TW200903596A - Method of forming ultra-shallow junctions for semiconductor devices - Google Patents

Method of forming ultra-shallow junctions for semiconductor devices Download PDF

Info

Publication number
TW200903596A
TW200903596A TW097111528A TW97111528A TW200903596A TW 200903596 A TW200903596 A TW 200903596A TW 097111528 A TW097111528 A TW 097111528A TW 97111528 A TW97111528 A TW 97111528A TW 200903596 A TW200903596 A TW 200903596A
Authority
TW
Taiwan
Prior art keywords
dopant
gas
semiconductor substrate
implanted
implanting
Prior art date
Application number
TW097111528A
Other languages
Chinese (zh)
Other versions
TWI393175B (en
Inventor
Robert Kaim
Jose I Arno
James A Dietz
Original Assignee
Advanced Tech Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Tech Materials filed Critical Advanced Tech Materials
Publication of TW200903596A publication Critical patent/TW200903596A/en
Application granted granted Critical
Publication of TWI393175B publication Critical patent/TWI393175B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26566Bombardment with radiation with high-energy radiation producing ion implantation of a cluster, e.g. using a gas cluster ion beam
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • C30B31/22Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A first method for producing a doped region in a semiconductor substrate includes performing a first implant step in which a carborane cluster molecule is implanted into a semiconductor substrate to form a doped region. A second method for producing a semiconductor device having a shallow junction region includes providing a first gas and a second gas in a container. The first gas includes a first dopant and the second gas includes a second dopant. The second method also includes implanting the first and second dopants into a semiconductor substrate using an ion. The ion source is not turned off between the steps of implanting the first dopant and implanting the second dopant.

Description

200903596 九、發明說明: 【發明所屬之技術領域】 本發明一般而言係關於例如積體電路之半導體裝置之領 域,且更特定言之係關於用於此類半導體裝置之 = 之形成。 甸 【先前技術】 在PMOS類型之丰莫辨择罢由 牛導體裝置中’㈣離子摻雜或植入半 導體基材,以形成超淺接面(例如⑽ 之源極或汲極接面等)。在習”摻雜程序中,先在相對 較低之植入能量植入該等硼離子, ^ 丹便精由熱退火而電活 化該等離子,以形成該接面。 與使用卿子形成此類接面有關的—問題係該等離子可 能於後續退火步驟期間擴散至該半導體基材中不希望之位 置’而可能損害該半導沪护罟夕μ & 且衣置之效月b 〇植入該硼離子期間 所產生之結晶缺陷可能至少I ,1;卜錄被_ Jii· 玍v疋此種擴散現象之部分原因。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to the field of semiconductor devices such as integrated circuits, and more particularly to the formation of = for such semiconductor devices. Dian [Prior Art] In the PMOS type, the (4) ions are doped or implanted into the semiconductor substrate to form ultra-shallow junctions (such as the source or drain junction of (10), etc.) . In the "doping" procedure, the boron ions are implanted at a relatively low implantation energy, and the solder is electrically attenuated by thermal annealing to form the junction. The problem associated with the junction is that the plasma may diffuse to an undesired location in the semiconductor substrate during the subsequent annealing step, which may damage the semiconductor device and may be impaired. The crystal defects generated during the boron ion may be at least I,1; part of the reason for this diffusion phenomenon is _ Jii· 玍v疋.

U 種用於減少不希望之硼擴散 驭心規棋的方法包括於執退 火步驟前植入氟離子。該等 ’ 寻植入齓離子可有利地用以使 在硼離子植入期間 玍夂矽日日格彳貝壞穩定,此穩定又降 低退火期間之硼離子擴散 文立合3午基材中較淺接面之形成。 己進—步指出可藉由將碳及氟離 遑驊m 厌及虱離子兩者分別地植入至該半 導體基材中而更進一步地減少硼之擴散。 户::植入虱及/或碳離子可容許形成較淺接面,但使用 夕裡植入種類可能對萝 鈇 、 /率產生負面影響。例如,雖 、甚知接面形成僅雷Ια,丄 成僅而要(例如,硼離子的)單一植入步驟, 130168.doc 200903596 但植入其他種類之程序需亜 而要領外之個別植入步驟。欲將 石朋、碳及氟植入基材之愔、、士 τ义障况中,可能需要三個個別植入。 於植入之間,必須重新調整 ι植入益之磁鐵及其他組件,以 考慮所植入種類之不同暫旦 ,^ 貝里。此外,使用本離子源技術, 母一植入可能需要不同之央 來源進料材料,意謂著於植入之 間’必須遵循關閉該來源、 a 7出先則進料材料、引入新進 料材料,及重新啟動該來 切邊木源的相對耗時順序。 【發明内容】 本發明之一示範性呈㈣ η、體實施例係關於一種用於在體 基材中產生摻雜區之方法, /、匕s轨饤弟一植入步驟,豆 中將碳硼烷簇分子植入至 、 卞等溫基材中’以形成一摻雜 區。 本發明之另一示範性具體實 1%例係關於一種用於在半導 體基材中形成摻雜區之兮 之。又備,其包含用於固持一半導體基 材的基檯,及用於將碳蝴烧兹 〗反碉烷轶分子植入至該半導體基材中U's method for reducing unwanted boron diffusion involves the implantation of fluoride ions prior to the repelling step. The 'seeking implanted ytterbium ions can be advantageously used to stabilize the gauze during the implantation of boron ions, which reduces the boron ion diffusion during annealing and is shallower in the substrate. The formation of the junction. Further, it has been pointed out that the diffusion of boron can be further reduced by implanting carbon and fluorine, 厌m and 虱 ions, respectively, into the semiconductor substrate. Household:: Implantation of strontium and/or carbon ions may allow for the formation of shallow junctions, but the use of eve implants may have a negative impact on radix and / rate. For example, although it is known that the junction forms only a Thunder α, it is a single implantation step (for example, boron ion), 130168.doc 200903596, but other types of procedures need to be implanted. step. In order to implant the stone, carbon and fluorine into the substrate, three individual implants may be required. Between the implants, the magnets and other components must be re-adjusted to take into account the different types of implants, ^Berry. In addition, with this ion source technology, the mother-injection may require different central source feed materials, meaning that between the implants must be followed by shutting down the source, a7 prior to feeding the material, introducing new feed materials, And restart the relative time-consuming order of the trimmed wood source. SUMMARY OF THE INVENTION One exemplary embodiment of the present invention is a (four) η, a bulk embodiment relating to a method for producing a doped region in a bulk substrate, and/or a step of implanting the carbon in the bean. The borane cluster molecules are implanted into the iridium isothermal substrate to form a doped region. Another exemplary embodiment of the present invention is directed to a crucible for forming a doped region in a semiconductor substrate. Also provided, comprising a base for holding a semiconductor substrate, and for implanting a carbon ruthenium ruthenium molecule into the semiconductor substrate

C 以形成摻雜區之構件。 本發明之另一示範性具體實施例係關 有淺接面區之半導體裝置之方> 甘—人 用於產生具 ’置之方法,其包含於貯槽中提供第 一軋體及弟二氣體。該第一 咕严 乐虱體包含第一摻雜物,而且該 第一氣體包含第二摻雜物。 〜 3方法亦包含使用離子將該等 第及第一摻雜物植入至车莫和其士 導基材中。於植入該第一摻 雜物及植入該第二摻雜物 r 一 饺雜物的步驟之間不關閉該離子源。 【實施方式】 # 根據一不跑性具體實施例,藉由將複數種換雜物種類共 130168.doc 200903596 植入至半導體基材中而在該半導體基材中形。 (例如,產生用於半導體襄置 "久區 具體實施例,先於連接至離子植:接面)。根據第 氣…… 離子植入器的貯槽中將多種來源 人每—#雜物’而不需沖洗該離子 源(根據其他示範性具體實施例,可能於一或多個植入牛 驟之間沖洗該離子源)。根據第二示範性具體實施例,‘ -摻雜物種類係包含於直接植人至半導體基材的單一分子 中。在後-具體實施例中,選擇植人參數1便將各種種 類植入於適當深度及位置。 下列所述之示範性具體實施例提供—_ 裝置之超淺接面的有利方法, ㈣體 /、权自知方法更有效而且較 非勞力密集。根據一特定示範性具體實施例,用於形成此 類超淺接面之方法容許不需關閉該植入儀器及沖洗前面已 植入來源氣體之離子诉^ 卞你而進仃该植入程序(根據其他示範 I·生/、體貝她例’可旎視需要於一或多個該等植入步驟之間 冲洗為離子源)。根據另—特定示範性具體實施例,提供 -種將多個種類同時植入至半導體基材中之方法。希望提 供-種利用此等或審慎思考本發明揭示内容者所得知之其 他優點中任一項或多項特點的方法。 圖丨係不思圖,其說明根據示範性具體實施例之用於 產生半導體裝置的系統1G。系統1G尤其包含以下特點:一 植入器20 ’其具有-離子源6〇 ;-氣箱50,其用於將來源 氣體分配至該離子源6〇 ;及一磁鐵4〇,其用於使離子束64 定向於一或多個半導體基材或晶圓200。該等基材200於處 I30168.doc 200903596 理期間係提供於艙室30内的平台32(例如,支架、基檯、 基座等)或其他結構上。 該離子植入器可為現在已知或以後發展以用於半導體製 造設施之任何合適離子植入器。此類植入器之範例係可取 自麻薩諸塞州 Gloucester市之 Varian Semic〇nduct〇r E㈣ριη_ ASsoclates ;取自麻薩諸塞州 BeveHy 市之 Αχ_ 及加州 Santa Clara市之Applied Materials Inc.。 該氣箱50内有一貯槽52(例如,容器、氣體槽、汽缸 等),其係組態成用以儲存高壓氣體或其他流體,並且經 由輸送管線62將其輪送至該離子源6〇。例如,根據一示範 性具體實施例,該貯槽52係習知高壓氣體汽缸,其中長形 主體部分具有一頸部,此頸部具有較容器之主體截面小的 截面積。该貯槽5 2可包含一閥頭裝配件,此裝配件包含一 閥(手動或自動)及與其組合之壓力與流量控制元件(例如, 以一歧管配置)。該貯槽52亦可包含一壓力調節器及/或其 他特點,用以幫助來源氣體之儲存及將其送至該離子源6〇 之輸送。 根據一示範性具體實施例,該貯槽52係流體儲存與分配 設備’例如真空致動汽缸(VAC),類似於描述於美國專利 第6,101,816號’美國專利第6,343,476號;及美國專利第 6,089,027號,其整體揭示内容以引用的方式併入本文中。 根據一示範性具體實施例’該流體儲存與輸送設備可為一 種系統’例如描述於美國專利第5,518,528號(一低大氣壓 力活性氣體儲存與分配容器),而且可購自ATMI,Inc•(美 130168.doc 200903596 國康乃狄克州Danbury市)商標SDS,其中活性氣體係吸收 保留於一物理吸附劑,而且自該吸附劑選擇性地脫附,以 便從該容器分配活性氣體。在另一具體實施例中,純淨活 性流體源包括一氣體儲存與分配容器,其具有描述於以下 之類型:Luping Wang等人之美國專利6,_,〇27,而且可 賭自ATMI,Inc.(康乃狄克洲^―市)商標vac,其特點 係配置於内部之調節器元件’用於在由該調節器設定點所 決定的力分配該活性氣體。亦可使用其他流體儲存盘輸 送系統,其包含但未必限於例如描述於以下之系統:美國 專利第5,7(M,965號;|國專利第6,743,278號及美國專利第 7,1 72,646號。根據其他示範性 祀汪具體只鈿例,該裝置52可具 有本文所述合適用於儲在对+ 子及輸送该#來源氣體或材料之 何設計或組態(例如,i a胁μ — 了為一虱體儲存與分配容哭. 槽’用於容納待稀釋以杨扯m 〇〇 ^ 1 怖釋以便使用之純淨活性氣體)。 或者該流體儲存盘心、芝么 1配™ J 統可以任何合適方式構成及/ 或配置成例如供應結構、 傅材枓或刼作。例如,該活性$ _ 源可包含具有描述於装阳击 ,古性机體 、、s專利第5,5 1 8,5 2 8號之類型而以间 體物理吸附劑為主之如太 貝孓而以固 、、、奮。在其他具體實施例中,# 流體可從液體溶液释屮 T 忒活性 ’或者由就地產生器產生,忐去Λ 2004年10月公開,椤 展玍 或者如 不磚為”以反應性液體為主 與輸送系統"的美國直巧王之軋體儲存 寻利公開案第2〇〇4/〇2〇624 地從反應性液體產生,、 1就所描述 昇華固體獲得。一# ^ U趙Α從可Ά化或可 來源或供應。在,可使用該活性流體之任何適當 又具體實施例中,該活性流體源包含 130168.doc 200903596 保留結構’如1999年6月29日公布,標題為"高容量氣體儲 存與分配系統”之美國專利第5,9! 6,245號所描述。 溶解於合適溶劑令之液體前驅物及/或固體前驅物可將 前驅物直接注入及/或將液體輸送至CVD、汽化 器單元中。於VLSI裝置之CVD、ALD或RVD金屬化期間, 可透過容積計量獲得精確且精密之輸送率,以達成再現 性。經由特別設計裝置(例如八僅之Pr〇E _(美國康乃狄 克州Danbury市之ATMI))之固體前驅物輸送可將固體前驅 物極有效運輸至CVD或ALD反應器。 ,固體或液體形式),較佳之前 .·!田述於以 Pau 1 J. Marganski 等 於從固體來源輸送試劑之系統,, 端視前驅物之形式(例如 驅物儲存與分配包裝包含 人之名義申請,標題為',用 之美國臨時專财請㈣祕62,515 [W0 20〇6/1()1767]號 者,及各自描述於以下專利之儲存與分配設備:美國專利 5,5 18,528 ; ^ 國專利 5,7Q4,965 ;美國專利 5,7G4,967 ;美 國專利5,707,424 ;美國專利6,101,816 ;美國專利 ^ _專利中請公開案彻携2q ;美國專利 6,921,062 ;美國直各ϊ由★ 四專利申請案10/858,509[公開案第 2005/0006799號 1 ;月 M ^ _ J及吳國專利申請案10/022,298,所有揭 不内容藉此以引用的士 j_,, |用的方式個別整體併入本文中。 將離子源送入來源氣神 愿孔體’此來源氣體包含待植入半導體 基材中之元素。該離,、Ϊ5 /士 /原、使用所施加電能形成包含自來源 氣體之成分產生之離早「点丨丄 子(例如,Β 、F·)的電漿。然後使該 等離子向著臉室3〇中戶斤七 所包含的標靶(例如,半導體基材)加 130168.doc 200903596 速。牙透進入基材之深声接丄 μ辜+ & 度係由數個因子所決定,包含哕箄 離子之能量、離子種類 疋匕3。亥寻 圖2係—流程圖,說明〇 何之、,且成。 ,,^ 月—不乾性具體實施例於半導髀Α 材中形成淺接面的方法10 j於丰*體基 之一邱八# 之^驟。圖3至6係半導體基材 之 口 ^刀之截面圖,說明欠# 兄月各種摻雜物植入步驟。 根據步驟110,將丰《駚 丰導體基材或晶®2—,圖3中所 况明)k供至離子植入器( 』如圖1中所不之離子植入器 2〇)的搶室3 0中。根據示範性 早匕丨王具體實施例’基材2〇〇可以一 石夕晶圓之形式提供。根據发 佩丹他不靶性具體實施例,基材可 包括例如石夕-錯(Si_Ge)或砰化鎵(GaAs)之其他合適半導體 材料Λ外,基材可包含其他層及/或材肖,包含埋入式 氧化物(職)層及其類似物。根據其他示範性具體實施 例,亦可將該離子源調整成容許在艙室内提供多個基材 (例如,晶圓)。 方法100的步驟115中,來源氣體係引入合適貯槽(例 如,如圖1所示之貯槽52)中。根據一示範性具體實施例, 將來源氣體直接提供至貯槽中。根據另一示範性具體實施 例,可使二或更多種摻雜物前驅物流入混合艙室中,而且 於以調合/計量系統進料至該離子源前視需要地偵測濃 度’該調合/計量系統係例如美國專利第6,909,973號;美 國專利第7,058,519號;美國專利第7,063,097號及美國專利 第6,772,781號所描述者。 來源氣體可基於待進行之所需植入而選擇。例如,根據 一特定示範性具體實施例,其中將硼、碳及氟離子植入至 130168.doc 200903596 基材中,可將BF3及ch4氣體引入至貯槽52中(其中該BF3氣 體提供蝴及敗原子,而且CH4氣體提供碳原子),其令BF3 對CH4之分壓介於約10:1與1:4之間。根據其他示範性具體 實施例,端視所需植入特徵,亦可使用其他合適比率。 根據各種不範性具體實施例,可使用氣體之任何合適組 合。根據另-特定示範性具體實施例,其中將硼、碳及氟 離子植入至基材中,可貯槽中混合碳氟化合物(例如, CxFy,其中且4^^14)與例如三氯化硼(Bcl3)之含硼 氣體。可用以提供硼掺雜物種類之其他潛在來源氣體包含 硼烷(例如BxHy ’其中25x^18且6^yS22)及其衍生物;硼氫 氟化物(例如’ BxHyFz,其中18、1 <y<22且 Κζ<26);硼碳氫氟化物(例如,bwCxHyFz,其中lswd8、 0Sx^l2、0SyS36且0SK14)及其衍生物;氟化硼及其衍生 物;B2F4 ; (BF2)3BR ’其中R係從ph3、CF3及CO選擇。根 據其他示範性具體實施例’亦可使用具有一分子式BXHyi 大型氫化蝴鎮,其中5^X596且ySx+8,如描述於例如美國 專利申請案第11/041,558號(公開案第2005/0163693號),其 揭示内容以引用的方式併入本文中。 可用以提供該等碳及/或氟摻雜物種類之其他潛在來源 氣體包含碳氫化物(例如,CxHy,其中15x^10且4Sy^3〇)及 其衍生物、氟氫碳化物(例如,CxHyFz,其中、 lSyS20且Kz^20)及其衍生物、鹵素間化合物種類(例如, RyFz,其中R係氣、溴或蛾,且1<χ<4且lSy<10),及NF3。 亦應瞭解,根據其他示範性具體實施例,可使用本文所述 130168.doc -13- 200903596 以外之末源氣體提供其 .^ 物種類(例如,砷、磷、銦 之任何因子而選擇,該等因;!可基於各式各樣因子 興户—择 荨因子包含貯槽中氣體混合物之化 學知疋性’及其對離子源效能與壽命之影響。 根據各種示範性且择者 、片老奸心 例,可使用任何合適數目之來 (例如,同—、二“、兩個以上不同來源氣體 硼或里他換雜θ w將碳來源氣體、氟來源氣體及 奶具他推雜物漆,语@ — ι原乳體)。根據其他具體實施例,可於 早 术/原虱體(例如,、ηρϋ、丄, 於步驟⑵中,將有推雜物。 中。根攄—〜 文衣至離子植入器30之氣箱5〇 乂 不乾性具體實施例,貯槽52可包含以下特 組態成將貯槽52連接 特”"占· 关其 輸达S線62,並且於貯槽52與輸 ;)v之間提供流體密封性連接(例如,螺紋連接器 根據一示範性具體 入於基材中。因k將母一摻雜物個別地植 中,所… 有來源氣體包含於該相同貯槽52 重新啟動雜A步驟之間不需關閉離子源、沖洗貯槽,及 ’ 子源。而是使來自來源電漿之離子加速,進入 調至特定磁場的磁譜儀,磁譜儀㈣ 擇離子;僅有磁譜儀所選擇之離子(例如, 向至基材。m # c離子)會被導 場強声 ~a成弟一植入’磁譜儀將重新調整至不同 -以擇包含於該電衆中的第二類 步驟12S由 〜 供丁寻寻 植入失數亦對待植入基材中之第-種類選擇第-組 〃。亦可適當地重新調整離子植人器之磁鐵及其他 130168.doc -14- 200903596C to form a member of the doped region. Another exemplary embodiment of the present invention is directed to a semiconductor device having a shallow junction region. A method for producing a method for providing a first rolled body and a second gas is provided in a storage tank. . The first sturdy body contains a first dopant and the first gas comprises a second dopant. The ~3 method also includes implanting the first and first dopants into the vehicle and the substrate with ions. The ion source is not turned off between the step of implanting the first dopant and implanting the second dopant r-dump. [Embodiment] # According to a non-running specific embodiment, a plurality of types of replacement objects 130168.doc 200903596 are implanted into a semiconductor substrate to form a shape in the semiconductor substrate. (For example, for semiconductor devices "long zone specific embodiments, prior to connection to ion implant: junction). According to the first gas... The ion sinks of the ion implanter will have a plurality of sources per ##杂物 without rinsing the ion source (according to other exemplary embodiments, possibly between one or more implanted bovine Rinse the ion source). According to a second exemplary embodiment, the '-dopant species is comprised in a single molecule that is directly implanted into a semiconductor substrate. In a post-specific embodiment, the implant parameter 1 is selected to implant the various species at the appropriate depth and location. The exemplary embodiments described below provide an advantageous method of ultra-shallow junctions of the device, and (4) the volume/weight self-awareness method is more efficient and less labor intensive. According to a particular exemplary embodiment, the method for forming such an ultra-shallow junction allows the implantation procedure to be performed without shutting down the implanted instrument and rinsing the ions of the previously implanted source gas. According to other exemplary embodiments, the sample can be rinsed as an ion source between one or more of these implantation steps as needed. According to another specific exemplary embodiment, a method of simultaneously implanting a plurality of species into a semiconductor substrate is provided. It is desirable to provide a method of utilizing any one or more of the other advantages that are known to those of ordinary skill in the art. The drawings are not intended to illustrate a system 1G for producing a semiconductor device in accordance with an exemplary embodiment. The system 1G includes, inter alia, the following features: an implanter 20' having an ion source 6A; a gas box 50 for distributing a source gas to the ion source 6; and a magnet 4 for making The ion beam 64 is oriented to one or more semiconductor substrates or wafers 200. The substrates 200 are provided to a platform 32 (e.g., a support, abutment, pedestal, etc.) or other structure within the chamber 30 during the period of I30168.doc 200903596. The ion implanter can be any suitable ion implanter now known or later developed for use in a semiconductor fabrication facility. An example of such an implanter is available from Varian Semic〇nduct〇r E(4) ριη_ ASsoclates, Gloucester, Mass.; from Be_, BeveHy, Massachusetts, and Applied Materials Inc., Santa Clara, California. The gas tank 50 has a sump 52 (e.g., vessel, gas tank, cylinder, etc.) configured to store high pressure gas or other fluid and is routed to the ion source 6 through a transfer line 62. For example, in accordance with an exemplary embodiment, the sump 52 is a conventional high pressure gas cylinder wherein the elongate body portion has a neck portion having a cross-sectional area that is smaller than the body cross-section of the container. The sump 52 can include a valve head assembly that includes a valve (manual or automatic) and a pressure and flow control element (e.g., in a manifold configuration) in combination therewith. The sump 52 can also include a pressure regulator and/or other features to assist in the storage of the source gas and its delivery to the ion source 6〇. According to an exemplary embodiment, the sump 52 is a fluid storage and dispensing device, such as a vacuum actuated cylinder (VAC), similar to that described in U.S. Patent No. 6,101,816, U.S. Patent No. 6,343,476; No. 6,089,027, the entire disclosure of which is incorporated herein by reference. According to an exemplary embodiment, the fluid storage and delivery device can be a system, for example, described in U.S. Patent No. 5,518,528 (a low atmospheric pressure reactive gas storage and dispensing container), and is commercially available from ATMI, Inc. (US) 130168.doc 200903596 (Danbury, Connecticut) is a trademark SDS in which an active gas system is retained in a physical adsorbent and selectively desorbed from the adsorbent to distribute the reactive gas from the container. In another embodiment, the source of neat active fluid comprises a gas storage and dispensing container having the type described below: Luping Wang et al., U.S. Patent No. 6, _, 〇 27, and can be staked from ATMI, Inc. (Connecticut City, the city) trademark vac, which is characterized by an internal regulator element 'for distributing the reactive gas at a force determined by the regulator set point. Other fluid storage tray delivery systems may also be utilized, including but not necessarily limited to, for example, the systems described in U.S. Patent No. 5,7 (M, 965;; National Patent No. 6,743,278 and U.S. Patent No. 7,1,72,646. According to other exemplary embodiments, the device 52 can have any design or configuration suitable for storing the + source and transporting the # source gas or material as described herein (eg, ia μ μ - A storage and distribution of the body is crying. The tank is used to contain the pure active gas to be diluted to be used for the use of the liquid, or the fluid storage disc, the Zhiyi 1 with TM J can be any Suitable means of constituting and/or configuring, for example, a supply structure, a fabrication or a fabrication. For example, the activity $ _ source may comprise having a description of a slamming, an ancient body, s patent 5, 5 1 8, The type of 5 2 8 is mainly composed of inter-body physical adsorbent such as scallops, and is solid, and it is. In other specific embodiments, # fluid can release T 忒 activity from liquid solution or The ground generator was produced, and it was published in October 2004. Or if the brick is not the "reactive liquid-based and transport system", the United States's singularity of the king's rolling stock storage disclosure case 2, 4 / 2, 〇 2 〇 624 from the reactive liquid, 1 The sublimed solid described is obtained. A # ^ Α Α can be derivatized or available or supplied. In any suitable embodiment in which the active fluid can be used, the active fluid source comprises 130168.doc 200903596 Retaining Structure As described in US Patent No. 5,9! 6,245, entitled "High Capacity Gas Storage and Distribution System", published on June 29, 1999. Dissolved in a suitable solvent to make liquid precursors and/or solid precursors Direct injection of the precursor and/or transport of the liquid to the CVD, vaporizer unit. During CVD, ALD or RVD metallization of the VLSI device, accurate and precise delivery rates can be obtained through volumetric metering for reproducibility. The design of a solid precursor transport of a device such as PrP_E_(ATMI, Danbury, CT) can transport solid precursors extremely efficiently to CVD or ALD reactors, either solid or liquid) , Before the good.·! Tian Shuu in Pau 1 J. Marganski is equivalent to the system for transporting reagents from solid sources, in the form of a front-end precursor (for example, in the name of the hopper storage and distribution package, the title is ', used US temporary special funds please (4) secret 62, 515 [W0 20〇6/1 () 1767], and their respective storage and distribution equipment described in the following patents: US patent 5,5 18,528; ^ national patent 5,7Q4,965; U.S. Patent 5,7G4,967; U.S. Patent 5,707,424; U.S. Patent 6,101,816; U.S. Patent ^ _ Patent, please disclose 2q; US Patent 6,921,062; U.S. Patent 4, Patent Application 10 /858,509 [Publication No. 2005/0006799 No. 1; Month M ^ _ J and Wu Guo Patent Application No. 10/022, 298, all of which are hereby incorporated by reference in their entirety by way of reference to JJ,, | . Feeding the ion source into the source gas body. The source gas contains the elements to be implanted in the semiconductor substrate. The separation, Ϊ5 /士/原, using the applied electrical energy to form a plasma containing the early "point scorpion (eg, Β, F·) generated from the component of the source gas. Then the plasma is directed toward the face 3 The target contained in 〇中中七七 (for example, semiconductor substrate) plus 130168.doc 200903596 speed. The deep sound connection of the tooth penetration into the substrate is determined by several factors, including 哕The energy of the cesium ion and the ion species 疋匕3. The turf diagram 2 is a flow chart showing the geometry, and the formation of the shallow junction in the semi-conductive slab. Method 10 j Yufeng* body base one of Qiu Ba #^. Figure 3 to 6 is a cross-sectional view of the semiconductor substrate, illustrating the various dopant implantation steps. , Feng Feng "Yufeng conductor substrate or crystal ® 2 -, as shown in Figure 3) k to the ion implanter ("Ion the ion implanter 2" as shown in Figure 1) grab room 3 0 According to the exemplary embodiment of the early invention, the substrate 2 can be provided in the form of a stone wafer. According to the hair, he does not target specificity. In an embodiment, the substrate may comprise other suitable semiconductor materials such as sigma-de (Si_Ge) or gallium arsenide (GaAs), and the substrate may comprise other layers and/or materials, including buried oxides. Layers and the like. According to other exemplary embodiments, the ion source may also be adjusted to allow for the provision of multiple substrates (e.g., wafers) within the chamber. In step 115 of method 100, the source gas system is introduced. A suitable sump (e.g., sump 52 as shown in Figure 1). According to an exemplary embodiment, the source gas is provided directly to the sump. According to another exemplary embodiment, two or more blends may be employed. The debris precursor is circulated into the mixing chamber and is detected as needed prior to feeding to the ion source by the blending/metering system. The blending/metering system is, for example, U.S. Patent No. 6,909,973; U.S. Patent No. 7,058,519; U.S. Patent No. 7,063,097 and U.S. Patent No. 6,772,781. The source gas may be selected based on the desired implantation to be performed. For example, according to a particular exemplary embodiment, boron, carbon And fluoride ion implantation into the 130168.doc 200903596 substrate, the BF3 and ch4 gases can be introduced into the storage tank 52 (wherein the BF3 gas provides a butterfly and a deficient atom, and the CH4 gas provides a carbon atom), which makes BF3 to CH4 The partial pressure is between about 10:1 and 1:4. According to other exemplary embodiments, the desired implant characteristics may be used, and other suitable ratios may be used. According to various exemplary embodiments, gases may be used. Any suitable combination. According to another specific exemplary embodiment, wherein boron, carbon, and fluoride ions are implanted into the substrate, the sump can be mixed with a fluorocarbon (eg, CxFy, wherein 4^^14) and For example, boron-containing gas of boron trichloride (Bcl3). Other potential source gases that can be used to provide boron dopant species include borane (eg, BxHy 'where 25x^18 and 6^yS22) and derivatives thereof; boron hydrofluoride (eg 'BxHyFz, where 18, 1 <y< 22 and Κζ <26); borocarbon hydrofluoride (for example, bwCxHyFz, wherein lswd8, 0Sx^l2, 0SyS36 and 0SK14) and derivatives thereof; boron fluoride and its derivatives; B2F4; (BF2)3BR' R is selected from ph3, CF3 and CO. According to other exemplary embodiments, a large hydrogenated butterfly having a molecular formula of BXHyi can also be used, wherein 5^X596 and ySx+8, as described in, for example, U.S. Patent Application Serial No. 11/041,558 (publication No. 2005/ No. 0163693) the disclosure of which is incorporated herein by reference. Other potential source gases that may be used to provide such carbon and/or fluorine dopant species include hydrocarbons (eg, CxHy, where 15x^10 and 4Sy^3〇) and derivatives thereof, fluorohydrogen carbides (eg, CxHyFz, wherein, lSyS20 and Kz^20) and derivatives thereof, inter-halogen compound species (for example, RyFz, wherein R is a gas, bromine or moth, and 1 < χ < 4 and lSy < 10), and NF3. It should also be understood that, according to other exemplary embodiments, the end-source gas other than 130168.doc -13-200903596 described herein may be used to provide any of its species (eg, arsenic, phosphorus, indium, etc.). Etc.; can be based on a variety of factors - the selection of factors including the chemical knowledge of the gas mixture in the storage tank 'and its effect on the efficiency and life of the ion source. According to various exemplary and selected, the film In the case of the heart, any suitable number can be used (for example, the same -, two ", two or more different sources of boron, or the other quotation of θ w to carbon source gas, fluorine source gas and milk smear paint,语@— ι原乳体. According to other specific embodiments, it can be used in early surgery/original carcass (for example, ηρϋ, 丄, in step (2), there will be a tamper. Medium. 摅 摅~~ To the air box 5 of the ion implanter 30, the sump 52 may include the following features: Provide a fluid tight connection between the v;) v (eg, snail The connector is specifically incorporated into the substrate according to an exemplary embodiment. Since the mother-doping is implanted individually by k, the source gas is contained in the same storage tank 52, and the ion source is not required to be turned off, Flush the sump, and 'subsource. Instead, accelerate the ions from the source plasma into a magnetic spectrometer that is tuned to a specific magnetic field. The magnetic spectrometer (4) selects ions; only the ions selected by the spectrometer (for example, The substrate.m #c ion) will be strongly guided by the guide field~a into a younger one, the magnetic spectrometer will be re-adjusted to different--the second type of step 12S included in the electricity. Finding the number of implants is also the first choice of the first type in the implanted substrate. The magnets of the ion implanter can be appropriately re-adjusted and other 130168.doc -14- 200903596

組件’以選擇植入摻雜物之所需質量及能量(例如,可調 整該植入器之加速電壓及磁場)。選擇之特定植入參數可 根據數個因子而變動,其包含該基材中所需濃度及植入深 度、植入之種類、使用之來源氣體,及其他因子。根據一 不粑性具體實施例,其中碳係待植入之第一種類,而且貯 槽52中包含CH4來源氣體,可選擇具有約1與50 keV間之值 的植入能量,以獲得約10】4與1〇】5離子/cm2間之基材中濃 度,及在約10與5 00奈米間的深度。 圖4所示的步驟130中,透過該基材2〇〇之一頂部表面202 將該[摻雜物植人(如箭頭21崎示)至所需植人深度及濃 度在β亥基材200中形成於半導體微結構内 物(例如,碳摻雜物)的區咬而t雜 ;J ^成域220。根據一示範性具體實 訑例’將第—摻雜物植入至大於欲產生超淺接面之深度的 深度。根據其他示範性具體實施例,可將該第—摻雜物植 入至小於或等於欲產生超淺接面之深度的深度。 步驟1 3 5中,料4主& „ +待植入基材中之第二種類選擇植入參 數亦可適虽地重新調整哕籬孚诘λ如 ,, ' 亥離子植入斋之磁鐵及其他组 牛,以選擇植入之摻雜物 '、、 整該植入器之加速…所而f里及H(例如:可調 之加速電壓及磁場)。值得注意的 步驟之間不沖洗兮雜I ’、於植入 Π亥離子源、及該輸送管線62。如 選擇之特定植入參數 上所述, 性具體實施例,复中急在外 文助根據一不犯 中包含BF3來源氣體, 類而且该貯槽52The component ' is used to select the desired mass and energy for implanting the dopant (e.g., to adjust the accelerating voltage and magnetic field of the implanter). The particular implant parameters selected may vary depending on a number of factors, including the desired concentration and depth of implantation in the substrate, the type of implant, the source gas used, and other factors. According to a specific embodiment, wherein the carbon is in a first type to be implanted, and the storage tank 52 contains a CH4 source gas, an implantation energy having a value between about 1 and 50 keV may be selected to obtain about 10] The concentration in the substrate between 4 and 1 〇 5 ions/cm 2 and the depth between about 10 and 500 nm. In step 130 shown in FIG. 4, the [dopant implanted (such as arrow 21) is passed through the top surface 202 of the substrate 2 to the desired implant depth and concentration in the β-base substrate 200. The region formed in the semiconductor microstructure (for example, carbon dopant) bites and is heterozygous; J ^ is domain 220. The first dopant is implanted to a depth greater than the depth at which the ultra-shallow junction is to be created, according to an exemplary embodiment. According to other exemplary embodiments, the first dopant may be implanted to a depth less than or equal to the depth at which the ultra-shallow junction is to be created. In step 1 3 5, the material 4 main & „ + the second type of implant parameters to be implanted in the substrate can also be re-adjusted to adjust the fence, such as, And other groups of cattle, to select the implanted dopant ', the acceleration of the implanter ... and f and H (for example: adjustable acceleration voltage and magnetic field). Note not between the steps Doping I', implanting the ion source, and the delivery line 62. As described in the specific implant parameters selected, the specific embodiment, the Fuzhong rush in the foreign language assists according to a non-compliance containing BF3 source gas, Class and the storage tank 52

Tv &曰 k擇具有約1與50 keV間之 入此I ,以獲得約1〇14盥 ]之值之植 ^、1〇離子/cm間之基材中濃度, 130168.doc 200903596 及在約1 0與500奈米間的深度。 圖5所不的步驟14〇中’透過該基材2〇〇之一頂部表面2的 將該第二摻雜物植入(如箭頭212所示)至所需植入深度及濃 度。在該基材200中形成在半導體微結構内包含所需摻雜 物(例如,氟摻雜物)的區或區域222。根據一示範性具體實 施例,將第二摻雜物植入至等於第一摻雜物之深度的深 度’然而根據其他示範性具體實施例,第二植入之深度可 大於或小於第一植入之深度。 亦應注意,雖然係描述分別將碳及氟當作第一及第二摻 雜物而連續植入,但根據其他示範性具體實施例,順序可 顛倒。此外,當取代性地或在碳及/或氟以外附加性地植 入其他種類時,可執行類似步驟以完成此類植入(例如, 選擇用於該植入之參數可端視植入之種類而變動)。 ν驟1 4 5中,針對待植入基材中之硼離子選擇植入彖 數。亦可適當地重新調整該離子植入器之磁鐵及其他組 件,以選擇植入之摻雜物之質量及能量(例如,可調整該 植入之加速電壓及磁場)。值得注意的係,於植入步驟 之間不沖洗離子源60及輸送管線62。如以上所述,選擇之 特定植入參數可根據數個因子而變動。根據一示範性具體 實施例’ #中爛係待植人之第三種類且貯槽52中包含β^3 來源氣體,可選擇具有約0.1與20 kev間之值之植入能量, 以獲仔約1014與10、子/cm2間之基材中濃[及在約5盥 2〇〇奈米間的深度。 、 圖6所示步驟150中,透過該基材200之頂部表面202將硼 130168.doc •16- 200903596 離子植入(如箭頭2丨4所示)至所需植入深度及濃度,以形成 摻雜區224及接面24G。根據—示範性具體實施例,將石朋離 子植入至小於第一及第二摻雜物之 衣度的沬度,然而根據 其他示範性具體實施例,該删植入之深度可大於或小於第 -及/或第二植入之深度。有利的係預期第一及第二已植 入種類(例如,餐氟)限制㈣後續退火步驟155期間之擴 散。 、 應瞭解,區222及224之組成可隨牮,由 战』1¾者深度而變動(例如, 相較於區224之底部,其頂部可能右 只I J此有較大硼原子濃度),而 且給定區中可能存在-式争& 仔在一次更夕種類型之原子(例如,區224 可包含植入其中之碳、氟及硼離子)。 &供來源氣體之混合物的優 变占係6亥離子源可於整個共植 入私序中持續運行。此節省 P噌用於關閉、改變進料材料及重 新啟動來源所需要之時間。 J马了改變種類及能量,僅需重 ==線磁鐵及高„電源,此係較完全改變離子源 摻雜物快速許多的程序。對於分批式植入 個晶圓載入至大旋轉盤中,T將夕 可此有利的係,將該等晶圓留 在δ亥盤上,同時重新調整 束線磁鐵及電源,而且然後立 Ρ開始该下一共植入。 盡入^ a圓 乂此方式,可消除用於卸載及重新 載入5亥荨日日圓所需要之時間。 應瞭解,亦可利用科Λ 就地々續方法,如例如描述於2007年 2月5日申轉之美國專利臨 ^1〇b 219 予申 e月案第 6〇/888,3Μ 號及 2005 月日申钿之國際專利令往索楚prT/iTCwAC/ 號,該等揭示内容以引用^月案弟C職2〇〇5/〇38】02 引用的方式整體併入本文中。例如, 130168.doc 200903596 可在離子束中沈積物轉移至一基材之前使用氣體_化物化 合物(例如 XeF2、xeF4、XeF6、NF3、IF5、IF7、sf6、 C2F6、F2、CF4、KrF2、Cl2、HC卜 C1F3、Cl〇2、N2f4、 N2F2、N3F、NFH2、NH2F)、分子式CxFy之化合物(例如 C3F6、C3F8、C4F8及C5F8)、分子式CXHyFZ之化合物(例如 CHF3、CH2F2、CH3F、C2HF5、C2H2F4、C2H3F3、C2H4f2Tv & 曰 k has a ratio between about 1 and 50 keV to obtain a concentration of about 1 〇 14 盥] of the plant, 1 〇 ion / cm, 130168.doc 200903596 and The depth between about 10 and 500 nm. The second dopant is implanted (as indicated by arrow 212) through a top surface 2 of the substrate 2 to the desired implant depth and concentration in step 14 of Figure 5. A region or region 222 comprising a desired dopant (e.g., a fluorine dopant) within the semiconductor microstructure is formed in the substrate 200. According to an exemplary embodiment, the second dopant is implanted to a depth equal to the depth of the first dopant. However, according to other exemplary embodiments, the depth of the second implant may be greater or less than the first implant. Into the depth. It should also be noted that although it is described that carbon and fluorine are continuously implanted as the first and second dopants, respectively, according to other exemplary embodiments, the order may be reversed. In addition, similar steps may be performed to accomplish such implantation when the other species are additionally implanted in addition to or in addition to carbon and/or fluorine (eg, the parameters selected for the implantation may be end-implanted) Change by type). In step 145, the number of implants is selected for the boron ions to be implanted into the substrate. The magnets and other components of the ion implanter can also be appropriately re-adjusted to select the mass and energy of the implanted dopant (e.g., the accelerating voltage and magnetic field of the implant can be adjusted). Of note, the ion source 60 and the transfer line 62 are not flushed between the implantation steps. As noted above, the particular implant parameters selected may vary based on several factors. According to an exemplary embodiment, a third type of rotten plant to be implanted and the storage tank 52 containing a β^3 source gas, an implant energy having a value between about 0.1 and 20 kev may be selected to obtain The substrate between 1014 and 10, sub/cm2 is concentrated [and at a depth of about 5 盥 2 〇〇 nanometer. In step 150 shown in FIG. 6, the boron 130168.doc •16-200903596 is ion implanted through the top surface 202 of the substrate 200 (as indicated by arrow 2丨4) to the desired implantation depth and concentration to form Doped region 224 and junction 24G. According to an exemplary embodiment, the stone ion is implanted to a temperature less than the clothing of the first and second dopants, however, according to other exemplary embodiments, the depth of the implant may be greater or less The depth of the first and/or second implant. Advantageously, it is contemplated that the first and second implanted species (e.g., meal fluoride) limit (d) diffusion during the subsequent annealing step 155. It should be understood that the composition of zones 222 and 224 may vary with the depth of the warfare (for example, compared to the bottom of zone 224, the top may only have a larger concentration of boron atoms on the right side), and There may be a type of atom in the zone (for example, zone 224 may contain carbon, fluorine, and boron ions implanted therein). The superiority of the mixture of the source gases and the source of the gas can be continuously operated throughout the co-implantation. This savings is the time it takes to shut down, change the feed material, and restart the source. J Ma changed the type and energy, only need to re-= line magnet and high „power, this is a much faster procedure to completely change the ion source dopant. For batch-loaded wafer loading to large rotating disk In the middle, T will be advantageous in this case, leaving the wafers on the δ-heel, while re-adjusting the beam magnet and the power supply, and then starting the next co-implantation. In a way that eliminates the time required to unload and reload the 5th day of the Japanese calendar. It should be understood that it is also possible to use the local method of discontinuity, such as the US patent described on February 5, 2007. Pro ^1〇b 219 to the application of the 6th / 888, 3 Μ 及 及 及 及 及 及 及 及 及 国际 pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr 2〇〇5/〇38]02 The manner of reference is incorporated herein in its entirety. For example, 130168.doc 200903596 may use gas-based compounds (eg, XeF2, xeF4, XeF6, before deposits are transferred to a substrate in an ion beam). NF3, IF5, IF7, sf6, C2F6, F2, CF4, KrF2, Cl2, HC, C1F3, Cl〇2, N2f4, N2 F2, N3F, NFH2, NH2F), compounds of the formula CxFy (eg C3F6, C3F8, C4F8 and C5F8), compounds of the formula CXHyFZ (eg CHF3, CH2F2, CH3F, C2HF5, C2H2F4, C2H3F3, C2H4f2)

U 及C2H5F)、分子式cxHyOz之化合物、COF2、HF或有機氣 化物(例如 C0C12、CC14、CHC13、CH2Clj CH3C1)歷經足 以至少部分移除該沈積物之時間,而自離子源移除沈積 物。可使§玄氣體函化物與該等沈積物之反應之條件可包含 使該氣體鹵化物與希望移除之材料進行化學性交互作用的 任何適當之溫度、壓力、流速、組成等條件。可利用之各 種條件之範例包含環境溫度、超過環境溫度之溫度、存在 電漿、不存在電漿、低大氣壓力$。用於此類氣體_化物 接觸之特定溫度可在從大約至大約1〇〇〇t的範圍中。 該接觸可包括輸送在載體氣體中或為純淨形式或與另一種 清潔劑、摻雜物等摻和之氣體齒化物。用於與處”境瓜 度之沈積物進行化學反應之氣體齒化劑 、兄 反應動力學。 心加熱’以增加該 一該清潔組合物可自特別調整成用於輪送xeF2或 *式劑的來源供應,例如更完全描述於 月、 、土於美國臨時專刺由 言月案第60/662,5 15號及美國臨時專利 甲 T 5月柔卓60/662 口占 標題為”用於從固體來源輸送試劑 ,96唬 …乂糸統I之國際 案PCT/Us 06/08530的固體來源輸 号冽曱,月 、糸統,該等揭示内容 130168.doc • 18- 200903596 的方式個別整體併人本文中。或者,可將該清 物提供於包含在輪送系統中之氣體之混合物。 、圖2至6。兒明一種循序將多種換雜物植人半導體基材 之方法,但根據另—示範性具體實施例,同時將每一摻 雜物種類植人基材中。例如’根據_衫示範性具體實施 例’來源進料材㈣採用待共植人至半導體基材中之至少 二種且較佳全部所需種類的分子。The U and C2H5F), the compound of formula cxHyOz, COF2, HF or an organic gas (e.g., C0C12, CC14, CHC13, CH2Clj CH3C1) undergoes at least partial removal of the deposit and the deposit is removed from the ion source. The conditions under which the reaction of the gaseous gas compound with the deposits may include any suitable conditions of temperature, pressure, flow rate, composition, etc. that chemically interact the gas halide with the material desired to be removed. Examples of various conditions that may be utilized include ambient temperature, temperature above ambient temperature, presence of plasma, absence of plasma, and low atmospheric pressure $. The particular temperature for such gas-based contact can range from about to about 1 Torr. The contacting can include delivery of a gaseous dentate in the carrier gas or in neat form or with another cleaning agent, dopant, or the like. a gas toothing agent, a reaction kinetics for chemical reaction with a sediment of a squash, a heart reaction. To increase the cleaning composition, the cleaning composition can be specially adjusted for the use of xeF2 or * The source of supply, for example, is more fully described in the month, the soil in the United States, the temporary special stab by the moon case No. 60/662, 5 15 and the US provisional patent A T May Jojo 60/662 accounted for the title "for use from Solid source transport reagents, 96 唬 乂糸 I 国际 international case PCT/Us 06/08530 solid source transport 冽曱, month, 糸, the disclosure 130168.doc • 18- 200903596 People in this article. Alternatively, the feed can be provided to a mixture of gases contained in the transfer system. Figures 2 to 6. A method of sequentially implanting a plurality of foreign materials into a semiconductor substrate is described, but according to another exemplary embodiment, each of the dopant species is simultaneously implanted in a substrate. For example, the source material (4) according to the exemplary embodiment of the invention is to employ at least two, and preferably all, of the desired species of molecules to be co-implanted into the semiconductor substrate.

圖7係⑽矛王圖,言兒明根據一示範性具體實施例於半導 體基材中形成淺接面之方法3〇〇中之步驟。圖8至9係半導 體基材400之一部分的截面圖,說明各種摻雜物植入步 驟。 根據步驟310,將半導體基材或晶圓4〇〇(例如,圖8中所 說明)提供至離子植入器的艙室中。根據一示範性具體實 軛例,該基材400可以矽晶圓之形式提供。根據其他示範 性具體實施例,該基材可包括其他合適半導體材料,例如 矽-鍺(Si-Ge)或砷化鎵(GaAs)。此外,基材可包含其他層 及/或材料’包含埋入式氧化物(Β〇χ)層及其類似物。 圖10至12中說明用於輸送未使用之簇分子之離子源的示 範性具體實施例。根據一示範性具體實施例,該離子源係 可購自麻薩諸塞州Billerica市之SemEquip Inc.的Clusterlon® 離子源。根據其他示範性具體實施例,可利用其他類型之 離子來源或輸送裝置將未使用之簇分子輸送至基材。例 如,可使用電漿摻雜技術及系統將簇分子植入至基材中, 該等電漿摻雜技術及系統例如但不必限於描述於美國專利 130168.doc -19- 200903596 申請公開案第2005/0287307號。 鑑於習知離子源自來源材料產生電漿,其中來源材料之 分子解離而形成離子,根據一示範性具體實施例,用於將 未使用之族刀子輸达至基材之離子源係使用替代離子化程 序,產生大分子之強離子束而不解離。 襄分子之各種成分係藉由電子保持在一起。於進入基材 時(例如’在首數個原子層内),束缚電子立即由於與基材 中之原子交互作用而被剝除’該等成分以個別原子形式行 進而進入基材中(例如,在具有通式】,2_C2Bi 〇Hi2之—鄰·碳 硼烷分子之情況中,分早掊敏 4擊基材之表面,立即分離成24 個個別原子,每—原子各具有自身之能量)。 使用蔡離子源可得到各種優點。例如,植入程序採用逹 高於習知植入程序之能量(例如,能量之總量係將用以將 二”每一個別組份植入基材中所需要之能量合計起來而 ―),且與待植入簇分子中所包含之摻雜物種類之數目 ;比例地增加劑量率。此外,不需要光束減速,減少或消 除了與習知植入程序# _ t At Θ % 一' 斤有關之此置5染及光束發散間題。 方法3〇〇的步驟32〇中 中將族刀子提供於合適貯槽(例 如,如圖i中所示之貯槽52)中。根據一 (二 例,簇分子包含稗拮λ々私士 I /、體實施 于匕3待植入之所有摻雜物種類(例如, 子係硼氟碳化物分子)。护媸甘 人取力 八 )根據其他不範性具體實施例,簇 "二3待植入之摻雜物種類的子集(例如,當要括、 石厌、氣及>5朋時,兹八工沉& Λ ί罝入 分子植八㈣之心I: "分子’其中氟係, V騍之刖或之後個別植入)。 130168.doc •20- 200903596 較佳係將包含於簇分子中 姑φ ^ <所有摻雜物種類同時植入基 材中。於步驟330中,針對铭八 备針對轶分子選擇植入參數。分子中 、 原子之植入能量係與其質 鸦兮堃、 貝里及其速度平方成比例。當 八一主 之表面時,整個分子及其每一成 刀几素係以相同速度行進。 因此,與分子中之每一個別原 相關之分子總能量比例會 如^ j矿與分子中之原子質量比成比 :。右已知道每-成分原子所需之植入能量,則可選擇且 有適當之原子質量比的分子。例如,若希望具有W.9kev 之狀(19f)原子及約u keV之删(1]B)原子的植入能量,則 可利用例如6·8 keV總植入能量之Bf3的分子。 圖^中所示的步驟340中,透過該基材4〇〇之頂部表面4〇2 植入簇分子(如箭號41〇所示),以便將該分子之成分植入至 所需植入深度及濃度。如圖9中所說明,在基材中形成三 個各具有不同組成之分離區422、424及426。例如,根據 一示範性具體實施例,區422可代表已植入氟離子的區、 區424可代表已植入碳離子的區且區426可代表已植入删離 子的區(亦即,超淺接面區)。根據一示範性具體實施例, 每一區422、424及426係同時形成。根據另—示範性具體 實施例,其中一區係於另二區之前形成(例如,區422係以 敗離子摻雜,其後區424及426係藉由植入兼含碳及蝴原子 兩者的簇分子而同時形成)^有利的是某些已植入摻雜物 種類(例如,氟及碳)可於後續退火步驟350期間發揮作用, 以限制硼擴散。 應瞭解,該等區422、424及426之組成可隨著深度而變 130168.doc 200903596 動(例如,在區426之了w γ ^ + 度),而且在給定區中可Λ ;交其㈣高的蝴原子濃 如,區426可包含植人| 更夕種類型之原子(例 中之碳、氟及石朋離子)。 根據-示範性具體實施例,僅將單一類型之 基材中。根據其他示範性具體 直入 之簇分子植入相同基材中:: Α “ 一個以上類型 分布曲線。此外,不管將單-類型或-類型以上:= =基材中’亦可於個別步驟中植入其他摻雜物種類,以 所!ST雜物種類添加至該基材,且/或補充由簇分子 厅徒i、之推雜物(例如 ch名興-m 之… CH3乳體可用作來源,以提供基材 之厌摻雜,且/或補充由簇分子所提供之碳推雜)。 所使用之特定類型簇分子可基於各式各樣因子之任何因 2選擇’其包含市場可取得性、成本、使用簡易性、分 β:成’及其他相關因子。根據各種示範性具體實施例, :刀子可為氣體形式(例如’ BF2CH3;以心㈣及並包 二:有介於1至4碳原子之官能基(例如,以取代—或 乎夕乳原子的衍生物);於室溫係液體之液體形式(例如, ^石炭蝴烧(1,2-C2Bl〇Hl2)衍生物’例如包含一或多個下列 开^基:^办’卜零灿’及心咖广或者為固體 7式(例如,碳蝴烷分子,例如鄰-碳硼烷 =其他示範性具體實施例,鎮分子可為⑽抑可 ^獨或具有以仰仏官能基);…叫叫可單獨或具有 二(CH3)2官能基);或者1,6-C2B8H10(可單獨或具有16_ (CH3)2官能基)。 , 130168.doc -22- 200903596 根據不範性具體實施例,簇分子可以硼酸形式或例如 硼觳一曱8曰(丁MBK其一範例具有通式B-(0-CH3)3)之簡單 有機硼分子形式提供。此類分子通常每分子包含一個硼原 子,而且包含C-B及C-O-B鍵結種類。某些分子係可輕易 取得,而且相對較不昂貴,然而在某些應用中,此類分子 可此未提供適以達成超淺接面所需特徵之硼含量。此類分 子之範例包含BF2CH3、cbo2h5及c2bo2h8。 根據又其他示範性具體實施例,可使用氫化硼簇,例如 具有分子式BxHy ’其中55x^96且y^x + 8,如描述於例如美 國專利申請案第1 1/041,558號(公開案第2005/01 63693號), 其揭示内容以引用的方式併入本文中(例如’ B18H22)。 根據一示範性具體實施例,其中將硼酸三曱酯類型簇分 子植入至矽基材中,可選擇具有約i與i 〇〇 kev間之值的蔟 分子植入能量。此簇植入將導致約〇· 11 5 ke V與11.5 ke V間 的專效碳植入能量’及約〇. 106 keV與1 0.6 keV間的等效朋 植入能量,其中碳原子之植入劑量為硼原子之植入劑量的 3倍大。 根據另一示範性具體實施例,簇分子可以具有通式 CxByHz之碳硼烷形式提供。此類分子係相對較穩定並且可 輕易取得,而且每一分子中包含相對較低碳含量。此類分 子之範例包含鄰-碳硼烷及其衍生物,其係可購自密蘇里 州St. Louis市之Sigma-Aldrich,及購自麻薩諸塞州 Newburyport 市之 Strem Chemicals, Inc·。其他範例包含對_ 及間-碳硼烷及其衍生物,其係可購自捷克共和國之 130168.doc -23- 200903596Figure 7 is a (10) spearhead diagram illustrating the steps of a method of forming a shallow junction in a semiconductor substrate in accordance with an exemplary embodiment. Figures 8 through 9 are cross-sectional views of a portion of a semiconductor substrate 400 illustrating various dopant implantation steps. In accordance with step 310, a semiconductor substrate or wafer 4 (e.g., as illustrated in Figure 8) is provided into the chamber of the ion implanter. According to an exemplary embodiment, the substrate 400 can be provided in the form of a wafer. According to other exemplary embodiments, the substrate may comprise other suitable semiconductor materials such as germanium-tellurium (Si-Ge) or gallium arsenide (GaAs). In addition, the substrate may comprise other layers and/or materials' comprising buried oxide (ruthenium) layers and the like. Exemplary embodiments of ion sources for transporting unused cluster molecules are illustrated in Figures 10-12. According to an exemplary embodiment, the ion source is commercially available from the Clusteron® ion source of SemEquip Inc. of Billerica, Massachusetts. According to other exemplary embodiments, unused ion molecules can be delivered to the substrate using other types of ion sources or delivery devices. For example, the plasma doping techniques and systems can be used to implant cluster molecules into a substrate, such as, but not necessarily limited to, those described in US Patent No. 130,168.doc -19-200903596, filed on No. 02087307. In view of the fact that conventional ions are derived from a source material to produce a plasma in which molecules of the source material dissociate to form ions, according to an exemplary embodiment, an ion source for transporting unused knives to the substrate uses a replacement ion. The process produces a strong ion beam of macromolecules without dissociation. The various components of the ruthenium molecule are held together by electrons. Upon entering the substrate (eg, 'in the first few atomic layers), the bound electrons are immediately stripped due to interaction with atoms in the substrate 'these components travel in individual atoms into the substrate (eg, In the case of a molecule of the formula: 2_C2Bi 〇Hi2, the surface of the substrate is immediately separated into 24 individual atoms, each having its own energy. Various advantages can be obtained by using the Cai ion source. For example, the implant procedure employs a higher energy than a conventional implant procedure (eg, the total amount of energy will be used to sum up the energy required to implant each of the individual components into the substrate), and The number of dopant species to be implanted in the cluster molecules; proportionally increasing the dose rate. Furthermore, no beam deceleration is required, reducing or eliminating the need to correlate with the conventional implant procedure # _ t At Θ % 5 dyeing and beam divergence. Method 3 〇〇 step 32 中 中 中 刀 knife provided in a suitable storage tank (for example, the storage tank 52 shown in Figure i). According to one (two cases, the cluster molecules contain 稗All of the dopant species (eg, daughter borofluorocarbon molecules) to be implanted in the 匕3 。 々 / / 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 , clusters " 2 3 subsets of dopant species to be implanted (for example, when it is necessary to include, stone, gas, and > 5 friends, 八八工沉& Λ 罝 罝 into the molecular planting eight (four) Heart I: "Molecular 'where the fluorine system, V骒 or later implanted separately.) 130168.doc •20- 2 00903596 Preferably, all the dopant species contained in the cluster molecules are simultaneously implanted into the substrate. In step 330, the implantation parameters are selected for the 轶 molecule for the Ming VIII. Molecular, atomic planting The energy system is proportional to its mass rake, Berry, and its square of velocity. When the surface of the Bayi main, the entire molecule and each of its knives travel at the same speed. Therefore, with each of the molecules The ratio of the total energy of the individual original correlations will be proportional to the mass ratio of atoms in the molecule: the right implant energy required for each component is known, and the molecule with the appropriate atomic mass ratio is selected. For example, if it is desired to have an implantation energy of a W.9kev (19f) atom and a UDV (1]B) atom, a Bf3 molecule having a total implantation energy of, for example, 6·8 keV can be utilized. In step 340 shown in ^, a cluster of molecules (as indicated by arrow 41A) is implanted through the top surface 4〇2 of the substrate 4 to implant the components of the molecule to the desired implantation depth. And concentration. As illustrated in Figure 9, three different layers are formed in the substrate. Separation regions 422, 424, and 426 are formed. For example, according to an exemplary embodiment, region 422 can represent a region in which fluoride ions have been implanted, region 424 can represent a region in which carbon ions have been implanted, and region 426 can represent a planted region. Into the ion-deleted region (ie, the ultra-shallow junction region). According to an exemplary embodiment, each of the regions 422, 424, and 426 are formed simultaneously. According to another exemplary embodiment, one of the regions is The other two regions are formed before (for example, the region 422 is doped with a depleted ion, and the rear regions 424 and 426 are simultaneously formed by implanting a cluster molecule containing both carbon and a butterfly atom). Implant dopant species (eg, fluorine and carbon) can function during subsequent annealing step 350 to limit boron diffusion. It should be understood that the composition of the regions 422, 424, and 426 may vary with depth by 130168.doc 200903596 (eg, w γ ^ + degrees at region 426), and may be ambiguous in a given region; (4) High butterfly atoms are concentrated, and region 426 may contain implanted atoms of the type of the moon (such as carbon, fluorine, and stone ions). According to an exemplary embodiment, only a single type of substrate will be used. According to other exemplary specific in-line cluster molecules implanted in the same substrate: Α “More than one type of distribution curve. In addition, whether it will be single-type or-type above: == in the substrate' can also be implanted in individual steps Into other dopant species, added to the substrate with the !ST impurity type, and/or supplemented by cluster molecules, such as ch-xing-m... CH3 milk can be used as Source to provide anodic doping of the substrate and/or to supplement the carbon doping provided by the cluster molecules. The particular type of cluster molecule used can be selected based on any factor 2 of the various factors. Acquisition, cost, ease of use, sub-β: into 'and other related factors. According to various exemplary embodiments, the knife can be in the form of a gas (eg 'BF2CH3; heart (4) and package 2: there is between 1 a functional group of up to 4 carbon atoms (for example, a derivative of a substituted or emulsified milk atom); a liquid form of a liquid at room temperature (for example, a charcoal-baked (1,2-C2Bl〇Hl2) derivative' For example, including one or more of the following open bases: ^ Do 'Bu zero Can' and heart coffee Or a solid 7 formula (for example, a carbosilane molecule such as o-carbobane = other exemplary embodiments, the town molecule may be (10) or may have a ruthenium functional group; Or having a di(CH3)2 functional group; or 1,6-C2B8H10 (which may be alone or having a 16_(CH3)2 functional group). 130168.doc -22- 200903596 According to an exemplary embodiment, the cluster molecule may Provided in the form of a boric acid or a simple organoboron molecule such as boron quinone 8 曰 (an example of butyl MBK having the general formula B-(0-CH3) 3 ). Such molecules typically contain one boron atom per molecule and contain CB And COB bonding species. Some molecular systems are readily available and relatively inexpensive, however in some applications such molecules may not provide boron content suitable for achieving the characteristics required for ultra-shallow junctions. Examples of molecules include BF2CH3, cbo2h5, and c2bo2h8. According to still other exemplary embodiments, a boron hydride cluster can be used, for example, having the formula BxHy 'where 55x^96 and y^x + 8, as described, for example, in U.S. Patent Application Serial No. 1 1/041,558 (publication 2005/01) No. 63,693), the disclosure of which is incorporated herein by reference in its entirety (for example, 'B18H22). According to an exemplary embodiment, wherein a trimethyl borate type cluster molecule is implanted into the ruthenium substrate, optionally having The energy of the 蔟 molecule implanted between i and i 〇〇kev implants energy. This cluster implant will result in a special carbon implant energy between approximately 〇·11 5 ke V and 11.5 ke V and approximately 106 106 keV and 1 The equivalent implant energy between 0.6 keV, in which the implantation dose of carbon atoms is three times larger than the implantation dose of boron atoms. According to another exemplary embodiment, the cluster molecules may be provided in the form of a carborane of the formula CxByHz. Such molecules are relatively stable and readily available, and contain relatively low carbon content per molecule. Examples of such molecules include o-carbobane and its derivatives, available from Sigma-Aldrich of St. Louis, Missouri, and Strem Chemicals, Inc., of Newburyport, Massachusetts. Other examples include p- and m-carbobane and their derivatives, which are commercially available from the Czech Republic 130168.doc -23- 200903596

Katchem S.R.O.。 根據一示範性具體實施例,其中將具有通式i,2_ 的鎮分子植入矽基材中,可選擇具有約1與1〇〇 keV間之值的植入能量,以獲得約〇.〇82與8 2 keV間之基材 中有效碳能量,及約0.075與7 5 keV間之基材中有效硼能 里’其中爛原子之植入劑量會較碳原子之植入劑量大5 倍。包含於該分子中之氫於植入基材時擴散出去。Katchem S.R.O. According to an exemplary embodiment, wherein a town molecule having the formula i, 2_ is implanted into a ruthenium substrate, implant energy having a value between about 1 and 1 〇〇 keV can be selected to obtain about 〇. The effective carbon energy in the substrate between 82 and 8 2 keV, and the effective boron energy in the substrate between about 0.075 and 75 keV, the implant dose of the rotten atom is 5 times larger than the implantation dose of the carbon atom. The hydrogen contained in the molecule diffuses out when implanted into the substrate.

根據其他示範性具體實施例,簇分子可以碳硼烷衍生物 之形式提供,通常其係特徵化成具有較習知碳硼烷更低之 熔點。此類分子包含類似於上述的主碳硼烷結構(例如, 鄰-¼硼烷,而且亦連接一或多個取代氫原子 的取代基(例如,該衍生物可為氣化衍生物,其巾可以 取代一或多個氫原子,使碳'硼及氟原子各存在於該簇分 子中)。其他潛在取代基包含氟基(_Fx)及例如: 或間-或對_碳硼烷之氟化衍生物)。根據一特定 不辄性具體實施例’可使用具有通式鄰·碳㈣,1-間_ CeHj的破蝴燒衍生物,其具有約攝氏“度的一炫點。如 檢視本揭示内容將輕易地瞭解,根據各種示範性具體實施 例’可有相當大量之組合,預期全部在本揭示内容之範嘴 内0 艮據其他示範性具體實施例,簇分子可以小型碳石朋烧之 1,2-C2B4H6; 1,2-C2B5H7A1,2-C、2B8Hig)提供。根據_*範性具时施例,其巾將具有通 式’5 C2B3H5的簇分子植入矽基材中,可選擇具有約1與 130168.doc -24- 200903596 1 00 keV間之值的植入能量, m 材中右At曰 焱侍約0.19與19 keV間之基 材中有效石反忐罝,及約〇1 能量,”蝴…始與8㈣間之基材間的有效删 15倍。 入J里係較碳原子之植入劑量大 檢視此揭示内容者將瞭解’利 單-植人達成某些或全部/ k點在於以 生 卩/、植入。精由消減植入步驟可使 產力及效率較循序摻雜方法改善。 此外’每-種類之有效植入能量係隨 蔟之分子量的比率而減少。此 千… 此思明可在較咼分子提取能量 I達成極低之有效植人能量,此點對於形成淺接面極為重 、。較向提取能量係有利於獲得較高已提取光束電流,藉 以進一步改善產能。 檢視此揭示内容者將瞭解,根據各種示範性具體實施例 之所述方法提供超越習知植入方法之各種優點。例如,本 文所述方法提供多個植人種類之較有效而且㈣勞力密集 之植入’因為於植人步驟之間不需將該離子源關閉、果空 及重新啟動。本文所述之各種摻雜物種類之植入可提供有 效減少或消除所植入基材中不希望之删擴散的方式(而且 亦毛現本文所述之方法及種類在減少或消除例如碟不希望 之其他已植入摻雜物種類中之實用性)。 當本文之化學部分的描述中提供—數值範圍時,應瞭解 其中涵蓋所述範圍内之中介值及任何其他所述或中介值。 例如,當本文之對應化學部分的描述中提供碳數目的範 圍’應瞭解’每一中介碳數目及任何其他陳述或者該陳述 130168.doc ,25- 200903596 範圍中之中介碟數目值係包含於該揭示 (例如)應瞭解,C1C6烴基包含甲 犯"内, 基⑹)、丁基(叫、戊以5)(叫、乙基(C2)、丙 分可且有杯/拔 " 己基(C6),而且該化學部 ,、有任何構形,例如’直鏈或支鏈 本發明之笳藏肉,t ^ 步瞭解’在 U之乾可内’指定碳數目範圍内之碳 獨立包含於較小碳數目範圍中,而且特定排除若干碳Y山 =之範圍係包含於本發明中,而且排除指定範圍之任: 或兩個碳數目限制之子範圍亦包含於本發明中。 【圖式簡單說明】 /重要的係’應注意,希望本文所述之各種示範性具體 貝知例僅為說明性。雖然本揭示内容中僅詳細描述若干具 體只奴例,但檢視此揭示内容之熟諳此技術者將輕易地瞭 解,可進行許多修改,而不致實質偏離該申請專利範圍中 斤敘述之主喊之新穎教導及優點。根據其他示範性具體實 施例,可將任何程序或方法步驟之次序或順序加以變動或 重定序。在各種示範性具體實施例之設計、操作條件及配 置中可進行其他取代、修改、改變及省略,而不致偏離如 附加申請專利範圍中所表達之本發明之範疇。 圖1係一示意圖,說明根據一示範性具體實施例之用於 產生半導體裝置之系統的組件。 圖2係一流程圖,說明根據一示範性具體實施例之於半 導體基材中形成淺接面之方法中的步驟。 圖3係根據一示範性具體實施例之半導體基材的一部分 之截面圖。 130168.doc -26- 200903596 圖4係圖3中所示之丰導_辦其奸夕八 分的戴面圖,其說明 第一摻雜物植入步驟。 圖5係圖4中所示之半導許其奸之邱八& 心千V體基材之邛分的戴面圖,說明第 二摻雜物植入步驟。 圖6係圖5中所示之半導體基材之部分的截面圖,說明第 三摻雜物植入步驟。 一圖7係-流程圖’說明根據另一示範性具體實施例之於 半導體基材中形成淺接面之方法中的步驟。 圖8係根據一示範性具體實施例之半導體基材的部分之 截面圖。 圖係圖8中所示之半導體基材之部分的截面圖,說明摻 雜物植入步,驟。 圖1 〇至1 2說明離子源之各種組件,其組態成用以將未使 用之簇分子輸送至半導體基材中。 【主要元件符號說明】 10 糸統 20 植入器 30 艙室 32 平台 40 磁鐵 50 氣箱 52 貯槽 60 離子源 62 輸送管線According to other exemplary embodiments, the cluster molecules may be provided in the form of a carborane derivative, typically characterized by a lower melting point than conventional carboranes. Such a molecule comprises a primary carborane structure similar to that described above (eg, o--1⁄4 borane, and also a substituent attached to one or more substituted hydrogen atoms (eg, the derivative may be a gasified derivative, its towel) One or more hydrogen atoms may be substituted such that the carbon 'boron and fluorine atoms are each present in the cluster molecule.) Other potential substituents include a fluorine group (-Fx) and, for example: or a fluorination of m- or carbo-borane derivative). According to a specific embodiment, a destructive derivative having a general formula of carbon (tetra), 1-inter- _ CeHj, which has a bright point of about "degrees Celsius" can be used. It is understood that there may be a considerable number of combinations in accordance with various exemplary embodiments, all of which are contemplated to be within the scope of the present disclosure. According to other exemplary embodiments, cluster molecules may be small carbon stone burned 1, 2 -C2B4H6; 1,2-C2B5H7A1,2-C, 2B8Hig). According to the _*normetic case, the towel has a cluster molecule having the general formula '5 C2B3H5 implanted into the ruthenium substrate, optionally having about 1 and 130168.doc -24- 200903596 1 00 keV value of the implant energy, the right At 曰焱 in the m material is about 0.19 and 19 keV in the substrate between the effective stone 忐罝, and about 〇 1 energy, "Butterfly... Effectively delete 15 times between the substrate between 8 and 4). Into J, the dose of implants is larger than that of carbon atoms. The readers of this disclosure will understand that 'single-planting achieves some or all / k points in sputum/, implantation. The elimination of the implantation step can improve the productivity and efficiency compared to the sequential doping method. In addition, the effective implant energy per type decreases with the ratio of the molecular weight of the ruthenium. This thousand... This idea can achieve extremely low effective implant energy in extracting energy I from the helium molecule, which is extremely heavy for forming shallow joints. The more extracted energy system is advantageous for obtaining a higher extracted beam current, thereby further improving the productivity. Those of ordinary skill in the art will appreciate that the methods described in the various exemplary embodiments provide various advantages over conventional implant methods. For example, the method described herein provides a more efficient and (four) labor intensive implant for multiple implanted species' because the ion source is not required to be turned off, empty, and restarted between implant steps. Implantation of various dopant species described herein can provide a means to effectively reduce or eliminate undesirable de-spreading in the implanted substrate (and also the methods and types described herein to reduce or eliminate, for example, discs. The utility of other implanted dopant species is desired. When a range of values is provided in the description of the chemical section herein, it should be understood that the mediation values within the ranges and any other stated or intervening values are included. For example, the range of carbon numbers provided in the description of the corresponding chemical section herein should be understood as the number of each intervening carbon and any other statements or the number of intermediaries in the range 130168.doc, 25-200903596 is included in the It is revealed, for example, that the C1C6 hydrocarbyl group contains a ruthenium (inner, hexyl (6)), butyl (called, pentane 5) (called, ethyl (C2), propylene, and has a cup/pull" C6), and the chemical department, has any configuration, such as 'straight chain or branched chain of the present invention, t ^ step to understand 'in the U's dry can' within the specified carbon number range of carbon independently included in In the range of smaller carbon numbers, and the range in which a certain number of carbons are excluded, it is included in the present invention, and the exclusion of the specified range: or the sub-range of two carbon number restrictions is also included in the present invention. Explanation] /Important 'It should be noted that various exemplary specific examples described herein are intended to be illustrative only. Although only a few specific slaves are described in detail in this disclosure, the disclosure of this disclosure is familiar with this technique. Will be easy It will be appreciated that many modifications may be made without departing from the novel teachings and advantages of the invention. The order or sequence of any program or method steps may be varied or re-stated according to other exemplary embodiments. Other substitutions, modifications, changes and omissions may be made in the design, operation, and configuration of the various exemplary embodiments without departing from the scope of the invention as expressed in the appended claims. An assembly for a system for producing a semiconductor device in accordance with an exemplary embodiment. Figure 2 is a flow diagram illustrating steps in a method of forming a shallow junction in a semiconductor substrate in accordance with an exemplary embodiment. Figure 3 is a cross-sectional view of a portion of a semiconductor substrate in accordance with an exemplary embodiment. 130168.doc -26- 200903596 Figure 4 is a representation of the richness shown in Figure 3. , which illustrates the first dopant implantation step. FIG. 5 is a face-to-face diagram of the semi-conducting Qiu Ba & Second dopant implantation step. Figure 6 is a cross-sectional view of a portion of the semiconductor substrate shown in Figure 5 illustrating a third dopant implantation step. Figure 7 is a flow diagram illustrating another exemplary DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The steps in the method of forming a shallow junction in a semiconductor substrate. Figure 8 is a cross-sectional view of a portion of a semiconductor substrate in accordance with an exemplary embodiment. A cross-sectional view of a portion of the material illustrating the dopant implantation step. Figure 1 〇 to 12 illustrates various components of the ion source configured to transport unused cluster molecules into the semiconductor substrate. Explanation of main component symbols] 10 糸20 implanter 30 compartment 32 platform 40 magnet 50 gas box 52 sump 60 ion source 62 transfer line

130168.doc -27· 200903596 64 離子束 200 半導體基材或晶圓 202 頂部表面 210 箭頭 212 箭頭 214 箭頭 220 區或區域 222 區或區域 224 摻雜區 240 接面 400 半導體基材 402 頂部表面 410 箭頭 422 分離區 424 分離區 426 分離區 130168.doc -28-130168.doc -27· 200903596 64 Ion Beam 200 Semiconductor Substrate or Wafer 202 Top Surface 210 Arrow 212 Arrow 214 Arrow 220 Region or Region 222 Region or Region 224 Doped Region 240 Junction 400 Semiconductor Substrate 402 Top Surface 410 Arrow 422 separation zone 424 separation zone 426 separation zone 130168.doc -28-

Claims (1)

200903596 十、申請專利範圍: 1 · 種用於在半導體基材中產生摻雜區之方法,其包括執 订第—植入步驟,其中將碳硼烷簇分子植入半導體基材 中’以形成摻雜區。 2.如凊求項丨之方法,其中該碳硼烷簇分子係具有通式I,〕— 的鄰_碳硼烷分子。 3·如請求項1之方法’其中該㈣烧簇分子係選自由下列 ^物組成之群:1,5_C2Bm㈣H6;1,2_C2B5Hj 1,2-C2B8h丨〇。 4 _如°月求項1之方法,其中該碳彌院簇分+孫ώ 生物。 4刀子係鄰-碳石朋院衍 5.=;二方法’其中—街生物包括氟化破 I =::1之方法,其進一步包括執行第二植入步驟, 〃中將摻雜物種類植入該半導體基材中。 =項6之方法’其卞該摻雜物種類並 :::::6之方法…該摻雜物種類包括喊。 、6之方法,其中該摻雜物種 1〇·如請求項6之太本.. 、匕括硼。 唄6之方法,其中該第二 一植入步髁士 ^ + 值入乂驟包括將與該第 乂驟中所植入之碳硼烷竊 該基材中。 刀千不冋的蔟分子植入 U.如請求項1之方法,其進-步包括、" 換雜物及該第二摻雜物中之至少:以活化該第-12. -種用於在半導體基材 成摻雜區之設備,其包括用 130168.doc 200903596 於固持半導體基材的基檯,及用於將碳硼烷簇分子植入 s玄半導體基材中以形成摻雜區之構件。 13.如請求項12之設備,其中該碳硼烷簇分子係具有通式 的鄰-碳硼烷分子。 如請求項12之設備,其中該碳職簇分子係、選自由下列 各物組成之群:1,5-C2B3h5; ;i,2_C2B4H6; 及 1,2-C2BgH】〇。 15. 如請求項12之設備,其中該碳硼烷簇分子係鄰_碳硼烷衍 生物。 16. 種用於產生具有淺接面區之半導體裝置的方 法包括: 於:槽中提供第一氣體及第二氣體,該第—氣體包括 弟一摻雜物’而且該第二氣體包括第二掺雜物; 使用離子源將該第-摻雜物植入半導體基材中.以及 L =該離子源將該第二捧雜物植入該半導體基材中; 之;;=入該第一推雜物及植入該第二捧雜物的步驟 之間不關閉該離子源。 Π.如請求項16之方法,复 至少一者係CH” 第乳體及該第二氣體中之 :长項16之方法,其中該第一氣體及 至少一者係BF3。 弟一瑕*體中之 19·如請求項16之方法,其進一步包 該第二摻雜物後 &用該離子源植入 中於植^第Γ 該半導體基材中,其 4雜物及植入該第三掺雜物的步驟之間 130168.doc 200903596 2021.22. 23. 24. 25. 26. 27. 28. 29. 不關閉該離子源。 •如明求項1 9之方法,其中誃 氣體及該第_ $ ^ φ ^ >雜物係包含於該第一 茨弟—軋體中之至少一者。 如請求項19之方法,其中 雜物係氟,且^r第_ A 》雜物係碳,該第二摻 齓且3亥弟二摻雜物係硼。 如請求項19之方法,其中 一摻雜物及兮篦- 》雜物係植入至較該第 物及3亥第一摻雜物中之至— 如請求項16之方法,其進—步U纟為小的深度。含亥第_々 ,匕於具有該第一氣體及 第一乳體之貯槽中提供第三氣體。 如請求項23之方法,其中該第一 第二氣$你盡办篇产 巩體係石反來源氣體,該 A體係氟來源氣體,而且該 — 體。 "弟二氣體係硼來源氣 :請求項23之方法’其中該第-氣體、該第 第三氣體中之至少一者係作為選自由磷、砷 組成之群的摻雜物種類之來源。 如叫求項1 6之方法,盆中兮笛· — 44 ,、Τ及弟摻雜物係碳 摻雜物係棚。 如請求項16之方法,其中該第一摻雜物係氟 摻雜物係硼。 二氣體及該 、銦及銻所 且該第二 且該第二 如請求項1 6之方法,其中該第一撿施& /、丫《弟摻雜物及該第二摻雜物 中之-係氟,而且該第一摻雜物及該第二摻雜物中另— 者係硼。 如a月求項16之方法,其進~步包括退火 摻雜物及該第二摻雜物中之至少—者, 以活化該第一 以形成淺接面 130168.doc 200903596 ' 其中該第一摻雜物及該第二摻雜物中之至少一者發揮作 用以限制硼擴散。 I30168.doc 4-200903596 X. Patent Application Range: 1 . A method for producing a doped region in a semiconductor substrate, comprising the step of implanting a first implantation step in which a carborane cluster molecule is implanted into a semiconductor substrate to form Doped area. 2. The method of claim 1, wherein the carborane cluster molecule has an ortho-borane molecule of the formula I,]. 3. The method of claim 1 wherein the (four) clustering molecule is selected from the group consisting of: 1,5_C2Bm(tetra)H6; 1,2_C2B5Hj 1,2-C2B8h丨〇. 4 _ such as the method of the month 1 item, wherein the carbon house is divided into + Sun ώ biology. 4 knives are adjacent to - Carbon Stone 衍 衍 5. =; The second method 'where - the street organism includes a method of fluorination breaking I =:: 1, which further comprises performing a second implantation step, the dopant species in the sputum Implanted into the semiconductor substrate. = Method of item 6 'The method of the dopant species and :::::6... The dopant species includes shouting. The method of 6, wherein the doping species is as described in claim 6 and comprises boron. The method of 呗6, wherein the second implant step gentleman ^ + value entry step comprises stealing the substrate with the carborane implanted in the first step. U.S. Patent No. 1, the method of claim 1, further comprising, " changing the inclusions and at least the second dopant to activate the -12. - An apparatus for forming a doped region of a semiconductor substrate, comprising: a substrate for holding a semiconductor substrate with 130168.doc 200903596, and for implanting a carborane cluster molecule into the semiconductor substrate to form a doped region The components. 13. The device of claim 12, wherein the carborane cluster molecule has an ortho-borane molecule of the formula. The apparatus of claim 12, wherein the carbon cluster molecule is selected from the group consisting of: 1,5-C2B3h5; ;i, 2_C2B4H6; and 1,2-C2BgH]〇. 15. The device of claim 12, wherein the carborane cluster molecule is an o-carbobane derivative. 16. A method for producing a semiconductor device having a shallow junction region, comprising: providing a first gas and a second gas in a trench, the first gas comprising a first dopant and the second gas comprising a second a dopant; implanting the first dopant into the semiconductor substrate using an ion source; and L = the ion source implanting the second dopant into the semiconductor substrate; The ion source is not turned off between the pusher and the step of implanting the second hand.如. The method of claim 16, wherein the at least one is a CH" milk body and the second gas: a method of length item 16, wherein the first gas and at least one of the systems are BF3. 19. The method of claim 16, further comprising: implanting the second dopant with & implanting the ion source into the semiconductor substrate, the 4 impurity and implanting the same Between the steps of the three dopants 130168.doc 200903596 2021.22. 23. 24. 25. 26. 27. 28. 29. The ion source is not turned off. • The method of claim 19, wherein the gas and the first _ $ ^ φ ^ > the debris system is included in at least one of the first Czochralski-rolling body. The method of claim 19, wherein the impurity is fluorine, and the ^r _A 》Milk carbon The second erbium-doped and lanthanide-doped system is boron. The method of claim 19, wherein a dopant and a 兮篦-" impurity system are implanted into the first object and the third In the case of the object of claim 16, the method of claim 16 is further characterized in that the step U is a small depth, and the third gas is provided in the storage tank having the first gas and the first emulsion.The method of claim 23, wherein the first second gas is the source gas of the gas produced by the system, the fluorine source gas of the system A, and the body. The younger gas system boron source gas: claim The method of 23, wherein at least one of the first gas and the third gas is a source of a dopant species selected from the group consisting of phosphorus and arsenic. The method of claim 16, wherein the first dopant is a fluorine dopant, boron, a gas, and the indium and antimony. The second and second method of claim 16, wherein the first device & /, "the younger dopant and the second dopant are - are fluorine, and the first The dopant and the second dopant are further boron. As in the method of claim 16, the method further comprises: annealing the dopant and at least the second dopant to activate The first to form a shallow junction 130168.doc 200903596 ' wherein at least one of the first dopant and the second dopant functions To limit the diffusion of boron. I30168.doc 4-
TW097111528A 2007-03-30 2008-03-28 Method of forming ultra-shallow junctions for semiconductor devices TWI393175B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US92119107P 2007-03-30 2007-03-30

Publications (2)

Publication Number Publication Date
TW200903596A true TW200903596A (en) 2009-01-16
TWI393175B TWI393175B (en) 2013-04-11

Family

ID=39808641

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097111528A TWI393175B (en) 2007-03-30 2008-03-28 Method of forming ultra-shallow junctions for semiconductor devices

Country Status (3)

Country Link
KR (1) KR20090127366A (en)
TW (1) TWI393175B (en)
WO (1) WO2008121620A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612731A (en) * 2009-11-11 2012-07-25 艾克塞利斯科技公司 Method and apparatus for cleaning residue from an ion source component

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110021011A1 (en) 2009-07-23 2011-01-27 Advanced Technology Materials, Inc. Carbon materials for carbon implantation
JP5919195B2 (en) * 2009-10-27 2016-05-18 インテグリス・インコーポレーテッド Ion implantation system and method
KR101131965B1 (en) * 2010-07-15 2012-04-04 주식회사 하이닉스반도체 Method for fabricating semiconductor device
CN108565198A (en) 2012-02-14 2018-09-21 恩特格里斯公司 Carbon dopant gas for improving injected beam and source performance life and coflow
CN105849869B (en) * 2013-11-26 2017-08-11 瓦里安半导体设备公司 The method for handling workpiece

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412129B1 (en) * 2001-04-30 2003-12-31 주식회사 하이닉스반도체 Method for forming junction in semiconductor device
KR101297917B1 (en) * 2005-08-30 2013-08-27 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation
US20070178679A1 (en) * 2006-01-28 2007-08-02 Varian Semiconductor Equipment Associates, Inc. Methods of implanting ions and ion sources used for same
EP2026889A4 (en) * 2006-06-12 2011-09-07 Semequip Inc Vapor delivery to devices under vacuum

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612731A (en) * 2009-11-11 2012-07-25 艾克塞利斯科技公司 Method and apparatus for cleaning residue from an ion source component
CN102612731B (en) * 2009-11-11 2016-03-16 艾克塞利斯科技公司 For removing the method and apparatus of residue from ion source component

Also Published As

Publication number Publication date
WO2008121620A1 (en) 2008-10-09
KR20090127366A (en) 2009-12-10
TWI393175B (en) 2013-04-11

Similar Documents

Publication Publication Date Title
US20100112795A1 (en) Method of forming ultra-shallow junctions for semiconductor devices
US8198180B2 (en) Ion implanted substrate having capping layer and method
TW200903596A (en) Method of forming ultra-shallow junctions for semiconductor devices
CN102687254B (en) For the method forming NMOS epitaxial layer
US8298887B2 (en) High mobility monolithic p-i-n diodes
US7919402B2 (en) Cluster ion implantation for defect engineering
US6995075B1 (en) Process for forming a fragile layer inside of a single crystalline substrate
CN108431925A (en) Lossless reinforcing to the dopant diffusion of substrate
KR20030064395A (en) Atomic layer doping apparatus and method
KR20140012727A (en) Methods and apparatus for conformal doping
CN107342216A (en) Plasma-activated conforma dielectric film deposition
TW200842951A (en) An ion implantation device and a method of semiconductor manufacturing by the implantation of molecular ions containing phosphorus and arsenic
TW200945425A (en) Removal of surface dopants from a substrate
JP2013030773A (en) Method for transferring monocrystalline semiconductor layer onto support substrate
CN102150241A (en) Improved cleaving of substrates
US8476142B2 (en) Preferential dielectric gapfill
TW201133566A (en) Pressurized treatment of substrates to enhance cleaving process
MacCrimmon et al. Gas cluster ion beam infusion processing of semiconductors
US20100264458A1 (en) Method for manufacturing heterostructures
Current et al. Process integration issues for doping of ultrashallow junctions
King et al. Suppression of arsenic autodoping with rapid thermal epitaxy for low power bipolar complementary metal oxide semiconductor
EP1192299A1 (en) Doping of crystalline substrates
Ramírez et al. RBS-study of Ge xSi1-x Compounds Formed by Variable Dose Ge Implantation into Si Wafers
Pinter et al. Plasma immersion ion implantation for shallow junctions in silicon
Velichko et al. Simulation of plasma assisted doping of silicon

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees