TW200904013A - Digital-to-analog converter and method thereof - Google Patents

Digital-to-analog converter and method thereof Download PDF

Info

Publication number
TW200904013A
TW200904013A TW097120329A TW97120329A TW200904013A TW 200904013 A TW200904013 A TW 200904013A TW 097120329 A TW097120329 A TW 097120329A TW 97120329 A TW97120329 A TW 97120329A TW 200904013 A TW200904013 A TW 200904013A
Authority
TW
Taiwan
Prior art keywords
voltage
selection
voltages
capacitor
signal
Prior art date
Application number
TW097120329A
Other languages
Chinese (zh)
Inventor
Ji-Woon Jung
Ju-Hyun Ko
Jong-Seon Kim
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW200904013A publication Critical patent/TW200904013A/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/664Non-linear conversion not otherwise provided for in subgroups of H03M1/66
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • H04N5/202Gamma control

Abstract

An integrated circuit may include an operation amplifier, a first capacitor, a plurality of second capacitors, and/or a switching circuit. The operational amplifier may have a first input terminal, a second input terminal, and/or an output terminal. The first capacitor may have a first terminal and a second terminal. The second terminal of the first capacitor may be connected to the first input terminal of the operational amplifier. The plurality of second capacitors may each have a first terminal and a second terminal. The second terminal of each of the second capacitors may be connected to the second input terminal of the operational amplifier. The switching circuit may include a plurality of switches configured to switch in response to a plurality of switching signals. The switching circuit may be configured to transmit a reference voltage to the first terminal of the first capacitor and the first terminals of the second capacitors and/or connect the first input terminal of the operational amplifier to the output terminal of the operational amplifier during a first period. The switching circuit maybe configured to isolate the first terminal of the first capacitor from the reference voltage, transmit a voltage selected from at least two selection voltages to the first terminals of the second capacitors, and/or connect the first terminal of the first capacitor to the output terminal of the operational amplifier during a second period.

Description

200904013 九、發明說明: 【發明所屬之技術領域】 實例實施例係關於數位至類比轉換器(DAC),且(例如) 係關於驅動液晶顯示器(LCD)裝置之源極驅動器電路之 DAC。 本申請案主張在韓國智慧財產局於2〇〇7年5月30日提出 申请之韓國專利申請案第1〇_2〇 07-005 2 798號及於2008年2 月25日提出申請之韓國專利申請案第ι〇_2〇〇8 〇〇16598號之 優先權的利益,該等專利申請案之全部内容以引用之方式 全部併入本文中。 【先前技術】 數位至類比轉換器(DAC)為驅動液晶顯示器(LCD)裝置 之源極驅動器電路之核心區塊。基於電阻器之Dac(r_ DAC)通常用於源極驅動器電路中。 圖1說明一習知R-DAC 1 00。R-DAC 1 00包括一電阻器陣 列110、一解碼器12〇,及一運算放大器(〇p AMp)13()。電 阻器陣列11 〇包括複數個電阻器第一個R至第2„個R,其串 聯地連接於一接收一第一參考電壓Vrefl之第一節點與一 接收一第二參考電壓Vref2之第二節點(其中Vref2<Vrefi) 之間以產生複數個電壓。解碼器1回應於用於顯示全灰 度1¾之數位仍號而自該複數個電壓選擇一電壓及將該所選 電壓輸出為一選擇電壓DECO。舉例而言,解碼器12〇自對 應於該複數個電阻器苐一個R至第2。個尺之複數根電壓線第 一根線至第2n根線(例如,金屬)選擇一電壓線。 131464.doc 200904013 將8位7G數位資’料轉換成類比信號之8位元DAc需要28(亦 即,256)個電阻器及電麼線。解碼器12〇由自256個電壓選 擇一電壓的256比1解碼器來實施。 隨著數位資料中之位元數目增加,電阻器及電壓線之數 目以幾何級數增加。舉例而言,若數位資料為1〇個位元, 則需要1G24(亦即’ 2,個電阻器及電壓線以及贈⑸解 ' 碼器。因此,DAC之大小增加。 為了減少DAC之大小’曾建議將使用開關電容器之採樣 及保持電路作為DAC。使用開關電容器之DAC可分成線性 DAC及非線性DAC。因為線性DAC具有線性輸出特性,所 以更難以適當地表示LCD面板之迦瑪曲線。因此,非線性 DAC更適於表示LCD面板之伽瑪曲線。 為了實施開關電容器DAC’可將兩個參考電壓分成複數 個灰度階電壓,或可基於一參考電壓來轉換施加至電容器 之電壓,且可輸出所轉換之電壓。然而,習知開關電容器 〇 DAC歸因於電容器及開關之更複雜結構而佔據較大面積, 及/或習知開關電容器DAC歸因於由參考電壓之偏差引起 之通道間偏差而使圖像品質降級。 【發明内容】 實例實施例提供一數位至類比轉換器(DAC),及/或包括 該數位至類比轉換器之一源極驅動器及顯示器裝置,該數 位至類比轉換器佔據較小面積、減少通道間偏差,及/戋 提供近似液晶顯示器(LCD)面板之伽瑪曲線之非線性 特性。 ^ 131464.doc 200904013 根據-實例實施例’―積體電路可包括—運算放大器、 -第-電容器、複數個第二電容器,及/或一開關電路。 該運算放大器可具有-第-輸入端子、-第二輸入端子, 及/或一輸出端子。該第一電容器可具有一第一端子及一 f二端子。該第_電容器之第:端子可連接至該運算放大 益之第Hr入端子。該複數個第二電容器可各自具有—第 -端子及-第二端子。該等第二電容器中之每一者之第二 端子可連接至該運异放大器的第二輸入端子。該開關電路 可包括經組態以回應於複數個開關信號而切換的複數個開 關。該開關電路可經組態以在一第一時段期間將一參考電 壓傳輸至該第-電容器之第一端子及該等第二電容器之第 =端子且/或將該運算放大器之第—輸人端子連接至該運 异放大器之輸出端子。該開關電路可經組態以在一第二時 ㈣間使該第-電容器之第—端子與該參考㈣隔離,將 -選自至少兩個選擇電壓之電壓傳輸至該等第二電容器之200904013 IX. Description of the Invention: TECHNICAL FIELD [0001] Example embodiments relate to digital to analog converters (DACs) and, for example, to DACs that drive source driver circuits of liquid crystal display (LCD) devices. This application is filed in Korea Patent Application No. 1〇_2〇07-005 2 798, filed on May 30, 2007 by the Korea Intellectual Property Office, and Korea filed on February 25, 2008. The benefit of the priority of the patent application, the entire disclosure of which is hereby incorporated by reference. [Prior Art] A digital to analog converter (DAC) is a core block that drives a source driver circuit of a liquid crystal display (LCD) device. Resistor-based Dac (r_ DAC) is commonly used in source driver circuits. Figure 1 illustrates a conventional R-DAC 100. The R-DAC 1 00 includes a resistor array 110, a decoder 12A, and an operational amplifier (〇p AMp) 13(). The resistor array 11 includes a plurality of resistors from a first R to a second R, which are connected in series to a first node receiving a first reference voltage Vref1 and a second receiving a second reference voltage Vref2 A plurality of voltages are generated between the nodes (where Vref2 < Vrefi). The decoder 1 selects a voltage from the plurality of voltages and outputs the selected voltage as a selection in response to a digit for displaying the full gray level 13⁄4. The voltage DECO. For example, the decoder 12 selects a voltage from the first line to the 2nth line (for example, metal) corresponding to the plurality of resistors, one R to the second. 131464.doc 200904013 It takes 28 (that is, 256) resistors and wires to convert 8-bit 7G digital data into 8-bit DAc of analog signal. Decoder 12〇 selects one from 256 voltages. The voltage is implemented by a 256-to-1 decoder. As the number of bits in the digital data increases, the number of resistors and voltage lines increases geometrically. For example, if the digital data is 1 unit, then 1G24 (ie '2, a resistor and voltage line to And give (5) solve the 'coder. Therefore, the size of the DAC increases. In order to reduce the size of the DAC', it is recommended to use the sampling and holding circuit of the switched capacitor as the DAC. The DAC using the switched capacitor can be divided into a linear DAC and a nonlinear DAC. The linear DAC has a linear output characteristic, so it is more difficult to properly represent the gamma curve of the LCD panel. Therefore, the nonlinear DAC is more suitable for representing the gamma curve of the LCD panel. To implement the switched capacitor DAC', the two reference voltages can be divided into plural a gray scale voltage, or a voltage applied to the capacitor can be converted based on a reference voltage, and the converted voltage can be output. However, the conventional switched capacitor 〇 DAC occupies a larger due to a more complicated structure of the capacitor and the switch. The area, and/or the conventional switched capacitor DAC, degrades the image quality due to the inter-channel deviation caused by the deviation of the reference voltage. SUMMARY OF THE INVENTION Example embodiments provide a digital to analog converter (DAC), and / Or including one of the digital to analog converter source driver and display device, the digital to analog converter occupies a smaller face Product, reduce inter-channel variation, and / / provide nonlinear characteristics of the gamma curve of a liquid crystal display (LCD) panel. ^ 131464.doc 200904013 According to the example embodiment - the integrated circuit can include - operational amplifier, - the first a capacitor, a plurality of second capacitors, and/or a switching circuit. The operational amplifier may have a -first input terminal, a second input terminal, and/or an output terminal. The first capacitor may have a first terminal And a second terminal of the first capacitor: the terminal of the first capacitor can be connected to the second terminal of the operational amplification, and the plurality of second capacitors can each have a first terminal and a second terminal. A second terminal of each of the second capacitors is connectable to a second input terminal of the passivation amplifier. The switching circuit can include a plurality of switches configured to switch in response to a plurality of switching signals. The switching circuit can be configured to transmit a reference voltage to a first terminal of the first capacitor and a second terminal of the second capacitor during a first time period and/or to input the operational amplifier The terminal is connected to the output terminal of the operational amplifier. The switching circuit can be configured to isolate a first terminal of the first capacitor from the reference (four) during a second time (four), and to transmit a voltage selected from the at least two selection voltages to the second capacitor

U $一端子,且/或將該第一電容器之第一端子連接至該運 算放大器之輸出端子。 根據-實例實施例,該積體電路可包括m及/或 —選擇電路。該分麼器可包括—連接於-接收-第一參考 電屋之第一節點與一接收一第二參考電屡之第二節點之間 的電阻器陣列。該分屢器可經組態以藉由劃分該第二參考 電愿與該第-參考《之間的一範圍來產生複數個經劃分 電屋。該選擇電路可經組態以回應於—第-數位信號而自 該複數個經劃分電屢選擇至少兩個電麼且提供該等所選電 131464.doc -10· 200904013 壓作為該至少兩個選擇電壓。該運算放大器之第一輸入端 子可為—反相輸人端子’且該運算放大器之S二輸入端子 可為-非反相輸人端子。該數位信號可為—η位元數 位信號之一部分。 根據一實例實施例,該參考電壓可為以下各者中之一 者:該第一參考電壓、該第二參考電壓、該第一參考電壓 與該第二參考電壓之間的—中間電壓,及/或該至少兩個 選擇電壓中之一者。U $ a terminal and/or connecting the first terminal of the first capacitor to the output terminal of the operational amplifier. According to an example embodiment, the integrated circuit may comprise m and/or - a selection circuit. The divider can include an array of resistors coupled between the first node coupled to the -receive first reference and the second node receiving a second reference. The repeater can be configured to generate a plurality of divided electric houses by dividing a range between the second reference and the first reference. The selection circuit can be configured to select at least two powers from the plurality of divided electrical frequencies in response to the -digital signal and provide the selected electrical power 131464.doc -10.200904013 as the at least two Select the voltage. The first input terminal of the operational amplifier can be an inverting input terminal and the S input terminal of the operational amplifier can be a non-inverting input terminal. The digital signal can be part of the -n bit digital signal. According to an example embodiment, the reference voltage may be one of: the first reference voltage, the second reference voltage, an intermediate voltage between the first reference voltage and the second reference voltage, and / or one of the at least two selection voltages.

根據一實例實施例,該至少兩個選擇電壓可包括一第一 選擇電壓及一低於該第一選擇電壓之第二選擇電壓。該開 關電路可包括:一第一開關,其連接於該運算放大器之第 一輸入端子與該運算放大器之輸出端子之間;一第二開 關,其經組態以將該參考電壓選擇性地傳輸至該第一電^ 器之第一端子;一第三開關,其經組態以將該第—電容哭 之第一端子選擇性地連接至該運算放大器之輸出端子;及〆 或複數個第二群開關,其經組態以將該參考電壓、兮第一According to an example embodiment, the at least two selection voltages may include a first selection voltage and a second selection voltage lower than the first selection voltage. The switching circuit can include a first switch coupled between the first input terminal of the operational amplifier and an output terminal of the operational amplifier, and a second switch configured to selectively transmit the reference voltage a first terminal to the first electrical device; a third switch configured to selectively connect the first terminal of the first capacitor crying to an output terminal of the operational amplifier; and/or a plurality of a two-group switch configured to reference the reference voltage, first

選擇電壓及該第二選擇電壓選擇性地傳輸至 電容器。 根據一實例實施例,該選擇電路可包括至少兩個解碼 器。該等解碼器中之每一者可經組態以接收該等經劃分電 塵之一部分且回應於該第一數位信號中之一第 ^ #號而自 所接收到之經劃分電壓選擇一電壓。該第一選擇電斤 = 第二選擇電壓可選自該至少兩個解碼器之輸出信號。 根據另一實例實施例,一數位至類比轉換方法 J St 括: 131464.doc -11· 200904013 在-第-時段期間將一參考電屡提供至一連接至一運算放 大器之第-輸入端子的第一電容器及連接至該運算放大器 之第二輸入端子的複數個第二電容器,及將該運算放大器 第輸入端子連接至該運算放大器之輸出端子。該方法 可包括在一第二時段期間使該第一電容器與該參考電壓隔 離,將一選自至少兩個選擇電壓之電麼傳輸至該複數個第 二電容器中之每一者,及將該第一電容器之—第一端子連 接至δ亥運鼻放大器之輸出端子。 根據-實例實施例’該至少兩個選擇電壓可基於一第一 數位#就來判定,且該在該第二時段期間傳輸至該複數個 第二電容器中之每一者的電壓可基於一第二數位信號 定。 根據一實例實施例,該第—數位錢可由—數位信號之 至少-南位元組成’且該第二數位信號可由該數位信號之 至少一低位元組成。 【實施方式】 由結合附圖對實例實施例之以下詳細描述,上述及/或 其他態樣及優點將變得更顯而易見且更易於瞭解。 現將在下文參看附圖來更充分地描述實例實施例。然 二:施例可體現為許多不同形式且不應被理解為限於本 r此L述之實例實施例。相反,提供此等實例實施例以使 ===容將為全面且完整的’並將料充分傳達給熟 #者。在該㈣式巾’“清晰之目的可誇示層 及區之厚度。 131464.doc •12· 200904013 應理解,當將一組件稱作,,在另一組件上”、"連接至”或,, 耦接至"另一組件時,其可直接在另一組件上、連接至或 耦接至另一組件,或可存在介入組件。相反,當將一組件 稱作"直接在另一組件上"、"直接連接至"或"直接耦接至" 另一組件時,不存在介入組件。如本文所使用,術語"及/ 或’’包括相關聯所列項目中之一或多個項目的任何組合及 所有組合。The selection voltage and the second selection voltage are selectively transmitted to the capacitor. According to an example embodiment, the selection circuit can include at least two decoders. Each of the decoders is configurable to receive a portion of the divided electrical dust and to select a voltage from the divided voltage received in response to one of the first digital signals . The first selection voltage = the second selection voltage may be selected from the output signals of the at least two decoders. According to another example embodiment, a digital to analog conversion method J St includes: 131464.doc -11· 200904013 provides a reference power to a first input terminal connected to an operational amplifier during the -first period a capacitor and a plurality of second capacitors connected to the second input terminal of the operational amplifier, and the input terminal of the operational amplifier being connected to an output terminal of the operational amplifier. The method can include isolating the first capacitor from the reference voltage during a second time period, transmitting an electrical energy selected from the at least two selection voltages to each of the plurality of second capacitors, and The first terminal of the first capacitor is connected to the output terminal of the delta-half nasal amplifier. According to the example embodiment, the at least two selection voltages may be determined based on a first digit #, and the voltage transmitted to each of the plurality of second capacitors during the second period may be based on a The two-digit signal is fixed. According to an example embodiment, the first digit may consist of at least a south bit of the digit signal and the second digit signal may consist of at least one lower bit of the digit signal. The above and/or other aspects and advantages will become more apparent and easier to understand from the following detailed description of example embodiments. Example embodiments will now be described more fully hereinafter with reference to the accompanying drawings. However, the embodiment can be embodied in many different forms and should not be construed as being limited to the example embodiments described herein. Rather, these example embodiments are provided such that === will be comprehensive and complete and will convey the material to the skilled person. The thickness of the layer and the area may be exaggerated in the purpose of the "fourth type towel". 131464.doc •12· 200904013 It should be understood that when one component is referred to, on another component, "connected to" When coupled to another component, it may be directly on another component, connected to or coupled to another component, or an intervening component may exist. Conversely, when a component is referred to as "directly in another There is no intervening component when "," is directly connected to " or "directly coupled to " another component. As used herein, the term " and / or '' includes the associated items listed Any combination or combination of one or more of the items.

應理解,儘管可在本文中使用術語第―、第二、第三等 等來描述錢元件、組件、&、層及/或區段,但此等元 件、組件、區、層及/或區段不應受此等術語所限制。此 等術語僅用來區別一元件、組件、區、層或區段與另一元 件、組件、區、層或區段。因此,可將下文所論述之第一 兀件、組件、d、層或區段稱為第二元件'組件、區、層 或區段而不會背離實例實施例之教示。 曰 如”在…下方"、,,在.··之下”、”下部、..在…之上”、,,上部 及其類似物)來描述如圖式中所說明之一組件或特徵盘另 一(或多個)組件或特徵的關係。應理解,該等空間相關#· 語意欲涵蓋使用或操作中之褒置除圖中所 ^目:: 的不同定向。 5心疋π之外 為了描述之簡單性,可在本文中使用㈣相關術 ff A "ΤΓ +丨丨 丨丨丄 y % '在...之上 本文中所使用之術語僅為達成描述特定實例實施例之目 的且並不意欲為限制性的。如本文中所使用 7 一 ”及”該”意欲亦包含福救报彳^ L 干双〜式 干麻、隹牛㈠ 除非本文另外清楚地指 不。應進-步理解,當在本說明書中使用時,術語”包含” 131464.doc -13· 200904013 件 操 扣:所規疋之特徵、整體、步驟'操作、元件及/或組 之子在’但並不排除—或多個其他特徵、整體、步驟、 作、7L件及/或組件之存在或 添加。’ "It will be understood that, although the terms "a", "the", "the", "the" Sections should not be limited by these terms. The terms are used to distinguish one element, component, region, layer, or section from another element, component, region, layer or section. Thus, a first element, component, layer, layer or section, which is discussed below, may be referred to as a second element 'component, region, layer or section without departing from the teachings of the example embodiments. For example, "below", ", under ".", "lower, .. above", ", upper, and the like" are used to describe one of the components illustrated in the figure or The relationship of another (or more) components or features of the feature disk. It should be understood that such spatial correlations are intended to cover different orientations in the use or operation other than those in the figure. In addition to the simplicity of the description of the heart 疋 π, can be used in this article (4) related surgery ff A " ΤΓ +丨丨丨丨丄y % 'above... The terminology used in this article is only a description The specific example embodiments are not intended to be limiting. As used herein, 7" and "the" are intended to include the 彳 彳 L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L When used, the term "includes" 131464.doc -13· 200904013 The handle: the characteristics, the whole, the steps 'operations, components and/or groups of children are 'but not excluded' or a number of other features, the whole , steps, work, 7L parts and / or components exist or add. ' "

(j 除非另外定義’否則本文t所使用之所有術語(包括科 技㈣)具有與—般熟習實例實施例所屬之技術者通常所 理,意義相同的意義。應進一步理解,應將術語(諸斤 如,ΐ用凋典中所定義之彼等術語)闡釋為具有與其在相 關技術之If ;兄下的意義—致的意義,且不應㈣想化或過 於正式的意義對其進行_,除非本文中如此明確地定 現將參考附圖所說明之實例實施例,其中類似參考數字 貝穿全文指代類似組件。 圖2說明根據一實例實施例之數位至類比轉換器 (DAC)2GG圖4為根據—實例實施例的—數位信號 及複數個開關信號之實例時序圖。 參看圖2及圖4, DAC 2〇〇(其可實施於一積體電路中)可 包括一放大器(其可被稱作一開關電容器放大器p5〇。放大 >„ 250可&肖帛一電容器Csa、一第二電容器群謂、一 運算放大器(OP amp)251,及/或一開關電路28〇。dac 200可被稱作一電阻器電容器dac(rc-dac)。 OP AMP 251可包括一第一輸入端子(例如,反相㈠輸入 端子)、一第二輸入端子(例如,非反相(+)輸入端子)及一 輸出輸出"is號DACO之輸出端子。第一電容琴Csa可包括 與OP AMP 25 1之第一(·)輸入端子連接之—第一端子及一 131464.doc .14· 200904013 第二端子。第二電容器群270可包括複數個第二電容器(例 如’四個第二電容器)Csl、Cs2、Cs3及Cs4,其可與〇p AMP 25 1之第二(+)輸入端子連接。舉例而言,該等第二電 容Csl、Cs2、Cs3及Cs4中之每一者可具有一第—端子及 一第二端子’且該等第二電容器Csl、Cs2、Cs3及Cs4中之 每一者的第二端子可與0P AMP 251之第二(+)輸入端子連 接。第一電容器Csa可具有等於該等第二電容器Csl、 Cs2、Cs3及Cs4之電容之總和的電容。(j Unless otherwise defined', all terms used in this document (including technology (4)) have the same meaning as commonly understood by the skilled artisans of the example embodiments. It should be further understood that the terms should be For example, the terms defined in the syllabus are interpreted as having meanings that are related to the meaning of the relevant technology, and should not be (iv) conceived or overly formal, _ unless Example embodiments are described herein with reference to the drawings, in which like reference numerals refer to the like, and the like, FIG. 2 illustrates a digital to analog converter (DAC) 2GG according to an example embodiment. An example timing diagram for a digital signal and a plurality of switching signals according to an example embodiment. Referring to Figures 2 and 4, a DAC 2 (which may be implemented in an integrated circuit) may include an amplifier (which may be It is called a switched capacitor amplifier p5 〇. Amplification > „250 can & a capacitor Csa, a second capacitor group, an operational amplifier (OP amp) 251, and/or a switching circuit 28 〇. dac 200 can It is called a resistor capacitor dac(rc-dac). OP AMP 251 can include a first input terminal (for example, an inverting (one) input terminal) and a second input terminal (for example, a non-inverting (+) input terminal). And an output terminal of the output "is number DACO. The first condenser piano Csa may be connected to the first (·) input terminal of the OP AMP 25 1 - the first terminal and a 131464.doc .14· 200904013 second The second capacitor bank 270 can include a plurality of second capacitors (eg, 'four second capacitors) Cs1, Cs2, Cs3, and Cs4 that can be coupled to the second (+) input terminal of the 〇p AMP 25 1 . Each of the second capacitors Cs1, Cs2, Cs3, and Cs4 may have a first terminal and a second terminal 'and each of the second capacitors Cs1, Cs2, Cs3, and Cs4. The second terminal can be connected to the second (+) input terminal of the OP AMP 251. The first capacitor Csa can have a capacitance equal to the sum of the capacitances of the second capacitors Cs1, Cs2, Cs3, and Cs4.

開關電路280可包括:第一群開關,其每一者回應於第 一群開關信號Sll、S12及S13中之一相應信號而進行切 換,及第二群開關,其每一者回應於第二群開關信號 S2 1 S22、S23及S24中之一相應信號而進行切換。開關電 路280可進-步包括-初始化開_,其回應於—開關信號 S10而操作以初始化OP AMP 251之第二(+)輸入端子。 包括於開關電路280中之第一群開關及第二群開關可為 電晶體。舉例而言,一回應於開關信號S1丨而操作之第— 開關可連接於OP AMP 251之第一㈠輸入端子與〇p AMp 251之輸出端子之間。一回應於開關信號Sl2而操作之第二 開關可將一參考電壓VREF(例如,—第—參考電壓彻; 選擇性地傳輸至第一電容器Csa之第一端子及/或可連接於 該第-電容器Csa之第一端子與一接收參考電壓vref(例 如,第一參考電壓VMIN)之節點之 一 乐一開關可回應 於開關信號SU而將第一電容器Csa之第一端子選擇性地連 接至OP AMP 251之輸出端子。 131464.doc -15- 200904013 該第二群開關中之每一者可將參考電壓VRef(例如,第 一參考電壓VMIN)、一第一選擇電壓VI及一第二選擇電壓 V2中之一者選擇性地傳輸至一相應第二電容器csi、 Cs2、Cs3或Cs4之第一端子。舉例而言,一第四開關可回 應於開關k號S21而在一第一時段期間將參考電壓vref傳 輸至相應電谷器Csl及在一弟>一時段期間將第一選擇電壓 VI或第二選擇電壓V2傳輸至相應電容器csi。類似地,第 四開關、第五開關、第六開關及第七開關可分別回應於開 關信號S22、S23及S24而在該第一時段期間將參考電壓 VREF分別傳輸至相應電容器Cs2、Cs3及Cs4及在該第二時 段期間將第一選擇電壓V1或第二選擇電壓V2分別傳輸至 相應電容器Cs2、Cs3及Cs4。 參考電壓VREF可為第一參考電壓vmin ’但不限於此。 舉例而吕,參考電壓VREF可為第二參考電壓VMAX或第 一參考電壓VMIN與第二參考電壓VMAX之間的一中間電 壓,或可將參考電壓VREF設定成其他值。若根據實例實 施例之DAC係用於顯示器裝置中,則參考電壓vref可隨 通道(或資料線)而改變。 初始化開關可回應於開關信號Si〇而在該第一時段期間 及/或在該第一時段之前該初始化期間將參考電壓VREF傳 輸至OP AMP 251之第二(+)輸入端子。 一寄生電容器Cp可在〇p amp 251之第一㈠輸入端子與 接地之間。另一電容器可連接至〇p Amp 251之第一㈠輸 入端子及/或第二(+)輸入端子,以獲得OP AMP 251之輸入 131464.doc •16· 200904013 端子之間的對稱寄生電容。 DAC 200可包括一控制器260以產生開關信號S10、 Sll、S12、S13、S21、S22、S23 及 S24。稍後將參看圖 4 來描述開關信號S10、Sll、S12、S13、S21、S22、S23及 S24之時序。 DAC 200可包括一信號轉換區塊21〇。信號轉換區塊21〇 可包括一分壓器220及/或一選擇電路23 0。 分壓器220可為包括串聯連接之複數個電阻器第一個尺至 第2n個R的電阻器陣列。舉例而言,分壓器22〇可為一連接 於一接收第一參考電壓VMIN之第一節點與一接收第二參 考電壓VMAX之第二節點(其中VMAX>VMIN)之間以產生 具有不同位準之經劃分電壓VD1至VDK(例如,K=lm或 K-2 +1)的電阻器陣列。包括於分壓器220中之電阻器第一 個R至第2"個R中之每一者的電阻值可由一所要伽瑪曲線或 一預定伽瑪曲線判定。在實例實施例中,"m"為小於數位 信號DATA中位元之數目"n”的整數。 選擇電路230可回應於一第一數位信號DAT1而自該複數 個經劃分電壓VD1至VDK選擇至少兩個電壓及提供該等所 選電壓作為該至少兩個選擇電壓V1&V2。該等選擇電壓 可為兩位準電壓且如上所述被稱作第一選擇電壓νι及第二 選擇電壓V2,且V2<V1。 第一數位信號DAT 1可為一由數位信號DATA之高位元 (例如,高"m" (<n)個位元)組成的信號。數位信號£)八1^可 為一 η位元平行視訊信號(其中"n”為一自然數,例如,⑺或 131464.doc 17 200904013 12)且可由該m位元第一數位信號DAT1及一(n_m)位元第二 數位信號DAT2組成。 控制器260可基於由數位信號DATA之低位元組成之(n_ m)位το第二數位信號DAT2來產生第二群開關信號S2l、 S22、S23及S24。稍後將更詳細地描述此操作。 圖3 A及圖3B分別說明根據實例實施例的在該第一時段 期間DAC 200之結構及在該第二時段期間DAC 2〇〇之結 構。將在下文中參看圖2至圖4來描述該第一時段及該第二 時段期間DAC 200之操作。 在第一時段階段1期間,開關電路28〇可將參考電壓 VREF傳輸至第一電谷斋Csa之第一端子及第二電容器csi 至Cs4之第一端子、將參考電壓vrEF傳輸至op aMP 251 之第二(+)輸入端子’及/或將OP AMP 251之第一㈠輸入端 子連接至OP AMP 25 1之輸出端子。在第一時段階段1期 間’開關信號S10、S11及S12可啟動(例如,至"高位準”)。 回應於經啟動之開關信號S10、S11及S12,初始化開關以 及第一開關及第二開關可閉合。開關信號s丨3可經撤銷(例 如,至低位準"),且第三開關可斷開,第二群開關信號 S21、S22、S23及S24可處在一第一狀態(例如,"ρ),且 回應於信號S21至S24之第二群開關可分別將參考電壓 VREF傳輸至第二電容器Csl至Cs4。 因此,在第一時段階段1期間,〇p Amp 251之第二(+)輸 入端子之電壓可等於參考電壓VrEF,且若〇p amp 251之 第一㈠輸入端子與第二(+)輸入端子之間的偏差電壓v〇ff 131464.doc -18- 200904013 被忽略或假定為"ο",則〇P AMp 251之第二(+ )輸入端子之 電磨及輸出信號DACO可等於參考電壓VREF。 在第二時段階段2期間,開關電路280可使第_電容器 Csa之第一端子與參考電壓VREF隔離、將第一選擇電壓π 或第二選擇電壓V2傳輸至第二電容器Csl至CM之第一端 子,及/或將第一電容器Csa之第一端子連接至〇p AMp25i 之輸出鈿子開關k號s 10、s 11及s 12可經撤銷(例如,至 "低位準")且初始化開關以及第一開關及第二開關可回應於 該經撤鎖之開關信號S10、sn及S12而斷開,同時開關信 號S13經啟動(例如’至"高位準")且第三開關閉合。第二群 開關信號S21、S22、S23及S24可處在一第二或第三狀態 (例如’ "2”或”3") ’且回應於信號S21至S24之第二群開關 可分別將第-選擇電壓…或第二選擇電㈣傳輸至相應 第二電容器Csl至Cs4。第二群開關在第二群開關信號⑵ 至S24係處在第二狀態(例如’ "2")時可傳輸第一選擇電壓 vi且在第二群開關信號⑶至S24處在第三狀態(例如, 3 )時可傳輸第二電壓V2。 圖4中僅說明第—時段及第二時段,但可提供另一操作 ^又’例如’預初始化時段。舉例而言,在該第一時段之 前的預初始化時段期間’回應於信號S10之初始化開關及 關可閉合’且可執行初始化。開 關HS10至S13與開關信號S21至S24可並非同步的,以便 減少開關雜訊。 為描述之清楚起見,將第二電容器稱作第一、第二、第 131464.doc •19- 200904013 三及第四内插電容器Csl、Cs2、Cs3及Cs4,且將在第二時 段期間施加至第一内插電容器Cs 1至第四内插電容器Cs4之 電壓稱作第一、第二、第三及第四輸入電壓VII、VI2、 VI3及VI4。可根據第二群開關信號S21至S24將第一輸入電 壓VII至第四輸入電壓VI4中之每一者設定為第一選擇信號 VI或第二選擇信號V2。 因此,在第二時段階段2期間,滿足方程式(1): 0 = Csl(Vx - VII) + Cs2(Vx - VI2) + Cs3(Vx - VI3) + Cs4(Vx - VI4), (1 ) 其中Vx為OP AMP 251之第二(+)輸入端子之電壓。若OP AMP 251之第一(-)輸入端子之電容與OP AMP 251之第二 (+)輸入端子之電容大體上相同,則電壓Vx在第二時段期 間變成OP AMP 251之第二(+ )輸入端子之電壓及OP AMP 251之輸出信號DAC0。 基於方程式(1),電壓Vx可由方程式(2)表示:The switch circuit 280 can include: a first group of switches, each of which switches in response to a respective one of the first group of switch signals S11, S12, and S13, and a second group of switches, each of which is responsive to the second The group switching signals S2 1 S22, S23 and S24 are switched by corresponding signals. Switching circuit 280 can further include - initialization ON, which operates in response to - switching signal S10 to initialize the second (+) input terminal of OP AMP 251. The first group of switches and the second group of switches included in the switching circuit 280 can be transistors. For example, a first switch responsive to the switching signal S1 可 can be connected between the first (1) input terminal of the OP AMP 251 and the output terminal of the 〇p AMp 251. A second switch responsive to the switching signal S12 can selectively transmit a reference voltage VREF (eg, the -first reference voltage) to the first terminal of the first capacitor Csa and/or can be coupled to the first A first terminal of the capacitor Csa and a node receiving the reference voltage vref (eg, the first reference voltage VMIN) can selectively connect the first terminal of the first capacitor Csa to the OP in response to the switch signal SU Output terminal of AMP 251. 131464.doc -15- 200904013 Each of the second group of switches can reference voltage VRef (eg, first reference voltage VMIN), a first selection voltage VI, and a second selection voltage One of V2 is selectively transmitted to a first terminal of a respective second capacitor csi, Cs2, Cs3 or Cs4. For example, a fourth switch may be responsive to switch k number S21 during a first time period The reference voltage vref is transmitted to the corresponding electric grid device Cs1 and the first selection voltage VI or the second selection voltage V2 is transmitted to the corresponding capacitor csi during a period of time. Similarly, the fourth switch, the fifth switch, and the sixth Switch and seventh open The reference voltage VREF may be respectively transmitted to the respective capacitors Cs2, Cs3, and Cs4 during the first period and the first selection voltage V1 or the second selection voltage during the second period in response to the switching signals S22, S23, and S24, respectively. V2 is respectively transmitted to the corresponding capacitors Cs2, Cs3 and Cs4. The reference voltage VREF may be the first reference voltage vmin 'but is not limited thereto. For example, the reference voltage VREF may be the second reference voltage VMAX or the first reference voltage VMIN and the first An intermediate voltage between the two reference voltages VMAX, or the reference voltage VREF may be set to other values. If the DAC according to an example embodiment is used in a display device, the reference voltage vref may vary with the channel (or data line). The initialization switch may transmit the reference voltage VREF to the second (+) input terminal of the OP AMP 251 during the first period and/or during the initialization period in response to the switching signal Si 。. Cp can be between the first (one) input terminal of 〇p amp 251 and ground. The other capacitor can be connected to the first (one) input terminal and/or the second (+) input of 〇p Amp 251 Son to obtain the symmetrical parasitic capacitance between the terminals of the OP AMP 251 input 131464.doc •16·200904013. The DAC 200 may include a controller 260 to generate the switching signals S10, S11, S12, S13, S21, S22, S23 and S24. The timing of the switching signals S10, S11, S12, S13, S21, S22, S23, and S24 will be described later with reference to FIG. The DAC 200 can include a signal conversion block 21A. The signal conversion block 21A may include a voltage divider 220 and/or a selection circuit 230. The voltage divider 220 can be a resistor array including a plurality of resistors connected in series from a first scale to a 2nth R. For example, the voltage divider 22 can be connected between a first node receiving the first reference voltage VMIN and a second node receiving the second reference voltage VMAX (where VMAX>VMIN) to generate different bits. A resistor array that is divided by voltages VD1 through VDK (eg, K = lm or K-2 +1). The resistance value of each of the first R to the 2"R of the resistor included in the voltage divider 220 can be determined by a desired gamma curve or a predetermined gamma curve. In an example embodiment, "m" is an integer less than the number of bits in the digit signal DATA "n" The selection circuit 230 is responsive to a first digit signal DAT1 from the plurality of divided voltages VD1 to VDK Selecting at least two voltages and providing the selected voltages as the at least two selection voltages V1 & V2. The selection voltages may be two-bit voltages and are referred to as first selection voltages νι and second selection voltages as described above. V2, and V2 < V1. The first digital signal DAT 1 may be a signal consisting of a high order bit of the digital signal DATA (for example, a high "m"(<n) bit). The digital signal £) 八1 ^ can be an n-bit parallel video signal (where "n" is a natural number, for example, (7) or 131464.doc 17 200904013 12) and can be the first digit signal DAT1 and one (n_m) bit of the m-bit The second digit signal DAT2 is composed. The controller 260 can generate the second group of switching signals S2l, S22, S23, and S24 based on the (n_m) bits τ, the second digit signal DAT2, which is composed of the lower bits of the digital signal DATA. This operation will be described in more detail later. 3A and 3B illustrate the structure of the DAC 200 during the first period and the structure of the DAC 2〇〇 during the second period, respectively, according to an example embodiment. The operation of the DAC 200 during the first period and the second period will be described hereinafter with reference to Figs. 2 through 4. During the first period of phase 1, the switching circuit 28A can transmit the reference voltage VREF to the first terminal of the first electric valley Csa and the first terminal of the second capacitors csi to Cs4, and transmit the reference voltage vrEF to the op aMP 251 The second (+) input terminal 'and/or the first (one) input terminal of the OP AMP 251 is connected to the output terminal of the OP AMP 25 1 . During the first period of phase 1, the switching signals S10, S11 and S12 can be activated (for example, to "high level"). In response to the activated switching signals S10, S11 and S12, the initialization switch and the first switch and the second The switch can be closed. The switch signal s丨3 can be cancelled (for example, to the low level "), and the third switch can be turned off, and the second group of switch signals S21, S22, S23 and S24 can be in a first state ( For example, "ρ), and the second group of switches in response to signals S21 to S24 can respectively transmit the reference voltage VREF to the second capacitors Cs1 to Cs4. Therefore, during the first period of phase 1, the first of 〇p Amp 251 The voltage of the second (+) input terminal may be equal to the reference voltage VrEF, and if the deviation voltage between the first (1) input terminal and the second (+) input terminal of the 〇p amp 251 is v〇ff 131464.doc -18- 200904013 Ignoring or presuming to be "ο", the electric grind and output signal DACO of the second (+) input terminal of 〇P AMp 251 can be equal to the reference voltage VREF. During the second period of phase 2, the switching circuit 280 can make the _ The first terminal of the capacitor Csa is isolated from the reference voltage VREF Transmitting the first selection voltage π or the second selection voltage V2 to the first terminal of the second capacitor Cs1 to CM, and/or connecting the first terminal of the first capacitor Csa to the output tweezers k of the 〇p AMp25i s 10, s 11 and s 12 may be revoked (eg, to "low level") and the initialization switch and the first switch and the second switch may be interrupted in response to the unlocked switching signals S10, sn, and S12 On, while the switching signal S13 is activated (eg, 'to " high level") and the third switch is closed. The second group of switching signals S21, S22, S23, and S24 can be in a second or third state (eg, ' "2" or "3")' and the second group of switches responsive to signals S21 through S24 can respectively transmit the first selection voltage ... or the second selection power (four) to the respective second capacitors Cs1 to Cs4. The first selection voltage vi may be transmitted when the second group of switching signals (2) to S24 are in the second state (eg '"2") and in the third state (eg, 3) at the second group of switching signals (3) to S24 The second voltage V2 can be transmitted. Only the first time period and the second time period are illustrated in FIG. However, another operation can be provided, such as a 'pre-initialization period. For example, during the pre-initialization period before the first period, 'initial switch and off can be closed in response to signal S10' and initialization can be performed. Switch HS10 The signal to S13 and the switching signals S21 to S24 may not be synchronized in order to reduce switching noise. For the sake of clarity of description, the second capacitor will be referred to as the first, second, 131464.doc • 19-200904013 three and fourth interpolating capacitors Cs1, Cs2, Cs3, and Cs4, and will be applied during the second time period. The voltages to the first to fourth interpolating capacitors Cs1 to Cs4 are referred to as first, second, third, and fourth input voltages VII, VI2, VI3, and VI4. Each of the first input voltage VII to the fourth input voltage VI4 may be set to the first selection signal VI or the second selection signal V2 according to the second group switching signals S21 to S24. Therefore, during phase 2 of the second period, equation (1) is satisfied: 0 = Csl(Vx - VII) + Cs2(Vx - VI2) + Cs3(Vx - VI3) + Cs4(Vx - VI4), (1) Vx is the voltage at the second (+) input terminal of the OP AMP 251. If the capacitance of the first (-) input terminal of the OP AMP 251 is substantially the same as the capacitance of the second (+) input terminal of the OP AMP 251, the voltage Vx becomes the second (+) of the OP AMP 251 during the second period. The voltage of the input terminal and the output signal DAC0 of the OP AMP 251. Based on equation (1), the voltage Vx can be expressed by equation (2):

CslYIl + Cs2VI2 + Cs3VI3 + Cs4VI4 ⑵ X (Csl + Cs2 + Cs3^Cs4) ' ^ 若第一内插電容器Csl至第四内插電容器Cs4具有相同電 容,則可根據第一輸入電壓VI1至第四輸入電壓VI4來判定 OP AMP 251之輸出信號DAC0,如表1中所示。 表1 事例 輸入電壓(vn、VI2、VI3、VI4) 輸出信號DAC0 1 VI Ύ1 ' VI ' VI VI 2 VI ' VI > VI > V2 (3Vl+V2)/4 3 V卜 VI、V2、V2 (2Vl+2V2)/4 4 V 卜 V2、V2、V2 (Vl+3V2)/4 5 V2 ' V2 ' V2 ^ V2 V2 如方程式1及2以及表1中所示,〇p AMP 251之輸出信號 131464.doc -20- 200904013 DACO可為第一選擇電壓V1與第二選擇電壓V2之間内插的 結果。 如上所述’ 〇P AMP 251之輸出信號DACO可與參考電壓 (例如,第一參考電壓VMIN)無關且可由選擇電壓V1&V2 判定。因此,參考電壓(例如,第一參考電壓vmiN)之改 變(例如’通道間偏差)無需影響〇p AMP 251之輸出信號 DACO。因為選擇電壓¥1與¥2之間的内插值反映到〇pCslYIl + Cs2VI2 + Cs3VI3 + Cs4VI4 (2) X (Csl + Cs2 + Cs3^Cs4) ' ^ If the first interpolating capacitor Cs1 to the fourth interpolating capacitor Cs4 have the same capacitance, according to the first input voltage VI1 to the fourth input The voltage VI4 is used to determine the output signal DAC0 of the OP AMP 251, as shown in Table 1. Table 1 Case input voltage (vn, VI2, VI3, VI4) Output signal DAC0 1 VI Ύ1 ' VI ' VI VI 2 VI ' VI > VI > V2 (3Vl+V2)/4 3 V Bu VI, V2, V2 (2Vl+2V2)/4 4 V Bu V2, V2, V2 (Vl+3V2)/4 5 V2 ' V2 ' V2 ^ V2 V2 As shown in Equations 1 and 2 and Table 1, the output signal of 〇p AMP 251 131464.doc -20- 200904013 The DACO can be the result of interpolation between the first selection voltage V1 and the second selection voltage V2. The output signal DACO of the '〇P AMP 251 as described above may be independent of the reference voltage (e.g., the first reference voltage VMIN) and may be determined by the selection voltages V1 & V2. Therefore, the change of the reference voltage (e.g., the first reference voltage vmiN) (e.g., 'inter-channel deviation) does not need to affect the output signal DACO of the 〇p AMP 251. Because the interpolation value between the selection voltages ¥1 and ¥2 is reflected to 〇p

AMP 251之輸出信號DAC〇上(未反相),所以可更易於實施 選擇電路230。 圖5為圖2所說明之信號轉換區塊21〇之方塊圖。圖5中之 信號轉換區塊210對應於數位信號DATA中之位元數目 為10之事例。然而,實例實施例不限於此,且數位信號 DATA中位το數目V可為不同於1G之數目,且信號轉換區 塊210可經組態以相應地協調。 >看圖5刀壓器220可包括一串聯地連接之個電阻器 第-個R至第64個R(其中”m"為6且2〇1=64)的電阻器陣列, 及/或產生65位準之經劃分電壓VD1至ν〇65。 選擇電路230可包括第一至第三解碼器231、232及如及/ 或-選擇234。第—解碼器23 i可接收經劃分電壓灿至 彻5中之一第—群經劃分電壓VD1、VD3、VD5、...、 VD61及VD63、回應於第一數位信號dati中之第一信號 Β[9··5]而自該第—群經劃分電壓ν〇ι至侧選擇一經劃: 電壓,及將所選經劃分電壓輸出為—第—解碼器輸;^ 卜根據—實例實施例,包括第—數位信號dati^ 131464.doc 21 200904013 位信號DATA可為ι〇位元信號且表示為B[9:〇]。第二解碼 器2 3 2可接收經劃分電壓v D丨至v D 6 5中之第二群經劃分電 麼VD2、VD4、VD6、…、VD62及VD64、回應於第一信號 B[9.5]來自该第二群經劃分電壓ν〇2至VD64選擇一經劃分 電壓,及將所選經劃分電壓輸出為第二解碼器輸出信號 OUT2。第三解碼器233可接收經劃分電壓乂⑴至VD65中之 第二群經劃分電壓VD3、VD5、 、Vd63及vD63、回應 (' 於第一仏號B[9:5]來自該第三群經劃分電壓VD3至VD65選 ' 擇一經劃分電壓,及將所選經劃分電壓輸出為第三解碼器 輸出信號OUT3。選擇器234可回應於一第二信號B[4]而自 第至第二解碼器輸出信號OUT1、OUT2及OUT3選擇兩 個信號,及將所選之兩個信號輸出為第一選擇電壓乂丨及第 二選擇電壓V2。第二信號B[4]為第一數位信號DAT1中之 最低有效位元(LSB),且第一信號B[9:5]為第一數位信號 DAT1排除第二信號B[4]後之剩餘者。 (J 圖6為根據一實例實施例之放大器250,之方塊圖。參看 圖6,放大器25 0'可包括5個第二群電容器Csl至Cs5。放大 器250'有些似於圖2所說明之放大器25〇,且因此,將省略 多餘之描述。 為描述之清楚起見,若將5個第二群電容器Csl至Cs5稱 作第内插電谷器Csl至第五内插電容器cS5,則與圖2所 說明之放大器250相比,放大器250,可進一步包括第五内插 電容器Cs5及-第八開關’該第八開關回應於信號s25而將 參考電壓VREF或第二選擇電壓V2選擇性地傳輸至第五内 131464.doc 22· 200904013 插電容器Cs5。 因此’第二群開關信號S21、S22、S23及S24可基於第二 數位信號DAT2(例如,數位信號DATA中之四個低位元 B[3:〇])而產生。舉例而言,第二群開關信號S24可基於數 位信號DATA中之LSB B[0]而產生。SLSB B[0]處在一第 一位準(例如,”高位準”),則可將第一選擇電壓V1傳輸至 第四内插電容器Cs4,且若LSB B[0]係處在一第二位準(例 如,"低位準”),則可將第二選擇電壓V2傳輸至第四内插The output signal DAC of the AMP 251 is on (not inverted), so the selection circuit 230 can be implemented more easily. Figure 5 is a block diagram of the signal conversion block 21A illustrated in Figure 2. The signal conversion block 210 in Fig. 5 corresponds to an example in which the number of bits in the digital signal DATA is 10. However, example embodiments are not limited thereto, and the number of bits το in the digital signal DATA may be a different number than 1G, and the signal conversion block 210 may be configured to coordinate accordingly. > Looking at Figure 5, the tool 220 can include a resistor array of resistors connected in series from the first R to the 64th R (where "m" is 6 and 2〇1 = 64), and/or A 65-bit divided voltage VD1 to ν 〇 65 is generated. The selection circuit 230 may include first to third decoders 231, 232 and, for example, and/or - select 234. The first decoder 23 i may receive the divided voltage Up to one of the first group-divided voltages VD1, VD3, VD5, ..., VD61 and VD63, in response to the first signal Β[9··5] in the first digital signal dati from the first- The group is divided by the voltage ν〇ι to the side to select a voltage: and the selected divided voltage is output as - the - decoder output; ^ according to the example embodiment, including the first - digit signal dati ^ 131464.doc 21 The 200904013 bit signal DATA can be an ι〇 bit signal and is denoted as B[9:〇]. The second decoder 2 3 2 can receive the second group of divided voltages of the divided voltages v D 丨 to v D 6 5 VD2, VD4, VD6, ..., VD62 and VD64, in response to the first signal B[9.5] selecting a divided voltage from the second group of divided voltages ν〇2 to VD64, and dividing the selected The voltage output is the second decoder output signal OUT2. The third decoder 233 can receive the second group of divided voltages VD3, VD5, Vd63 and vD63 of the divided voltages 乂(1) to VD65, and respond (' to the first nickname B[9:5] selects the selected divided voltage from the third group divided voltages VD3 to VD65, and outputs the selected divided voltage to the third decoder output signal OUT3. The selector 234 can respond to a second Signal B[4] selects two signals from the first to second decoder output signals OUT1, OUT2 and OUT3, and outputs the selected two signals as the first selection voltage 乂丨 and the second selection voltage V2. The signal B[4] is the least significant bit (LSB) of the first digital signal DAT1, and the first signal B[9:5] is the remainder of the first digital signal DAT1 excluding the second signal B[4]. (J Figure 6 is a block diagram of an amplifier 250, according to an example embodiment. Referring to Figure 6, the amplifier 25 0' may include five second group capacitors Cs1 through Cs5. The amplifier 250' is somewhat similar to the amplifier illustrated in Figure 2. 25〇, and therefore, the redundant description will be omitted. For the sake of clarity of description, if 5 second groups are The devices Cs1 to Cs5 are referred to as the first interpolating electric grid device Cs1 to the fifth interpolating capacitor cS5. The amplifier 250 may further include a fifth interpolating capacitor Cs5 and an eighth switch as compared with the amplifier 250 illustrated in FIG. The eighth switch selectively transmits the reference voltage VREF or the second selection voltage V2 to the fifth inner 131464.doc 22·200904013 plug capacitor Cs5 in response to the signal s25. Therefore, the 'second group switching signals S21, S22, S23 and S24 can be generated based on the second digital signal DAT2 (e.g., four lower bits B[3: 〇] in the digital signal DATA). For example, the second group of switching signals S24 can be generated based on LSB B[0] in the digital signal DATA. SLSB B[0] is at a first level (for example, "high level"), then the first selection voltage V1 can be transmitted to the fourth interpolation capacitor Cs4, and if LSB B[0] is in the first The second level (for example, "low level") can transmit the second selection voltage V2 to the fourth interpolation

I 電容器Cs4。類似地,第二群開關信號S23可基於數位信號 DATA中之第二LSB B[l]而產生,且可將第一選擇電壓¥1 或第二選擇電壓V2選擇性地傳輸至第三内插電容器Cs3。 類似地,第二群開關信號S22及S21可基於數位信號DATA 中之第二LSB B[2]及第四LSB B[3]而產生,且可將第一選 擇電壓VI或第二選擇電壓V2選擇性地傳輸至第二内插電 容器Cs2及第一内插電容器Csl。回應於信號S25而操作之 第八開關在第一時段期間可將參考電壓VREF傳輸至第五 内插電容器Cs5,及/或在第二時段期間將第二選擇電壓V2 傳輸至第五内插電容器Cs5。 右第一内插電容器Csl至第五内插電容器Cs5分別具有第 一電谷 l§Csa 之電容 C 的 8/16、4/16、2/16' 1/16 及 1/16 電 容,則輸出信號DACO可具有由將第一選擇電壓V1與第二 選擇電壓V2之間的一範圍劃分成16個區段而得到之值中之 一值。輸出信號DACO可由方程式(3)獲得:I capacitor Cs4. Similarly, the second group switching signal S23 can be generated based on the second LSB B[1] of the digital signal DATA, and the first selection voltage ¥1 or the second selection voltage V2 can be selectively transmitted to the third interpolation. Capacitor Cs3. Similarly, the second group of switching signals S22 and S21 may be generated based on the second LSB B[2] and the fourth LSB B[3] of the digital signal DATA, and may select the first selection voltage VI or the second selection voltage V2 It is selectively transmitted to the second interpolation capacitor Cs2 and the first interpolation capacitor Cs1. The eighth switch operative in response to signal S25 may transmit the reference voltage VREF to the fifth interpolation capacitor Cs5 during the first time period and/or transmit the second selection voltage V2 to the fifth interpolation capacitor during the second time period Cs5. The right first interpolating capacitor Cs1 to the fifth interpolating capacitor Cs5 respectively have 8/16, 4/16, 2/16' 1/16 and 1/16 capacitors of the capacitance C of the first electric valley l § Csa, and then the output The signal DACO may have one of values obtained by dividing a range between the first selection voltage V1 and the second selection voltage V2 into 16 segments. The output signal DACO can be obtained from equation (3):

Vx = V2 + B[k]2k'N-') X dV, 131464.doc (3) •23- 200904013 :、:dV ”2 ’ B[k]為第二數位信號DAT2中之位元,且Ν 為第二數位信號DAT2中位元之數目,亦即,一例如, 上述實例事例中之4)°因此’若位元B刚且位元B[3] 至ΒΠ]為"0,',則輸出信號DAC(^Vx=vi + i/2vd表示。舉 例而言,輪出信號DACO為對應於第一選擇電㈣盘第二 選擇電壓V2之間的1/2的電壓。 ^ Ο 根據圖5_及圖6所說明之實例實施例,若將位元(例 士 1 0位兀)數位信號轉換為一類比信號,則可使用一包 括2個電阻器(其中m<n,且“列如加=6)而非個電阻器之 電阻器陣列來產生複數個經劃分電壓,且可將選自該複數 個經劃分電壓之電壓之間的—範圍劃分成广m個位準,例 如,可在所選電壓之間執行内插,使得可將該η位元數位 信號轉換成2"位準類比電遷中之一者。因此,較之對讀 元數位信號而言使用2"個電阻器之習知DAC,根據實例實 施例之DAC可使用較少電阻器及,或使用較少之電容器及 開關το件。因此,根據實例實施例之DAc可在較不複雜之 情況下實施’藉此佔據較小面積及/或具有較小尺寸。 根據實例實施例,包括於分壓器220中之電阻器第_似 至第2m個R中之每一者的電阻值可由一所要伽瑪曲線或一 預定伽瑪曲線判定。根據第二電容器之數目及其電容,可 線性地或非線性地執行選自該等經劃分電麼之兩個電壓之 間的内插。因& ’可藉由適當地設定電阻器第—個r至第 2m個R之電阻值、第二電容器之數目,及/或其電容來獲得 近似液曰曰顯示器(LCD)面板之伪口瑪曲線的非線性輪出特性 131464.doc -24- 200904013 曲線。 圖7說明根據另一實例實施例之DAC 20CT。DAC 200'可 類似於圖2所說明之DAC 200,但與圖2所說明之DAC 200 相比,DAC 200'可進一步包括一緩衝器240。DAC 20(Γ中 之其他元件的功能及操作與DAC 200中之元件的相同,且 因此,將省略對其之描述。 緩衝器240可接收並缓衝選擇電壓VI及V2中之一者且將 經緩衝之電壓輸出為參考電壓VREF。在圖2所說明之DAC 200中,將參考電壓VREF設定為一所要值或一預定值(例 如,第一參考電壓VMIN),而不管輸出信號DACO之電壓 如何。然而,在圖7所說明之DAC 200'中,參考電壓VREF 可隨先前輸出信號DACO而改變。舉例而言,可將參考電 壓VREF設定為由先前輸出信號DACO產生之選擇電壓VI 及V2中之一者。根據圖7所說明之實例實施例,緩衝器240 可緩衝並輸出第二選擇電壓V2作為參考電壓VREF。然 而,在另一實例實施例中,緩衝器240可緩衝並輸出第一 選擇電壓VI作為參考電壓VREF。緩衝器240可為一類比放 大器,其具有單位增益(例如,增益=1),具有一與一反相 輸入端子連接之輸出端子。 圖8為說明根據實例實施例包括於DAC 200或20(Τ中之放 大器250之操作的實例時序圖。參看圖8,放大器250之1行 時間可包括第一時段階段1及第二時段階段2。在第一時段 階段1期間,電容器Csa及Csl至Cs4可初始化至參考電壓 VREF,使得將輸出信號DAC◦設定為參考電壓VREF。在 131464.doc •25- 200904013 第一時段L & 2期間,將輸出信號dac〇驅動至一對應於數 位碼DAT之灰度階電壓。 為了逐行連續地產生輸出信號,放大器謂可需要在產 生對應於-先前數位碼之輸出信號DACO^d)之後及在產 生對應於一當前數位碼之輸出信號DAC〇(T)之前將電容器 Csa及Csl至Cs4初始化至參考電壓VREF。為了在丨行時間 内滿意地驅動輸出信號DAC〇,可減少初始化之時間,在 其間放大器250之輸出自先前輸出信號DAC〇(T_。改變至 參考電壓VREF。 圖9為說明包括於圖2所說明之DAC 2〇〇中之放大器 之初始化的實例時序圖。最壞之事例情況可為萬一放大器 250之先前輸出信號dacoch)之電壓與參考電壓vref^ 間的差異具有最大值。舉例而言,若放大器25〇輸出範圍 為自一第一高灰度階電壓VH(0)至一第(Ν_υ高灰度階電壓 VH(N_1)(其中1^為2η)之較高伽瑪,則將參考電壓VREF設 定為第一高灰度階電壓VH(〇)與第(Ν_η高灰度階電壓 vh(n-i)之間的一中間電壓VREFp,且若放大器25〇輸出範 圍為自一第一低灰度階電壓VL(0)至一第(N-1)低灰度階電 塵VL(N-l)之較低伽瑪,則將參考電壓vREF設定為第一低 灰度階電壓VL(0)至第(N-1)低灰度階電壓VL(N-l)之間的 一中間電壓VREFn。若放大器250輸出較高伽瑪,則第一 回灰度階電壓VH(0)及該第(N-1)高灰度階電壓VH(N-l)可 分別對應於第一參考電壓VMIN及第二參考電壓νΜΑχ。 若放大器250輸出較低伽瑪,則第一低灰度階電壓¥匕(〇)及 131464.doc •26- 200904013 該第(N-D低灰度階電屬叫叫可分別對應於第一參 壓VMIN及第二參考電壓vmaX。 在上述之最壞事例情況中,即使參考電壓vref設定為 一伽瑪曲線之中間VREFp或VREFn,輸出信號之電塵仍需 要改變,改變多如對應於該伽瑪曲線之1/2的電麼。舉例 而言,若先前輸出信號DACOfi)具有第_高灰度階電壓 VH⑼或第(Ν_ι)高灰度階電壓^沁〗),則輸出信號可需 要改變改變多如對應於該第(N-1)高灰度階電麼yH(N_ 1) 與該第一高灰度階電壓VH(0)之間的差異之1/2的電壓,以 便被初始化至參考電。若先前輸出信號dac〇(t_ υ具有第一低灰度階電壓VL(0)或第(Ν_υ低灰度階電壓 VL(N-l),則輸出信號可需要改變,改變多如對應於該第 (N-1)低灰度階電壓νΜΝ_υ與該第一低灰度階電壓VL(〇) 之間的差異之1/2的電壓,以便被初始化至參考電壓 VREFn °因此’放大器250可相對於整個伽瑪電壓之電壓 ! 的一半來執行扭轉及穩定,此可增加初始化時間。 或者’包括於圖7所說明之DAC 200,中之放大器250可使 用先前輸出信號DACO(T-l)之電壓來為當前輸出信號 DACO(T)設定一初始化電壓。舉例而言,可將用於計算先 前輸出信號DACO(T-l)之選擇電壓VI及V2中之一者設定為 當前輪出信號DACO(T)之初始化電壓,例如,參考電壓 VREF。因此,包括於dac 200,中之放大器250無需執行扭 轉’而是可僅執行穩定,藉此與包括於DAC 200中之放大 器250相比減小初始化時間及功率消耗。 131464.doc •27- 200904013 圖ι〇為包括一包括圖2所說明之DAC 200之源極驅動器 540之顯不器裝置的方塊圖。參看圖1〇,一平板顯示器裝 置500(例如,薄膜電晶體lcd(tft_lcd)、電漿顯示器面 板(PDP)或有機發光二極體(〇led))可包括一顯示器面板 51〇、一控制電路52〇、一閘極驅動器53〇及/或源極驅動器 540 〇 顯不器面板510可包括複數個資料線81至33(其中"s"為自 然數)、複數個閘極線G1至Gg(其中,,g"為自然數,且g=s或 g矣s),及/或複數個晶胞(包括—單位晶胞晶胞丨)。每一晶 胞可連接於資料線81至以中之一相應一者與閘極線⑴至 Gg中之一相應一者之間。 控制電路520可產生包括一第一控制信號c〇N1及一第二 控制信號CON2之複數個控制信號。舉例而言,控制電路 520可基於一水平同步信號及/或一垂直同步信號來產生第 一控制信號CON1、第二控制信號CON2,及/或數位資料 DATA。 閘極驅動器530可回應於第一控制信號c〇N1來順序地驅 動閘極線G1至Gg。舉例而言,第一控制信號c〇N1可為指 示開始掃描閘極線G1至Gs之信號。 源極驅動器540可包括根據一實例實施例之複數個DA(: 2 0 0。亦顯而易見,源極驅動器5 4 〇可包括根據另一實例實 施例之複數個DAC 200、DAC 200中之每一者可與資料線 S1至Ss中之一相應資料線連接。舉例而言,可將dac 200 之輸出信號DACO提供至資料線S1。一包括DAC 2〇〇及驅 131464.doc -28 - 200904013 動一單個資料線之驅動器被稱作一通道驅動器,且該單個 資料線被稱作一通道。 根據實例實施例,即使用於DAC 200中之參考電壓(例 如,第一參考電壓VMIN)在通道驅動器之間為不同的, DAC 200之輸出信號DACO亦無需受參考電壓影響,且因 此,可減少通道驅動器之間的偏差(例如,通道之輸出^ 號之間的偏差)。 源極驅動器540可回應於自控制電路520輸出之第二控制 信號CON2及數位資料DATA來驅動源極線S1至Ss。 雖然未圖示’但根據實例實施例之一源極驅動器模組可 包括具有與圖10所說明之源極驅動器540之結構相同之結 構的複數個源極驅動器。 根據實例實施例之數位至類比轉換方法可由根據實例實 施例之DAC執行。在該數位至類比轉換方法中,在一第一 日ττ #又期間’可將一參考電壓提供至一連接至_ 〇p Amp之 一第一輸入端子的第一電容器及/或可提供至連接至該〇p AMP之一第二輸入端子的複數個第二電容器。該〇p amp 之第一輸入端子可連接至該OP AMP之輸出端子。在一第 二時段期間,該第一電容器可與參考電壓隔離,可將一選 自兩個選擇電壓之電壓傳輸至該等第二電容器中之每一 者,及/或該第一電容器之一第一端子可連接至該〇p AMp 之輸出端子。 如上所述,根據實例實施例,一DAC可佔據一較小面積 (及/或具有—較小尺寸)且提供近似—LCD面板之伽瑪曲線 131464.doc •29- 200904013 的非線性輸出特性曲線。若該DAC用於一顯示器裝置中, 則可減小通道驅動器之間的偏差,例如,通道之輸出信號 之間的偏差。 儘管已在本說明書及諸圖中展示並描述實例實施例,但 熟習此項技術者應瞭解,可對所說明且/或描述之實例實 施例進行改變而不會背離其原理及精神。 【圖式簡單說明】 圖1說明一習知數位至類比轉換器(DAC); 圖2說明根據一實例實施例之dac ; 圖3 A s兒明根據一實例實施例在一第一時段期間該之 結構; 圖3B說明根據一實例實施例在一第二時段期間該dac之 結構; 圖4為根據一實例實施例的一數位信號及複數個開關信 號之實例時序圖; 圖5為圖2所說明之信號轉換區塊之方塊圖; 圖6為根據一實例實施例之放大器之方塊圖; 圖7說明根據另一實例實施例之dAC ; 圖8為說明根據一實例實施例之放大器之操作的實例時 序圖; 圖9為說明包括於圖2所說明之DAC中之放大器之初始化 的實例時序圖;及 圖1〇為包括一包括圖2所說明之DAC之源極驅動器之顯 示器裝置的方塊圖。 131464.doc •30· 200904013 fVx = V2 + B[k]2k'N-') X dV, 131464.doc (3) •23- 200904013 :,:dV ”2 ' B[k] is the bit in the second digit signal DAT2, and Ν is the number of bits in the second digit signal DAT2, that is, for example, 4) in the above example case, so 'if bit B is just and bit B[3] to ΒΠ] is "0,' The output signal DAC is represented by ^Vx=vi + i/2vd. For example, the turn-off signal DACO is a voltage corresponding to 1/2 between the second selection voltage V2 of the first selected power (four) disk. ^ Ο In the example embodiment illustrated in FIG. 5 and FIG. 6, if a bit (1/10 bit 数) digital signal is converted into an analog signal, one can include two resistors (where m<n, and The column is added as =6) instead of a resistor array of resistors to generate a plurality of divided voltages, and the range selected from the voltages of the plurality of divided voltages can be divided into a plurality of m levels, for example Interpolation can be performed between selected voltages such that the η-bit digital signal can be converted to one of the 2" level analog shifts. Therefore, 2" is used as compared to the read digital signal resistance Conventional DACs, DACs according to example embodiments may use fewer resistors and, or use fewer capacitors and switches. Thus, DAc according to example embodiments may be implemented in less complex cases. Occupying a smaller area and/or having a smaller size. According to an example embodiment, the resistance value of each of the resistors _like to 2m R included in the voltage divider 220 may be a desired gamma curve or a predetermined gamma curve decision. Depending on the number of second capacitors and their capacitance, interpolation between two voltages selected from the divided electric powers may be performed linearly or non-linearly. Appropriately set the resistance value of the first r to the second mth of the resistor, the number of the second capacitor, and/or its capacitance to obtain a nonlinear rotation of the pseudo-margin curve of the liquid crystal display (LCD) panel Characteristic 131464.doc -24- 200904013 Curve. Figure 7 illustrates a DAC 20CT according to another example embodiment. The DAC 200' can be similar to the DAC 200 illustrated in Figure 2, but compared to the DAC 200 illustrated in Figure 2, the DAC 200' may further include a buffer 240. DAC 20 (Γ The functions and operations of the other components are the same as those of the components in the DAC 200, and therefore, a description thereof will be omitted. The buffer 240 can receive and buffer one of the selection voltages VI and V2 and will buffer the voltage. The output is the reference voltage VREF. In the DAC 200 illustrated in FIG. 2, the reference voltage VREF is set to a desired value or a predetermined value (eg, the first reference voltage VMIN) regardless of the voltage of the output signal DACO. However, in the DAC 200' illustrated in FIG. 7, the reference voltage VREF may vary with the previous output signal DACO. For example, the reference voltage VREF can be set to one of the selection voltages VI and V2 generated by the previous output signal DACO. According to the example embodiment illustrated in FIG. 7, the buffer 240 may buffer and output the second selection voltage V2 as the reference voltage VREF. However, in another example embodiment, the buffer 240 may buffer and output the first selection voltage VI as the reference voltage VREF. Buffer 240 can be an analog amplifier having a unity gain (e.g., gain = 1) having an output terminal coupled to an inverting input terminal. 8 is an example timing diagram illustrating the operation of amplifier 250 included in DAC 200 or 20, according to an example embodiment. Referring to FIG. 8, one line time of amplifier 250 may include a first time period phase 1 and a second time period phase 2 During the first period of phase 1, capacitors Csa and Cs1 to Cs4 may be initialized to the reference voltage VREF such that the output signal DAC◦ is set to the reference voltage VREF. During the first period L & 2 during 131464.doc • 25- 200904013 Driving the output signal dac〇 to a gray scale voltage corresponding to the digital code DAT. In order to continuously generate the output signal row by row, the amplifier may need to generate the output signal DACO^d corresponding to the previous digit code and The capacitors Csa and Cs1 to Cs4 are initialized to the reference voltage VREF before the output signal DAC(T) corresponding to a current digital code is generated. In order to satisfactorily drive the output signal DAC〇 during the trip time, the initialization time can be reduced, during which the output of the amplifier 250 is changed from the previous output signal DAC〇(T_. to the reference voltage VREF. FIG. 9 is a diagram included in FIG. An example timing diagram for the initialization of the amplifier in the DAC 2〇〇 is illustrated. The worst case scenario may be that the difference between the voltage of the previous output signal dacoch of the amplifier 250 and the reference voltage vref^ has a maximum value. For example, if the output range of the amplifier 25〇 is a higher gamma from a first high gray scale voltage VH(0) to a first (Ν_υ high gray scale voltage VH(N_1) (where 1^ is 2η) , the reference voltage VREF is set to an intermediate voltage VREFp between the first high gray scale voltage VH(〇) and the first (Ν_η high gray scale voltage vh(ni), and if the output range of the amplifier 25〇 is one The lower gamma of the first low gray scale voltage VL(0) to a (N-1)th low gray scale electric dust VL(Nl) sets the reference voltage vREF to the first low gray scale voltage VL (0) to an intermediate voltage VREFn between the (N-1)th low gray scale voltage VL(N1). If the amplifier 250 outputs a higher gamma, the first gray scale voltage VH(0) and the The (N-1)th high gray scale voltage VH(N1) may correspond to the first reference voltage VMIN and the second reference voltage νΜΑχ, respectively. If the amplifier 250 outputs a lower gamma, the first low gray scale voltage is 匕(〇) and 131464.doc •26- 200904013 The first (ND low gray scale electric screams can correspond to the first reference voltage VMIN and the second reference voltage vmaX, respectively. In the worst case case above, even the reference electricity Vref is set to the middle of a gamma curve VREFp or VREFn, the electric dust of the output signal still needs to be changed, and the change is as much as 1/2 of the gamma curve. For example, if the previous output signal DACOfi) has The _high gray scale voltage VH(9) or the (Ν_ι) high gray scale voltage ^沁), the output signal may need to change and change as much as corresponding to the (N-1) high gray scale power yH (N_ 1) a voltage of 1/2 of the difference between the first high gray scale voltage VH(0) so as to be initialized to the reference power. If the previous output signal dac〇(t_υ has the first low gray scale voltage VL (0) or (Ν υ υ low gray scale voltage VL (Nl), then the output signal may need to be changed, such as corresponding to the (N-1) low gray scale voltage ν ΜΝ υ and the first low gray a voltage of 1/2 of the difference between the step voltages VL(〇) so as to be initialized to the reference voltage VREFn° so that the 'amplifier 250 can perform twisting and stabilization with respect to half of the voltage of the entire gamma voltage, which can be increased Initialization time. Or 'included in the DAC 200 illustrated in Figure 7, the amplifier 250 can use the previous output letter The voltage of DACO (Tl) is used to set an initialization voltage for the current output signal DACO (T). For example, one of the selection voltages VI and V2 for calculating the previous output signal DACO (Tl) can be set as the current wheel. The initialization voltage of the signal DACO(T), for example, the reference voltage VREF. Therefore, the amplifier 250 included in the dac 200 does not need to perform the twisting' but can perform only stabilization, thereby being phased with the amplifier 250 included in the DAC 200. Reduce initialization time and power consumption. 131464.doc • 27- 200904013 Figure 1 is a block diagram of a display device including a source driver 540 including the DAC 200 illustrated in FIG. Referring to FIG. 1 , a flat panel display device 500 (eg, a thin film transistor lcd (tft_lcd), a plasma display panel (PDP), or an organic light emitting diode) may include a display panel 51 , a control circuit 52〇, a gate driver 53〇 and/or a source driver 540 〇 display panel 510 may include a plurality of data lines 81 to 33 (where "s" is a natural number), and a plurality of gate lines G1 to Gg (where g" is a natural number, and g=s or g矣s), and/or a plurality of unit cells (including - unit cell 晶). Each of the cells may be connected between the data line 81 to a corresponding one of the ones and one of the gate lines (1) to Gg. The control circuit 520 can generate a plurality of control signals including a first control signal c〇N1 and a second control signal CON2. For example, control circuit 520 can generate first control signal CON1, second control signal CON2, and/or digital data DATA based on a horizontal sync signal and/or a vertical sync signal. The gate driver 530 can sequentially drive the gate lines G1 to Gg in response to the first control signal c〇N1. For example, the first control signal c〇N1 may be a signal indicating the start of scanning of the gate lines G1 to Gs. The source driver 540 can include a plurality of DAs (: 200 according to an example embodiment. It is also apparent that the source driver 5 4 can include each of the plurality of DACs 200, DACs 200 according to another example embodiment. For example, the output signal DACO of the dac 200 can be supplied to the data line S1. One includes the DAC 2〇〇 and the driver 131464.doc -28 - 200904013 A single data line driver is referred to as a channel driver, and the single data line is referred to as a channel. According to an example embodiment, even a reference voltage (eg, first reference voltage VMIN) used in DAC 200 is in the channel driver The difference between the output signal DACO of the DAC 200 is also not affected by the reference voltage, and therefore, the deviation between the channel drivers (for example, the deviation between the output signals of the channels) can be reduced. The source driver 540 can respond. The second control signal CON2 and the digital data DATA output from the control circuit 520 drive the source lines S1 to Ss. Although not shown, a source driver module according to an example embodiment may include A plurality of source drivers of the same structure as the source driver 540 illustrated in Fig. 10. The digital to analog conversion method according to an example embodiment may be performed by a DAC according to an example embodiment. In the digital to analog conversion method, Providing a reference voltage to a first capacitor connected to one of the first input terminals of _ 〇p Amp and/or providing a second connection to the 〇p AMP during a first day ττ #又期' a plurality of second capacitors of the input terminal. The first input terminal of the 〇p amp can be connected to the output terminal of the OP AMP. During a second period of time, the first capacitor can be isolated from the reference voltage, and one can be selected from A voltage of two selected voltages is transmitted to each of the second capacitors, and/or a first terminal of one of the first capacitors is connectable to an output terminal of the 〇p AMp. As described above, according to an example embodiment A DAC can occupy a small area (and/or have a smaller size) and provide a non-linear output characteristic curve of the approximation-LCD panel gamma curve 131464.doc • 29- 200904013. If the DAC is used for one In the display device, the deviation between the channel drivers, for example, the deviation between the output signals of the channels, can be reduced. Although the example embodiments have been shown and described in the specification and the drawings, those skilled in the art should It will be appreciated that the illustrated and/or described example embodiments may be modified without departing from the principles and spirit. [FIG. 1 illustrates a conventional digital-to-analog converter (DAC); FIG. 2 illustrates Figure 3A illustrates the structure of a dac during a first time period according to an example embodiment; Figure 3B illustrates the structure of the dac during a second time period according to an example embodiment; FIG. 5 is a block diagram of a signal conversion block illustrated in FIG. 2; FIG. 6 is a block diagram of an amplifier according to an example embodiment; FIG. 7 illustrates dAC according to another example embodiment; FIG. 8 is a timing diagram illustrating an operation of an amplifier according to an example embodiment; FIG. 9 is an illustration illustrating an amplifier included in the DAC illustrated in FIG. Examples of a timing chart; and FIG 1〇 block diagram including a display comprising a source apparatus illustrated in Figure 2 of the driver of the DAC. 131464.doc •30· 200904013 f

【主要元件符號說明】 100 R-DAC 110 電阻器陣列 120 解碼器 130 運算放大器 200 數位至類比轉換器 200' 數位至類比轉換器 210 信號轉換區塊 220 分壓器 230 選擇電路 231-233 解碼器 234 選擇器 250 放大器 250' 放大器 251 運算放大器 260 控制器 270 第二電容器群 280 開關電路 500 平板顯示器裝置 510 顯示器面板 520 控制電路 530 閘極驅動器 540 源極驅動器 B[4] 第二信號 131464.doc •31 · 200904013 B[9:5] 第一信號 CONI 第一控制信號 CON2 第二控制信號 Cp 寄生電容器 Csl-Cs5 第二電容器 Csa 第一電容器 DACO 輸出信號 DAT1 第一數位信號 DAT2 第二數位信號 DATA 數位信號 DECO 選擇電壓 Gl-Gg 閘極線 OUT1 第一解碼器輸出信號 OUT2 第二解碼器輸出信號 OUT3 第三解碼器輸出信號 S10-S13 開關信號 S21-S24 第二群開關信號 Sl-Ss 資料線 VI 第一選擇電壓 V2 第二選擇電壓 VD1-VD65 經劃分電壓 VD1-VDK 經劃分電壓 VH(0) 第一高灰度階電壓 VH(N-l) 第(N-1)高灰度階電壓 131464.doc -32- 200904013 VL(0) 第一低灰度階電壓 VL(N-l) 第(N-l)低灰度階電壓 VMAX 第二參考電壓 VMIN 第一參考電壓 Vrefl 第一參考電壓 Vref2 第二參考電壓 VREF 參考電壓 VREFn 中間電壓/參考電壓 VREFp 參考電壓/中間電壓[Main component symbol description] 100 R-DAC 110 Resistor array 120 Decoder 130 Operational amplifier 200 Digital to analog converter 200' Digital to analog converter 210 Signal conversion block 220 Voltage divider 230 Selection circuit 231-233 Decoder 234 selector 250 amplifier 250' amplifier 251 operational amplifier 260 controller 270 second capacitor bank 280 switching circuit 500 flat panel display device 510 display panel 520 control circuit 530 gate driver 540 source driver B [4] second signal 131464.doc • 31 · 200904013 B[9:5] First signal CONI First control signal CON2 Second control signal Cp Parasitic capacitor Csl-Cs5 Second capacitor Csa First capacitor DACO Output signal DAT1 First digit signal DAT2 Second digit signal DATA Digital signal DECO Select voltage Gl-Gg Gate line OUT1 First decoder output signal OUT2 Second decoder output signal OUT3 Third decoder output signal S10-S13 Switch signal S21-S24 Second group switching signal Sl-Ss Data line VI first selection voltage V2 second selection voltage VD1 -VD65 divided voltage VD1-VDK divided voltage VH(0) first high gray scale voltage VH(Nl) (N-1) high gray scale voltage 131464.doc -32- 200904013 VL(0) first Low gray scale voltage VL(Nl) (Nl) low gray scale voltage VMAX second reference voltage VMIN first reference voltage Vrefl first reference voltage Vref2 second reference voltage VREF reference voltage VREFn intermediate voltage / reference voltage VREFp reference voltage / intermediate voltage

131464.doc -33-131464.doc -33-

Claims (1)

200904013 十、申請專利範圍: 1. 一種積體電路,其包含: 一運异放大器,其具有一第一輸入端子、—第二輸入 端子,及一輸出端子; 一第一電容器,其具有一第一端子及一第二端子,該 第-電容器之該第二端子連接至該運算放大器之該第一 輸入端子; 複數個第二電容器,其各自具有一第一端子及一第二 端子,該等第二電容器中之每-者之該第二端子連接至 該運算放大器之該第二輸入端子;及 -開關電路,其包含經組態以回應於複數個開關信號 而切換的複數個開關,其中 吞亥開關電路經会且能以尤 墙 心、以在第—時段期間將一參考電壓 傳輸至該第一電容之兮笸 兮莖… 惠子及該等第二電容器之 Ο 至該運算放大器之該輸出第一輸入端子連接 :=_經組態以在一第二時段期間使該第一電容 子與該參考電壓隔離, 選擇電壓之電藶傳輸至該等第 至二兩^ 子,且將兮筮 _ 4奋器之§亥等第一知 于且將該第一電容器之 器之該輸㈣端子連接至該運算放大 2.如請求項!之積體電路,其進一步包人. —分壓器,其包含—連接於—3 \ 第一筘點盥、接收一第一參考電歷之 弟即點與一接收一第二參考 電屋之第二節點之間的電 I31464.doc 200904013 阻器陣列,該分壓器經組態以藉由劃分該第二參考電壓 與該第一參考電壓之間的一範圍而產生複數個經劃分電 壓;及 一選擇電路,其經組態以回應於一第一數位信號而自 該複數個經劃分電壓選擇至少兩個電壓且提供該等所選 電壓作為該至少兩個選擇電壓, 其十該運异放大器之該第一輸入端子為一反相輸入端 子’且該運算放大器之該第二輸入端子為一非反相輸入 知子’且該第一數位信號為一η位元數位信號之一部 分。 3.如請求項2之積體電路,其中 该至少兩個選擇電壓包含—第一選擇電壓及一低於該 第一選擇電壓之第二選擇電壓,且 該開關電路包含: U 端子與該運算放大器之該輸出端子之間;㈧训 第一開關,其經組態以將該參考電壓選擇性地傳 輸至該第一電容器之該第一端子; ☆第二開關,其經組態以將該第一電容器之該第一 &t選擇性地連接至該運算放大器之該輸出端子;及 :數個第二群開關,其經組態以將該參考電壓、該 、、擇電壓及5亥第二選擇電壓選擇性地傳輸至該複 數個該等第二電容器。 4.如請求項3之積體電路,其中 131464.doc 200904013 =在該第一時段期間,該第一開關及該第二開關閉合, i第—開關斷開,且該等複數個第二群開關將該參考電 壓傳輪至該複數個第二電容器; >在該第二時段期間,該第一開關及該第二開關斷開, 該第三開關閉合,且該複數個第二群開關基於一第二數 位信號將該第-選擇電壓及該第二選擇電壓中之一者傳 輸至该複數個第二電容器;且 r 該第二數位信號為該n位元數位信號排除該第一數位 1 信號後之剩餘部分。 5·如請求項4之積體電路,其中 該複數個第二群開關中之每—者經組態以在該第二時 段期間回應於該第二數位信號中之一相應位元而將該第 選擇電壓及該第二選擇電壓中之一者傳輸至該複數個 第二電容器甲之一相應一者, 該第一數位信號係由該11位元數位信號中之高&"個位 Q 元組成,其中m小於η,且瓜為—整數,且 該第二數位肖號係由該η位元數位信號中之低⑴咸爪個 位元組成。 6.如請求項3之積體電路,其中 该選擇電路包含至少兩個解碼器,該等解碼器中之每 -者經組態以接收該等經劃分電壓之—部分且回應於該 第-數位信號中之一第一信號而自該等接收到之經劃分 電壓選擇一電壓,且 該第-選擇電壓及該第二選擇電壓係選自該至少兩個 131464.doc 200904013 解碣器之輸出信號。 7,如凊求項3之積體電路,其中該選擇電路包含: 一第一解碼器,其經組態以接收該等經劃分電壓之— 第群經劃分電壓,回應於該第一數位信號中之一第— 信號而自該第一群經劃分電壓選擇一電壓,且輪出談 選電壓作為一第一解碼器輸出信號; 斤 -第二解碼H,其經組態以接收該等經劃分電壓之— Γ ::群經劃分電壓’回應於該第-信號而自該第二群: 刀電壓選擇-電壓,且輸出該所選電壓作為-碼器輸出信號; 一解 一第二解碼器,其經組態以接收該等經劃分電壓之— 第二群經劃分電壓,回應於該第一信號而自該第三群鈣 劃刀電Μ選擇-電壓’且輪出該所選電壓作為—第三 碼器輸出信號;及 —一選擇n ’其經組態以回應於該第—數位信號中之— Ο 第:乜號而自該第-解碼器輸出信號至該第三解碼器衿 出信號選擇兩個信號並將該所選之兩個信號輸出為= 一選擇電壓及該第二選擇電壓, μ -其中该第二信號為該第一數位信號中之一最低有效位 信號後 之剩餘部分。 8.如請求項7之積體電路,其中 該電随器陣列包含串聯地連接之2„個電阻器 131464.doc 200904013 該等經劃分電壓包含(2m+i)位準電壓, ,第一群經劃分電壓包含該等(2m+1)位準電壓中排除 最尚電壓外的奇數個電壓, 該第二群經劃分電壓包含該等(2m+l)位準電壓中之偶 數個電壓, 該第三群經劃分電壓包含該等準電壓中排除 一最低電壓外的該等奇數個電壓,且 。該選擇器經組態以回應於該第二信號而自該第一解碼 器輸出k號至該第三解碼器輸出信號選擇兩個信號並將 X等所選之兩個信號輸出為該第一選擇電壓及該二 擇電壓。 一 9·如請求項8之積體電路’其中該複數個第二電容器包 :第-内插電容器,其經組態以具有一對應於該第一 電奋之8/16的電容,該第一内插電容器經組 〇 二:在該第-時段期間基於-自該η位元數位信號中之 一最低有效位元起的第四位元而選擇性地接收該第一選 擇電壓及該第二選摆 ^ &擇電I中之一者,該最低有效位元為 位7數位信號中之一第一位元; 一第二内插電容器,其經組態以具有—對應於該第一 電容器之該電容之_ 4/16的電谷,該第二内插電容器經組 態以在該笫-卩主 一、&期間基於一自該η位元數位信號中之 該最低有效位元如 起的第三位元而選擇性地接收該第一選 擇電壓及該第二谟埋^ 冲一選擇電壓中之一者; 131464.doc 200904013 :第二内插電容器,其經組態以具有一對應於該第一 =今°°之°亥電各之2/16的電容’該第三内插電容器經組 態以在该第二時段期間基於一自該η位元數位信號中之 該最低有效位元起的第二位元而選擇性地接收該第^ 擇電壓及該第二選擇電壓中之一者; 第四内插電容器,其經組態以具有一對應於該第一 :令益之°亥電容之1/16的電容,該第四内插電容器經組200904013 X. Patent application scope: 1. An integrated circuit comprising: a different operational amplifier having a first input terminal, a second input terminal, and an output terminal; a first capacitor having a first a terminal and a second terminal, the second terminal of the first capacitor is connected to the first input terminal of the operational amplifier; the plurality of second capacitors each having a first terminal and a second terminal, and the like a second terminal of each of the second capacitors is coupled to the second input terminal of the operational amplifier; and a switching circuit including a plurality of switches configured to switch in response to the plurality of switching signals, wherein The Tenghai switch circuit can pass and can transmit a reference voltage to the stem of the first capacitor during the first period... Keiko and the second capacitor to the operational amplifier Outputting a first input terminal connection: =_ configured to isolate the first capacitor from the reference voltage during a second time period, the voltage of the selected voltage being transmitted to the Up to two or two, and the first _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ , further comprising a voltage divider, comprising: - connecting to - 3 \ first point, receiving a first reference electronic calendar, a point and receiving a second reference electric second node Between the resistors, the voltage divider is configured to generate a plurality of divided voltages by dividing a range between the second reference voltage and the first reference voltage; and a selection circuit Configuring, in response to a first digital signal, selecting at least two voltages from the plurality of divided voltages and providing the selected voltages as the at least two selection voltages, the tenth of the different amplifiers An input terminal is an inverting input terminal 'and the second input terminal of the operational amplifier is a non-inverting input terminal' and the first digital signal is a portion of an n-bit digital signal. 3. The integrated circuit of claim 2, wherein the at least two selection voltages comprise a first selection voltage and a second selection voltage lower than the first selection voltage, and the switching circuit comprises: a U terminal and the operation Between the output terminals of the amplifier; (8) training a first switch configured to selectively transmit the reference voltage to the first terminal of the first capacitor; ☆ a second switch configured to The first & t of the first capacitor is selectively coupled to the output terminal of the operational amplifier; and: a plurality of second group switches configured to reference the voltage, the voltage, the voltage, and the voltage A second selection voltage is selectively transmitted to the plurality of the second capacitors. 4. The integrated circuit of claim 3, wherein: 131464.doc 200904013 = during the first time period, the first switch and the second switch are closed, the i-th switch is off, and the plurality of second groups are The switch transmits the reference voltage to the plurality of second capacitors; > during the second period, the first switch and the second switch are turned off, the third switch is closed, and the plurality of second group switches Transmitting one of the first selection voltage and the second selection voltage to the plurality of second capacitors based on a second digit signal; and r the second digit signal is the n-bit digit signal excluding the first digit 1 The remainder of the signal. 5. The integrated circuit of claim 4, wherein each of the plurality of second group switches is configured to respond to a corresponding one of the second digit signals during the second time period One of the first selection voltage and the second selection voltage is transmitted to a corresponding one of the plurality of second capacitors, the first digital signal being the highest &" bits in the 11-bit digital signal The Q element is composed, wherein m is smaller than η, and the melon is an integer, and the second digital sign is composed of a low (1) salty bit in the n-bit digital signal. 6. The integrated circuit of claim 3, wherein the selection circuit comprises at least two decoders, each of the decoders configured to receive the portion of the divided voltages and in response to the first a first signal of the digital signal and a voltage selected from the divided voltages received, and the first selection voltage and the second selection voltage are selected from the output of the at least two 131464.doc 200904013 decoders signal. 7. The integrated circuit of claim 3, wherein the selection circuit comprises: a first decoder configured to receive the first divided voltage of the divided voltages, responsive to the first digital signal One of the first-signals selects a voltage from the first group of divided voltages, and rotates the selected voltage as a first decoder output signal; jin-second decoding H, configured to receive the same Dividing the voltage - Γ :: group divided voltage 'in response to the first signal from the second group: knife voltage selection - voltage, and outputting the selected voltage as a -coder output signal; one solution one second decoding And configured to receive the divided voltages - the second group of divided voltages, in response to the first signal, select -voltage from the third group of calcium knives and rotate the selected voltage As a third coder output signal; and - a selection n ' is configured to respond to the _th: 乜 sign from the first decoder output signal to the third decoder The output signal selects two signals and outputs the selected two signals = Is a selection voltage and the second selection voltage, μ - wherein the second signal for the remaining part of the signal of one least significant bit of the first digital signal. 8. The integrated circuit of claim 7, wherein the electrical follower array comprises two resistors 131464.doc 200904013 connected in series, the divided voltages comprising (2m+i) level voltages, the first group The divided voltage includes an odd number of voltages out of the (2m+1) level voltage excluding the most extreme voltage, and the second group divided voltage includes an even number of the (2m+l) level voltages, The third group of divided voltages includes the odd voltages excluding a minimum voltage of the quasi-voltages, and the selector is configured to output a k number from the first decoder in response to the second signal The third decoder output signal selects two signals and outputs two selected signals, such as X, to the first selection voltage and the second selection voltage. [9] The integrated circuit of claim 8 is the plurality of a second capacitor package: a first-interpolating capacitor configured to have a capacitance corresponding to the first electrical power of 8/16, the first interpolating capacitor being grouped by two: during the first period - from one of the least significant bits of the n-bit digital signal a fourth bit selectively receiving one of the first selection voltage and the second selection voltage, the least significant bit being one of the first bits of the bit 7 digital signal; a second interpolating capacitor configured to have an electrical valley corresponding to _ 4/16 of the capacitance of the first capacitor, the second interpolating capacitor configured to be in the 笫-卩 main one, & And selectively receiving one of the first selection voltage and the second selection voltage based on a third bit from the least significant bit of the n-bit digital signal 131464.doc 200904013: a second interpolating capacitor configured to have a capacitance corresponding to 2/16 of each of the first = current °° Selecting one of the second voltage and the second selection voltage based on a second bit from the least significant bit of the n-bit digital signal during the second time period; a quad insert capacitor configured to have a power corresponding to 1/16 of the first: Capacity, the fourth interpolation capacitor is grouped 、第一時段期間基於該η位元數位信號中之該最 低有效位兀而選擇性地接收該第一選擇電壓及 擇電壓中之一者;及 —& 第五内插電容器,其經組態以具有—對應於該第一 :容器之該電容之"16的電容,該第五内插電容器經組 〜乂在。亥第一時段期間接收該第一選擇電壓。 I 0.如請求項2之積體番社丄^ 體電路,其中該開關電路進一步包含一 經組態以在該第—# π u 時奴期間將該參考電壓傳輸至該 放大器之該第二輪入㈤、 物入端子的初始化開關。 II ·如清求項2之積體雷· 镀電路,其中該參考電壓係選 第一參考電壓、哕笛 Α ^ 枯該 μ第一參考電壓及該第一參考電壓與該 第-—*參考電壓之簡M | 間的—中間電壓之群的電壓。 12.如請求項2之積體雷,欠 電路,其中該參考電壓為該至少 選擇電壓中之一者。 ^1U 其進一步包含: 13.如請求項12之積體電路 電 一緩衝器,其經組態以 壓中之電壓並將一經緩衝 緩衝一選自該至少兩個選擇 電壓輸出為該參考電壓。 131464.doc 200904013 14. 15. 如請求項1之積體電路 一控制器’其經組態 如請求項1之積體電路 比轉換器。 其進一步包含: 以輸出該複數個開關信號。 ’其中該積體電路為一數位至And selectively receiving one of the first selection voltage and the selection voltage based on the least significant bit of the n-bit digital signal during the first time period; and -& fifth interpolation capacitor, group thereof The state has a capacitance corresponding to the capacitance of the first: container, and the fifth interpolation capacitor is grouped. The first selection voltage is received during the first period of time. I 0. The integrated circuit of claim 2, wherein the switch circuit further comprises a second stage configured to transmit the reference voltage to the amplifier during the period of the first ##π u In (5), the initialization switch of the input terminal. II. The integrated lightning-plating circuit of claim 2, wherein the reference voltage is selected from a first reference voltage, a flute Α, a μ first reference voltage, and the first reference voltage and the first-* reference Voltage simplification M | Between - the voltage of the group of intermediate voltages. 12. The integrated body of claim 2, owing a circuit, wherein the reference voltage is one of the at least selected voltages. ^1U It further comprises: 13. The integrated circuit of claim 12, wherein the buffer is configured to apply a voltage to the voltage and to output a buffered buffer selected from the at least two selected voltages as the reference voltage. 131464.doc 200904013 14. 15. The integrated circuit of claim 1 is a controller 'configured as the integrated circuit ratio converter of claim 1. It further comprises: outputting the plurality of switching signals. Where the integrated circuit is a digit to 16. —種用於一顯示器裝置之源極驅動器,該源極驅動器包 含如請求項1之積體電路。 17. —種顯示器裝置,其包含: 複數個資料線; 複數個閘極線; 複數個晶胞,每一晶胞連接於該複數個資料線之一相 應一者與該複數個閘極線之一相應一者之間;及 如請求項16之源極驅動器, 其中包括於該積體電路中的該運算放大器之該輸出端 子之一電壓係提供至該複數個資料線中之_相應一者。 1 8. —種數位至類比轉換方法,其包含: 在一第一時段期間,將一參考電壓提供至一連接至— 運:放大器之一第一輸入端子的第一電容器及連接至該 運算放大器之一第二輸入端子的複數個第二電容器及 將該運算放大器之該第一輸入端子連接至該運算放大器 之—輸出端子;及 在一第二時段期間,使該第一電容器與該參考電壓隔 離,將-選自至少兩個選擇電壓之電壓傳輸至該複數個 第二電容器中之每一者’及將該第一電容器之一第一端 子連接至該運算放大器之該輸出端子, 131464.doc 200904013 其中該至少兩個選擇電壓係基於一第一數位信號來判 疋’且在該第二時段期間傳輸至該複數個第二電容器中 之每一者的該電壓係基於一第二數位信號來判定。 1 9.如請求項1 8之數位至類比轉換方法,其中 3玄第一數位信號係由一數位信號之至少一高位元組 成,及 該第二數位信號係由該數位信號之至少一低位元組 成。 20. 如印求項丨8之數位至類比轉換方法,其進一步包含: 劃分一第一參考電壓與一第二參考電壓之間的一範圍 並產生複數個經劃分電壓;及 回應於該第一數位信號而自該複數個經劃分電壓選擇 至夕兩個電壓並提供該等所選電壓作為該至少兩個選擇 電壓。 21. 如請求項18之數位至類比轉換方法,其進一步包含: ϋ 冑衝5亥至少兩個選擇電壓中之-電壓並提供-經緩衝 電壓作為該參考電壓。 22. —種方法,其包含: 在第一時段期間基於一參考電壓將電荷施加至一運 算放大器之第一輪入及第二輸入; 在第一時段期間基於一反饋電壓將一電荷施加至該 運异放大器之該第一輪入;及 在°亥第時奴期間基於一選自至少兩個選擇電壓之電 壓將一電荷施加至兮、番曾 口 那主該運舁放大器之該第二輸入。 131464.doc 200904013 23. —種積體電路,其包含: 時段期間基於 之一第一輸入 電荷施加至該 一第一電路架構,其經組態以在一第一 一參考電壓將一電荷施加至一運算放大器 且在一第二時段期間基於一反饋電壓將一 運算放大器之該第一輸入,及 一第二電路架構 該參考電壓將—電 且在一第二時段期 壓將一電荷施加至 其經組恶以在該弟一時段期間基於 荷施加至該運算放大器之一第二輸入 間基於一選自至少兩個選擇電壓之電 該運算放大器之該第二輪入。 131464.doc16. A source driver for a display device, the source driver comprising the integrated circuit of claim 1. 17. A display device comprising: a plurality of data lines; a plurality of gate lines; a plurality of unit cells, each unit cell being coupled to a respective one of the plurality of data lines and the plurality of gate lines And a source driver of claim 16, wherein a voltage of the output terminal of the operational amplifier included in the integrated circuit is supplied to a corresponding one of the plurality of data lines . 1-8. A digital to analog conversion method, comprising: providing a reference voltage to a first capacitor connected to a first input terminal of an amplifier and connected to the operational amplifier during a first period of time a plurality of second capacitors of the second input terminal and the first input terminal of the operational amplifier being connected to the output terminal of the operational amplifier; and during a second period of time, the first capacitor and the reference voltage are Isolating, transmitting a voltage selected from the at least two selection voltages to each of the plurality of second capacitors' and connecting the first terminal of one of the first capacitors to the output terminal of the operational amplifier, 131464. Doc 200904013 wherein the at least two selection voltages are determined based on a first digital signal and the voltage transmitted to each of the plurality of second capacitors during the second time period is based on a second digital signal To judge. 1 9. The digit-to-analog conversion method of claim 18, wherein the first digital signal is composed of at least one high bit of a digital signal, and the second digital signal is composed of at least one low bit of the digital signal composition. 20. The method of claim 8, wherein the method further comprises: dividing a range between a first reference voltage and a second reference voltage and generating a plurality of divided voltages; and responding to the first The digital signal is selected from the plurality of divided voltages to the two voltages and provides the selected voltages as the at least two selection voltages. 21. The digital-to-analog conversion method of claim 18, further comprising: ϋ 胄 5 至少 5 at least two of the selected voltages and providing a buffered voltage as the reference voltage. 22. A method, comprising: applying a charge to a first wheel input and a second input of an operational amplifier based on a reference voltage during a first time period; applying a charge to the current period based on a feedback voltage during the first time period The first round of the amplifier; and applying a charge to the second input of the master amplifier based on a voltage selected from the at least two selection voltages during the slave period . 131464.doc 200904013 23. An integrated circuit comprising: applying a first input charge to the first circuit structure during a time period, configured to apply a charge to a first reference voltage to An operational amplifier and the first input of an operational amplifier based on a feedback voltage during a second period of time, and a second circuit architecture wherein the reference voltage is to be electrically applied and a charge is applied to the second period of time The second round of the operational amplifier is based on a voltage selected from the at least two selection voltages based on a load applied to one of the operational amplifiers during a period of time. 131464.doc
TW097120329A 2007-05-30 2008-05-30 Digital-to-analog converter and method thereof TW200904013A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20070052798 2007-05-30
KR1020080016598A KR20080105977A (en) 2007-05-30 2008-02-25 Digital-to-analog converter, and method thereof

Publications (1)

Publication Number Publication Date
TW200904013A true TW200904013A (en) 2009-01-16

Family

ID=40106973

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097120329A TW200904013A (en) 2007-05-30 2008-05-30 Digital-to-analog converter and method thereof

Country Status (3)

Country Link
KR (1) KR20080105977A (en)
CN (1) CN101316103B (en)
TW (1) TW200904013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420486B (en) * 2009-07-07 2013-12-21 Himax Tech Ltd Gamma voltage generator and source driver

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514964B1 (en) * 2008-12-30 2015-04-27 주식회사 동부하이텍 Apparatus and method of converting a digital to analogue
US8476971B2 (en) * 2010-05-14 2013-07-02 Taiwan Semiconductor Manufacturing Co., Ltd. Buffer operational amplifier with self-offset compensator and embedded segmented DAC for improved linearity LCD driver
CN102545903B (en) * 2010-12-23 2014-06-25 上海贝岭股份有限公司 Digital to analog conversion switch circuit
CN102931995A (en) * 2012-11-26 2013-02-13 昆山北极光电子科技有限公司 Low-cost rapid digital-analog conversion method
KR101483954B1 (en) * 2013-09-12 2015-01-21 광주과학기술원 Speed improvement apparatus and method for digital analog conveter
KR102116034B1 (en) 2013-09-27 2020-05-28 삼성디스플레이 주식회사 Non-linear gamma compensation current mode digital-analog convertor and display device comprising the same
CN104660262B (en) * 2013-11-25 2018-10-26 上海华虹宏力半导体制造有限公司 Capacitance resistance mixed type SAR ADC
CN104143985B (en) * 2014-07-25 2017-06-23 深圳市华星光电技术有限公司 Digital analog converter, programmable Gamma correction buffer circuit and display device
KR20160130002A (en) 2015-04-30 2016-11-10 삼성디스플레이 주식회사 Method for manufacturing liquid crystal display and inspection device
JP6784020B2 (en) * 2015-12-03 2020-11-11 セイコーエプソン株式会社 Circuits, oscillators, electronics and mobiles
CN105609075A (en) * 2016-01-26 2016-05-25 京东方科技集团股份有限公司 Gray-scale voltage generation circuit and control method thereof, driving circuit, and display apparatus
KR102562645B1 (en) 2016-05-20 2023-08-02 삼성전자주식회사 Operating Method for display corresponding to luminance, driving circuit, and electronic device supporting the same
CN106330194B (en) * 2016-08-15 2017-11-10 京东方科技集团股份有限公司 A kind of D/A converting circuit, display panel and display device
KR102318387B1 (en) 2017-03-14 2021-10-28 삼성전자주식회사 Operating Method for Gamma Voltage corresponding to display configuration and electronic device supporting the same
US10425098B2 (en) * 2017-05-04 2019-09-24 Analog Devices Global Digital-to-analog converter (DAC) termination
KR102480630B1 (en) 2018-03-30 2022-12-23 삼성전자주식회사 Source driver and display driver including the same
KR102519733B1 (en) 2018-05-21 2023-04-11 삼성전자주식회사 An electronic device and a method for checking crack in display
FR3083613B1 (en) * 2018-07-03 2022-01-21 Continental Automotive France METHOD FOR ANALYZING A FLUID OF A MOTOR VEHICLE USING AN OPTICAL SENSOR
CN109672443B (en) * 2019-02-19 2023-08-11 合肥奕斯伟集成电路有限公司 Digital-to-analog converter and display device
KR20210035964A (en) * 2019-09-24 2021-04-02 삼성디스플레이 주식회사 Display device
CN111193512B (en) * 2020-02-12 2022-08-23 广州慧智微电子股份有限公司 Digital-to-analog conversion circuit
TWI748716B (en) * 2020-10-28 2021-12-01 瑞鼎科技股份有限公司 Gamma voltage genration circuit applied to vehicle source driving circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152420A (en) * 1992-11-09 1994-05-31 Nec Corp A/d converter
JP4100407B2 (en) * 2004-12-16 2008-06-11 日本電気株式会社 Output circuit, digital analog circuit, and display device
KR100660886B1 (en) * 2005-11-08 2006-12-26 삼성전자주식회사 Digital analog converter using capacitor and operational amplifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420486B (en) * 2009-07-07 2013-12-21 Himax Tech Ltd Gamma voltage generator and source driver

Also Published As

Publication number Publication date
CN101316103B (en) 2013-02-27
KR20080105977A (en) 2008-12-04
CN101316103A (en) 2008-12-03

Similar Documents

Publication Publication Date Title
TW200904013A (en) Digital-to-analog converter and method thereof
US7714758B2 (en) Digital-to-analog converter and method thereof
JP4100407B2 (en) Output circuit, digital analog circuit, and display device
JP4472507B2 (en) DIFFERENTIAL AMPLIFIER, DATA DRIVER OF DISPLAY DEVICE USING SAME, AND METHOD FOR CONTROLLING DIFFERENTIAL AMPLIFIER
US7425941B2 (en) Source driver of liquid crystal display
JP4143588B2 (en) Output circuit, digital analog circuit, and display device
JP4639153B2 (en) Digital / analog converter
JP5137686B2 (en) DIGITAL / ANALOG CONVERSION CIRCUIT, DATA DRIVER AND DISPLAY DEVICE
CN101505154B (en) Digital-to-analog converting circuit, data driver and display device
TW200951912A (en) Source driver and display device including the same
US20080150779A1 (en) Digital-to-analog converter and digital-to-analog conversion method thereof
JP5373680B2 (en) DIGITAL / ANALOG CONVERSION CIRCUIT, DATA DRIVER AND DISPLAY DEVICE
JP2007158810A (en) Digital-to-analog converter, data driver using same, and display device
KR100822801B1 (en) Digital to analog converter and source driver including thereof
TWI413957B (en) Active matrix array device
KR100550102B1 (en) A current-steering digital-to-analog converter for 1 bit extension
US7295142B2 (en) Digital-to-analog converter with short integration time constant
Liu et al. A 10-bit CMOS DAC with current interpolated gamma correction for LCD source drivers
JP5047699B2 (en) Amplifier circuit, digital-analog converter circuit, and display device
US7595747B2 (en) Digital-to-analog converter, and method thereof
JP4819921B2 (en) DIFFERENTIAL AMPLIFIER, DATA DRIVER OF DISPLAY DEVICE USING SAME, AND METHOD FOR CONTROLLING DIFFERENTIAL AMPLIFIER
JPH11249628A (en) Liquid crystal driving circuit
US7535397B1 (en) Digital-to-analog converter and the method thereof
JP2004112183A (en) Current output digital to analog converter circuit, current output drive circuit, and image display
JP2005252663A (en) Current cell matrix type digital/analog converter