TW200903817A - Solar roof tiles and modules with heat exchange - Google Patents

Solar roof tiles and modules with heat exchange Download PDF

Info

Publication number
TW200903817A
TW200903817A TW096147316A TW96147316A TW200903817A TW 200903817 A TW200903817 A TW 200903817A TW 096147316 A TW096147316 A TW 096147316A TW 96147316 A TW96147316 A TW 96147316A TW 200903817 A TW200903817 A TW 200903817A
Authority
TW
Taiwan
Prior art keywords
photovoltaic
heat sink
panel
quot
photovoltaic cell
Prior art date
Application number
TW096147316A
Other languages
Chinese (zh)
Inventor
Eugenia M Corrales
Mark V Brillhart
Ana M Corrales
Original Assignee
Sunmodular Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/788,456 external-priority patent/US8410350B2/en
Priority claimed from US11/804,656 external-priority patent/US20080135090A1/en
Application filed by Sunmodular Inc filed Critical Sunmodular Inc
Publication of TW200903817A publication Critical patent/TW200903817A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • H02S20/25Roof tile elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

A photovoltaic tile and module with photovoltaic cell and a heat sink. The heat sink is attached on a side of the cell opposite to the light-receiving side of the photovoltaic cell and can remove heat caused by light absorbed by the photovoltaic cell but not converted to electricity as well as heat generated by electrical resistance. A photovoltaic tile or module formed of such cells can exhibit greater energy conversion efficiency as a result of the ability to dissipate the heat. The tiles can be arranged on a roof to protect the roof structure and generate electricity. Photovoltaic tiles comprising interlocking mechanical and electrical connections for ease of installation are described. The modules can be designed to place over an existing finished roof. Methods of making photovoltaic tiles and modules involve e.g., laminating a heat sink to a photovoltaic cell and/or injection molding.

Description

200903817 九、發明說明: 本申請案主張下列申請案之權利:2006年12月11日中請 之名為"具有熱能交換之組合式陽光屋頂板塊及太陽電池 板(Modular Solar Roof Tiles And Solar Panels With Heat Exchange)"的美國臨時申請案第60/874,313號、2007年4月 19曰申請之名為"具有熱能交換之組合式太陽電池板 (Modular Solar Panels With Heat Exchange)"的美國申請案 第11/788,456號、2007年5月18日申請之名為"具有熱能交 f ϊ 換之陽光屋頂板塊及其製造方法(Solar Roof Tiles With200903817 IX. INSTRUCTIONS: This application claims the following applications: December 11, 2006, entitled “Combined Solar Roof Tiles and Solar Panels with Thermal Energy Exchange” (Modular Solar Roof Tiles And Solar Panels) With Heat Exchange), US Provisional Application No. 60/874,313, April 19, 2007, titled "Modular Solar Panels With Heat Exchange" Application No. 11/788,456, May 18, 2007, the application name is "There is a solar roof panel and its manufacturing method (Solar Roof Tiles With

Heat Exchange and Methods of Making Thereof)1’的美國申 請案第1 1/804,656號、2007年4月19日申請之名為”具有熱 能交換之組合式太陽電池板及其製造方法(Modular Solar Panels With Heat Exchange and Methods of Making Thereof)"的美國申請案第11/788,703號、2007年5月18曰申 請之名為"連結陽光屋頂板塊與熱沈交換(Interlocking Solar Roof Tiles With Heat Sink Exchange)”的美國申請案 第1 1/804,695號、2007年5月18日申請之名為”具有熱能交 換之陽光屋頂板塊(Solar Roof Tiles With Heat Exchange)" 、 的美國申請案第11/804,657號、2007年5月18曰申請之名為 "光伏打屋頂板塊及其製造方法(Photovoltaic Roof Tiles and Methods of Making Same)'·的美國申請案第 1 1/804,399 號、2007年8月9日申請之名為"用於太陽電池板及屋頂板 塊之具成本效益之熱能交換器(Cost Effective Heat Exchanger For Solar Panels and Roof Tiles)"的美國臨時申 127532.doc 200903817 請案第60/964,301號。藉此該等申請案之全部内容以引用 之方式併入下文中。 【先前技術】 太陽能係一再生能源,由於公認的化石燃料限制與核燃 料的安全顧慮,廣受全世界歡迎。光伏打(pV)太陽能需求 在過去15年間每年至少增長25%。自從去年間安裝的 MW(表示每年增加34%)並比較1985年的21 MW,全世界光 伏打安裝在2005年增加為1460 MW(兆瓦)。 太陽能領域的增長一直集中於固定在一現有屋頂上的太 陽能模組。屋頂提供將太陽能輻射直接曝露於一太陽能電 池及用於光伏打裝置之結構支撐。儘管日益增長,但習知 屋頂固疋太%能模、纟且的廣泛使用一直受其安裝難度及成 本、缺乏美感以及特別是其低轉換效率限制。 許多習知屋頂固定太陽能模組主要係由玻璃罩所構成, 該玻璃罩係設計以保護脆弱的矽太陽能電池。該些模組係 包含分離機械及電互連之複雜系統,接著將該等機械及電 互連固定於現有屋頂内,要求相當大的安裝時間及技巧。 此外,因為現有模組不提供對屋頂的天氣保護,故房主易 受該等模組及固定其的保護性屋面材料之材料及勞動成本 影響。模組還侵人家庭及商業建築之美學,從而導致有限 的用途。-些製造者已製造更美感且更少妨礙性的解決方 案’但該等系統主要由於安裝難度及較差總面積效率而不 具價格競爭力。因為對於 '給定能量需求要求一更大模組 面積’故更低的模組效率位準與更高的光伏打系統成本相 127532.doc 200903817 關聯。 么一典型結晶矽屋頂固定太陽能電池之光電轉換效率為大 、勺13 /〇。一些系統藉由修改,例如在電池表面上使用抗反 射玻璃以減少光學反射、在電池表面上使用紋理化玻璃來 增加光捕獲及使用諸如薄膜矽或鍺合金之改良材料,來實 現效率增加(高達18至20%)。儘管有該些改良,但部分由 於較兩太陽能電池溫度而太陽能轉換效率仍然有限。一光 伏打裝置之效率隨著溫度遞增而遞減。輻射於電池上之部 刀月b量會被轉換成熱能,從而限制電池之電能輸出及整體 轉換效率。製造一能夠從光伏打電池移除熱能之系統將會 大大增加總效率。 對於一解決上述問題之光伏打板塊,存在相當大興趣及 需求。 【發明内容】 本文說明纟種從太陽ϋ射產i能量《太陽能模組及太陽 能屋頂板塊及用於製造該等太陽能模組及板塊之各種方 法。該等板塊之某些板塊具有增加的太陽能至電轉換效 率,既美觀又完全適合於安裝在未完成的屋頂上。一些板 塊最小化或防止天氣到達—屋頂之下面材料並一起形成一 房屋之一完成屋頂。該等板塊之一些板塊係經組態用以直 接附著至板條或檁條以便於安裝。一些太陽能模組既美觀 又完全適合於安裝在習知屋頂上。 在一實例中,一光伏打模組具有光伏打電池;_框架, 其保持該等光伏打電池並調適以固定在一完成屋頂上;及 127532.doc 200903817 一散熱器’其係用以從該等光伏打電池移除熱。該散熱器 具有沿一散熱器底座平行並相互平行定位的鰭片。該散熱 器底座具有一在0.05,,與0 5"之間的厚度,而該等鰭片各具 有一在0.25"與7”之間的高度、一在〇.〇5,,與1"之間的中心 至中心間距與一在0 001"與〇.25"之間的寬度,且該中心至 中心間距係足以在該等鰭片之間提供一通道以使冷卻空氣 進入。在另一範例中,該散熱器底座具有一在〇1 "與0.25" 之間的厚度而該等鰭片各具有一在0.75"與5"之間的高度、 一在0.2”與0.5”之間的中心至中心間距及一在〇 〇〇7,,與〇1" 之間的寬度。在另一實例中,該散熱器底座具有一在〇1„ 與0.2”之間的厚度而該等鰭片各具有一在〇 9"與2"之間的 尚度、一在0 · 3"與〇·4"之間的中心至中心間距及一在〇.〇2" 與0.05"之間的寬度。 在其他實例中,該光伏打模組在該散熱器與光伏打電池 之間具有一熱介面層以改良散熱。在其他實例中,該模組 在該等光伏打電池上具有一保形塗層。 在其他實例中’該模組之框架不延伸超出該散熱器底 座’從而允許環境空氣不受阻礙地進入該散熱器之鰭片。 在其他實例中,該散熱器具有一長度、厚度、鰭片高 度、鰭片間距及鰭片寬度以在一 70卞溫度的靜止環境空氣 下將該光伏打電池維持在一低於大約1 5 0 °F的溫度下。 在其他實例中,該散熱器具有實質平行於該散熱器之一 長轴而定位的鰭片。在其他實例中,該等鰭片係實質垂直 於該散熱器之一長軸而定位。 127532.doc 200903817 在其他實例中,該散熱器係實質平行於該光伏打模組之 -長軸而定位。在其他實例中,該散熱器係實質垂直於該 模組之-長軸而^位。在其他實例中,該散熱器具有一足 以,越該模組寬度3/4以上之長度。在其他實例中,該散 熱器具有一足以跨越該模組長度3/4以上之長度。 在其他實例中,該散熱器係由擠製銘所構成又。在其他實 例中,該散熱器係、由黑色陽極化紹所構成。在其他實例Heat Exchange and Methods of Making Thereof) 1 'US Application No. 1 1/804,656, filed April 19, 2007, entitled "Combined Solar Panel with Thermal Energy Exchange and Method of Making Same (Modular Solar Panels With Heat Exchange and Methods of Making Thereof)" US Application No. 11/788,703, May 18, 2007, application for "Interlocking Solar Roof Tiles With Heat Sink Exchange U.S. Application No. 1 1/804,695, filed on May 18, 2007, entitled "Solar Roof Tiles With Heat Exchange", US Application No. 11/804,657 US Application No. 1 1/804,399, which was filed on May 18, 2007, and called Photovoltaic Roof Tiles and Methods of Making Same, August 9, 2007 The name of the application "Cost Effective Heat Exchanger For Solar Panels and Roof Tiles" Provisional Application No. 127532.doc 200903817, the disclosure of which is hereby incorporated by reference in its entirety in its entirety in its entirety in the the the the the the the the the the the the the the the the the the the the the The safety concerns are widely welcomed around the world. Photovoltaic (pV) solar demand has increased by at least 25% annually over the past 15 years. Since the installation of MW last year (indicating an increase of 34% per year) and compared with 21 MW in 1985, the world Photovoltaic installations increased to 1460 MW (megawatts) in 2005. Solar energy growth has been concentrated on solar modules that are fixed on an existing roof. The roof provides direct exposure of solar radiation to a solar cell and for photovoltaic devices. Structural support. Despite the increasing growth, the widespread use of conventional roofs is too difficult and costly, lacking aesthetics and especially its low conversion efficiency. Many conventional roof fixed solar modules. The group consists primarily of a glass cover designed to protect fragile tantalum solar cells. These modules contain complex systems that separate mechanical and electrical interconnections, and then the mechanical and electrical interconnections are fixed in existing roofs, requiring considerable installation time and skill. In addition, because existing modules do not provide weather protection for the roof, homeowners are susceptible to the materials and labor costs of the modules and the protective roofing materials that hold them. Modules also invade the aesthetics of home and commercial buildings, resulting in limited use. - Some manufacturers have created more aesthetic and less obstructive solutions' but these systems are not price competitive primarily due to the difficulty of installation and poor overall area efficiency. Because a larger module area is required for a given energy requirement, a lower module efficiency level is associated with a higher cost of photovoltaic system 127532.doc 200903817. The photoelectric conversion efficiency of a typical crystalline 矽 roof fixed solar cell is large, spoon 13 / 〇. Some systems achieve efficiency gains by modifying, for example, using anti-reflective glass on the surface of the battery to reduce optical reflection, using textured glass on the surface of the battery to increase light capture, and using improved materials such as film tantalum or niobium alloys (up to 18 to 20%). Despite these improvements, solar conversion efficiency is still limited in part due to the temperature of the two solar cells. The efficiency of a photovoltaic device decreases as the temperature increases. Radiation on the battery is converted into heat energy, which limits the battery's power output and overall conversion efficiency. Manufacturing a system that removes thermal energy from photovoltaic cells will greatly increase overall efficiency. There is considerable interest and demand for a photovoltaic panel that solves the above problems. SUMMARY OF THE INVENTION This document describes various methods for producing solar energy modules and solar energy roof panels from the solar rafts and for manufacturing such solar modules and panels. Some of these panels have increased solar to electrical conversion efficiency and are both aesthetically pleasing and fully suitable for installation on unfinished roofs. Some panels minimize or prevent weather from reaching—the underlying material of the roof and together form one of the houses to complete the roof. Some of these panels are configured to attach directly to the slats or purlins for ease of installation. Some solar modules are both aesthetically pleasing and fully suitable for installation on conventional roofs. In one example, a photovoltaic module has a photovoltaic cell; a frame that holds the photovoltaic cells and is adapted to be attached to a finished roof; and 127532.doc 200903817 a heat sink that is used to Wait for the photovoltaic to remove the heat from the battery. The heat sink has fins that are parallel and parallel to one another along a heat sink base. The heat sink base has a thickness between 0.05 and 0 5", and the fins each have a height between 0.25 " and 7", one in 〇.〇5, and 1" The center-to-center spacing is between a width between 0 001 " and 〇.25" and the center-to-center spacing is sufficient to provide a passage between the fins for cooling air to enter. In the example, the heat sink base has a thickness between 〇1 " and 0.25" and the fins each have a height between 0.75" and 5", at 0.2" and 0.5" The center-to-center spacing and the width between 〇〇〇7, and 〇1" in another example, the heat sink base has a thickness between 〇1„ and 0.2” and such The fins each have a center between the 〇9" and 2", a center-to-center spacing between 0. 3" and 〇·4" and one between 〇.〇2" and 0.05" In other examples, the photovoltaic module has a thermal interface layer between the heat sink and the photovoltaic cell to improve In other examples, the module has a conformal coating on the photovoltaic cells. In other examples, the frame of the module does not extend beyond the base of the heat sink to allow unobstructed ambient air. Entering the fin of the heat sink. In other examples, the heat sink has a length, a thickness, a fin height, a fin pitch, and a fin width to maintain the photovoltaic cell at a static ambient air temperature of 70 Torr. At a temperature below about 150 ° F. In other examples, the heat sink has fins that are positioned substantially parallel to one of the long axes of the heat sink. In other examples, the fins are substantially vertical. Positioned on one of the long axes of the heat sink. 127532.doc 200903817 In other examples, the heat sink is positioned substantially parallel to the long axis of the photovoltaic module. In other examples, the heat sink is substantially vertical. In the other embodiment, the heat sink has a length sufficient to be more than 3/4 of the width of the module. In other examples, the heat sink has a length sufficient to span the module. More than 3/4 of the length. In other examples, the heat sink by the extrusion-based inscription and formed. In other instances, the radiator system, composed of a black anodized Shao. In other examples

令’散熱器底座係由一熱傳導聚合物所構成。在其他實例 中’ s亥散熱器底座係由彈性體所構成。 在其他實例中,該等鰭片係沿該散熱器之一長軸不連續 以形成排氣及進入通道。在其他實例中,該等通道成人字 形。 在一實例中,-種製造光伏打模組之方法具有以下步 驟:⑷在-爽具内放置-散熱器,使得該散熱器之一 面接觸該夾具而曝露該散熱器之一上表面;⑻在該上表面The heat sink base is constructed of a thermally conductive polymer. In other examples, the 'shai heat sink base is constructed of an elastomer. In other examples, the fins are discontinuous along a long axis of one of the heat sinks to form an exhaust and an access passage. In other instances, the channels are adult glyphs. In one example, the method of manufacturing a photovoltaic module has the following steps: (4) placing a heat sink in the -steam so that one side of the heat sink contacts the fixture to expose an upper surface of the heat sink; (8) The upper surface

放置力伏打電池,(c)連接該光伏打電池與該散熱器; 及(d)從該夾具中移除該散熱器。 在另一實财,該方法包括層合賴著該散熱器。在另 一實例中,該方法包括在該散熱器與該光伏打電池之間層 合一中間層。在另-實例中,該中間層係—熱傳導聚合 物。在另一實例中,該聚合物係一彈性體。 在另-實例中,該方法包括減少在該散熱器與該光伏打 電池之間的氣壓’較佳的係持續5至3()分鐘之間。在另— 實例中,該方法包括增加在該散熱器與該光伏打電池之間 127532.doc -10- 200903817 的溫度’較佳的係至125。〇至l75t之間。在另一實例中, 邊方法包括持續5至3 〇分鐘增加該溫度。在另一實例中, 6亥方法包括增加在該散熱器與該光伏打電池之間的壓力, 較佳的係在0.5至5個大氣壓之間。在另一實例中,該方法 包括在5至30分鐘之間增加在該散熱器與該光伏打電池之 間的壓力。 在另一實例中,該方法包括附著一保護層於該光伏打電 池上。在另一實例中,該保護層係一保形塗層。 在一實例中,該方法包括附著一環繞該光伏打電池之框 架,其中該框架不延伸超出該上表面,從而允許環境空氣 不受阻礙地進入該散熱器。 在另實例中’該方法之散熱器係由擠製鋁所構成。在 另一實例中,該散熱器係由一傳導聚合物所構成。在另一 實例中,該散熱器具有實質相互平行的複數個鰭片且該夾 具包含與§亥複數個鰭片互補的複數個凹槽。 在實例中,該光伏打板塊具有一光伏打電池;一外 殼,其係調it以固定在一屋頂上並保持該光伏打電池,同 時沿该外殼之一第一表面曝露該光伏打電池之光接收表 面,及m,其係與言亥光伏打電;也之一未曝露表面熱 連通。該散熱器具有一實質平行於該未曝露表面定位的底 座,及附著至該底座的複數個鰭片,其係該實質相互平行 而疋位。該底座具有一在0 05"與0·5"之間的厚度,而該等 縛片各獨立地具有-在〇·25"與7"之間的高度、—在〇砂, 與1之間的中心至中心間距與一在〇 〇〇1 ”與〇.25”之間的寬 127532.doc 200903817 度,且該中心至中心間距係足以在該等鰭片之間提供一通 道以使冷卻空氣進入。 在另一實例中,該光伏打板塊在該散熱器與該未曝露表 面之間具有一熱介面層以改良散熱。 在另一實例中’該散熱器具有一長度、厚度、縛片高 度、鰭片間距及鰭片寬度以在一 7〇°F溫度的靜止環境空氣 下將該光伏打電池維持在一低於大約15 〇卞的溫度下。 在另一實例中,該光伏打板塊沿該實質平行於一屋頂脊 線的該外殼之該第一表面具有一外伸。 在另一實例中’該光伏打板塊沿該實質垂直於一屋頂脊 線的該外殼之該第一表面具有一外伸。 在另一實例中,該複數個鰭片係定位於一實質平行於一 屋頂脊線之方向上。 在另一實例中,該複數個鰭片係定位於一實質垂直於— 屋頂脊線之方向上。 在另一實例中,該散熱器係由擠製鋁所構成。 在另一實例中,該散熱器係由黑色陽極化鋁所構成。 在另一實例中,該底座係由一傳導聚合物所構成。在另 一實例中’該傳導聚合物係一彈性體。 在另一實例中’該等鰭片係沿該底座之一長軸不連續, 以形成排軋及進入通道。在另一實例中,該等通道成人字 形。 在另一實例中,該底座具有一在〇1”與〇 25"之間的厚度 而§亥等鰭片各獨立地具有一在〇 75"與5 "之間的高度、—在 127532.doc •12- 200903817 0.2"與〇_5"之間的中心至中心間距及一在〇 〇〇7"與〇丨"之間 的寬度。在另一實例中,該光伏打板塊在該散熱器與該未 曝露表面之間具有一熱介面層以改良散熱。在另一實例 中’該複數個鰭片係定位於一實質垂直於一屋頂脊線之方 向上。在另一實例中,該散熱器係由擠製鋁所構成。 在另一實例中,該光伏打板塊具有一在〇1 "與〇 2"之間 的厚度而該等鰭片各獨立地具有一在〇9,,與2,,之間的高 度、一在0 ·3與〇·4"之間的中心至中心間距及一在〇.〇2"與 〇_〇5"之間的寬度。在另一實例中,該光伏打板塊在該散熱 器與該未曝露表面之間具有一熱介面層以改良散熱。在另 一實例中,該複數個鰭片係定位於一實質垂直於一屋頂脊 線之方向上。在另一實例中’該散熱器係由擠製鋁所構 成。 在一實例中,複數個光伏打板塊包括: 一第一光伏打板塊’其具有一光伏打電池;一外殼,其 係調適以固定在一屋頂上並保持該光伏打電池並沿該外殼 之一第一表面曝露該光伏打電池之光接收表面;一散熱 器,其係與該光伏打電池之該等光接收表面相對的一表面 熱連通,及一第一電連接器與一第二電連接器,其係附著 至該第一光伏打板塊, 一第二光伏打板塊,其具有一光伏打電池;一外殼,其 係調適以固定在一屋頂上並保持該光伏打電池並沿該外殼 之一第一表面曝露該光伏打電池之光接收表面;一散熱 器,其係與該光伏打電池之該等光接收表面相對的一表面 127532.doc •13· 200903817 熱連通;及一第一電連接器與_第二電連接器,其係附著 至該第二光伏打板塊, 其中該第一板塊之該第一電連接器匹配該第二板塊之該 第二電連接器’且在匹配時,該第一板塊之該第一電連接 益與該第二板塊之該第二電連接器係經組態用以防止該第 一板塊獨立於該第二板塊而旋轉。 在另-實财,該第-光伏打板塊與該第二光伏打板塊 係相同的。 在另實例中,各電連接器獨立地係一公或母連接器。 在另一實例中,各電連接器獨立地係一突出或插座連接 器。 在另一實例中,該第一板塊之第一電連接器係經組態用 以在實貝平行於一屋頂脊線之方向上匹配該第二板塊之 第二電連接器。 在另-實例t ’該第-板塊之第—電連接器係經組態用 以在實質垂直於一屋頂脊線之方向上匹配該第二板塊之 第二電連接器。 在另一實例中,各光伏打電池係一薄膜光伏打電池。 在另一實例中,各光伏打板塊在該散熱器與該未曝露表 面之間具有一熱介面層以改良散熱。 在另實例中,各散熱器係經組態用以在一 70卞溫度之 環境空氣内將其對應光伏打電池維持在—低於大約15昨 之溫度下。 在另一實例中’各光伏打板塊沿實質平行於-屋頂脊線 127532.doc -14· 200903817 的該外殼第一表面包含一外伸。 在另一實例中,各光伏打板塊沿實質垂直於一屋頂脊線 的該外殼第一表面具有一外伸。 在另一實例中,各散熱器具有一底座,其係實質平行於 與*亥等光接收表面相對的表面而定位;及附著至該底座的 複數個鰭片,其係該實質相互平行而定位。在另一實例 中,該等鰭片係定位於一實質平行於一屋頂脊線之方向 上。在另一實例中’該等鰭片係定位於一實質垂直於一屋 頂脊線之方向上。在另一實例中,該等鰭片係沿該相關聯 底座之一長軸不連續,以形成排氣及進入通道。在另一實 例中’該等通道成人字形。 在另一實例中,各散熱器係由金屬所構成。在另一實例 中,該金屬係一擠製鋁。在另一實例中,該金屬係一黑色 陽極化銘。 在另一實例中,各散熱器係由一傳導聚合物所構成。在 另一實例中’該傳導聚合物係一彈性體。 在一實例中’該光伏打板塊具有一光伏打電池;一外 殼’其保持該電池並曝露該光伏打電池之光接收表面;及 一第一電連接器與一第二電連接器,其係附著至該光伏打 板塊。該外殼係附著以固定於一屋頂上,且該外殼具有一 熱傳導聚合物,其係與該光伏打電池之一未曝露表面熱連 通。 在另一實例中,該光伏打電池之外殼具有鄰接該第一聚 合物的一第二聚合物。 127532.doc -15· 200903817 在另一實例中,該光伏打板塊之第一電連接器匹配一第 二光伏打板塊之一電連接器。在匹配時,該第一板塊之第 一電連接器與該第二板塊之電連接器係經組態用以防止該 第一板塊獨立於該第二板塊而旋轉。在其他實例中,該第 一光伏打板塊與該第二光伏打板塊係相同的。在另一實例 中’各電連接器獨立地係一公或母連接器。在另一實例 中’各電連接器獨立地係一突出或插座連接器。 在另一實例中,該第一板塊之第一電連接器係經組態用Place a force voltaic battery, (c) connect the photovoltaic cell to the heat sink; and (d) remove the heat sink from the fixture. In another form of solid wealth, the method includes laminating the heat sink. In another example, the method includes laminating an intermediate layer between the heat sink and the photovoltaic cell. In another example, the intermediate layer is a thermally conductive polymer. In another example, the polymer is an elastomer. In another example, the method includes reducing the gas pressure between the heat sink and the photovoltaic cell, preferably between 5 and 3 () minutes. In another example, the method includes increasing the temperature of 127532.doc -10- 200903817 between the heat sink and the photovoltaic cell to a preferred ratio of 125. 〇 to between l75t. In another example, the edge method includes increasing the temperature for 5 to 3 minutes. In another example, the 6-Hai method includes increasing the pressure between the heat sink and the photovoltaic cell, preferably between 0.5 and 5 atmospheres. In another example, the method includes increasing the pressure between the heat sink and the photovoltaic cell between 5 and 30 minutes. In another example, the method includes attaching a protective layer to the photovoltaic cell. In another example, the protective layer is a conformal coating. In one example, the method includes attaching a frame surrounding the photovoltaic cell, wherein the frame does not extend beyond the upper surface to allow ambient air to enter the heat sink unimpeded. In another example, the heat sink of the method consists of extruded aluminum. In another example, the heat sink is constructed of a conductive polymer. In another example, the heat sink has a plurality of fins that are substantially parallel to one another and the clamp includes a plurality of grooves that are complementary to the plurality of fins. In an example, the photovoltaic panel has a photovoltaic cell; a housing that is tuned to be attached to a roof and holds the photovoltaic cell while exposing the photovoltaic cell light along a first surface of the housing The receiving surface, and m, is electrically coupled to Yanhai Photovoltaic; one of the unexposed surfaces is also in thermal communication. The heat sink has a base that is positioned substantially parallel to the unexposed surface, and a plurality of fins attached to the base that are substantially parallel to each other. The base has a thickness between 0 05 " and 0·5", and the tabs each independently have a height between -25" and 7", between 〇 sand, and The center-to-center spacing is 127532.doc 200903817 degrees between 〇〇〇1" and 〇.25" and the center-to-center spacing is sufficient to provide a passage between the fins for cooling air enter. In another example, the photovoltaic panel has a thermal interface between the heat sink and the unexposed surface to improve heat dissipation. In another example, the heat sink has a length, a thickness, a tab height, a fin pitch, and a fin width to maintain the photovoltaic cell at less than about 15 at a static ambient air temperature of 7 °F. Under the temperature of 〇卞. In another example, the photovoltaic panel has an overhang along the first surface of the outer casing that is substantially parallel to a roof ridge. In another example, the photovoltaic panel has an overhang along the first surface of the outer casing that is substantially perpendicular to a roof ridge. In another example, the plurality of fins are positioned in a direction substantially parallel to a roof ridge. In another example, the plurality of fins are positioned in a direction substantially perpendicular to the roof ridgeline. In another example, the heat sink is constructed of extruded aluminum. In another example, the heat sink is constructed of black anodized aluminum. In another example, the base is constructed of a conductive polymer. In another example, the conductive polymer is an elastomer. In another example, the fins are discontinuous along a long axis of one of the bases to form a row and entry channel. In another example, the channels are adult fonts. In another example, the base has a thickness between 〇1" and 〇25" and the fins such as §Hai independently have a height between 〇75" and 5", at 127532. Doc •12- 200903817 0.2"The center-to-center spacing between 〇_5" and the width between 〇〇〇7"and 〇丨". In another example, the photovoltaic panel is in A heat interface layer is disposed between the heat sink and the unexposed surface to improve heat dissipation. In another example, the plurality of fins are positioned in a direction substantially perpendicular to a roof ridge line. In another example, The heat sink is constructed of extruded aluminum. In another example, the photovoltaic panel has a thickness between 〇1 " and 〇2" and the fins each independently have a 〇9, , the height between 2,, the center-to-center spacing between 0·3 and 〇·4" and the width between 〇.〇2" and 〇_〇5" in another example The photovoltaic panel has a thermal interface layer between the heat sink and the unexposed surface to improve heat dissipation. In another example, the plurality of fins are positioned in a direction substantially perpendicular to a roof ridge. In another example, the heat sink is constructed of extruded aluminum. In one example, a plurality of photovoltaics The panel includes: a first photovoltaic panel having a photovoltaic cell; an outer casing adapted to be attached to a roof and holding the photovoltaic cell and exposing the photovoltaic cell along a first surface of the casing a light receiving surface; a heat sink that is in thermal communication with a surface of the photovoltaic cell opposite the light receiving surface, and a first electrical connector and a second electrical connector attached to the first a photovoltaic panel, a second photovoltaic panel having a photovoltaic cell; an outer casing adapted to be attached to a roof and holding the photovoltaic cell and exposing the photovoltaic along a first surface of the casing a light receiving surface of the battery; a heat sink connected to a surface 127532.doc •13·200903817 of the photovoltaic receiving battery; and a first electrical connector and a second electrical connector Attached to the second photovoltaic panel, wherein the first electrical connector of the first panel matches the second electrical connector of the second panel and when matched, the first panel An electrical connection and the second electrical connector of the second panel are configured to prevent the first panel from rotating independently of the second panel. In another, the first-photovoltaic panel and the The second photovoltaic panel is identical. In another example, each electrical connector is independently a male or female connector. In another example, each electrical connector is independently a protruding or receptacle connector. In one example, the first electrical connector of the first panel is configured to match the second electrical connector of the second panel in a direction parallel to a roof ridge line. In the other embodiment - the first electrical connector of the first block is configured to match the second electrical connector of the second panel in a direction substantially perpendicular to a roof ridge. In another example, each photovoltaic cell is a thin film photovoltaic cell. In another example, each photovoltaic panel has a thermal interface between the heat sink and the unexposed surface to improve heat dissipation. In another example, each of the heat sinks is configured to maintain its corresponding photovoltaic cell at a temperature of less than about 15 seconds in ambient air at a temperature of 70 Torr. In another example, each photovoltaic panel comprises an overhang along the first surface of the housing that is substantially parallel to the roof ridge 127532.doc -14.200903817. In another example, each photovoltaic panel has an overhang along a first surface of the outer casing that is substantially perpendicular to a roof ridge. In another example, each heat sink has a base that is positioned substantially parallel to a surface opposite the light receiving surface such as *hai; and a plurality of fins attached to the base that are substantially parallel to each other. In another example, the fins are positioned in a direction substantially parallel to a roof ridge. In another example, the fins are positioned in a direction substantially perpendicular to a roof ridge line. In another example, the fins are discontinuous along a long axis of one of the associated bases to form an exhaust and an intake passage. In another example, the channels are adult glyphs. In another example, each heat sink is constructed of metal. In another example, the metal is extruded from aluminum. In another example, the metal is a black anodized. In another example, each heat sink is constructed of a conductive polymer. In another example, the conductive polymer is an elastomer. In one example, the photovoltaic panel has a photovoltaic cell; a housing that holds the cell and exposes the light receiving surface of the photovoltaic cell; and a first electrical connector and a second electrical connector Attached to the photovoltaic panel. The outer casing is attached for attachment to a roof and the outer casing has a thermally conductive polymer that is in thermal communication with an unexposed surface of the photovoltaic cell. In another example, the outer casing of the photovoltaic cell has a second polymer adjacent the first polymer. 127532.doc -15· 200903817 In another example, the first electrical connector of the photovoltaic panel matches one of the electrical connectors of a second photovoltaic panel. When mated, the first electrical connector of the first panel and the electrical connector of the second panel are configured to prevent the first panel from rotating independently of the second panel. In other examples, the first photovoltaic panel is identical to the second photovoltaic panel. In another example, each electrical connector is independently a male or female connector. In another example, each electrical connector is independently a protruding or receptacle connector. In another example, the first electrical connector of the first panel is configured

以在一實質平行於一屋頂脊線之方向上匹配該相鄰板塊之 電連接器。 在另一實例中,該板塊之第一電連接器係經組態用以在 一實質垂直於一屋頂脊線之方向上匹配相鄰板塊之電連接 器。 在另一實例中,該光伏打板塊係沿實質平行於一屋頂脊 線的該外殼第一表面具有一外伸。 在另一實例中,該光伏打板塊沿實質垂直於一屋頂脊線 的該外殼第一表面具有一外伸。 在另一實例中,該光伏打電池係-薄膜光伏打電池。 在另-實例中,該熱傳導聚合物係成形為實質相互平行 而定位的複數個鰭片。在另一實例中 貝1 j τ該等鰭片係沿該底 座之-長軸不連續,以形成排氣及進人通道。在另一實例 中’該等通道成人字形。 以下方法來加以製 —第一聚合物注入 在另一實例中,該光伏打板塊係藉由 造:在一模具内放置一光伏打電池;將 127532.doc -16- 200903817 於該模組内;及從該模具中移除該聚合物與該電池。 在另一實例中’該方法之該第一聚合物係一熱傳導聚合 物。 在另一實例中,該方法包括將一第二聚合物注入該模具 内。 在另一實例中,在將該第一聚合物注入該模具内時,該 第一聚合物係與該光伏打電池之光接收表面相對的—表面 熱連通。 在另一實例中,該方法之該第一聚合物形成一外殼,其 保持該光伏打電池並曝露該光伏打電池之光接收表面,其 中該外设係S周適以固定於·_屋頂上。 在另一實例中,該方法之該第二聚合物形成一外 保持該光伏打電池並曝露該光伏打電池之光接收表面,其 中該外殼係調適以固定於一屋頂上。 在另一實例中,該方法之該光伏打電池具有一金屬散熱 器’其係附著至與光接收表面相對的一表面。 在另一實例中,該方法之該光伏打板塊具有—電連接 器’其中在匹配時,該光伏打板塊之電連接器與— 示—^反 鬼之一電連接器係經組態用以防止該光伏打板塊獨立於該 第二板塊而旋轉。 在另一實例中,當注入該第一聚合物時使用足夠熱能及 壓力,以允許在該第一聚合物與該光伏打電池之間 熱接觸。 、、役 在另一實例中,該方法包括冷卻該模具。 127532.doc •17- 200903817 在一實例中,一光伏打板塊係藉由以下方法來加以製 & ’在一夾具内放置一散熱器’使得該散熱器之一下表面 接觸該夾具並曝露該散熱器之一上表面;相鄰該上表面放 置一光伏打電池;連接該光伏打電池與該散熱器;從該夾 具中移除該散熱器;及在該光伏打電池周圍形成一外殼。 在另一實例中’連接該光伏打電池與該散熱器之該步驟 包含層合。 在另一實例中’該層合步驟包含在該上表面與該光伏打 電池之間提供一熱介面層。在另一實例中,該層合步驟包 含將該散熱器、中間層及光伏打電池層合在一起^在另一 實例中’該中間層係一熱傳導聚合物。在另一實例中,該 熱傳導聚合物係一彈性體。 在另一實例中,該層合步驟包含減小在該上表面與該光 伏打電池之間的環境壓力。在另一實例中,減小該環境壓 力持續5至3 0分鐘之間。 在另一實例中’該層合步驟包含增加在該上表面與該光 伏打電池之間的溫度。在另一實例中,該溫度係增加至 125 °C與175 °C之間。在另一實例中,增加該溫度持續5至 3 〇分鐘之間。 在另一實例中’該層合步驟包含增加在該上表面與該光 伏打電池之間的壓力。在另一實例中,將該壓力增加至 〇·5至5個大氣壓之間。在另_實例中,增加該壓力持續5 至3 0分鐘之間。 在另一實例中’該散熱器係由擠製鋁所構成。 127532.doc -18- 200903817 在另一實例中,該散熱器 在另-實例中…… #導聚合物所構成。 池上。在另一會如± ^ 保護層於該光伏打電 實例中’該保護層係-保形塗声。 在另一實例中,該散埶器且 曰 且該央具包含”… 相互平行定位的縛片 興该4鰭片互補的凹槽。 結合附圖及申請專利 地明白本發明。 考慮下面坪細說明會更清楚 【實施方式] ^列=係呈現以供習知此項技術者能夠實現並利用本 .疋材料、技術及應用之說明僅作為範例而提供。 習知此項技術者將會容易地明白本文所述較該等範例之各 種C文1本文所疋義之通用原理可應用於其他㈣及$ 用程序而不脫離本發明之精神與料。㈣,本發明不希 望局限於所述及所示的該等範例,但符合與隨附申請專利 範圍相一致的範_。 光伏打(PV)模組通常係封裝的互連太陽能電池,環繞有 一框架、觀底及料性遮蓋⑯。模组可能在尺寸上相對上 較大並設計用於許多應用,例如安裝於現有屋頂上而未必 提供屋頂的主要保護,以及其他非屋頂應用,例如現場追 蹤器。光伏打(PV)板塊通常係更小的光伏打裝置,其係設 計以模擬及/或替代屋面板塊,從而提供能量轉換及對屋 頂的環境保護。 圖1A說明本發明之一光伏打(Pv)模組丨〇〇_M之一範例。 光伏打模組1 00-M包括定位於一框架12〇_M内的互連光伏 127532.doc -19- 200903817 打電池110-M之一光伏打陣列,該框架可調適以將該模組 固定於一完成屋頂上《各光伏打電池係定位於框架12〇_M 内,以允許將一電池的光接收表面曝露於太陽能輻射下。 圖1B說明本發明之一光伏打(PV)板塊1〇〇之一範例。光 伏打板塊100包括定位於一外殼120内的一或多個光伏打電 池110。該外殼可能相對於屋頂長度而水平位於一未完成 屋頂表面上。各光伏打電池係定位於外殼12〇内以允許 將一光接收表面曝露於太陽能輻射下。當在該板塊内或其 上容納多個光伏打電池時,各電池可電連接至一相鄰電 池。 一模組或板塊之各光伏打電池可能係此項技術中當前使 用或未來發展的任一者,例如一以矽為主之晶圓光伏打電 池、一薄膜光伏打電池或一將光子轉換成電之傳導聚合 物。此類電池為人所熟知並包括形成於一單晶石夕、多晶或 多結晶矽或帶式矽基板上以晶圓為主之電池。一薄膜光伏 打電池可能包含非晶矽、多晶矽、奈晶矽、微晶矽、碲化 鎘、硒化/硫化銅銦(CIS)、銅銦硒化鎵(CIGS)、一有機半 導體或一光吸收染料。 各光伏打電池可能係任一形狀(例如方形、矩形、六邊 形、八邊形、三角形、圓形或菱形)並位於一模組或板塊 之一表面内或其上。在一模組或板塊内的—光伏打電池係 在該框架内凹入者,基本上僅該電池頂部表面曝露於光 源。在一杈組或板塊上的一光伏打電池係直接放置於該框 架頂部上者,基本上僅底表面不曝露於光源。 I27532.doc -20- 200903817 具有散熱器之光伏打模組及板塊 該光伏打模組及板塊(分別如圖1A&1B所示)可視需要地 包含一或多個散熱器13〇-^1及130,其係與該等光伏=電池 麵及110之未曝露表面熱連通以發散來自該等電池之廢 棄熱能。圖2A顯示一附著散熱器之一詳細部分圖,其中該 散熱器具有鰭片。各散熱器可包含一底座2〇〇,其^附著Λ 至該等太陽能電池之未曝露表面之平直表面;及複數㈣ 片21〇,其實質垂直於該底座之一較大表面而延伸。各籍 片可能平行於一相冑鰭片而從該底座突出。該底座與Μ 可單獨構造並稍後連接,《由相同材料來源構造成一整 體。圖2Β顯示一附著散熱器之一類似詳細部分圖,其中該 散熱器具有截頂圓錐體。各散熱器可包含一底座,其 係附著至該等太陽能電池之未曝露表面之平直表面;及複 數個截頂圓錐體211,其實質垂直於該底座之一較大表面 而延伸。 該散熱器可能直接實體接觸該等太陽能電池或可能具有 -或多個中間層。一中間層範例係一中間熱介面層2:〇, 其可由在此項技術中所使用的材料製成,例如熱傳導油脂 或黏著劑(例如傳導環氧樹脂、石夕樹脂或陶幻或一中間傳 導聚合物(例如講自Cool p〇lymers,如·的一熱傳導聚合 物尼龍6-6及/或一聚苯趟硫化物,視需要混合一或多個 金屬填充物)°該熱介面層可能係在此項技術中常用的任 一材料(例如乙基錯酸乙烯_)、聚醋、τ*⑧、 EPT)。該熱介面層可能由既電絕緣又熱傳導之材料所構 127532.doc •21 - 200903817 成“、"面層可能係一聚合物薄層’其本質不熱傳導, n其厚度而以—足夠速率傳導熱能,故將其視為熱傳 、、他層可單獨或除-中間熱介面層(例如一或多個電 絕緣層)外而存在。該中間層可能同時接觸該(等)太陽能電 池與該散熱器二者。The electrical connectors of the adjacent panels are mated in a direction substantially parallel to a roof ridge. In another example, the first electrical connector of the panel is configured to match the electrical connectors of adjacent panels in a direction substantially perpendicular to a roof ridge. In another example, the photovoltaic panel has an overhang along a first surface of the outer casing that is substantially parallel to a roof ridge. In another example, the photovoltaic panel has an overhang along a first surface of the housing that is substantially perpendicular to a roof ridge. In another example, the photovoltaic cell is a thin film photovoltaic cell. In another example, the thermally conductive polymer is formed into a plurality of fins that are positioned substantially parallel to one another. In another example, the fins are discontinuous along the long axis of the base to form an exhaust and a passage. In another example, the channels are adult glyphs. The following method is used for the first polymer injection in another example, the photovoltaic panel is formed by: placing a photovoltaic cell in a mold; 127532.doc -16-200903817 in the module; And removing the polymer from the mold and the battery. In another example, the first polymer of the process is a thermally conductive polymer. In another example, the method includes injecting a second polymer into the mold. In another example, the first polymer is in thermal communication with the surface opposite the light receiving surface of the photovoltaic cell when the first polymer is injected into the mold. In another example, the first polymer of the method forms a casing that holds the photovoltaic cell and exposes the light receiving surface of the photovoltaic cell, wherein the peripheral device is S-shaped to be fixed on the roof. . In another example, the second polymer of the method forms a light receiving surface that retains the photovoltaic cell and exposes the photovoltaic cell, wherein the outer casing is adapted to be attached to a roof. In another example, the photovoltaic cell of the method has a metal heat sink that is attached to a surface opposite the light receiving surface. In another example, the photovoltaic panel of the method has an electrical connector, wherein when the matching, the electrical connector of the photovoltaic panel and the electrical connector of the LED are configured to The photovoltaic panel is prevented from rotating independently of the second panel. In another example, sufficient thermal energy and pressure are used when injecting the first polymer to allow for thermal contact between the first polymer and the photovoltaic cell. In another example, the method includes cooling the mold. 127532.doc • 17- 200903817 In one example, a photovoltaic panel is fabricated by " placing a heat sink in a fixture such that a lower surface of the heat sink contacts the fixture and exposes the heat sink One of the upper surfaces; a photovoltaic cell adjacent to the upper surface; the photovoltaic cell and the heat sink; the heat sink removed from the fixture; and an outer casing formed around the photovoltaic cell. In another example, the step of joining the photovoltaic cell to the heat sink comprises laminating. In another example, the laminating step includes providing a thermal interface layer between the upper surface and the photovoltaic cell. In another example, the laminating step includes laminating the heat sink, the intermediate layer, and the photovoltaic cell layer. In another example, the intermediate layer is a thermally conductive polymer. In another example, the thermally conductive polymer is an elastomer. In another example, the laminating step includes reducing ambient pressure between the upper surface and the photovoltaic cell. In another example, the ambient pressure is reduced for between 5 and 30 minutes. In another example, the laminating step includes increasing the temperature between the upper surface and the photovoltaic cell. In another example, the temperature is increased to between 125 °C and 175 °C. In another example, the temperature is increased for between 5 and 3 minutes. In another example, the laminating step includes increasing the pressure between the upper surface and the photovoltaic cell. In another example, the pressure is increased to between 至5 and 5 atmospheres. In another example, the pressure is increased for between 5 and 30 minutes. In another example, the heat sink is constructed of extruded aluminum. 127532.doc -18- 200903817 In another example, the heat sink is constructed in another example... #conductive polymer. On the pool. In another example, the ± ^ protective layer in the photovoltaic powering example 'the protective layer is - conformal coating. In another example, the diffuser and the centering device comprise "..." mutually parallel positioning tabs for the complementary grooves of the 4 fins. The invention is understood in conjunction with the drawings and the patent application. The description will be more clear [Embodiment] ^ Column = is presented for the knowledge of the person skilled in the art to be able to implement and utilize the description of the materials, techniques and applications. This is provided as an example only. It is to be understood that the various general principles of the present invention described herein may be applied to other (four) and applications without departing from the spirit and scope of the invention. These examples are shown, but are consistent with the scope of the accompanying patent application. Photovoltaic photovoltaic (PV) modules are typically packaged interconnected solar cells that surround a frame, a substrate, and a material cover. Groups may be relatively large in size and designed for many applications, such as installation on existing roofs without necessarily providing primary protection for the roof, as well as other non-roof applications such as field trackers. Photovoltaic (PV) panels It is usually a smaller photovoltaic device designed to simulate and/or replace roofing blocks to provide energy conversion and environmental protection of the roof. Figure 1A illustrates a photovoltaic (Pv) module of the present invention 丨〇〇 An example of M. Photovoltaic module 1 00-M includes interconnected photovoltaics positioned in a frame 12〇_M 127532.doc -19- 200903817 One of the 110-M photovoltaic arrays, the frame is adjustable The module is fixed on a finished roof. "The photovoltaic cells are positioned in the frame 12"_M to allow the light receiving surface of a battery to be exposed to solar radiation. FIG. 1B illustrates one of the photovoltaic devices of the present invention. An example of a PV panel 1. The photovoltaic panel 100 includes one or more photovoltaic cells 110 positioned within a housing 120. The housing may be horizontally located on an unfinished roof surface relative to the length of the roof. The battery is positioned within the housing 12 to allow exposure of a light receiving surface to solar radiation. When a plurality of photovoltaic cells are housed within or on the panel, each battery can be electrically connected to an adjacent battery. Module or board Each of the photovoltaic cells may be any of the current or future developments in the technology, such as a wafer-based photovoltaic cell, a thin-film photovoltaic cell, or a conductive polymer that converts photons into electricity. Such batteries are well known and include wafer-based cells formed on a single crystal, polycrystalline or polycrystalline germanium or ribbon germanium substrate. A thin film photovoltaic cell may contain amorphous germanium, polycrystalline germanium. , nanocrystalline germanium, microcrystalline germanium, cadmium telluride, selenized/copper indium sulfide (CIS), copper indium gallium selenide (CIGS), an organic semiconductor or a light absorbing dye. Each photovoltaic cell may be in any shape. (eg square, rectangular, hexagonal, octagonal, triangular, circular or diamond) and located in or on one of the surfaces of a module or panel. Photovoltaic cells in a module or panel are The recess in the frame is substantially only the top surface of the battery is exposed to the light source. A photovoltaic cell on a stack or panel is placed directly on top of the frame, and substantially only the bottom surface is not exposed to the source. I27532.doc -20- 200903817 Photovoltaic modules and plates with heat sinks The photovoltaic modules and plates (shown in Figures 1A & 1B, respectively) may optionally include one or more heat sinks 13〇-^1 and 130, in thermal communication with the unexposed surfaces of the photovoltaic=cell surfaces and 110 to dissipate waste heat from the cells. Fig. 2A shows a detailed partial view of a attached heat sink having fins. Each of the heat sinks can include a base 2 that is attached to the flat surface of the unexposed surface of the solar cells, and a plurality of (four) sheets 21 that extend substantially perpendicular to a larger surface of the base. Each piece may protrude from the base parallel to a phase of the fin. The base and Μ can be constructed separately and later connected, “constructed from the same material source as a whole. Figure 2A shows a similar detailed view of one of the attached heat sinks, wherein the heat sink has a truncated cone. Each heat sink can include a base attached to a flat surface of the unexposed surface of the solar cells, and a plurality of truncated cones 211 extending substantially perpendicular to a larger surface of the base. The heat sink may be in direct physical contact with the solar cells or may have - or multiple intermediate layers. An intermediate layer example is an intermediate thermal interface layer 2: tantalum, which may be made of materials used in the art, such as thermally conductive grease or adhesives (e.g., conductive epoxy, lithograph or terracotta or a middle Conductive polymer (for example, a thermal conductive polymer nylon 6-6 and/or a polyphenylene sulfide from Cool p〇lymers, such as one or more metal fillers if necessary). The thermal interface layer may Any of the materials commonly used in the art (e.g., ethyl methacrylate _), polyester, τ*8, EPT). The thermal interface layer may be composed of a material that is both electrically and thermally conductive. 127532.doc •21 - 200903817 The "," layer may be a thin layer of polymer that is not thermally conductive, n its thickness - sufficient rate Conducting thermal energy, so it is considered to be heat transfer, and the other layer may exist separately or in addition to the intermediate thermal interface layer (for example, one or more electrically insulating layers). The intermediate layer may simultaneously contact the (etc.) solar cell and Both of the heat sinks.

各散熱器之底座200與縛片21〇(或圓錐體211)可獨立地由 或夕個熱傳導材料所構成,例如結或紹合金(例如6063 鋁合金、6061紹合金及6〇〇5銘合金)、銅、石墨或傳導聚 CT物(例如購自(例如)C〇〇1 p〇lymers,Inc•的傳導彈性體), 並可能係任一色彩’例如藍色、黑、色、灰色或棕色。深色 可改良散熱效能。可陽極化或電鍍—由金屬所構成的散熱 器。散熱器可藉由普通製造技術來構造,例如擠製、鑄造 或射出成型,或可使用一製造技術組合來構造複合型散熱 器(例如成型於一傳導聚合物底座内的鋁鰭片)。 在一些實例中,該散熱器降低該(等)光伏打電池溫度之 效率可能取決於該散熱器之熱傳導特性以及在該散熱器表 面與該(等)光伏打電池之間所實現之接觸數量。在其他實 例中’該散熱器降低該(等)光伏打電池之溫度之效率可能 取決於該散熱器之表面幾何形狀以及對流數量。 圖2A及2B說明一附著至一光伏打模組或光伏打板塊之 散熱器130之尺寸。底座200具有一指定為t的厚度。該等 鰭片210或截頂圓錐體211獨立地具有一指定為h的高度、 一指定為s的中心至中心間距及一指定為w的寬度(在鰭片 的情況下)或内徑(在截頂圓錐體的情況下)。任一鰭片的寬 127532.doc -22· 200903817 '、或小於0.5"、或小 或小於0.1"、或小於 或小於0.005”、或小 ^可獨立地小於1英叶、或小於o.75 於〇.3"、或小於〇·2”、或小於0.15"、 〇·〇5或小於0.025"、或小於〇 〇1 μ、 於〇.〇〇25、或小於G.00 1,1、或在0.001”與0.25"之間、或在 0.002與〇‘1”之間、或在"與G()75"之間、或在與 〇·〇6"之間、或在0 02"與〇 〇5"之間、或〇 〇2"。任一鰭片之 高度11可能獨立地大於〇_1”、或大於0.25”、或大於〇.5"、或The base 200 and the tab 21〇 (or the cone 211) of each heat sink can be independently composed of a thermal conductive material, such as a knot or a alloy (for example, 6063 aluminum alloy, 6061 Shao alloy, and 6〇〇5 alloy). ), copper, graphite or conductive polyCT (for example, a conductive elastomer available from, for example, C〇〇1 p〇lymers, Inc.), and may be in any color 'eg blue, black, color, gray or brown. Dark color improves heat dissipation. Can be anodized or plated - a heat sink made of metal. The heat sink can be constructed by conventional manufacturing techniques, such as extrusion, casting or injection molding, or a combination of manufacturing techniques can be used to construct a composite heat sink (e.g., aluminum fins molded into a conductive polymer base). In some instances, the efficiency with which the heat sink reduces the temperature of the photovoltaic cell may depend on the heat transfer characteristics of the heat sink and the amount of contact achieved between the surface of the heat sink and the photovoltaic cell. In other embodiments, the efficiency with which the heat sink reduces the temperature of the photovoltaic cell may depend on the surface geometry of the heat sink and the amount of convection. 2A and 2B illustrate the dimensions of a heat sink 130 attached to a photovoltaic module or photovoltaic panel. The base 200 has a thickness designated as t. The fins 210 or truncated cones 211 independently have a height designated h, a center-to-center spacing designated as s, and a width (in the case of fins) or an inner diameter designated as w (in In the case of a truncated cone). The width of any fin is 127532.doc -22· 200903817 ', or less than 0.5", or less or less than 0.1", or less than or less than 0.005", or small ^ can be independently less than 1 inch, or less than o .75 于〇.3", or less than 〇·2”, or less than 0.15", 〇·〇5 or less than 0.025", or less than μ1 μ, 〇.〇〇25, or less than G.00 1, 1, or between 0.001" and 0.25", or between 0.002 and 〇 '1", or between "and G()75", or between 〇·〇6" Or between 0 02" and 〇〇5", or 〇〇2". The height 11 of any fin may be independently greater than 〇_1", or greater than 0.25", or greater than 5.5", or

大於0.75"、或大於丨”、或大於2"、或大於35"、或在〇 25" 與7"之間、或在0.5”與6"之間、或在〇.75,,與5”之間、或在 0.8’與2.5"之間 '或在〇9"與2”之間、或在〇9"與125"之 間、或1 。在鰭片之間的中心至中心間距s可獨立地在 0.05”與1”之間、或在〇 〇75"與〇 9"之間、或在〇丨,,與〇 8Π之 間、或在0.2"與0,7''之間、或在〇·2"與〇_5”之間、或在0.25” 與0.45”之間、或在〇·25"與〇.4"之間、或在〇.3"與〇.4"之 間、或在0.3”與0.45”之間’或在0.35”與0.4',之間。各散熱 器之底座之厚度t可能獨立地小於1 ”、或小於〇 · 7 5 ”、或小 於0.5"、或小於〇·4"、或小於0.3"、或小於〇·2"、或小於 0.15”、或小於〇·ι”、或小於0.05”、或在〇.〇5”與〇 5”之間、 或在0.075"與0.35"之間、或在0.1”與0.25"之間、或在0.1” 與0.2’|之間、或0.1",或0.15,,、或0.2"。中心至中心間距 ⑷與鰭片高度(h)之比率(即s/h)可能獨立地係0.1、0.15、 0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.5、0.6、0.65、 0.7,或在0.1與〇.7之間,或在0.15與0.5之間,或在0.2與 0.4之間,或在〇.2與0.35之間,或在0.25與0.3之間。任一 127532.doc -23- 200903817 鰭片之尺寸可能相同或不同於相同散熱器上的其他鰭片之 尺寸。任一鰭片或底座之尺寸可能相同或不同於其他散熱 器上的尺寸。在一板塊或模組上的所有散熱器底座之尺寸 可能相同。在一板塊或模組上的所有散熱器之所有散熱器 鰭片之尺寸可能相同。一個別散熱器之所有散熱器鰭片之 尺寸可能相同。一散熱器之所有鰭片之高度可能相同。一 散熱器之所有鰭片之高度可能不同。一散熱器之所有鰭片 之平均尚度可能係上述任一尺寸。一散熱器之所有鰭片之 平均中心至中心間距可能係上述任一尺寸。一散熱器之所 有鰭片之平均寬度可能係上述任一尺寸。 各散熱器之尺寸可能獨立地係上述尺寸之任一組合,例 如W在〇_〇〇2”與(M"之間,h在〇75"與5”之間,8在〇2||與 0.5”之間,而t在u ”與〇25”之間;〜在〇〇〇1"與ου"之 間,h在〇.75”與5”之間,5在〇2"與〇5 ”之間,而〖在〇1"與 0.25"之間;〜在〇_〇2”與0.051'之間,h在0.75”與5”之間,s 在0.2"與〇.5"之間,而”與〇25"之間;〜在〇〇〇2"與 〇·Γ'之間,h在0_25”與7"之間,s在〇_2"與〇.5"之間,而泣 〇·1"與 0.25"之間;w在 0_002"與 〇」”,w〇9"與 2,,之間,$ 在〇·2”與0.5”之間,而t在(μ"與〇 25"之間;〜在〇 〇〇2,,與 0.1”之間,h在0.75"與5”之間,e〇.〇5n ”之間,而(在 間,s在0.3”與0.4”之間,而#0」,,與〇·25"之間;…在 0·002”與0.1"之間’ h在0.75"與5" ’ S在0.2”與0.5"之間,而 t在0.05"與0.5”之間;以及〜在〇 〇〇2”與〇」,,之間,h在〇 75" 127532.doc -24· 200903817 與5”之間,s在〇·2"與〇.5"之間,而雊〇1,,與〇2”之間。Greater than 0.75", or greater than 丨", or greater than 2", or greater than 35", or between 〇25" and 7", or between 0.5" and 6", or at 〇.75,, and 5 Between, or between 0.8' and 2.5" or between &9" and 2, or between &9" and 125", or 1. The center-to-center spacing s between the fins may be independently between 0.05" and 1", or between 〇〇75" and 〇9", or between 〇丨, 〇8Π, or Between 0.2" and 0,7'', or between 2·2" and 〇_5, or between 0.25" and 0.45", or between 〇·25" and 〇.4" Or between 〇.3" and 〇.4", or between 0.3" and 0.45" or between 0.35" and 0.4'. The thickness t of the base of each heat sink may independently be less than 1", or less than 〇·7 5 ”, or less than 0.5", or less than 〇·4", or less than 0.3", or less than 〇·2", or Less than 0.15", or less than ι·ι", or less than 0.05", or between 〇.〇5" and 〇5", or between 0.075" and 0.35", or between 0.1" and 0.25" Between, or between 0.1” and 0.2'|, or 0.1", or 0.15,, or 0.2". The ratio of center-to-center spacing (4) to fin height (h) (ie s/h) may Independently 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.5, 0.6, 0.65, 0.7, or between 0.1 and 〇.7, or between 0.15 and 0.5, or at 0.2 Between 0.4, or between 〇.2 and 0.35, or between 0.25 and 0.3. Any 127532.doc -23- 200903817 fins may be the same size or different from other fins on the same heat sink Dimensions. The size of any fin or base may be the same or different from that of other heat sinks. All radiator bases on a panel or module may be the same size. All heat sink fins of all heat sinks on a panel or module may be the same size. All heat sink fins of a different heat sink may be the same size. All fins of a heat sink may have the same height. The height of all the fins of the device may be different. The average of all the fins of a heat sink may be any of the above dimensions. The average center-to-center spacing of all the fins of a heat sink may be any of the above dimensions. The average width of all fins may be any of the above dimensions. The size of each heat sink may independently be any combination of the above dimensions, such as W between 〇_〇〇2" and (M", h is 〇 Between 75" and 5", 8 is between 〇2|| and 0.5", and t is between u" and 〇25"; ~ between 〇〇〇1" and ου", h is 〇.75 Between "with 5", 5 between 〇2" and 〇5", and between 〇1" and 0.25"; between 〇_〇2 and 0.051', h at 0.75" Between 5", s between 0.2" and 〇.5", and between "and 〇25"; ~ at 〇〇〇2&quot Between 〇·Γ', h is between 0_25” and 7", s is between 〇_2" and 〇.5", and weeping is between 1" and 0.25";w at 0_002" "〇", w〇9" and 2,, between $〇2" and 0.5", and t between (μ" and 〇25"; in 〇〇〇2,, with Between 0.1", h is between 0.75" and 5", between e〇.〇5n", and (between, s is between 0.3" and 0.4", while #0",, and 〇·25&quot Between; between 0.002" and 0.1" between 'h at 0.75" and 5" 's between 0.2" and 0.5", and t between 0.05" and 0.5"; ~ between 〇〇〇2" and 〇",, h between 〇75" 127532.doc -24· 200903817 and 5", s between 〇·2" and 〇.5" 1, between and 〇 2".

可設計-散熱器,使得—第一體積(定義為一散熱器之 一體積,包括其相關聯的散熱器底座)係一第二體積之一 百分比(定義為來自該散熱器底座之—自頂向下突出表面 積與-第,尺寸之一體積’纟中該第三尺寸係定義為來自 在該散熱器底座上之各伸出物(例如圓錐體、鰭片等)之高 度之最小平方測定)。例如,若-散熱器之所有伸出物: 寸相等’則言亥第-體積將會係該散熱器底座體積加上各伸 出物體積與伸出物數目之乘積;而該第二體積將會係該散 熱器底座之自頂向下突出表面積(例如在該散熱器底座係 矩形的情況下寬度X長度)乘以伸出物高度(即第三尺寸)。 若在一散熱器内的伸出物高度不同,則所有伸出物高度之 最小平方測定將會決定在上述範例中所使用的第三尺寸。 該體積百分比係該第一體積除以該第二體積xl00。該體積 百分比可能係(例如)在10%與50%之間、在15%與45%之 間、在20;與40%之間、在25¾與35%之間、在20%與30% 之間、在25%與30%之間、在30%與35%之間、在35〇/〇與 40%之間、在40%與45%之間、在45%與50%之間、在20% 與25。/〇之間、在15%與20%之間、在1〇%與15%之間、在 10%與20%之間、在15°/。與25%之間、在25%與35%之間、 在30%與40%之間、在35%與45%之間、在40%與50%之 間、在10%與25%之間、在15%與30%之間、在20%與35〇/〇 之間、在25%與40%之間、在30%與45%之間、在35%與 50%之間、在1〇%與12.5%之間,在12.5%與15%之間、在 127532.doc •25· 200903817 15/〇 與 17.5%之間、在 17.5% 與 2〇〇/0之間、在 2〇〇/0與 22.5%之 間、在22.5%與25%之間、在25%與27 5%之間、在27.5%與 30%之間、在30。/。與32.5%之間、在32 5%與35%之間、在 35%與37.5%之間、在37_5%與40%之間、在4〇%與42 5%之 間、在42.5%與45%之間、在45〇/〇與47.5%之間或在47 5%與 5 0%之間。The heat sink can be designed such that the first volume (defined as one volume of a heat sink, including its associated heat sink base) is a percentage of a second volume (defined as from the base of the heat sink - top The downwardly protruding surface area and - the first dimension of the volume '纟 is defined as the least squares of the height from each of the protrusions (eg, cones, fins, etc.) on the heat sink base) . For example, if all the protrusions of the heat sink: the inch is equal, then the volume of the heat sink base will be the product of the base volume of the heat sink plus the volume of each protrusion and the number of protrusions; and the second volume will The top-down downward protruding surface area of the heat sink base (for example, the width X length in the case where the heat sink base is rectangular) is multiplied by the height of the protrusion (ie, the third size). If the height of the protrusions in a heat sink is different, the least squares of all protrusion heights will determine the third size used in the above example. The volume percentage is the first volume divided by the second volume xl00. The volume percentage may be, for example, between 10% and 50%, between 15% and 45%, between 20; and 40%, between 253⁄4 and 35%, between 20% and 30%. Between 25% and 30%, between 30% and 35%, between 35〇/〇 and 40%, between 40% and 45%, between 45% and 50%, 20% and 25. Between / 15% and 20%, between 1% and 15%, between 10% and 20%, at 15 ° /. Between 25%, between 25% and 35%, between 30% and 40%, between 35% and 45%, between 40% and 50%, between 10% and 25% Between 15% and 30%, between 20% and 35〇/〇, between 25% and 40%, between 30% and 45%, between 35% and 50%, at 1 〇% vs. 12.5%, between 12.5% and 15%, between 127532.doc •25·200903817 15/〇 and 17.5%, between 17.5% and 2〇〇/0, at 2〇〇 Between /0 and 22.5%, between 22.5% and 25%, between 25% and 275%, between 27.5% and 30%, at 30. /. Between 32.5%, between 325% and 35%, between 35% and 37.5%, between 37% and 40%, between 4% and 425%, at 42.5% and 45. Between %, between 45〇/〇 and 47.5% or between 475% and 50%.

例如,鰭片的一長軸可實質平行或實質垂直於該底座的 一長軸。實質平行係在二參考軸形成一小於1〇。之角度 時實負垂直係在一參考軸形成一在85。與95。之間角度 時。一長軸係一平行於參考物體之最長筆直邊緣之軸。在 沒有參考任何軸之情況下,暗示-長軸。該等鳍片可沿該 底座之大多數或全部長度而連續穿行。鰭片可能不全部相 對於該散熱器之長轴形成㈣㈣肖度(例如一扇形定 向)’使付空氣可自由地穿過相鄰鰭片所形成之多數通道 而不管風向如何。‘鰭片表面還可具有諸如脊或凸塊之特 徵,其幫助在流經該等鮪片之空氣中引起旋渦以幫助對 流0 -或多個散熱器可能(例如)實質平行或實質垂直於該板 塊或模組之長軸而定位並可跨越該板塊或膜之部分或整個 長度或寬度。同樣地’多個散熱器可能在有或沒有中間空 間下級聯對齊’以在需要時跨越該板塊或模組之部分或整 個長度或寬度。在一變更中,一散熱器具有足夠長度以跨 越該板塊或模組之長度之3/4以上。在另一變更中,一散 …、器〃有足夠長度以跨越該板塊或模組之寬度之以 127532.doc -26 - 200903817 上。在一些變更中’在該板塊上的不同散熱器將實質相互 垂直地定位。在另-變更中,一翠_散熱器係定位以覆蓋 該(等)光伏打電池之大多數未曝露表面。該散熱器還可位 於該板塊之該等側及/或頂部上以增加對流及冷卻效率。 一散熱器可能係各種㈣提供增加熱傳遞之設計。例 如,如圖2C所示,,鰭片可在其長度上包含裂縫,(例如)以 橫跨縛片(或等效物)建立通道,以提供額外開口至散敎器 内部並增加氣流至該等内部鰭片。通道可能係任一圖案, 例如-般十字切口、人字形或波浪形。還可使用其他附著 至底座之散熱形狀來取代該等鳍片,例如稜錐體(包括截 頂稜錐體)、圓柱形、方形椿或圓錐體(包括截頂圓錐體)。 其他形狀(例如截頂圓錐體)可能分別橫跨該散熱器之長 度及寬度以平行列及行對齊;或者分職跨該㈣器之長 度及寬j以交錯平行列及行對齊。使用截頂圓錐體可允許 來自任-方向之風流貢獻於該散熱器之對流並增加該光伏 打板塊或模組之冷卻。該等散熱形狀(例如截頂圓錐體)可 能係空心的(如圖11及12所示)。空心散熱形狀可允許該散 熱益之有效率熱傳遞,同時降低聚合物、熱傳導聚合物及 /或添加劑之數量以降低生產成本。該等散熱形狀(例如空 ^截頂圓錐體)可組合一或多個紫外線穩定劑、一或多個 '、〔疋A及7或熱傳導顆粒(例如本文所述之金屬填充物)。 圖11描述—包含截頂圓錐體11-1之散熱器之-範例性且 體實施例。該等截頂圓錐體可能具有一高度⑻、一寬度 (W)、一壁厚度(wt)、_底寬度㈣、一中心至中心間距 127532.doc -27- 200903817 (s),並可附著至一具有一厚度⑴之底座u_2。如圖u中所 述’該等截頂圓錐體可能從各圓錐體之底寬度至各圓錐體 之頂部而空心(及視需要透過各圓錐體頂部而完全空心)以 減小生產成本。在圖11内所示範之具體實施例之一實例 中,該散熱器包含一底座,其具有一大約3 mm厚度(t); 空心截頂圓錐體,其具有一大約18 min至大約25 mm之高 度(h)、一大約2.5 mm至大約3 mrn之寬度(w)、一大約3.8 mm至大約5 mm之底寬度(bw)、一大約3 mm之壁厚度(wt) 及一大約6 mm之中心至中心間距(s);且其中該等截頂圓 錐體以交錯平行列及行對齊^在一些實例中,底座丨丨_2可 能具有大約15"乘以15"的表面尺寸。該散熱器可能由(例 如)Nylon 1020、Nylon 1040、Nylon 1240 > Froton 6165A、Froton 6165D或聚苯醚硫化物或本文所述的任一 其他聚合物製成’並可包含一或多個紫外線穩定劑及/或 一或多個熱穩定劑《該等截頂圓錐體可橫跨一或多個圓錐 體之寬度包括通道’以允許增加環境空氣進入。該散熱器 可包含任一熱傳導材料(例如本文所述之金屬填充物)^在 一些實例中’可選擇高度(h)、寬度(w)、壁厚度(wt)、底 寬度(bw)、中心至中心間距(s)、厚度⑴、傳遞材料數量及/ 或聚合物類型以相對於非空心截頂圓錐體維持該等截頂圓 錐體之有效率散熱。 圖12描述一包含截頂圓錐體12-1之散熱器之另一範例性 具體實施例。該等截頂圓錐體可能具有一高度(h)、一寬度 (w)、一底寬度(bw)、一中心至中心間距⑷,並可附著至 127532.doc -28- 200903817 一具有一厚度⑴之底座12-2。如圖12所示,該等截頂圓錐 體可能從各圓錐體頂部向下透過各圓錐體中心而空心以減 小生產成本。該空心孔配置可允許增加該等截頂圓錐體之 表面積以促進該散熱器之散熱。圖12所示之空心孔12 - 3可 能係一怪定孔直徑(bd),或可能係變化直徑(例如隨著該孔 更靠近該散熱器底座而直徑遞減)。在圖12内所示範之具 體實施例之一實例中,該散熱器包含一底座,其具有一大 約3 mm厚度(t);空心截頂圓錐體,其具有一大約18 111111至 大約25 mm之高度(h)、一大約2.5 mm至大約3 mm之寬度 (w)、一大約3.8 mm至大約5 mm之底寬度(bw)及一大約6 mm之中心至中心間距(s);且其中該等截頂圓錐體以交錯 平行列及行對齊。在一些實例中,底座丨2_2可能具有大約 15”乘以15”的表面尺寸。該散熱器可能由(例如)Nyi〇n 1020、Nylon 1040、Nylon 1240、Froton 6165A、Froton 6165D或聚苯醚硫化物或本文所述的任一其他聚合物製 成’並可包含一或多個紫外線穩定劑及/或一或多個熱穩 疋劑。該等截頂圓錐體可橫跨一或多個圓錐體之寬度包括 通道,以允許增加環境空氣進入。該散熱器可包含任一熱 傳導材料(例如本文所述之金屬填充物)。在一些實例中, 可選擇高度(h)、寬度(w)、孔直徑(bd)、底寬度(bw)、中 心至中心間距(S)、厚度(t)、傳遞材料數量及/或聚合物類 型以相對於非空心截頂圓錐體維持該等截頂圓錐體之有效 率散熱。 在圖11及12中所述之該等散熱器可與本文所述之任一光 127532.doc -29· 200903817 伏打板塊或模組一起使用。 比較一缺少該散熱器之相同電池,該散熱器可經組態用 以在一標準溫度及壓力之環境靜止空氣與一 8〇〇 、 1000 W*m_2或1200 W*m·2個別或任一組合的白光輻射照度 (E)下將一光伏打電池之溫度降低至少1、至少2。匸、或 至少5 C、或至少7°C、或至少l〇°c、或至少、或至少 15C、或至少20°C。可基於超過相當ρν電池之所需溫度減 小來選擇鰭片之大小、數目及間距、底座部分之大小及該 等散熱器構造材料。 該散熱器可經組態用以在7(TF溫度環境空氣内將該光伏 打電池維持在一低於大約175°F、或低於大約16〇卞、或低 於大約1 50 F、或低於大約14〇卞、或低於大約1 3〇卞、或低 於大約120°F、或低於大約110卞、或低於大約1〇〇卞、或低 於大約90°F、或低於大約80卞之溫度下。 比較一缺少該散熱器之相同電池,該散熱器可經組態用 以在標準溫度及壓力的環境靜止空氣與一 8〇〇 W*m-2、 1000 W*m 2或1200 w*m·2個別或任一組合的白光輻射照度 (E)下,將月b畺轉換效率(藉由等式:η=(Ρη/(ΕχΑ。)加以定 義),其中Pm係最大電功率(單位瓦特),£係輸入光輻射照 度(單位W*m )而Ae係太陽能電池之表面積(單位m2))或一 光伏打電池之總面積效率(其可藉由電流⑴及/或電壓(v)相 對變化或I及V乘積相對變化加以定義)增加至少〇. 5 %、或 者至少1%、或者至少1.5%、或者至少2%、或者至少 2.5%、或者至少3%、或者至少3 5%、或者至少4%、或者 127532. doc •30- 200903817 至少4·50/〇、或者至少5〇/0、或者f ,丨ς 4有至> 5.5%、或者至少6%、 或者至少6.5%、或者至少7%、或者至少75%、或者至少 8%、或者至少8.5%、或者至少9%、或者至少9 5%、或者 至少10%。 需要時,該散熱器可受任-構件(例如一或多個風扇)提 供的強制氣流影響’以增加在該散熱器上的氣流並增加該 :伏打電池之冷卻效用。一風扇可藉由直接曝露或透過一 苢道系統迫端地遞送強制空氣至該散熱器。 如圖1Α所示’ 一光伏打模組可能具有一框架^㈣,其 具有諸如螺絲孔、舌片之固^器具及/或電連#,其係適 合於將該模組固定於機架内,該機架係附著至一完成屋 頂,使得可將來自該等太陽能電池之熱能散發至環境空氣 内。該框架可環繞該等光伏打f池並可視需要地環繞可能 相鄰電池而存在的額外層。對於屋頂固定較佳的係該等模 組塊之框架很少或不進入該等散熱器13〇_M,使得相對涼 爽的空氣可自由流過該等冷卻鰭片。在一實驗中,經由一 框架阻止進入該散熱器導致減小光伏打效率。圖1A說明該 等鰭片與通道在之間沒有該框架,使得空氣可穿過不受該 框架阻礙的該等通道(例如允許水平進入該散熱器)。 該框架可包含一凸緣或唇緣1〇2_M(筆直或彎曲),如圖 1A所不,其係定向以引導空氣在退出該模組時向上流過該 散熱器。此特徵可防止一散熱器所產生之熱空氣進入—相 鄰模組。同樣地,一凸緣或唇緣可定向以強迫冷空氣流過 一模組或相鄰模組上方進入一散熱器内。此定向之一特徵 127532.doc •31 · 200903817 可能特別有用於在以最小中 涼爽空氣進入一模組下侧。 一單一框架内以將涼爽空氣 散熱器引走。 間空間來配置多個模組時允許 可將多個凸緣及/或蜃緣併入 引入一散熱器並將熱空氣從一 視需要地’可提供接腳14()·Μ以允許在處理期間及在安 裝之前將該模組設定在一平直表面上,從而支擇模組1〇〇_ Μ之重量並防止I縮該等鰭片。接腳1抓Μ還可用以將該 模組固定至一表面,例如一屋頂。接卿可足夠b使其將 =模組從固定其的表面抬高一足夠距離,使得空氣透過並 穿過該鰭片而在通道下面及透過其自由流動,以在一該等 鰭片觸碰該屋頂表面之類似構造中提供改良的能量轉換效 率。 、 框架120-M與接聊14〇娜獨立地由能夠支撐該光伏打 模組的一或多個材料來構造,例如金屬(例如鋁)、陶究、 膠合劑、複合物或聚合物(例如傳導聚合物)。需要時,該 框架及散熱器可由一傳導聚合物構造成一模具。該框架可 能具有一延伸組態以覆蓋該散熱器,纟中該框架還可沿該 等侧包括一絲網或衝孔以允許空氣流動至該等散熱器。 可插入模組的框架一般具有腳墊,其係尤其調適以固定 至普通屋面材料,例如形成屋頂結構部分之複合屋面或木 板條通㊉’遠框架具有一高度,使得該模組的散熱器之 縛片正好觸碰或正好在固定該機架之表面(例如屋頂)上 方。或者’該機架可將該模組在屋頂上抬高一足夠距離, 使得空氣可在鰭片之間的該等通道下面並透過其而充分自 127532.doc -32- 200903817 由地流動,以提供超過該等鰭片觸碰屋頂之一相似構造的 改良效率。 一光伏打模組可採用大約(例如)3英呎、4英呎、5英 呎、6英呎、7英呎、8英呎、9英呎、1〇英呎、或1米、i 5 乎 米2.5米、3米、3.5米或4米之標準長度來形成。該 光伏打模組可採用大約(例如}1英呎、1 5英呎、2英叹、 2_5英呎、3英呎、4英呎、4 5英呎、5英呎、或〇 25米、〇 5 米、〇,75米、1米、1>25米、丨_5米、丨75米或2米之標準寬 度來形成。 光伏打模組一般包含以列及行配置的3、6、9、12、 15、18、21、24、27、30、20、24、28、32、36、40、 25、36、45、50、42、48、54、60 或 72個 PV 電池 ^ pv 電 池可配置成(例如)4χ9、6x8、6x9、6x12或8x12。在一單一 散熱器橫跨模組内的一整列PV電池接觸電池之多個實例 中’一模組可(例如)具有從五至十個散熱器。 典型光伏打模組可能具有一在3 5 ”與4 〇"之間的整體寬 度、一在50,,與60”之間的整體長度、採用一6χ9組態之光 伏打電池及9個散熱器,各跨越在模組寬度上的一行光伏 打電池。當查看可看見該等電池之光接收表面("自頂向 下”)的模組之太陽能電池側時,一模組之寬度係在該框架 之相對壁之間的短軸或最短距離。行可跨越模組寬度,而 列跨越杈組長度。在另一組態中,一光伏打模組可能具有 一在35”與40”之間的整體寬度、一在45”與55"之間的整體 長度、採用一6x8組態的光伏打電池及8個散熱器,各跨越 127532.doc -33- 200903817 在模組寬度上的一行光伏打電池。在另一組態中,一光伏 打模組可能具有一在20,,與30"之間的整體寬度、一在5〇" 與60"之間的整體長度、採用一4χ9組態的光伏打電池及8 個散熱器,各跨越在模組寬度上的一行光伏打電池。在另 一組態中,一光伏打模組可能具有一在3〇"與4〇"之間的整 體寬度、一在50”與55"之間的整體長度、採用— 8χ12組態 的光伏打電池及12個散熱器,各跨越在模組寬度上的一行 光伏打電池。本文所述之其他模組組態(例如跨越模組長 度之散熱器)可適用於上述範例。 在一範例中,構造一模組,其包含採取一 4χ9單晶矽 (225 μιη厚度)組態的36個光伏打電池。該等電池係使用一 SPI-層合機(Spire,lnc.)用玻璃來層合並使用。咖胖“以⑧ 1〇1環氧樹脂膠合劑來附著散熱器。散熱器包含具有下列 尺寸之鰭片:w=0.06"、h=0.9375"、s=〇.3”及㈣」"。各散 熱器包含八個鰭片並具有一 2.5"的整體寬度。二散熱器鄰 接’使得該等連接散熱器之整體寬度係5",則更覆蓋各光 伏打電池之寬度。 通常不論何處,從4至20個模組係安裝於在一房屋之屋 頂上=一太陽能模組内,具體視可用的朝南(在北半球)屋 頂數里而疋。例如’更多太陽能模組可安裝於商用建築的 更大屋頂上。 本文所述的該等太陽能模組可藉由任-方法及/或使用 此項技術中所已知之任一裝置而連結在一起。如2祕年12 月U日中的美國臨時中請案第6G/874,3 13號,標題為”具 127532.doc -34· 200903817 有熱交換之模組化太陽能屋頂板塊及太陽能面板"(其全部 内容以引用形式併入本文)所述,光伏打模組還可設計以 機械及/或電子互鎖。多個模組還可相互分離足夠空間, 以允許在該等模組之間增加氣流來改良光伏打電池的冷 卻。 如關於模組先前所述,光伏打板塊可在一外殼上包含一 凸緣或唇緣(筆直或彎曲),該外殼係定向以退出該板塊時 引導空氣向上流過在一板塊下面的散熱器。此特徵可防止 一散熱器所產生之熱空氣進入一相鄰板塊。同樣地,一凸 緣或唇緣可定向以強迫新鮮冷空氣流過一板塊或相鄰板塊 上方進入一散熱器内。此定向之一特徵可特別有用於防止 在一板塊陣列下面捕獲一暖空氣層並允許涼爽空氣進入下 側以促進有效率的熱傳遞。可將多個凸緣及/或唇緣併入 單一板塊内以將涼爽空氣引入一散熱器並將熱空氣從一 散熱器引走。 板塊及模組可經組態用以提供氣流通道,其允許空氣經 由風吹過散熱器所引起之自然對流或強制對流而循環以冷 钾光伏打電池。個別板塊或模組之氣流通道可對齊—或多 個相鄰板塊或模組之氣流通道以提供流過多個板塊或模組 之該等散熱器之連續空氣。該等通道可定向,使得空氣可 平行或垂直於屋頂、線而流過個別板塊之該等散熱器或連續 流過多個板塊或模組之該等散熱器。可沿板塊或模組陣列 之該等邊緣來提供管道或充氣部(出於簡化未顯示)。 板塊可設計以相互部分覆蓋’使得該等板塊之—集合保 127532.doc -35· 200903817 "蔓未70成屋頂不觉天氣曝露影響。為了輔助天氣保護, 板塊可具#或夕個伸出物(例如圖iB中的i4〇),其互補 在一相鄰板塊内的一或多個凹槽(例如圖丨B内的丨5 〇)。可 配置該等板塊,使得當位於一板塊之下端時一伸出物14〇 重疊一位於一相鄰板塊之上端的凹槽15〇,如圖3及4所 示。當放置於一傾斜屋頂4〇〇上時,該等伸出物可防止降 雨到達下面屋頂(圖4)及/或增加板塊陣列的結構完整性。 該等板塊可能具有-或多個外伸(例如在圖财4内的刚 及190),其在相鄰板塊内不具有對應的凹槽。該些特徵增 加額外的天氣保護’由於在接合㈣板塊時沒有垂直接縫 曝露於外部表面。該外伸及凹槽配置可能係任-組合並個 別或除該等上下端外用於(例如)—板塊之該等側上,以防 止曝露電連接、結件及屋頂表面。可在接合板塊之間的接 縫(例如在-伸出物/外伸下面的該等接縫)處使用—密封劑 以提供額外的天氣保護。 可在該底座内包括固定孔(在圖1B内的_以在放置一 重疊相鄰板塊之前將該等板塊固定至一屋頂(圖4之4〇〇)。 ^些孔較佳的係沿與該光伏打電池相對的邊緣或其附近而 定位’使得當安裝於一屋頂上時相鄰板塊列可重疊該等固 定孔以防止曝露固定件於天氣下。該等板塊可額外或替代 性地具有有孔之舌片,其係沿孔16〇附近的邊緣而附著至 底座,使得可將(例如)釭;+ 、 )釘子或螺絲插入其以將板塊黏附至 一屋頂結構之部分,你丨軋 位於該等板塊下面的構架及木 板0 127532.doc • 36 - 200903817 在個別光伏打電池之間的該等電組態以及在個別板塊或 模組之間的該等電連接可如此項技術中所熟知獨立地組態 成串列、並聯或混合串列並聯,以獲得所需操作電流及電 壓。例如,在一板塊或模組内的個別光伏打電池可串列連 接以增加板塊或模組之總操作電壓。若在一板塊或模組内 的各個別光伏打電池所產生之電壓足夠,則可將該等電池 並聯連接至相鄰電池以維持電壓、增加電流及/或使得一 電池失效不會停用該板塊或模組之所有電池。 δ亥板塊或模組可能包含相鄰各光伏打電池之光接收表面 的一保護層(例如在圖1Β、2八及26中所示的170)以保護該 等光伏打電池不受損壞(例如由潮濕、灰塵、化學製品及 溫度變化所引起),同時允許透射太陽光。該保護層可適 應該等光伏打電池之表面形狀並可由任一適當材料製成, 例如玻璃(例如低鉛強化玻璃)或聚合物(例如聚合對二甲 苯、汽相沈積對二甲苯或乙烯-醋酸乙烯酯)。該保護層可 月b係一膜(透光或有色)並由(例如)丙烯酸酯類、環氧樹 脂、氨基鉀酸酯及矽樹脂所製成。該保護層可能視需要地 係一抗反射塗層’例如氮化矽。 光伏打板塊可以大約(例如)6英叶、12英忖、1 §英 吋、24英吋、30英吋、36英吋、42英吋或48英吋標準長度 與任一大約(例如)4英吋、8英吋、丨2英吋、丨8英吋、22英 对、26英对、30英吋或38英吋標準寬度組合來形成。 光伏打模組一般包含以列及行配置的1、2、3、4、5、 6、7、8、9、10、11、12、15、18、21、24、27、30、 127532.doc •37· 200903817 20 ' 24 ' 28、32、36、40、25 ' 36 ' 45、50、42、48 ' 54、60或72個PV電池^ PV電池可能配置成(例如)1X2、 1x3 、 1x4 、 2x2 、 2x3 、 2x4 、 2x6 、 2x8 、 3x3 、 3x4 、 3x5 、 3x6、3x7、3x8、3x9、3x10、4x4、4x5、4x6、4x7、 4x8、4x9、4x10、5x5、5x6、5x7、5x8、5x9、5x10、 5x12、6x6、6x8、6x10、6x12 或 8x12。在一單一散熱器橫 跨一整列PV電池或在板塊内接觸電池的多實例中,一板塊 可能(例如)具有一、二、三、四、五、六、七、八、九或 十或更多散熱器。 聚合物可用以增加製造板塊、模組及/或散熱器之設計 彈性。在一變更中,一光伏打電池或模組可能在一整體熱 傳導聚合外殼内包含(多個)光伏打電池,使得該外殼自身 用作一散熱器0該聚合物可能係一熱傳導聚合材料(例如 視需要此合金屬填充物的C0〇lp〇ly®熱傳導塑膠、尼龍6_6 及/或一聚苯硫)’使得整個外殼可支援該(等)光伏打電池 (及任一整體組件),同時還將熱能從該等光伏打電池傳遞 走。此配置可減少該(等)光伏打電池之間的組件及介面數 目並增加該散熱器之整體表面積。該外殼可能包含多個類 型的聚合物(例如2或3個)以形成該板塊或模組之不同組 件,其中各組件可具有不同的聚合特性。例如,一聚合物 可能係-熱傳導聚合物’其係附著至—光伏打電池並用作 一散熱器’而另—聚合物可環繞該光伏打電池及/或光伏 打電池/散熱器介面以提供(例如)結構完整十生、美觀、抗候 性及/或-屋頂固定表面。纟另_變更中,—或多個聚合 127532.doc -38- 200903817 物可用以形成該板塊或模組外殼(及/或該散熱器之一部 分),同時金屬可用以形成該散熱器(或該散熱器之一部 分)。 互鎖光伏打板塊For example, a long axis of the fin may be substantially parallel or substantially perpendicular to a long axis of the base. The substantially parallel lines form less than one turn on the two reference axes. The angle of the real negative is formed at 85 on a reference axis. With 95. When the angle is between. A long axis is an axis parallel to the longest straight edge of the reference object. Implied - long axis without reference to any axis. The fins can continue to travel continuously along most or all of the length of the base. The fins may not all form a (four) (four) louver (e.g., a fan-shaped orientation) relative to the long axis of the heat sink, such that the air is free to pass through most of the channels formed by adjacent fins regardless of the wind direction. 'The fin surface may also have features such as ridges or bumps that help cause vortices in the air flowing through the rafts to aid convection 0 - or multiple heat sinks may, for example, be substantially parallel or substantially perpendicular to the The long axis of the plate or module is positioned and can span a portion or the entire length or width of the plate or film. Similarly, multiple heat sinks may be cascaded with or without intermediate space to span portions or the entire length or width of the panel or module as needed. In one variation, a heat sink is of sufficient length to span more than three-quarters of the length of the panel or module. In another variation, a device has a length sufficient to span the width of the panel or module to 127532.doc -26 - 200903817. In some variations, the different heat sinks on the panel will be positioned substantially perpendicular to each other. In another variation, a 翠_ radiator is positioned to cover most of the unexposed surfaces of the photovoltaic cell. The heat sink can also be located on the sides and/or top of the panel to increase convection and cooling efficiency. A heat sink may be a variety of (4) designs that provide increased heat transfer. For example, as shown in Figure 2C, the fins may include cracks in their length, for example, to create a channel across the tabs (or equivalent) to provide additional openings to the interior of the diffuser and to increase airflow to the Wait for internal fins. The channel may be of any pattern, such as a cross-cut, chevron or wavy shape. Other fins, such as pyramids (including truncated pyramids), cylindrical, square turns, or cones (including truncated cones) may be replaced with other heat sinking shapes attached to the base. Other shapes (e.g., truncated cones) may be aligned in parallel columns and rows across the length and width of the heat sink, respectively, or may be spaced across the length and width j of the (four) device in staggered parallel columns and rows. The use of a truncated cone allows wind flow from any direction to contribute to convection of the heat sink and increase cooling of the photovoltaic panel or module. These heat dissipating shapes (e.g., truncated cones) may be hollow (as shown in Figures 11 and 12). The hollow heat sink shape allows for efficient heat transfer of the heat transfer while reducing the amount of polymer, heat transfer polymer and/or additives to reduce production costs. The heat dissipating shapes (e.g., empty truncated cones) may combine one or more UV stabilizers, one or more ', [疋A and 7 or thermally conductive particles (such as the metal fillers described herein). Figure 11 depicts an exemplary and bulk embodiment of a heat sink including a truncated cone 11-1. The truncated cones may have a height (8), a width (W), a wall thickness (wt), a _ bottom width (four), a center-to-center spacing of 127532.doc -27-200903817 (s), and may be attached to A base u_2 having a thickness (1). As shown in Figure u, the truncated cones may be hollow from the top of each cone to the top of each cone (and completely hollow through the top of each cone as needed) to reduce production costs. In one example of the specific embodiment illustrated in Figure 11, the heat sink includes a base having a thickness (t) of about 3 mm; a hollow truncated cone having a length of from about 18 min to about 25 mm. Height (h), a width (w) of from about 2.5 mm to about 3 mrn, a bottom width (bw) of from about 3.8 mm to about 5 mm, a wall thickness (wt) of about 3 mm, and a thickness of about 6 mm Center-to-center spacing (s); and wherein the truncated cones are aligned in staggered parallel columns and rows. In some examples, the base 丨丨_2 may have a surface size of approximately 15"multiplied by 15". The heat sink may be made of, for example, Nylon 1020, Nylon 1040, Nylon 1240 > Froton 6165A, Froton 6165D or polyphenylene sulfide sulfide or any of the other polymers described herein and may comprise one or more ultraviolet rays Stabilizer and/or one or more heat stabilizers "The truncated cones may include channels" across the width of one or more cones to allow for increased ambient air ingress. The heat sink can comprise any thermally conductive material (such as the metal fill described herein). In some examples, 'selectable height (h), width (w), wall thickness (wt), bottom width (bw), center The center-to-center spacing (s), thickness (1), amount of material transferred, and/or polymer type maintains efficient heat dissipation of the truncated cones relative to the non-hollow truncated cone. Figure 12 depicts another exemplary embodiment of a heat sink including a truncated cone 12-1. The truncated cones may have a height (h), a width (w), a bottom width (bw), a center-to-center spacing (4), and may be attached to 127532.doc -28-200903817 with a thickness (1) The base 12-2. As shown in Fig. 12, the truncated cones may be hollowed down from the top of each cone through the center of each cone to reduce production costs. The hollow bore configuration allows for increased surface area of the truncated cones to promote heat dissipation from the heat sink. The hollow bore 12-3 shown in Fig. 12 may be a strange bore diameter (bd), or may vary in diameter (e.g., as the bore is closer to the heat sink base, the diameter decreases). In one example of the specific embodiment illustrated in Figure 12, the heat sink includes a base having a thickness (t) of about 3 mm; a hollow truncated cone having a height of about 18 111111 to about 25 mm. Height (h), a width (w) of about 2.5 mm to about 3 mm, a bottom width (bw) of about 3.8 mm to about 5 mm, and a center-to-center spacing (s) of about 6 mm; and wherein Equally truncated cones are aligned in staggered parallel columns and rows. In some examples, the base 丨 2_2 may have a surface dimension of approximately 15" by 15". The heat sink may be made of, for example, Nyi〇n 1020, Nylon 1040, Nylon 1240, Froton 6165A, Froton 6165D or polyphenylene sulfide sulfide or any of the other polymers described herein and may comprise one or more UV stabilizer and / or one or more thermal stabilizers. The truncated cones may include passages across the width of one or more cones to allow for increased ambient air ingress. The heat sink can comprise any thermally conductive material (e.g., a metal filler as described herein). In some examples, height (h), width (w), pore diameter (bd), bottom width (bw), center to center spacing (S), thickness (t), amount of material transferred, and/or polymer may be selected. The type dissipates heat efficiently by maintaining the truncated cones relative to the non-hollow truncated cone. The heat sinks described in Figures 11 and 12 can be used with any of the light 127532.doc -29. 200903817 voltaic panels or modules described herein. Comparing a battery that lacks the heat sink, the heat sink can be configured to use a static air at a standard temperature and pressure with an 8 〇〇, 1000 W*m_2 or 1200 W*m·2 individual or any The combined white light illuminance (E) reduces the temperature of a photovoltaic cell by at least 1, at least two.匸, or at least 5 C, or at least 7 ° C, or at least 10 ° C, or at least, or at least 15 C, or at least 20 ° C. The size, number and spacing of the fins, the size of the base portion, and the heat sink construction materials can be selected based on the desired temperature reduction over the equivalent ρν battery. The heat sink can be configured to maintain the photovoltaic cell in a temperature of less than about 175 °F, or less than about 16 〇卞, or less than about 1 50 F, or low in 7 (TF temperature ambient air) At or below about 14 〇卞, or below about 120 °F, or below about 110 卞, or below about 1 〇〇卞, or below about 90 °F, or below At about 80 。. Comparing a battery that lacks the heat sink, the heat sink can be configured to cool the air at a standard temperature and pressure with an 8 〇〇W*m-2, 1000 W*m 2 or 1200 w*m·2 of individual or any combination of white light irradiance (E), the monthly b畺 conversion efficiency (defined by the equation: η = (Ρη / (ΕχΑ.)), where Pm Maximum electric power (in watts), £ is the input light irradiance (in W*m) and the surface area of the Ae solar cell (in m2) or the total area efficiency of a photovoltaic cell (which can be achieved by current (1) and/or A voltage (v) relative change or a relative change in the I and V product is defined) an increase of at least 〇. 5 %, or at least 1%, or at least 1.5%, or at least 2%, or at least 2.5%, or at least 3%, or at least 35%, or at least 4%, or 127532. doc • 30- 200903817 at least 4·50/〇, or at least 5〇/0, or f, 丨ς 4 has up to 5.5%, or at least 6%, or at least 6.5%, or at least 7%, or at least 75%, or at least 8%, or at least 8.5%, or at least 9%, or at least 95%, Or at least 10%. If desired, the heat sink can be affected by the forced air flow provided by the component (eg, one or more fans) to increase the airflow over the heat sink and increase the cooling utility of the voltaic battery. The fan can deliver forced air to the heat sink by direct exposure or through a ramp system. As shown in FIG. 1A, a photovoltaic module may have a frame (4) having a screw hole and a tongue. A fixture and/or electrical connection # is suitable for securing the module in a frame that is attached to a finished roof such that thermal energy from the solar cells can be dissipated into the ambient air. The frame can surround the photovoltaic cells and surround the possible phases as needed Additional layers present in the battery. It is preferred for the roof to be fixed that the frame of the modular blocks has little or no access to the heat sinks 13〇_M so that relatively cool air can flow freely through the cooling fins. In an experiment, blocking access to the heat sink via a frame resulted in reduced photovoltaic efficiency. Figure 1A illustrates that the fins are not in the frame between the fins, such that air can pass through the channels that are not obstructed by the frame. (For example, allowing horizontal access to the heat sink.) The frame may include a flange or lip 1〇2_M (straight or curved), as shown in Figure 1A, oriented to direct air to flow upwards as it exits the module The radiator. This feature prevents hot air generated by a heat sink from entering the adjacent module. Similarly, a flange or lip can be oriented to force cold air to flow over a module or adjacent module into a heat sink. One of the features of this orientation 127532.doc •31 · 200903817 may be particularly useful for entering the underside of a module with minimal cool air. Take a cool air radiator away in a single frame. Inter-space configuration of multiple modules allows for the incorporation of multiple flanges and/or flanges into a heat sink and provides hot air from a desired 'pin 14' to allow for processing The module is set on a flat surface during and prior to installation, thereby limiting the weight of the module 1 〇〇 Μ and preventing the fins from being shrunk. The pin 1 pick can also be used to secure the module to a surface, such as a roof. The clerk may be sufficient to raise the module from the surface to which it is fixed a sufficient distance so that air passes through the fin and flows freely under and through the channel to touch the fins The similar configuration of the roof surface provides improved energy conversion efficiency. The frame 120-M and the chat 14 are independently constructed from one or more materials capable of supporting the photovoltaic module, such as a metal (eg, aluminum), ceramic, glue, composite, or polymer (eg, Conductive polymer). The frame and heat sink can be constructed as a mold from a conductive polymer, if desired. The frame may have an extended configuration to cover the heat sink, and the frame may also include a screen or punch along the sides to allow air to flow to the heat sinks. The frame of the insertable module generally has a foot pad which is particularly adapted to be fixed to a common roofing material, such as a composite roofing or a wood slat that forms a roof structure portion having a height such that the heat sink of the module The tab just touches or just above the surface (eg, the roof) that secures the rack. Or 'the rack can raise the module a sufficient distance on the roof so that air can flow from underneath the passages between the fins and through the ground fully from 127532.doc -32- 200903817 Provides improved efficiency over similar configurations of one of the fins touching the roof. A photovoltaic module can be used, for example, 3 inches, 4 inches, 5 inches, 6 inches, 7 inches, 8 inches, 9 inches, 1 inch, or 1 meter, i 5 It is formed by a standard length of 2.5 meters, 3 meters, 3.5 meters or 4 meters. The photovoltaic module can be used (for example, 1 inch, 15 inches, 2 inches, 2 to 5 inches, 3 inches, 4 inches, 45 inches, 5 inches, or 25 meters, 〇5 m, 〇, 75 m, 1 m, 1 gt; 25 m, 丨 _ 5 m, 丨 75 m or 2 m of standard width to form. Photovoltaic modules generally contain 3, 6, arranged in columns and rows, 9, 12, 15, 18, 21, 24, 27, 30, 20, 24, 28, 32, 36, 40, 25, 36, 45, 50, 42, 48, 54, 60 or 72 PV cells ^ pv The battery can be configured, for example, 4χ9, 6x8, 6x9, 6x12, or 8x12. In a single heat sink across a plurality of instances of a PV cell contact battery within a module, a module can have, for example, from five Up to ten radiators. A typical PV module may have an overall width between 3 5 ” and 4 〇", an overall length between 50, and 60”, with a 6χ9 configuration of PV A battery and 9 heat sinks, each spanning a row of photovoltaic cells across the width of the module. When viewing the solar cell side of the module that can see the light receiving surface of these cells ("top-down") The width of a module is the short axis or the shortest distance between the opposite walls of the frame. The row can span the width of the module, and the column spans the length of the stack. In another configuration, a photovoltaic module may have a The overall width between 35" and 40", an overall length between 45" and 55", a 6x8 configuration of photovoltaic cells and 8 heatsinks, each spanning 127532.doc -33- 200903817 A row of photovoltaic cells on the width of the module. In another configuration, a photovoltaic module may have an overall width between 20, and 30", between 5" and 60" The overall length, using a 4χ9 configuration of photovoltaic cells and 8 heatsinks, each spanning a row of photovoltaic cells on the width of the module. In another configuration, a photovoltaic module may have a 3在&quot The overall width between 4〇", the overall length between 50” and 55", the photovoltaic cell with 8χ12 configuration and 12 heat sinks, each row across the width of the module Battery. Other module configurations described in this article (eg spanning module length) The heat sink can be applied to the above example. In one example, a module is constructed comprising 36 photovoltaic cells configured with a 4χ9 single crystal germanium (225 μιη thickness). The cells use an SPI. - Laminator (Spire, lnc.) is layered with glass. The coffee is "attached to the heat sink with 8 1〇1 epoxy resin glue. The heat sink contains fins with the following dimensions: w=0.06" , h=0.9375", s=〇.3” and (4)”". Each heat sink contains eight fins and has an overall width of 2.5". The two heat sinks are adjacent to each other such that the overall width of the connecting heat sinks is 5", and the width of each of the photovoltaic cells is further covered. Usually, from 4 to 20 modules are installed on the roof of a house = a solar module, depending on the available south (in the northern hemisphere) roof. For example, more solar modules can be installed on larger roofs of commercial buildings. The solar modules described herein can be joined together by any method and/or using any of the means known in the art. For example, in the U.S. U.S. U.S. U.S. Provisional Medium, please refer to No. 6G/874, No. 3, entitled "Modified Solar Roof Tiles and Solar Panels with Heat Exchange 127532.doc -34· 200903817" The photovoltaic modules can also be designed to be mechanically and/or electronically interlocked as described in the entire contents of which are hereby incorporated by reference. The plurality of modules can also be separated from each other with sufficient space to allow between the modules. Increasing airflow to improve cooling of the photovoltaic cell. As previously described with respect to the module, the photovoltaic panel may include a flange or lip (straight or curved) on a housing that is oriented to direct air when exiting the panel Flowing up through a radiator below a panel. This feature prevents hot air from a radiator from entering an adjacent panel. Similarly, a flange or lip can be oriented to force fresh cold air to flow through a panel or Adjacent panels enter a heat sink. One of the features of this orientation may be particularly useful to prevent capture of a layer of warm air beneath an array of panels and to allow cool air to enter the underside to promote efficient heat transfer. The flange and/or lip are incorporated into a single panel to introduce cool air into a heat sink and direct hot air away from a heat sink. The panels and modules can be configured to provide an airflow path that allows air to be blown through the wind The natural convection or forced convection caused by the heat sink circulates the battery with cold potassium photovoltaic. The air flow channels of individual plates or modules can be aligned - or the air flow channels of multiple adjacent plates or modules to provide flow through multiple plates or The continuous air of the heat sinks of the modules. The channels may be oriented such that the air may flow parallel to or perpendicular to the roof, the lines, the heat sinks of the individual panels, or the heat sinking through the plurality of panels or modules continuously. Pipes or plenums may be provided along the edges of the slab or array of modules (not shown for simplicity). The slabs may be designed to partially cover each other 'to make them 127532.doc -35· 200903817 " vines are not 70% of the roof and do not feel the weather exposure. In order to assist weather protection, the plate can have # or 夕 protrusions (such as i4〇 in Figure iB), which complement one in an adjacent plate Or a plurality of grooves (for example, 丨5 内 in Figure B). The plates may be arranged such that when located at the lower end of a plate, a protrusion 14 〇 overlaps a groove 15 at the upper end of an adjacent plate 〇 As shown in Figures 3 and 4, when placed on a sloping roof 4, the protrusions prevent rain from reaching the underlying roof (Figure 4) and/or increase the structural integrity of the panel array. There may be - or multiple outreaches (eg, just and 190 in Figure 4) that do not have corresponding grooves in adjacent panels. These features add additional weather protection 'because there is no joint in the (four) plate The vertical seam is exposed to the outer surface. The outrigger and groove arrangement may be used in combination with and/or in addition to the upper and lower ends for, for example, the sides of the panel to prevent exposure to electrical connections, junctions, and Roof surface. A sealant may be used at the joint between the joined panels (e.g., at the seams under the protrusion/outer extension) to provide additional weather protection. A fixing hole may be included in the base (in FIG. 1B) to fix the plate to a roof before placing an overlapping adjacent plate (Fig. 4, Fig. 4). The photovoltaic cells are positioned at or near the opposite edges of the cells such that when mounted on a roof, adjacent rows of plates may overlap the fixed holes to prevent exposure of the fasteners to weather. The panels may additionally or alternatively have a perforated tongue attached to the base along the edge near the aperture 16〇 so that, for example, a 釭;+, ) nail or screw can be inserted to adhere the panel to a portion of the roof structure that you roll Frames and boards located below the plates 0 127532.doc • 36 - 200903817 The electrical configuration between individual photovoltaic cells and the electrical connections between individual panels or modules can be used in such a technique. It is well known to independently configure a series, parallel or hybrid series in parallel to achieve the desired operating current and voltage. For example, individual photovoltaic cells within a panel or module can be connected in series to increase the total operating voltage of the panel or module. If the voltage generated by each of the photovoltaic cells in a panel or module is sufficient, the cells may be connected in parallel to adjacent cells to maintain voltage, increase current, and/or disable a battery without deactivating the battery. All batteries of the panel or module. The δ hai plate or module may include a protective layer (such as 170 shown in FIGS. 1A, 2-8, and 26) of the light receiving surfaces of adjacent photovoltaic cells to protect the photovoltaic cells from damage (eg, It is caused by moisture, dust, chemicals and temperature changes, while allowing sunlight to be transmitted. The protective layer can be adapted to the surface shape of the photovoltaic cells and can be made of any suitable material, such as glass (eg, low lead tempered glass) or a polymer (eg, polymerized paraxylene, vapor phase deposited paraxylene or ethylene). Vinyl acetate). The protective layer may be a film (transparent or colored) and made of, for example, acrylates, epoxies, urethanes, and enamel resins. The protective layer may optionally be an anti-reflective coating such as tantalum nitride. The photovoltaic panel can be approximately (for example) 6 inches, 12 inches, 1 § inches, 24 inches, 30 inches, 36 inches, 42 inches, or 48 inches of standard length with any approximately (for example) 4 English, 8 inches, 丨 2 inches, 丨 8 inches, 22 inches, 26 inches, 30 inches or 38 inches of standard width are combined. Photovoltaic modules generally include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 21, 24, 27, 30, 127,532 in columns and rows. Doc •37· 200903817 20 ' 24 ' 28,32,36,40,25 ' 36 ' 45, 50, 42, 48 '54, 60 or 72 PV cells ^ PV cells may be configured (for example) 1X2, 1x3, 1x4, 2x2, 2x3, 2x4, 2x6, 2x8, 3x3, 3x4, 3x5, 3x6, 3x7, 3x8, 3x9, 3x10, 4x4, 4x5, 4x6, 4x7, 4x8, 4x9, 4x10, 5x5, 5x6, 5x7, 5x8, 5x9, 5x10, 5x12, 6x6, 6x8, 6x10, 6x12 or 8x12. In many instances where a single heat sink spans a column of PV cells or contacts cells within a panel, a panel may, for example, have one, two, three, four, five, six, seven, eight, nine, or ten or more More radiators. Polymers can be used to increase the design flexibility of the fabricated panels, modules, and/or heat sinks. In one variation, a photovoltaic cell or module may contain a photovoltaic cell(s) within an integral thermally conductive polymeric housing such that the housing itself acts as a heat sink. The polymer may be a thermally conductive polymeric material (eg, The C0〇lp〇ly® heat-conducting plastic, nylon 6_6 and/or polyphenylene sulfide) of the metal filler as needed enables the entire casing to support the photovoltaic cell (and any integral component) while still The heat is transferred from the photovoltaic cells. This configuration reduces the number of components and interfaces between the photovoltaic cells and increases the overall surface area of the heat sink. The outer casing may contain multiple types of polymers (e.g., 2 or 3) to form different components of the plate or module, wherein each component may have different polymerization characteristics. For example, a polymer may be a thermally conductive polymer that is attached to a photovoltaic cell and used as a heat sink, while another polymer may be provided around the photovoltaic cell and/or photovoltaic cell/heater interface to provide ( For example) structural integrity, aesthetics, weather resistance and / or - roof fixed surface. Alternatively, or - a plurality of aggregates 127532.doc -38 - 200903817 may be used to form the panel or module housing (and/or a portion of the heat sink) while metal may be used to form the heat sink (or One part of the radiator). Interlocking photovoltaic panels

圖5 A說明一光伏打屋面板塊還包含 同所述的其他光伏打板塊’互鎖光伏打板塊500包含一外 殼120及一或多個光伏打電池11〇,該等光伏打電池係置放 於3亥板塊内或其上以允命曝露以從該板塊頂部表面引導太 陽能輕射。該板塊還可包含以本文所述任一變更的一散熱 器1 3 0。該板塊之左右二側可包含組態成該板塊外殼之部 分的一公底座連接器510或一母底座連接器52〇。各板塊之 一底座連接器係設計以部分重疊一相鄰板塊之一底座連接 器。該公底座連接器可能係任一設計,使得材料一般延伸 至外殼12G外部(例如—舌片或架子)’而該母底座連接器可 能係任一設計,使得一般從外殼12〇移除材料(例如一槽口FIG. 5A illustrates that a photovoltaic floor panel block further includes other photovoltaic panel blocks as described. The 'interlocking photovoltaic panel 500 includes a housing 120 and one or more photovoltaic cells 11 置. Exposure exposure is carried out in or on the 3 slab to direct solar light from the top surface of the slab. The panel may also include a heat sink 130 in any of the variations described herein. The left and right sides of the panel may include a male base connector 510 or a female base connector 52A configured as part of the panel housing. A base connector of each of the panels is designed to partially overlap a base connector of an adjacent panel. The male base connector may be of any design such that the material generally extends to the exterior of the outer casing 12G (eg, tongue or shelf) and the female base connector may be of any design such that material is typically removed from the outer casing 12 ( Such as a slot

或斜接邊緣)。該等底座诖旌哭I 度連接益可能係任一形狀或定向(例 如佔據-板塊之一側之整個長度或僅佔據一板塊之一側之 一部分)以互補一相鄰板塊之底座連接器。 在各底座連接器可能係—或多個電伸出物5 座540時,其中一電伸出 並允許電流連續。因而々兩 Τ Λ不目互互補 Λ因而’各電連接器可在 合之-者内包含—麻“逆接在以下至少四個組 ^ ^ 底座組件與一整合式電組件一八底 座連接器510,1& 仟·(1) “良 、匕3 —電伸出物53〇 八 510,其包含—雷桉汁c { } A底座連接器 ^ s 電插座540,· π、一再念产土 (3)母底座連接器520,其包 127532.doc -39- 200903817 含一電伸出物530;及(4) 一母底座連接器52〇,其包含—電 插座5 4 0。 該等互鎖板塊係設計,使得在—板塊上的—連接器係設 計以互補一相鄰板塊連接器以在相鄰板塊之間形成一實^ 剛^連接,同時維持電流連續,從而限制安裝複雜性並降 低安褒成本。-旦兩個板塊由該連接器連接,則該等板塊 基本上可作為一單元移動。在板塊個別圍繞該等板塊之一 軸扭曲時在板塊之間可能很少有相對移動。 ,該等電插座及伸出物可能以任一方向定位(例如垂直或 平订)至一底座連接器之定向並可能係任一組合(例如一伸 出物及插座混合物)以互補一相鄰板塊。該等電插座及伸 出物可能非對稱地配置並相對於該(等戌伏打電池位置相 對,使得當一列板塊重疊一相鄰列板塊時,將各電連接器 直接置放於一列重疊板塊下面以防止曝露於天氣。 可取代-伸出物及插座電連接而使用—插塞及插座連接 或-陰陽電連接。伸出物或插頭包括從其表面伸出的任一 連接器,包括機械彈簧、接針或又尖。該等電連接不限於 該伸出物插座配置並可包括任—裝置’其允許電流連續, 同夺維持f貝剛性機械連接。例如’一電連接可能包含 兩個電極,其作為-膜置放於兩個互補且互鎖相鄰板塊表 面上。用作電連接器之接針可能具有彈簧,其幫助鎖定該 等接針於插座内,從而在板塊之間提供一更強連接。 —些屋頂板塊係設計以置放於—屋頂上,使得各板塊之 縱軸或主轴平行於屋頂線以提供平行於屋頂線之重疊板塊 127532.doc 200903817 列。矩形屋頂板塊-般以此方式安裝。在本文所述此或其 他屋頂板塊上的連接器可能定位於一屋頂板塊之一主或縱 轴之末端處’使得相鄰板塊可能沿一平行於屋頂線之列而 互連。此組態的一替代例係使該等連接器定位於屋頂板塊 之一短或經向軸之該等末端,使得相鄰板塊可一般朝向屋 頂線以行互連,使得相鄰板塊在一朝向或遠離屋頂線方向 上互連。該等連接器可以一縱度及經向度軸組合而定位。 圖5B說明用於可與本發明一起使用之一板塊之一側的各 種電/機械組態。各板塊可在板塊之相對侧(未顯示)上具有 一互補電/機械連接器。板塊A顯示具有電伸出物53〇的一 公底座連接器5 10。此組態係設計以匹配具有一母底座連 接器520與一電插座54〇的一互補相鄰板塊(例如板塊D内所 不連接器之鏡像)。在採用所示變更之板塊八内的連接器係 沿一邊緣放置,使得當兩個相同板塊相對於屋頂線平行鋪 設時,電插入係相對於屋頂表面水平(或平行)而並相對於 屋頂線平行。板塊B顯示類似於板塊a的一連接器組態, 但該等電連接器已使用電插座替換。板塊E顯示類似於圖 5A所示板塊的一連接器組態,其中已分別使用伸出物及插 座來替換該專插座及伸出物。圖5A中的板塊及圖5B之板 塊E至G係範例,其中相對於屋頂表面垂直插入該等連接 器。圖5B之板塊F及G顯示類似於圖5A之板塊的插座組 態’其中該母底座連接器延伸透過整個板塊邊緣。其他連 接器變更均不脫離本發明之範疇。例如,連接器可能係混 合插座/伸出物(如板塊Η内所示)及/或在一垂直於屋頂線之 127532.doc .41 - 200903817 表面上(如板塊Η内所示 ε # 斤不)或在一個以上之板塊表面(例如一 長邊緣與一短邊緣)上。Or mitered edges). The base may be in any shape or orientation (e.g., occupying the entire length of one side of the panel or occupying only a portion of one side of a panel) to complement the base connector of an adjacent panel. When each of the base connectors may be - or a plurality of electrical extensions 5, 540, one of them electrically extends and allows current to continue. Therefore, the two Λ Λ 互 互 Λ Λ Λ Λ Λ Λ ' 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各, 1 & 仟 · (1) "good, 匕 3 - electric extension 53 〇 510, which contains - Thunder juice c { } A base connector ^ s electric socket 540, · π, repeatedly read the soil ( 3) A female base connector 520 having a package 127532.doc -39-200903817 including an electrical extension 530; and (4) a female base connector 52A including an electrical socket 504. The interlocking panels are designed such that the connectors on the panels are designed to complement an adjacent panel connector to form a solid connection between adjacent panels while maintaining current continuity, thereby limiting installation. Complexity and reduce the cost of ampoules. Once the two panels are connected by the connector, the panels can be moved substantially as a unit. There may be little relative movement between the plates as the plates are individually twisted about one of the plates. The electrical sockets and protrusions may be positioned in either direction (eg, vertical or flat) to the orientation of a base connector and may be in any combination (eg, a protrusion and socket mixture) to complement an adjacent panel. . The electrical sockets and protrusions may be asymmetrically arranged and positioned relative to the (iso-voltaic cell) such that when a column of plates overlaps an adjacent column of plates, the electrical connectors are placed directly in a row of overlapping plates. The following is to prevent exposure to the weather. It can be used instead of the extension and socket electrical connection - plug and socket connection or - male and female electrical connection. The protrusion or plug includes any connector extending from its surface, including machinery The spring, the pin or the tip. The electrical connections are not limited to the protrusion socket configuration and may include any device that allows current to be continuous, as well as maintaining a rigid mechanical connection. For example, an electrical connection may include two An electrode that is placed as a film on the surfaces of two complementary and interlocking adjacent plates. The pins used as electrical connectors may have springs that help lock the pins within the socket to provide between the plates A stronger connection. - Some roof panels are designed to be placed on the roof such that the longitudinal or main axis of each panel is parallel to the roof line to provide overlapping panels parallel to the roof line. 127532.doc 200903817 Rectangular roof panels are generally installed in this manner. The connectors on this or other roof panels described herein may be positioned at the end of one of the main or longitudinal axes of a roof panel 'so that adjacent panels may be parallel to the roof Interconnected by lines. An alternative to this configuration is to position the connectors at the ends of one of the short or warp beams of the roof slab so that adjacent slabs can be interconnected generally toward the roof line. The adjacent panels are interconnected in a direction toward or away from the roof line. The connectors can be positioned in a combination of longitudinal and meridional axes. Figure 5B illustrates one side of a panel for use with the present invention. Various electrical/mechanical configurations. Each panel may have a complementary electrical/mechanical connector on the opposite side of the panel (not shown). Panel A displays a male base connector 5 10 having an electrical extension 53〇. The configuration is designed to match a complementary adjacent panel having a female base connector 520 and an electrical receptacle 54 (eg, a mirror image of the connector in panel D). The connector within the panel eight of the illustrated variations Attached along an edge So that when two identical panels are laid in parallel with respect to the roof line, the electrical insertion is horizontal (or parallel) with respect to the roof surface and parallel to the roof line. Panel B shows a connector configuration similar to panel a, but The electrical connectors have been replaced with electrical sockets. Block E displays a connector configuration similar to that shown in Figure 5A, in which the sockets and sockets have been replaced with protrusions and sockets, respectively. Figure 5A The panel and the panel E to G example of Figure 5B, wherein the connectors are inserted vertically with respect to the roof surface. The panels F and G of Figure 5B show a socket configuration similar to the panel of Figure 5A where the female base connector Extending through the entire edge of the panel. Other connector changes are not within the scope of the invention. For example, the connector may be a hybrid socket/extension (as shown in the panel) and/or a 127532 perpendicular to the roof line. Doc .41 - 200903817 On the surface (such as ε # 斤 not shown in the Η Η) or on more than one slab surface (such as a long edge and a short edge).

圖5 C說明本發明之—热aL 額外方面之一側視圖。該板塊可能 成形以允許在安裝時實暂番 . 貝重ί一相鄰板塊。該重疊還有助 於保護該電及機械連接器。-板塊210之散熱器鰭片可觸 碰一相鄰板塊之韓片接收表面55〇並可使用(例如)環氧樹脂 膠合劑或瀝青而黏附於該表面。外伸180可覆蓋-相鄰板 塊並可黏附或防水以防止在板塊之間進水。可在此實例中 提供一額外機械連接器56〇以提供額外強度至安襄並幫助 防護在嚴重風暴期間可能發生的風掀開板塊。 圖5D描述具有一太陽能電池11〇(或多個太陽能電池,例 如3至5個)之一矩形屋頂,其中將板塊縱軸平行於屋頂來 安裝該板塊。連接器可在板塊之相對較長側上(例如如圖 5D所示之580)或在接合處之中央部分(例如57〇)以允許板 塊在一一般垂直方向上連接至相鄰板塊或以一角度交叉將 安裝板塊之屋頂線。多個區段的板塊可因此藉由在屋頂線 附近放置一具有伸出物589之板塊並接著在最遠離屋頂線 的下一相鄰列内插入兩個板塊(在此實例中),接著重複此 程序直至該等光伏打板塊朝屋頂靠近最靠近地面位準的屋 頂邊緣延伸來加以鋪設。依此方式在細薄垂直區段内裝配 屋頂留下可進入的一主要屋頂表面以方便進一步板塊安 裝。在安裝時,伸出物589重疊一相鄰板塊之一部分(在 590)。類似於589的伸出物可形成於各板塊之一或多個側 上,使得各板塊之所有側重疊或重疊一相鄰板塊。 127532.doc •42· 200903817 在圖内的板塊額外包含一金屬框架(例如鋁)並可組合 任-散熱器設計(例如厚度〇·〇1 ”至〇〇2 ”及冑以,,至2"折疊 薄片金屬鰭片之一結散熱器)。該板塊還可包含一保護表 面或塗層(例如玻璃)與固定孔以緊固板塊至屋頂(或在-現 有屋頂上)。 在所述發明之任-方面利用薄膜光伏打電池。圖6說明 一複合屋面遙板600 ’ -薄膜太陽能電池610係施加於一複 合遙板上表面。具有(例如)接針640與對應容器65〇的一公 底座連接器620與-母底座連接器㈣係提供於該遙板之各 末端以介接在相鄰遙板上的互補連接器。當二或多個複合 遙板係經由對應連接H而相互連接時,相互建立其相對位 置,使得一遙板可能不會相對於一屋頂旋轉至一不同於另 者之方向。在此實例中,該等二遙板可相互平行或沿相 同線來安裝。在板塊之fBl的連接剛度㈣_板塊相對其相 鄰板塊之移動自由度’有助於_保平行列安裝並因此有助 於方便安裝。圖6還顯示一視需要存在的散熱器㈣。 一薄膜太陽能電池還可定位於(例如)陶£或混凝土板塊 上。圖7說明陶瓷成形板塊7〇〇,其在板塊表面内或其上具 有光伏打電池(PV)或薄膜61〇。該薄膜可黏附至一銅片、 3亥銅片接著係黏附至該板塊或可直接印刷在模組上。該薄 臈可能係任一材料、大小或組態並可能係任—色彩或色彩 組合。該等板塊底座可由任一材料(例如)陶瓷、膠合劑、 屬複σ物或聚合物製成,並用作一框架以容納板塊的 額卜、、且件。6亥等板塊可能具有一散熱器,其係後入於 127532.doc -43 - 200903817 個別電池内並與其接觸。互雜 互鎖連接|§710可提供該等機械 及電連接,其將板塊鎖定於適當位置以及將電從—板塊傳 導至下—板塊。該等板塊之彎曲組態提供較大表面積供其 個別電池佔據’從而增加用於 用於一給定平方呎數屋頂的電輸 出,且該等彎曲組態還提佴嵛鈦 ’、散‘、、、器之,鳍片可延伸進入的較 大導流通道。空氣或其他冷卻媒介可因此在更少電阻下穿 過並更有效地輔助冷卻該等光伏打電池。通道可用於此或 本文内的任-其他板塊組態内,使得可透過該等通道來抽 取液體冷卻劑以降低光伏打電池操作溫度。 本文所述的該等薄膜變更還可適用於本文所述的光伏打 模組。 製造方法 -板塊可採用料方法來形成。例如,一板塊可由在一 模具内混合的-聚合物或複合物來形成。公及母聚合連接 器之外殼部分係放置於該模具(例如f子)内以使用傳導線 將導線從該等連接n承鼓純打電池或佈線自身或至一 印刷電路板(PCB)以進行導電。若導線或一PCB係放置於 該模具Θ,則進;ί亍電連接至該等連接器之該等連接器部 分。接著’將该聚合物或複合物混合物注人該模具内並加 以固化以形成一固體板塊。該模具可成形以在固化產物頂 部及底部内提供開口,使得可在頂部孔内插入一太陽能電 池並藉由(例如)焊球而佈線或焊接至在該pCB上的連接或 至該板塊内的導線。接著可使用熱傳導黏著劑來塗布太陽 能電池之散熱器及/或底部,將該散熱器插入該底部孔内 127532.doc -44- 200903817 並熱接觸該太陽能電池,並固化該黏著劑以完成板塊。或 者’可使用本文所述的-層合程序將該散熱器固^至該光 伏打電池。 可在-杈具内同樣形成一由紅土陶所形成之板塊。如同 作為用於k該等連接器佈、線至光伏打電池之管道的金屬 管’將用於公及母連接器之陶变外殼放置於該模具内。將 ,般用於形成板#之黏土混合物放置於該模具内並加以 燒製以形成板塊。該板塊可能從頂至底具有—開口並介接 該等管子。如同該開口之㈣’該等光伏打電池邊緣覆蓋 有一防風雨黏著劑(例如矽樹脂),並將具有一抗反射塗層 之電池插人該板塊頂部’使得該電池之底部邊緣接合一藉 由該模具而在該板塊内卿成的架子。將過多黏著劑從該 板塊表面及抗反射塗層移除,並將該板塊搁置一邊以給予 黏著時間來牢固。 將導線插入透過該等管子並從該等冑究連接器外殼之末 端出來。該等導線係連接至一電接針或插座褒配件,並接 著將各裝时插人對應的陶㈣接料殼,該電接針裳配 =接合該㈣連接器外殼以鎖住在位置上並形成完整連接 益。將導線連接至該電池並走線至該板塊之第二連接器以 提供所需電連接(串列、並聯或串列並聯)。一旦已進行所 有導線連接t接針纽件座落於其個別Μ連接器 内,則使用-熱傳導黏著劑(例如熱傳導環氧樹脂或矽樹 脂)來塗布一散熱器並透過板塊底部將其插入孔内,使得 該黏著劑及散熱器接合光伏打電池之曝露底部。一旦該黏 127532.doc •45· 200903817 著劑固化後,包含一屋頂板塊'太陽能電池及散熱器之板 塊即可用於作為一屋頂板塊安裝於一屋頂上。 附著散熱器之方法 本發明之另一特徵係一種附著一散熱器至一光伏打板塊 或模組之方法。圖8A至8£係在所述光伏打板塊或模組製 程期間的不同圖式。 f 圖8A-1說明一用以整體或部分構造一光伏打板塊或模組 之系統之一斷面圖。一上夹具8〇〇包含一視需要存在的凹 槽8 10,其係設計以互補一或多個光伏打電池。該凹槽可 八有大致該(專)光伏打電池之厚度或小於該電池或該等 電池之厚度的深度820。採用任一形狀、數目及組態的真 空通道887可提供以允許一真空源透過該上夾具至該(等)光 伏打電池。一真空源可允許在製程期間將該(等)光伏打電 池臨時保持於凹槽810内。圖8八_2從一仰視圖顯示上夾具 800。顯示各凹槽81〇具有其對應的寬度882與長度884。該 寬度及長度可集中錢立地具有大致與該電池或該等電池 之最大表面相同的尺寸或具有略微更大的尺寸。凹槽8⑺ 之數目可能聯合或分離且係用於該板塊或模組所需的任— 數目’例如 1、2、3、4、5、6、7、8、9、1()、u、12、 13、14、15、16、17、18、19、2〇或25。_凹槽之形狀可 能係光伏打電池或多個光伏打電池之任_形狀,例如方 形、矩形、六邊形、八邊形、三角形、圓形或菱形。 —如圖8“所示的—下夾具刚可能包含—底座凹槽Μ她 右干鰭片凹槽860。底座凹槽85〇與鰭片凹槽86〇可設計以 127532.doc -46- 200903817 全體互補一散熱器,使得可該散熱器插入該下夾具内且不 能夠在插入後進行實質水平移動。該底座凹槽可能具有一 大致一散熱器底座之厚度或略微小於一散熱器底座之厚度 的深度870以及一大致與該散熱器底座相同或略微大於該 散熱器底座之寬度。該底座凹槽可能視需要地存在。各鰭 片凹槽860可能具有大致與該散熱器鰭片相同之尺寸或略 微更大尺寸以允許不受拘束地插入該散熱器。下夾具84〇 還可設計以互補任-數目的本文料散熱器料,例如棱 錐體(包括截頂棱錐體)、圓柱形、方形格或圓雜體(包括截 頂圓錐體)。真空通道(未顯示)可存在以透過該下夾具提供 一真空源至該散熱器,如關於該上夾具所述。 該上及下夾具之材料可能獨立地係此項技術中所熟知的 任一材料’例如n m聚合物。該上夾具與該下 夾具可能處於相反方位’使得該上夾具在該下夾具下面。 /光伏打板塊或楔組製程可開始於將該(等)光伏打電池 及s玄散熱器放置於直他)Sl丨十目+ 直於其個別夾具内,如圖8B所示。上夾且 插入於各凹槽81。内的一或多個光伏打電㈣,、 各電池Γ各電A 888之—平直表面,@時在凹槽内仍容納 各電池之大多數剩 技術中所孰4 冑各電池可由本文所述或此項 以晶圓為主雷祕免 』如形成於一早晶矽上的 狀,例如方开 ' 多晶石夕或帶切基板,並可能係任-形 菱形。該(二、六邊形、八邊形、三角形、圓形或 的真空R ' ^(例如使用視需要存在 通道887)或任-普通黏著劑而臨時固定至上失具 127532.doc -47- 200903817 _。下夾具840容納散熱器_,使得曝露該散熱器892之 -平直表面,㈣仍在凹槽内容納大多數剩餘表面積,例 如該等鰭片。該散熱器可由此項技術中所熟知及/或本文 所述之任一熱傳導材料製成,例如鋁或鋁合金(例如Μ。 鋁合金、6〇61鋁合金及6〇〇5鋁合金)、銅、石墨或傳導聚 合物(例如傳導彈性體),可能係任一色彩(例如藍色、黑 色、灰色或料)並可包含由任—幾何形狀組態的冷卻Z 面,例如稜錐體(包括截頂稜錐體)、圓柱形、方形椿或圓 錐體(包括截頂圓錐體)。該散熱器可藉由重力、真空或任 一普通黏著劑而臨時固定至下夾具84〇。 圖8C說明如何可將—中間層894添加至散熱器892之曝露 表面或該(等)電池之該(等)曝露表面。該中間層可能係一 熱介面層’例如熱傳導油脂(例如傳導環氧樹脂、石夕樹脂 或陶幻或-中間熱傳導聚合物。該中間層可能係既電絕 緣又熱傳導的任—材料並可能係—化合物或化合物混合 物,其在曝露於空氣、熱能及/或壓力時化學反應。該熱 介面層可能(例如)由既電絕緣又熱傳導的任一材料並可能 ^一化合物或化合物混合物所構成,其在曝露於空氣、2 能及/或壓力時化學反應。射間層可包含多個層,例: 緊鄰PV電池的_電絕緣層與緊鄰__散熱器的—熱傳導層, 或可能不存在。該層可能同時接觸該(等)太陽能電池二 散熱器二者。 如圖8D所示’二夾具容納散熱器89〇、視需要存在的中 ]層 且(夕個)光伏打電池8 8 6係夾置在一起以允許視 127532.doc -48 - 200903817 需要存在的中間層894同時接觸該散熱器與該(等)光伏打電 池。可在一朝向該等光伏打組件<方向上將足夠壓力施加 至上夾具800、下爽具840或二者以允許在該(等)電池與該 散熱器之間的壓力,並強迫緊密接觸其表面。因為該上夾 具與該(等)容納電池886互補,故橫跨一電池上夾具介面之 區域分佈所產生的施加壓力,從而防止損壞該(等)電池之 可能性。同樣地,因為該下夾具與該容納散熱器互補,故 所施加壓力可能較少可能損壞該等散熱器鰭片(例如壓碎 或彎斜該等鰭片)。足夠熱能還可分離或結合足夠壓力在 製程期間施加以緊密接合該散熱器與該(等)光伏打電池。 此臨時施加壓力及/或熱能以將二或更多材料聯合在一起 的製程(又稱為層合)可允許該(等)電池之該(等)表面在一微 觀位準上更嚴密地接觸一相鄰材料並允許將增加傳導性的 熱傳遞遠離該(等)電池。可施加一真空以在施加壓力及/或 熱此之前、期間及/或之後減小氣壓以輔助移除在層之間 的氣穴。移除捕獲的空氣可允許層之間的一更緊密接觸, 從而導致増加熱傳遞。 在層合之間的條件可能取決於光伏打板塊或模組組態而 變化。在一實例中’該層合溫度大約為l55t:,施加遞減 氣壓持續五分鐘’並藉由該等夾具施加一額外大氣力以壓 迫該散熱器持續七分鐘。在另一實例中,該層合溫度係在 100C與200C之間或在125°C與175°C之間或在135°C與 155 C之間。在另一實例中’藉由該等夾具來施加丨25、 1,5、2、2.5、3、3.5、4、4.5或大於5的額外大氣力以在該 127532.doc -49· 200903817 等夾具之間將該散熱器與該(等)光伏打電池壓迫在—起。 在另一實例中,施加壓力持續1至30分鐘、2至2〇分鐘、5 至15分鐘或大於30分鐘H實财,施加遞減氣壓持 續1至30分鐘、2至20分鐘、5至15分鐘或大於3〇分鐘。 圖8E說明在移除該上夾具與該下夾具之後的一光伏打板 塊或模組。在此階段,層合散熱器89〇與(多個)光伏打電池 886可能具有如上述製造並附著的一外殼。 該製程可能包含在該板塊或模組上或内的此項技術中熟 知的額外層(例如乙基醋酸乙烯(EVA)、聚酯、丁以丨肛⑧、 EPT),例如一保護層(例如保形塗層),如本文所述。 如用於一模組,該製程可進一步包含如本文所述添加一 框架(具有或不具有接腳),以允許透過直接水平進入氣流 至該散熱器。 在該製程期間可使用一真空以移除在該等所述層之間的 捕獲空氣。 圖8F說明用以構造一光伏打板塊或模組之圖8Aq之一變 更如圖8F所示的一下夾具840可包含一底座凹槽850與若 干截頂圓錐體凹槽861。如同圖8A_i,底座凹槽85〇與截頂 圓錐體凹槽861可設計以全體互補一散熱器,使得可將該 散熱器插入該下夹具内且無法在插入後進行實質水平移 動。該底座凹槽可具有一大致一散熱器底座之厚度或略微 小於一散熱器底座之厚度的深度870以及一大致與該散熱 器底座相同或略微大於該散熱器底座之寬度。該底座凹槽 可視需要存在。各截頂圓錐體凹槽861可具有大致與該散 127532.doc -50- 200903817 熱器截頂圓錐體相同之尺寸或略微更大尺寸以允許不受拘 束地插入該散熱器。真空通道(未顯示)可存在以透過該下 夾具提供一真空源至該散熱器,如關於該上夹具所述。 用於一包含截頂圓錐體891之散熱器之層合製程可如上 所述並產生如圖8 G所示的一光伏打板塊或模組。 使用射出成型之方法 在此項技術中一般習知以形成一聚合外殼的射出成型技 術(例如螺桿射出成型)可用以製造一光伏打板塊。儘管下 述方法示範用於板塊構造之射出成型,但所述方法還可用 於構造一光伏打模組。 射出成型之一優點在於,一板塊可包含一還用作一散熱 之傳導性聚合外殼。另__優點在於,可進行多個聚合射 出以形成板塊或模組之不同組件,其中各組件可具有不同 的聚合特性。此外,射出成型可允許形成-用作”表皮"之 散熱器以塗布該(等)光伏打板塊之所需區域以及允許形成 使用習知製造技術無法獲得的幾何形狀’從而允許增加對 流及冷卻。 可使用任-普通模具材料(例如硬化鋼、預硬化鋼、紹 或被銅合金)從(例如)標準加工或電放Mm卜❹ 個模具以互補光伏打板塊設計。可接著如上述將( =電=及導線定位於該(等)模具内,使得該(等)光伏打 二2表面最終將會曝露並在射出時該(等)光伏打電池 i並葬將會熱接觸該聚合外殼。接著將關閉該模具裝 s ’自(例如)-電馬達或液壓源之壓力將一加熱聚 127532.doc -51 · 200903817 合物(例如視需要混合一或多個金屬填充物的熱傳導聚合 物(例如尼龍6-6)及/或一聚苯硫;樹脂;或用於射出成型 的一流體狀原料)導入該模具内,隨後冷卻(例如在該模具 内的水通道)以固化該板塊外殼/散熱器。該射出材料可能 係一聚合物、聚合物混合物、未聚合單體、未聚合單體混 合物或任一(多個)聚合物及(多個)未聚合單體混合物。該 聚合物及/或單體可能具有一熱膨脹係數,其類似於或等 同於該(等)光伏打電池之熱膨脹係數以在溫度變化期間確 保該射出材料緊密接觸該(等)光伏打電池。在該射出製程 期間所施加的高壓(例如5_6〇〇〇噸)及熱能可允許該射出聚 合物(其最終可形成該散熱器)與該(等)光伏打電池之間的 緊後接觸,從而導致在該等板塊或模組之操作期間增加散 熱。接著可開啟該模具並在該模具内的頂出銷輔助下彈出 該板塊’隨後進行任__必要的加卫。接著該板塊或模組即 可安裝於一屋頂上。 板塊安裝方法 -安裝方法係如圖9所示。屋頂板塊係附著至保持並支 撐該等板塊之檁條或板條。板塊係藉由(例如)將該第一板 塊釘在最低檁條或板條上,接合一板塊之公連接器與一第 二板塊之母連接器並藉由(例將該等二板塊推在一起來 鎖在位置内,將垓第二板塊釘在此檁條或板條並在屋頂的 -部分上重複此來加以鋪設。板塊的下—過程係藉由將一 板塊放置於下—最高檁條或板條上,使得其部分覆蓋在較 低檁條或板條上的板塊,使用該等連接器將板塊扣合在一 127532.doc •52· 200903817 ,並將板塊釘在該檁條或板條上來形成。板塊之該等重疊 二刀可使用(例如)瀝青或黏著劑來相互黏著以提供一防水 畨封及/或防止該等板塊被風掀開。Figure 5C illustrates a side view of an additional aspect of the present invention - thermal aL. The panel may be shaped to allow for temporary storage during installation. This overlap also helps protect the electrical and mechanical connectors. The heat sink fins of the panel 210 can touch the Korean sheet receiving surface 55 of an adjacent panel and can be adhered to the surface using, for example, epoxy glue or asphalt. The overhang 180 can cover the adjacent panels and can be adhered or waterproof to prevent water from entering between the panels. An additional mechanical connector 56 can be provided in this example to provide additional strength to the ampoule and to help protect the wind splitting panels that may occur during severe storms. Figure 5D depicts a rectangular roof having a solar cell 11 (or a plurality of solar cells, e.g., 3 to 5) in which the longitudinal axis of the panel is mounted parallel to the roof to mount the panel. The connector may be on a relatively longer side of the panel (e.g., 580 as shown in Figure 5D) or at a central portion of the joint (e.g., 57" to allow the panel to be connected to an adjacent panel in a generally vertical direction or as a The angle crossing will install the roof line of the panel. The panels of the plurality of segments can thus be inserted by placing a panel with protrusions 589 near the roof line and then inserting two panels (in this example) in the next adjacent column farthest from the roof line, and then repeating This procedure is carried out until the photovoltaic panels extend toward the roof near the edge of the roof closest to the ground level. In this way, the roof is assembled in a thin vertical section leaving a major roof surface accessible to facilitate further panel installation. At the time of installation, the protrusion 589 overlaps a portion of an adjacent panel (at 590). An extension similar to 589 can be formed on one or more sides of each panel such that all sides of each panel overlap or overlap an adjacent panel. 127532.doc •42· 200903817 The plates in the figure additionally contain a metal frame (such as aluminum) and can be combined with a heat sink design (eg thickness 〇·〇1 ” to 〇〇2” and 胄, to 2" One of the folded sheet metal fins is attached to the heat sink). The panel may also include a protective surface or coating (e.g., glass) and mounting holes to secure the panel to the roof (or on the existing roof). In the aspect of the invention, a thin film photovoltaic cell is used. Figure 6 illustrates a composite roofing remote panel 600'-thin film solar cell 610 applied to a composite remote panel surface. A male base connector 620 and a female base connector (4) having, for example, a pin 640 and a corresponding container 65A are provided at the respective ends of the remote plate to interface with complementary connectors on adjacent remote plates. When two or more composite remote plates are connected to each other via a corresponding connection H, their relative positions are established such that a remote plate may not rotate relative to a roof to a different direction from the other. In this example, the two remote plates can be mounted parallel to each other or along the same line. The connection stiffness of fBl in the plate (4)_the degree of freedom of movement of the plate relative to its adjacent plates' helps to ensure parallel column mounting and thus facilitates easy installation. Figure 6 also shows the heat sink (4) as needed. A thin film solar cell can also be positioned, for example, on a ceramic or concrete panel. Figure 7 illustrates a ceramic forming panel 7 that has a photovoltaic cell (PV) or film 61 in or on the surface of the panel. The film can be adhered to a copper sheet, and the copper sheet can be adhered to the sheet or directly printed on the module. This thin film may be of any material, size or configuration and may be a combination of color or color. The slab bases can be made of any material, such as ceramic, glue, quarantine or polymer, and serve as a frame to accommodate the slabs of the slabs. The 6H and other plates may have a heat sink that is inserted into and in contact with individual batteries in 127532.doc -43 - 200903817. Interlocking Interlocking Connections § 710 provides these mechanical and electrical connections that lock the slabs in place and conduct electricity from the slab to the slab. The curved configuration of the plates provides a large surface area for their individual cells to occupy', thereby increasing the electrical output for a given square-turn roof, and the curved configuration also provides titanium, 'scatter', The larger flow guiding channel into which the fin can extend. Air or other cooling medium can thus pass through with less resistance and more effectively assist in cooling the photovoltaic cells. The channels can be used in this or any of the other block configurations herein to allow liquid coolant to be drawn through the channels to reduce the photovoltaic cell operating temperature. The film variations described herein are also applicable to the photovoltaic modules described herein. Manufacturing Method - The plate can be formed by a material method. For example, a panel can be formed from a polymer or composite that is mixed in a mold. The outer casing portions of the male and female polymeric connectors are placed in the mold (e.g., f-sub) to conduct the wires from the connecting drums or the wiring itself or to a printed circuit board (PCB) using conductive wires. Conductive. If wires or a PCB are placed in the mold, they are electrically connected to the connector portions of the connectors. The polymer or composite mixture is then injected into the mold and cured to form a solid panel. The mold can be shaped to provide an opening in the top and bottom of the cured product such that a solar cell can be inserted into the top hole and routed or soldered to the pCB or to the plate by, for example, solder balls wire. A heat conductive adhesive can then be used to coat the heat sink and/or the bottom of the solar cell, insert the heat sink into the bottom hole 127532.doc -44 - 200903817 and thermally contact the solar cell and cure the adhesive to complete the plate. Alternatively, the heat sink can be secured to the photovoltaic cell using the lamination procedure described herein. A plate formed of red earth pottery can also be formed in the cookware. The ceramic housing for the male and female connectors is placed in the mold as a metal tube for the conduit of the connector, the wire to the photovoltaic cell. The clay mixture conventionally used to form the panel # is placed in the mold and fired to form a panel. The panel may have an opening from the top to the bottom and interface with the tubes. Like the opening (4), the photovoltaic cells are covered with a weatherproof adhesive (such as silicone resin), and a battery with an anti-reflective coating is inserted into the top of the plate to make the bottom edge of the battery engage. The mold is a shelf that is formed in the panel. Excess adhesive is removed from the surface of the panel and the anti-reflective coating, and the panel is placed aside to give adhesion time to be firm. A wire is inserted through the tubes and exits the end of the connector housing. The wires are connected to an electrical pin or socket 褒 fitting, and then the corresponding ceramic (four) receiving shells are inserted into the respective sockets, and the electrical stylus is fitted to engage the (four) connector housing to lock in position. And form a complete connection benefits. A wire is attached to the battery and routed to a second connector of the panel to provide the desired electrical connection (in series, in parallel, or in series). Once all the wire connections have been made, the t-pins are seated in their individual Μ connectors, then a heat-conducting adhesive (such as heat-conductive epoxy or tantalum resin) is used to coat a heat sink and insert it through the bottom of the plate. Inside, the adhesive and the heat sink are bonded to the exposed bottom of the photovoltaic cell. Once the adhesive is cured, a panel containing a roof panel 'solar cells and radiators' can be used as a roof panel to be mounted on a roof. Method of Attaching a Heat Sink Another feature of the present invention is a method of attaching a heat sink to a photovoltaic panel or module. Figures 8A through 8 are different diagrams during the fabrication of the photovoltaic panel or module. f Figure 8A-1 illustrates a cross-sectional view of a system for constructing a photovoltaic panel or module in whole or in part. An upper clamp 8 〇〇 includes a recess 8 10 as desired, which is designed to complement one or more photovoltaic cells. The recess can have a thickness 820 that is substantially the thickness of the (specific) photovoltaic cell or less than the thickness of the cell or the cells. A vacuum channel 887 of any shape, number and configuration can be provided to allow a vacuum source to pass through the upper clamp to the photovoltaic cell. A vacuum source may allow the (or other) photovoltaic cells to be temporarily held within the recess 810 during the process. Figure 8-8 shows the upper clamp 800 from a bottom view. Each groove 81' is shown with its corresponding width 882 and length 884. The width and length can be concentrated to have substantially the same dimensions as the largest surface of the battery or the batteries or have a slightly larger size. The number of grooves 8 (7) may be combined or separated and used for any number - '1, 2, 3, 4, 5, 6, 7, 8, 9, 1 (), u, required for the plate or module. 12, 13, 14, 15, 16, 17, 18, 19, 2 or 25. The shape of the groove may be any shape of a photovoltaic cell or a plurality of photovoltaic cells, such as a square, a rectangle, a hexagon, an octagon, a triangle, a circle, or a diamond. - as shown in Figure 8 - the lower clamp may just contain - the base groove Μ her right dry fin groove 860. The base groove 85 〇 and the fin groove 86 〇 can be designed to 127532.doc -46- 200903817 All of the complementary heat sinks allow the heat sink to be inserted into the lower clamp and are not capable of substantially horizontal movement after insertion. The base recess may have a thickness of substantially one heat sink base or slightly smaller than the thickness of a heat sink base The depth 870 and a width are substantially the same as or slightly larger than the width of the heat sink base. The base groove may be present as desired. Each fin groove 860 may have substantially the same dimensions as the heat sink fin Or slightly larger in size to allow unrestricted insertion of the heat sink. The lower clamp 84〇 can also be designed to complement any number of heat sink materials, such as pyramids (including truncated pyramids), cylindrical, square a grid or a circular body (including a truncated cone). A vacuum channel (not shown) may be present to provide a vacuum source to the heat sink through the lower clamp, as described with respect to the upper clamp. The material of the clamp may independently be any material known in the art, such as an nm polymer. The upper clamp may be in opposite orientation to the lower clamp such that the upper clamp is below the lower clamp. / Photovoltaic panel or The wedge group process can start by placing the (etc.) photovoltaic cell and the s-spot heat sink in a straight line. S1丨10 mesh + straight into its individual fixture, as shown in Fig. 8B. The upper clamp is inserted into each groove. 81. One or more photovoltaic powers (4), each battery Γ 电 平 平 平 平 平 平 平 , , , , , , , , , , , 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数 大多数The wafer or the wafer is mainly formed on an early wafer, such as a square-shaped polycrystalline stone or a substrate, and may be a rhombus-shaped diamond. A lower shape, an octagonal shape, a triangular shape, a circular shape, a circular shape, or a vacuum R ' ^ (for example, using the passage 887 as needed) or any - ordinary adhesive to temporarily fix to the upper dislocation 127532.doc -47 - 200903817 _. Lower jig 840 Accommodating the heat sink _ such that the flat surface of the heat sink 892 is exposed, and (iv) is still concave Most of the remaining surface area, such as the fins, is contained. The heat sink can be made of any of the thermally conductive materials well known in the art and/or described herein, such as aluminum or aluminum alloys (eg, tantalum. Aluminum alloy, 6 〇61 aluminum alloy and 6〇〇5 aluminum alloy), copper, graphite or conductive polymer (such as conductive elastomer), may be any color (such as blue, black, gray or material) and may contain any geometry Shape-configured cooling Z-faces, such as pyramids (including truncated pyramids), cylindrical, square turns or cones (including truncated cones). The heat sink can be by gravity, vacuum or any common The adhesive is temporarily secured to the lower clamp 84. Figure 8C illustrates how the intermediate layer 894 can be added to the exposed surface of the heat sink 892 or the (etc.) exposed surface of the battery. The intermediate layer may be a thermal interface layer such as a thermally conductive grease (eg, conductive epoxy, lithographic resin or ceremonial or intermediate thermal conductive polymer. The intermediate layer may be either electrically insulating and thermally conductive) and may be a compound or mixture of compounds which chemically reacts upon exposure to air, heat and/or pressure. The thermal interface layer may, for example, be composed of any material that is both electrically and thermally conductive and may be a compound or mixture of compounds, It chemically reacts when exposed to air, 2 energy and/or pressure. The interposer may comprise multiple layers, for example: an electrically insulating layer adjacent to the PV cell and a thermal conduction layer adjacent to the __heatsink, or may not be present This layer may contact both the solar cell and the two heat sinks at the same time. As shown in Fig. 8D, the 'two fixtures accommodate the heat sink 89〇, if necessary, the middle layer, and the (summer) photovoltaic cells 8 8 6 The clips are clamped together to allow the intermediate layer 894, which is required to be present, to contact the heat sink and the photovoltaic cell at the same time. Applying sufficient pressure upward to the upper clamp 800, the lower cooler 840, or both to allow pressure between the battery and the heat sink, and forcing a close contact with the surface thereof because the upper clamp and the (etc.) accommodate The batteries 886 are complementary so that the pressure exerted by the distribution across the area of the clamp interface of the battery prevents the possibility of damaging the battery. Similarly, since the lower clamp is complementary to the receiving heat sink, it is applied. Pressure may be less likely to damage the heat sink fins (eg crushing or bending the fins). Sufficient thermal energy may also be separated or combined with sufficient pressure to apply during the process to tightly engage the heat sink with the (etc) photovoltaic The process of temporarily applying pressure and/or thermal energy to join two or more materials together (also known as lamination) may allow the (etc.) surface of the (or other) battery to be at a microscopic level. Closely contacting an adjacent material and allowing heat transfer to increase conductivity away from the battery. A vacuum may be applied to apply before, during, and/or after pressure and/or heat. Small air pressure to assist in the removal of air pockets between the layers. Removal of trapped air may allow for a closer contact between the layers, resulting in heat transfer of the crucible. The conditions between lamination may depend on the photovoltaic panel or The module configuration changes. In an example, the lamination temperature is approximately l55t: the depressing gas pressure is applied for five minutes and an additional atmospheric force is applied by the clamps to compress the heat sink for seven minutes. In one example, the lamination temperature is between 100 C and 200 C or between 125 ° C and 175 ° C or between 135 ° C and 155 C. In another example, 'applied by the clamps额外25, 1, 5, 2, 2.5, 3, 3.5, 4, 4.5 or greater atmospheric force to drive the radiator to the (the) photovoltaic between the fixtures 127532.doc -49· 200903817 The battery is pressing. In another example, the pressure is applied for 1 to 30 minutes, 2 to 2 minutes, 5 to 15 minutes, or more than 30 minutes, and the decreasing pressure is applied for 1 to 30 minutes, 2 to 20 minutes, 5 to 15 minutes. Or greater than 3 minutes. Figure 8E illustrates a photovoltaic panel or module after removal of the upper and lower clamps. At this stage, the laminated heat sink 89(R) and the photovoltaic cell(s) 886 may have an outer casing fabricated and attached as described above. The process may include additional layers well known in the art on or in the panel or module (eg, ethyl vinyl acetate (EVA), polyester, butyl anus 8, EPT), such as a protective layer (eg, Conformal coating) as described herein. If used in a module, the process can further include adding a frame (with or without pins) as described herein to allow direct horizontal airflow into the heat sink. A vacuum may be used during the process to remove trapped air between the layers. Figure 8F illustrates a variation of Figure 8Aq for constructing a photovoltaic panel or module. The lower fixture 840 shown in Figure 8F can include a base recess 850 and a plurality of truncated cone recesses 861. As with Figures 8A-i, the base recess 85 〇 and the truncated cone recess 861 can be designed to complement a heat sink in its entirety such that the heat sink can be inserted into the lower clamp and cannot be substantially horizontally displaced after insertion. The base recess can have a thickness 870 that is substantially the thickness of the heat sink base or slightly less than the thickness of a heat sink base and a width that is substantially the same as or slightly greater than the heat sink base. The base groove can be present as needed. Each truncated cone groove 861 can have a size that is substantially the same as or slightly larger than the heat 126532.doc -50-200903817 heater truncated cone to allow unrestricted insertion of the heat sink. A vacuum channel (not shown) may be present to provide a vacuum source to the heat sink through the lower clamp, as described with respect to the upper clamp. The lamination process for a heat sink comprising a truncated cone 891 can be as described above and produces a photovoltaic panel or module as shown in Figure 8G. Using Injection Molding Methods Injection molding techniques (e.g., screw injection molding) that are generally known in the art to form a polymeric outer shell can be used to make a photovoltaic panel. Although the method described below is exemplified for injection molding of a panel construction, the method can also be used to construct a photovoltaic module. One advantage of injection molding is that a panel can include a conductive polymeric housing that also functions as a heat sink. Another advantage is that multiple polymerization shots can be made to form different components of the panel or module, with each component having different polymerization characteristics. In addition, injection molding may allow for the formation of a heat sink that serves as a "skin" to coat the desired area of the photovoltaic panel and to allow the formation of geometries that are not available using conventional manufacturing techniques, thereby allowing for increased convection and cooling. Any-common mold material (such as hardened steel, pre-hardened steel, or copper alloy) can be used to design a complementary photovoltaic panel from, for example, a standard process or an electric discharge Mm die. It can then be = electricity = and the wire is positioned within the mold, such that the surface of the photovoltaic panel will eventually be exposed and the photovoltaic cell will be thermally contacted with the polymeric housing upon ejection. The mold is then closed s 'from (for example) - electric motor or hydraulic source pressure to heat a 127532.doc -51 · 200903817 compound (for example, if necessary, mixed with one or more metal fillers of heat transfer polymer ( For example, nylon 6-6) and/or polyphenylene sulfide; resin; or a fluid raw material for injection molding) is introduced into the mold, followed by cooling (for example, a water passage in the mold) to cure the outside of the plate. The heat sink may be a polymer, a polymer mixture, an unpolymerized monomer, an unpolymerized monomer mixture or any polymer(s) and a mixture of unpolymerized monomers. And/or the monomer may have a coefficient of thermal expansion that is similar to or identical to the coefficient of thermal expansion of the photovoltaic cell to ensure that the exiting material is in intimate contact with the photovoltaic cell during temperature changes. The high voltage applied during the period (e.g., 5-6 ton) and thermal energy may allow for tight contact between the exiting polymer (which may ultimately form the heat sink) and the photovoltaic cell, thereby resulting in such Increased heat dissipation during operation of the panel or module. The mold can then be opened and the panel popped up with the aid of the ejector pins in the mold, followed by any necessary reinforcement. The panel or module can then be installed On a roof. Plate installation method - installation method is shown in Figure 9. The roof panels are attached to the purlins or slats that hold and support the panels. The panels are, for example, The first plate is nailed to the lowest string or slat, and the male connector of one plate and the female connector of the second plate are joined and locked (in the case where the two plates are pushed together to lock the position) The two plates are nailed to the rafters or slats and are laid over on the roof-section. The lower-process of the slabs is partially covered by placing a slab on the lower-highest slats or slats. a plate on a low profile strip or slat, which is used to snap the panel to a 127532.doc • 52· 200903817 and to form a panel on the stringer or slat. The overlapping two knives of the panel can be used. For example, asphalt or an adhesive is adhered to each other to provide a waterproof seal and/or to prevent the panels from being blown away by the wind.

匕私序描述於圖9之流程圖内。在一步驟9〇〇中,提供一 第-光伏打板塊。在—步驟9〇2中,提供一第二光伏:板 鬼在v驟904中,將該第—光伏打板塊附著至一屋 員在〃驟906中,該第一光伏打板塊之一電連接器接 合該第二光伏打板塊之—電連接器以在該等光伏打板塊之 間形成-實質剛性機械連接並在該第一光伏打板塊之一光 伏打電池與該第二光伏打板塊之 電連接。在一可選步驟908中, 至屋頂。 一光伏打電池之間形成一 將該第二光伏打板塊附著 圖10係一用於安裝一光伏打板塊之第二方法之流程圖。 在^驟1000中,提供一第一光伏打板塊。在一步驟丨0〇2 中,提供一第二光伏打板塊。在一步驟1〇〇4中,該第一光 伏打板塊之一電連接器接合該第二光伏打板塊之一電連接 器以在該等光伏打板塊之間形成一實質剛性機械連接並在 該第一光伏打板塊之一光伏打電池與該第二光伏打板塊之 一光伏打電池之間形成一電連接。在一步驟丨〇〇6中,將該 第一光伏打板塊附著至一屋頂。在一可選步驟7〇8中,將 該第二光伏打板塊附著至該屋頂。 在一安裝光伏打屋頂板塊之方法中,複數個屋頂板塊平 行於屋頂線’透過其連接器而水平連接在一起,並在最遠 離屋頂線點(最靠近地面位準)處附著在屋頂上。在此步驟 127532.doc •53· 200903817 連接在一起的該等板塊不會跨越屋頂的整個水平長度,但 僅跨越屋頂的一部分以在該等連接屋頂板塊之一側或兩側 上提供進入。接著安裝下一垂直相鄰列的屋頂板塊,同樣 在一側或兩側上留下進入。重複此程序,直至屋頂板塊從 屋頂線的最低區域大體至屋頂線之最高區域而覆蓋屋面的 一區段。可重複整個程序以在完成區段之一或兩側上構造 額外板塊區段。因而’比較屋頂的水平長度,個別區段之 水平長度可能較短,或一區段之水平長度可能幾乎係屋頂 的整個水平長度。一旦已安裝所有區段的光伏打屋頂板塊 後’可從屋頂線之最低區域至最高區域沿屋頂的一或兩邊 緣安裝習知屋頂板塊以提供人們可進入屋頂而不損壞光伏 打屋頂板塊之區域。依此方式,可提供進入(例如)滲透屋 頂的煙囱及管道或導管。還在需要時,可在屋頂線附近及 水槽附近提供習知板塊。 一板塊可在將其經由連接器連接至一先前緊固至屋頂之 相鄰板塊之後立即個別附著至屋頂。或者’多個板塊可經 由其連接器而連接,且接著可將該等裝配板塊緊固至屋 頂。例如’安裝者可互連許多板塊’沿屋頂的水平長度居 中該等互連板塊,確保該等互連板塊還平行於屋頂線^接 著將此第一列(離屋頂最遠)緊固至下面檁條或板條。安裝 者τ接著如上述個別添加板塊以完成一區段,或者安穿者 可互連夕個板塊並連接或覆蓋其以在該區段内形成相鄰列 的板塊。 可因此安裝該等板塊以在進行以形成_相鄰列板塊之前 127532.doc -54 - 200903817 完成一第一列板塊的全部或大多數以及等等直至覆蓋屋 頂,或可安裝該等板塊以形成多個區段,其在屋頂的水平 長度上部分穿行並從屋頂基線或其附近部分或完全穿行至 屋頂線。 在另一實例中,一屋頂可能藉由在屋頂基線處放置—屋 面板塊並在一朝向屋頂線之方向上由該等連接器連接相鄰 板塊來形成。形成多個板塊帶,其可具有(例如)一密封帶 或瀝青,該密封帶或瀝青係放置於在一帶左或右邊與相鄰 板塊一起形成的垂直升起接縫内及/或其上。 該安裝程序可藉纟緊在屋頂線附近放置一屋項板塊並接 著以上述該等方法之任一方法在朝向地面的方向上放置相 鄰列來加以執行。本文所述的該等板塊之任一者可組態用 於從屋頂線向地面或從最靠近地面的屋頂部分並向屋頂線 安裝。可採用任一方法形成一整列或僅一列之一部分。 【圖式簡單說明】 圖1A係一具有多個散熱器之光伏打模組之一透視圖。 圖1B係一具有一散熱器之光伏打板塊之一透視圖。 圖2A係-具有-包含鰭片之散熱器之光伏打板塊或模組 之一部分斷面圖。 圖2B係一#有-包含截頂圓錐冑之散#器之光伏打板塊 或模組之一部分斷面圖。 圖2C係一散熱器之一仰視圖。 圖3係一重疊板塊陣列之一俯視圖。 圖4係在一屋頂上的一重疊板塊陣列之一斷面圖。 127532.doc •55- 200903817 圖5 A係一具有一散熱器之互鎖光伏打板塊之一透視圖。 圖5B係具有各種機械及電組態之光伏打板塊之一部分透 視圖。 圖5C係一互鎖光伏打板塊之一額外變更之一側視圖。 圖5D係一互鎖光伏打板塊之一額外變更之一透視圖。 圖6係一包含一光伏打薄膜之互鎖屋頂板塊之一俯視圖 及側視圖。 圖7係各包含一薄膜之互鎖成形板塊之一透視圖。 圖8 A-1係用以附著(多個)光伏打電池至一散熱器用於一 板塊或模組之一上夾具與一下夾具之一斷面圖。 圖8 A-2係一上夾具之一仰視圖。 圖8B係具有一光伏打電池與一散熱器之圖所示之圖 式。 圖8C係具有一介面層之圖8B所示之圖式。 圖8D說明圖8C所示之裝置,其中壓縮該上夾具與該下 夾具。 圖8E顯示藉由所述製程附著至一散熱器之(多個)光伏打 電池。 圖8F係用以附著(多個)光伏打電池至—包含截頂圓錐體 之散熱器之一上夾具與一下夾具之一斷面圖。 圖8G顯示藉由所述製程附著至—包含截頂圓錐體之散熱 器之(多個)光伏打電池。 圖9係一安裝一光伏打板塊之方法之流程圖。 圖10係一安裝一光伏打板塊之替代性方法之流程圖。 127532.doc -56 - 200903817 圖11A及11B顯示一包含一空心截頂圓錐體變更之散熱 器。 圖12A及12B顯示一包含另一空心截頂圓錐體變更之散 熱器。 【主要元件符號說明】 11-1 截頂圓錐體 11-2 底座 12-1 截頂圓錐體 12-3 空心孔 100 光伏打(PV)板塊 100-M 光伏打(PV)模組 102-M 凸緣或唇緣 110 太陽能電池 110-M 光伏打電池 120 外殼 120-M 框架 130 散熱器 130-M 散熱器 140 伸出物 140-M 接腳 150 凹槽 160 固定孑L 170 保護層 180 外伸 127532.doc -57- 200903817 190 外伸 200 底座 210 鰭片/板塊 211 截頂圓錐體 220 中間熱介面層 400 傾斜屋頂 500 互鎖光伏打板塊 510 公底座連接器 520 母底座連接器 530 電伸出物 540 電插座 550 鰭片接收表面 560 機械連接器 570 中央部分 580 板塊之相對較長側 589 伸出物 590 相鄰板塊之一部分 600 複合屋面屋頂板 610 薄膜太陽能電池 620 公底座連接器 630 母底座連接器 640 接針 650 容器 700 陶瓷成形板塊 127532.doc -58- 200903817 710 互鎖連接器 800 上夾具 810 凹槽 840 下夾具 850 底座凹槽 860 鰭片凹槽 861 截頂圓錐體凹槽 886 光伏打電池 887 真空通道 888 電池 890 散熱器 891 截頂圓錐體 892 散熱器 894 中間層 127532.doc -59-The private sequence is described in the flow chart of Figure 9. In a step 9, a first-photovoltaic panel is provided. In the step 9〇2, a second photovoltaic is provided: the board ghost is in the step 904, the first photovoltaic panel is attached to a houser in step 906, and one of the first photovoltaic panels is electrically connected. Interposing the electrical connector of the second photovoltaic panel to form a substantially rigid mechanical connection between the photovoltaic panels and to electrically charge the photovoltaic cell and the second photovoltaic panel in the first photovoltaic panel connection. In an optional step 908, to the roof. Forming a second photovoltaic panel between a photovoltaic cell. Figure 10 is a flow chart of a second method for mounting a photovoltaic panel. In step 1000, a first photovoltaic panel is provided. In a step 丨0〇2, a second photovoltaic panel is provided. In a step 1〇〇4, one of the first photovoltaic panel electrical connectors engages one of the second photovoltaic panel electrical connectors to form a substantially rigid mechanical connection between the photovoltaic panel blocks and An electrical connection is formed between one of the first photovoltaic panel and the photovoltaic cell of the second photovoltaic panel. In a step 丨〇〇6, the first photovoltaic panel is attached to a roof. In an optional step 7-8, the second photovoltaic panel is attached to the roof. In a method of installing a photovoltaic roofing panel, a plurality of roofing panels are parallel to the roofline' through their connectors and are horizontally joined together and attached to the roof at the farthest from the roofline (closest to the ground). In this step 127532.doc •53· 200903817 the plates joined together do not span the entire horizontal length of the roof, but only span a portion of the roof to provide access on one or both sides of one of the connected roof panels. The next vertical adjacent column of roof slabs is then installed, also leaving on one or both sides. This procedure is repeated until the roof panel covers a section of the roof from the lowest area of the roof line to the highest area of the roof line. The entire program can be repeated to construct additional slab sections on one or both sides of the completed section. Thus, comparing the horizontal length of the roof, the horizontal length of the individual sections may be shorter, or the horizontal length of one section may be almost the entire horizontal length of the roof. Once all sections of photovoltaic roofing panels have been installed, 'a custom roof panel can be installed along one or both edges of the roof from the lowest area to the highest area of the roof line to provide areas where people can enter the roof without damaging the photovoltaic roofing panels . In this manner, chimneys and pipes or conduits that enter, for example, the roof of the roof can be provided. Conventional plates are available near the roof line and near the sink when needed. A panel can be individually attached to the roof immediately after it is connected via a connector to an adjacent panel previously fastened to the roof. Alternatively, a plurality of panels may be connected by their connectors and the assembly panels may then be secured to the roof. For example 'the installer can interconnect a number of panels' to center the interconnected panels along the horizontal length of the roof, ensuring that the interconnected panels are also parallel to the roof line ^ and then fasten the first row (farthest from the roof) to the bottom Purlin or slats. The installer τ then individually adds the tiles as described above to complete a segment, or the wearer can interconnect the tiles and connect or cover them to form adjacent columns of tiles within the segment. The panels may thus be installed to complete all or most of a first column of panels and so on, until 127532.doc -54 - 200903817, to form a roof, or to mount the panels to form A plurality of sections that partially pass over the horizontal length of the roof and pass partially or completely from the roof baseline or near to the roof line. In another example, a roof may be formed by placing a roof panel at the roof baseline and joining adjacent panels by the connectors in a direction toward the roof line. A plurality of panel strips are formed which may have, for example, a sealing strip or bitumen which is placed in and/or on a vertical raised seam formed by a left or right side with adjacent panels. The installation procedure can be performed by placing a house panel near the roof line and placing adjacent columns in the direction of the ground by any of the methods described above. Any of the panels described herein can be configured for installation from the roof line to the ground or from the roof portion closest to the ground and to the roof line. Either way, an entire column or only one column can be formed. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1A is a perspective view of a photovoltaic module having a plurality of heat sinks. Figure 1B is a perspective view of a photovoltaic panel having a heat sink. Figure 2A is a partial cross-sectional view of a photovoltaic panel or module having a heat sink containing fins. Figure 2B is a partial cross-sectional view of a photovoltaic panel or module containing a truncated cone. Figure 2C is a bottom plan view of a heat sink. Figure 3 is a top plan view of an array of overlapping plates. Figure 4 is a cross-sectional view of a stack of overlapping plates on a roof. 127532.doc •55- 200903817 Figure 5 A is a perspective view of an interlocking photovoltaic panel with a heat sink. Figure 5B is a partial perspective view of a photovoltaic panel having various mechanical and electrical configurations. Figure 5C is a side elevational view of one of the additional variations of an interlocking photovoltaic panel. Figure 5D is a perspective view of one of the additional changes to one of the interlocking photovoltaic panels. Figure 6 is a top plan view and a side view of an interlocking roof panel comprising a photovoltaic film. Figure 7 is a perspective view of one of the interlocking shaped panels each comprising a film. Figure 8 A-1 is a cross-sectional view of a fixture and a fixture for attaching a plurality of photovoltaic cells to a heat sink for use on a panel or module. Figure 8 A-2 is a bottom view of one of the upper clamps. Figure 8B is a diagram showing a photovoltaic cell and a heat sink. Figure 8C is a diagram of Figure 8B with an interface layer. Figure 8D illustrates the apparatus of Figure 8C in which the upper clamp and the lower clamp are compressed. Figure 8E shows the photovoltaic cell(s) attached to a heat sink by the process. Figure 8F is a cross-sectional view of a fixture and a lower fixture for attaching a plurality of photovoltaic cells to a heat sink including a truncated cone. Figure 8G shows the photovoltaic cell(s) attached to the heat sink containing the truncated cone by the process. Figure 9 is a flow chart of a method of installing a photovoltaic panel. Figure 10 is a flow diagram of an alternative method of installing a photovoltaic panel. 127532.doc -56 - 200903817 Figures 11A and 11B show a heat sink including a hollow truncated cone change. Figures 12A and 12B show a heat sink including another hollow truncated cone change. [Main component symbol description] 11-1 Truncated cone 11-2 Base 12-1 Truncated cone 12-3 Hollow hole 100 Photovoltaic (PV) plate 100-M Photovoltaic (PV) module 102-M convex Edge or lip 110 Solar cell 110-M Photovoltaic cell 120 Housing 120-M Frame 130 Radiator 130-M Heat sink 140 Extension 140-M Pin 150 Groove 160 Fixing 170L 170 Protective layer 180 Outer 127532 .doc -57- 200903817 190 Outreach 200 Base 210 Fins/plates 211 Truncated cone 220 Intermediate thermal interface layer 400 Tilted roof 500 Interlocking photovoltaic panel 510 Male base connector 520 Female base connector 530 Electrical extension 540 electrical socket 550 fin receiving surface 560 mechanical connector 570 central portion 580 relatively long side of the plate 589 protrusion 590 one part of the adjacent plate 600 composite roofing roof 610 thin film solar cell 620 male base connector 630 female base connection 640 pin 650 container 700 ceramic forming plate 127532.doc -58- 200903817 710 interlocking connector 800 upper clamp 810 groove 840 lower clamp 850 base groove 860 fin groove 861 truncated cone groove 886 photovoltaic cell 887 vacuum channel 888 battery 890 radiator 891 truncated cone 892 radiator 894 intermediate layer 127532.doc -59-

Claims (1)

200903817 十、申請專利範圍: 1. 一種光伏打模組,其包含: A. 複數個光伏打電池, B. —框架,其保持該複數個光伏打電池並沿該框架之一 第一表面曝露該複數個光伏打電池之光接收表面, C . 6亥框架係調適以固定於_一完成屋頂上, D.—散熱器’其係與該複數個光伏打電池之一未曝露表 面熱連通,200903817 X. Patent application scope: 1. A photovoltaic module comprising: A. a plurality of photovoltaic cells, B. frame, which holds the plurality of photovoltaic cells and exposes the first surface of the frame The light receiving surface of a plurality of photovoltaic cells, the C. 6 hai frame is adapted to be fixed on the roof, and the D.-heatsink is in thermal communication with an unexposed surface of the plurality of photovoltaic cells. E·該散熱器包含 1) 一底座,其係實質平行於該未曝露表面而定位, 以及 具係貫質相互平;f U)附著至該底座的複數個鰭片 而定位, 其中該底座具有一在0.05”與0.5”之間的厚度; 且其中該等鰭片各獨立地具有一在〇25&quot;與7&quot;之間的! 度、-在0.05”與1”之間的中心至中心間距及一在〇 〇〇 與0.25”之間的寬度; 其中該中心至中心間距係足以在該等鰭片之間提供一〗 道以使冷卻空氣進入。 2.如請求項1之光伏打模組,装推 Α 再進—步包含在該散熱器] 該未曝露表面之間的一執介而®,、,Α ·、、、;丨面層以改良散熱。 3·如請求項1之光伏打模組,其進一步包含在該等光接, 表面上的對可見光實質透明的一保形塗層。 4.如請求項1之光伏打模組,其由 具中該框架不延伸超出該^ 127532.doc 200903817 座’一許環境…受阻礙地進入該散 mr,:?:’其中該散熱“有〜、 -、间又1片間距及鰭片寬度以在— 的靜止環境空氣下將該光伏打電 ^度 15〇卞的溫度下。 卞隹低於大約 H 之光伏打模組,其中該等複數個轉片之各錄 長轴係實質平行於該散熱器之-長軸而定位 m1之光伏打模組’其中該等複數個轉片之各缺 片之—長軸係實質垂直於該散熱器之一長轴而定位 8·=求項!之光伏打模级,其中該散熱器之—長轴传 質平行於該光伏打模組之一長轴而定位。'、實 9. ^請求項i之光伏打模組’其中該散熱器之—長轴 質垂直於該光伏打模組之一長軸而定位。 ’、 10. 如請求们之光伏打模組,其中該散熱器具 越該光伏打模組寬度3/4以上之長度。 、 11. 如請求们之光伏打模組,其中該散熱器具有 越該光伏打模組長度3/4以上之長度。 5 12.2求項1之光伏打模組’其中㈣熱器係由擠製銘所 η.如請求項【之光伏打模組,其中該散 化鋁所構成。 冑黑“極 Κ如請求項丨之光伏打模組,其中該底座係由 物所構成。 得導t合 127532.doc 200903817 15·如明求項14之光伏打模組,其中該等傳導聚合物係一 性體。 16_如睛求項1之光伏打模組,其中該等鰭片係沿該底座之 一長軸不連續,以形成排氣及進入通道。 17. 如請求項16之光伏打模組,其中該等通道成人字形。 18. 如請求項1之光伏打模組,其中該底座具有一在〇.厂與 0.25’’之間的厚度;且其中該等鰭片各獨立地具有一在 〇_75&quot;與5&quot;之間的高度、一在〇2”與〇 5”之間的中心至中 心間距及一在〇.〇〇7”與〇丨,,之間的寬度。 19·如請求項18之光伏打模組,其進—步包含在該散熱器與 該未曝露表面之間的一熱介面層以改良散熱。 20.如請求項18之光伏打模级,其中該散熱器之一長轴係實 質垂直於該光伏打模組之一長軸而定位。 •如請求項18之光伏打模組,其中該散熱器係由掩製結所 構成。 22.如請求項18之光伏打模組,其中該底座具有—在與 0.2&quot;之間的厚度’且其巾該等鰭片各獨立地具有一在 0.9&quot;與2&quot;之間的高度、一在〇,3,,與〇4&quot;之間的中心至中心 間距及一在0.02&quot;與0.05”之間的寬度。 23·如請求項22之光伏打模組,复、&amp; ^ . 其進一步包含在該散熱器與 該未曝露表面之間的一熱介面層以改良散熱。 24_如請求項22之光伏打模組, 質垂直於該光伏打模組之— 25.如請求項22之光伏打模組, 其中該散熱器之一長軸係實 長輛而定位。 其中該散熱器係由擠製紹所 127532.doc 200903817 構成。 26· —種製造一光伏打模組之方法,其包含以下步驟: 在一夾具内放置一散熱器,使得該散熱器之一下表面 接觸該夾具而該散熱器之一上表面曝露; 相鄰該上表面放置一光伏打電池; 連接該光伏打電池與該散熱器;以及 從該夾具移除該散熱器。 27·如請求項26之方法’其中連接該光伏打電池與該散熱器 之該步驟包含廣合。 28. 如請求項27之方法,其中該層合步驟包含在該上表面與 吞玄光伏打電池之間提供一熱介面層。 29. 如請求項28之方法,其中該層合步驟包含將該散熱器、 中間層及光伏打電池層合在一起。 30. 如請求項29之方法,其中該中間層係一熱傳導聚合物。 3 1.如請求項30之方法’其中該熱傳導聚合物係—彈性體。 32.如請求項27之方法,其中該層合步驟包含在該上表面與 該光伏打電池之間減小環境壓力。 3 3 _如請求項3 2之方法,其中減小該環境壓力持續5至3 〇分 鐘之間。 34. 如請求項27之方法,其中該層合步驟包含在該上表面與 該光伏打電池之間增加溫度。 35. 如請求項34之方法,其中將該溫度增加至125。(:與175。(: 之間。 36_如請求項34之方法,其中增加該溫度持續5至3〇分鐘之 127532.doc 200903817 間。 37·如請求項27之方法,其中該層合步驟包含在該上表面與 該光伏打電池之間增加壓力。 38_如喷求項37之方法,其中將該溫度增加至〇5至5個大氣 壓之間。 39.如請求項37之方法,其中増加該壓力持續5至3〇分鐘之 ' 間。 40·如請求項26之方法,其包含將一保護層附著在該光伏打 電池上。 41 _如請求項40之方法,其中該保護層係一保形塗層。 42. 如請求項26之方法,其包含附著一環繞該一或多個光伏 打電池之框架,其中該框架不延伸超出該上表面,從而 允許環境空氣不受阻礙地進入該散熱器。 43. 如請求項26之方法,其中該散熱器係由擠製鋁所構成。 44. 如請求項26之方法’其中該散熱器係由一傳導聚合物所 構成。 l 45.如請求項26之方法,其中該散熱器包含實質相互平行定 位的複數個鰭片且其中該夾具包含與該複數個鰭片互補 的複數個凹槽。 46· —種光伏打板塊,其包含·· A. —光伏打電池, B. —外殼’其保持該光伏打電池並沿該外殼之一第一表 面曝露該光伏打電池之光接收表面, C. 該外殼係調適以固定於一屋頂上, i27532.doc 200903817 D. -散熱器,其係與該光伏打電池之—未曝露表面㈣ 通, E. 該散熱器包含 〇 —底座,其係實質平行於該未曝露表面而定位, 以及 ii)附著至該底座的複數個鰭片,其係實質相互平行 而定位, 其中該底座具有一在〇·〇5”與0.5”之間的厚度; 其中該等鰭片各獨立地具有一在0.25&quot;與7”之間的高度、 一在0_05&quot;與Γ之間的中心至中心間距及一在〇 〇〇1 &quot;與 0.25”之間的寬度; 且其中該中心至中心間距係足以在該等鰭片之間提供一 通道以使冷卻空氣進入。 47. 如請求項46之光伏打板塊’其進一步包含在該散熱器與 該未曝露表面之間的一熱介面層以改良散熱。 48. 如請求項46之光伏打板塊’其中該散熱器具有一長度、 厚度、鰭片高度、鰭片間距及鰭片寬度以在一 7(TF溫度 的環境空氣下將該光伏打電池維持在一低於大約150°F的 溫度下。 49. 如請求項46之光伏打板塊,其進一步包含沿實質平行於 一屋頂脊線的該外殼之該第一表面的一外伸。 50. 如請求項46之光伏打板塊,其進一步包含沿實質垂直於 一屋頂脊線的該外殼之該第一表面的一外伸。 5 1.如請求項46之光伏打板塊’其中該複數個鰭片係定位於 127532.doc -6 - 200903817 一實質平行於一屋頂脊線之方向上。 52. 如請求項46之光伏打板塊,其中該複數個鰭片係定位於 一實質垂直於一屋頂脊線之方向上。 、 53. 如請求項46之光伏打板塊,其中該散熱器係由擠製鋁所 構成。 54. 如請求項46之光伏打板塊,其中該散熱器係由黑色陽極 化鋁所構成。 55. 如請求項46之光伏打板塊,其中該底座係由一傳導聚合 物所構成。 σ 56. 如請求項53之光伏打板塊,其中該等傳導聚合物係一彈 性體。 57. 如請求項46之光伏打板塊,其中該等鰭片係沿該底座之 一長軸不連續,以形成排氣及進入通道。 5 8_如請求項57之光伏打板塊,其中該等通道成人字形。 59. 如請求項46之光伏打板塊,其中該底座具有一在〇丨,,與 0.25&quot;之間的厚度;且其中該等鰭片各獨立地具有一在 0.75”與5&quot;之間的高度、一在0.2”與0.5&quot;之間的中心至中 心間距及一在0.007”與0.1”之間的寬度。 60. 如請求項59之光伏打板塊’其進一步包含在該散熱器與 該未曝露表面之間的一熱介面層以改良散熱。 61. 如請求項59之光伏打板塊,其中該複數個鰭片係定位於 一實質垂直於一屋頂脊線之方向上。 62. 如請求項59之光伏打板塊,其中該散熱器係由擠製紹所 構成。 127532.doc 200903817 63. 如請求項59之光伏打板塊,其中該底座具有一在〇,l”與 〇_2&quot;之間的厚度;且其中該等鰭片各獨立地具有一在 0.9&quot;與2&quot;之間的高度、一在0.3&quot;與〇.4&quot;之間的中心至中心 間距及一在0.02”與0.05&quot;之間的寬度。 64. 如請求項63之光伏打板塊’其進一步包含在該散熱器與 該未曝露表面之間的一熱介面層以改良散熱。 65 ·如請求項63之光伏打板塊’其中該複數個鰭片係定位於 一實質垂直於一屋頂脊線之方向上。 66.如請求項63之光伏打板塊’其中該散熱器係由擠製鋁所 構成。 67· —種複數個光伏打板塊,其包含·· Α·—第一光伏打板塊,其包含: i - 一光伏打電池, ii. 一外殼,其保持該光伏打電池並沿該外殼之一第 一表面曝露該光伏打電池之光接收表面, iii. 該外殼係調適以固定於一屋頂上, iv. —散熱器’其係與該光伏打電池之該等光接收表 面相對的一表面熱連通,以及 v. 一第一電連接器與一第二電連接器,其係附著至 該第一光伏打板塊, B.—第二光伏打板塊,其包含: i · 一光伏打電池 Π· —外殼,其保持該光伏打電池並沿該外殼之_第 一表面曝露該光伏打電池之光接收表面, 127532.doc 200903817 iii.該外殼係調適以固定於一屋頂上, iv_ —散熱器,其係與該光伏打電池之該等光接收表 面相對的一表面熱連通,以及 v. —第一電連接器與一第二電連接器,其係附著至 該第二光伏打板塊, 其中該第一板塊之該第一電連接器匹配該第二板塊之該 第二電連接器,以及 其中在匹配時,該第一板塊之該第一電連接器與該第二 板塊之該第二電連接器係經組態用以防止該第一板塊獨 立於該第二板塊而旋轉。 68. 如請求項67之複數個光伏打板塊,其中該第一光伏打板 塊與該第二光伏打板塊相同。 69. 如請求項67之複數個光伏打板塊,其中各電連接器獨立 地係一公或母連接器。 70如請求項69之複數個光伏打板塊,其中各電連接器獨立 地係一伸出物或插座連接器。 7 1.如請求項67之複數個光伏打板塊,其中該第一板塊之該 第一電連接器係經組態用以在一實質平行於一屋頂脊線 之方向上匹配該第二板塊之該第二電連接器。 72.如請求項67之複數個光伏打板塊,其中該第一板塊之該 第一電連接器係經組態用以在一實質垂直於一屋頂脊線 之方向上匹配該第二板塊之該第二電連接器。 73 ·如請求項67之複數個光伏打板塊,其中各光伏打電池係 一薄膜光伏打電池。 127532.doc -9- 200903817 74. 如請求項67之複數個光伏打板塊,其中各光伏打板塊包 含在該散熱器與該未曝露表面之間的一熱介面層以改良 散熱。 75. 如請求項67之複數個光伏打板塊,其中各散熱器係經組 態用以在一 70°F溫度之環境空氣内將其對應光伏打電池 維持在一低於大約150°F之溫度下。 76·如請求項67之複數個光伏打板塊,其中各光伏打板塊包 含沿實質平行於一屋頂脊線的該外殼之該第一表面的一 (’ 外伸。 77. 如請求項67之複數個光伏打板塊,其中各光伏打板塊包 含沿實質垂直於一屋頂脊線的該外殼之該第一表面的一 外伸。 78. 如請求項67之複數個光伏打板塊,其中各散熱器包含 i) 一底座’其係實質平行於與該等光接收表面相對的 該表面而定位,以及 Π)附著至該底座的複數個鰭片,其係實質相互平行而 Ο 、 定位。 79_如請求項78之複數個光伏打板塊,其中各複數個轉片係 定位於一實質平行於一屋頂脊線之方向上。 - 80·如請求項78之複數個光伏打板塊,其中各複數個轉片係 定位於一實質垂直於一屋頂脊線之方向上。 81.如請求項78之複數個光伏打板塊’其中各複數個讀片係 沿相關聯底座之一長袖不連續’以形成排氣及進入通 道° 127532.doc -10- 200903817 82. 如請求項8 1之複數個光伏打板塊’其中該等通道成人字 形〇 83. 如請求項67之複數個光伏打板塊,其中各散熱器係由金 屬所構成。 84·如請求項83之複數個光伏打板塊,其中該金屬係擠製 鋁。 85·如請求項83之複數個光伏打板塊,其中該金屬係黑色陽 極化銘。 86. 如請求項67之複數個光伏打板塊’其中各散熱器係由一 傳導聚合物所構成。 87. 如請求項86之複數個光伏打板塊,其中該等傳導聚合物 係一彈性體。 88. —種光伏打板塊,其包含: a) —光伏打電池, b) —外殼,其保持該電池並曝露該光伏打電池之光接收 表面,以及 0 —第一電連接器與一第二電連接器,其係附著至該光 伏打板塊, 其中該外殼係調適以固定於一屋頂上,以及 其中該外殼包含一熱傳導聚合物,其係與該光伏打電池 之一未曝露表面熱連通。 89. 如請求項88之光伏打板塊,其中該外殼進一步包含鄰接 該第一聚合物的一第二聚合物。 90. 如請求項88之光伏打板塊,其中該第一電連接器匹配一 127532.doc _ 11 · 200903817 第二光伏打板塊之一電連接器,以及 其中在匹配時,該第一板塊之該第一電連接器與該第二 板塊之該電連接器係經組態用以防止該第一板塊獨立於 該第二板塊而旋轉。 9 1.如請求項90之光伏打板塊,其中該光伏打板塊與該第二 光伏打板塊相同。 92. 如請求項90之光伏打板塊,其中各電連接器獨立地係一 公或母連接器。 93. 如請求項91之光伏打板塊,其中各電連接器獨立地係一 伸出物或插座連接器。 94. 如請求項8 8之光伏打板塊,其中該第一板塊之第一電連 接器係經組態用以在一實質平行於一屋頂脊線之方向上 匹配相鄰板塊之電連接器。 95. 如請求項88之光伏打板塊,其中該板塊之第一電連接器 係經組態用以在一實質垂直於一屋頂脊線之方向上匹配 相鄰板塊之電連接器。 96·如請求項88之光伏打板塊,其進一步包含沿實質平行於 一屋頂脊線的該外殼之該第一表面的一外伸。 97. 如請求項88之光伏打板塊,其進一步包含沿實質垂直於 一屋頂脊線的該外殼之該第一表面的一外伸。 98. 如請求項88之光伏打板塊’其中該光伏打電池係一薄膜 光伏打電池。 99. 如請求項88之光伏打板塊’其中該熱傳導聚合物係成形 為實質相互平行定位的複數個鰭片。 127532.doc -12- 200903817 100. 如請求項99之光伏打板塊,其中該等鰭片係沿該底座之 一長軸不連續’以形成排氣及進入通道。 101. 如請求項100之光伏打板塊,其中該等通道成人字形。 102· —種製造一光伏打板塊之方法,其包含以下步驟: 在一模具内放置一光伏打電池; 將一第一聚合物注入該模具内; 從該模具中移除該聚合物與該電池。 103•如請求項102之方法,其中該第一聚合物係一熱傳導聚 合物。 104. 如請求項1〇3之方法,其進一步包含將一第二聚合物注 入該模具内。 105. 如請求項103之方法,其中在將該第一聚合物注入該模 /、内時,该第一聚合物係與該光伏打電池之光接收表面 相對的一表面熱連通。 如靖求項103之方法,其中該第一聚合物形成一外殼, 其保持該光伏打電池並曝露該光伏打電池之光接收表 面’其中該外殼係調適以固定於一屋頂上。 107. 如請求項104之方法,其中該第二聚合物形成一外殼, /、保持该光伏打電池並曝露該光伏打電池之光接收表 面其中該外殼係調適以固定於一屋頂上。 108. 如4求項1〇2之方法,其中該光伏打電池包含一金屬散 熱器’其係附著至與光接收表面相對的一表面。 。月求項102之方法,其中該光伏打板塊包含一電連接 器其中在匹配時’該光伏打板塊之該電連接器與—第 127532.doc •13- 200903817 二板塊之一電連接器係經組態用以防止該光伏打板塊獨 立於該第二板塊而旋轉。 110. 如請求項102之方法,其中注入該第一聚合物包含增加 熱能及壓力,足以允許在該第一聚合物與該光伏打電池 之間的緊密熱接觸。 111. 如請求項102之方法,其進一步包含冷卻該模具。 112. 種製造一光伏打板塊之方法’其包含以下步驟: 在—夾具内放置一散熱器,使得該散熱器之一下表面 接觸該夾具而該散熱器之一上表面曝露; 相鄰該上表面放置一光伏打電池; 連接該光伏打電池與該散熱器;以及 從該夾具中移除該散熱器; 在該光伏打電池周圍形成一板塊外殼。 113如請求項112之方法,其中連接該光伏打電池與該散熱 器之該步驟包含層合。 ) 114·如請求項113之方法’其中該層合步驟包含在該上表面 與該光伏打電池之間提供一熱介面層。 115. 如請求項114之方法’其中該層合步驟包含將該散熱 器、中間層及光伏打電池層合在一起。 116. 如請求項115之方法,其中該中間層係一熱傳導聚合 物0 117·如請求項116之方法,其中該熱傳導聚合物係—彈性 體。 118.如請求項113之方法,其中該層合步驟包含在該上表面 127532.doc -14- 200903817 與該光伏打電池之間減小環境壓力。 119. 如請求項11 8之方法,豆中、试丨女 ,、中減j ”玄衣i兄壓力持續5至3〇 鐘之間。 120. 如凊求項113之方法,直中兮層人牛聰、人&amp; 八甲泛層σ步驟包含在該上表面 與該光伏打電池之間增加溫度。 121. 如請求項120之方法,i φ眩吋。攻痒描上 卉甲將該/皿度増加至125°C與175°C 之間。E. The heat sink comprises: 1) a base positioned substantially parallel to the unexposed surface, and having a lineage that is flat with each other; f U) being positioned by a plurality of fins attached to the base, wherein the base has a thickness between 0.05" and 0.5"; and wherein the fins each independently have a between &25&quot; and 7&quot; Degree, - a center-to-center spacing between 0.05" and 1" and a width between 〇〇〇 and 0.25"; wherein the center-to-center spacing is sufficient to provide a path between the fins Allowing the cooling air to enter. 2. The photovoltaic module of claim 1 is loaded with a push-pull re-entry step included in the heat sink] between the unexposed surfaces and the ®, ,, Α ·, ,, The surface layer is modified to improve heat dissipation. 3. The photovoltaic module of claim 1 further comprising a conformal coating on the surface that is substantially transparent to visible light. Photovoltaic module, which consists of the frame does not extend beyond the ^ 127532.doc 200903817 block 'a permit environment ... obstructed into the scattered mr, :?: 'where the heat dissipation "has ~, -, and again 1 The sheet pitch and the fin width are used to heat the photovoltaic at a temperature of 15 Torr in a static ambient air.光伏 a photovoltaic module having a lower than about H, wherein each of the plurality of reels has a recording axis that is substantially parallel to the long axis of the heat sink and positions the photovoltaic module of m1, wherein the plurality of turns Each of the missing pieces of the film - the long axis is substantially perpendicular to the long axis of the heat sink and positioned 8 = = item! The photovoltaic molding stage, wherein the long-axis mass transfer of the heat sink is positioned parallel to one of the long axes of the photovoltaic module. ', real 9. ^ Requested item i of the photovoltaic module' wherein the long axis of the heat sink is positioned perpendicular to one of the long sides of the photovoltaic module. </ RTI> 10. The photovoltaic module of the requester, wherein the radiator has a length greater than 3/4 of the width of the photovoltaic module. 11. The photovoltaic module of the requester, wherein the heat sink has a length of more than 3/4 of the length of the photovoltaic module. 5 12.2 Photovoltaic module of item 1 'The (4) heat exchanger is made up of the luminaire module of the request item, which consists of the photovoltaic module.胄 “ “ “ “ “ “ “ 请求 请求 请求 请求 请求 请求 请求 请求 请求 请求 请求 请求 请求 请求 请求 请求 请求 请求 请求 请求 请求 127 127 127 532 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 A photovoltaic module according to item 1, wherein the fins are discontinuous along a long axis of one of the bases to form an exhaust and an access passage. Photovoltaic module, wherein the channels are in the form of a glyph. 18. The photovoltaic module of claim 1, wherein the base has a thickness between the factory and the 0.25"; and wherein the fins are independent The ground has a height between 〇_75&quot; and 5&quot;, a center-to-center spacing between 〇2" and 〇5", and a width between 〇.〇〇7" and 〇丨,, . 19. The photovoltaic module of claim 18, further comprising a thermal interface layer between the heat sink and the unexposed surface to improve heat dissipation. 20. The photovoltaic molding stage of claim 18, wherein one of the long axis of the heat sink is substantially perpendicular to a long axis of the photovoltaic module. • The photovoltaic module of claim 18, wherein the heat sink is comprised of a mask junction. 22. The photovoltaic module of claim 18, wherein the base has a thickness between and 0.2&quot; and the fins of the towel each independently have a height between 0.9&quot; and 2&quot; The center-to-center spacing between 〇, 3, and 〇4&quot; and a width between 0.02&quot; and 0.05". 23. Photovoltaic module, request &lt; Further comprising a thermal interface layer between the heat sink and the unexposed surface to improve heat dissipation. 24_ The photovoltaic module of claim 22, perpendicular to the photovoltaic module - 25. The photovoltaic module of item 22, wherein one of the long-axis of the heat sink is fixed by a long vehicle, wherein the heat sink is composed of 127532.doc 200903817. 26--Manufacture of a photovoltaic module The method comprises the steps of: placing a heat sink in a fixture such that a lower surface of the heat sink contacts the fixture and an upper surface of the heat sink is exposed; a photovoltaic cell is placed adjacent to the upper surface; Hit the battery with the heat sink; and from the fixture In addition to the heat sink, the method of claim 26, wherein the step of connecting the photovoltaic cell to the heat sink comprises the method of claim 27. The method of claim 27, wherein the laminating step is included on the upper surface The method of claim 28, wherein the laminating step comprises laminating the heat sink, the intermediate layer, and the photovoltaic cell layer together. The method of claim 27, wherein the intermediate layer is a thermally conductive polymer. The method of claim 30, wherein the method of claim 27, wherein the method of claim 27, wherein the laminating step is included in The method of claim 3, wherein the ambient pressure is reduced for between 5 and 3 minutes. 34. The method of claim 27, Wherein the laminating step comprises increasing the temperature between the upper surface and the photovoltaic cell.. 35. The method of claim 34, wherein the temperature is increased to 125. (: and 175. (: between. 36_ The method of claim 34, wherein the method is added 37. The method of claim 27, wherein the laminating step comprises increasing a pressure between the upper surface and the photovoltaic cell. The method wherein the temperature is increased to between 至5 and 5 atmospheres. 39. The method of claim 37, wherein the pressure is increased for between 5 and 3 minutes. 40. The method of claim 26, It comprises attaching a protective layer to the photovoltaic cell. The method of claim 40, wherein the protective layer is a conformal coating. 42. The method of claim 26, comprising attaching a frame surrounding the one or more photovoltaic cells, wherein the frame does not extend beyond the upper surface to allow ambient air to enter the heat sink unimpeded. 43. The method of claim 26, wherein the heat sink is comprised of extruded aluminum. 44. The method of claim 26 wherein the heat sink is comprised of a conductive polymer. The method of claim 26, wherein the heat sink comprises a plurality of fins substantially parallel to each other and wherein the fixture comprises a plurality of grooves complementary to the plurality of fins. 46. A photovoltaic panel comprising: a. Photovoltaic cell, B. - a casing 'which holds the photovoltaic cell and exposes the photoreceiving surface of the photovoltaic cell along a first surface of the casing, C The outer casing is adapted to be fixed to a roof, i27532.doc 200903817 D. - a heat sink, which is connected to the unexposed surface (four) of the photovoltaic cell, E. the heat sink comprises a crucible-base, which is substantially Positioned parallel to the unexposed surface, and ii) a plurality of fins attached to the base, which are substantially parallel to each other, wherein the base has a thickness between 5" and 0.5"; The fins each independently have a height between 0.25 &quot; and 7&quot;, a center-to-center spacing between 0_05&quot; and Γ and a width between 〇〇〇1 &quot; and 0.25" And wherein the center-to-center spacing is sufficient to provide a passage between the fins to allow cooling air to enter. 47. The photovoltaic panel of claim 46, which further comprises a thermal interface layer between the heat sink and the unexposed surface to improve heat dissipation. 48. The photovoltaic panel of claim 46, wherein the heat sink has a length, a thickness, a fin height, a fin pitch, and a fin width to maintain the photovoltaic cell at a temperature of 7 (TF temperature ambient air) 49. The photovoltaic panel of claim 46, further comprising an overhang of the first surface of the outer casing substantially parallel to a roof ridge line. a photovoltaic panel of 46, further comprising an overhang of the first surface of the outer casing substantially perpendicular to a roof ridge line. 5. 1. The photovoltaic panel of claim 46 wherein the plurality of fins are positioned 127532.doc -6 - 200903817 substantially parallel to the direction of a roof ridge. 52. The photovoltaic panel of claim 46, wherein the plurality of fins are oriented in a direction substantially perpendicular to a roof ridge 53. The photovoltaic panel of claim 46, wherein the heat sink is comprised of extruded aluminum. 54. The photovoltaic panel of claim 46, wherein the heat sink is comprised of black anodized aluminum. 55. As requested in item 46 Photovoltaic panel, wherein the substrate is comprised of a conductive polymer. σ 56. The photovoltaic panel of claim 53, wherein the conductive polymer is an elastomer. 57. The photovoltaic panel of claim 46, Wherein the fins are discontinuous along a long axis of one of the bases to form an exhaust and an access passage. 5 8_ Photovoltaic panels as claimed in claim 57, wherein the channels are in the form of a chevron. 59. a photovoltaic panel, wherein the base has a thickness between 〇丨 and 0.25&quot; and wherein the fins each independently have a height between 0.75" and 5&quot; a center-to-center spacing between 0.5&quot; and a width between 0.007" and 0.1". 60. The photovoltaic panel of claim 59, which further comprises a heater between the heat sink and the unexposed surface The thermal interface layer is modified to improve heat dissipation. 61. The photovoltaic panel of claim 59, wherein the plurality of fins are positioned in a direction substantially perpendicular to a roof ridge line. 62. The photovoltaic panel of claim 59, Wherein the radiator is extruded 127532.doc 200903817 63. The photovoltaic panel of claim 59, wherein the base has a thickness between 〇, l" and 〇_2&quot;; and wherein the fins each independently have a 0.9 The height between &quot; and 2&quot;, the center-to-center spacing between 0.3&quot; and 〇.4&quot; and the width between 0.02" and 0.05&quot; 64. The panel 'further includes a thermal interface layer between the heat sink and the unexposed surface to improve heat dissipation. 65. The photovoltaic panel of claim 63 wherein the plurality of fins are positioned in a direction substantially perpendicular to a roof ridge. 66. The photovoltaic panel of claim 63 wherein the heat sink is comprised of extruded aluminum. 67. A plurality of photovoltaic panels comprising: a first photovoltaic panel comprising: i - a photovoltaic cell, ii. a housing that holds the photovoltaic cell along one of the enclosures The first surface is exposed to the light receiving surface of the photovoltaic cell, iii. the outer casing is adapted to be fixed to a roof, and iv. the radiator is a surface heat opposite to the light receiving surface of the photovoltaic cell Connected, and v. a first electrical connector and a second electrical connector attached to the first photovoltaic panel, B. - a second photovoltaic panel, comprising: i · a photovoltaic battery Π An outer casing that holds the photovoltaic cell and exposes a light receiving surface of the photovoltaic cell along a first surface of the casing, 127532.doc 200903817 iii. the casing is adapted to be attached to a roof, iv_-heat sink, Corresponding to a surface of the photovoltaic cell opposite to the light receiving surface, and v. a first electrical connector and a second electrical connector attached to the second photovoltaic panel, wherein the First section The first electrical connector matches the second electrical connector of the second panel, and wherein the first electrical connector of the first panel and the second electrical connector of the second panel are matched when matched The state is for preventing the first plate from rotating independently of the second plate. 68. The plurality of photovoltaic panels of claim 67, wherein the first photovoltaic panel is the same as the second photovoltaic panel. 69. The plurality of photovoltaic panels of claim 67, wherein each electrical connector is independently a male or female connector. 70. A plurality of photovoltaic panels as claimed in claim 69, wherein each of the electrical connectors is independently an extension or receptacle connector. 7. The plurality of photovoltaic panels of claim 67, wherein the first electrical connector of the first panel is configured to match the second panel in a direction substantially parallel to a roof ridge line The second electrical connector. 72. The plurality of photovoltaic panels of claim 67, wherein the first electrical connector of the first panel is configured to match the second panel in a direction substantially perpendicular to a roof ridge line Second electrical connector. 73. A plurality of photovoltaic panels as claimed in claim 67, wherein each of the photovoltaic cells is a thin film photovoltaic cell. 127532.doc -9- 200903817 74. The plurality of photovoltaic panels of claim 67, wherein each photovoltaic panel comprises a thermal interface layer between the heat sink and the unexposed surface to improve heat dissipation. 75. The plurality of photovoltaic panels of claim 67, wherein each of the heat sinks is configured to maintain its corresponding photovoltaic cell at a temperature below about 150 °F in ambient air at a temperature of 70 °F. under. 76. The plurality of photovoltaic panels of claim 67, wherein each photovoltaic panel comprises one of the first surfaces of the outer casing (substantially extending along a substantially parallel to a roof ridge line. 77. a photovoltaic panel, wherein each photovoltaic panel comprises an overhang of the first surface of the outer casing substantially perpendicular to a roof ridge line. 78. The plurality of photovoltaic panels of claim 67, wherein each of the heat sinks comprises i) A base 'which is positioned substantially parallel to the surface opposite the light receiving surfaces, and 复) a plurality of fins attached to the base, which are substantially parallel to each other and positioned. 79. The plurality of photovoltaic panels of claim 78, wherein each of the plurality of segments is positioned in a direction substantially parallel to a roof ridge. - 80. A plurality of photovoltaic panels as claimed in claim 78, wherein each of the plurality of rotors is positioned in a direction substantially perpendicular to a roof ridge. 81. The plurality of photovoltaic panels of claim 78, wherein each of the plurality of slices is discontinuous along one of the associated bases to form an exhaust and an entry channel. 127532.doc -10- 200903817 82. 8 1 of a plurality of photovoltaic panels - wherein the channels are adult glyphs 83. A plurality of photovoltaic panels as claimed in claim 67, wherein each of the heat sinks is comprised of metal. 84. The plurality of photovoltaic panels of claim 83, wherein the metal is extruded aluminum. 85. A plurality of photovoltaic panels as claimed in claim 83, wherein the metal is a black anode. 86. The plurality of photovoltaic panels of claim 67 wherein each of the heat sinks is comprised of a conductive polymer. 87. The plurality of photovoltaic panels of claim 86, wherein the conductive polymers are an elastomer. 88. A photovoltaic panel comprising: a) a photovoltaic cell, b) an outer casing that holds the cell and exposes a light receiving surface of the photovoltaic cell, and a first electrical connector and a second An electrical connector attached to the photovoltaic panel, wherein the housing is adapted to be secured to a roof, and wherein the housing comprises a thermally conductive polymer in thermal communication with an unexposed surface of the photovoltaic cell. 89. The photovoltaic panel of claim 88, wherein the outer shell further comprises a second polymer adjacent the first polymer. 90. The photovoltaic panel of claim 88, wherein the first electrical connector matches an electrical connector of a 127532.doc _ 11 · 200903817 second photovoltaic panel, and wherein the first panel is The electrical connector of the first electrical connector and the second panel is configured to prevent the first panel from rotating independently of the second panel. 9. The photovoltaic panel of claim 90, wherein the photovoltaic panel is the same as the second photovoltaic panel. 92. The photovoltaic panel of claim 90, wherein each electrical connector is independently a male or female connector. 93. The photovoltaic panel of claim 91, wherein each of the electrical connectors is independently a protrusion or receptacle connector. 94. The photovoltaic panel of claim 8, wherein the first electrical connector of the first panel is configured to match an electrical connector of an adjacent panel in a direction substantially parallel to a roof ridge. 95. The photovoltaic panel of claim 88, wherein the first electrical connector of the panel is configured to match an electrical connector of an adjacent panel in a direction substantially perpendicular to a roof ridge. 96. The photovoltaic panel of claim 88, further comprising an overhang of the first surface of the outer casing substantially parallel to a roof ridge. 97. The photovoltaic panel of claim 88, further comprising an overhang of the first surface of the outer casing substantially perpendicular to a roof ridge. 98. The photovoltaic panel of claim 88 wherein the photovoltaic cell is a thin film photovoltaic cell. 99. The photovoltaic panel of claim 88 wherein the thermally conductive polymer is formed into a plurality of fins positioned substantially parallel to one another. 127532.doc -12- 200903817 100. The photovoltaic panel of claim 99, wherein the fins are discontinuous along a long axis of the base to form an exhaust and an access passage. 101. The photovoltaic panel of claim 100, wherein the channels are adult glyphs. 102. A method of manufacturing a photovoltaic panel comprising the steps of: placing a photovoltaic cell in a mold; injecting a first polymer into the mold; removing the polymer from the mold and the battery . 103. The method of claim 102, wherein the first polymer is a thermally conductive polymer. 104. The method of claim 1, wherein the method further comprises injecting a second polymer into the mold. 105. The method of claim 103, wherein the first polymer is in thermal communication with a surface opposite the light receiving surface of the photovoltaic cell when the first polymer is injected into the mold. The method of claim 103, wherein the first polymer forms an outer casing that holds the photovoltaic cell and exposes a light receiving surface of the photovoltaic cell, wherein the outer casing is adapted to be attached to a roof. 107. The method of claim 104, wherein the second polymer forms an outer casing, and the photovoltaic cell is maintained and exposed to the light receiving surface of the photovoltaic cell wherein the outer casing is adapted to be secured to a roof. 108. The method of claim 1, wherein the photovoltaic cell comprises a metal heat sink that is attached to a surface opposite the light receiving surface. . The method of claim 102, wherein the photovoltaic panel comprises an electrical connector, wherein the electrical connector of the photovoltaic panel and the electrical connector of the second panel of the 127532.doc • 13-200903817 The configuration is configured to prevent the photovoltaic panel from rotating independently of the second panel. 110. The method of claim 102, wherein injecting the first polymer comprises increasing thermal energy and pressure sufficient to permit intimate thermal contact between the first polymer and the photovoltaic cell. 111. The method of claim 102, further comprising cooling the mold. 112. A method of manufacturing a photovoltaic panel comprising the steps of: placing a heat sink in a fixture such that a lower surface of the heat sink contacts the fixture and an upper surface of the heat sink is exposed; adjacent the upper surface Placing a photovoltaic cell; connecting the photovoltaic cell to the heat sink; and removing the heat sink from the fixture; forming a plate outer casing around the photovoltaic cell. 113. The method of claim 112, wherein the step of connecting the photovoltaic cell to the heat sink comprises laminating. 114. The method of claim 113, wherein the laminating step comprises providing a thermal interface layer between the upper surface and the photovoltaic cell. 115. The method of claim 114, wherein the laminating step comprises laminating the heat sink, the intermediate layer, and the photovoltaic cell layer. 116. The method of claim 115, wherein the intermediate layer is a thermally conductive polymer. The method of claim 116, wherein the thermally conductive polymer is an elastomer. 118. The method of claim 113, wherein the laminating step comprises reducing ambient pressure between the upper surface 127532.doc -14-200903817 and the photovoltaic cell. 119. If the method of claim 11 8 is used, the pressure in the bean, the test prostitute, and the reduction in the j ” 玄 i 兄 兄 持续 持续 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 The human Niu Cong, human &amp; octopus gamma step comprises increasing the temperature between the upper surface and the photovoltaic cell. 121. As claimed in claim 120, i φ glare. / The degree of 増 is added between 125 ° C and 175 ° C. 122.如明求項12〇之方法,其中增加該溫度持續^至儿分鐘 間。 之 123.如睛求項113之方法,其中該層合步驟包含在該上表面 與該光伏打電池之間增加壓力。 124·如吻求項丨2 3之方法,其中將該壓力增加至〇 5至5個大氣 壓之間。 125.如吻求項123之方法,其中增加該壓力持續在5至3 〇分鐘 之間。122. The method of claim 12, wherein the increasing the temperature is continued for a period of time. 123. The method of claim 113, wherein the laminating step comprises increasing pressure between the upper surface and the photovoltaic cell. 124. The method of claim 2, wherein the pressure is increased to between 5 and 5 atmospheres. 125. The method of claim 123, wherein the increasing the pressure is between 5 and 3 minutes. 126•如清求項丨12之方法,其中該散熱器係由擠製鋁所構 成。 127.如請求項112之方法,其中該散熱器係由一傳導聚合物 所構成。 如月求項112之方法’其包含將一保護層附著在該光伏 打電池上。 129·如明求項128之方法,其中該保護層係一保形塗層。 130.如清求項112之方法,其中該散熱器包含實質相互平行 定位的複數個籍片且其中該夾具包含與該複數個鰭片互 補的複數個凹槽。 127532.doc •15-126. The method of claim 12, wherein the heat sink is constructed of extruded aluminum. 127. The method of claim 112, wherein the heat sink is comprised of a conductive polymer. The method of claim 112, which comprises attaching a protective layer to the photovoltaic cell. 129. The method of claim 128, wherein the protective layer is a conformal coating. The method of claim 112, wherein the heat sink comprises a plurality of sheets positioned substantially parallel to each other and wherein the fixture comprises a plurality of grooves complementary to the plurality of fins. 127532.doc •15-
TW096147316A 2006-12-11 2007-12-11 Solar roof tiles and modules with heat exchange TW200903817A (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US87431306P 2006-12-11 2006-12-11
US11/788,456 US8410350B2 (en) 2006-12-11 2007-04-19 Modular solar panels with heat exchange
US11/788,703 US20080134497A1 (en) 2006-12-11 2007-04-19 Modular solar panels with heat exchange & methods of making thereof
US11/804,656 US20080135090A1 (en) 2006-12-11 2007-05-18 Solar roof tiles with heat exchange and methods of making thereof
US11/804,399 US20080135094A1 (en) 2006-12-11 2007-05-18 Photovoltaic roof tiles and methods of making same
US11/804,695 US20080135088A1 (en) 2006-12-11 2007-05-18 Interlocking solar roof tiles with heat exchange
US11/804,657 US20080135092A1 (en) 2006-12-11 2007-05-18 Solar roof tiles with heat exchange
US96430107P 2007-08-09 2007-08-09

Publications (1)

Publication Number Publication Date
TW200903817A true TW200903817A (en) 2009-01-16

Family

ID=39512437

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096147316A TW200903817A (en) 2006-12-11 2007-12-11 Solar roof tiles and modules with heat exchange

Country Status (7)

Country Link
EP (1) EP2102915A2 (en)
CN (1) CN101828268B (en)
AU (1) AU2007333183A1 (en)
EA (1) EA200970574A1 (en)
MX (1) MX2009006211A (en)
TW (1) TW200903817A (en)
WO (1) WO2008073905A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866972A (en) * 2010-05-18 2010-10-20 扬州旭博光伏科技有限公司 Integral component of solar cell and radiator
TWI604626B (en) * 2016-11-16 2017-11-01 Solar heat sink fin module and solar energy device

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2914785B1 (en) 2007-04-06 2009-05-15 Saint Gobain Ct Recherches PHOTOVOLTAIC ROOF COATING
US8471141B2 (en) 2007-05-07 2013-06-25 Nanosolar, Inc Structures for low cost, reliable solar roofing
US11473741B2 (en) 2007-05-31 2022-10-18 Aaron Chien LED light has built-in air related part(s)
CA2704987A1 (en) 2007-11-06 2009-05-14 Certainteed Corporation Photovoltaic roofing elements including tie layer systems, and roofs using them, and methods for making them
US9178465B2 (en) 2007-11-06 2015-11-03 Certainteed Corporation Photovoltaic roofing elements including tie layer systems and roofs using them
CA2709778A1 (en) 2007-12-19 2009-07-09 Certainteed Corporation Roofing products having receptor zones and photovoltaic roofing elements and systems using them
CN102017184B (en) * 2008-05-05 2013-11-06 陶氏环球技术公司 Connector device for building integrated photovoltaic device
WO2010019745A2 (en) * 2008-08-13 2010-02-18 E. I. Du Pont De Nemours And Company Solar array incorporating photovoltaic panels having keying structures
GB2463671B (en) * 2008-09-19 2011-04-27 Richard David Bankart Building construction
AT507498B1 (en) * 2008-10-16 2010-08-15 Rainer Hans Peter SOLAR PANEL SYSTEM
WO2010068677A2 (en) * 2008-12-09 2010-06-17 Koch Steven A Photovoltaic roofing elements, photovoltaic roofing systems, methods and kits
US8511006B2 (en) 2009-07-02 2013-08-20 Owens Corning Intellectual Capital, Llc Building-integrated solar-panel roof element systems
WO2011011367A1 (en) * 2009-07-20 2011-01-27 E. I. Du Pont De Nemours And Company Photovoltaic panel having a keying feature thereon
US8793940B2 (en) 2009-08-10 2014-08-05 Certainteed Corporation Roofing products, photovoltaic roofing elements and systems using them
US8656657B2 (en) 2009-08-31 2014-02-25 Certainteed Corporation Photovoltaic roofing elements
JP5755405B2 (en) * 2009-11-02 2015-07-29 恵和株式会社 Radiation sheet for back surface of solar cell module and solar cell module using the same
US7918694B1 (en) * 2010-03-01 2011-04-05 Tyco Electronics Corporation Connector assembly for solar shingles
WO2012129355A2 (en) * 2011-03-22 2012-09-27 Dow Global Technologies Llc Improved photovoltaic building sheathing element with anti-slide features
FR2973576B1 (en) * 2011-04-04 2014-02-21 Systovi PHOTOVOLTAIC PANEL WITH RECOVERY
WO2012155850A1 (en) * 2011-05-17 2012-11-22 Xu Zhengyuan Solar tile
US8782972B2 (en) 2011-07-14 2014-07-22 Owens Corning Intellectual Capital, Llc Solar roofing system
US20130199607A1 (en) * 2011-08-08 2013-08-08 E I Du Pont De Nemours And Company Hail resistant photovoltaic modules
CN102931151A (en) * 2012-11-09 2013-02-13 无锡市锡容电力电器有限公司 Heat dissipation device for reactive compensation device
ITPD20130073A1 (en) * 2013-03-22 2014-09-23 M A S Media Inc SUPPORT FOR PHOTOVOLTAIC CELLS
FR3004003B1 (en) 2013-03-29 2016-08-12 Soitec Solar Gmbh METHOD OF ASSEMBLING HIGH PRECISION MODULE
JPWO2015045231A1 (en) * 2013-09-30 2017-03-09 パナソニックIpマネジメント株式会社 Photoelectric conversion device and photoelectric conversion unit used in the device
JP6693889B2 (en) 2014-05-14 2020-05-13 カリフォルニア インスティチュート オブ テクノロジー Large Space Photovoltaic Power Station: Power Transmission Using Guided Beam
WO2015179213A2 (en) 2014-05-14 2015-11-26 California Institute Of Technology Large-scale space-based solar power station: multi-scale modular space power
JP6640116B2 (en) * 2014-06-02 2020-02-05 カリフォルニア インスティチュート オブ テクノロジー Large Space Solar Power Plants: Efficient Power Generation Tiles
FR3029367B1 (en) * 2014-11-27 2016-11-18 Systovi PHOTOVOLTAIC PANEL WITH RADIATORS
FR3033461B1 (en) * 2015-03-02 2017-02-24 Superdome Sarl PHOTOVOLTAIC TILE
DE202015002866U1 (en) * 2015-04-17 2015-06-19 Kolja Kuse Solar module with stone frame
JP6715317B2 (en) 2015-07-22 2020-07-01 カリフォルニア インスティチュート オブ テクノロジー Large area structure for compact packaging
US10992253B2 (en) 2015-08-10 2021-04-27 California Institute Of Technology Compactable power generation arrays
WO2017027633A1 (en) 2015-08-10 2017-02-16 California Institute Of Technology Systems and methods for controlling supply voltages of stacked power amplifiers
CN107689768A (en) * 2017-09-30 2018-02-13 江阴艾能赛瑞能源科技有限公司 A kind of solar photovoltaic assembly frame
CN108400185B (en) * 2018-02-01 2019-11-15 洪华文 A kind of heat radiating type solar cell module and its manufacturing method
CN108400181B (en) * 2018-02-02 2019-12-03 方佳平 A kind of high thermal conductivity photovoltaic cell component and its manufacturing method
US20200403568A1 (en) * 2018-02-27 2020-12-24 Newsouth Innovations Pty Limited Apparatus for cooling a photovoltaic module
CN108417665B (en) * 2018-03-02 2020-06-26 徐州核润光能有限公司 Photovoltaic module and manufacturing method thereof
US11634240B2 (en) 2018-07-17 2023-04-25 California Institute Of Technology Coilable thin-walled longerons and coilable structures implementing longerons and methods for their manufacture and coiling
US11772826B2 (en) 2018-10-31 2023-10-03 California Institute Of Technology Actively controlled spacecraft deployment mechanism
CN109462364A (en) * 2018-12-28 2019-03-12 苏州腾晖光伏技术有限公司 A kind of photovoltaic tile with heat sinking function
CN110459624A (en) * 2019-08-15 2019-11-15 东方环晟光伏(江苏)有限公司 A kind of large scale imbrication battery structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008062A (en) * 1988-01-20 1991-04-16 Siemens Solar Industries, L.P. Method of fabricating photovoltaic module
US5338369A (en) * 1993-02-16 1994-08-16 Rawlings Lyle K Roof-integratable photovolatic modules
US5743970A (en) * 1995-12-13 1998-04-28 Energy Conversion Devices, Inc. Photovoltaic module having an injection molded encapsulant
US6075202A (en) * 1997-05-07 2000-06-13 Canon Kabushiki Kaisha Solar-cell module and process for its production, building material and method for its laying, and electricity generation system
JPH1136540A (en) * 1997-07-14 1999-02-09 Sekisui Chem Co Ltd Installation construction of solar cell module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866972A (en) * 2010-05-18 2010-10-20 扬州旭博光伏科技有限公司 Integral component of solar cell and radiator
TWI604626B (en) * 2016-11-16 2017-11-01 Solar heat sink fin module and solar energy device

Also Published As

Publication number Publication date
WO2008073905A3 (en) 2010-05-27
CN101828268A (en) 2010-09-08
EA200970574A1 (en) 2010-10-29
CN101828268B (en) 2013-04-10
WO2008073905A2 (en) 2008-06-19
AU2007333183A1 (en) 2008-06-19
EP2102915A2 (en) 2009-09-23
MX2009006211A (en) 2009-12-08

Similar Documents

Publication Publication Date Title
TW200903817A (en) Solar roof tiles and modules with heat exchange
US8410350B2 (en) Modular solar panels with heat exchange
US20080135092A1 (en) Solar roof tiles with heat exchange
US9786802B2 (en) Photovoltaic roofing panels, photovoltaic roofing assemblies, and roofs using them
US8468757B2 (en) Photovoltaic roofing systems and methods for installing them
AU758995B2 (en) Power converter integrated solar cell module
JP4901734B2 (en) Solar panel overlay and solar panel overlay assembly
US20140182222A1 (en) Photovoltaic Arrays, Methods and Kits Therefor
US20090205270A1 (en) Structured Photovoltaic Roofing Elements, Systems and Kits
US7728219B2 (en) Photovoltaic cells, modules and methods of making same
US20090242015A1 (en) Photovoltaic Roofing Elements, Laminates, Systems and Kits
KR20110025850A (en) Photovoltaic module kit including connector assembly for non-penetrating array installation
CN1740475A (en) Photovoltaic integrated building component
US20090308020A1 (en) Energy conversion system
US20130067836A1 (en) Building integrable interconnection structures having field-configurable shapes
WO2015188226A1 (en) System and apparatus for generating electricity
WO2011116035A2 (en) Integrated heat sink and system for enhanced thermal power generation
US20130180575A1 (en) Structures for Solar Roofing
US6750392B1 (en) Photovoltaic cooling system
JP2006274658A (en) Solar battery module, solar battery array using it, and manufacturing method for solar battery array
Ressier et al. Large area roof-mount Silicon Film/sup TM/module and grid-connected rooftop system design
CN102790102A (en) Photoelectric conversion assembly