106, which has a pattern to be transmitted to the integrated circuit 92. The pattern is focused through a lens 1 〇 8 for reducing the features and projected onto a wafer stage 1 1 承载 carrying an integrated circuit (or so-called "die") 92. The area of the wafer stage 110 illuminated by the light 1〇4 is referred to as an exposure area 112. Unfortunately, the size of the exposure zone 112 is limited to maintain the accuracy of the projected pattern... the entire wafer tray cannot be exposed at the same time. Most lithography steppers have an exposure area of less than 30 mm X 30 mm. A stepper manufactured by a major manufacturer (ASML, The Netherlands) has an exposure area of 22 mm X 22 mm, which is typical in the industry. -31 - 200904642 The stepper exposes a portion of a die or grain' and then steps to another die or another portion of the same die. Having as many nozzles as possible on a single substrate facilitates the compact printhead design' and facilitates the minimization of the assembly of the integrated circuits on the support in precise relation to each other. The nozzle array constructed in accordance with the present invention allows more than 10,000 nozzles to be positioned within the exposure zone. In fact, the entire integrated circuit can be located in the exposure area, so a single substrate can be equipped with more than 14,000 nozzles without having to step and realign each pattern. The general practitioner will understand that the above technology can be applied. A nozzle array is fabricated using a photolithography scanner. 15A to 15C illustrate the operation of the scanner. In the scanner, light source 102 emits a narrower beam of light 104 that is still wide enough to illuminate the entire width of mask 106. The narrow beam 104 is focused through the smaller lens 108 and is projected onto a portion of the integrated circuit 92 within the re-exposed area 112. The mask 106 and the wafer table 110 are moved relative to each other in opposite directions, so that the pattern of the mask is scanned through the entire exposure area U2. Obviously, this type of optical imaging device is also suitable for efficiently producing a print head integrated circuit having a large number of nozzles. Flat External Nozzle Surfaces As described above, the print head integrated circuit is fabricated in accordance with the steps outlined in the USSN 1 1/246687 (our file MNN 001US) cross-reference filed on Oct. 11, 2005. Only change the exposure mask pattern to provide different chamber and heater configurations. As described in MNN 001US, the top layer and the chamber walls are an integrated construction - suitable for top and wall materials -32-200904642 Single Plasma Lift Chemical Evaporation Deposition (PECVD). Suitable top materials can be nitrided sand, oxidized sand, oxynitride sand, nitrided, and the like. The top and walls are deposited on a scaffold layer of sacrificial photoresist to form an integrated construction on the passivation layer of the CMOS. FIG. 8 shows a pattern etched into the sacrificial layer 72. The pattern consists of a chamber wall 32 and a columnar structure 68 (discussed below), all of which have a uniform thickness. In the illustrated embodiment, the thickness of the walls and posts is 4 microns. These configurations are relatively thin so that there is little depression (if any) in the inner surface of the top layer 70 as the deposited top and wall materials cool. The thick construction in the etched pattern will maintain a relatively large volume of top/wall material. As the material cools and contracts, the outer surface pulls inward to create a depression. These depressions make the outer surface uneven, which is detrimental to the maintenance of the print head. If you wipe or erase the print head, paper dust and other contaminants will remain in the recess. As shown in Figure 9, the outer surface of the top layer 72 is flat and featureless except for the nozzle 2. It is easier to remove dust and dry ink by wiping or wiping off. Refilling the ink flow Referring to Figure 1, 四个, except for supplying fewer nozzles at the entrance of the longitudinal end of the array, each nozzle is supplied with four nozzles. The random nozzle inlet 14 is advantageous during the initial injection and in the case of bubble blockage. As indicated by the flow line 74, the refill flow to the chamber 28 away from the inlet 14 is longer than the refill flow to the chamber 28 adjacent the supply passage 6. In order to uniform droplet ejection characteristics, it is desirable that each nozzle in the array has the same ink re-injection time -33 - 200904642. As shown in Figure 11, the inlet 76 adjacent the chamber and the inlet 78 remote from the chamber are designed to be different sizes. Similarly, the position of the columnar structure 68 is designed to provide different levels of flow restriction to the adjacent nozzle inlet 76 and the remote nozzle inlet 78. The size of the inlet and the position of the column adjust the fluid drag so that the re-injection time of all nozzles in the array is uniform. The position of the column can also be designed to dampen the pressure pulses generated by the vapor bubbles in chamber 28. The damping pulse that moves through the inlet prevents fluid cross talk between the nozzles. Furthermore, the gaps 80, 8 2 ' between the sides of the column 6 8 and the inlets 7 6 , 7 8 can be used as effective bubble traps or traps for the larger bubbles contained in the ink refilling stream. . Extended Nozzle Life Figure 1 2 shows a section of a pigment channel in a nozzle array that has the dimensions required for a resolution of 3200 dpi. It should be understood that the "real" 3200 dpi is a very high resolution - better than the photographic quality. This resolution goes beyond many printing jobs. Usually a resolution of 1 600 dpi is appropriate. In view of this, the print head integrated circuit sacrifices resolution by sharing the printed data between two adjacent nozzles. In this way, the print data normally sent to one of the nozzles of the 1 600 dpi print head is instead sent to the adjacent nozzles in the 3200 dpi print head. This mode of operation extends the life of the nozzle by more than two times and allows the printer to operate at very high print rates. In 3200 dpi mode, the printer prints at 60 ppm (full color A4) and in the 1 600 dpi mode, the speed approaches 120 ppm. -34- 200904642 1 6 00 The additional benefit of the dpi mode is the ability to use this printhead integrated circuit with print engine controller (PEC) and flexible printed circuit board, which can only be constructed at 1 600 dpi resolution . As shown in Fig. 12, the nozzle 83 and the nozzle 84 are laterally offset by only 7. 93 75 microns. The two nozzles are further spaced apart in absolute relationship, but the displacement in the paper feed direction may indicate the timing of the firing sequence. Since the lateral displacement of 8 microns between adjacent nozzles is small, this shift can be ignored for purposes of presentation. However, this shift can be resolved by optimizing the high frequency vibration (d i t h e r) if desired. Bubbles, Chambers, and Nozzle Matching Figure 13 is an enlarged view of the nozzle array. Both the injection hole and the chamber wall are elliptical. Configuring the long axis parallel to the media feed direction allows for a high nozzle pitch in the lateral direction of the feed direction while maintaining the required chamber volume. Furthermore, arranging the short axes of the chambers causes the short axes to overlap in the lateral direction, which also improves the nozzle packing density. Heater 30 is a cantilever beam that extends between its individual electrodes 34 and 36. The elongate heater element produces a bubble 'which is generally elliptical (in a section parallel to the plane of the wafer). Matching the bubble 90, the chamber 28, and the ejection orifice 2 promotes energy efficient droplet ejection. Low-energy droplet ejection is important for the “self-cooling” print head. Conclusion The printhead integrated circuit shown in the figure provides a choice of "real" 3 2 0 0 -35 - 200904642 dpi resolution and a much higher print rate than the 1 600 dpi print rate. Sharing lower resolution print data extends nozzle life and provides compatibility with existing 1 600 dp print engine controllers and flexible printed circuit boards. The uniform thickness of the chamber wall pattern has a flat outer nozzle surface that is less prone to blockage. In addition, the actuator contact configuration and the elongated nozzle configuration 'provide a high nozzle pitch in the lateral direction of the media feed direction' while maintaining a thin nozzle array that is parallel to the media feed direction. The specific embodiments described are intended to be illustrative only and not restrictive. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a schematic view showing the construction of a joint print head integrated circuit; FIG. 1B is a partial plan view of the nozzle array on the print head integrated circuit of the present invention, and FIG. 2 is a unit cell of the nozzle array; Figure 3 shows a replica pattern of a unit cell constituting a nozzle array; Figure 4 is a schematic cross-sectional view of a CMOS layer and a heater element passing through a nozzle; Figure 5A schematically shows the opposite polarity in adjacent actuator columns FIG. 5B schematically shows an electrode configuration having a typical polarity in an adjacent actuator column; FIG. 6 shows an electrode configuration of the head integrated circuit of FIG. 1; FIG. 7 shows a cross section of a power plane of the CMOS layer ; -36- 200904642 Figure 8 shows the pattern of the sacrificial gantry layer that enters the top/sidewall layer; Figure 9 shows the outer surface at the top after etching the nozzle hole; Figure 1 shows the ink supply flow without the nozzle; Different inlets to the different chambers are shown in different columns; Figure 12 shows the nozzle spacing for a pigment channel; Figure 13 shows an enlarged view of the nozzle array with matching elliptical channels and orifices; Figure 14 is a light microstep Entering machine Schematic; and 1 5 A to 1 5 C illustrates a photolithographic stepper schematically job. [Main component symbol description] 2 : (spray) hole (Fig. 1B) 2 : Nozzle (Fig. 4) 6 : (ink) supply channel 8: medium (paper) feed direction 1 0 : upper ink supply channel 1 2 : lower Ink supply channel 1 4 : Ink feed tube (Fig. 1 B) 1 4 : Ink flow path (Fig. 4) 14: Nozzle inlet (Fig. 1〇) 1 6 : Lower nozzle column 1 8 : Upper nozzle column 2 0 · Column 22: Column-37- 200904642 24: Column 26: Column 28: Chamber 3 0: Heater element (Fig. 2) 3 〇: Actuator (Fig. 4) 3 2 __ Chamber wall 3 4 : (Negative) Electrode (contact) 3 6 : (positive) electrode (contact) 3 8 : unit package 40 : power plane (metal layer) 4 1 : dielectric layer (material) (Fig. 4) 41 : column (Fig. 7) 42 : Ground plane (metal layer) (Fig. 4) 42 ·• Column (Fig. 7) 43: Dielectric layer (material) (Fig. 4) 43: Column (Fig. 7) 44: Metal layer (Fig. 4) 44: Column ( Figure 7) 46: (guide) hole 47: dielectric layer (material) 4 8 : wafer substrate 5 2 : drain 5 4 : source 56: (CMOS) drive circuit -38 200904642 5 8 : field effect transistor 62: Edge 64: Impedance metal section 6 4 : Clearance (Fig. 6) 6 6 : Bridge (Fig. 5 A) 66: Impedance section (Fig. 5B) 6 6: Clearance (Fig. 6) 68: Column (structure) 7 〇: Top layer 72: Sacrificial layer 74: Flow line 76: Entrance 78: Entrance 80: Clearance 82: Clearance 8 3: Nozzle 8 4: Nozzle 90: Bubble 92: Print head integrated circuit 94: Support member 9 6 : Bending side 9 8 : Bonding pad 1 〇〇: Page width Print head 102: Light source - 39 200904642 104 : Light (ray) 106 : Mask 1 0 8: Lens 1 1 〇: Wafer table 1 1 2 : Exposure area

Claims (1)

200904642 十、申請專利範圍 1 _ 一種噴墨列印頭,包含: 一陣列的噴嘴,配置在一系列的列中;每一噴嘴具有 噴射孔、用於保持列印流體的腔室、和加熱器元件;該加 熱器元件用於在腔室所容置的該列印流體內產生蒸汽泡泡 ’以將該列印流體的液滴噴射經過該噴射孔;其中 該噴嘴、該加熱器元件、和該腔室全部是長形構造’ 該等長形構造具有長的尺寸,該長的尺寸分別超越各長形 構造的其他尺寸;和 該噴嘴、該加熱器、和該腔室之個別長的尺寸是平行 的,且垂直於該列方向而延伸。 2 .如申請專利範圍第1項所述噴墨列印頭,其中該陣 列中的每一列相對於其相鄰列偏移,所以一列中該等噴嘴 的該等長的尺寸沒有一者,不和該相鄰列中該等長的尺寸 的任意者共線的。 3 .如申請專利範圍第1項所述噴墨列印頭,其中該列 印頭是頁寬列印頭,用於列印至在媒介饋給方向饋給通過 列印頭的媒介基材,所以該等噴嘴之該等長的尺寸,平行 於該媒介饋給方向。 4 ·如申請專利範圍第丨項所述噴墨列印頭,其中每個 第二噴嘴之長的尺寸是在登錄中。 5 ·如申請專利範圍第1項所述噴墨列印頭,其中所有 該等噴嘴的該等噴射孔形成在平坦的頂部層中,該頂部層 局部界定該腔室;該頂部層具有外部表面,該外部表面除 -41 - 200904642 了該等噴射孔以外,其餘是平坦的。 6 _如申請專利範圍第1項所述噴墨列印頭,其中該陣 列的噴嘴形成在下面之基板上,該基板平行於該頂部層而 延伸’且藉由在該頂部層和該基板之間延伸的側壁局部界 定該腔室,設計該側壁的形狀,使得該側壁的內部表面至 少局部呈橢圓形。 7 ·如申請專利範圍第1項所述噴墨列印頭,其中除了 供列印流體用的入口開口以外,該側壁呈橢圓形。 8 .如申請專利範圍第7項所述噴墨列印頭,其中,在 該等列其中之一列內之該等噴嘴的短軸和在該媒介饋給方 向之該相鄰列中該等噴嘴的短軸局部重疊。 9 .如申請專利範圍第8項所述噴墨列印頭,其中該等 噴射孔呈橢圓形。 1 0 .如申請專利範圍第9項所述噴墨列印頭,其中該等 加熱器元件是懸架在其個別電極之間的樑,所以在使用期 間’該等加熱器元件是浸没在該列印流體內。 1 1 _如申請專利範圍第7項所述噴墨列印頭,其中該加 熱器元件所產生之該蒸汽泡泡在平行於該噴射孔的橫剖面 呈橢圓形。 1 2 ·如申請專利範圍第9項所述噴墨列印頭,更包含鄰 接於該陣列的供給通道,該陣列係平行該等列而延伸。 1 3 _如申請專利範圍第〗2項所述噴墨列印頭,其中該 陣列的噴嘴是第一陣列的噴嘴,且第二陣列的噴嘴形成在 該供給通道的其他側;該第二陣列是該第一陣列的鏡射影 -42 - 200904642 像,但相對於該第一陣列偏移,所以在該第一陣列中之該 等噴射孔的長軸沒有一者,不和該第二陣列之長軸其中任 意者共線的。 1 4 ·如申請專利範圍第1 3項所述噴墨列印頭,其中, 在該第一陣列中之該等噴射孔的該等長軸,從該第二陣列 中之該等噴射孔的該等長軸,往該媒介饋給方向的橫方向 偏移達小於2 0微米。 1 5 ·如申請專利範圍第1 4項所述噴墨列印頭,其中該 偏移爲8微米。 1 6 ·如申請專利範圍第丨項所述噴墨列印頭,其中該列 印頭在該媒介饋給方向的橫方向中,具有的噴嘴節距是每 吋多於1 600個噴嘴(npi)。 1 7 ·如申請專利範圍第1項所述噴墨列印頭,其中該基 板在媒介饋給方向的寬度小於3毫米。 -43-200904642 X. Patent Application 1 _ An ink jet print head comprising: an array of nozzles arranged in a series of columns; each nozzle having a spray hole, a chamber for holding a printing fluid, and a heater An element for generating a vapor bubble in the printing fluid contained in the chamber to eject a droplet of the printing fluid through the ejection orifice; wherein the nozzle, the heater element, and The chambers are all elongate in configuration. The elongate structures have a long dimension that exceeds the other dimensions of each elongate configuration; and the individual dimensions of the nozzle, the heater, and the chamber It is parallel and extends perpendicular to the direction of the column. 2. The inkjet printhead of claim 1, wherein each column of the array is offset relative to its adjacent column, so that none of the equal lengths of the nozzles in a column does not Any one of the same length dimensions in the adjacent column is collinear. 3. The inkjet printhead of claim 1, wherein the printhead is a pagewidth printhead for printing to a media substrate fed through the printhead in a medium feed direction, Therefore, the lengths of the nozzles are parallel to the medium feed direction. 4. The ink jet print head of claim 2, wherein the length of each of the second nozzles is in registration. 5. The inkjet printhead of claim 1, wherein the ejection orifices of all of the nozzles are formed in a flat top layer that partially defines the chamber; the top layer has an outer surface The outer surface is flat except for the injection holes of -41 - 200904642. 6. The inkjet printhead of claim 1, wherein the nozzle of the array is formed on a substrate below, the substrate extending parallel to the top layer and by the top layer and the substrate The inter-extending side wall partially defines the chamber, and the side wall is shaped such that the inner surface of the side wall is at least partially elliptical. 7. The ink jet print head of claim 1, wherein the side wall is elliptical except for an inlet opening for printing a fluid. 8. The inkjet printhead of claim 7, wherein the short axes of the nozzles in one of the columns and the adjacent columns in the media feed direction are the nozzles The short axes overlap partially. 9. The ink jet print head of claim 8, wherein the spray holes are elliptical. 10. The inkjet printhead of claim 9, wherein the heater elements are beams suspended between their individual electrodes, so during use the heater elements are immersed in the column In the printing fluid. The ink jet print head of claim 7, wherein the steam bubble generated by the heater element is elliptical in a cross section parallel to the injection hole. 1 2 - The ink jet print head of claim 9, further comprising a supply channel adjacent to the array, the array extending parallel to the columns. The ink jet print head of claim 2, wherein the nozzles of the array are nozzles of the first array, and the nozzles of the second array are formed on the other side of the supply channel; the second array Is the mirror image of the first array - 42 - 200904642 image, but offset relative to the first array, so that the long axis of the ejection holes in the first array is not one, not the second array Any of the long axes are collinear. The inkjet print head of claim 13, wherein the long axes of the ejection holes in the first array are from the ejection holes in the second array The major axes are offset by less than 20 microns in the transverse direction of the media feed direction. 1 5 . The ink jet print head of claim 14, wherein the offset is 8 micrometers. The ink jet print head according to claim 2, wherein the print head has a nozzle pitch of more than 1 600 nozzles per turn in a lateral direction of the medium feed direction (npi) ). The ink jet print head of claim 1, wherein the substrate has a width in the medium feed direction of less than 3 mm. -43-
TW096144797A 2007-07-30 2007-11-26 Inkjet printers with elongate chambers, nozzles and heaters TWI464073B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AU2007/001061 WO2009015406A1 (en) 2007-07-30 2007-07-30 Inkjet printhead with opposing actuator electrode polarities

Publications (2)

Publication Number Publication Date
TW200904642A true TW200904642A (en) 2009-02-01
TWI464073B TWI464073B (en) 2014-12-11

Family

ID=40303786

Family Applications (8)

Application Number Title Priority Date Filing Date
TW096144799A TW200904641A (en) 2007-07-30 2007-11-26 Printhead with high nozzle pitch tranverse to print direction
TW096144797A TWI464073B (en) 2007-07-30 2007-11-26 Inkjet printers with elongate chambers, nozzles and heaters
TW096144801A TW200904644A (en) 2007-07-30 2007-11-26 Printhead integrated circuit with more than 10000 nozzles
TW096144806A TWI402179B (en) 2007-07-30 2007-11-26 Pagewidth printhead with more than 100000 nozzles
TW096144795A TW200904643A (en) 2007-07-30 2007-11-26 Printhead with multiple nozzles sharing single nozzle data
TW096144809A TW200904647A (en) 2007-07-30 2007-11-26 Printhead IC with more than 10000 nozzles in the exposure area of a photo-imaging device
TW096144793A TWI465347B (en) 2007-07-30 2007-11-26 Inkjet printhead with opposing actuator electrode polarities
TW096144804A TWI380909B (en) 2007-07-30 2007-11-26 Printhead integrated circuit with high droplet ejector density

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW096144799A TW200904641A (en) 2007-07-30 2007-11-26 Printhead with high nozzle pitch tranverse to print direction

Family Applications After (6)

Application Number Title Priority Date Filing Date
TW096144801A TW200904644A (en) 2007-07-30 2007-11-26 Printhead integrated circuit with more than 10000 nozzles
TW096144806A TWI402179B (en) 2007-07-30 2007-11-26 Pagewidth printhead with more than 100000 nozzles
TW096144795A TW200904643A (en) 2007-07-30 2007-11-26 Printhead with multiple nozzles sharing single nozzle data
TW096144809A TW200904647A (en) 2007-07-30 2007-11-26 Printhead IC with more than 10000 nozzles in the exposure area of a photo-imaging device
TW096144793A TWI465347B (en) 2007-07-30 2007-11-26 Inkjet printhead with opposing actuator electrode polarities
TW096144804A TWI380909B (en) 2007-07-30 2007-11-26 Printhead integrated circuit with high droplet ejector density

Country Status (3)

Country Link
EP (1) EP2173561B1 (en)
TW (8) TW200904641A (en)
WO (1) WO2009015406A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398364B (en) * 2010-10-22 2013-06-11 Microjet Technology Co Ltd Multi-color inkjet head module
TWI398359B (en) * 2010-10-22 2013-06-11 Microjet Technology Co Ltd Single color inkjet head module
TWI472436B (en) * 2011-03-23 2015-02-11 Microjet Technology Co Ltd Inkjet head structure
TWI472438B (en) * 2011-03-23 2015-02-11 Microjet Technology Co Ltd Inkjet head structure
CN102689513B (en) 2011-03-23 2015-02-18 研能科技股份有限公司 Ink gun structure
TWI472437B (en) * 2011-03-23 2015-02-11 Microjet Technology Co Ltd Inkjet head structure
TWI468303B (en) * 2011-03-23 2015-01-11 Microjet Technology Co Ltd Inkjet head structure
TWI472440B (en) * 2012-08-27 2015-02-11 Microjet Technology Co Ltd Page-width arrayprinting device
CN103625111B (en) * 2012-08-27 2016-09-28 研能科技股份有限公司 Page width ink jet printing equipment
TWI556983B (en) * 2013-09-26 2016-11-11 研能科技股份有限公司 Jet-printing unit interchangeable between inkjet printing device and page-width array printing device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412410A (en) * 1993-01-04 1995-05-02 Xerox Corporation Ink jet printhead for continuous tone and text printing
US5719602A (en) * 1995-01-20 1998-02-17 Hewlett-Packard Company Controlling PWA inkjet nozzle timing as a function of media speed
US6336714B1 (en) * 1996-02-07 2002-01-08 Hewlett-Packard Company Fully integrated thermal inkjet printhead having thin film layer shelf
US6203145B1 (en) * 1999-12-17 2001-03-20 Eastman Kodak Company Continuous ink jet system having non-circular orifices
KR100408270B1 (en) * 2000-07-26 2003-12-01 삼성전자주식회사 Bubble-jet type ink-jet printhead
TWI232802B (en) * 2001-02-15 2005-05-21 Benq Corp High density jetting apparatus
TW503179B (en) * 2001-05-07 2002-09-21 Benq Corp Ink jetting device having bubble valve and the method thereof
US20050206679A1 (en) * 2003-07-03 2005-09-22 Rio Rivas Fluid ejection assembly
EP1693217B1 (en) * 2005-02-16 2009-01-14 Seiko Epson Corporation Liquid ejecting apparatus and platen unit
US7744195B2 (en) * 2005-10-11 2010-06-29 Silverbrook Research Pty Ltd Low loss electrode connection for inkjet printhead
US7735975B2 (en) * 2005-10-26 2010-06-15 Seiko Epson Corporation Liquid ejecting apparatus, recording apparatus, and field generating unit

Also Published As

Publication number Publication date
TW200904646A (en) 2009-02-01
WO2009015406A1 (en) 2009-02-05
TW200904645A (en) 2009-02-01
TW200904644A (en) 2009-02-01
TWI465347B (en) 2014-12-21
TW200904643A (en) 2009-02-01
EP2173561B1 (en) 2013-03-27
TWI380909B (en) 2013-01-01
EP2173561A4 (en) 2011-09-14
EP2173561A1 (en) 2010-04-14
TW200904647A (en) 2009-02-01
TWI464073B (en) 2014-12-11
TW200904639A (en) 2009-02-01
TW200904641A (en) 2009-02-01
TWI402179B (en) 2013-07-21

Similar Documents

Publication Publication Date Title
TWI402179B (en) Pagewidth printhead with more than 100000 nozzles
US7798603B2 (en) Printhead with high nozzle pitch tranverse to print direction
US7712876B2 (en) Inkjet printhead with opposing actuator electrode polarities
JP2004090504A (en) Liquid droplet jetting head and liquid droplet jetting apparatus
US20070229600A1 (en) Liquid ejecting print head, liquid ejecting device including the same, and image forming apparatus including the same
US20230191781A1 (en) Head chip, liquid jet head, and liquid jet recording device
US20230191784A1 (en) Head chip, liquid jet head, and liquid jet recording device
US8485628B2 (en) Printer with resolution reduction by nozzle data sharing
JP2023091557A (en) Head chip, liquid jet head and liquid jet recording device
US7845765B2 (en) Inkjet printers with elongate chambers, nozzles and heaters
US7841695B2 (en) Printhead IC with more than 10000 nozzles in the exposure area of a photo-imaging device
US7775630B2 (en) Printhead integrated circuit with high droplet ejector density
US7784902B2 (en) Printhead integrated circuit with more than 10000 nozzles
JP2006088648A (en) Ink-jet recording head and ink-jet recording device
US7824010B2 (en) Pagewidth printhead with more than 100000 nozzles
JP7032604B1 (en) Head tip, liquid injection head and liquid injection recording device
US7794061B2 (en) Inkjet printhead with non-uniform nozzle chamber inlets
JP2013538711A (en) Ink jet print head having common conductive path in nozzle plate
TW201215514A (en) Inkjet nozzle assembly with drop directionality control via independently actuable roof paddles