TW200903867A - GaN substrate, substrate with an epitaxial layer, semiconductor device, and GaN substrate manufacturing method - Google Patents

GaN substrate, substrate with an epitaxial layer, semiconductor device, and GaN substrate manufacturing method Download PDF

Info

Publication number
TW200903867A
TW200903867A TW97118520A TW97118520A TW200903867A TW 200903867 A TW200903867 A TW 200903867A TW 97118520 A TW97118520 A TW 97118520A TW 97118520 A TW97118520 A TW 97118520A TW 200903867 A TW200903867 A TW 200903867A
Authority
TW
Taiwan
Prior art keywords
substrate
gan
angle
base substrate
gan substrate
Prior art date
Application number
TW97118520A
Other languages
Chinese (zh)
Inventor
Hitoshi Kasai
Keiji Ishibashi
Seiji Nakahata
Katsushi Akita
Takashi Kyono
Yoshiki Miura
Original Assignee
Sumitomo Electric Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries filed Critical Sumitomo Electric Industries
Publication of TW200903867A publication Critical patent/TW200903867A/en

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)

Abstract

Affords a GaN substrate from which enhanced-emission-efficiency light-emitting and like semiconductor devices can be produced, an epi-substrate in which an epitaxial layer has been formed on the GaN substrate principal surface, a semiconductor device, and a method of manufacturing the GaN substrate. The GaN substrate is a substrate having a principal surface with respect to whose normal vector the [0001] plane orientation is inclined in two different off-axis directions.

Description

200903867 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種GaN基板、附磊晶層基板、半導體裝 置及GaN基板之製造方法,更具體而言,係關於一種可利 用半極性面之G a N基板、附蟲晶層基板、半導體裝置及 GaN基板之製造方法。 【先前技術】 先前,已知有使用GaN之雷射二極體(LD)及發光二極體 (LED)。迄今為止,上述使用GaN之LD或LED係於藍寶石 基板、SiC基板、或GaN基板之(0001)面上積層蠢晶層而形 成。其中,由於上述GaN基板等之(0001)面係極性面,故 而存在於發光波長大於500 nm之長波長區域中,LED之發 光效率下降的問題。 針對上述問題,報告有藉由於GaN晶體之稱為(11-22)面 之半極性結晶面而非先前之(000 1)面上形成量子井結構, 來提高上述長波長區域之發光效率(參照非專利文獻1))。 又,亦提出有上述半極性結晶面露出於主表面之GaN基板 之製造方法(例如,參照專利文獻1)。 [專利文獻1]日本專利特開2005-2983 19號公報 [非專利文獻1] 「新聞稿:半極性面主體GaN基板上之 LED開發成功」,[online],2006年6月30曰,京都大學, [檢索 2007 年 6 月 1 日],網際網路(111^://'\¥评'\¥.1<:;/〇1;〇-u. ac.jp/notice/05_news/documents/060 63 0_1 .htm) 【發明内容】 131436.doc 200903867 [發明所欲解決之問題] 上述非專利文獻丨所揭示之LED係利用自然形成之半極 性結晶面作為微面,該結晶面固定為(l M2)面,且尺寸亦 較小。但是,自高效率地製造LEE^tLD等觀點考慮,較好 的是使用半極性結晶面露出於主表面(即,具有所謂偏離 角’該偏離角係指特定之面方位(例如,[〇〇〇ι]方向)相對 於主表面之法線向量朝向特定方向傾斜特定角幻之2英时 以上之大内徑GaN基板來製造LEDf。又,業者亦認為, 有可能藉由調整面方位相對於主表面之法線向量的傾斜角 度之值(即藉由改變露出於基板之主表面之結晶面),而改 善LED或LD之特性。 本發明係為解決上述問題研究而成者,其提供一種以 吋以上之大内徑GaN基板、於該GaN基板之主表面上形成 有蟲晶層之附蟲晶層基板、半導體裝置以及⑽基板之製 =法’ i㈣㈣基板’可於卫業上廉價地獲得發光效 率得到提高之發光元件等半導體裝置。 [解決問題之技術手段] 本發明者利用上述專利文獻丨中所示之GaN基板之製造 方法’製作出具有各種偏離角之GaN基板,且於該㈣基 板之主表面上形成磊晶層,嘗試製作led,並對其特性加 以研究。其結果發現,藉由使面方位[〇〇叫相對於主表面 之法線向量朝1個面方位(1個偏離角方向)傾斜,可使露出 於⑽基板之表面的結晶面形成為半極性面,並且藉由使 該面方位[〇_進-步朝其他面方位(其他偏離角方向)傾 131436.doc 200903867 斜可控制(可減小)GaN基板主纟面内波長分布之不均。 I7本發明之GaN基板具有主表面,面方位[0001]相對於 主表面之法線向量朝互不相同之2個偏離角方向傾斜。 如此,藉由使面方位[0001]朝向工個偏離角方向傾斜, 可在使GaN基板之主表面形成為半極性面的狀態下,於該 主表面上形成磊晶層。因此’與在GaN基板之⑽Ο”面等 極性面上形成磊晶層而製造LED等發光元件之情形相比, 可提南發光波長包含於5〇〇 nm以上之長波長區域中之發光 凡件的發光效率,減小因施加電流量之變化所致的波長偏 移量。進而,藉由使面方位⑽叫進一步朝第2個偏離角方 向傾斜,可控制GaN基板之主表面的面内波長分布之不 均。結果,藉由使用該GaN基板,可穩定地製造具有優異 特性的LED等半導體裝置。 本發明之附磊晶層基板具備上述GaN基板、以及形成於 該GaN基板之主表面上之磊晶成長層。如此,該磊晶成長 層係形成於GaN基板之半極性面上,故而可提供如下之附 磊晶層基板,使用該附磊晶層基板,可穩定地製造發光波 長包含於500 nm以上之長波長區域中,並且發光效率提高 之發光元件等半導體裝置。 本發明之半導體裝置係使用上述附磊晶層基板。此時, 可獲得發光波長包含於5〇〇 nm以上之長波長區域中、並且 發光效率提高、因施加電流量之變化所致之波長偏移量小 的發光元件等半導體裝置。 本發明之GaN基板之製造方法包括以下之步驟。即,首 131436.doc 200903867 先實施準備基底基板之步驟,該基底基板中,基準面方位 相對於主表面之法線向量朝互不相同之2個基底基板側傾 斜方向傾斜;於基底基板之主表面上使GaN結晶層成長之 步驟;以及自GaN結晶層除去基底基板,藉此獲得含GaN 結晶層的GaN基板之步驟。GaN基板具有主表面,並且, 面方位[0001 ]相對於主表面之法線向量,朝互不相同之2個 偏離角方向傾斜。藉由改變基底基板中基準面方位在基底 基板側傾斜方向上之傾斜角度,可調整GaN基板中面方位 [〇〇〇 1 ]在偏離角方向上之傾斜角度。如此,可容易地獲得 本發明之GaN基板。又,可容易地製造如下GaN基板,該 基板能夠藉由改變基底基板之基準面方位在基底基板側傾 斜方向上之傾斜角度,而任意改變GaN基板之偏離角方向 上之傾斜角度。 [發明之效果] 根據本發明,可獲得一種GaN基板、附磊晶層基板、半 導體裝置及GaN基板之製造方法,使用該GaN基板,可穩 定地製造於發光波長於500 nm之長波長側之波長區域中發 光效率得到提高的發光元件等半導體裝置。 【實施方式】 以下’根據圖式來說明本發明之實施形態。再者,於以 下之圖式中,對相同或相當之部分標註相同之參照編號, 並不對其重複說明。 圖1係表示本發明之GaN基板之立體示意圖。圖2係用以 說明圖1中所示之GaN基板的結晶結構之示意圖。圖3係用 131436.doc 200903867 以說明圖2中所示之GaN基板之結晶結構的面方位及結晶 面之示意圖。圖4係用以說明圖】中所示之本發明之⑽基 板在偏離角方向上的傾斜角度之示意圖。參照圖卜圖4來 說明本發明之GaN基板。 參照圖1〜圖4’本發明之GaN基板,特定之面方罐 f為面方位陶⑴相對於該GaN基板1的主表面之法線向 量2(參照圖υ朝向互不相同之2個方向(偏離角方向)傾斜。 即,⑽基板⑽具有偏離角度之基板,該偏離角度係面 方位[〇 〇 〇 1 ]朝向1個面方位或互不相同之2個方向傾斜而 成。 如圖2所示,GaN之結晶結構具有所謂之六方晶體之結 晶結構。圖2中,為更易於理解㈣之六方晶體的結晶結 構之對稱性,而以包含複數個單元之狀態來例示GaN之結 晶結構具有。圖2中,較大之白色圓表示氮原子(N原子), 較小之圓表示鎵原子(Ga原子)。於圖2之結晶結構之底 面,於中心處存在Ga原子,且於以該(^原子為中心之正 六角形之頂點處亦存在Ga原子。自位於底面中心之以原 子連結上述周圍之6個Ga原子之方向,沿逆時針方向分別 為[2-1-10]、[11-20]、[-12-10]、[-2110]、[_ι·120]、π_ 210]。該等方向為GaN之Ga-Ga鍵之方向。並且,自底面 之中心Ga原子觀察,不存在Ga原子之方向為[ι_ 1〇〇]等。 再者,於圖2及圖3中所示之結晶結構中,將可視作正六角 柱之/、方aa體之上表面稱作c面’將正六角柱之側壁面稱 作m面。 131436.doc •10- 200903867 圖1所示之本發明之GaN基板1中,面方位[〇〇〇1]相對於 法線向量2(參照圖1)朝向互不相同之2個偏離角方向、即面 方位[1-100]及面方位[11-20]方向傾斜。參照圖4,對該 GaN基板1中面方位[0001]相對於主表面之法線向量2的傾 斜狀態進行更詳細之說明。 首先,圖4中,可認為以向量AB所示之方向與GaN基板 之主表面的法線向量2(參照圖1)相對應。並且,自其 板之面方位[0001]與該向量AB—致之狀態,以如下方式使 GaN晶體傾斜,即,使面方位[0001]朝向與面方位[ιι〇〇] 之方向相對應的向量AE之方向傾斜傾斜角度θ丨。其、名士 果,GaN之面方位[〇〇〇1]之方向變成以向量Ac所示之方 向。然後,使朝向以該向量AC所示之方向傾斜之GaN結晶 結構進一步朝向與面方位[U_20]之方向相對應的向量af 之方向傾斜傾斜角度Θ2。其結果,GaN晶體之面方位 [0001]變成圖4之向量AD所示之方向。 如此’本發明之GaN基板1中,形成為下述狀態:晶體 之面方位[0001]之方向相對於以向量AB所示的主表面之法 線向量2(參照圖1),朝向圖4之向量AD所示的方向傾斜(面 方位[0001]相對於主表面之法線向量2,分別朝向面方位 [1-100]方向及面方位[11-20]方向傾斜傾斜角度θι、θ2的狀 態)。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a GaN substrate, an epitaxial layer substrate, a semiconductor device, and a method of fabricating a GaN substrate, and more particularly to a semi-polar surface. A method for producing a G a N substrate, an agglomerated substrate, a semiconductor device, and a GaN substrate. [Prior Art] Previously, a laser diode (LD) and a light emitting diode (LED) using GaN have been known. Heretofore, the above-described LD or LED using GaN is formed by laminating a stray layer on a (0001) surface of a sapphire substrate, a SiC substrate, or a GaN substrate. Among them, since the (0001) plane of the GaN substrate or the like is a polar surface, there is a problem that the light-emitting efficiency of the LED is lowered in a long-wavelength region in which the emission wavelength is larger than 500 nm. In response to the above problems, it has been reported that the luminous efficiency of the long-wavelength region is improved by forming a quantum well structure on the (11-22) plane of the GaN crystal instead of the (000 1) plane (see Non-patent document 1)). Further, a method of manufacturing a GaN substrate in which the semipolar crystal plane is exposed on the main surface has been proposed (for example, see Patent Document 1). [Patent Document 1] Japanese Patent Laid-Open Publication No. 2005-2983 No. 19 [Non-Patent Document 1] "Press Release: Successful Development of LEDs on Semi-Polar Surface Main GaN Substrates", [online], June 30, 2006, Kyoto University, [Search June 1, 2007], Internet (111^://'\¥评'\¥.1<:;/〇1;〇-u. ac.jp/notice/05_news/documents [060] The content of the LED disclosed in the above non-patent document uses a naturally formed semipolar crystal face as a microface, and the crystal face is fixed as (l M2) face, and the size is also small. However, from the viewpoint of efficiently manufacturing LEE^tLD and the like, it is preferable to use a semipolar crystal face exposed on the main surface (that is, having a so-called off angle) which refers to a specific plane orientation (for example, [〇〇 〇ι] direction) The LED f is manufactured by tilting a large-diameter GaN substrate of a specific angular angle of 2 Hz or more with respect to a normal vector of the main surface in a specific direction. Further, it is also considered that it is possible to adjust the plane orientation with respect to The value of the inclination angle of the normal vector of the main surface (that is, by changing the crystal plane exposed on the main surface of the substrate) improves the characteristics of the LED or LD. The present invention has been made to solve the above problems, and provides a A large-diameter GaN substrate having a size larger than 吋, an aegyptic layer substrate on which a worm layer is formed on a main surface of the GaN substrate, a semiconductor device, and (10) a substrate can be made inexpensively in the edifice A semiconductor device such as a light-emitting device having improved luminous efficiency is obtained. [Technical means for solving the problem] The inventors of the present invention have various methods of manufacturing a GaN substrate as shown in the above-mentioned patent document. An off-angle GaN substrate, and an epitaxial layer is formed on the main surface of the (four) substrate, an attempt is made to produce a led, and its characteristics are studied. As a result, it is found that by making the plane orientation [howling relative to the main surface] The line vector is inclined toward one plane orientation (one off-angle direction), so that the crystal plane exposed on the surface of the (10) substrate can be formed as a semi-polar plane, and by making the plane orientation [〇_进-step toward other plane orientations) (Other off-angle direction) tilt 131436.doc 200903867 The tilt controllable (can reduce) the unevenness of the wavelength distribution in the main plane of the GaN substrate. I7 The GaN substrate of the present invention has a main surface with a plane orientation [0001] relative to the main surface The normal vector is inclined in two off-angle directions which are different from each other. Thus, by tilting the plane orientation [0001] toward the off-angle direction, the main surface of the GaN substrate can be formed into a semipolar plane. An epitaxial layer is formed on the main surface. Therefore, compared with the case where an epitaxial layer is formed on a polar surface such as a (10) GaN plane of a GaN substrate to produce a light-emitting element such as an LED, the south-emitting wavelength is included in 5 〇〇. In the long wavelength region above nm The luminous efficiency of the illuminating member reduces the amount of wavelength shift due to the change in the amount of applied current. Further, by tilting the plane orientation (10) further toward the second off-angle direction, the main surface of the GaN substrate can be controlled. As a result, the in-plane wavelength distribution is uneven. As a result, a semiconductor device such as an LED having excellent characteristics can be stably produced by using the GaN substrate. The epitaxial layer substrate of the present invention includes the GaN substrate and the GaN substrate. The epitaxial growth layer on the main surface is formed on the semipolar surface of the GaN substrate, so that the epitaxial layer substrate with the following epitaxial layer can be provided, and the epitaxial layer substrate can be stably manufactured. A semiconductor device such as a light-emitting element in which a light-emitting wavelength is included in a long-wavelength region of 500 nm or more and luminous efficiency is improved. The semiconductor device of the present invention uses the above-described epitaxial layer substrate. In this case, a semiconductor device such as a light-emitting element in which the light-emitting wavelength is included in a long-wavelength region of 5 〇〇 nm or more and the light-emitting efficiency is improved and the amount of wavelength shift due to the change in the amount of applied current is small can be obtained. The method for producing a GaN substrate of the present invention includes the following steps. That is, the first 131436.doc 200903867 first performs a step of preparing a base substrate in which the reference plane orientation is inclined with respect to the normal vector of the main surface toward the two base substrate sides which are different from each other; a step of growing a GaN crystal layer on the surface; and a step of removing the base substrate from the GaN crystal layer, thereby obtaining a GaN substrate containing a GaN crystal layer. The GaN substrate has a main surface, and the plane orientation [0001] is inclined with respect to two normal off-axis directions with respect to the normal vector of the main surface. By changing the inclination angle of the reference plane orientation in the base substrate side in the oblique direction of the base substrate side, the inclination angle of the plane orientation [〇〇〇 1 ] in the off-angle direction of the GaN substrate can be adjusted. Thus, the GaN substrate of the present invention can be easily obtained. Further, it is possible to easily manufacture a GaN substrate which can arbitrarily change the inclination angle in the off-angle direction of the GaN substrate by changing the inclination angle of the reference plane orientation of the base substrate in the tilt direction of the base substrate side. Advantageous Effects of Invention According to the present invention, a GaN substrate, an epitaxial layer substrate, a semiconductor device, and a method of manufacturing a GaN substrate can be obtained, and the GaN substrate can be stably produced on a long wavelength side of an emission wavelength of 500 nm. A semiconductor device such as a light-emitting element in which the light-emitting efficiency is improved in the wavelength region. [Embodiment] Hereinafter, embodiments of the present invention will be described based on the drawings. In the following, the same or corresponding components are denoted by the same reference numerals, and the description thereof is not repeated. Fig. 1 is a schematic perspective view showing a GaN substrate of the present invention. Fig. 2 is a schematic view for explaining the crystal structure of the GaN substrate shown in Fig. 1. Fig. 3 is a schematic view showing the plane orientation and crystal plane of the crystal structure of the GaN substrate shown in Fig. 2, using 131436.doc 200903867. Fig. 4 is a view for explaining the inclination angle of the (10) substrate of the present invention shown in the drawing in the off-angle direction. The GaN substrate of the present invention will be described with reference to Fig. 4 . Referring to FIGS. 1 to 4' of the GaN substrate of the present invention, the specific square can f is a normal vector 2 of the surface orientation of the GaN substrate 1 (see the two directions different from each other in the direction of the drawing). That is, (10) the substrate (10) has a substrate having an off-angle, and the off-angle surface orientation [〇〇〇1] is inclined toward two plane directions or two directions different from each other. As shown, the crystal structure of GaN has a crystal structure of a so-called hexagonal crystal. In FIG. 2, the symmetry of the crystal structure of the hexagonal crystal of (4) is more easily understood, and the crystal structure of GaN is exemplified by a state including a plurality of units. In Fig. 2, a larger white circle indicates a nitrogen atom (N atom), and a smaller circle indicates a gallium atom (Ga atom). On the bottom surface of the crystal structure of Fig. 2, a Ga atom exists at the center, and (The Ga atom is also present at the apex of the positive hexagon at the center of the atom. The direction from the center of the bottom surface is the atomic connection of the six surrounding Ga atoms, and the counterclockwise direction is [2-1-10], [11 -20], [-12-10], [-2110], [_ι·120], π _ 210]. These directions are the directions of the Ga-Ga bonds of GaN, and the direction of the Ga atoms is not [ι_ 1〇〇], etc. observed from the center Ga atoms of the bottom surface. Furthermore, in Fig. 2 and In the crystal structure shown in 3, it can be regarded as a hexagonal column, and the upper surface of the square aa body is called a c-plane. The side wall surface of the hexagonal hexagonal column is called an m-plane. 131436.doc •10- 200903867 In the GaN substrate 1 of the present invention, the plane orientation [〇〇〇1] is oriented in two off-angle directions, i.e., plane orientation [1-100] and plane orientation, which are different from each other with respect to the normal vector 2 (see FIG. 1). [11-20] Directional tilting. Referring to Fig. 4, the tilt state of the plane orientation [0001] of the GaN substrate 1 with respect to the normal vector 2 of the main surface will be described in more detail. First, in Fig. 4, it can be considered that The direction indicated by the vector AB corresponds to the normal vector 2 (refer to FIG. 1) of the main surface of the GaN substrate, and, from the state of the plane orientation [0001] of the board and the state of the vector AB, GaN is made as follows The crystal is inclined, that is, the tilt direction θ 倾斜 is inclined such that the plane orientation [0001] is oriented toward the direction of the vector AE corresponding to the direction of the plane orientation [ιι〇〇]. The name of the GaN surface orientation [〇〇〇1] becomes the direction indicated by the vector Ac. Then, the GaN crystal structure inclined toward the direction indicated by the vector AC is further oriented toward the plane orientation [U_20] The direction of the vector af corresponding to the direction is inclined by the tilt angle Θ 2. As a result, the plane orientation [0001] of the GaN crystal becomes the direction indicated by the vector AD of Fig. 4. Thus, in the GaN substrate 1 of the present invention, the following state is formed. The direction of the plane orientation [0001] of the crystal is inclined with respect to the direction shown by the vector AD of FIG. 4 with respect to the normal vector 2 of the main surface indicated by the vector AB (refer to FIG. 1) (the plane orientation [0001] is relative to The normal vector 2 of the main surface is inclined toward the plane orientation [1-100] direction and the plane orientation [11-20] direction by the inclination angles θι and θ2, respectively).

如此,本發明之GaN基板1之主表面形成為所謂之半極 性面。與藉由在GaN之c面上形成磊晶層而製造發光元件 之情形相比,於在此種GaN基板丨之主表面上磊晶成長GaN 131436.doc 200903867 或InGaN等之層,而形成作為半導體裝置之發光元件之情 形日守,可抑制於活性層中產生内部電場。其結果,可減小 下述問題所帶來之影響:由於產生内部電場,導致注入至 活性層中之電子與電洞之再結合機率減小,結果使發光效 率降低,或發光波長由於所施加之電流之變化而變化等。 因此,根據本發明,可獲得發光效率提高,且具有固定之 發光波長的發光元件。 圖5係用以說明圖!中所示之GaN基板之製造方法的流程 圖。圖6係用以說明圖5中所示之流程圖中之準備步驟的内 容之流程圖。參照圖5及圖6來說明本發明之GaN基板之製 造方法。 參照圖5及圖6,首先實施準備步驟〗〇)。於該準備步 驟(S 10)中,準備基底基板,該基底基板係形成作為GaN基 板之GaN蟲晶層的基底。具體而言,於準備步驟(s 1〇)(參 照圖5)中’如圖6所示,首先實施基底基板製作步驟 (sii)。於該基底基板製作步驟(S11)中,準備如下基板, 該基板係可於表面使GaN進行磊晶成長之基板,並且,特 定之面方位相對於使GaN進行磊晶成長的主表面之法線向 置朝向互不相同之2個方向(基底基板側傾斜方向)傾斜。 此處,對於基底基板而言,只要可於其表面使GaN成 膜,則可使用任意材料。作為基底基板,例如可使用:鎵 石申(GaAs)基板、藍寶石基板、氧化鋅(Zn〇)基板、碳化石夕 (SiC)基板、或GaN基板。並且,於後文所述之成膜步驟 中’使基底基板形成為具有所謂偏離角之基板,以便能夠 131436.doc -12- 200903867 於所形成之GaN蟲晶層之面方位[0001]相對於基底基板之 形成有GaN蟲晶層的主表面之法線向量,朝向特定之⑽ 方向(2個偏離角方向)傾斜的狀態下,成長㈣蟲晶層。具 體而言,基底基板中形成為如下狀態:特定之基準面方位 相對於形成蟲晶層之主表面之法線向量朝向特定之方㈣ 斜。對於此種基板’例如可藉由如下方法來準備基底基 板:準備主表面為特定結晶面(例如若為六方晶體,則主 表面為c面等)之基板,以相對於該基板之主表面朝向特定 之方向傾斜的傾斜角度來研磨該基板之主表面,或者以特 疋之切割角S,自B曰日體相料主表面之面方位為已知的主 體基板切割出基底基板。 接著,如圖6所示,實施遮罩圖案形成步驟(S12)。於該 遮罩圖案形成步驟(S 12)中,於基底基板之形成GaN蟲晶層 之主表面上形成遮罩圖案。具體而言,形成具有如圖了或 圖8所示之圖案之遮罩層1〇。圖7及圖8係表示形成於基底 基板之主表面上的遮罩層之遮罩圖案的平面示意圖。 首先,對圖7所示之遮罩圖案加以說明。如圖7所示,作 為形成於基底基板之主表面上之遮罩層1〇可以如下方式形 成.複數條寬度為W1之線狀的圖案相隔間距p而平行延 伸。此打,可使間距p例如為8 μηι,線狀圖案之寬度wi為 6 μηι,線狀圖案之間之間隔W2(形成於線狀圖案之間的槽 狀開口部11之寬度)例如為2 μπι。又,可使線狀圖案之厚 度例如為〇. 1 μηι。 又’作為遮罩圖案之其他例,可使用如圖8所示,具有 131436.doc -13- 200903867 週期性地形成有開口部12之圖案的遮罩層1 〇。具體而言, 如圖8所示’將以特定之間隔而分散配置有平面形狀為四 邊形之開口部12的遮罩層10,形成於基底基板之主表面 上。如圖8所示,開口部12例如為正方形,連結彼等之中 心之線之距離L例如可為4 μπι。又,開口部12之一邊之手 度W1、W2可分別為2 。並且,開口部丨2亦可以如下方 式配置:將複數個開口部12配置成所謂千鳥格子狀,且當 將相鄰之開口部12之中心點相連結時,形成一邊為距離[ 之正三角形。 如圖5所示,對形成有此種遮罩層1〇之基底基板實施成 膜步驟(S20)。具體而言,利用氣相成長法,於基底基板 之形成有遮罩層之主表面上形成GaN薄膜。作為GaN薄膜 之氣相成長法,可採用:HVPE法(Hydride Vap〇r抑咖 Epitaxy,氫化物氣相磊晶法)、昇華法、M〇c法(MetaU〇rganic Chloride有機金屬乳化物氣相成長法)、MOCVD法(^/^&1_ organic Chemical Vapor Deposition,金屬有機化學氣相沈 積法)等。於該成膜步驟(S20)中,例如可使用HVPb^。圖 9係說明成膜步驟(S2〇)中所使用之成膜裝置之示意圖。參 照圖9,說明採用hvpe法之成膜裝置。 如圖9所示’成膜裝置2〇具備:反應管22、設置於反應 管22内部之Ga承載器23、用以在反應管22之内部保持基底 基板之基座24、用以對反應管22之内部加熱之加熱器26。 於Ga承載器23之内部配置Ga金屬。並且,將用以供給經 氫、氮或氬稀釋之氯化氫(HC1)氣體的配管27朝向該以承 131436.doc -14- 200903867 載盗23配置。又’將用以供給經氫、氮或氬稀釋之氨 (NH3)氣的配管28設置於基座24之上部。在與反應管22之 外周相對向之位置上設置有用以加熱反應管22之加熱器 26。於基座24上,設置基底基板5。於該基底基板$上’以 下述方式形成GaN結晶層3。 以下’對使用圖9所示之成膜裝置2〇而製造GaN結晶層3 之製造方法加以說明。首先,於圖9所示之成膜裝置2〇 中,將基底基板5配置於反應管22内部之基座24上。然 後於基座24之上方,配置内部裝有Ga金屬之容器即〇a 承載器23。接著,於使用加熱器26對裝置整體進行加熱之 狀態下,經由配管27向(^承載器23中吹入經氫、氮或氬稀 釋之HC1氣體。其結果,產生下述反應:— 2GaC1+H2。將由該反應所生成的氣體狀之GaC丨供給至基 底基板5。 同時’經由配管28,向基座24附近供給經氫、氮或氬稀 釋之ΝΑ氣體。此時,於基底基板5之附近產生如下反應: 2GaC1+2NH3— 2GaN道2。將由此種反應所形成之⑽, 積層於經加熱之基底基板5的表面,作為GaN晶體。藉 此’於基底基板5之表面形成GaN結晶層3。此時於基底基 板表面之如圖7或圖8所示之遮罩層1〇上形成⑽結^ 3 °其結果’可降低所形成之GaN結晶層3之位錯密度。 又,由於基底基板5係具有所謂偏離角之基二:而所 形成之GaN結晶層3亦呈下述狀態:特定之面方位相對於 與基底基板5之主表面對向之表面的法線向量傾斜。又: 131436.doc 15· 200903867 ㈣結晶層3中特定之面方位相對於上述法線向量之傾斜 ° 、及G斜角度’可根據基底基板中之基準面方位之傾 斜方向以及傾斜角度而變化。 、再者’使GaN結晶層3形成為足夠厚,以便在如後文所 述般將基底基板5除去後,亦可對其進行獨立操作。GaN 、、吉晶層3之厚度例如可為l〇mm左右。 女圖5所示,實施基底基板除去步驟(S30)。於該 ^底基板除去步驟_中,自所形成之GaN結晶層3除去 基底基板5。作為料基底基板5之方法,可採用切割等機 立、法ϋ刻等化學方法、電解姓刻等電氣化學方法等任 意方法。其結果,可獲得含GaN結晶層3之_基板。又, 於基底基板中基準面方位在2個方向上傾斜,相對於此, 所獲得之㈣基板1(參照圖D中形成為如下狀態:面方位 _]相對於該㈣基板1之表面朝向不同之2個偏離角方 向傾斜。 其後,實施後處理步驟(S4〇)。作為後處理步驟_), 例如可實施基板表面之研磨步驟、或將⑽基板i切割成 特定厚度之切割步驟等。 如圖H)所示’於以上述方式所獲得之⑽基板i之表面 上,形成_等之蟲晶層40,藉此,可獲得附蟲晶層基板 (磊晶基板41)。圖10係表示使用圖1中所示之本發明之GaN 基板的附遙晶層基板之立體示意圖。又,可使 基板以圖U所示之方式形成發光元件。圖⑴系表示使 用本發明之GaN基板的發光元件之剖面示意圖。參照圖 131436.doc •16· 200903867 11 ’對使用本發明之GaN基板之發光元件進行說明。 如圖11所示,作為半導體裝置之發光元件3〇中,於QaN 基板1上形成有11型之AK}aN中間層31。於n型之AiGaN中間 層31上形成有11型之GaN緩衝層32。型之GaN緩衝層μ 上形成有發光層33。該發光層33例如為InGaN/InGaN_ MQW層(多重量子井層)。於該發光層33上形成有p型之 AlGaN層34。於p型之A1Ga>^34上形成有{)型之GaN緩衝 層35。繼而,於GaN基板丨之背面侧(與形成有n型MG·中 間層31之表面側相反之側的表面)形成有η電極刊。並且, 於ρ型之GaN緩衝層35上形成有ρ電極37。 如此,於使用本發明之GaN基板丨來形成發光元件之情 形時,由於發光層33係形成於GaN基板}之所謂半極性面 上,故而發光層33中之壓電電場減弱。因此,與先前之發 光層形成於GaN基板之極性面上的發光元件相比,可提高 發光層之發光效率,減小發光波長由於所施加之電流量之 變化而引起的偏移量。 以下’羅列本發明之實施形態並加以說明,該等實施例 中,有與上述實施形態局部重複的部分。 本發明之GaN基板i(參照間係具有主表面之㈣基板 1,且面方位[000〗]相對於主表面之法線向量2朝向互不相 同之2個偏離角方向傾斜。 如此,藉由使面方位[0001]朝向第1個偏離角方向傾 斜,可於使GaN基板i之主表面形成為半極性面之狀態 下,於該主表面上形成磊晶層40。因此,與在GaN基板之 131436.doc •17- 200903867 (0001)面等極性面上形成磊晶層而製造LED等發光元件之 情形相比,可提高發光波長包含於5〇〇 nm以上之長波長區 域中之發光7G件的發光效率,或減小發光波長 由於所施加 之電流量之變化而引起的偏移量。進而,藉由使面方位 [0001]進一步朝向第2個偏離角方向傾斜,可控制GaN基板 1之主表面的偏離角分布或面内波長分布之不均。另外, GaN基板之背面亦具有與表面大致相同之偏離角。其結 果,可使形成於表面及背面之電極之接觸性提高,減小相 比動作開始之初的動作電壓之增加量。因此,藉由使用該Thus, the main surface of the GaN substrate 1 of the present invention is formed into a so-called semipolar surface. Compared with the case where a light-emitting element is formed by forming an epitaxial layer on the c-plane of GaN, a layer of GaN 131436.doc 200903867 or InGaN is epitaxially grown on the main surface of such a GaN substrate, and is formed as In the case of a light-emitting element of a semiconductor device, it is possible to suppress an internal electric field from being generated in the active layer. As a result, the influence of the following problem can be reduced: the generation of the internal electric field causes the recombination probability of electrons injected into the active layer to be reduced, and as a result, the luminous efficiency is lowered, or the emission wavelength is applied. The current changes and changes. Therefore, according to the present invention, a light-emitting element having improved luminous efficiency and having a fixed emission wavelength can be obtained. Figure 5 is used to illustrate the figure! A flow chart of a method of manufacturing a GaN substrate shown in the drawing. Figure 6 is a flow chart for explaining the contents of the preparation steps in the flowchart shown in Figure 5. A method of manufacturing a GaN substrate of the present invention will be described with reference to Figs. 5 and 6 . Referring to Figures 5 and 6, the preparation step 〇) is first performed. In this preparation step (S10), a base substrate which forms a base of a GaN worm layer as a GaN substrate is prepared. Specifically, in the preparation step (s 1 〇) (refer to Fig. 5), as shown in Fig. 6, the base substrate fabrication step (sii) is first performed. In the base substrate forming step (S11), a substrate is prepared which is a substrate on which GaN is epitaxially grown on the surface, and a specific surface orientation is normal to a main surface on which GaN is epitaxially grown. The orientation is inclined in two directions (inclination directions on the base substrate side) which are different from each other. Here, as the base substrate, any material can be used as long as GaN can be formed on the surface thereof. As the base substrate, for example, a gallium substrate (GaAs) substrate, a sapphire substrate, a zinc oxide (Zn) substrate, a carbonized carbide (SiC) substrate, or a GaN substrate can be used. Further, in the film forming step described later, 'the base substrate is formed into a substrate having a so-called off angle so as to be able to face the surface orientation of the formed GaN crystal layer [0001] with respect to 131436.doc -12-200903867 The base substrate is formed with a normal vector of the main surface of the GaN crystal layer, and the (4) crystal layer is grown in a state of being inclined in a specific (10) direction (two off-angle directions). Specifically, the base substrate is formed in a state in which a specific reference plane orientation is inclined toward a specific square (four) with respect to a normal vector forming a main surface of the crystal layer. For such a substrate, for example, a base substrate can be prepared by preparing a substrate whose main surface is a specific crystal plane (for example, a hexagonal crystal, the main surface is a c-plane, etc.), with respect to the main surface of the substrate The main surface of the substrate is polished by tilting the tilt direction in a specific direction, or the base substrate is cut from the main body substrate of the main surface of the B-day body material by a special cut angle S. Next, as shown in FIG. 6, a mask pattern forming step (S12) is performed. In the mask pattern forming step (S12), a mask pattern is formed on the main surface of the base substrate on which the GaN crystal layer is formed. Specifically, a mask layer 1 having a pattern as shown in Fig. 8 or Fig. 8 is formed. 7 and 8 are schematic plan views showing a mask pattern of a mask layer formed on the main surface of the base substrate. First, the mask pattern shown in Fig. 7 will be described. As shown in Fig. 7, the mask layer 1 formed on the main surface of the base substrate can be formed in such a manner that a plurality of linear patterns having a width W1 extend in parallel at intervals p. In this case, the pitch p can be, for example, 8 μm, the width wi of the linear pattern is 6 μm, and the interval W2 between the line patterns (the width of the groove-like opening 11 formed between the line patterns) is, for example, 2 Ππι. Further, the thickness of the linear pattern can be, for example, 〇. 1 μηι. Further, as another example of the mask pattern, as shown in Fig. 8, a mask layer 1 具有 having a pattern of the opening portion 12 periodically formed with 131436.doc -13 - 200903867 can be used. Specifically, as shown in Fig. 8, the mask layer 10 in which the opening portion 12 having a quadrangular planar shape is disposed at a predetermined interval is formed on the main surface of the base substrate. As shown in Fig. 8, the opening portion 12 is, for example, a square, and the distance L connecting the lines of the centers thereof may be, for example, 4 μm. Further, the hand W1 and W2 of one side of the opening portion 12 may be two. Further, the opening portion 丨2 may be disposed such that a plurality of the openings 12 are arranged in a so-called thousand-bird grid shape, and when the center points of the adjacent opening portions 12 are connected, one side is formed as a distance [the equilateral triangle . As shown in Fig. 5, a film forming step (S20) is performed on the base substrate on which the mask layer 1 is formed. Specifically, a GaN thin film is formed on the main surface of the base substrate on which the mask layer is formed by a vapor phase growth method. As a vapor phase growth method of a GaN thin film, an HVPE method (Hydride Vap〇r, Epitaxy, hydride vapor phase epitaxy), a sublimation method, an M〇c method (MetaU〇rganic Chloride, an organic metal emulsion gas phase) can be used. Growth method), MOCVD method (^/^&1_organic chemical Vapor Deposition, metal organic chemical vapor deposition method) and the like. In the film forming step (S20), for example, HVPb^ can be used. Fig. 9 is a schematic view showing a film forming apparatus used in the film forming step (S2). Referring to Fig. 9, a film forming apparatus using the hvpe method will be described. As shown in FIG. 9, the film forming apparatus 2 includes a reaction tube 22, a Ga carrier 23 disposed inside the reaction tube 22, and a susceptor 24 for holding the base substrate inside the reaction tube 22 for the reaction tube. 22 internally heated heater 26. Ga metal is disposed inside the Ga carrier 23. Further, a pipe 27 for supplying hydrogen chloride (HC1) gas diluted with hydrogen, nitrogen or argon is disposed toward the carrier 23131.doc -14-200903867. Further, a pipe 28 for supplying ammonia (NH3) gas diluted with hydrogen, nitrogen or argon is provided on the upper portion of the susceptor 24. A heater 26 for heating the reaction tube 22 is disposed at a position opposite to the outer circumference of the reaction tube 22. On the susceptor 24, a base substrate 5 is provided. A GaN crystal layer 3 is formed on the base substrate $ in the following manner. Hereinafter, a method of manufacturing the GaN crystal layer 3 using the film forming apparatus 2 shown in Fig. 9 will be described. First, in the film forming apparatus 2A shown in Fig. 9, the base substrate 5 is placed on the susceptor 24 inside the reaction tube 22. Then, above the susceptor 24, a container of Ga metal inside, that is, a 〇a carrier 23 is disposed. Next, in a state where the entire device is heated by the heater 26, HC1 gas diluted with hydrogen, nitrogen or argon is blown into the carrier 23 via the pipe 27. As a result, the following reaction occurs: - 2GaC1+ H2. Gas-like GaC丨 generated by the reaction is supplied to the base substrate 5. At the same time, 'a gas diluted with hydrogen, nitrogen or argon is supplied to the vicinity of the susceptor 24 via the pipe 28. At this time, on the base substrate 5 The following reaction occurs in the vicinity: 2GaC1+2NH3 - 2 GaN track 2. (10) formed by such a reaction is laminated on the surface of the heated base substrate 5 as a GaN crystal, thereby forming a GaN crystal layer on the surface of the base substrate 5. 3. At this time, a (10) junction is formed on the mask layer 1 as shown in FIG. 7 or FIG. 8 on the surface of the base substrate, and as a result, the dislocation density of the formed GaN crystal layer 3 can be lowered. The base substrate 5 has a so-called off-angle base 2: the formed GaN crystal layer 3 is also in a state in which a specific plane orientation is inclined with respect to a normal vector of a surface opposed to the main surface of the base substrate 5. : 131436.doc 15· 200903867 (four) knot The inclination of the specific plane orientation in the layer 3 with respect to the normal vector and the inclination angle G of G may vary depending on the inclination direction and the inclination angle of the reference plane orientation in the base substrate. Further, 'the GaN crystal layer 3 is formed. It is thick enough to be independently operated after the base substrate 5 is removed as will be described later. The thickness of the GaN and the crystal layer 3 can be, for example, about 10 mm. The base substrate removing step (S30) is performed. In the substrate removing step _, the base substrate 5 is removed from the formed GaN crystal layer 3. As a method of the base substrate 5, a cutting or the like can be used. Any method such as a chemical method, an electrochemistry method such as electrolysis or the like, and as a result, a substrate containing the GaN crystal layer 3 can be obtained. Further, the reference plane orientation is inclined in two directions in the base substrate, whereas The obtained (four) substrate 1 (see FIG. D is formed in a state in which the surface orientation _) is inclined with respect to the two off-angle directions in which the surface of the (four) substrate 1 is different. Thereafter, a post-processing step (S4 〇) is performed. Post-processing step _), For example, a polishing step of the surface of the substrate or a cutting step of cutting the substrate 10 into a specific thickness or the like can be performed. As shown in FIG. H), on the surface of the substrate (10) obtained in the above manner, a crystal of _ is formed. The layer 40, whereby the crystal layer substrate (the epitaxial substrate 41) can be obtained. Figure 10 is a perspective view showing a crystal-attached substrate of the GaN substrate of the present invention shown in Figure 1. Further, the substrate can be formed into a light-emitting element in the manner shown in Fig. U. Fig. 1 is a schematic cross-sectional view showing a light-emitting element using the GaN substrate of the present invention. Fig. 131436.doc •16·200903867 11 ' The light-emitting element using the GaN substrate of the present invention will be described. As shown in FIG. 11, in the light-emitting element 3A of the semiconductor device, an 11-type AK}aN intermediate layer 31 is formed on the QaN substrate 1. A type 11 GaN buffer layer 32 is formed on the n-type AiGaN intermediate layer 31. A light-emitting layer 33 is formed on the GaN buffer layer μ of the type. The light-emitting layer 33 is, for example, an InGaN/InGaN_MQ layer (multiple quantum well layer). A p-type AlGaN layer 34 is formed on the light-emitting layer 33. A GaN buffer layer 35 of the {) type is formed on the p-type A1Ga>^34. Then, an n-electrode is formed on the back side of the GaN substrate (the surface on the side opposite to the surface on which the n-type MG·intermediate layer 31 is formed). Further, a p-electrode 37 is formed on the p-type GaN buffer layer 35. As described above, when the GaN substrate of the present invention is used to form a light-emitting element, since the light-emitting layer 33 is formed on the so-called semipolar surface of the GaN substrate, the piezoelectric field in the light-emitting layer 33 is weakened. Therefore, compared with the light-emitting element in which the previous light-emitting layer is formed on the polar surface of the GaN substrate, the light-emitting efficiency of the light-emitting layer can be improved, and the amount of shift of the light-emitting wavelength due to the change in the amount of applied current can be reduced. Hereinafter, embodiments of the present invention will be described and described, and in the examples, there are portions partially overlapping the above embodiments. In the GaN substrate i of the present invention (the reference substrate has a main surface (4) substrate 1 and the plane orientation [000]] is inclined with respect to the normal vector 2 of the main surface toward two different off-angle directions which are different from each other. The plane orientation [0001] is inclined toward the first off-angle direction, and the epitaxial layer 40 can be formed on the main surface in a state where the main surface of the GaN substrate i is formed into a semipolar plane. Therefore, the GaN substrate is formed on the GaN substrate. 131436.doc • 17- 200903867 (0001) Compared with the case where an epitaxial layer is formed on the surface of the same polarity to produce a light-emitting element such as an LED, the light-emitting wavelength of the long-wavelength region of 5 nm or more can be increased. The luminous efficiency of the piece, or the amount of shift of the light-emitting wavelength due to the change in the amount of applied current. Further, the GaN substrate 1 can be controlled by tilting the plane orientation [0001] further toward the second off-angle direction. The off-angle distribution of the main surface or the unevenness of the in-plane wavelength distribution. The back surface of the GaN substrate also has an off-angle that is substantially the same as the surface. As a result, the contact between the electrodes formed on the front surface and the back surface can be improved. Small comparison Increase the amount of the operating voltage of the beginning of the beginning. Therefore, by using the

GaN基板1,可穩定地製造具有優異特性之發光元件等半 導體裝置。 上述GaN基板1中,面方位[〇〇〇1]相對於主表面之法線向 量2而傾斜之2個偏離角方向,可為[丨心㈧]方向以及口卜⑽] 方向。此時,可使GaN基板i之主表面形成為半極性面, 藉此,可獲得長波長區域之發光效率得到提高之發光元件 (半導體裝置),並且可確實地控制在GaN基板之主表面上 形成蟲晶層時之面内波長分布之不均。 上述GaN基板1中,面方位[〇〇〇1]相對於主表面之法線向 1在[1-100]方向上的傾斜角度以及在[112〇]方向上的傾斜 角度中之任一者可為10。以上4〇。以下,另一者可為〇〇2〇以 上40。以下。又,亦可使上述2個傾斜角度中之任一者為 10。以上40。以下,另一者為〇〇2。以上1〇。以下。此時,可 使GaN基板之主表面形成為半極性面,藉此,可獲得長波 長區域之發光效率得到提高之發光元件(半導體裝置),並 131436.doc •18· 200903867 且可確實地減小在GaN基板之主表面上形成磊晶層時之面 内波長分布之不均。 本發明之附磊晶層基板(磊晶基板41)具備上述GaN基板 1、以及形成於該GaN基板丨之主表面上之磊晶成長層(磊晶 層40)。如此,該磊晶層40係形成於GaN基板i之半極性面 上,故而可&供如下磊晶基板41 ,使用該磊晶基板4丨,可 穩定地製造發光波長包含於500 nm以上之長波長區域中, 且發光效率得到提高之發光元件等半導體裝置。 本發明之半導體裝置(發光元件)可使用上述磊晶基板41 來製造。此時,可獲得發光波長包含於5〇〇 nm以上之長波 長區域中、並且發光效率得到提高、波長偏移量相對於所 施加之電流值變化量較小的發光元件等半導體裝置。 本發明之GaN基板之製造方法包括以下之步驟。即:首 先’準備基底基板之步驟(基底基板製作步驟(S11)),該基 底基板中,基準面方位相對於主表面之法線向量朝向互不 相同之2個基底基板側傾斜方向傾斜;於基底基板5之主表 面上,成長GaN結晶層3之步驟(成膜步驟(S20));以及自 GaN結晶層3除去基底基板5,藉此獲得含GaN結晶層3的 GaN基板1之步驟(基底基板除去步驟(S3〇))。GaN基板1具 有主表面,並且,面方位[0001]相對於主表面之法線向量 朝向互不相同之2個偏離角方向傾斜。藉由改變基底基板 中基準面方位在基底基板側傾斜方向上之傾斜角度,而調 整GaN基板中面方位[0001]在偏離角方向上之傾斜角度。 基底基板之上述2個基底基板側傾斜方向可相互正交。 131436.doc -19- 200903867 又,GaN基板之上述2個偏離角方向可相互正交。並且, 可谷易地製造GaN基板1,該基板能夠藉由改變基底基板5 之基準面方位在基底基板側傾斜方向上之傾斜角度,而任 意改變GaN基板1之偏離角方向上之傾斜角度。 上述GaN基板之製造方法中,基底基板5可為GaAs基 板,基準面方位可為[111]。2個基底基板側傾斜方向可為 <1-10>方向及<11-2>方向。GaN基板1之2個偏離角方向可 為[11-20]方向及[1-100]方向。此時’可使用相對容易獲得 之GaAs基板作為基底基板,來製造本發明之〇aN基板i, 故而可降低GaN基板之製造成本。 上述GaN基板之製造方法中,基底基板5亦可為藍寶石 基板’基準面方位亦可為[0001]。2個基底基板側傾斜方向 亦可為[11-20]方向及[1-100]方向。GaN基板1之2個偏離角 方向亦可為[1-100]方向以及[11-20]方向。此時,由於可使 用相對容易獲得之藍寶石基板作為基底基板5來製造本發 明之GaN基板,故而可降低GaN基板之製造成本。 上述GaN基板之製造方法中’基底基板5亦可為zn〇基 板’基準面方位亦可為[0001]。2個基底基板側傾斜方向亦 可為[1-1 00]方向以及[11-20]方向。GaN基板1之2個偏離角 方向亦可為[1-100]方向以及[11-20]方向。此時,由於使用 相對容易獲得之ZnO基板作為基底基板5來製造本發明之 GaN基板1,故而可降低GaN基板之製造成本。 上述GaN基板之製造方法中,基底基板5亦可為sic基 板,基準面方位亦可為[0001]。2個基底基板側傾斜方向亦 131436.doc • 20- 200903867 可為[1-100]方向以及[11-20]方向。GaN基板1之2個偏離角 方向亦可為[1-100]方向以及[11-20]方向。此時,由於可使 用相對容易獲得之SiC基板作為基底基板,來製造本發明 之GaN基板,故而可降低GaN基板之製造成本。 上述GaN基板之製造方法中,基底基板5亦可為含GaN之 基板’基準面方位亦可為[〇〇〇 1 ]。2個基底基板側傾斜方向 亦可為[1-100]方向以及[11-20]方向。GaN基板}之2個偏離 角方向亦可為[1-100]方向以及[11_20]方向。此時,作為形 成有將成為GaN基板1之GaN結晶層的基底基板5,係使用 由相同材質即GaN所形成之基板’藉此,可提高GaN結晶 層3之膜質,獲得膜質優異之基板1。 上述GaN基板之製造方法中,可於GaN結晶層之成長步 驟(成膜步驟(S20))之前,進一步包括在基底基板5之主表 面上形成具有複數個孔之遮罩層的步驟(遮罩圖案形成步 驟(S12))。於此情形時,當在基底基板5之主表面上形成The GaN substrate 1 can stably manufacture a semiconductor device such as a light-emitting element having excellent characteristics. In the GaN substrate 1, the plane orientation [〇〇〇1] is inclined in two off-angle directions with respect to the normal amount 2 of the main surface, and may be a [heart (8)] direction and a mouth (10) direction. At this time, the main surface of the GaN substrate i can be formed as a semipolar surface, whereby a light-emitting element (semiconductor device) having improved luminous efficiency in a long-wavelength region can be obtained, and can be surely controlled on the main surface of the GaN substrate. The in-plane wavelength distribution is uneven when the insect layer is formed. In the GaN substrate 1, the plane orientation [〇〇〇1] is inclined with respect to the normal direction of the main surface in the [1-100] direction and the inclination angle in the [112〇] direction. Can be 10. Above 4〇. Hereinafter, the other one may be 40 or more. the following. Further, any one of the above two inclination angles may be set to 10. Above 40. Hereinafter, the other is 〇〇2. Above 1〇. the following. In this case, the main surface of the GaN substrate can be formed as a semi-polar surface, whereby a light-emitting element (semiconductor device) having improved luminous efficiency in a long-wavelength region can be obtained, and can be surely reduced by 131436.doc •18·200903867 The unevenness of the in-plane wavelength distribution when the epitaxial layer is formed on the main surface of the GaN substrate is small. The epitaxial layer substrate (the epitaxial substrate 41) of the present invention comprises the GaN substrate 1 and an epitaxial growth layer (the epitaxial layer 40) formed on the main surface of the GaN substrate. Since the epitaxial layer 40 is formed on the semipolar surface of the GaN substrate i, the epitaxial substrate 41 can be supplied with the epitaxial substrate 41, and the emission wavelength can be stably produced to be 500 nm or more. A semiconductor device such as a light-emitting element in which a light-emitting efficiency is improved in a long wavelength region. The semiconductor device (light-emitting element) of the present invention can be manufactured using the above-described epitaxial substrate 41. In this case, a semiconductor device such as a light-emitting element in which the emission wavelength is included in a long wavelength region of 5 〇〇 nm or more and the luminous efficiency is improved and the amount of wavelength shift is small with respect to the applied current value is obtained. The method for producing a GaN substrate of the present invention includes the following steps. That is, first, the step of preparing a base substrate (base substrate forming step (S11)) in which the reference plane orientation is inclined with respect to the normal vector of the main surface toward the two base substrate sides which are different from each other; a step of growing the GaN crystal layer 3 on the main surface of the base substrate 5 (film formation step (S20)); and a step of removing the base substrate 5 from the GaN crystal layer 3, thereby obtaining the GaN substrate 1 containing the GaN crystal layer 3 ( Base substrate removal step (S3〇)). The GaN substrate 1 has a main surface, and the plane orientation [0001] is inclined with respect to the normal vectors of the main surface toward two mutually different off-angle directions. The inclination angle of the plane orientation [0001] in the off-angle direction of the GaN substrate is adjusted by changing the inclination angle of the reference plane orientation in the base substrate side in the oblique direction of the base substrate side. The two base substrate side inclined directions of the base substrate may be orthogonal to each other. 131436.doc -19- 200903867 Further, the two off-angle directions of the GaN substrate may be orthogonal to each other. Further, the GaN substrate 1 can be manufactured by changing the inclination angle of the GaN substrate 1 in the off-angle direction by changing the inclination angle of the reference plane orientation of the base substrate 5 in the oblique direction of the base substrate side. In the above method of manufacturing a GaN substrate, the base substrate 5 may be a GaAs substrate, and the reference plane orientation may be [111]. The inclination direction of the two base substrate sides may be a <1-10> direction and a <11-2> direction. The two off-angle directions of the GaN substrate 1 may be in the [11-20] direction and the [1-100] direction. At this time, the 〇aN substrate i of the present invention can be produced by using a GaAs substrate which is relatively easy to obtain as a base substrate, so that the manufacturing cost of the GaN substrate can be reduced. In the method of manufacturing a GaN substrate, the base substrate 5 may be a sapphire substrate. The reference plane orientation may be [0001]. The inclination direction of the two base substrate sides may be the [11-20] direction and the [1-100] direction. The two off-angle directions of the GaN substrate 1 may also be in the [1-100] direction and the [11-20] direction. At this time, since the GaN substrate of the present invention can be manufactured by using the relatively easy-to-obtain sapphire substrate as the base substrate 5, the manufacturing cost of the GaN substrate can be reduced. In the method for producing a GaN substrate, the base substrate 5 may be a zn〇 substrate. The reference plane orientation may be [0001]. The inclination direction of the two base substrate sides may also be the [1-1 00] direction and the [11-20] direction. The two off-angle directions of the GaN substrate 1 may also be in the [1-100] direction and the [11-20] direction. At this time, since the GaN substrate 1 of the present invention is produced by using the ZnO substrate which is relatively easily obtained as the base substrate 5, the manufacturing cost of the GaN substrate can be reduced. In the method of manufacturing a GaN substrate, the base substrate 5 may be a sic substrate, and the reference plane orientation may be [0001]. The tilting direction of the two base substrate sides is also 131436.doc • 20- 200903867 It can be in the [1-100] direction and [11-20] direction. The two off-angle directions of the GaN substrate 1 may also be in the [1-100] direction and the [11-20] direction. At this time, since the GaN substrate of the present invention can be produced by using a relatively easy-to-obtain SiC substrate as a base substrate, the manufacturing cost of the GaN substrate can be reduced. In the method of manufacturing the GaN substrate, the base substrate 5 may be a GaN-containing substrate. The reference plane orientation may be [〇〇〇 1 ]. The inclination direction of the two base substrate sides may be the [1-100] direction and the [11-20] direction. The two off-angle directions of the GaN substrate can also be the [1-100] direction and the [11_20] direction. In this case, as the base substrate 5 on which the GaN crystal layer to be the GaN substrate 1 is formed, a substrate formed of GaN which is the same material is used, whereby the film quality of the GaN crystal layer 3 can be improved, and the substrate 1 excellent in film quality can be obtained. . In the above method for producing a GaN substrate, the step of forming a mask layer having a plurality of holes on the main surface of the base substrate 5 (mask) may be further included before the step of growing the GaN crystal layer (film formation step (S20)) Pattern forming step (S12)). In this case, when formed on the main surface of the base substrate 5

GaN、’、Q sa層3時,GaN晶體首先在自遮罩層之孔(開口部 12)露出的基底基板5之主表面上成長,然後,_晶體在 遮罩層ίο上橫向成長。進而,與自相鄰之開口部12上橫向 成長出之GaN晶體相互衝突後,在遮罩層1〇之表面沿垂直 (朝上之))方向成長。藉此,可降低GaN基板1之位錯密 度,獲得無龜裂之2英对以上的於卫業上較為有用之大内 徑GaN基板。 上述GaN基板之製造方法中,基底基板5中2個基底基板 側傾斜方向上的傾斜角度之一者可為ι〇。以上4〇。以下另 131436.doc -21 - 200903867 一者可為0.02。以上40。以下。此 板1之2個偏離角方向上之傾斜 下、以及0.02°以上40°以下。 時,可將所形成的GaN基 角度調整為1〇〇以上40。以 [實施例1 ] 其次,為確認本發明之效果而進行如下所述之實驗。 即’製作本發明之GaN基板,並使用該㈣基板製作發光 元件。㈣,對GaN基板以及該發光元件,以後文中所述 之方式測定發光光之波長與所供給之電流量的關係等。 又,為進行比較,準備主表面為〇面之⑽基板、以及主 表面為m面之GaN基板’同樣使用該等㈣基板而形成比 較例之發光元件。接著,測定該等比較例之發光元件之相 同特性。以下,具體地說明實驗内容。 (1) GaN基板之準備 (1-1)本發明之GaN基板之準備 基底基板:In the case of GaN, ', Q sa layer 3, the GaN crystal is first grown on the main surface of the base substrate 5 exposed from the hole (opening portion 12) of the mask layer, and then the crystal grows laterally on the mask layer ίο. Further, after the GaN crystals which have grown laterally from the adjacent opening portions 12 collide with each other, they grow in the vertical (upward) direction on the surface of the mask layer 1A. Thereby, the dislocation density of the GaN substrate 1 can be reduced, and a large-diameter GaN substrate which is useful for the slabs of 2 Å or more without cracks can be obtained. In the method of manufacturing a GaN substrate, one of the inclination angles in the oblique direction of the two base substrate sides of the base substrate 5 may be 〇. Above 4〇. The following 131436.doc -21 - 200903867 can be 0.02. Above 40. the following. The two plates 1 are inclined downward in the off-angle direction and 0.02° or more and 40° or less. In time, the formed GaN base angle can be adjusted to be 1 〇〇 or more 40. [Example 1] Next, in order to confirm the effects of the present invention, the experiment described below was carried out. Namely, the GaN substrate of the present invention was produced, and a light-emitting device was produced using the (four) substrate. (4) The relationship between the wavelength of the luminescent light and the amount of current supplied, etc., is measured for the GaN substrate and the light-emitting element in the manner described later. Further, for comparison, a (10) substrate having a major surface and a GaN substrate having a m-plane as a main surface were prepared. Similarly, the (four) substrate was used to form a light-emitting device of a comparative example. Next, the same characteristics of the light-emitting elements of the comparative examples were measured. The experimental contents will be specifically described below. (1) Preparation of GaN substrate (1-1) Preparation of GaN substrate of the present invention Base substrate:

使用GaAs基板作為基底基板,其中,係使用下述2英吋 之GaAs基板,該GaAs基板中,晶體方位[lu]相對於該基 底基板之表面之法線向量朝向<;1_1〇>方向傾斜18。,進而 朝向<11-2>方向傾斜0.03。^並且’於該基底基板之表面, 形成具有圖7所示之條狀圖案的遮罩層。該遮罩層係由氧 化矽(Si〇2)所形成。於遮罩層1〇中,使線狀圖案之寬度 為6 μιη,使開口部之寬度W2為2 μιη,使線狀圖案之線條 間距Ρ為8 μιη。又,使遮罩層10之厚度為oj μηι。 成膜條件: 131436.doc -22- 200903867 於如下所述之條件下,在上述 履基板之表面上形成A GaAs substrate is used as the base substrate, wherein a 2-inch GaAs substrate in which the crystal orientation [lu] is oriented with respect to the normal vector of the surface of the base substrate in the direction of <1_1〇> Tilt 18. Further, it is inclined by 0.03 toward the <11-2> direction. And on the surface of the base substrate, a mask layer having a stripe pattern as shown in Fig. 7 is formed. The mask layer is formed of cerium oxide (Si 〇 2). In the mask layer 1 ,, the width of the line pattern was 6 μm, the width W2 of the opening was 2 μm, and the line pitch of the line pattern was set to 8 μm. Further, the thickness of the mask layer 10 is made oj μηι. Film formation conditions: 131436.doc -22- 200903867 Formed on the surface of the above-mentioned substrate under the conditions described below

GaN結晶層。即,使用圖9所示 取联衮置20,利用HVPE 法在基底基板之表面上形成GaN結晶層。於基底基板表面 上之GaN晶體之成長步驟中,首先於相對較低之溫度下成 長較薄之缓衝層。其後,於相對較高之溫度下,在缓衝層 上成長較厚之G⑽晶層。緩衝層之成膜條件如下:使成 膜溫度為500°C,使HC1之分壓為lxl〇-3 atm(1〇〇 pa),使 nh3之分壓為ο」atm(1_ Pa),使成膜時間為叫鐘, 使所成膜之緩衝層之厚度為60 nm。又,形成於緩衝層上 之GaN磊晶層之成膜條件如下:使成膜溫度為它使 HC1之分壓為3xl0-2 atm(3〇〇〇 pa),使NH3之分壓為〇2 atm(20000 Pa),使一面摻雜作為n型摻雜劑之以一面成膜 之時間為1〇〇小時,使所成膜之磊晶層之厚度為1〇mm。 其後,使用機械研磨機,自所形成之GaN膜上除去GaAs 基板。藉此’獲得厚度為1 〇 mm之獨立GaN基板。然後, 使用線鋸將該GaN基板切割成400 μιη之厚度,進而對表面 進行研磨’藉此’獲得1〇片之2英吋GaN基板。 (1-2)比較例之GaN基板之準備 主表面為c面之GaN基板: 基本上以與上述本發明之GaN基板相同之製造方法來製 造比較例之GaN基板,但在下述方面有所不同··作為所使 用之基底基板的GaAs基板中,晶體方位[111 ]相對於主表 面之法線向量平行。藉由使用此種基底基板,使所獲得之 獨立GaN基板中,主表面之法線向量與晶體方位[〇〇〇1]平 131436.doc -23 - 200903867 行,該主表面與(0001)面(C面)平行。 主表面為m面之GaN基板: 自上述主表面為c面之GaN基板,沿與其主表面垂直之 方向切割出厚度為4 0 0 μιη之基板,藉此準備主表面為m面 之GaN基板。 (2) 發光元件之形成 於所獲得的本發明之實施例以及比較例之GaN基板的表 面上堆積磊晶層,進而形成電極,並分割成各元件,藉此 形成如圖11所示之發光元件。再者,使發光元件之η型 AlGaN中間層31之厚度為50 nm,η型GaN緩衝層32之厚度 為2 μιη,發光層33之厚度為50 nm,ρ型AlGaN層34之厚度 為20 nm,p型GaN接觸層35之厚度為50 nm。又,使用 Al/Ti作為η電極36,其厚度分別如下,A1 : 500 nm,Ti : 5 0 nm。又,ρ電極37之材料係使用Pt/Ti,厚度如下,Pt : 500 nm,Ti : 50 nm。作為η電極,還可使用Au/Ge/Ni(各 厚度為 500 nm/100 nm/50 nm)、Pt/Ti(各厚度為 500 nm/50 nm)、Au/Ti(各厚度為500 nm/50 nm),作為ρ電極,還可使 用Pt(厚度為500 nm)、Ni(厚度為500 nm)。由於此種發光 元件包含InGaN作為發光層33,故而射出波長較藍色區域 更長之綠色區域之光。 (3) 測定内容 對以上述方式所得之GaN基板,測定該基板之偏離角(面 方位[0001]相對於GaN基板表面之法線向量之傾斜方向及 傾斜角度)。又,亦測定該偏離角之值之面内分布。另 131436.doc -24- 200903867 外,亦對GaN基板之位錯密度加以測定。進而,測定所形 成之發光元件的發光波長與電流量之間的關係。 (3-1)測定方法GaN crystal layer. That is, a GaN crystal layer is formed on the surface of the base substrate by the HVPE method using the joint 20 shown in Fig. 9. In the growth step of the GaN crystal on the surface of the base substrate, a relatively thin buffer layer is first formed at a relatively low temperature. Thereafter, a thicker G(10) crystal layer is grown on the buffer layer at a relatively high temperature. The film formation conditions of the buffer layer are as follows: the film formation temperature is 500 ° C, the partial pressure of HC1 is lxl 〇 -3 atm (1 〇〇 pa), and the partial pressure of nh3 is ο"atm (1_ Pa), so that The film formation time is called a bell, and the thickness of the buffer layer formed is 60 nm. Further, the film formation conditions of the GaN epitaxial layer formed on the buffer layer are as follows: the film formation temperature is such that the partial pressure of HC1 is 3x10-2 atm (3 〇〇〇pa), and the partial pressure of NH3 is 〇2. Atm (20000 Pa), the surface of one side is doped as an n-type dopant for one hour, and the thickness of the epitaxial layer formed by the film is 1 mm. Thereafter, the GaAs substrate was removed from the formed GaN film using a mechanical grinder. Thereby, an independent GaN substrate having a thickness of 1 〇 mm was obtained. Then, the GaN substrate was cut into a thickness of 400 μm using a wire saw, and the surface was further polished to obtain a one-inch 2 inch GaN substrate. (1-2) Preparation of GaN Substrate of Comparative Example GaN Substrate whose main surface is c-plane: The GaN substrate of the comparative example was basically produced by the same manufacturing method as the above-described GaN substrate of the present invention, but differed in the following points. In the GaAs substrate as the base substrate to be used, the crystal orientation [111] is parallel to the normal vector of the main surface. By using such a base substrate, in the obtained independent GaN substrate, the normal vector of the main surface and the crystal orientation [〇〇〇1] are flat, 131436.doc -23 - 200903867, the main surface and the (0001) plane (C face) parallel. A GaN substrate having an m-plane as a main surface: a GaN substrate having a c-plane from the main surface is formed, and a substrate having a thickness of 400 μm is cut in a direction perpendicular to the main surface thereof, whereby a GaN substrate having an m-plane main surface is prepared. (2) The light-emitting element was formed on the surface of the obtained GaN substrate of the embodiment of the present invention and the comparative example, and an epitaxial layer was deposited to form an electrode, and was divided into respective elements, thereby forming a light emission as shown in FIG. element. Further, the thickness of the n-type AlGaN intermediate layer 31 of the light-emitting element is 50 nm, the thickness of the n-type GaN buffer layer 32 is 2 μm, the thickness of the light-emitting layer 33 is 50 nm, and the thickness of the p-type AlGaN layer 34 is 20 nm. The p-type GaN contact layer 35 has a thickness of 50 nm. Further, Al/Ti was used as the n-electrode 36, and the thicknesses thereof were as follows, A1: 500 nm, Ti: 50 nm. Further, the material of the p electrode 37 is Pt/Ti, and the thickness is as follows, Pt: 500 nm, Ti: 50 nm. As the η electrode, Au/Ge/Ni (each thickness is 500 nm/100 nm/50 nm), Pt/Ti (each thickness is 500 nm/50 nm), and Au/Ti (each thickness is 500 nm/) can also be used. 50 nm), as the ρ electrode, Pt (thickness: 500 nm) and Ni (thickness: 500 nm) can also be used. Since such a light-emitting element contains InGaN as the light-emitting layer 33, light of a green region having a longer wavelength than the blue region is emitted. (3) Measurement contents For the GaN substrate obtained as described above, the off angle of the substrate (the direction of inclination of the plane orientation [0001] with respect to the normal vector of the surface of the GaN substrate and the inclination angle) was measured. Further, the in-plane distribution of the value of the off angle is also measured. In addition, the dislocation density of the GaN substrate was also measured in addition to 131436.doc -24- 200903867. Further, the relationship between the light emission wavelength and the amount of current of the formed light-emitting element was measured. (3-1) Measuring method

GaN基板之偏離角以及偏離角之值的分布之測定: 使用雙晶XRD(X-ray diffraction,X射線繞射)裝置,以 縱橫均為200 μπι之開口尺寸,測定GaN基板之偏離角。 又,以如下方式測定GaN基板内之偏離角的值之分布:使 用上述XRD裝置,於GaN基板之主表面上,對基板中心、 以及於<1-100〉方向及<11-20>方向上距離該中心分別為20 mm的4點即合計5點的偏離角進行測定。將距離中心20 mm 之4點的值與中心之值的差之絕對值中的最大值作為偏離 角之分布值。又,XRD下之測定精度為±0.01°。Measurement of the distribution of the off-angle and the off-angle value of the GaN substrate: The off-angle of the GaN substrate was measured using an X-ray diffraction (X-ray diffraction) apparatus with an opening size of 200 μm in both vertical and horizontal directions. Further, the distribution of the value of the off angle in the GaN substrate was measured by using the above XRD apparatus on the main surface of the GaN substrate, on the substrate center, and in the <1-100> direction and <11-20> Four points of 20 mm from the center in the direction, that is, an offset angle of 5 points in total, were measured. The maximum value of the absolute value of the difference between the value of 4 points from the center of 20 mm and the value of the center is taken as the distribution value of the deviation angle. Further, the measurement accuracy under XRD was ±0.01°.

GaN基板之位錯密度之測定: 對 GaN基板,利用使用 SEM(Scanning Electron Microscope, 掃描型電子顯微鏡)之CL(cathodo luminescence,陰極發 光),針對與上述XRD相同之5點,計數□ 100 μιη内部之暗 點,藉此測定GaN基板之位錯密度。 發光元件之發光光之波長及所供給之電流量之測定: 改變對所製作之發光元件供給之電流的值,同時測定自 發光元件射出之光的波長。具體而言,於室溫下,對發光 元件施加脈衝電流,並測定發光光譜。 (4)測定結果Measurement of Dislocation Density of GaN Substrate: For GaN substrate, CL (cathodo luminescence) using SEM (Scanning Electron Microscope), for the same five points as the above XRD, count □ 100 μm inside The dark spot, thereby measuring the dislocation density of the GaN substrate. Measurement of the wavelength of the light emitted from the light-emitting element and the amount of current supplied: The value of the current supplied from the light-emitting element was changed, and the wavelength of the light emitted from the light-emitting element was measured. Specifically, a pulse current was applied to the light-emitting element at room temperature, and the emission spectrum was measured. (4) Measurement results

GaN基板之偏離角:Deviation angle of GaN substrate:

GaN基板之偏離角表示面方位[0001]相對於表面之法線 131436.doc -25 - 200903867 向量朝向[11-20]方向傾斜大致18。所成的偏離角。又,表 示朝向[1-100]方向傾斜大致0.05°所成的偏離角。又,該 [11-20]方向上之偏離角之面内分布如下:於該基板之面 内,偏離角之分布在±0.5。(-17.5〜18.5°)之範圍内。又,fl_ 100]方向上之偏離角之面内分布為,於該基板之面内,偏 離角之分布在±0.3。之範圍内。The off angle of the GaN substrate indicates the plane orientation [0001] with respect to the normal to the surface. 131436.doc -25 - 200903867 The vector is inclined by approximately 18 toward the [11-20] direction. The resulting off angle. Further, it indicates an off angle which is inclined by approximately 0.05 in the [1-100] direction. Further, the in-plane distribution of the off angle in the [11-20] direction is as follows: in the plane of the substrate, the off angle is distributed at ±0.5. Within the range of -17.5 to 18.5°. Further, the in-plane distribution of the off-angle in the direction of fl_100] is such that the distribution of the off-angle is ±0.3 in the plane of the substrate. Within the scope.

GaN基板之位錯密度: 測定GaN基板之位錯密度之結果,於任_樣品中,該位 錯密度均為lxl07(/cm2)以下。 發光元件之發光光之波長與所供給之電流量間的關係:Dislocation Density of GaN Substrate: As a result of measuring the dislocation density of the GaN substrate, the dislocation density was 1×10 7 (/cm 2 ) or less in any of the samples. The relationship between the wavelength of the illuminating light of the illuminating element and the amount of current supplied:

L貫施例2] 將結果示於圖12中。圖12係表示對發光元件供給之電流 與射出之光之波長間的關係之圖表。由圖丨2可知,本發明 之實施例的發光元件之波長與電流量間之關係如下:隨著 對發光元件供給之電流量增大,所射出之光之波長向短波 長側偏移,其偏移量約為7 nm左右。該偏移量小於使用先 月J之GaN基板、即基板表面與GaN之e面呈大致平行的。面 土板而製k的比較例之發光元件的2〇 左右之波長偏移 里再者,圖U所示之使用m面基板而製造的比較例之發 。其原因在於:由於m面L Example 2] The results are shown in Fig. 12. Fig. 12 is a graph showing the relationship between the current supplied to the light-emitting element and the wavelength of the emitted light. As can be seen from FIG. 2, the relationship between the wavelength of the light-emitting element of the embodiment of the present invention and the amount of current is as follows: as the amount of current supplied to the light-emitting element increases, the wavelength of the emitted light shifts toward the short-wavelength side. The offset is about 7 nm. The offset is smaller than the GaN substrate using the first month J, that is, the surface of the substrate is substantially parallel to the e-plane of GaN. In the case of a light-emitting element of a comparative example in which k is a surface, k is a wavelength shift of about 2 Å, and a comparative example produced by using an m-plane substrate as shown in Fig. U is used. The reason is: due to the m-plane

锒°°之偏離角方向及偏離 進行如下所述之實驗。即,製作 70之GaN基板,測定該等GaN基板 維角、進而偏離角之面内分布、位 131436.doc • 26 - 200903867 錯密度。進而,使用各GaN基板形成發光元件,對該發光 元件測定發光波長由於改變投入電流值而引起之變化量 (藍移(Blue shift) : Δλ)、經過1000小時之時刻的動作電壓 之增加量(△ Vop)、GaN基板之面内之發光波長分布(σ)。以 下,具體說明實驗之内容。 (1) GaN基板之準備 所有樣品(樣品ID 1〜70)係使用與上述實施例1中的GaN基 板之製造方法基本上相同之製造方法而獲得GaN基板。 基底基板:The off-angle direction and deviation of 锒°° were performed as described below. Namely, 70 GaN substrates were produced, and the GaN substrate dimensions and the in-plane distribution of the off-angle were measured, and the bit density was 131436.doc • 26 - 200903867. Further, each of the GaN substrates is used to form a light-emitting element, and the amount of change in the light-emitting wavelength due to the change in the input current value (Blue shift: Δλ) and the increase in the operating voltage at the time of 1000 hours are measured. Δ Vop), the emission wavelength distribution (σ) in the plane of the GaN substrate. The content of the experiment is specified below. (1) Preparation of GaN substrate All samples (sample IDs 1 to 70) were obtained by using a manufacturing method substantially the same as that of the GaN substrate in the above-described first embodiment. Base substrate:

樣品ID 1〜65中,係使用GaAs基板來作為用以形成GaN基 板之基底基板,而樣品ID66〜70中,係使用與〇aAs不同之 材料之基板來作為基底基板。具體而言,於樣品1〇66及7〇 中’使用藍寶石基板來作為基底基板,於樣品ID68〜7〇 中’分別使用ZnO基板、SiC基板及GaN基板來作為基底基 板。對各基底基板,以所形成之GaN基板之偏離角方向為 2個方向之方式,適當設定面方位[〇〇〇1]相對於形成有GaN 晶體膜之主表面之法線方向朝向2個方向傾斜之傾斜角(偏 離角)。 具體而言,GaAs基板中,面方位^!!]係以使GaN之面方 位[0001]相對於所形成之GaN晶體膜之表面朝向[丨^…方 向及[1-100]方向分別傾斜之方式,而相對於GaAs基板之 主表面之法線向量朝向<1-1 〇>方向及<u_2>方向傾斜。分 別對應於各樣品而改變各方向(偏離角方向)上之傾斜角度 (<1-10>方向上之偏離角Θ1及<11-2>方向上之偏離角02)。 131436.doc 27· 200903867 又,藍寶石基板中,面方位[0001]係以使GaN之面方位 [0001]相對於所形成之GaN晶體膜之表面,分別朝向tl_ 100]方向以及[11-20]方向傾斜之方式,而相對於藍寶石基 板之主表面之法線向量朝向[11-20]方向及[1-100]方向傾 斜。將樣品ID66之各方向(偏離角方向)上之傾斜角度([u_ 20]方向上之偏離角Θ1以及[1-100]方向上之偏離角Θ2)設定 為Θ1=Θ2=26°,將樣品ID67之各方向(偏離角方向)上之傾 斜角度設定為Θ1=Θ2=40°。 又’ ΖηΟ基板中,面方位[0001]相對於ΖηΟ基板之主表 面之法線向量朝向[1-100]方向以及[11-20]方向傾斜。將各 方向(偏離角方向)上之傾斜角度([1-100]方向上之偏離角01 以及[11-20]方向上之偏離角Θ2)設定為Θ1 = Θ2=26°。 又,SiC基板中,面方位[0001]相對於SiC基板之主表面 之法線向量朝向[1-100]方向以及[11-20]方向傾斜。將各方 向(偏離角方向)上之傾斜角度([1_1〇〇]方向上之偏離角Θ1以 及[11-20]方向上之偏離角Θ2)設定為Θ1=Θ2=26。。 又’ GaN基板中,面方位[〇〇〇1]相對於GaN基板之主表 面之法線向量朝向[1-1 〇〇]方向以及[11_20]方向傾斜。將各 方向(偏離角方向)上之傾斜角度([1-100]方向上之偏離角Θ1 以及[11-20]方向上之偏離角Θ2)設定為Θ1=Θ2=26。。 又’樣品ID 1〜70均係於基底基板之主表面上,與實施例 1同樣地形成具有圖7所示之條狀圖案的遮罩層。遮罩層之 厚度、線狀圖案之尺寸等與實施例1中之遮罩層相同。 成膜條件: 131436.doc -28- 200903867 於後文所述之表卜表14_心之條件下,在上述基底基 板之表面上形成GaN結晶層。即,使用圖9所示之成膜裝 置利用HVPE法在基底基板之表面上形成㈣結晶 層。於基底基板之表面上的GaN晶體之成長步驟中,首 先,於相對較低之溫度下成長較薄之緩衝層。其後,於相 對較高之溫度下,在缓衝層上成長較厚之㈣蟲晶層。緩 衝層之成膜條件如後文中表i〜表14所示。再者,對使用含 GaN之基板作為基底基板的樣品1〇7〇並不成長緩衝層,而 於基底基板上直接成長GaN磊晶層。 其後,藉由研磨,自所形成之GaN膜上除去^^基板等 基底基板。如此,獲得厚度為1〇 mm之獨立GaN基板。然 後,使用線鋸將該GaN基板切割成4〇〇 μιη之厚度,進而對 表面進行研磨,藉此獲得1〇片之2英吋GaN基板。 (2)發光元件之形成 於所獲得之樣品ID1〜70之GaN基板的表面上堆積磊晶 層’進而形成電極’並分割成各元件,藉此形成如圖叫 示之發光元件。再者,發光元件之各層之組成、厚度等與 實施例1中之發光元件相同。 (3)測定 對以上述方式所得之GaN基板,測定該基板之偏離角(面 方位[〇〇〇 1 ]相對於GaN基板表面之法線向量在[1 -1 00]方向 上之傾斜角度(偏離角度0a)、以及在[丨丨—20]方向上之傾斜 角度(偏離角度Ob))。又,亦測定該偏離角之值之面内分 布。又’亦對GaN基板之位錯密度加以測定。進而,測定 131436.doc -29- 200903867 所形成之發光元件的發光波長與電流量間之關係。各資料 之測定方法如下所述。In the sample IDs 1 to 65, a GaAs substrate was used as a base substrate for forming a GaN substrate, and in samples ID 66 to 70, a substrate different from 〇aAs was used as a base substrate. Specifically, in the samples 1〇66 and 7〇, a sapphire substrate was used as the base substrate, and in the samples ID68 to 7〇, a ZnO substrate, a SiC substrate, and a GaN substrate were used as the base substrate, respectively. For each of the base substrates, the plane orientation [〇〇〇1] is appropriately oriented in two directions with respect to the normal direction of the main surface on which the GaN crystal film is formed so that the off-angle direction of the formed GaN substrate is two directions. Tilt angle of the tilt (off angle). Specifically, in the GaAs substrate, the plane orientation is such that the plane orientation [0001] of GaN is inclined with respect to the surface of the formed GaN crystal film toward the [丨^... direction and the [1-100] direction, respectively. In this manner, the normal vector with respect to the main surface of the GaAs substrate is inclined toward the <1-1 〇> direction and the <u_2> direction. The inclination angle in each direction (off-angle direction) is changed corresponding to each sample (<1-10> direction deviation angle Θ1 and <11-2> direction deviation angle 02). 131436.doc 27· 200903867 In addition, in the sapphire substrate, the plane orientation [0001] is such that the plane orientation [0001] of GaN is opposite to the surface of the formed GaN crystal film, and is oriented toward the tl_100] direction and [11-20], respectively. The direction is inclined, and the normal vector with respect to the main surface of the sapphire substrate is inclined toward the [11-20] direction and the [1-100] direction. Set the inclination angle (the deviation angle Θ1 in the [u_ 20] direction and the deviation angle Θ2 in the [1-100] direction) in each direction (off-angle direction) of the sample ID 66 to Θ1=Θ2=26°, and sample The inclination angle in each direction (off-angle direction) of ID67 is set to Θ1=Θ2=40°. Further, in the ΖηΟ substrate, the plane orientation [0001] is inclined with respect to the normal vector of the main surface of the ΖηΟ substrate toward the [1-100] direction and the [11-20] direction. The inclination angle in each direction (off-angle direction) (the deviation angle 01 in the [1-100] direction and the deviation angle Θ2 in the [11-20] direction) is set to Θ1 = Θ2 = 26°. Further, in the SiC substrate, the plane orientation [0001] is inclined with respect to the normal vector of the main surface of the SiC substrate toward the [1-100] direction and the [11-20] direction. The inclination angle (the deviation angle Θ1 in the [1_1〇〇] direction and the deviation angle Θ2 in the [11-20] direction) of the directions (off-angle direction) is set to Θ1=Θ2=26. . Further, in the GaN substrate, the plane orientation [〇〇〇1] is inclined with respect to the [1-1 〇〇] direction and the [11_20] direction with respect to the normal vector of the main surface of the GaN substrate. The inclination angle in each direction (off-angle direction) (the deviation angle Θ1 in the [1-100] direction and the deviation angle Θ2 in the [11-20] direction) is set to Θ1 = Θ2 = 26. . Further, the sample IDs 1 to 70 were all attached to the main surface of the base substrate, and a mask layer having the stripe pattern shown in Fig. 7 was formed in the same manner as in the first embodiment. The thickness of the mask layer, the size of the line pattern, and the like are the same as those of the mask layer in the first embodiment. Film formation conditions: 131436.doc -28- 200903867 A GaN crystal layer was formed on the surface of the above-mentioned base substrate under the conditions of Table 14_heart described later. Namely, a (four) crystal layer was formed on the surface of the base substrate by the HVPE method using the film forming apparatus shown in Fig. 9. In the growth step of the GaN crystal on the surface of the base substrate, first, a relatively thin buffer layer is grown at a relatively low temperature. Thereafter, a relatively thick (4) worm layer is grown on the buffer layer at a relatively high temperature. The film formation conditions of the buffer layer are as shown in Tables i to 14 below. Further, the sample 1〇7〇 using the GaN-containing substrate as the base substrate did not grow the buffer layer, and the GaN epitaxial layer was directly grown on the base substrate. Thereafter, the base substrate such as the substrate is removed from the formed GaN film by polishing. Thus, an independent GaN substrate having a thickness of 1 mm was obtained. Then, the GaN substrate was cut into a thickness of 4 μm by a wire saw, and the surface was polished to obtain a 2-inch GaN substrate of one turn. (2) Formation of light-emitting element A layer of an epitaxial layer was formed on the surface of the obtained GaN substrate of Samples ID 1 to 70, and an electrode was formed and divided into respective elements, whereby a light-emitting element as shown in the figure was formed. Further, the composition, thickness and the like of the respective layers of the light-emitting element are the same as those of the light-emitting element of the first embodiment. (3) Measuring the GaN substrate obtained in the above manner, and measuring the off angle of the substrate (the orientation of the plane orientation [〇〇〇1] with respect to the normal vector of the surface of the GaN substrate in the [1 - 00] direction ( Offset angle 0a), and tilt angle (offset angle Ob) in the [丨丨-20] direction). Further, the in-plane distribution of the value of the off angle is also measured. Further, the dislocation density of the GaN substrate was also measured. Further, the relationship between the emission wavelength and the amount of current of the light-emitting element formed by 131436.doc -29-200903867 was measured. The method of measuring each data is as follows.

GaN基板之偏離角以及偏離角之值之分布的測定:Determination of the distribution of the off-angle and off-angle values of the GaN substrate:

GaN基板之偏離角係使用XRD(x_ray diffracti〇n)装置, 利用與實施例1中之偏離角之測定方法相同的方法來進行 測定。又,GaN基板之面内的偏離角之分布亦係使用與實 施例1中之測定方法相同之測定方法來測定。The off angle of the GaN substrate was measured by the same method as the measurement method of the off angle in Example 1 using an XRD (x_ray diffracti) apparatus. Further, the distribution of the off-angle in the plane of the GaN substrate was also measured by the same measurement method as in the measurement method of Example 1.

GaN基板之位錯密度之測定: 使用女裝於SEM上之CL ’利用與實施例1中之測定方、、去 相同之測定方法’來測定GaN基板之位錯密度。 發光元件之發光波長之變化量(藍移:Αχ)的測定: 改變對所製作之發光元件供給之電流的值,同時測定自 發光元件射出之光的波長。具體測定方法與實施例丨中之 測定方法相同。並且,將對發光元件供給的電流之值達到 足夠大之值(具體而言為200 mA)時之發光波長、與電流為 10 mA時之發光波長的差作為藍移(Blue shift : Δλ(單位: nm))。 發光元件之經過1000小時之時刻之動作電壓的增加量 (△VqP)之測定: 對於所製作之發光元件,於8(TC之溫度下測定對發光元 件通入100 mA之電流所需之電壓,來作為動作開始之初之 動作電壓、及動作進行1000小時後之動作電壓,將其增加 部分作為Ανορ(單位:V)。Measurement of Dislocation Density of GaN Substrate: The dislocation density of the GaN substrate was measured using CL' of the SEM on the SEM by the same measurement method as in the measurement of Example 1. Measurement of the amount of change in the emission wavelength of the light-emitting element (blue shift: Αχ): The value of the current supplied from the light-emitting element was changed, and the wavelength of the light emitted from the light-emitting element was measured. The specific measurement method is the same as that in the examples. Further, the difference between the emission wavelength when the value of the current supplied to the light-emitting element is sufficiently large (specifically, 200 mA) and the emission wavelength when the current is 10 mA is taken as a blue shift (Blue shift: Δλ (unit) : nm)). Measurement of the amount of increase in operating voltage (ΔVqP) at 1000 hours after the light-emitting element is measured: For the light-emitting element to be fabricated, the voltage required to pass a current of 100 mA to the light-emitting element is measured at a temperature of 8 (TC). The operating voltage at the beginning of the operation and the operating voltage after 1000 hours of operation are taken as Ανορ (unit: V).

GaN基板面内之發光波長分布(σ)之測定: 131436.doc •30· 200903867 對為形成發光元件而於表面形成有磊晶層之GaN基板, 測定面内之波長分布。具體測定方法如下:於GaN基板之 背面形成η電極,於磊晶層上形成p電極,然後,自基板中 心、以及在<1-100>方向及<11_20>方向上距離該中心分別 為20 mm的4點即合計5點,以每點1〇個而取出口5〇〇 )^之 發光元件。對該結果所獲得之合計5〇個發光元件,於室溫 下施加脈衝電流,測定發光光譜,並分別計算出各點之發 光波長之平均值。並且,分別計算中心與其他4點之上述 發光波長之平均值(5個資料),將資料之差之絕對值中的最 大值作為波長分布(單位為nm)。 (4)測定結果 以下’揭示測定結果。Measurement of emission wavelength distribution (σ) in the plane of the GaN substrate: 131436.doc • 30· 200903867 The wavelength distribution in the plane was measured for a GaN substrate having an epitaxial layer formed on the surface of the light-emitting device. The specific measurement method is as follows: forming an n-electrode on the back surface of the GaN substrate, forming a p-electrode on the epitaxial layer, and then respectively, from the center of the substrate, and in the direction of <1-100> and <11_20> The 4 points of 20 mm are 5 points in total, and the light-emitting elements of 5 〇〇) are taken at 1 point per point. To a total of 5 light-emitting elements obtained by the results, a pulse current was applied at room temperature, and an emission spectrum was measured, and the average values of the emission wavelengths of the respective points were calculated. Further, the average value (5 data) of the above-mentioned light-emitting wavelengths of the center and the other four points is calculated, and the maximum value among the absolute values of the differences of the data is taken as the wavelength distribution (unit: nm). (4) Measurement results The following results are disclosed.

131436.doc • 31 - 200903867 【1<】 (鹅吨苓°)荟¥ C7N 比較例 GaAs CS 〇 500 1 1x10'" I 1—« o § § 1030 3xl0'z CN d 0 0 0 成長聚合 成長聚合 成長聚合 成長聚合 成長聚合 1 1 1 00 實施例 〇 〇 500 I lxlO_J 1 o § 1030 1 3xl0'2 1 CN 0 0 0 0 39.90 0.02 ±1.4 ±1.6 1.00E+08 0.06 1 ±2.6 卜 實施例 〇 500 1 lxlO'J 1 o § § 1030 1 3xl〇·' 1 0 0 0 0 34.19 0.02 +1 ±1.0 i 1.00E+07 in 0.05 1 ΐί v〇 實施例 VO (N 〇 500 1 ixi〇"J 1 1—^ o s 1030 1 3xl0_z 1 (N 〇 0 0 26.12 | 0.02 <N +1 +1 | 1.00E+07 0.04 1 ♦> in 〇 〇 lxio·3 l—l o § § 1030 1 3xl0'2 1 CN 〇 0 0 0 isrf | 25.01 | | 0.00 1 ±2.4 ^±23 | 1.00E+07 | 00 1 0.06 1 00 f丨 寸 參考例 00 〇 500 lxlO-3 o s s 1030 3xl0'2 (N 〇 0 0 0 18.40 0.01 ±2.0 ±2.0 1.00E+07 00 1 0.04 1 o 參考例i 〇 〇 500 lxlO·3 o s § 1030 3xl0·2 CN 〇 0 0 f > 0 10.05 | 0.00 ±2.0 ±2^ 1.00E+07 | 〇 1 0.05 i ±5_0 CN 比較例 〇 500 lxlO·3 o § § 1030 3xl0·2 CN 〇 0 0 0 4.95 \ 0.02 | ±1.8 ±1.9 1.00E+07 宕 1 0.05 1 On f丨 1-^ 比較例 〇 〇 500 lxlO-3 o § § 1030 3xl0·2 CN 〇 0 1 1 1 0 0.01 Γ 〇.〇1 ^ ϊι +1 1.00E+07 CS 1 0.06 1 ΐι 樣品ID 分類 材質 Nw/ V 偏離方向<l-10>—GaN中 之對應偏移方向『11-201 偏離角Θ1 偏離方向<ll-2>—GaN中 之對應偏移方向Π-1001 偏離角Θ2 溫度°c HC1 atm NH3 atm 時間min 厚度nm 溫度°c HC1 atm NH3 atm 時間min 厚度nm 摻雜物 k k 〇 〇 Μ 绛 i 偏離角0a CN 二 Η 圳_ W 偏離角eb 偏離角面内分布Δθα 偏離角面内分布A0b 位錯密度 < "w- 1 < 2英吋面内波長分布σ -32- 131436.doc 200903867 (N 00 馨 卜 {k 取 i〇 寸 m 1—^ fNj % 妹 1—« 馨 H ΛΧ 樣品ID 分類 —0 鉍龙 Η33Ί 〇 $ 500 I 1x10'" 1 o § i 1030 1 3x10*' I (N 0 0 0 0 〇 〇 500 1 lxl0'J I »—1 o § § ,1030 1 3xl0'2 1 CN 0 0 0 r*"H 0 ^r 〇 对 CO 500 lxlO-" T—H o s s ,1030 1 3x10'" 1 (N 〇 〇 〇 0 〇 \〇 (N 500 lxl0_J d s s 1030 3x10^ <N 〇 〇 〇 0 〇 vri CS 500 1x10^ > > o § § 1030 3xl0·2 〇 〇 〇 0 〇 00 1—1 500 1 ΐχίο·3 1 1—^ o s s ! 1030 3xl0-2 (N 〇 〇 〇 0 w- 〇 〇 500 lxlO-3 o s s 1030 3xl0·2 (N 〇 100 0 〇 500 lxlO'3 o s s 1030 3xl0'2 CN 〇 0 0 0 'w/ 〇 ο 500 lxlO-3 o s s 1030 3xl0'2 0 0 0 0 4- r- 〇 ^ 1¾ 2枚 v$ 5¾ 偏離角Θ1 偏離方向<ll-2>—GaN中 之對應偏移方向「1-1001 偏離角Θ2 溫度°c HC1 atm NH3 atm 時間min 厚度nm 溫度°c HC1 atm B m ffi z 時間min 厚度nm 摻雜物 (t^)^" $ί $£ 【ool-l】€w# 擊131436.doc • 31 - 200903867 [1<] (Goose ton 苓 °) Hui ¥ C7N Comparative Example GaAs CS 〇500 1 1x10'" I 1—« o § § 1030 3xl0'z CN d 0 0 0 Growth and growth Polymerization Growth Polymerization Polymerization Polymerization Polymerization Polymerization 1 1 00 Example I500 I lxlO_J 1 o § 1030 1 3xl0'2 1 CN 0 0 0 0 39.90 0.02 ±1.4 ±1.6 1.00E+08 0.06 1 ±2.6 Example 〇 500 1 lxlO'J 1 o § § 1030 1 3xl〇·' 1 0 0 0 0 34.19 0.02 +1 ±1.0 i 1.00E+07 in 0.05 1 ΐί v〇Example VO (N 〇500 1 ixi〇"J 1 1—^ os 1030 1 3xl0_z 1 (N 〇0 0 26.12 | 0.02 <N +1 +1 | 1.00E+07 0.04 1 ♦> in 〇〇lxio·3 l-lo § § 1030 1 3xl0'2 1 CN 〇0 0 0 isrf | 25.01 | | 0.00 1 ±2.4 ^±23 | 1.00E+07 | 00 1 0.06 1 00 f 丨 Reference example 00 〇500 lxlO-3 oss 1030 3xl0'2 (N 〇0 0 0 18.40 0.01 ±2.0 ±2.0 1.00E+07 00 1 0.04 1 o Reference example i 〇〇500 lxlO·3 os § 1030 3xl0·2 CN 〇0 0 f > 0 10.05 | 0.00 ±2.0 ±2^ 1.00E+ 07 | 〇1 0.05 i ±5_0 CN ratio Comparative example 500 lxlO·3 o § § 1030 3xl0·2 CN 〇0 0 0 4.95 \ 0.02 | ±1.8 ±1.9 1.00E+07 宕1 0.05 1 On f丨1-^ Comparative example l500 lxlO-3 o § § 1030 3xl0·2 CN 〇0 1 1 1 0 0.01 Γ 〇.〇1 ^ ϊι +1 1.00E+07 CS 1 0.06 1 ΐι Sample ID Classification Material Nw/ V Deviation Direction <l-10> - GaN Corresponding offset direction "11-201 Offset angle Θ1 Offset direction <ll-2> - Corresponding offset direction in GaN Π-1001 Offset angle Θ2 Temperature °c HC1 atm NH3 atm Time min Thickness nm Temperature °c HC1 atm NH3 atm time min thickness nm dopant kk 〇〇Μ 绛i off-angle 0a CN Η _ _ _ Off-angle eb Off-plane in-plane distribution Δθα Off-plane in-plane distribution A0b Dislocation density <"w- 1 &lt 2 inch in-plane wavelength distribution σ -32- 131436.doc 200903867 (N 00 Xinbu {k take i〇 inch m 1—^ fNj % sister 1—« Xin H ΛΧ Sample ID Classification—0 铋龙Η33Ί 〇$ 500 I 1x10'" 1 o § i 1030 1 3x10*' I (N 0 0 0 0 〇〇500 1 lxl0'J I »— 1 o § § ,1030 1 3xl0'2 1 CN 0 0 0 r*"H 0 ^r 〇 to CO 500 lxlO-" T-H oss ,1030 1 3x10'" 1 (N 〇〇〇0 〇 \〇(N 500 lxl0_J dss 1030 3x10^ <N 〇〇〇0 〇vri CS 500 1x10^ >> o § § 1030 3xl0·2 〇〇〇0 〇00 1—1 500 1 ΐχίο·3 1 1 —^ oss ! 1030 3xl0-2 (N 〇〇〇0 w- 〇〇500 lxlO-3 oss 1030 3xl0·2 (N 〇100 0 〇500 lxlO'3 oss 1030 3xl0'2 CN 〇0 0 0 'w/ 〇ο 500 lxlO-3 oss 1030 3xl0'2 0 0 0 0 4- r- 〇^ 13⁄4 2 v$ 53⁄4 Deviation angle 1 Deviation direction <ll-2> - Corresponding offset direction in GaN "1-1001 Off-angle Θ2 temperature °c HC1 atm NH3 atm time min thickness nm temperature °c HC1 atm B m ffi z time min thickness nm dopant (t^)^" $ί $£ [ool-l]€w#

SO 06·6ε 8Ό+Ι 8Ό+Ι 80+H00,l 寸 90ΌSO 06·6ε 8Ό+Ι 8Ό+Ι 80+H00, l inch 90Ό

SO π·寸ε -¾ 0+ι ΖΌ+ΗΟΟ,ι iSO π·inchε -3⁄4 0+ι ΖΌ+ΗΟΟ,ι i

I 6Ό+Ι 8Ό+Ι 卜 ο+ΗΟΟ·ι 寸00 00.0 s-z Δ,ι+Ι 6Ί+Ι Ζ,Ο+ΗΟΟΊ 8.0 00.0 -.- 6·ι+ι 8·1+ι ΖΌ+300.1I 6Ό+Ι 8Ό+Ι 卜 ΗΟΟ+ΗΟΟ·ι 寸00 00.0 s-z Δ,ι+Ι 6Ί+Ι Ζ,Ο+ΗΟΟΊ 8.0 00.0 -.- 6·ι+ι 8·1+ι ΖΌ+300.1

L °°0.0 00.0 寸-οι 3 0*" 卜0+300.1 6 90.0L °°0.0 00.0 inch-οι 3 0*" Bu 0+300.1 6 90.0

SO 30- •1+, ι+ι ΖΌ+Η00·ι 61 寸0Ό 5.0 ΙΟΌ ΏSO 30- •1+, ι+ι ΖΌ+Η00·ι 61 inch 0Ό 5.0 ΙΟΌ Ώ

S+H0S ΊΖS+H0S ΊΖ

I ^00 【ο''ιι】φ^璣獾 qe吡鶬牮 βθν怜φε喵砚錯擊 qev^^Mfly锩痤 (Λ)αΟΛν ^ s ^ ^ ^ ^ ^ ^ (H吨N6)荽¥ 131436.doc •33· 200903867 樣品ID1〜18之各基底基板中,係使基準面方位[111]相 對於主表面之法線向量僅朝向1個方向(<1-10〉方向或<11-2>方向)傾斜。因此,於所形成之GaN基板中,面方位 [0001]基本上亦相對於主表面之法線向量朝向[11-20]方向 或[1-100]方向較大程度地傾斜著。 由表1及表2可知,於將基底基板之偏離角Θ1或Θ2設定為 — 10°以上40°以下之情形時(即,將GaN基板之偏離角0a或0b 設定為1 0°以上40°以下之情形時),藍移之值減小。 [表3] 樣品ID 19 20 21 22 分類 實施例 實施例 實施例 實施例 基底基板 材質 GaAs 尺寸(英吋) 2 偏離方向<1-10>—GaN 中之對應偏移方向 Π1-201 偏離角Θ1 10 10 10 10 偏離方向<ll-2>—GaN 中之對應偏移方向 Γ1-100] 偏離角Θ2 0.03 0.05 5 10 成 長 條 件 緩衝層 溫度°c 500 500 500 500 HC1 atm lxlO'J 1x10'" 1x10'" lxl〇·3 NH3 atm 0.1 0.1 0.1 0.1 時間min 60 60 60 60 厚度nm 60 60 60 60 從日曰層 溫度°C 1030 1030 1030 1030 HC1 atm 3x10-2 3xl0'2 3xl0_" 3x1 O'" NH3 atm 0.2 0.2 0.2 0.2 時間min 100 100 100 100 厚度nm 10 10 10 10 摻雜物 〇(氧) 〇(氧) 〇(氧) 〇(氧) 產物(GaN晶體) 尺寸(英叶) 偏截 t方向丨Μ001 偏離角Θ a 9.80 10.22 10.15 10.10 偏離方向「11-201 偏離角0b 0.02 0.05 5.01 5.01 偏離角面内分布Δθα ±0.7 ±0.6 ±0·6 ±0_6 偏離角面内分布A0b ±0.9 ±0.5 ±0_5 ±0_5 位錯密度 1.00Ε+07 1.00E+07 1.00Ε+07 1.00Ε+07 藍移(Δλ) 8 8 9 9 △Vop(V) 0.005 0.004 0.003 0.003 2英吋面内波長分布σ ±2_5 ±2_8 ±3 ±2.9 -34- 131436.doc 200903867 [表4] 樣品ID 23 24 25 26 分類 實施例 實施例 實施例 實施例 基底基板 材質 GaAs 尺寸(英对) 2 偏離方向<l-10>—GaN 中之對應偏移方向 [11-201 偏離角Θ1 0.03 0.05 5 10 偏離方向<ll-2>—GaN 中之對應偏移方向 [1-1001 偏離角Θ2 10 10 10 10 成 長 條 件 緩衝層 溫度°c 500 500 500 500 HC1 atm 1x10—J lxlO'3 lxlO'J lxlO'J NH3 atm 0.1 0.1 0.1 0.1 時間min 60 60 60 60 厚度nm 60 60 60 60 蟲日曰層 溫度°c 1030 1030 1030 1030 HC1 atm 3x10'" 3xl0'2 3xl0-2 3x10'2 NH3 atm 0.2 0.2 0.2 0.2 時間min 100 100 100 100 厚度nm 10 10 10 10 摻雜物 〇(氧) 〇(氧) 〇(氧) 〇(氧) 產物(GaN晶體) 尺寸(英0寸) 偏離方向[1-100] 偏離角 0.03 0.05 4.99 10.12 偏離方向[11-20] 偏離角eb 9.90 10.12 10.12 10.11 偏離角面内分布A0a ±0.6 ±0.6 ±0.6 ±0.7 偏離角面内分布 ±0_5 ±0.5 ±0.5 ±0.9 位錯密度 1.00E+07 1.00E+07 1.00E+07 1.00Ε+07 藍移(Δλ) 8 9 δ 8 △Vop(V) 0.004 0.005 0.006 0.005 2英叶面内波長分布σ ±2.5 ±2·1 ±2.8 ±2.7 表3及表4表示將基底基板之偏離角Θ1及Θ2中之一者固定 為10。,將另一者設定為0.03°以上10°以下之情形時(即, 將GaN基板之偏離角0a及0b中之一者固定為10°左右,將另 一者設定為0.02°或0.03°以上10°以下之情形時)的測定結 果。可知,相比表1及表2所示之比較例及參考例之樣品, 表3及表4所示之實施例之樣品中,GaN基板之偏離角面内 -35- 131436.doc 200903867 分布A0a及A0b、動作電壓之增加量(Δνορ)、進而面内波長 分布(σ)減小。其原因並不明確,但亦可認為原因在於: 當使用在2個方向上具有偏離角之基底基板(GaAs基板)來 成長GaN結晶層時’基底基板之一部分構成成分自基底基 板向外部釋放出(例如於使用GaAs基板之情形時,As自基 底基板釋放出)之現象得到抑制,結果可抑制所形成之GaN _ 結晶層之晶體產生應變。其結果,所獲得之GaN基板之偏 離角面内分布A0a及Δθϊ)、以及面内波長分布(σ)減小。 [表5] 樣品 27 28 29 30 分類 實施例 實施例 實施例 實施例 基底基板 材質 GaAs 尺寸(英叶) 2 偏離方向<1-10>—GaN 中之對應偏移方向 Γ11-20] 偏離角Θ1 18 18 18 18 偏離方向<ll-2>->GaN 中之對應偏移方向 [1-1001 偏離角Θ2 0.03 0.05 5 10 成 長 條 件 緩衝層 溫度°c 500 500 500 500 HC1 atm lxlO'J lxlO'J lxl 0'" lxlO'J NH3 atm 0.1 0.1 0.1 0.1 時間min 60 60 60 60 厚度nm 60 60 60 60 層 溫度°C 1030 1030 1030 1030 HC1 atm 3χ10·ζ 3x10'" 3x1 O'" 3χ1〇·" NH3 atm 0.2 0.2 0.2 0.2 時間min 100 100 100 100 厚度nm 10 10 10 10 摻雜物 〇(氧) 〇(氧) 〇ί氧) 〇(氧) 產物(GaN晶體) 尺寸(英叶) 偏離 方向Π-1001 偏離角0a 18.15 17.88 18.15 17.88 偏離方向丨11-201 偏離角eb 0.03 0.05 5.00 9.92 偏離角面内分布AGa ±0.7 ±0.6 ±0_6 ±0_6 偏離角面内分布A0b ±0.9 ±0.5 ±0.5 ±0_5 位錯密度 1.00Ε+07 1.00E+07 1.00Ε+07 1.00Ε+07 藍移(ΔΑ) 6 7 6 6 △Vop(V) 0.002 0.003 0.004 0.004 2英吋面内波長分布σ ±2.5 ±2·1 土 2.8 ±2.6 -36- 131436.doc 200903867 [表6] 樣品ID 31 32 33 34 分類 實施例 實施例 實施例 實施例 基底基板 材質 GaAs 尺寸(英吋) 2 偏離方卢 中之费 j<1-10>—-GaN •應偏移方向 11-201 偏離角Θ1 0.03 0.05 5 10 偏離方向<ll-2>->GaN 中之對應偏移方向 「1-1001 偏離角Θ2 18 18 18 18 成 長 條 件 緩衝層 溫度°c 500 500 500 500 HC1 atm lxlO'J lxlO'J 1x10'" lxlO"3 NH3 atm 0.1 0.1 0.1 0.1 時間min 60 60 60 60 厚度nm 60 60 60 60 遙日日層 溫度°C 1030 1030 1030 1030 HC1 atm 3x10^ 3χ1〇·" 3χ10-2 3x10*" NH3 atm 0.2 0.2 0.2 0.2 時間min 100 100 100 100 厚度nm 10 10 10 10 推雜物 〇(氧) 〇(氧) 〇(氧) 〇(氧) 產物(GaN晶體) 尺寸(英忖) 偏離方向[1-100] 偏離角 0.02 0.05 5.01 10.17 偏離方向[11-20] 偏離角eb 18.16 17.88 18.08 18.08 偏離角面内分布 ±0.6 ±0.6 ±0.7 ±0.6 偏離角面内分布A0b ±0.5 ±0.5 ±0.9 ±0.5 位錯密度 1.00E+07 1.00Ε+07 1.00Ε+07 1.00E+07 藍移(Δλ) 6 6 7 7 △Vop(V) 0.005 0.005 0.004 0.004 2英吋面内波長分布σ ±2_5 ±2.1 ±2.5 ±2.6 表5及表6表示將基底基板之偏離角Θ1及Θ2中之一者固定 為18。,將另一者設定為0.03°以上10°以下之情形時(即, 將GaN基板之偏離角0a及0b中之一者固定為18°左右,將另 一者設定為0.02°或0.03°以上10°以下之情形時)的測定結 果。 37- 131436.doc 200903867 [表7] 樣品ID 35 36 37 38 分類 實施例 實施例 實施例 實施例 基底基板 材質 GaAs 尺寸(英吋) 2 偏離方向<l-l〇>—GaN 中之對應偏移方向 Π1-201 偏離角Θ1 25 25 25 25 偏離方向<ll-2>—GaN 中之對應偏移方向 [1-1001 偏離角Θ2 0.03 0.05 5 10 成 長 條 件 緩衝層 溫度°c 500 500 500 500 HC1 atm 1x10'" lxlO'J lxlO'J lxlO'J NH3 atm 0.1 0,1 0.1 0.1 時間min 60 60 60 60 厚度nm 60 60 60 60 日日層 溫度°C 1030 1030 1030 1030 HC1 atm 3x10'2 3xl〇·2 3χ10·2 3xl0_/ NH3 atm 0.2 0.2 0.2 0.2 時間min 100 100 100 100 厚度nm 10 10 10 10 摻雜物 〇(氧) 〇(氧) 〇(氧) 〇(氧) 產物(GaN晶體) 尺寸(英吋) 偏離方向[1-100] 偏離角0a 24.97 24.85 24.88 24.95 偏離方向[11-20] 偏離角0b 0.02 0.05 4.97 9.97 偏離角面内分布 ±0·7 ±0.6 ±0.6 ±0.6 偏離角面内分布Aeb ±0·9 ±0_5 ±0.5 ±0·5 位錯密度 1.00Ε+07 1.00E+07 1.00E+07 1.00E+07 藍移(Δλ) 4 4 4 4 AVop(V) 0.003 0.004 0.005 0.005 2英吋面内波長分布σ ±2.4 ±2.1 ±2.5 ±2.3 38- 131436.doc 200903867 [表8] 樣品ID 39 40 41 42 分類 實施例 實施例 實施例 實施例 基底基板 材質 GaAs 尺寸(英叶) 2 偏離方向<l-l〇>—GaN 中之對應偏移方向 [11-20] 偏離角Θ1 0.03 0.05 5 10 偏離方向<ll-2>—GaN 中之對應偏移方向 [1-1001 偏離角Θ2 25 25 25 25 成 -¾. 條 件 緩衝層 溫度°c 500 500 500 500 HC1 atm lxlO'J lxlO·3 1x10—3 lxlO'3 NH3 atm 0.1 0.1 0.1 0.1 時間min 60 60 60 60 厚度nm 60 60 60 60 日日層 溫度°C 1030 1030 1030 1030 HC1 atm 3xl0'2 3xl0'2 3x10'" 3x1 O'" NH3 atm 0.2 0.2 0.2 0.2 時間min 100 100 100 100 厚度nm 10 10 10 10 摻雜物 〇(氧) 〇(氧) 〇(氧) 〇(氧) 產物(GaN晶體) 尺寸(英0寸) 偏離方向[1-100] 偏離角ea 0.02 0.05 4.98 9.98 偏離方向[11-20] 偏離角eb 24.87 24.85 24.84 24.81 偏離角面内分布A0a ±0.7 土 0.6 ±0.6 ±0.6 偏離角面内分布A0b ±0.9 ±0_5 ±0.5 土 0.5 位錯密度 1.00E+07 1.00E+07 1.00E+07 1.00E+07 藍移(Δλ) 5 5 4 4 AVop(V) 0.003 0.002 0.005 0.005 2英吋面内波長分布σ ±2.4 ±2.2 ±2.5 ±2_6 表7及表8表示將基底基板之偏離角Θ1及Θ2中之一者固定 為25。,將另一者設定為0.03。以上10。以下之情形時(即, 將GaN基板之偏離角Ga及ΘΙ)中之一者固定為25°左右,將另 一者設定為0.02。以上10°以下之情形時)的測定結果。 -39- 131436.doc 200903867 [表9] 樣品ID 43 44 45 46 分類 實施例 實施例 實施例 實施例 基底基板 材質 GaAs 尺寸(英时) 2 偏離方向<1-10>—GaN 中之對應偏移方向 [11-20] 偏離角Θ1 28 28 28 28 偏離方向<ll-2>->GaN 中之對應偏移方向 [1-100] 偏離角Θ2 0.03 0.05 5 10 成 1¾ 條 件 緩衝層 溫度。C 500 500 500 500 HC1 atm lxl〇·3 lxlO'3 lxlO'3 lxlO'3 NH3 atm 0.1 0.1 0.1 0.1 時間min 60 60 60 60 厚度nm 60 60 60 60 日曰層 溫度°C 1030 1030 1030 1030 HC1 atm 3x10'2 3xl0'2 3x10'2 3xl0'2 NH3 atm 0.2 0.2 0.2 0.2 時間min 100 100 100 100 厚度nm 10 10 10 10 摻雜物 〇(氧) 〇(氧) 〇(氧) 〇(氧) 產物(GaN晶體) 尺寸(英吋) 偏離方向[1-100] 偏離角Ga 28.12 28.03 28.31 28.16 偏離方向[11-20] 偏離角0b 0.03 0.05 5.02 10.02 偏離角面内分布A0a ±0_6 ±0.6 ±0.6 ±0.6 偏離角面内分布 ±0.5 ±0.5 ±0_5 ±0_5 位錯密度 1.00Ε+07 1.00E+07 1.00E+07 1.00E+07 藍移(Δλ) 4 5 4 4 AVop(V) 0.003 0.002 0.001 0.001 2英对面内波長分布σ ±2.6 ±2.0 ±2_0 ±1·9 40- 131436.doc 200903867 [表 ι〇] 樣品ID 47 48 49 50 51 分類 實施例 實施例 實施例 實施例 實施例 基底基板 材質 GaAs 尺寸(英对) 2 偏離方向<l-10>—GaN 中之對應偏移方向 [11-20] 偏離角Θ1 0 0.03 0.05 5 10 偏離方卢 中之# ]<ll-2>—GaN •應偏移方向 1-1001 偏離角Θ2 28 28 28 28 28 成 長 條 件 緩衝層 溫度°c 500 500 500 500 500 HC1 atm lxlO'J lxlO'J lxlO'J lxlO'J lxlO'J NH3 atm 0.1 0.1 0.1 0.1 0.1 時間min 60 60 60 60 60 厚度nm 60 60 60 60 60 日曰層 溫度°C 1030 1030 1030 1030 1030 HC1 atm 3x10'2 3x10'2 3x10'2 3xl0'2 3x10'" NH3 atm 0.2 0.2 0.2 0.2 0.2 時間min 100 100 100 100 100 厚度nm 10 10 10 10 10 摻雜物 〇(氧) 〇(氧) 〇(氧) 〇(氧) 〇(氧) 產物(GaN晶體) 尺寸(英对) 偏離方向[1-100] 偏離角0a 0.01 0.02 0.05 4.99 10.10 偏離方向[11-20] 偏離角0b 28.22 27.80 27.55 28.16 28.04 偏離角面内分布A0a ±0.6 土 0.6 ±0.6 ±0.6 ±0·6 偏離角面内分布A0b ±0.5 ±0.5 ±0.5 ±0_5 ±0.5 位錯密度 1.00Ε+07 1.00Ε+07 1.00Ε+07 1.00E+07 1.00E+07 藍移(Δλ) 5 4 5 4 4 AVop(V) 0.02 0.003 0.002 0.001 0.001 2英叶面内波長分布σ ±7 ±3 ±2·8 ±2.3 ±2.2 表9及表10表示將基底基板之偏離角Θ1及Θ2中之一者固 定為28。,將另一者設定為0.03。以上10°以下之情形時 (即,將GaN基板之偏離角0a及0b中之一者固定為28°左 右,將另一者設定為0.02°或0.03。以上10°以下之情形時)的 測定結果。 -41 - 131436.doc 200903867 [表 ll] 樣品ID 52 53 54 55 分類 實施例 實施例 實施例 實施例 基底基板 材質 GaAs 尺寸(英吋) 2 偏離方向<l-10>^GaN 中之對應偏移方向 [11-20] 偏離角Θ1 40 40 40 40 偏離方向<ll-2>^GaN 中之對應偏移方向 [1-100] 偏離角Θ2 0.03 0.05 5 10 成 條 件 緩衝層 溫度°c 500 500 500 500 HC1 atm lxlO'3 lxlO'3 lxl 0'3 lxlO·3 NH3 atm 0.1 0.1 0.1 0.1 時間min 60 60 60 60 厚度nm 60 60 60 60 抑B曰層 溫度°C 1030 1030 1030 1030 HC1 atm 3xl〇·2 3xl〇·2 3xl0'2 3xl0'2 NH3 atm 0.2 0.2 0.2 0.2 時間min 100 100 100 100 厚度nm 10 10 10 10 摻雜物 〇(氧) 〇(氧) 〇(氧) 〇(氧) 產物(GaN晶體) 尺寸(英叶) 偏離方向[1-100] 偏離角 39.81 40.13 39.88 39.88 偏離方向[11-20] 偏離角eb 0.03 0.05 5.02 10.02 偏離角面内分布ΔΘ3 ±0.6 ±0.6 ±0_6 ±0.6 偏離角面内分布 土 0.5 土 0.5 ±0_5 ±0.5 位錯密度 1.00E+07 1.00E+07 1.00E+07 1.00E+07 藍移(ΔΑ) 4 4 4 4 △Vop(V) 0.005 0.002 0.005 0.005 2英忖面内波長分布σ ±2.6 ±2_9 ±2.0 ±2.1 42- 131436.doc 200903867 [表 12] 樣品ID 56 57 58 59 分類 實施例 實施例 實施例 實施例 基底基板 材質 GaAs 尺寸(英吋) 2 偏離方向<l-l〇>^GaN 中之對應偏移方向 Π1-201 偏離角Θ1 0.03 0.05 5 10 偏離方向<ll-2>—GaN 中之對應偏移方向 [1-1001 偏離角Θ2 40 40 40 40 成 長 條 件 緩衝層 溫度°c 500 500 500 500 HC1 atm lxlO'J lxlO'3 lxlO'J lxlO'3 NH3 atm 0.1 0.1 0.1 0.1 時間min 60 60 60 60 厚度nm 60 60 60 60 從日日層 溫度°C 1030 1030 1030 1030 HC1 atm 3xl0·2 3χ1〇·" 3xl0·2 3x10'" NH3 atm 0.2 0.2 0.2 0.2 時間min 100 100 100 100 厚度nm 10 10 10 10 摻雜物 〇(氧) 〇(氧) 〇(氧) 〇(氧) 產物(GaN晶體) 尺寸(英吋) 偏離方向[1-100] 偏離角0a 0.02 0.05 4.99 10.01 偏離方向[11-20] 偏離角0b 39.89 39.86 39,91 39.94 偏離角面内分布 ±0.6 ±0.6 ±0.6 ±0_6 偏離角面内分布Aeb ±0_5 ±0.5 ±0_5 ±0.5 位錯密度 1.00E+07 1.00Ε+07 1.00E+07 1.00E+07 藍移(ΔΑ) 3 3 4 4 AVop(V) 0.005 0.003 0.005 0.005 2英忖面内波長分布σ ±2.7 ±3_0 ±2.0 ±2·1 表11及表12表示將基底基板之偏離角Θ1及Θ2中之一者固 定為40°,將另一者設定為0.03°以上10°以下之情形時 (即,將GaN基板之偏離角0a及eb中之一者固定為40°左 右,將另一者設定為0.02°或0.03°以上10°以下之情形時)的 測定結果。 -43 - 131436.doc 200903867 [表 13] 樣品ID 60 61 62 63 64 65 分類 實施例 實施例 實施例 實施例 比較例 比較例 基底基板 材質 GaAs 尺寸(英0寸) 2 偏離方向<1-1〇>— GaN中之對應偏移方 向[11-20] 偏離角Θ1 26 26 40 40 40 45 偏離方向<11-2>— GaN中之對應偏移方 向[1-100] 偏離角Θ2 26 40 26 40 45 40 成 長 條 件 緩衝層 溫度°c 500 500 500 500 500 500 HC1 atm 1x10-3 lxlO-3 lxlO'3 lxlO'3 lxlO'3 lxlO'3 NH3 atm 0.1 0.1 0.1 0.1 0.1 0.1 時間min 60 60 60 60 60 60 厚度nm 60 60 60 60 60 60 日日層 溫度°C 1030 1030 1030 1030 1030 1030 HC1 atm 3x10-2 3xlO·2 3xl0-2 3xl0'2 3xl0.2 3xl〇-2 NH3 atm 0.2 0.2 0.2 0.2 0.2 0.2 時間min 100 100 100 100 100 100 厚度nm 10 10 10 10 10 10 摻雜物 〇(氧) 〇(氧) 〇(氧) 〇(氧) 〇(氧) 〇(氧) 產物(GaN晶 體) 尺寸(英°寸) 偏離方向[1-100] 偏離角 25.85 26.06 40.08 40.04 成長聚合 成長聚合 偏離方向[11-20] 偏離角eb 25.93 39.78 25.98 40.02 成長聚合 成長聚合 偏離角面内分布 ±0.6 ±0.6 ±0.6 ±0_6 成長聚合 成長聚合 偏離角面内分布A0b ±0.5 土 0.5 ±0.5 ±0.5 成長聚合 成長聚合 位錯密度 1.00E+07 1.00E+07 1.00E+07 1.00E+07 成長聚合 成長聚合 藍移(Δλ) 4 4 3 3 - - AVop(V) 0.003 0.003 0.003 0.003 - - 2英叶面内波長分布σ ±2.7 ±2.7 +2.5 ±2.7 - - • 44 - 131436.doc 200903867 表13表示於26°以上45。以下(具體而言為26。、40。、45。) 之範圍内改變基底基板之偏離角Θ1及Θ2之情形(即,於26° 以上45。以下之範圍内改變GaN基板之偏離角0a及0b之情 形)。由表13可知,於將基底基板之偏離角Θ1及Θ2中之任一 者設定為40°以上(具體而言為45。)之情形時,無法形成 GaN結晶層。另一方面,於將基底基板之偏離角Θ1及Θ2設 定為40°以下之情形時(即,將GaN基板之偏離角0a及0b設 定為40°以下之情形時),均會使GaN基板之偏離角面内分 布及Δθϊ)、動作電壓之增加量(AVop)、進而面内波長分 布(σ)小於表1及表2所示的比較例及參考例。 相比表1及表2所示之比較例或實施例之樣品,上述之表 3〜表1 3所示之實施例之樣品(具體而言,將GaN基板之偏離 角0a及ΘΙ)中之一者設定為1 0。以上40°以下,將另一者設定 為0.〇2。以上40。以下之樣品)的GaN基板之偏離角面内分布 △0a及ΔΘΙ?、動作電壓之增加量(Δνορ)、進而面内波長分布 (σ)減小。 131436.doc -45- 200903867 [表 14] 樣品ID 66 67 68 69 70 分類 實施例 實施例 實施例 實施例 實施例 基底基板 材質 Sap. Sap. ZnO SiC GaN 尺寸(英吋) 2 偏離方向<l-l〇>^GaN 中之對應偏移方向 [11-20] 偏離角Θ1 26 40 26 26 26 偏離方向<ll-2>—GaN 中之對應偏移方向 [1-1001 偏離角Θ2 26 40 26 26 26 成 條 件 緩衝層 溫度°c 500 500 500 500 - HC1 atm lxlO'J lxlO·4 lxlO'5 lxlO-6 - NH3 atm 0.1 0.1 0.1 0.1 - 時間min 60 60 60 60 - 厚度nm 60 60 60 60 - 曰日層 溫度°c 1030 1030 1030 1030 1030 HC1 atm 3xl0·2 3x10'" 3xl0-2 3x10'" 3xl0·2 NH3 atm 0.2 0.2 0.2 0.2 0.2 時間min 100 100 100 100 100 厚度nm 10 10 10 10 10 摻雜物 Si Si Si Si Si 產物 (GaN晶體) 尺寸(英吋) 偏離方向[1-100] 偏離角0a 26.03 39.94 26.05 25.95 26.05 偏離方向[11-20] 偏離角eb 25.98 40.02 26.03 25.91 25.88 偏離角面内分布A0a ±0.6 ±0.6 ±0_6 ±0_6 ±0,6 偏離角面内分布A0b ±0_5 ±0.5 ±0_5 土 0.5 ±0.5 位錯密度 1.00E+07 1.00E+07 1.00E+07 1.00E+07 2.00E+06 藍移(Δλ) 5 5 5 4 4 △Vop(V) 0.004 0.005 0.005 0.005 0.003 2英吋面内波長分布σ ±2.8 ±2·8 ±2.4 ±2.1 ±2.2 表14表示使用由GaAS以外的材料所構成之基板來作為 基底基板時之樣品的GaN之成膜條件、測定結果。由該等 樣品ID66〜70之測定結果可知,即便使用該等GaAs基板以 外之基板(藍寶石基板、ZnO基板、SiC基板以及GaN基板) 來作為基底基板,亦可與使用GaAs基板作為基底基板時同 樣地製造出面方位[0001]朝向2個偏離角方向傾斜的GaN基 -46- 131436.doc 200903867 板。並且’所獲得之GaN基板以及使用該GaN基板而製造 之發光元件,表現出與使ffiGaAs基板作為基底基板而製造 之GaN基板、以及使用該GaN基板而製造之發光元件相同 的特性。再者,表中未記载之使用具有與GaAs相同之偏離 角的藍寶石基板、ZnO基板、siC基板、GaN基板而製作之 GaN基板’以及使用該GaN基板而製造之發光元件亦表現 出與表1至表13所示之特性相同的特性。 應當認為,以上所揭示之實施形態及實施例於所有方面 均為例不,而並非用來限制本發明。本發明之範圍由申請 專利範圍來揭示而並非上述實施形態及實施例,表示包含 在與申請專利範圍同等之含義以及範圍内之所有變更。 [產業上之可利用性] 本發明有利地應用於射出波長相對較長(500 nm以上之 波長區域)之光的發光元件等所使用之GaN基板、以及於該I ^00 [ο''ιι] φ^玑獾qe pyridin βθν pity φε喵砚 wrong hit qev^^Mfly锩痤(Λ)αΟΛν ^ s ^ ^ ^ ^ ^ ^ (H ton N6) 荽¥ 131436 .doc •33· 200903867 In each of the base substrates of samples ID1 to 18, the reference plane orientation [111] is oriented in only one direction with respect to the normal vector of the main surface (<1-10> direction or <11- 2> Direction) Tilt. Therefore, in the formed GaN substrate, the plane orientation [0001] is also substantially inclined with respect to the normal vector of the main surface toward the [11-20] direction or the [1-100] direction. As can be seen from Tables 1 and 2, when the off angle Θ1 or Θ2 of the base substrate is set to −10° or more and 40° or less (that is, the off angle 0a or 0b of the GaN substrate is set to 10° or more and 40°). In the following cases, the value of the blue shift is reduced. [Table 3] Sample ID 19 20 21 22 Classification Example Embodiment Example Example Base substrate material GaAs size (English) 2 Deviation direction <1-10> - Corresponding offset direction in GaN Π 1-201 Off angle Θ1 10 10 10 10 Deviation direction <ll-2>—Corresponding offset direction in GaNΓ1-100] Offset angle Θ2 0.03 0.05 5 10 Growth condition buffer layer temperature °c 500 500 500 500 HC1 atm lxlO'J 1x10' "1x10'" lxl〇·3 NH3 atm 0.1 0.1 0.1 0.1 time min 60 60 60 60 thickness nm 60 60 60 60 from daytime layer temperature °C 1030 1030 1030 1030 HC1 atm 3x10-2 3xl0'2 3xl0_" 3x1 O'" NH3 atm 0.2 0.2 0.2 0.2 time min 100 100 100 100 thickness nm 10 10 10 10 dopant 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) product (GaN crystal) size (English leaf Offset t direction 丨Μ001 Offset angle Θ a 9.80 10.22 10.15 10.10 Off direction "11-201 Offset angle 0b 0.02 0.05 5.01 5.01 Offset in-plane distribution Δθα ±0.7 ±0.6 ±0·6 ±0_6 Off-plane in-plane distribution A0b ±0.9 ±0.5 ±0_5 ±0_5 Dislocation Density 1.00 Ε+07 1.00E+07 1.00Ε+07 1.00Ε+07 Blue shift (Δλ) 8 8 9 9 △Vop(V) 0.005 0.004 0.003 0.003 2 inch in-plane wavelength distribution σ ±2_5 ±2_8 ±3 ±2.9 - 34-131436.doc 200903867 [Table 4] Sample ID 23 24 25 26 Classification Example Embodiment Example Example Base substrate material GaAs size (English pair) 2 Off direction <l-10> - Corresponding offset in GaN Direction [11-201 Offset angle 0.01 0.03 0.05 5 10 Deviation direction <ll-2> - Corresponding offset direction in GaN [1-1001 Offset angle 10 2 10 10 10 10 Growth condition Buffer layer temperature °c 500 500 500 500 HC1 atm 1x10—J lxlO'3 lxlO'J lxlO'J NH3 atm 0.1 0.1 0.1 0.1 time min 60 60 60 60 thickness nm 60 60 60 60 insect day layer temperature °c 1030 1030 1030 1030 HC1 atm 3x10'" 3xl0 '2 3xl0-2 3x10'2 NH3 atm 0.2 0.2 0.2 0.2 time min 100 100 100 100 thickness nm 10 10 10 10 dopant 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) product (GaN crystal) Dimensions (English 0 inch) Deviation direction [1-100] Deviation angle 0.03 0.05 4.99 10.12 Deviation direction [11-20] Deviation angle eb 9.90 10.12 10.12 10.11 Off-plane distribution A0a ±0.6 ±0.6 ±0.6 ±0.7 Off-plane in-plane distribution ±0_5 ±0.5 ±0.5 ±0.9 Dislocation density 1.00E+07 1.00E+07 1.00E+07 1.00Ε+07 Blue shift (Δλ) 8 9 δ 8 △Vop(V) 0.004 0.005 0.006 0.005 2 In-plane wavelength distribution σ ±2.5 ±2·1 ±2.8 ±2.7 Table 3 and Table 4 show the off-angle of the base substrate Θ1 and One of Θ2 is fixed at 10. When the other is set to 0.03° or more and 10° or less (that is, one of the off-angles 0a and 0b of the GaN substrate is fixed to about 10°, and the other is set to 0.02° or 0.03° or more. The measurement result in the case of 10° or less. It can be seen that, compared with the samples of the comparative examples and the reference examples shown in Tables 1 and 2, the samples of the examples shown in Tables 3 and 4 have an off-plane in-plane of the GaN substrate -35-131436.doc 200903867 Distribution A0a And A0b, the amount of increase in the operating voltage (Δνορ), and further the in-plane wavelength distribution (σ) decreases. The reason is not clear, but the reason is also considered to be: When a GaN crystal layer is grown using a base substrate (GaAs substrate) having an off angle in two directions, 'a part of the base substrate is released from the base substrate to the outside. (For example, when a GaAs substrate is used, the phenomenon that As is released from the base substrate) is suppressed, and as a result, strain of the crystal of the formed GaN crystal layer can be suppressed. As a result, the in-plane distribution A0a and Δθϊ of the obtained GaN substrate and the in-plane wavelength distribution (σ) are reduced. [Table 5] Sample 27 28 29 30 Classification Example Example Example Example Base substrate material GaAs size (English leaf) 2 Deviation direction <1-10> - Corresponding offset direction in GaN Γ 11-20] Off angle Θ1 18 18 18 18 Deviation direction <ll-2>-> corresponding offset direction in GaN [1-1001 Offset angle 0.02 0.03 0.05 5 10 Growth condition buffer layer temperature °c 500 500 500 500 HC1 atm lxlO'J lxlO'J lxl 0'" lxlO'J NH3 atm 0.1 0.1 0.1 0.1 time min 60 60 60 60 thickness nm 60 60 60 60 layer temperature °C 1030 1030 1030 1030 HC1 atm 3χ10·ζ 3x10'" 3x1 O'&quot ; 3χ1〇·" NH3 atm 0.2 0.2 0.2 0.2 time min 100 100 100 100 thickness nm 10 10 10 10 dopant 〇 (oxygen) 〇 (oxygen) 〇 氧 oxygen (oxygen) product (GaN crystal) size ( English leaf) Deviation direction Π-1001 Deviation angle 0a 18.15 17.88 18.15 17.88 Deviation direction 丨11-201 Deviation angle eb 0.03 0.05 5.00 9.92 Off-plane in-plane distribution AGa ±0.7 ±0.6 ±0_6 ±0_6 Off-plane in-plane distribution A0b ±0.9 ±0.5 ±0.5 ±0_5 Dislocation density 1.00Ε+07 1.00 E+07 1.00Ε+07 1.00Ε+07 Blue shift (ΔΑ) 6 7 6 6 △Vop(V) 0.002 0.003 0.004 0.004 2 inch in-plane wavelength distribution σ ±2.5 ±2·1 Soil 2.8 ±2.6 -36- 131436.doc 200903867 [Table 6] Sample ID 31 32 33 34 Classification Example Embodiments Example Base substrate material GaAs size (English) 2 Deviation from the square fee j<1-10>--GaN Offset direction 11-201 Offset angle 0.01 0.03 0.05 5 10 Offset direction <ll-2>-> Corresponding offset direction in GaN "1-1001 Offset angle 182 18 18 18 18 Growth condition buffer layer temperature °c 500 500 500 500 HC1 atm lxlO'J lxlO'J 1x10'"lxlO"3 NH3 atm 0.1 0.1 0.1 0.1 time min 60 60 60 60 thickness nm 60 60 60 60 remote solar layer temperature °C 1030 1030 1030 1030 HC1 atm 3x10 ^ 3χ1〇·" 3χ10-2 3x10*" NH3 atm 0.2 0.2 0.2 0.2 time min 100 100 100 100 thickness nm 10 10 10 10 push matter 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) Product (GaN crystal) Dimensions (inch) Deviation direction [1-100] Deviation angle 0.02 0.05 5.01 10.17 Deviation direction [11-2 0] Offset angle eb 18.16 17.88 18.08 18.08 Off-plane in-plane distribution ±0.6 ±0.6 ±0.7 ±0.6 Off-plane in-plane distribution A0b ±0.5 ±0.5 ±0.9 ±0.5 Dislocation density 1.00E+07 1.00Ε+07 1.00Ε+ 07 1.00E+07 Blue shift (Δλ) 6 6 7 7 △Vop(V) 0.005 0.005 0.004 0.004 2 inch in-plane wavelength distribution σ ±2_5 ±2.1 ±2.5 ±2.6 Table 5 and Table 6 show the deviation of the base substrate One of the corners 1 and 2 is fixed at 18. When the other is set to 0.03° or more and 10° or less (that is, one of the off-angles 0a and 0b of the GaN substrate is fixed to about 18°, and the other is set to 0.02° or 0.03° or more. The measurement result in the case of 10° or less. 37-131436.doc 200903867 [Table 7] Sample ID 35 36 37 38 Classification Example Embodiment Example Example Base substrate material GaAs size (English) 2 Deviation direction <11〇> - Corresponding offset in GaN Direction Π1-201 Deviation angle 251 25 25 25 25 Deviation direction <ll-2> - Corresponding offset direction in GaN [1-1001 Deviation angle 0.02 0.03 0.05 5 10 Growth condition buffer layer temperature °c 500 500 500 500 HC1 Atm 1x10'" lxlO'J lxlO'J lxlO'J NH3 atm 0.1 0,1 0.1 0.1 time min 60 60 60 60 thickness nm 60 60 60 60 daily layer temperature °C 1030 1030 1030 1030 HC1 atm 3x10'2 3xl 〇·2 3χ10·2 3xl0_/ NH3 atm 0.2 0.2 0.2 0.2 time min 100 100 100 100 thickness nm 10 10 10 10 dopant 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) product (GaN crystal) Dimensions (English) Deviation direction [1-100] Deviation angle 0a 24.97 24.85 24.88 24.95 Deviation direction [11-20] Deviation angle 0b 0.02 0.05 4.97 9.97 Deviation in-plane distribution ±0·7 ±0.6 ±0.6 ±0.6 Deviation angle In-plane distribution Aeb ±0·9 ±0_5 ±0.5 ±0·5 Dislocation density 1.00 Ε+07 1.00E+07 1.00E+07 1.00E+07 Blue shift (Δλ) 4 4 4 4 AVop(V) 0.003 0.004 0.005 0.005 2 inch in-plane wavelength distribution σ ±2.4 ±2.1 ±2.5 ±2.3 38- 131436.doc 200903867 [Table 8] Sample ID 39 40 41 42 Classification Example Embodiment Example Example Base substrate material GaAs size (English leaf) 2 Deviation direction <11〇> - Corresponding offset direction in GaN [ 11-20] Deviation angle 0.01 0.03 0.05 5 10 Deviation direction <ll-2>—Corresponding offset direction in GaN [1-1001 Deviation angle Θ2 25 25 25 25 into -3⁄4. Conditional buffer layer temperature °c 500 500 500 500 HC1 atm lxlO'J lxlO·3 1x10—3 lxlO'3 NH3 atm 0.1 0.1 0.1 0.1 time min 60 60 60 60 thickness nm 60 60 60 60 daily layer temperature °C 1030 1030 1030 1030 HC1 atm 3xl0'2 3xl0 '2 3x10'" 3x1 O'" NH3 atm 0.2 0.2 0.2 0.2 time min 100 100 100 100 thickness nm 10 10 10 10 dopant 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) product ( GaN crystal) Dimensions (English 0 inch) Deviation direction [1-100] Deviation angle ea 0.02 0.05 4.98 9.98 Deviation direction [11-20] Angle eb 24.87 24.85 24.84 24.81 Off-plane in-plane distribution A0a ±0.7 Soil 0.6 ±0.6 ±0.6 Off-plane in-plane distribution A0b ±0.9 ±0_5 ±0.5 Earth 0.5 Dislocation density 1.00E+07 1.00E+07 1.00E+07 1.00 E+07 Blue shift (Δλ) 5 5 4 4 AVop(V) 0.003 0.002 0.005 0.005 2 inch in-plane wavelength distribution σ ±2.4 ±2.2 ±2.5 ±2_6 Table 7 and Table 8 show the off-angle of the base substrate Θ1 and One of Θ2 is fixed at 25. , set the other to 0.03. Above 10. In the following cases (i.e., one of the off angles Ga and ΘΙ of the GaN substrate) is fixed at about 25°, and the other is set to 0.02. The measurement result when the above 10° or less. -39-131436.doc 200903867 [Table 9] Sample ID 43 44 45 46 Classification Example Embodiment Example Example Base substrate material GaAs size (English time) 2 Deviation direction <1-10> - Corresponding partiality in GaN Shift direction [11-20] Deviation angle 281 28 28 28 28 Deviation direction <ll-2>-> Corresponding offset direction in GaN [1-100] Offset angle 0.02 0.03 0.05 5 10 into 13⁄4 Condition buffer layer temperature . C 500 500 500 500 HC1 atm lxl〇·3 lxlO'3 lxlO'3 lxlO'3 NH3 atm 0.1 0.1 0.1 0.1 time min 60 60 60 60 thickness nm 60 60 60 60 day layer temperature °C 1030 1030 1030 1030 HC1 atm 3x10'2 3xl0'2 3x10'2 3xl0'2 NH3 atm 0.2 0.2 0.2 0.2 time min 100 100 100 100 thickness nm 10 10 10 10 dopant 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) product (GaN crystal) Dimensions (inch) Deviation direction [1-100] Deviation angle Ga 28.12 28.03 28.31 28.16 Deviation direction [11-20] Deviation angle 0b 0.03 0.05 5.02 10.02 Off-plane in-plane distribution A0a ±0_6 ±0.6 ±0.6 ± 0.6 Off-plane in-plane distribution ±0.5 ±0.5 ±0_5 ±0_5 Dislocation density 1.00Ε+07 1.00E+07 1.00E+07 1.00E+07 Blue shift (Δλ) 4 5 4 4 AVop(V) 0.003 0.002 0.001 0.001 2 in-plane in-plane wavelength distribution σ ± 2.6 ± 2.0 ± 2_0 ± 1·9 40-131436.doc 200903867 [Table 〇] Sample ID 47 48 49 50 51 Classification Example Embodiment Example Embodiment Example Base substrate material GaAs Dimensions (English pair) 2 Deviation direction <l-10> - Corresponding offset direction in GaN [11-20] Deviation Θ1 0 0.03 0.05 5 10 Deviation from Fang Luzhong # ]<ll-2>-GaN • Should be offset 1-1001 Offset angle 282 28 28 28 28 28 Growth condition buffer layer temperature °c 500 500 500 500 500 HC1 Atm lxlO'J lxlO'J lxlO'J lxlO'J lxlO'J NH3 atm 0.1 0.1 0.1 0.1 0.1 time min 60 60 60 60 60 thickness nm 60 60 60 60 60 day layer temperature °C 1030 1030 1030 1030 1030 HC1 atm 3x10'2 3x10'2 3x10'2 3xl0'2 3x10'" NH3 atm 0.2 0.2 0.2 0.2 0.2 Time min 100 100 100 100 100 Thickness nm 10 10 10 10 10 Dopant 〇 (oxygen) 〇 (oxygen) 〇 ( Oxygen) Oxide (oxygen) 〇 (oxygen) product (GaN crystal) Dimensions (English) Deviation direction [1-100] Deviation angle 0a 0.01 0.02 0.05 4.99 10.10 Deviation direction [11-20] Deviation angle 0b 28.22 27.80 27.55 28.16 28.04 Off-plane distribution A0a ±0.6 Soil 0.6 ±0.6 ±0.6 ±0·6 Off-plane in-plane distribution A0b ±0.5 ±0.5 ±0.5 ±0_5 ±0.5 Dislocation density 1.00Ε+07 1.00Ε+07 1.00Ε+07 1.00 E+07 1.00E+07 Blue shift (Δλ) 5 4 5 4 4 AVop(V) 0.02 0.003 0.002 0.001 0.001 2 in-plane wavelength distribution σ ±7 ±3 ± 2·8 ± 2.3 ± 2.2 Tables 9 and 10 show that one of the off-angles Θ1 and Θ2 of the base substrate is fixed to 28. , set the other to 0.03. When the above is 10° or less (that is, when one of the off-angles 0a and 0b of the GaN substrate is fixed to about 28°, and the other is set to 0.02° or 0.03 or more and 10° or less) result. -41 - 131436.doc 200903867 [Table 11] Sample ID 52 53 54 55 Classification Example Embodiment Example Example Base substrate material GaAs size (English) 2 Deviation direction <l-10> Shift direction [11-20] Offset angle 401 40 40 40 40 Offset direction <ll-2>^ corresponding offset direction in GaN [1-100] Offset angle 0.02 0.03 0.05 5 10 Conditioned buffer layer temperature °c 500 500 500 500 HC1 atm lxlO'3 lxlO'3 lxl 0'3 lxlO·3 NH3 atm 0.1 0.1 0.1 0.1 time min 60 60 60 60 thickness nm 60 60 60 60 suppressing B layer temperature °C 1030 1030 1030 1030 HC1 atm 3xl 〇·2 3xl〇·2 3xl0'2 3xl0'2 NH3 atm 0.2 0.2 0.2 0.2 time min 100 100 100 100 thickness nm 10 10 10 10 dopant 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) Product (GaN crystal) Dimensions (English leaves) Deviation direction [1-100] Deviation angle 39.81 40.13 39.88 39.88 Deviation direction [11-20] Deviation angle eb 0.03 0.05 5.02 10.02 Off-plane in-plane distribution ΔΘ3 ±0.6 ±0.6 ±0_6 ± 0.6 Off-plane distribution of soil 0.5 soil 0.5 ±0_5 ±0.5 dislocation density 1.00E+07 1.00E+07 1.00E+07 1.00E+07 Blue shift (ΔΑ) 4 4 4 4 △Vop(V) 0.005 0.002 0.005 0.005 2 inch in-plane wavelength distribution σ ±2.6 ±2_9 ±2.0 ±2.1 42- 131436. Doc 200903867 [Table 12] Sample ID 56 57 58 59 Classification Example Embodiment Example Example Base substrate material GaAs size (English) 2 Deviation direction <11〇>^ The corresponding offset direction in GaN Π1-201 Offset angle 0.01 0.03 0.05 5 10 Offset direction <ll-2> - Corresponding offset direction in GaN [1-1001 Offset angle 402 40 40 40 40 Growth condition buffer layer temperature °c 500 500 500 500 HC1 atm lxlO'J lxlO'3 lxlO'J lxlO'3 NH3 atm 0.1 0.1 0.1 0.1 time min 60 60 60 60 thickness nm 60 60 60 60 from daytime temperature °C 1030 1030 1030 1030 HC1 atm 3xl0·2 3χ1〇·" 3xl0· 2 3x10'" NH3 atm 0.2 0.2 0.2 0.2 time min 100 100 100 100 thickness nm 10 10 10 10 dopant 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) product (GaN crystal) size (English)吋) Deviation direction [1-100] Deviation angle 0a 0.02 0.05 4.99 10.01 Deviation direction [11-20] Deviation Angle 0b 39.89 39.86 39,91 39.94 Off-angle in-plane distribution ±0.6 ±0.6 ±0.6 ±0_6 Off-plane in-plane distribution Aeb ±0_5 ±0.5 ±0_5 ±0.5 Dislocation density 1.00E+07 1.00Ε+07 1.00E+07 1.00E+07 Blue shift (ΔΑ) 3 3 4 4 AVop(V) 0.005 0.003 0.005 0.005 2 inch in-plane wavelength distribution σ ±2.7 ±3_0 ±2.0 ±2·1 Table 11 and Table 12 show the deviation of the base substrate One of the corners 1 and 2 is fixed at 40°, and the other is set to be 0.03° or more and 10° or less (that is, one of the off-angles 0a and eb of the GaN substrate is fixed to about 40°, The measurement result when the other is set to 0.02° or 0.03° or more and 10° or less. -43 - 131436.doc 200903867 [Table 13] Sample ID 60 61 62 63 64 65 Classification Example Embodiment Example Comparative Example Comparative Example Base substrate material GaAs size (English 0 inch) 2 Deviation direction <1-1 〇>—Corresponding offset direction in GaN [11-20] Offset angle 261 26 26 40 40 40 45 Offset direction <11-2> - Corresponding offset direction in GaN [1-100] Offset angle Θ2 26 40 26 40 45 40 Growth condition buffer layer temperature °c 500 500 500 500 500 500 HC1 atm 1x10-3 lxlO-3 lxlO'3 lxlO'3 lxlO'3 lxlO'3 NH3 atm 0.1 0.1 0.1 0.1 0.1 0.1 time min 60 60 60 60 60 60 Thickness nm 60 60 60 60 60 60 Daily layer temperature °C 1030 1030 1030 1030 1030 1030 HC1 atm 3x10-2 3xlO·2 3xl0-2 3xl0'2 3xl0.2 3xl〇-2 NH3 atm 0.2 0.2 0.2 0.2 0.2 0.2 Time min 100 100 100 100 100 100 Thickness nm 10 10 10 10 10 10 Dopant 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) 〇 (oxygen) product (GaN crystal ) Dimensions (English) In the deviation direction [1-100] Deviation angle 25.85 26.06 40.08 40.04 Growth polymerization growth polymerization Deviation direction [11-20] Deviation angle eb 25.93 39.78 25.98 40.02 Growth Polymerization Polymerization Deviation in-plane distribution ±0.6 ±0.6 ±0.6 ±0_6 Growth Polymerization Polymerization Deviation Off-plane Distribution A0b ±0.5 Soil 0.5 ±0.5 ±0.5 Growth Polymerization Growth Polymerization Dislocation Density 1.00E+07 1.00E+07 1.00E+07 1.00E+07 Growth Polymerization Growth Polymerization Blue Shift (Δλ) 4 4 3 3 - - AVop(V) 0.003 0.003 0.003 0.003 - - 2 English In-plane wavelength distribution σ ±2.7 ±2.7 +2.5 ±2.7 - - • 44 - 131436.doc 200903867 Table 13 shows 45 above 45°. In the following (specifically, 26, 40, 45.), the deviation angles Θ1 and Θ2 of the base substrate are changed (that is, the deviation angle 0a of the GaN substrate is changed within a range of 26° or more and 45 degrees or less). The case of 0b). As is clear from Table 13, when any one of the off angles Θ1 and Θ2 of the base substrate is set to 40° or more (specifically, 45°), the GaN crystal layer cannot be formed. On the other hand, when the off angles Θ1 and Θ2 of the base substrate are set to 40° or less (that is, when the off angles 0a and 0b of the GaN substrate are set to 40° or less), the GaN substrate is The off-plane in-plane distribution and Δθϊ), the increase in the operating voltage (AVop), and the in-plane wavelength distribution (σ) are smaller than the comparative examples and reference examples shown in Tables 1 and 2. Compared with the samples of the comparative examples or the examples shown in Tables 1 and 2, the samples of the examples shown in Tables 3 to 13 above (specifically, the off-angles 0a and ΘΙ of the GaN substrate) are One is set to 1 0. Above 40°, set the other to 0.〇2. Above 40. In the following sample), the off-plane in-plane distribution Δ0a and ΔΘΙ?, the increase in the operating voltage (Δνορ), and the in-plane wavelength distribution (σ) are reduced. 131436.doc -45- 200903867 [Table 14] Sample ID 66 67 68 69 70 Classification Example Examples Examples Embodiments Base substrate material Sap. Sap. ZnO SiC GaN Dimensions (English) 2 Deviation direction <ll对应>^ corresponding offset direction in GaN [11-20] Offset angle 261 26 40 26 26 26 Offset direction <ll-2> - Corresponding offset direction in GaN [1-1001 Offset angle 26 2 26 40 26 26 26 Conditional buffer layer temperature °c 500 500 500 500 - HC1 atm lxlO'J lxlO·4 lxlO'5 lxlO-6 - NH3 atm 0.1 0.1 0.1 0.1 - time min 60 60 60 60 - thickness nm 60 60 60 60 -曰日层温度°c 1030 1030 1030 1030 1030 HC1 atm 3xl0·2 3x10'" 3xl0-2 3x10'" 3xl0·2 NH3 atm 0.2 0.2 0.2 0.2 0.2 Time min 100 100 100 100 100 Thickness nm 10 10 10 10 10 Doping Si Si Si Si Si product (GaN crystal) Dimensions (inch) Deviation direction [1-100] Offset angle 0a 26.03 39.94 26.05 25.95 26.05 Deviation direction [11-20] Deviation angle eb 25.98 40.02 26.03 25.91 25.88 Deviation In-plane distribution A0a ±0.6 ±0.6 ±0_6 ±0_6 ±0,6 partial Off-plane in-plane distribution A0b ±0_5 ±0.5 ±0_5 Soil 0.5 ±0.5 Dislocation density 1.00E+07 1.00E+07 1.00E+07 1.00E+07 2.00E+06 Blue shift (Δλ) 5 5 5 4 4 △ Vop(V) 0.004 0.005 0.005 0.005 0.003 2 inch in-plane wavelength distribution σ ±2.8 ±2·8 ±2.4 ±2.1 ±2.2 Table 14 shows samples using a substrate made of a material other than GaAS as a base substrate. Film formation conditions and measurement results of GaN. As a result of measurement of the sample IDs 66 to 70, it is understood that the substrate (sapphire substrate, ZnO substrate, SiC substrate, and GaN substrate) other than the GaAs substrate can be used as the base substrate, and the same as when the GaAs substrate is used as the base substrate. The surface orientation [0001] is GaN-46-131436.doc 200903867 plate which is inclined toward two off-angle directions. Further, the obtained GaN substrate and the light-emitting element produced by using the GaN substrate exhibited the same characteristics as the GaN substrate produced by using the ffiGaAs substrate as the base substrate and the light-emitting element produced by using the GaN substrate. Further, a GaN substrate prepared by using a sapphire substrate, a ZnO substrate, a siC substrate, or a GaN substrate having the same off-angle as GaAs, and a light-emitting device manufactured using the GaN substrate, which are not described in the table, are also shown. 1 to Table 13 have the same characteristics. The embodiments and examples disclosed above are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the scope of the claims, and not the above-described embodiments and examples, and all modifications within the meaning and scope of the claims. [Industrial Applicability] The present invention is advantageously applied to a GaN substrate used for emitting a light-emitting element or the like having a relatively long wavelength (wavelength region of 500 nm or more), and

GaN基板之表面上形成有磊晶層的附磊晶層基板、進而使 用該GaN基板等之半導體裝置。 【圖式簡單說明】 圖1係表示本發明之GaN基板之立體示意圖。 圖2係用以說明圖1中户斤示之GaN基板之結晶結構的示意 圖。 圖3係用以說明圖2中所示之⑽基板之結晶結構中之面 方位以及結晶面的示意圖。 圖4係用以說明圖1 Φ>丄μ 卞所不之本發明之GaN基板在偏離角 方向上之傾斜角度的示意圖。 131436.doc -47- 200903867 圖5係用以說明圖1中所示之GaN基板之製造方法的流程 圖。 圖6係用以說明圖5中所示之流程圖中之準備步驟之内容 的流程圖。 圖7係表示形成於基底基板之主表面上之遮罩層之遮罩 圖案的平面示意圖。 圖8係表示形成於基底基板之主表面上之遮罩層之遮罩 圖案的平面示意圖。 圖9係表示成膜步驟(S2〇)中所使用之成膜裝置的示意 圖。 圖1〇係表示使用圖1中所示之本發明之GaN基板之附兹 晶層基板的立體示意圖。 圖11係表示使用本發明之GaN基板之發光元件的剖面示 意圖。 圖1 2係表示對發光元件供給之電流與所射出之光之、皮長 之間的關係的圖表。 【主要元件符號說明】 1 GaN基板 2 法線向量 3 GaN結晶層 5 基底基板 10 遮罩層 11 槽狀開口部 12 開口部 131436.doc -48. 200903867 20 成膜裝置 22 反應管 23 Ga承載器 24 基座 26 加熱器 27 ' 28 配管 30 發光元件 31 η型AlGaN中間層 32 η型GaN缓衝層 33 發光層 34 p型AlGaN層 35 p型GaN接觸層 36 η電極 37 ρ電極 40 蟲晶層 41 蟲晶基板 131436.doc -49-On the surface of the GaN substrate, an epitaxial layer substrate having an epitaxial layer is formed, and a semiconductor device such as the GaN substrate is further used. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing a GaN substrate of the present invention. Fig. 2 is a schematic view for explaining the crystal structure of the GaN substrate shown in Fig. 1. Fig. 3 is a schematic view for explaining the plane orientation and the crystal plane in the crystal structure of the (10) substrate shown in Fig. 2. Fig. 4 is a view for explaining the inclination angle of the GaN substrate of the present invention in the off-angle direction of Fig. 1 Φ > 丄μ 。. 131436.doc -47- 200903867 Fig. 5 is a flow chart for explaining a method of manufacturing the GaN substrate shown in Fig. 1. Fig. 6 is a flow chart for explaining the contents of the preparation steps in the flowchart shown in Fig. 5. Fig. 7 is a plan view schematically showing a mask pattern of a mask layer formed on a main surface of a base substrate. Fig. 8 is a plan view schematically showing a mask pattern of a mask layer formed on a main surface of a base substrate. Fig. 9 is a view showing a film forming apparatus used in the film forming step (S2). BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing the use of an epitaxial layer substrate of the GaN substrate of the present invention shown in Fig. 1. Fig. 11 is a cross-sectional view showing a light-emitting element using the GaN substrate of the present invention. Fig. 1 is a graph showing the relationship between the current supplied to the light-emitting element and the skin length of the emitted light. [Description of main component symbols] 1 GaN substrate 2 Normal vector 3 GaN crystal layer 5 Base substrate 10 Mask layer 11 Groove opening portion 12 Opening portion 131436.doc -48. 200903867 20 Film forming device 22 Reaction tube 23 Ga carrier 24 pedestal 26 heater 27' 28 pipe 30 light-emitting element 31 n-type AlGaN intermediate layer 32 n-type GaN buffer layer 33 light-emitting layer 34 p-type AlGaN layer 35 p-type GaN contact layer 36 n-electrode 37 ρ electrode 40 worm layer 41 Insect crystal substrate 131436.doc -49-

Claims (1)

200903867 十、申請專利範圍: 1. 一種GaN基板,其具有主表面,且 面方位[0001]相對於上述主表面之法線向量朝互不相 同之2個偏離角方向傾斜。 2. 如請求項1之GaN基板,其中上述面方位[〇〇〇1]相對於上 述主表面之法線向量而傾斜之2個上述偏離角方向為[卜 100]方向及[11-20]方向。 3. 如請求項2之GaN基板,其中相對於上述主表面之法線向 f 量之上述面方位[0001]在上述[i-iOO]方向上之傾斜角度 以及在上述[11-20]方向上之傾斜角度中的任一者為1〇。 以上40。以下,另一者為〇·〇20以上40。以下。 4· 一種附蠢晶層基板’其包含: 如請求項1之GaN基板、以及 於上述GaN基板之上述主表面上所形成之遙晶成長 層。 5. —種半導體裝置,其使用如請求項4之附磊晶層基板。 ( 6_ —種GaN基板之製造方法,其包含以下步驟: 準備基底基板’該基底基板中,基準面方位相對於主 表面之法線向量朝互不相同之2個基底基板側傾斜方向 傾斜; 於上述基底基板之上述主表面上使GaN結晶層成長; 自上述GaN結晶層除去上述基底基板,藉此獲得含 GaN結晶層之GaN基板;且, 上述GaN基板具有主表面,面方位[0001]相對於上述 131436.doc 200903867 主表面之法線向量朝互不相同之2個偏離角方向傾斜; 藉由改變上述基底基板中上述基準面方位在上述基底 基板側傾斜方向上之傾斜角度,調整上述GaN基板中上 述面方位[0001]在上述偏離角方向上之傾斜角度。 7·如請求項6之GaN基板之製造方法,其中, 上述基底基板為GaAs基板, 上述基準面方位為[111], 上述2個基底基板側傾斜方向為< 1 _ 1 〇>方向及 < 丨丨_2>方 向, 上述GaN基板之上述2個偏離角方向為[11-20]方向及 [1-100]方向。 8. 如請求項6之GaN基板之製造方法,其中 上述基底基板為藍寶石基板, 上述基準面方位為[0001], 上述2個基底基板側傾斜方向為[11-20]方向及[1-100] 方向, 上述GaN基板之上述2個偏離角方向為[1-100]方向及 [11-20]方向。 9. 如請求項6之GaN基板之製造方法,其中, 上述基底基板為ZnO基板, 上述基準面方位為[0001], 上述2個基底基板側傾斜方向為[1-1 00]方向及[11-20] 方向, 上述GaN基板之上述2個偏離角方向為[1-1 〇〇]方向及 131436.doc 200903867 [11-20]方向。 10.如請求項6之GaN基板之製造方法,其中, 上述基底基板為SiC基板, 上述基準面方位為[0001], 上述2個基底基板側傾斜方向為[Κι〇〇]方向及[u_2〇] 方向, 上述GaN基板之上述2個偏離角方向為&⑺…方向及 [11-20]方向。 11 ·如請求項6之GaN基板之製造方法,其中, 上述基底基板為含GaN之基板, 上述基準面方位為[0001], 上述2個基底基板側傾斜方向為[uoo]方向及[112〇] 方向, 上述GaN基板之上述2個偏離角方向為^丨⑼]方向及 [11 -20]方向。 12. 如請求項6之GaN基板之製造方法,其中在使上述GaN結 曰曰層成長之步驟之前,進一步包括在上述基底基板之上 述主表面上形成具有複數個孔之遮罩層的步驟。 13. 如請求項6之GaN基板之製造方法,其中上述基底基板中 之上述2個基底基板側傾斜方向上的傾斜角度之一者為 10。以上40。以下,另一者為〇·〇20以上40。以下。 131436.doc200903867 X. Patent application scope: 1. A GaN substrate having a main surface, and a plane orientation [0001] is inclined with respect to two normal off-angle directions with respect to a normal vector of the main surface. 2. The GaN substrate according to claim 1, wherein the two off-angle directions in which the plane orientation [〇〇〇1] is inclined with respect to a normal vector of the main surface are [Bu 100] direction and [11-20] direction. 3. The GaN substrate according to claim 2, wherein an inclination angle of said surface orientation [0001] with respect to a normal to said main surface in said [i-iOO] direction and said [11-20] direction Any of the upper tilt angles is 1〇. Above 40. Hereinafter, the other one is 〇·〇20 or more 40. the following. 4. A substrate with a stupid crystal layer, comprising: the GaN substrate of claim 1, and a crystal growth layer formed on the main surface of the GaN substrate. 5. A semiconductor device using the epitaxial layer substrate as claimed in claim 4. (6) A method of manufacturing a GaN substrate, comprising the steps of: preparing a base substrate in which a reference plane orientation is inclined with respect to a normal vector of the main surface toward two base substrate sides that are different from each other; a GaN crystal layer is grown on the main surface of the base substrate; the base substrate is removed from the GaN crystal layer, thereby obtaining a GaN substrate containing a GaN crystal layer; and the GaN substrate has a main surface with a plane orientation [0001] relative The normal vector of the main surface of the above-mentioned 131436.doc 200903867 is inclined toward two different off-angle directions; the GaN is adjusted by changing the inclination angle of the reference plane orientation in the base substrate side in the oblique direction of the base substrate side. The method of manufacturing the GaN substrate according to claim 6, wherein the base substrate is a GaAs substrate, and the reference plane orientation is [111], wherein the substrate has a tilt angle in the off-angle direction. The two base substrate side tilt directions are <1 _ 1 〇> direction and <丨丨_2> direction, the above two GaN substrates The off-angle direction is the [11-20] direction and the [1-100] direction. The method of manufacturing the GaN substrate according to claim 6, wherein the base substrate is a sapphire substrate, and the reference plane orientation is [0001], the above 2 The inclination direction of the base substrate side is the [11-20] direction and the [1-100] direction, and the two off-angle directions of the GaN substrate are the [1-100] direction and the [11-20] direction. The method of manufacturing a GaN substrate according to Item 6, wherein the base substrate is a ZnO substrate, the reference plane orientation is [0001], and the two base substrate sides are inclined in a [1-1 00] direction and a [11-20] direction. The two off-angle directions of the GaN substrate are the [1-1 〇〇] direction and the direction of the 131436.doc 200903867 [11-20]. The method of manufacturing the GaN substrate according to claim 6, wherein the base substrate In the case of the SiC substrate, the reference plane orientation is [0001], the two base substrate sides are inclined in the [Κι〇〇] direction and the [u_2〇] direction, and the two off-angle directions of the GaN substrate are & (7)... Direction and [11-20] direction. 11 . The method of manufacturing a GaN substrate according to claim 6, wherein The base substrate is a GaN-containing substrate, the reference plane orientation is [0001], the two base substrate side tilt directions are [uoo] direction and [112〇] direction, and the two off-angle directions of the GaN substrate are ^丨(9)] direction and [11 -20] direction. 12. The method of manufacturing a GaN substrate according to claim 6, wherein the step of growing the GaN ruthenium layer further comprises the step of forming a mask layer having a plurality of holes on the main surface of the base substrate. 13. The method of manufacturing a GaN substrate according to claim 6, wherein one of the inclination angles in the oblique direction of the two base substrate sides in the base substrate is ten. Above 40. Hereinafter, the other one is 〇·〇20 or more 40. the following. 131436.doc
TW97118520A 2007-06-14 2008-05-20 GaN substrate, substrate with an epitaxial layer, semiconductor device, and GaN substrate manufacturing method TW200903867A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007157783 2007-06-14
JP2007310700A JP4952547B2 (en) 2007-06-14 2007-11-30 GaN substrate, substrate with epitaxial layer, semiconductor device, and method of manufacturing GaN substrate

Publications (1)

Publication Number Publication Date
TW200903867A true TW200903867A (en) 2009-01-16

Family

ID=40247177

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97118520A TW200903867A (en) 2007-06-14 2008-05-20 GaN substrate, substrate with an epitaxial layer, semiconductor device, and GaN substrate manufacturing method

Country Status (4)

Country Link
JP (1) JP4952547B2 (en)
KR (1) KR20080110498A (en)
CN (1) CN101345221A (en)
TW (1) TW200903867A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5298938B2 (en) * 2009-02-24 2013-09-25 住友電気工業株式会社 Manufacturing method of semiconductor device
JP5004989B2 (en) * 2009-03-27 2012-08-22 シャープ株式会社 Nitride semiconductor light emitting device, method for manufacturing the same, and semiconductor optical device
JP4927121B2 (en) 2009-05-29 2012-05-09 シャープ株式会社 Nitride semiconductor wafer, nitride semiconductor device, and method of manufacturing nitride semiconductor device
US20110042646A1 (en) * 2009-08-21 2011-02-24 Sharp Kabushiki Kaisha Nitride semiconductor wafer, nitride semiconductor chip, method of manufacture thereof, and semiconductor device
JP2011146650A (en) * 2010-01-18 2011-07-28 Sumitomo Electric Ind Ltd Gan-group semiconductor light-emitting element and method of manufacturing the same
JP5319628B2 (en) * 2010-08-26 2013-10-16 シャープ株式会社 Nitride semiconductor element and semiconductor optical device
JP2012231087A (en) * 2011-04-27 2012-11-22 Mitsubishi Chemicals Corp Method of manufacturing nitride-based led
JP2017126637A (en) * 2016-01-13 2017-07-20 シャープ株式会社 Nitride semiconductor element, and quantum cascade laser using the same
JP6697748B2 (en) * 2017-11-22 2020-05-27 パナソニックIpマネジメント株式会社 GaN substrate and method of manufacturing the same
KR20220031042A (en) * 2019-07-01 2022-03-11 미쯔비시 케미컬 주식회사 Bulk GaN crystals, c-plane GaN wafers and methods for manufacturing bulk GaN crystals
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
WO2022181322A1 (en) 2021-02-25 2022-09-01 日本碍子株式会社 Group-iii element nitride semiconductor substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265996A (en) * 1985-09-18 1987-03-25 Toshiba Corp Production of compound semiconductor crystal
JP3888374B2 (en) * 2004-03-17 2007-02-28 住友電気工業株式会社 Manufacturing method of GaN single crystal substrate

Also Published As

Publication number Publication date
JP4952547B2 (en) 2012-06-13
KR20080110498A (en) 2008-12-18
CN101345221A (en) 2009-01-14
JP2009018983A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
TW200903867A (en) GaN substrate, substrate with an epitaxial layer, semiconductor device, and GaN substrate manufacturing method
TWI375335B (en) Method for producing group iii nitride semiconductor light emitting device, group iii nitride semiconductor light emitting device, and lamp
TW541718B (en) Indium gallium nitride smoothing structures for III-nitride devices
TWI377703B (en) Production method of group iii nitride semiconductor light-emitting device
JP4714712B2 (en) Group III nitride semiconductor light emitting device, method for manufacturing the same, and lamp
US8148712B2 (en) Group III nitride compound semiconductor stacked structure
US20110254048A1 (en) Group iii nitride semiconductor epitaxial substrate
US9330911B2 (en) Light emitting device having group III-nitride current spreading layer doped with transition metal or comprising transition metal nitride
TW200834670A (en) Process for producing III group nitride compound semiconductor, III group nitride compound semiconductor light emitting element, and lamp
KR20080101707A (en) Gan substrate, and epitaxial substrate and semiconductor light-emitting device employing the substrate
WO2008012877A1 (en) COMPOUND SEMICONDUCTOR DEVICE EMPLOYING SiC SUBSTRATE AND PROCESS FOR PRODUCING THE SAME
TW200952046A (en) Group iii nitride semiconductor element and epitaxial wafer
TW201112312A (en) Iii nitride semiconductor substrate, epitaxial substrate, and semiconductor device
TWI270220B (en) Group III nitride semiconductor light emitting device
JP4882351B2 (en) Semiconductor laminated substrate, manufacturing method thereof, and light emitting device
TW200834990A (en) Process for producing III group nitride compound semiconductor light emitting device, III group nitride compound semiconductor light emitting device and lamp
TW201133557A (en) Method for manufacturing aluminum-containing nitride intermediate layer, method for manufacturing nitride layer, and method for manufacturing nitride semiconductor element
TW200901524A (en) Gan substrate, substrate with epitaxial layer, semiconductor device, and method of manufacturing gam substrate
JP6639751B2 (en) Group 13 element nitride layer, free-standing substrate and functional element
WO2004107460A1 (en) Compound semiconductor and method for producing same
TW201411698A (en) Epitaxial wafer and method of producing the same
US8957426B2 (en) Laminate substrate and method of fabricating the same
TW200929626A (en) Zno-group semiconductor element
JP2006128653A (en) Group iii-v compound semiconductor, its manufacturing method and its use
CN110473943B (en) Light emitting diode element and method for manufacturing light emitting diode element