TW200903184A - Optical correction element and method for the correction of temperature-induced imaging aberrations in optical systems, projection objective and projection exposure apparatus for semiconductor lithography - Google Patents
Optical correction element and method for the correction of temperature-induced imaging aberrations in optical systems, projection objective and projection exposure apparatus for semiconductor lithography Download PDFInfo
- Publication number
- TW200903184A TW200903184A TW97112516A TW97112516A TW200903184A TW 200903184 A TW200903184 A TW 200903184A TW 97112516 A TW97112516 A TW 97112516A TW 97112516 A TW97112516 A TW 97112516A TW 200903184 A TW200903184 A TW 200903184A
- Authority
- TW
- Taiwan
- Prior art keywords
- liquid layer
- projection exposure
- exposure apparatus
- optical
- liquid
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7095—Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
- G03F7/70958—Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/0892—Catadioptric systems specially adapted for the UV
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/008—Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70225—Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70258—Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Lenses (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
200903184 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種用於光學系統的光學修正元件、—種 用於修正光學系統中之溫度誘導成像像差的方法,及—種 用於半導體光刻的投影曝光裝置’而該光學修正元件及节 方法被用於該投影曝光裝置中。 x 【先前技術】 圖1說明一個先前技術的用於半導體光刻之投影曝光 裝置1。此裝置用於在感光性材料所塗佈的基板上曝^結 構(該基板一般主要由矽所組成,且被稱為晶圓2),以用σ 於製造諸如電腦晶片之類的半導體組件。 在此狀況下,投影曝光裝置i本質上包含:照明裝置3. 用於容納並準確定位具備結構的遮罩的裝置4;所謂的主 光罩5,用以確定晶圓2上之後結構;用於精確地=裝、 移動、並準確定位該晶圓2的裝£ 6;成像裝置(亦即, 投影物鏡7)’具有藉由支架9而安裝在投影物鏡7之物 鏡外殼10中的複數個光學元件8。 在此狀況下,基本的功能原則係將引入至主光罩5中白, 結,成像在晶圓2上;此成像作業通常以縮小方式實施’ 步=光二f已完成之後,晶圓2便在箭頭方向上被進- 個別場域被二t自门具有由主光罩5所指定的結構的眾多 壯j域被曝路在同—晶圓2上。由於晶圓2在投影曝夫 裝置1中之逐步前進移動, # 被稱為步進機。 “4先裝置1經常亦 97112516 200903184 …月裝置3提供一個投影束11 (例如,光或類似的電磁 輕射),其係將主光罩5成像至晶圓2上所需的。雷射或 ,八類似者可被用作為此輕射之來源。輕射係在照明裝置3 中之成I係藉由光學元件而以使投影束丨丨在照射在主 光罩5上時具有相關於直徑、偏振、波前形狀、及其類似 者之所要特性的方式而達成。 藉由光束11,主光罩5之影像得以產生,且以相應的 縮】方式由技衫物鏡7轉移至晶圓2,如上文已經解釋 的。投影物鏡7具有眾多個個別折射、繞射、及/或反射 光學元件,諸如,透鏡、鏡子、稜鏡、終端板(terminating plate)、及其類似者。 被形成為(例如)透鏡且配置在投影曝光裝置中的光學 元件8,在光刻過程期間發熱,使其發生影像像差,如此 可能會使實現所希望結構的成像更加困難或甚至變得不 可能。透鏡之發熱,係由在透鏡材料及層材料内(例如, 〇抗反射層内)對用於曝光的特定波長的有用輻射之吸收而 導致。為了能在儘管所使用的光學元件8有所述發熱的情 況下亦可能以所需精度實現所要結構之成像,通常要執行 藉由諸如操縱透鏡之類的操縱器之修正。該等透鏡可(例 如)被移位、傾斜、或者變形。如此造成對透鏡之主動更 改’使得,由於投影物鏡之光學設計内之該等透鏡之更改 後位置、或被更改的透鏡幾何形狀之結果,而出現修正效 應。由於透鏡内之更改的折射率之結果而導致修正效應的 才呆縱器,亦為已知的。 ' 97112516 7 200903184 一然而僅特疋衫像像差可藉由主動修正來修正。可由較 Γ7ΡΙ的I向及方位多項式之函數來描述的波前像差,通常 難以修正。通常僅可針對較低階像差建立機械形變,使得 對波幻之王面修正是不可能的。波前像差在此處是指與理 心球面波的相位偏差,其在理想狀況下會聚於所希望的影 種用於解決所述問題之方法,陳述於中請人之國際專 利申明案W0 2006/053751 A2中。該文件描述尤其是用於 修正上述熱誘導影像像差的各種方法。 、 【發明内容】 本發明之目標為提出一種方法及裝置,藉由此等方法及 裝置,光學系統、特別是用於半導體光刻的投影物鏡中之 熱誘導成像像差,可被快速、簡單且有效地修正。 此目標係藉由申請專利範圍第1項中描述之方法、且亦 #由具有申請專利範圍第&33及37項中所提出之特徵 U之裝置來達成。附屬項係關於本發明之有利的變化例或實 本發明之光學系統之溫度料成像像差之修正方法,係 :用配置在光學系統中之液體層來達成上述修正。與自先 ί技術得知之方法相對比,對成像像差之補償係依 光學上有用的輕射之吸收而形成於液體層中的非均句溫 ί::來f成。在此狀況下,光學上有用的輕射被理解為 ::::學系統按計劃使用時穿過與光學系統相關聯 予7"件的光學輕射。以實例說明之,半導體光刻中之 97112516 200903184 投影物鏡之光學上有用的輻射,為用於將主光罩之結構成 像至晶圓上的紫外線輻射。 由於光學上有用的輻射本身被用於修正,所以,可以簡 單且有效的方式達成(尤其)對光學系統之溫度誘導成像 像差之自我補償。假設:液體層中所使用的光學上有用的 輻射之強度分布,係對應於系統之大部分的剩餘光學元件 中之強度分布,以及,由液體層中之吸收所產生的溫度分 布因此實質上對應於光學上有用的輻射之強度分布;可精 轉地做出如下假設:在溫度誘導成像像差為最大的區域 中,液體層之修正效應亦為最大的。 液,層,修正效應本質上係基於以下事實:由於液體層 中之/JDL度麦化,折射率亦局部地變化。此種折射率之變化 在入射光輻射之波说過程中導致局部變化,而在適當選擇 液體層之特性的情況下,可精確地補償其與理想波前之誘200903184 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD The present invention relates to an optical correction element for an optical system, a method for correcting temperature-induced imaging aberrations in an optical system, and a semiconductor for use in semiconductors A lithographic projection exposure apparatus' and the optical correction element and section method are used in the projection exposure apparatus. x [Prior Art] Fig. 1 illustrates a prior art projection exposure apparatus 1 for semiconductor photolithography. This device is used to expose a structure on a substrate coated with a photosensitive material (which is generally composed mainly of tantalum and is referred to as wafer 2) to fabricate a semiconductor component such as a computer chip with σ. In this case, the projection exposure apparatus i essentially comprises: a illuminating device 3. a device 4 for accommodating and accurately locating a structured mask; a so-called main reticle 5 for determining the structure after the wafer 2; For accurately mounting, moving, and accurately positioning the wafer 2; the imaging device (i.e., the projection objective 7) has a plurality of mountings mounted in the objective lens housing 10 of the projection objective 7 by the bracket 9. Optical element 8. In this case, the basic functional principle will be introduced into the main mask 5 in white, knot, and imaged on the wafer 2; this imaging operation is usually performed in a reduced manner. After the step = light two f has been completed, the wafer 2 will be In the direction of the arrow - the individual fields are exposed to the same wafer 2 by a plurality of strong fields having the structure specified by the main mask 5 from the gate. Since the wafer 2 is gradually moved forward in the projection exposure device 1, # is called a stepper. "4 first device 1 is also often 97112516 200903184 ... month device 3 provides a projection beam 11 (for example, light or similar electromagnetic light), which is required to image the main mask 5 onto the wafer 2. Laser or Eight analogs can be used as a source of light for this purpose. The light system is in the illumination device 3 by means of optical elements such that the projection beam is incident on the main mask 5 with a diameter By means of the beam 11, the image of the main mask 5 is generated and transferred from the objective lens 7 to the wafer 2 in a correspondingly reduced manner. As already explained above, the projection objective 7 has a plurality of individual refractive, diffractive, and/or reflective optical elements such as lenses, mirrors, cymbals, terminating plates, and the like. The optical element 8, which is, for example, a lens and is disposed in the projection exposure apparatus, generates heat during the lithography process, causing image aberrations thereof, which may make imaging of the desired structure more difficult or even impossible. Fever Caused by absorption of useful radiation of a particular wavelength for exposure within the lens material and layer material (eg, within the anti-reflective layer), in order to be able to heat up despite the optical element 8 being used. It is also possible to achieve imaging of the desired structure with the required precision, typically by correction of a manipulator such as a steering lens. The lenses can be displaced, tilted, or otherwise deformed, for example. The change 'causes a correction effect due to the altered position of the lenses within the optical design of the projection objective, or the modified lens geometry. The correction effect is due to the altered refractive index within the lens. The finalizer is also known. ' 97112516 7 200903184 However, only the aberrations of the shirt can be corrected by active correction. The wavefront aberration can be described by a function of the I-direction and the azimuth polynomial. It is usually difficult to correct. It is usually only possible to establish mechanical deformation for lower order aberrations, so that it is impossible to correct the magic of the wave magic. The wavefront aberration is Reference is made to the phase deviation from the spherical surface of the mind, which is ideally concentrated in the desired mode for solving the problem, as described in the International Patent Application No. WO 2006/053751 A2. This document describes various methods, inter alia, for correcting the above-described thermally induced image aberrations. SUMMARY OF THE INVENTION The object of the present invention is to provide a method and apparatus by which optical systems, in particular semiconductors, are used. The thermally induced imaging aberration in the lithographic projection objective can be corrected quickly, simply and effectively. This object is achieved by the method described in claim 1 and also by the patentable scope & The device of the feature U proposed in the items 33 and 37 is achieved. The accessory item is an improved method of the present invention or a method for correcting the temperature imaging aberration of the optical system of the present invention, which is configured by using the optical system The liquid layer in the middle to achieve the above correction. In contrast to the method known from the prior art, the compensation for imaging aberrations is based on the absorption of optically useful light radiation and the non-uniform temperature in the liquid layer. In this case, an optically useful light shot is understood to be an optical light shot through a 7" piece associated with the optical system when the ::: system is used as intended. By way of example, the optically useful radiation of the projection objective of the 97112516 200903184 semiconductor lithography is the ultraviolet radiation used to image the structure of the main reticle onto the wafer. Since the optically useful radiation itself is used for correction, self-compensation of temperature-induced imaging aberrations of the optical system can be achieved in a simple and effective manner. It is assumed that the intensity distribution of the optically useful radiation used in the liquid layer corresponds to the intensity distribution in the remaining optical elements of the majority of the system, and that the temperature distribution produced by the absorption in the liquid layer therefore substantially corresponds The intensity distribution of the optically useful radiation; the following assumptions can be made: in the region where the temperature-induced imaging aberration is the largest, the correction effect of the liquid layer is also the largest. The liquid, layer, and correction effects are essentially based on the fact that the refractive index also varies locally due to the /JDL degree in the liquid layer. This change in refractive index causes local variations in the wave theory of incident light radiation, and can accurately compensate for the ideal wavefront temptation in the case of proper selection of the characteristics of the liquid layer.
Ci在此狀況下,液體層可實質上垂直於系統之光軸而橫向 地乙伸,且尤其可形成為一個液體平面平行板。 在本發明之替代實施例中,液體層可形成為具有至少一 個曲面的液體透鏡。 /平面平行板之厚度、或液體透鏡之幾何參數,可在光學 操作期間保純定,因為,對成像縣之補償並非 形狀之變化而達成’而是如上文已描述的,該補 ^係糟由液體中折射率分布之變化來達成。換言之,例 如,用作為定界元件的兩個平面平行板,係以相對於彼此 97112516 200903184 而固定的方式予以配置。 、特定而言,作為用於形成本發明之液體層的液體,水已 1被證實具有價值。在193nm之波長下,水具有大約_⑽彻^ .的大折射率負溫度係數dn/dT。此量值大約為石英的五倍, 但展現相反正負號。前述材料常數之差異因此可被有利地 用於補償光學系統中之成像像差。由於在水中對前述波長 的電磁幸畐射之吸收比石英之狀況下大一個數量級以上,所 ρ以,水内之局部加熱亦將被快速地實現。 作為使用水之替代方案,其他液體亦為適當的,·因此, ,如,有帛的候選物為所謂的高折射率㈣。值得一提之 實,包括:環己烧(其具有193_韻折射率(接近於 英玻埚之折射率))、或十氫萘(其具有近乎之折射 率)。 在本發明之一個有利變化例中,液體層之光學特性可被 设定在某一範圍内。以此方式,可補償諸如透鏡或層之光 〇學兀件中的吸收波動,其可能有害地影我補償液體層 之有齡。此種設定之有利可能性在於,藉由添加諸如氣 化鈉、氯化鈣、或碘化鉀之類的鹽類(其皆在水中具有非 常好的可溶性)’來更改液體層之吸收特性。通常,吸收 效果將隨著鹽之濃度而上升,使得,從某—起始濃度開 始,且在系統之校準步驟期間更改液體層之吸收直至最佳 地設定自我補償為止,總是有利的。 :成為液體平面平行板的液體層,尤其可被配置在兩個 實質上平面平行的板之間,而該兩個板含有石英玻璃或 97112516 200903184 含所提及的材料。所提及的兩種物質為常規的 ==好控制的材料,其廣泛用於光學系統中’且其特 性已為吾人所熟知。 對於千面平行板含右I # 與兩個實質上平= :破璃之狀況’若液體層之厚度 的板之總厚度之比介於0.2與1.0 ^ 土"於〇.25與〇.75之間、尤其較佳介於0.3與 0.5之間,則此狀況為有利的。 :::平行板含有CaF2,則在液體層之厚度與兩個實質 ί平:平行的板之總厚度之比介於o.m.o之間、較佳 下,此狀況為有利的其μ介於。.5幻之間的情況 下’兩個實質上平面平行的板之總厚度可尤其 在介於1. 5 mm盘]5 mm + 0日,…> 12麗之間。職之間的範圍内、較佳在2麗與 為了改良或確保根據本發明之光學修正元件之功能 性’減少或防止液體層内之 .. VL+. ^ A /夜體之對流為有利的。對流現 象具有千抑A者液體層之橫向範圍的溫差之作用,夢此終 ==二為了減少所述之不利效應,額外的二" 配置在液體層中。 在此狀況下,前述額外的元件尤其會 的部分空間,而該等空間係相 :萬狀或㈣ 液體層。 f於彼此而封閉,且細分了 在本發明之—個有利變化例中,液 周圍材料在冷狀態下的折射率 :羊被調正為 千猎此達成的是,由額外的 97112516 200903184 冷狀態下具有光學均#外觀,且不 在本發明之另-實施例中,存在額外的溫度調節元件, 用於修改液體層中之溫度分布。以此方式,以對準目標且 空間上局部的方式加熱液體層,以達成精細調整之目的、 f增強靈活性之目的。如此可以採用適合於光學修正元件 操作期間之各別的使用條件的方式進行。在此狀況下,經 由作為電阻加熱元件的細導線之電阻,實現電加熱,尤其 被n且只具有彳貝值,而該等電阻加熱元件係以網格形式或替 代的幾何排列,被裝設在鄰接於液體層的定界元件之表面 之内側上。視導線數目之不同’可因此建立可被設定的溫 度分布之不同空間解析度。 、一個關於加熱㈣代可能性為训紅外線_。在此狀 、下應考慮至j 如’水僅在用於光學應用的相對較窄 的光譜範圍中為域透明,且水在接近“m以上的光譜 範圍中具極強吸收性。為了將IR輻射最佳地耦合至水 中,周圍材料在所考慮的波長下不應具過高吸收性。 在此狀況下,可藉由相關於修正元件而橫向地裳設的複 數個光學系統㈣合IM|射。此外’可構想,使用諸如 光、戴之類的光波導(〇ptlcal刪卿^)的直接柄合。 上述方法及所同樣描述的光學修正元件,可特別有利地 應用於半導體光刻之投影曝光裝置中。 在此狀況下,本發明之修正元件在投影曝光裝置中之位 置之有利選擇’在於將光學修正元件配置在與瞳孔平面相 97112516 12 200903184 距一段距離處,而該距離係對應於大於〇 7之次孔徑比 (subaperture ratio) ° 對於在給定孔徑下將-個具有最大目標物高度的目標 物場域成像至-個成像場域上的光學系統,將次孔徑 以 〃 IR-H|/(|R-H|+|H|), 其中’從一個最大目標物高度之目標物點出發,R為邊 緣光線高度,而H為主光 (.、如Ύ 元琛间度,而且,此等光線高度係 (在平行於光學系統之瞳孔平面的給定平面上量測得的。 二:㈣採用介於0與1之間的值。次孔徑比之值在光 予糸統之母一曈孔平面中為卜而在光學系統之每-場平 面中則為0。 琢卞 此定義被㈣被制於半導體光収投影衫器件,因 2 ’視投影光學ϋ件之不同’此等投影光學器件係針對最 二標物南度及最大孔徑而進行修正。結果,最大目標物 J2及孔徑自然被指派給諸如光學系統之類的投影光學 II仵。 通常,投影曝光装晉/会,, 置之像差的取大成因’來自於所謂的 ^ 而其可在瞳孔區域中得到最有效地修正。此 夕目里孔平面之區域即為對於葬由氺與你T:-从工丑 像像差修正特別有利的2 ^先予修正70件而執行影 于⑴百矛J的位置,因為,經由瞳孔平面 測替=成對像平面之每—位置的成像之同等類型修改。 "貞外地,舉例而言,本發明之另—種修正元件, w 場平面而配置’或配置在場平面與瞳孔平面之間 97112516 13 200903184 的中間處’以實現額外的修正效應。 所述方法及本發明之光學元件之修正潛能,特別顯現在 具:適於產生偶極照明的照明裝置的投影曝光裝置中。在 、等狀況下,可假設,投影曝光裝置之光學元件中的吸收 光強度之特別非均勻分布。 夕=由光學上有用的㈣照射通過本發明之修正元件許 特別疋兩次,前述修正潛能甚至可進一步增加。 字參看圖式在下文中提出關於本發明及一些例示性實 施例之基本考量。 【實施方式】 ^、2展不—個例示性的光學修正元件Μ,其具有被形 "'、平面平仃板的兩個定界元件Μ及Μ。在本實例中被 :成為水層的液體層24,被分別配置在兩個定界元件 /、23之間。不言而喻,亦可想到除水以外的用於液體 二骑、之液體(例如’諸如環己烧或十氫萘之類的高折射率 —此甘疋界疋件22及23可包含石英玻璃或CaF2、或者 他材料。為了調整液體層24之光學特性,液體層 σ 、〗也δ有諸如氣化鈉、氣化鈣、或碘化鉀之類的鹽類。 3a: 3清楚地說明本發明之基礎原理。在圖式左邊的圖 圖3展不罪近於曈孔的非均勻受熱的透鏡元件25 $干擾波前。在此狀況下’可將對透鏡元件25之非均 明太:知因於偶極照明。為了比較,圖式右邊的圖3b說 5明之具有液體層24及定界元件22及23的光學修 το件21之受干擾波前。圖3清楚地顯示:除各自正負 97112516 200903184 號以外’波前之干擾實際上是相等的。因此,可經由液體 層24之厚度之適當選擇,以獲得修正效應。 圖4之圖4a及4b展示修正後的波前(場域中心)的說 明。在此狀況下,圖4 a展示藉由先前技術的排他性主動 操縱器進行修正之後的波前,而圖4b說明藉由本發明之 修正元件進行補償之後的波前。可清楚地看出,藉由本發 明之修正元件對波前之修正,明顯較佳。 圖5展示具有兩個摺疊鏡之反射折射投影物鏡 (catadioptric projection objective)?的第一例示性 實施例,其中配置有兩個本發明之修正元件2丨。在此狀 況下,諸修正元件21各自包含兩個未在圖式中更詳細地 表示的平面板,而該等平面板之間的空間被水所填充。以 此方式,達成對由周圍光學元件(未在圖5中更詳細 示)之發熱而改變的波前之補償。不+ 队 乂 Ά不5而喻,本發明之修 正元件21可配置在投影物鏡7内之任何所要位置處> 圖5中所說明的設計之諸項參數將以表格形式 下文中。在此狀況下,以常見方式,連續的編號表示所考 慮的系統中之光學元件之各別的表面之順序。 考 以下的非球面公式對「非球面常數 ' 數適用: ―」表格巾所指示的參 P(h) = + C^+C2h6+... 的有關表面之矢量 r為有關表面之曲率 在此狀況下’ P為平行於光車由 (sagitta),h為與光軸的徑向距離, 97112516 15 200903184 半徑,K為錐形常數,而Cl、C2.......為表中所存在的非 球面常數。 表面 半徑 厚度 玻璃 193.3€8 nm 1/2直徑 0 0.000000 30.000000 空氣 1,00000000 63,500 1 o.iooooo -0.006100 空氣 1,60000000 74.287 2 153*564030 46.16336? SX02 1.5801&B11 B3.057 3 -330.50100S Αέ 1.000&51 空氣 X,00000000 B2.S04 4 252.Π2090 10.1S401T S102 1.56018811 80.Q45 5 10$.950677 20.700583 空氣 i.00000000 74-724 6 124.315093 35.166224 S202 l.kbiem 79.8-Ϊ9 7 461.7828S9 12.333505 空氣 1.00000000 8 1J3i2.6788^"' AS 27.1502U SI02 1.5601Θ811 77.413 9 -17X.23707« 13.0505«! 空氣 l.QOQOOOQO 77.239 10 -3421,712832 18.733Χβ€ SI02 1.5C018&U ~'~ 63.936 11 -199.917519 AS 2,$28&$S 空氣 1.00000000 61.822 12 〇.〇〇〇〇〇〇 5.000000 SI02 1>S60180X1 54.797 13 〇.〇〇〇〇〇〇 3.000000 ui6 1.42610227 53.102 14 O.OODOGO 5.000000 sioi 1.56018611 51,999 15 〇.〇〇〇〇〇〇 14.352674 空氣 00000000 Γ 50.324 16 -663.001556 14.487511 sr〇2 1.$6013811 46.997 17 -176.872Θ78 17.B49517 空氣 1.00000000 4S.819 16 〇.〇〇〇〇〇〇 5.000000 sioa 1.56018811 S7.S52 19 〇.〇〇〇〇〇〇 3.000000 H20 1.4361Θ227 58.96^ 20 〇.〇〇〇〇〇〇 5.000000 SI 02 1.S60188U 59.€24 21 〇.〇〇〇〇〇〇 4d.793011 —空氣_I X.OOOOOOGO ^0.635 22 -334.S29326 21.297S20 5102 lr5€0iseu 73.819 23 -152.413035 B.S12980 1,00000000 *76.421 24 -130,412851 9.998456 S102 1,5601B811 7T.007 25 •157.266636 3β.990723 1.00000000 81.222 26 〇.〇〇〇〇〇〇 222.908912 l.QOQOOOOO 93.101 27 -186.564171 AS -222.908912 REFL· 1.00000000 161.077 28 171.41^188 AS 222.903912 RSFL 1,00000000 137.401 29 o.qooooo 66.222340 空氣 1,00000000 105.690 30 413,994571 32.308650 SI02 l.seoieeix X11.145 31 -758.622&0Θ 28.63588? 空氣 1.oooooooo 110.634 32 -S55.998871 21.SeeS3_S SI02 1.56018811 105.180 33 1524.^8709$ AS ¢.947667 空氣 1.00000000 103.924 34 262.039412 18.703407 5102 1,S$018811 SS.421 35 124.828140 41.^0588« 2氣 1,00000000 84.348 36 -904,702595 AS 12.559987 SI02 1.56018811 ^4.028 37 131.44494? 22.233392 空叙 1.00000000 82.766 38 2BS.3&2*m AS 11.620577 έι〇2 1.56018811 85.404 33 1424.680258 2$.330510 空氣 1.00000000 87.S66 40 -21B.823450 10.143335 SI02 i.&^oiean SO.145 41 -S06.939484 AS 1.481794 空氣 1.oooooooo 104.660 42 $03.634623 AS 45.5^924 5102 1.560188U 1X3.183 43 -381.334550 1.007701 空氣 1,&〇〇〇〇〇〇〇 124.528 44 -3667.499392 AS S2.S29718 SX02 1.560X8811 133.S64 45 Ί86.4Θ5102 0.337179 空奴 1,00000000 U9.12€ 46 603.514905 AS 47.213007 SI02 157.657 47 •404.4€5866 1.492986 空氣 1 .oooooooo XS8.9^ 4d 463.934249 42.571520 S102 1.56018811 157.557 Λ9 -29604.6^4485 AS 5.695912 1.00000000 156.1« SO 〇.〇〇〇〇〇〇 〇.〇〇〇〇〇〇 空氣 1.00000000 154.21θ 51 0.000000 -4.75187$ 空氣 1.00000000 154.218 52 452.363951 57.278451 SI02 x.5€018dll 152.299 S3 -566.149653 AS 1.149493 空氣 i.oooooooo ISO.626 Si 114.035594 60.87056^ SI02 1.S6018811 ^9.77^ 55 1030.454633 AS 1.035245 空氣 1.00000000 SO.468 S6 61.122059 43.376716 έί〇2 1.560188X1 51.345 57 O.OODOOO 3.100000 Κ20 a.43618227 5Θ 〇.〇〇〇〇〇〇 〇.〇〇〇〇〇〇 Κ20 〇.〇〇〇〇〇〇〇〇 X5.ai6Ci In this case, the liquid layer can extend laterally substantially perpendicular to the optical axis of the system, and can in particular be formed as a liquid planar parallel plate. In an alternative embodiment of the invention, the liquid layer can be formed as a liquid lens having at least one curved surface. / The thickness of the plane parallel plate, or the geometrical parameters of the liquid lens, can be guaranteed during the optical operation, because the compensation for the imaging county is not the change of the shape; but as described above, the This is achieved by a change in the refractive index distribution in the liquid. In other words, for example, two plane parallel plates used as delimiting elements are arranged in a fixed manner with respect to each other 97112516 200903184. In particular, water has proven to be of value as a liquid for forming the liquid layer of the present invention. At a wavelength of 193 nm, water has a large refractive index negative temperature coefficient dn/dT of about _(10). This amount is about five times that of quartz, but it shows the opposite sign. The aforementioned difference in material constants can thus be advantageously used to compensate for imaging aberrations in the optical system. Since the absorption of the electromagnetic wave of the aforementioned wavelength in the water is more than an order of magnitude larger than that of the quartz, local heating in the water will also be rapidly achieved. As an alternative to the use of water, other liquids are also suitable, and therefore, for example, the candidate for defects is a so-called high refractive index (four). It is worth mentioning that it includes: cyclohexene (which has a refractive index of 193_ rhyme (close to the refractive index of the British glass)), or decahydronaphthalene (which has a near refractive index). In an advantageous variant of the invention, the optical properties of the liquid layer can be set within a certain range. In this way, absorption fluctuations in the optical element, such as a lens or layer, can be compensated for, which can adversely affect the age of the liquid layer. An advantageous possibility for such a setting is to modify the absorption characteristics of the liquid layer by adding a salt such as sodium carbonate, calcium chloride, or potassium iodide (all of which have very good solubility in water). Generally, the absorption effect will increase with the concentration of the salt, so that it is always advantageous to start from a certain initial concentration and change the absorption of the liquid layer during the calibration step of the system until the self-compensation is optimally set. : A liquid layer that becomes a liquid planar parallel plate, in particular can be arranged between two substantially planar parallel plates, the two plates containing quartz glass or 97112516 200903184 containing the materials mentioned. The two substances mentioned are conventional == well controlled materials which are widely used in optical systems' and their characteristics are well known. For a thousand parallel plates with right I # and two substantially flat =: the condition of the broken glass 'If the thickness of the liquid layer is greater than the thickness of the plate between 0.2 and 1.0 ^ soil " Yu 〇.25 and 〇. This situation is advantageous between 75, particularly preferably between 0.3 and 0.5. ::: The parallel plate contains CaF2, and the ratio of the thickness of the liquid layer to the total thickness of the two substantially flat: parallel plates is between o.m.o, preferably, this condition is advantageous for μ. In the case of .5 illusion, the total thickness of the two substantially parallel plane plates may be particularly between 1. 5 mm disk] 5 mm + 0 day, ... > It is advantageous to reduce or prevent the convection of the VL+.^A/night body in the liquid layer within the range between the job, preferably in order to improve or ensure the functionality of the optical correction element according to the invention. The effect of the convective phenomenon on the temperature difference of the lateral extent of the liquid layer with a thousand A, dreams of == two in order to reduce the adverse effects described, the additional two " is disposed in the liquid layer. In this case, the aforementioned additional elements are particularly a part of the space, and the space is in the form of a 10,000 or (iv) liquid layer. f is closed to each other, and subdivided in an advantageous variant of the invention, the refractive index of the material around the liquid in the cold state: the sheep is tuned to a thousand hunters which is achieved by the additional 97112516 200903184 cold state There is an optical appearance, and in another embodiment of the invention, there is an additional temperature regulating element for modifying the temperature distribution in the liquid layer. In this way, the liquid layer is heated in a targeted and spatially localized manner for the purpose of fine adjustment, f for enhanced flexibility. This can be done in a manner suitable for the respective conditions of use during operation of the optical correction element. In this case, electrical heating is achieved via the electrical resistance of the thin wire as the resistive heating element, especially n and only has a mussel value, and the resistive heating elements are arranged in a grid form or an alternative geometric arrangement. On the inside of the surface of the delimiting element adjacent to the liquid layer. The difference in the number of visible conductors can thus establish different spatial resolutions of the temperature distribution that can be set. One is about the possibility of heating (four) generation for training infrared _. In this case, the following should be considered to be such that 'water is only transparent in the relatively narrow spectral range for optical applications, and water is highly absorptive in the spectral range close to "m". The radiation is optimally coupled into the water and the surrounding material should not be overabsorbed at the wavelengths considered. In this case, a plurality of optical systems (four) can be laterally disposed by the correction element. In addition, it is conceivable to use a direct shank of an optical waveguide such as light or ray. The above method and the optical correction element described similarly can be particularly advantageously applied to semiconductor lithography. In the case of a projection exposure apparatus, in this case, an advantageous choice of the position of the correction element of the present invention in the projection exposure apparatus is to arrange the optical correction element at a distance from the pupil plane phase 97112516 12 200903184, and the distance corresponds to Subaperture ratio greater than 〇7 ° For an optical field on a target field that images the target field with the largest target height at a given aperture The subaperture is 〃 IR-H|/(|RH|+|H|), where 'from the target point of a maximum target height, R is the edge ray height, and H is the main light (., Such as Ύ 琛 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The value is 0 in the pupil plane of the mother of the light system and 0 in each field plane of the optical system. The definition is (4) is made in the semiconductor light-receiving projector device, because 2 'view The difference between the projection optics is that these projection optics are corrected for the second and maximum apertures of the second standard. As a result, the maximum target J2 and aperture are naturally assigned to projection optics II such as optical systems. Usually, the projection exposure is promoted, and the cause of the aberration is 'from the so-called ^ which can be most effectively corrected in the pupil area. The area of the hole plane is the funeral氺 and you T:- From the work ugly image aberration correction is particularly advantageous 2 ^ first corrected 70 pieces and executed Aiming at the position of (1) a hundred spears J, because the pupil type plane is replaced by the same type of modification of the image of each position of the pair of image planes. "贞外地, for example, another correction element of the present invention, w Field plane is configured 'or configured in the middle of the 97112516 13 200903184 between the field plane and the pupil plane to achieve additional correction effects. The method and the correcting potential of the optical component of the present invention are particularly useful in: In a projection exposure apparatus for an illumination device that produces dipole illumination, it is assumed that the intensity of the absorbed light in the optical element of the projection exposure apparatus is particularly non-uniformly distributed in the case of, etc. 夕 = optically useful (four) illumination through the present The correction element of the invention is specially made twice, and the aforementioned correction potential can be further increased. Words Referring to the drawings below are the basic considerations of the present invention and some exemplary embodiments. [Embodiment] ^, 2 shows an exemplary optical correction element Μ, which has two delimiting elements Μ and 被 which are shaped "', planar flat 仃. In the present example, the liquid layer 24 which becomes the water layer is disposed between the two delimiting elements /, 23, respectively. It goes without saying that liquids for liquid two rides other than water (for example, 'high refractive index such as cyclohexene or decahydronaphthalene') may also be considered. The garnet elements 22 and 23 may comprise quartz. Glass or CaF2, or other material. In order to adjust the optical properties of the liquid layer 24, the liquid layer σ, δ also has a salt such as vaporized sodium, calcium carbonate, or potassium iodide. 3a: 3 clearly illustrates the invention The basic principle. Figure 3 on the left side of the figure shows the non-uniformly heated lens element 25 $ interference wavefront that is close to the pupil. In this case, the non-uniformity of the lens element 25 can be made: For comparison, Figure 3b on the right side of the figure shows the disturbed wavefront of the optical repair element 21 with the liquid layer 24 and the delimiting elements 22 and 23. Figure 3 clearly shows: except for the positive and negative 97112516 The interference of the wavefronts outside of 200903184 is actually equal. Therefore, the correct effect can be obtained by appropriate selection of the thickness of the liquid layer 24. Figures 4a and 4b of Figure 4 show the corrected wavefront (field center) In this case, Figure 4a shows the first The prior art exclusive active manipulator performs the wavefront after the correction, and FIG. 4b illustrates the wavefront after the compensation by the correction element of the present invention. It can be clearly seen that the correction of the wavefront by the correction element of the present invention is apparent. Preferably, Fig. 5 shows a first exemplary embodiment of a catadioptric projection objective having two folding mirrors, in which two correction elements 2 of the invention are arranged. In this case, the corrections are made. The elements 21 each comprise two planar plates which are not shown in more detail in the drawing, and the space between the planar plates is filled with water. In this way, the pair of surrounding optical elements is achieved (not in Fig. 5 The compensation of the wavefront changed by the heat generation is shown in detail. Without the fact that the correction element 21 of the present invention can be disposed at any desired position within the projection objective lens > the design illustrated in FIG. The parameters will be listed below in tabular form. In this case, in a common manner, consecutive numbers indicate the order of the individual surfaces of the optical elements in the system under consideration. The aspherical formula applies to the "aspheric constant" number: ―" The reference surface indicated by the table towel P(h) = + C^+C2h6+... The surface of the relevant surface r is the curvature of the surface in this case 'P Parallel to the sagitta, h is the radial distance from the optical axis, 97112516 15 200903184 radius, K is the cone constant, and Cl, C2....... are the aspheric surfaces present in the table. Constant. Surface radius Thickness glass 193.3€8 nm 1/2 diameter 0 0.000000 30.000000 Air 1,00000000 63,500 1 o.iooooo -0.006100 Air 1,60000000 74.287 2 153*564030 46.16336? SX02 1.5801&B11 B3.057 3 -330.50100 S Αέ 1.000&51 Air X,00000000 B2.S04 4 252.Π2090 10.1S401T S102 1.56018811 80.Q45 5 10$.950677 20.700583 Air i.00000000 74-724 6 124.315093 35.166224 S202 l.kbiem 79.8-Ϊ9 7 461.7828S9 12.333505 Air 1.00000000 8 1J3i2.6788^"' AS 27.1502U SI02 1.5601Θ811 77.413 9 -17X.23707« 13.0505«! Air l.QOQOOOQO 77.239 10 -3421,712832 18.733Χβ€ SI02 1.5C018&U ~'~ 63.936 11 -199.917519 AS 2, $28&$ S Air 1.00000000 61.822 12 〇.〇〇〇〇〇〇5.000000 SI02 1>S60180X1 54.797 13 〇.〇〇〇〇〇〇3.000000 ui6 1.42610227 53.102 14 O.OODOGO 5.000000 sioi 1.56018611 51,999 15 〇.〇〇〇〇〇〇14.352674 Air 000000000 Γ 50.324 16 -663.001556 14.487511 sr〇2 1.$6013811 46.997 17 -176.872Θ78 17.B49517 Air 1.00000000 4S.819 16 〇.〇〇〇〇〇〇5.000000 sioa 1.56018811 S7.S52 19 〇.〇〇〇〇〇 〇3.000000 H20 1.4361Θ227 58.96^ 20 〇.〇〇〇〇〇〇5.000000 SI 02 1.S60188U 59.€24 21 〇.〇〇〇〇〇〇4d.793011 —air_I X.OOOOOOGO ^0.635 22 -334 .S29326 21.297S20 5102 lr5€0iseu 73.819 23 -152.413035 B.S12980 1,00000000 *76.421 24 -130,412851 9.998456 S102 1,5601B811 7T.007 25 •157.266636 3β.990723 1.00000000 81.222 26 〇.〇〇〇〇〇〇 222.908912 l.QOQOOOOO 93.101 27 -186.564171 AS -222.908912 REFL· 1.00000000 161.077 28 171.41^188 AS 222.903912 RSFL 1,00000000 137.401 29 o.qooooo 66.222340 Air 1,00000000 105.690 30 413,994571 32.308650 SI02 l.seoieeix X11.145 31 -758.622&0Θ 28.63588? Air 1.oooooooo 110.634 32 -S55.998871 21.SeeS3_S SI02 1.56018811 105.180 33 1524.^8709$ AS ¢. 947667 Air 1.00000000 103.924 34 262.039412 18.703407 5102 1,S$018811 SS.421 35 124.828140 41.^0588« 2 gas 1,00000000 84.348 36 -904,702595 AS 12.559987 SI02 1.56018811 ^4.028 37 131.44494? 22.233392 Empty 1.00000000 82.766 38 2BS. 3&2*m AS 11.620577 έι〇2 1.56018811 85.404 33 1424.680258 2$.330510 Air 1.00000000 87.S66 40 -21B.823450 10.143335 SI02 i.&^oiean SO.145 41 -S06.939484 AS 1.481794 Air 1.oooooooo 104.660 42 $03.634623 AS 45.5^924 5102 1.560188U 1X3.183 43 -381.334550 1.007701 Air 1,&〇〇〇〇〇〇〇124.528 44 -3667.499392 AS S2.S29718 SX02 1.560X8811 133.S64 45 Ί86.4Θ5102 0.337179 1,00000000 U9.12€ 46 603.514905 AS 47.213007 SI02 157.657 47 •404.4€5866 1.492986 Air 1 .oooooooo XS8.9^ 4d 463.934249 42.571520 S102 1.56018811 157.557 Λ9 -29604.6^4485 AS 5.695912 1.00000000 156.1« SO 〇.〇〇〇〇〇〇〇.〇〇〇〇〇〇air1.00000000 154.21θ 51 0.000000 -4.75187$ Air 1.00000000 154.218 52 452.363951 57.278451 SI02 x.5 €018dll 152.299 S3 -566.149653 AS 1.149493 Air i.oooooooo ISO.626 Si 114.035594 60.87056^ SI02 1.S6018811 ^9.77^ 55 1030.454633 AS 1.035245 Air 1.00000000 SO.468 S6 61.122059 43.376716 έί〇2 1.560188X1 51.345 57 O.OODOOO 3.100000 Κ20 A.43618227 5Θ 〇.〇〇〇〇〇〇〇.〇〇〇〇〇〇Κ20 〇.〇〇〇〇〇〇〇〇X5.ai6
16 97112516 200903184 非球面常數 SAF 3 β 11 27 28 K 0 0 0 -2.1B039 Ό.6Θ0703 C1 •3.89722ae-07 -1.0534〇4e-0*? -3.4482299-08 7.〇〇1822«·〇9 C2 3.0304V?e-12 l.9S1656e-n 4.354829e-ll 2,S26417e-13 1.0385·76β-Χ3 C3 ·7.89β842β·16 , 1.^21835e*15 -7.319113C-15 ·8.929830θΊΘ 1.39ieiSe-18 C4 1.082407e-19 -5·413752β·20 2.242273e~lfi l.(27065e-22 1.79H96e-23 C5 •9.811055e-24 -》.“634le-23 <4.14£641e>22 -3.600583e-27 3.7X7432e-28 C6 5.807496e-28 4.1X8252e-27 4·236689β·26 4.847008e-32 -2.76344£e-33 C7 >l.$73414e-32 -i.4219l5e>31 •1.93833€e-30 -4.094157e-37 ^1.134 82 Oe-37 C6 〇.〇〇〇〇〇〇e-fOO O.OOOOOOe-cOO 〇.〇〇〇〇〇〇e+00 〇.〇〇〇〇〇〇e 4-00 0·000000β+00 C9 0.00000Oe-f00 Q.OOOOOOe-fOO 〇.〇〇〇〇〇〇e4-〇0 Q.OOQOOOe^OO 〇.〇〇〇〇〇〇«400 SRF 33 35 38 41 42 K 0 0 0 0 0 CX -2.2X46Q9e-07 2.13$337e-0B 4.8306$4e-05 1.027731e-07 -4.736874e-08 C2 1.31482Se-U 5.437360e-14 •4.4d3860e-X2 2.857813e-12 4.15X473e*12 C3 3.671489e-17 6.7X7342e-l7 3.907€86e-16 -3.350784e-ie -3.98€368e-lS C4 -7.303224Θ-20 9.3d4699e-20 •1.21S2lSe-19 •2.0U428e-20 1.648316e*20 C5 6 . l87636e-24 -1.576974e-23 l,511307e-23 $.0353S8e>25 -1.556834e^25 C6 -2.508*753e-2B $.180615e-28 -1.438793e-27 δ-1〇82》6β·29 -1.958302Θ-29 C7 4.11l335e-33 •3,402825e-32 6.515194e02 · -2.715308e-33 €.361d$7e>34 C8 0 .OOQOQQe-fOO O.OQOOOOe-i-OO 〇.〇〇〇〇〇〇e+00 〇.〇〇〇〇〇〇e^oo 〇.〇〇〇〇〇〇e+00 C9 O.OOOOOOe-t-OO 〇.〇〇〇〇〇〇e+00 〇.〇〇〇〇〇〇e+oo 〇.〇〇〇〇〇〇e4〇0 〇.〇〇〇〇〇〇e«-00 SRF 44 46 49 53 55 K 0 0 0 0 0 Cl -6.48733Se,ll -S-10dS02e-〇8 2.371342e-08 3.985232e-08 C2 -3.0S1691e-a2 1.615428e-l2 2.β32θ65β-12 -1.830S22e-L2 6-989783e-12 C3 1.412820e-18 1.07S523e-n -l,199B66e-17 -2.74〇022e*LT C4 -1.574059e-21 -7.1003S9e-22 -3.222523e-2l 6.478622e-2l 1.215712Θ-Χ9 C5 -6.2287396-26 -3.197〇$7e-26 1.903111e-25 -2.753936e-2S -l,015927e-23 C6 2.2720〇4e-30 1.463389e-30 -5.2S8535e-30 5.4759S4&-30 5.340O97e-28 C7 〇.〇〇〇〇〇〇e+00 -1.514834e-35 5.663156e>35 -4.4731Xfie-35 -l.l44880e-32 C8 〇.〇〇〇〇〇〇e^oo 〇.〇〇〇〇〇〇e<<O0 〇.〇〇〇〇〇〇e<»00 O.OOOQOOe-fOO 〇.〇〇〇〇〇〇e^oo C9 o.ooooooe-foo 〇.〇〇〇〇〇〇e+oo 0.000000e+00 〇.〇〇〇〇〇〇et-OO 〇.〇〇〇〇〇〇e+oo16 97112516 200903184 Aspheric constant SAF 3 β 11 27 28 K 0 0 0 -2.1B039 Ό.6Θ0703 C1 •3.89722ae-07 -1.0534〇4e-0*? -3.4482299-08 7.〇〇1822«·〇9 C2 3.0304V?e-12 l.9S1656e-n 4.354829e-ll 2,S26417e-13 1.0385·76β-Χ3 C3 ·7.89β842β·16 , 1.^21835e*15 -7.319113C-15 ·8.929830θΊΘ 1.39ieiSe-18 C4 1.082407e-19 -5·413752β·20 2.242273e~lfi l.(27065e-22 1.79H96e-23 C5 •9.811055e-24 -》."634le-23 <4.14£641e>22 -3.600583e-27 3.7X7432e-28 C6 5.807496e-28 4.1X8252e-27 4·236689β·26 4.847008e-32 -2.76344£e-33 C7 >l.$73414e-32 -i.4219l5e>31 •1.93833€e-30 - 4.094157e-37 ^1.134 82 Oe-37 C6 〇.〇〇〇〇〇〇e-fOO O.OOOOOOe-cOO 〇.〇〇〇〇〇〇e+00 〇.〇〇〇〇〇〇e 4-00 0·000000β+00 C9 0.00000Oe-f00 Q.OOOOOOe-fOO 〇.〇〇〇〇〇〇e4-〇0 Q.OOQOOOe^OO 〇.〇〇〇〇〇〇«400 SRF 33 35 38 41 42 K 0 0 0 0 0 CX -2.2X46Q9e-07 2.13$337e-0B 4.8306$4e-05 1.027731e-07 -4.736874e-08 C2 1.31482Se-U 5.437360e-14 •4.4d3860 e-X2 2.857813e-12 4.15X473e*12 C3 3.671489e-17 6.7X7342e-l7 3.907€86e-16 -3.350784e-ie -3.98€368e-lS C4 -7.303224Θ-20 9.3d4699e-20 •1.21S2lSe- 19 •2.0U428e-20 1.648316e*20 C5 6 . l87636e-24 -1.576974e-23 l,511307e-23 $.0353S8e>25 -1.556834e^25 C6 -2.508*753e-2B $.180615e-28 -1.438793 E-27 δ-1〇82》6β·29 -1.958302Θ-29 C7 4.11l335e-33 •3,402825e-32 6.515194e02 · -2.715308e-33 €.361d$7e>34 C8 0 .OOQOQQe-fOO O .OQOOOOe-i-OO 〇.〇〇〇〇〇〇e+00 〇.〇〇〇〇〇〇e^oo 〇.〇〇〇〇〇〇e+00 C9 O.OOOOOOe-t-OO 〇.〇 〇〇〇〇〇e+00 〇.〇〇〇〇〇〇e+oo 〇.〇〇〇〇〇〇e4〇0 〇.〇〇〇〇〇〇e«-00 SRF 44 46 49 53 55 K 0 0 0 0 0 Cl -6.48733Se,ll -S-10dS02e-〇8 2.371342e-08 3.985232e-08 C2 -3.0S1691e-a2 1.615428e-l2 2.β32θ65β-12 -1.830S22e-L2 6-989783e-12 C3 1.412820e-18 1.07S523e-n -l,199B66e-17 -2.74〇022e*LT C4 -1.574059e-21 -7.1003S9e-22 -3.222523e-2l 6.478622e-2l 1.215712Θ-Χ9 C5 -6.2287396-26 -3.197 $7e-26 1.903111e-25 -2.753936e-2S -l,015927e-23 C6 2.2720〇4e-30 1.463389e-30 -5.2S8535e-30 5.4759S4&-30 5.340O97e-28 C7 〇.〇〇〇〇 〇〇e+00 -1.514834e-35 5.663156e>35 -4.4731Xfie-35 -l.l44880e-32 C8 〇.〇〇〇〇〇〇e^oo 〇.〇〇〇〇〇〇e<<O0 〇.〇〇〇〇〇〇e<»00 O.OOOQOOe-fOO 〇.〇〇〇〇〇〇e^oo C9 o.ooooooe-foo 〇.〇〇〇〇〇〇e+oo 0.000000e+00 〇 .〇〇〇〇〇〇et-OO 〇.〇〇〇〇〇〇e+oo
圖6展示投影物鏡7之替代設計,其中使用了三個本發 明之修正元件21。圖6中所說明的投影物鏡7之設計, 係藉由以下事實而顯現:光束路徑被導引成為使光學上有 用的輻射照射穿過位於光束路徑之垂直分支中的修正元 件21’兩次。在此狀況下,在穿過投影物鏡7之過程中, 投影束經由反射元件31、32而自原始方向被偏轉90°。 換言之,投影束在穿過投影物鏡7時展現出T形路線。不 言而喻,亦可構想到或多或少偏離於T形的路線。為了偏 轉投影束,亦可使用偏轉效應不是基於反射效應而是(例 如)基於繞射效應或其他光學效應的光學元件。 圖6所說明的設計之參數將以類似於前述實例之方 式,以表格形式編輯在下文中: 17 97112516 200903184Figure 6 shows an alternative design of the projection objective 7 in which three correction elements 21 of the present invention are used. The design of the projection objective 7 illustrated in Figure 6 is manifested by the fact that the beam path is directed to illuminate the optically useful radiation through the correction element 21' located in the vertical branch of the beam path twice. In this case, during the passage through the projection objective 7, the projection beam is deflected by 90 from the original direction via the reflective elements 31, 32. In other words, the projection beam exhibits a T-shaped path as it passes through the projection objective 7. It goes without saying that it is also conceivable to deviate more or less from the T-shaped route. In order to deflect the projection beam, it is also possible to use an optical element whose deflection effect is not based on a reflection effect but, for example, based on a diffraction effect or other optical effect. The parameters of the design illustrated in Figure 6 will be edited in tabular form in a manner similar to the previous examples: 17 97112516 200903184
表而 半徑 厚度 玻瑀 1S3.300 nm 1/2¾ 符 0 O.DOOOOO 81.909100 1.0Q00000C 60.033 1 〇.〇〇〇〇〇〇 -0.019387 1.00000000 87.121 2 624.406971 21.18433S SI02 1.5^032610 89.234 3 -711.908894 0.90674 空氣 1.00000000 90.564 4 6.000000 5.000000 SI02 1.56032610 51.64X 5 〇.〇〇〇〇〇〇 3.ύϋόόο6 Η20 1.43681630 92.147 έ 〇.〇〇〇〇〇〇 5.000000 S102 1*5€032610 92,476 7 ο,δόΰόύό 0.930386 空氣 1.00000000 92.982 d 1^3.169520 S2.483115 SI02 1.5€032610 9S.879 9 381^*7^9^3 52.783095 空氣 X.〇〇〇〇〇〇〇〇 33.373 10 118,580075 36.X3S3S4 SI02 1.5€03261〇 83.0^3 11 -473.446738 AS 0.828657 空氣 1.00000000 79.307 12 90.185633 49.$62〇Sl S202 1.S6032620 65.244 13 94.133983 14.329461 空氣 1.00000000 44.293 14 〇.〇〇〇〇〇〇 5.000000 SI02 1.56032610 42.036 IS 〇.〇〇〇〇〇〇 3.000000 Κ20 1.43631^30 40.079 16 〇.〇〇〇〇〇〇 S.6&0000 S102 1.5έ〇32$10 3$,570 17 〇.〇〇〇〇〇〇 10,129876 α,〇〇〇〇〇〇〇〇 •40.520 IQ -92.819702 43.908983 SI02 1,56032620 40.799 19 -85.424170 9.674700 宁氣 1.00000000 S5.255 20 -74.103929 42.^90832 έτ〇2 λ.56Ο32£10 56.250 21 *387*X641〇3 B.455S12 空氣 1.00000000 86.706 22 -365.0022S3 50.12(3d7 SI02 ΓΓ5?〇3?6ϊδ 85.674 23 -117.4S3515 9-914517 空氣 l.OOOOGOOO 95. $76 24 -4X5.027$9S AS 46.185735 SI02 1.56032610 103.640 2S -170.^958β6 10.Θ80007 空氣 1.00000000 X0B.S62 26 262.0837&9 27.654229 SI02 1»5€Ο32610 103,448 27 ^361.289798 0,943659 堃氣 1.00000000 101.950 is 220.659610 28.386959 SI02 1.56032610 97.155 29 2300^889907 AS 74.3U566 空氣 1.00000000 ^ 94.463 30 ο.αοοοοο •22S.404290 R£FL 1.00000000 €6.879 31 106.700S09 AS -12.09336B SIQ2 1.56032610 75.306 32 X029.600488 -50,044033 空氣 X.OOOOOOOO 90^131 33 111.561912 -12.592875 SI02 1,56032610 92.937 3名 212*730136 -26.07658^ 魏 1.00000000 118.651 IS 1S5.078710 2€.0?65B€ RSFL 1.D0O00D00 122.10& 36 212.730136 12.5928*75 SI02 1.560326X0 118.6&5 37 111.-363912 50.044033 空氣 1.00000000 93.478 38 1029.600488 SI02 1.56Q32610 91.625 39 X06.700509 AS 223.404290 1.00000000 Tf.lU 40 O.DOOOOO ·73·β35699 REEL 1.00000000 €7.545 41 2344.735704 -22.31S744 SI02 1.56032610 94.161 42 253.638670 -0.9726U 空铽 1.00000000 95.658 43 -4*50.189390 •24.S7S552 SI02 1.5β032610 102.074 44 ¢89.891250 -2.10SB9$ 空f 1.00000000 102.389 45 -23S.90X080 -43.892529 έίοί 1.56Q32G10 102.646 46 -4312.807930 -5.654Θ27 S氣 X.OCOOOOOO ^.26έ 47 -144.330672 -45.147417 SI02 X.56032610 91.143 48 •480.152998 AS ~*-16.470018^ 空氣 X.OOOOOOOO 81.2S8 49 €77.3&6771 ""-10,210^551 1.&6032610 79.391 50 •95.633899 AS -39.196037 ±k 1.00000000 ^9.026 51 -8735.863231 -12.389064 SI02 1.5603261D 71,393 52 -14?.341293 AS -16.6227S7 空氣 1.00000000 75.555 53 -482.080214 -30.20737B S102 1.5^032610 7β.*?56 54 1.131.416760 -76.857457 空氣 1.00000000 85.023 55 -3376,357$«5 A£ -22.564450 SI02 1.5€032$10 121.13S 56 59B.^91433 •0.983285 空叙 1.00000000 123.862 57 -357,148002 -33.365168 3X02 1.56032610 136.868 58 -32S2.68878$ -1.240420 空氣 1.00000000 137.1S4 59 -308.28X049 -48.644248 SI02 1,56032610 139. 60 62S.S1^050 AS >12.324803 空氣 1.00000000 13S.290 61 0,000000 〇.〇〇〇〇〇〇 空氣 1.00000000 134.463 62 〇.〇〇〇〇〇〇 3.030879 1.00000000 134.463 63 -781.S36893 -35.234S20 SI02 1.56032610 133,791 64 13^4,52^^ -3.705163 空氣 1.00000000 lil.854 65 -321.8B1102 -36.276903 SI02 l.S€032€10 123.524 €€ 3268.6^145 -2.414G81 空* 1.00000000 120.^98 67 -131.15^713 -28.556588 5Ϊ02 α.560326X0 $5.90$ 68 -20D.74.S2S7 AS -0.831S34 空氣 1.00000000 89.479 6$ ·$'ζ.Αΐ^έ -34.227499 SI02 1.56032610 76.703 70 -225.754972 AS *1.247532 空氣 1.00000000 67.997 71 >61.493162 -50.01794*7 SI02 1.56032610 4S.906 72 b.000000 -0.9$β40Τ H20V 1.4^681630 16.800 73 〇.〇〇〇〇〇〇 〇.〇〇〇〇〇〇 H20V 〇.〇〇〇〇〇〇〇〇 15,009 非球面常數 97112516 18 200903184 SRP 11 24 29 31 39 K 0 0 0 0 0 C1 ^.3244β8θ-08 >1.320272β-0β L.26?249e-08 •e.^34840e>08 -β.634840β·Ό8 C2 3.336144e>13 4.8982446*13 2.228304e-X3 -3.319972e-12 -3.319972e-12 C3 i.899321e-a6 >l.S4534€e-l7 -l.S14143e-X7 >2.014127e>16 -2.014127e<l$ C4 -3.004S14&-20 3.56305€e>23 2.8797S6e>22 -1.71?334e-2〇 -1.717334β·20 C5 X.4^85846-24 8.02X00le-27 1.131170^<26 2.068734e-25 2.06β734β·25 C6 -9.S97193e-30 -5.33B275e-32 -6.425389e-31 -l,432400e~28 >1.432400e>28 C7 〇.〇〇〇〇〇〇 0.OOOOOOe+OO 〇.〇〇〇〇〇〇e-fOO 〇.〇〇〇〇〇〇00 〇.〇〇〇〇〇〇e+00 ch 6.6oooo〇e<f〇o 〇.〇〇〇〇〇〇e4〇〇 〇.〇〇〇〇〇〇e+00 〇.〇〇〇〇〇〇e-fOO 0.〇00QOOe+00 C9 〇.〇〇〇〇〇〇64-00 0.0000006+00 〇.〇〇〇〇〇〇e+00 〇.〇〇〇〇〇〇e<f00 〇.〇〇〇〇〇〇e+〇〇 SRF 48 50 S2 55 60 K 0 0 0 0 0 Cl -3.04S083白^08 -X.82S792e-09 3.667191d-08 1.588995e-0B -1.χ'έ48€5β·08 C2 4.0863206-13 3.80640«e-12 Χ.975333Θ-12 •1.42573U-13 2.231510e>14 C3 9.699911e-17 4.β29ΐ97β-17 6.96θ457β-17 -1.12S9?〇e-17 -2.476426e-17 c4 >1.029295e>20 4.0142356-20 3.42$30Se-21 -2.7S1803e-22 l.X336€9e-21 C5 1.045245e-24 1.7»〇122e-24 -6.€8343Se-25 -X.990926e-28 -2.410429e-2^ C6 -含,I46e22e-2d -3.387427e-28 2.962190e-2B 2.982407^-31 2 .0S828^e>31 C7 〇.〇〇〇〇〇〇e*00 〇.〇〇〇〇〇〇e+〇〇 o.ooooooe+oo o.ooooooe+oo 〇.〇〇〇〇〇〇e+ao C8 0.000000e+00 o.oooooae«-oo 〇.〇〇〇〇〇〇Θ4-00 〇.〇〇〇〇〇〇e-t-00 〇.〇〇〇〇〇〇e<K〇0 09 o.ooooooe+oo O.OOODOOe+OO 〇-〇〇〇〇〇〇e十〇〇 〇.〇〇〇〇〇〇e+〇〇 〇.〇〇〇〇〇〇e+00 SRF 68 70 K 0 0 Cl 2.8€5471e-〇9 -1.020006Θ-07 C2 -3.95&281e-12 -?.6S388?e-12 C3 4.329320e-16 i.074443e*15 C4 •4.469477e>20 -1.131273e-19 C5 1.3744296-24 1.^40084e'23 C6 -4.141746e-29 -4.-7632708-29 07 〇-〇〇〇〇〇〇e+00 O.OOOOOOe+oo C8 〇.〇〇〇〇〇〇£4〇〇 〇.〇〇〇〇〇〇«+〇〇 C9 〇.〇〇〇〇〇〇e-fOO 〇.〇〇〇〇〇〇€4〇〇Table and radius thickness glass 瑀 1S3.300 nm 1/23⁄4 symbol 0 O.DOOOOO 81.909100 1.0Q00000C 60.033 1 〇.〇〇〇〇〇〇-0.019387 1.00000000 87.121 2 624.406971 21.18433S SI02 1.5^032610 89.234 3 -711.908894 0.90674 Air 1.00000000 90.564 4 6.000000 5.000000 SI02 1.56032610 51.64X 5 〇.〇〇〇〇〇〇3.ύϋόόο6 Η20 1.43681630 92.147 έ 〇.〇〇〇〇〇〇5.000000 S102 1*5€032610 92,476 7 ο,δόΰόύό 0.930386 Air 1.00000000 92.982 d 1 ^3.169520 S2.483115 SI02 1.5€032610 9S.879 9 381^*7^9^3 52.783095 Air X.〇〇〇〇〇〇〇〇33.373 10 118,580075 36.X3S3S4 SI02 1.5€03261〇83.0^3 11 -473.446738 AS 0.828657 Air 1.00000000 79.307 12 90.185633 49.$62〇Sl S202 1.S6032620 65.244 13 94.133983 14.329461 Air 1.00000000 44.293 14 〇.〇〇〇〇〇〇5.000000 SI02 1.56032610 42.036 IS 〇.〇〇〇〇〇〇3.000000 Κ20 1.43631 ^30 40.079 16 〇.〇〇〇〇〇〇S.6&0000 S102 1.5έ〇32$10 3$,570 17 〇.〇〇〇〇 〇10,129876 α,〇〇〇〇〇〇〇〇•40.520 IQ -92.819702 43.908983 SI02 1,56032620 40.799 19 -85.424170 9.674700 Ningqi 1.00000000 S5.255 20 -74.103929 42.^90832 έτ〇2 λ.56Ο32£10 56.250 21 *387*X641〇3 B.455S12 Air 1.00000000 86.706 22 -365.0022S3 50.12(3d7 SI02 ΓΓ5?〇3?6ϊδ 85.674 23 -117.4S3515 9-914517 Air l.OOOOGOOO 95. $76 24 -4X5.027$9S AS 46.185735 SI02 1.56032610 103.640 2S -170.^958β6 10.Θ80007 Air 1.00000000 X0B.S62 26 262.0837&9 27.654229 SI02 1»5€Ο32610 103,448 27^361.289798 0,943659 Helium 1.00000000 101.950 is 220.659610 28.386959 SI02 1.56032610 97.155 29 2300 ^889907 AS 74.3U566 Air 1.00000000 ^ 94.463 30 ο.αοοοοο •22S.404290 R£FL 1.00000000 €6.879 31 106.700S09 AS -12.09336B SIQ2 1.56032610 75.306 32 X029.600488 -50,044033 Air X.OOOOOOOO 90^131 33 111.561912 -12.592875 SI02 1,56032610 92.937 3 names 212*730136 -26.07658^ Wei 1.00000000 118.651 IS 1S5.078710 2€.0?65B€ RSFL 1.D 0O00D00 122.10& 36 212.730136 12.5928*75 SI02 1.560326X0 118.6&5 37 111.-363912 50.044033 Air 1.00000000 93.478 38 1029.600488 SI02 1.56Q32610 91.625 39 X06.700509 AS 223.404290 1.00000000 Tf.lU 40 O.DOOOOO ·73·β35699 REEL 1.00000000 €7.545 41 2344.735704 -22.31S744 SI02 1.56032610 94.161 42 253.638670 -0.9726U 铽1.00000000 95.658 43 -4*50.189390 •24.S7S552 SI02 1.5β032610 102.074 44 ¢89.891250 -2.10SB9$ 空f 1.00000000 102.389 45 -23S.90X080 - 43.892529 έίοί 1.56Q32G10 102.646 46 -4312.807930 -5.654Θ27 S gas X.OCOOOOOO ^.26έ 47 -144.330672 -45.147417 SI02 X.56032610 91.143 48 •480.152998 AS ~*-16.470018^ Air X.OOOOOOOO 81.2S8 49 €77.3&6771 ""-10,210^551 1.&6032610 79.391 50 •95.633899 AS -39.196037 ±k 1.00000000 ^9.026 51 -8735.863231 -12.389064 SI02 1.5603261D 71,393 52 -14?.341293 AS -16.6227S7 Air 1.00000000 75.555 53 -482.080214 -30.20737B S102 1.5^032610 7β.*?56 54 1.131.416760 -76.8 57457 Air 1.00000000 85.023 55 -3376,357$«5 A£ -22.564450 SI02 1.5€032$10 121.13S 56 59B.^91433 •0.983285 Empty 1.00000000 123.862 57 -357,148002 -33.365168 3X02 1.56032610 136.868 58 -32S2.68878$ -1.240420 Air 1.00000000 137.1S4 59 -308.28X049 -48.644248 SI02 1,56032610 139. 60 62S.S1^050 AS >12.324803 Air 1.00000000 13S.290 61 0,000000 〇.〇〇〇〇〇〇Air1.00000000 134.463 62 〇 .〇〇〇〇〇〇3.030879 1.00000000 134.463 63 -781.S36893 -35.234S20 SI02 1.56032610 133,791 64 13^4,52^^ -3.705163 Air 1.00000000 lil.854 65 -321.8B1102 -36.276903 SI02 lS€032€10 123.524 € € 3268.6^145 -2.414G81 空*1.00000000 120.^98 67 -131.15^713 -28.556588 5Ϊ02 α.560326X0 $5.90$ 68 -20D.74.S2S7 AS -0.831S34 Air 1.00000000 89.479 6$ ·$'ζ.Αΐ^ έ -34.227499 SI02 1.56032610 76.703 70 -225.754972 AS *1.247532 Air 1.00000000 67.997 71 >61.493162 -50.01794*7 SI02 1.56032610 4S.906 72 b.000000 -0.9$β40Τ H20V 1.4^68163 0 16.800 73 〇.〇〇〇〇〇〇〇.〇〇〇〇〇〇H20V 〇.〇〇〇〇〇〇〇〇15,009 Aspheric constant 97112516 18 200903184 SRP 11 24 29 31 39 K 0 0 0 0 0 C1 ^.3244β8θ-08 >1.320272β-0β L.26?249e-08 •e.^34840e>08 -β.634840β·Ό8 C2 3.336144e>13 4.8982446*13 2.228304e-X3 -3.319972e-12 -3.319972 E-12 C3 i.899321e-a6 >l.S4534€e-l7 -l.S14143e-X7 >2.014127e>16 -2.014127e<l$ C4 -3.004S14&-20 3.56305€e>23 2.8797S6e> ;22 -1.71?334e-2〇-1.717334β·20 C5 X.4^85846-24 8.02X00le-27 1.131170^<26 2.068734e-25 2.06β734β·25 C6 -9.S97193e-30 -5.33B275e- 32 -6.425389e-31 -l,432400e~28 >1.432400e>28 C7 〇.〇〇〇〇〇〇0.OOOOOOe+OO 〇.〇〇〇〇〇〇e-fOO 〇.〇〇〇〇〇 〇00 〇.〇〇〇〇〇〇e+00 ch 6.6oooo〇e<f〇o 〇.〇〇〇〇〇〇e4〇〇〇.〇〇〇〇〇〇e+00 〇.〇〇〇〇 〇〇e-fOO 0.〇00QOOe+00 C9 〇.〇〇〇〇〇〇64-00 0.0000006+00 〇.〇〇〇〇〇〇e+00 〇.〇〇〇〇〇 〇e<f00 〇.〇〇〇〇〇〇e+〇〇SRF 48 50 S2 55 60 K 0 0 0 0 0 Cl -3.04S083 white^08 -X.82S792e-09 3.667191d-08 1.588995e-0B -1 .χ'έ48€5β·08 C2 4.0863206-13 3.80640«e-12 Χ.975333Θ-12 •1.42573U-13 2.231510e>14 C3 9.699911e-17 4.β29ΐ97β-17 6.96θ457β-17 -1.12S9?〇 E-17 -2.476426e-17 c4 >1.029295e>20 4.0142356-20 3.42$30Se-21 -2.7S1803e-22 l.X336€9e-21 C5 1.045245e-24 1.7»〇122e-24 -6.€ 8343Se-25 -X.990926e-28 -2.410429e-2^ C6 - containing, I46e22e-2d -3.387427e-28 2.962190e-2B 2.982407^-31 2 .0S828^e>31 C7 〇.〇〇〇〇〇 〇e*00 〇.〇〇〇〇〇〇e+〇〇o.ooooooe+oo o.ooooooe+oo 〇.〇〇〇〇〇〇e+ao C8 0.000000e+00 o.oooooae«-oo 〇.〇 〇〇〇〇〇Θ4-00 〇.〇〇〇〇〇〇et-00 〇.〇〇〇〇〇〇e<K〇0 09 o.ooooooe+oo O.OOODOOe+OO 〇-〇〇〇〇〇 〇e十〇〇〇.〇〇〇〇〇〇e+〇〇〇.〇〇〇〇〇〇e+00 SRF 68 70 K 0 0 Cl 2.8€5471e-〇9 -1.020006Θ-07 C2 -3.95& 281e -12 -?.6S388?e-12 C3 4.329320e-16 i.074443e*15 C4 •4.469477e>20 -1.131273e-19 C5 1.3744296-24 1.^40084e'23 C6 -4.141746e-29 -4. -7632708-29 07 〇-〇〇〇〇〇〇e+00 O.OOOOOOe+oo C8 〇.〇〇〇〇〇〇£4〇〇〇.〇〇〇〇〇〇«+〇〇C9 〇.〇 〇〇〇〇〇e-fOO 〇.〇〇〇〇〇〇€4〇〇
圖7展示投影物鏡7之另一實例,其中應用到本發明之 修正元件21。在此狀況下,修正元件21係位於投影物鏡 7之瞳孔平面之區域中,該瞳孔平面未在圖中表示。替代 或額外地,光學修正元件可不(僅僅)被配置在上部瞳孔平 面之區域(亦即,位於主光罩附近的瞳孔區域)中,而更可 被配置在下部或最底層的瞳孔平面之區域(亦即,在晶圓 附近)中。在圖7中,直接在三個雙凸面透鏡26中之一者 之上游或下游的區域,特別適合於此情況。為本發明之光 學修正元件21選擇投影物鏡中之此位置的優點在於:光 束發散度在下部瞳孔平面之區域中較在上部瞳孔平面之 區域中為小。亦即,投影光之個別的光束集束之角散射, 在下部瞳孔平面之區域中較在上部瞳孔平面之區域中要 小。伴隨有穿過本發明之光學修正元件21的投影光束集 束之光徑的較小變化,且因此,達成改良的操縱器效應或 19 97112516 200903184 補償效應。在下部瞳孔平面之區域中’雖然液體層24之 總體較大厚度將是確保補償效應所需’但’相關聯的對流 問題尤其可利用以下特別參看圖13及圖14而描述之措施 而有效地加以減少。 圖7所說明的設計之參數將以表格形式概述於下文中:Fig. 7 shows another example of the projection objective lens 7 to which the correction element 21 of the present invention is applied. In this case, the correcting element 21 is located in the region of the pupil plane of the projection objective 7, which is not shown in the figure. Alternatively or additionally, the optical correction element may be (not only) disposed in the region of the upper pupil plane (ie, in the pupil region near the main mask), and may be disposed in the lower or bottommost pupil plane region. (ie, near the wafer). In Fig. 7, a region directly upstream or downstream of one of the three biconvex lenses 26 is particularly suitable for this case. An advantage of selecting this position in the projection objective for the optical correction element 21 of the present invention is that the beam divergence is small in the region of the lower pupil plane than in the region of the upper pupil plane. That is, the angular scattering of the individual beam bundles of the projected light is smaller in the region of the lower pupil plane than in the region of the upper pupil plane. A small change in the optical path of the projection beam bundle passing through the optical correction element 21 of the present invention is accompanied, and thus, an improved manipulator effect or a compensation effect of 19 97112516 200903184 is achieved. In the region of the lower pupil plane 'although the overall greater thickness of the liquid layer 24 will be required to ensure the compensation effect, but the associated convection problem can be effectively utilized, inter alia, with the measures described below with particular reference to Figures 13 and 14 Reduce it. The parameters of the design illustrated in Figure 7 will be summarized in tabular form below:
表面 半符 厚度 玻瑀 193.36B nm 1/2頁徑 a ο.οοοοοα -0.008710 空m l.COOOOOOO 74.265 2 152.806541 •JS, 431005 SI02 1.56016311 ai.i2i 3 •330.27503S AS 1.00Q851 空氣 l.OCOOOOOO 82,575 4 2S7.561794 10.19401? SX02 1.5601S811 80.063 5 107.240602 20.970575 空氣 1 .OOOOQOOO 74.712 6 124.216381 Θ7Θ498 $Z02 1.56018811 79.668 ? 458.206125 12.581575 空氣 l.OOOQOOQQ 18.003 β 394.774717 AS 27.324175 SI02 1.5€01βέΐ1 7*7.420 9 *171.322174 IS.056624 ΨΜ α.οόοοοοοο 7*7.242 10 -3632.304551 07753165~ SI〇2 1,560188U 64.020 11 -i9&,567355~ AS 2.828Θ65 •空k 1.00000000 61.914 12 〇.〇〇〇〇〇〇 S.000000 SX02 1.56018811 54.βδ〇 13 〇.〇〇〇〇〇〇 2.000000 K20 1.43618^27 53.206 14 O.OOQOOO 5.000000 SI02 1.5έΰ18811 1 52.108 IS 〇.〇〇〇〇〇〇 14.620990 堃氣 1.C0Q0000O 50.436 16 -670.72X0^5"""1 14.$1θ50β $102 1.56018811 41.020 17 -176.631072 18.497791 苧氣 1.00000000 4〇36 18 〇.〇〇〇〇〇〇 10.000000 S102 1.SS018B11 5^.150 15 0.000000 50.1^770? 甲氣 X.OQOQOOOO 60.164 20 -332.25S28€ 21.26Θ478 SX02 1.56018311 73.716 21 Ί51,946062 8.$02276 申叙 Z.00000000 *76.312 22 -125.715474 9.992972 SI02 1.5601B811 22 -157.281726 998231 5¾ i.OOOOOQQO B1.1SB 24 〇.〇〇〇〇〇〇 222.9XS96S 綠 1^00000000 53.101 25 -186.S01756 AS *222.916965 RETL 1.00000000 161.210 26 171‘573325 A5 2227^6365~ SETL 1.00000000 137.537 2? 〇.〇〇〇〇〇〇 6S.919281 堃氣 1.00000000 105.927 28 411.904^17 32.629492 SI02 1.56018811 111.394 29 >746.664472 29.263212 空氣_ _ _ 1.0Q00QQQ0 110.873 30 >948.543683 21.3257S1 S102 i.S6〇iean 105.199 31 1499.S2B375 AS 0.9451fi7 空氣 1.00000000 X03.S23 32 2δ1,881650 16.698434 SI02 x.seoiedii 95.462 33 124.935816 42.2^0342 空氣 1.00000000 84.398 34 -9X5.013583 AS 13 .263169 SI02 l.B6018ail 34.060 35 131.42B201 22.^65151 空Μ η % l.OOQOQOOO S2.775 36 288.836S63 AS 17.S443S4 S102 1.5601831X S5.432 37 1414.281223 26.3S05S3 空氣 1.00000000 87.975 3β 516375 10.102933 ST02 1.56O1B011 50.157 39 -507.940782 AS X .489700 幸奴 1.00000000 104.668 40 604.663227 AS 45.569X70 SI02 1.56018&II 1X3.228 41 -381.SSQ602. 0.942198 1.00000000 124.5T7 42 -3659.679844 AS €2.803391 SI02 1.5έΰ18β1Χ 134.048 43 -185.4894S9 0.947473 苧氣 Ποόοόοοοό~~:~ 139.144 44 803.608129 AS 47^10*7253 SI02 1.56018911 157.634 45 -404.7308^5 1.543174 +氣 1.00Q000D0 1^8.92» 46 463.662629 42,746.808 SI02 ' 1.56018811 157.507 4? >30094.70B524 AS &.621418 空氣 1.00000000 156.ns 48 〇.〇〇〇〇〇〇 〇.〇〇〇〇〇〇 5«, 1.00000Q09 154.1?S 4今 〇.〇〇〇〇〇〇 -671083 i.oooooaoo XS4.17B 50 452.542212 S-7.0$^$B0 SI02 X.S6018811 152.261 51 -566.442779 AS l.X2$324 夺奴 x?«aoooooo *· 150.826 52 114,05112? 60.904375 召02 1.5€018811 99.792 53 X031.Q94018 AS X.0S1630 1.00000000 90.472 54 61.061829 43.38B068 SI02 1.560X6811 51.327 55 〇.〇〇〇〇〇〇 3.100000 H20 1,43618227 24.550 5S 〇.〇〇〇〇〇〇 0.000000 H20 〇.〇〇〇〇〇〇〇〇 IS.875 非球面常數 97112516 20 200903184Surface half-length thickness glass 瑀193.36B nm 1/2 page diameter a ο.οοοοοα -0.008710 Empty m l.COOOOOOO 74.265 2 152.806541 •JS, 431005 SI02 1.56016311 ai.i2i 3 •330.27503S AS 1.00Q851 Air l.OCOOOOOO 82,575 4 2S7.561794 10.19401? SX02 1.5601S811 80.063 5 107.240602 20.970575 Air 1.OOOOQOOO 74.712 6 124.216381 Θ7Θ498 $Z02 1.56018811 79.668 ? 458.206125 12.581575 Air l.OOOQOOQQ 18.003 β 394.774717 AS 27.324175 SI02 1.5€01βέΐ1 7*7.420 9 *171.322174 IS.056624 ΨΜ ..οόοοοοοο 7*7.242 10 -3632.304551 07753165~ SI〇2 1,560188U 64.020 11 -i9&,567355~ AS 2.828Θ65 • Empty k 1.00000000 61.914 12 〇.〇〇〇〇〇〇S.000000 SX02 1.56018811 54.βδ 〇13 〇.〇〇〇〇〇〇2.000000 K20 1.43618^27 53.206 14 O.OOQOOO 5.000000 SI02 1.5έΰ18811 1 52.108 IS 〇.〇〇〇〇〇〇14.620990 堃气 1.C0Q0000O 50.436 16 -670.72X0^5"" ;"1 14.$1θ50β $102 1.56018811 41.020 17 -176.631072 18.497791 Helium 1.00000000 4〇36 18 〇. 〇〇〇〇〇〇10.000000 S102 1.SS018B11 5^.150 15 0.000000 50.1^770? A gas X.OQOQOOOO 60.164 20 -332.25S28€ 21.26Θ478 SX02 1.56018311 73.716 21 Ί51,946062 8.$02276 Shenxu Z.00000000 * 76.312 22 -125.715474 9.992972 SI02 1.5601B811 22 -157.281726 998231 53⁄4 i.OOOOOQQO B1.1SB 24 〇.〇〇〇〇〇〇222.9XS96S Green 1^00000000 53.101 25 -186.S01756 AS *222.916965 RETL 1.00000000 161.210 26 171'573325 A5 2227^6365~ SETL 1.00000000 137.537 2? 〇.〇〇〇〇〇〇6S.919281 Helium 1.00000000 105.927 28 411.904^17 32.629492 SI02 1.56018811 111.394 29 >746.664472 29.263212 Air _ _ _ 1.0Q00QQQ0 110.873 30 >948.543683 21.3257 S1 S102 i.S6〇iean 105.199 31 1499.S2B375 AS 0.9451fi7 Air 1.00000000 X03.S23 32 2δ1,881650 16.698434 SI02 x.seoiedii 95.462 33 124.935816 42.2^0342 Air 1.00000000 84.398 34 -9X5.013583 AS 13 .263169 SI02 l. B6018ail 34.060 35 131.42B201 22.^65151 空Μ η % l.OOQOQOOO S2.775 36 288.836S63 AS 17.S443S4 S102 1.5601 831X S5.432 37 1414.281223 26.3S05S3 Air 1.00000000 87.975 3β 516375 10.102933 ST02 1.56O1B011 50.157 39 -507.940782 AS X .489700 Lucky Slave 1.00000000 104.668 40 604.663227 AS 45.569X70 SI02 1.56018&II 1X3.228 41 -381.SSQ602. 0.942198 1.00000000 124.5T7 42 -3659.679844 AS €2.803391 SI02 1.5έΰ18β1Χ 134.048 43 -185.4894S9 0.947473 苎气Ποόοόοοοό~~:~ 139.144 44 803.608129 AS 47^10*7253 SI02 1.56018911 157.634 45 -404.7308^5 1.543174 + gas 1.00Q000D0 1^8.92» 46 463.662629 42,746.808 SI02 ' 1.56018811 157.507 4? >30094.70B524 AS &.621418 Air 1.00000000 156.ns 48 〇.〇〇〇〇〇〇〇.〇〇〇〇〇〇5«, 1.00000Q09 154.1?S 4 Today 〇.〇〇〇〇〇〇-671083 i.oooooaoo XS4.17B 50 452.542212 S-7.0$^$B0 SI02 X.S6018811 152.261 51 -566.442779 AS l.X2$324 Capture the slave x? «aoooooo *· 150.826 52 114, 05112? 60.904375 Call 02 1.5€018811 99.792 53 X031.Q94018 AS X.0S1630 1.00000000 90.472 54 61.061829 43.38B068 SI02 1.560X6811 51.327 55 〇.〇〇〇〇〇〇 3.100000 H20 1,43618227 24.550 5S 〇.〇〇〇〇〇〇 0.000000 H20 〇.〇〇〇〇〇〇〇〇 IS.875 Aspheric constant 97112516 20 200903184
SRr 3 8 11 25 2€ K 0 0 0 -2-18057 -0.6607S c: 6.Sb7l7$e-〇8 -3.894432e-07 -1.02i795e-07 -3.451557e-08 6.9$6902e-09 C2 2.758*?92β-12 1.910214^-11 4.259ΘΘΟβ>11 2.334543e-X3 1.026860e-13 C3 -7.4720138-16 1.2«984«e-15 -6.7110S9e-XS -e.951fi39e-X8 1.3734758-18 C4 l.〇3202〇e-l$ >6.666988e>20 1.949733e-18 1.635510e>22 i.729102e-23 CS <9.360724e-24 -3.5〇a〇*78e-23 -3.3135»ee-22 -3.622b76e-27 3.391440e-2d C6 5.5X852$e^a 4,0S5705e-27 2.994558e>26 4.88S0€6e>32 -l,078343e-33 C9 -1.590972^-32 -1.316730e-31 -1.183689e>30 -4.115i7Se-37 6.*725963e-38 ce 0.000000e^00 〇.〇〇〇〇〇〇e-fOO 〇.〇〇〇〇〇〇e^oo 〇.〇〇〇〇〇〇e<i>00 O.CQOOOOe+OO C9 〇.〇〇〇〇〇〇e-fOO oTdbobooe+oo o.ooooodb-»oo 〇.〇〇〇〇〇〇e-fOO 〇.〇〇〇〇〇〇e-tOQ SRF 31 34 2$ 39 40 K 0 0 0 0 0 Cl -2.201517β-〇7 1.982727S-08 4.7€070Ge-09 1.0243.57e-07 -4.€S378le-06 C2 1.310974β-Χ1 1.149782e>13 -4.2843056-12 3.898919e>12 4.ΐ22224βΊ2 C3 3.146452e-l? 1.309&«Se-16 3,45176fie>l€ -3.3β5€60β-Χ6 -4.〇〇3637e-l$ C4 -7.326166e-2Q 8.0SS97ie-20 -1.130963€-19 -1.9β531Χβ-20 1.664S€le-20 CS fi.320778e-24 -1.485189e-23 1.39369·7β-23 8.49·4β93β-25 -1.5657S4e-25 C6 -2.62^S55e-28 S.96244Xe-28 -1.334397e-27 8.51076^-29 -1.981449e-29 C7 4.470867e-33 -3.738S6^e>32 £.106339e-32 -2.$43237e-3? e.446673e-34 C8 〇.〇〇〇〇〇〇e+oo 〇.〇〇〇〇〇〇e-f-oo 〇.〇〇〇〇〇〇^-»-00 o.ooooaoe-i-oo 〇.〇〇〇〇〇〇e^oo C9 〇.〇〇〇〇〇〇e-t-00 〇.〇〇〇〇〇〇e-fOO 0.ooDoooe^oo 〇.〇〇〇〇〇〇6400 ο.οόοόύοβ^-οο SRF 42 AA 47 51 53 K 0 0 0 0 0 Cl 1.393220e-ll -5.1013076-08 >5.745699^-08 2.363301e-08 3.982997e-0B C2 -3.07i7B6e-I2 1.61β6θββ*12 2.831988e*12 -l.m889e-12 7.025032e-12 C3 1.4211716-16 1.036774B-17 -Ι,190434β-17 -2.748749e-17 -1.121978e-lS C4 -1.614622e-21 -7.02β114β·22 -3.229348β-21 6.499918e>21 1.224907e-19 C5 -6.1?0320e-2g -3.147269^-26 i,9073eie~25 -2.771*767«-25 -1.023565e-23 C6 2.259679e-30 1.441603Θ-3Ο -5.273430e>30 5.5061156-30 5.375e28e-2d C7 0.0000006400 -1.492937β-35 5.67S564e-35 -4.500925e-3S -l.aS128€6-32 ca 〇.〇〇〇〇〇〇e-t-OO o.oaooooe^oo 〇.〇〇〇〇〇〇e+00 〇.〇〇〇〇〇〇e^oo 〇.〇〇〇〇〇〇e+oo C9 〇.〇〇〇〇〇〇e-f-oo 〇.〇〇〇〇〇〇β400 〇.〇〇〇〇〇〇e-t-00 〇.〇〇〇〇〇〇e-t-oo O.OOOO&Oe+OOSRr 3 8 11 25 2€ K 0 0 0 -2-18057 -0.6607S c: 6.Sb7l7$e-〇8 -3.894432e-07 -1.02i795e-07 -3.451557e-08 6.9$6902e-09 C2 2.758 *?92β-12 1.910214^-11 4.259ΘΘΟβ>11 2.334543e-X3 1.026860e-13 C3 -7.4720138-16 1.2«984«e-15 -6.7110S9e-XS -e.951fi39e-X8 1.3734758-18 C4 l. 〇3202〇el$ >6.666988e>20 1.949733e-18 1.635510e>22 i.729102e-23 CS <9.360724e-24 -3.5〇a〇*78e-23 -3.3135»ee-22 -3.622b76e- 27 3.391440e-2d C6 5.5X852$e^a 4,0S5705e-27 2.994558e>26 4.88S0€6e>32 -l,078343e-33 C9 -1.590972^-32 -1.316730e-31 -1.183689e>30 - 4.115i7Se-37 6.*725963e-38 ce 0.000000e^00 〇.〇〇〇〇〇〇e-fOO 〇.〇〇〇〇〇〇e^oo 〇.〇〇〇〇〇〇e<i>00 O.CQOOOOe+OO C9 〇.〇〇〇〇〇〇e-fOO oTdbobooe+oo o.ooooodb-»oo 〇.〇〇〇〇〇〇e-fOO 〇.〇〇〇〇〇〇e-tOQ SRF 31 34 2$ 39 40 K 0 0 0 0 0 Cl -2.201517β-〇7 1.982727S-08 4.7€070Ge-09 1.0243.57e-07 -4.€S378le-06 C2 1.310974β-Χ1 1.149782e>13 -4.2843056 -12 3.89 8919e>12 4.ΐ22224βΊ2 C3 3.146452el? 1.309&«Se-16 3,45176fie>l€ -3.3β5€60β-Χ6 -4.〇〇3637e-l$ C4 -7.326166e-2Q 8.0SS97ie-20 - 1.130963€-19 -1.9β531Χβ-20 1.664S€le-20 CS fi.320778e-24 -1.485189e-23 1.39369·7β-23 8.49·4β93β-25 -1.5657S4e-25 C6 -2.62^S55e-28 S. 96244Xe-28 -1.334397e-27 8.51076^-29 -1.981449e-29 C7 4.470867e-33 -3.738S6^e>32 £.106339e-32 -2.$43237e-3? e.446673e-34 C8 〇. 〇〇〇〇〇〇e+oo 〇.〇〇〇〇〇〇ef-oo 〇.〇〇〇〇〇〇^-»-00 o.ooooaoe-i-oo 〇.〇〇〇〇〇〇e^ Oo C9 〇.〇〇〇〇〇〇et-00 〇.〇〇〇〇〇〇e-fOO 0.ooDoooe^oo 〇.〇〇〇〇〇〇6400 ο.οόοόύοβ^-οο SRF 42 AA 47 51 53 K 0 0 0 0 0 Cl 1.393220e-ll -5.1013076-08 >5.745699^-08 2.363301e-08 3.982997e-0B C2 -3.07i7B6e-I2 1.61β6θββ*12 2.831988e*12 -l.m889e-12 7.025032 E-12 C3 1.4211716-16 1.036774B-17 -Ι,190434β-17 -2.748749e-17 -1.121978e-lS C4 -1.614622e-21 -7.02β114β·22 -3.229348β-21 6.499918e≫21 1.224907e-19 C5 -6.1?0320e-2g -3.147269^-26 i,9073eie~25 -2.771*767«-25 -1.023565e-23 C6 2.259679e-30 1.441603Θ-3Ο -5.273430e>30 5.5061156-30 5.375e28e-2d C7 0.0000006400 -1.492937β-35 5.67S564e-35 -4.500925e-3S -l.aS128€6-32 ca 〇.〇〇〇〇〇〇et-OO o.oaooooe^oo 〇. 〇〇〇〇〇〇e+00 〇.〇〇〇〇〇〇e^oo 〇.〇〇〇〇〇〇e+oo C9 〇.〇〇〇〇〇〇ef-oo 〇.〇〇〇〇〇 〇β400 〇.〇〇〇〇〇〇et-00 〇.〇〇〇〇〇〇et-oo O.OOOO&Oe+OO
圖8之圖8a展示圖7中所展示的配置之修正潛能;圖 8b說明一種配置之修正潛能,其中,一個修正元件21被 配置在瞳孔平面附近,而另一修正元件則被配置在投影物 鏡之場域平面附近。此處,修正元件21在兩個狀況下各 自包含兩個5 mm厚的S i 〇2板,而該等板之間配置了一個 厚度為4 mm的水層。 將以舉例方式在下文中考量用於實現本發明之修正元 件之最佳補償效應的液體層之厚度與定界元件之厚度之 間的關係。此處的基本規定為,所使用的液體之折射率之 溫度係數(dn/dT),展現出不同於周圍材料、特別是投影 物鏡中所使用的光學元件之材料的正負號。液體層之厚度 與定界元件之總厚度之間的關係,遵循以下公式: 21 97112516 200903184Figure 8 of Figure 8 shows the correction potential of the configuration shown in Figure 7; Figure 8b illustrates the modification potential of a configuration in which one correction element 21 is placed near the pupil plane and the other correction element is placed in the projection objective Near the field plane. Here, the correction element 21 comprises two 5 mm thick S i 〇 2 plates in each case, and a water layer having a thickness of 4 mm is arranged between the plates. The relationship between the thickness of the liquid layer and the thickness of the delimiting element for achieving the optimum compensating effect of the correcting element of the present invention will be considered hereinafter by way of example. The basic rule here is that the temperature coefficient of the refractive index of the liquid used (dn/dT) exhibits a sign different from the material of the surrounding material, in particular the optical element used in the projection objective. The relationship between the thickness of the liquid layer and the total thickness of the delimiting element follows the following formula: 21 97112516 200903184
lens Σ ί=Ι i^element ^ glass water DAT, 里值Dwater/Dglass為液體厚度與周圍玻璃材料之厚度之間 的關係。此外,dnglass/dT及分別表示玻璃材料 及所使用的液體之折射率之溫度係數。量值Di*ATi等於 個別的透鏡厚度與透鏡元件i内之溫升的乘積。所有的 • (L正元件自身除外)之總和,表示所有透鏡元件對總 效應的貢獻。 一平面透鏡元件内之最大溫度變化,近似地由下式认 出: 、。 α·Ρ Απλ ~2tn Η lens 此適用於具有習知照明(亦即,以元件之光軸為中心的 〇圓形照明)的平面元件。在此狀況下,p纟示照射功率, π表示基數為e之吸收係數,2表示材料之熱導率,及⑴ 表示習知照明之半徑,且仏咖表示透鏡高度。 〃在採用液體層之狀況下’可假設:液體内之溫度近似地 等於定界的玻璃表面之溫度。在此狀況下,液體之溫度隨 熱導率增加而降低(例如,石英_CaF2)。結果,液體層之 所需厚度隨熱導率增加而增加。 一個具有兩個定界玻璃板的水層,可才皮近似地表示成一 個具有有效吸收及熱導率的均質元件,適用下 97112536 22 200903184 式: Μ. D,. "Mfater^ water +d. 及^ Af 〇> :=:——Slass^slass + 乂 M/ater waterLens Σ ί=Ι i^element ^ glass water DAT, The value Dwater/Dglass is the relationship between the thickness of the liquid and the thickness of the surrounding glass material. In addition, dnglass/dT and the temperature coefficient of the refractive index of the glass material and the liquid used, respectively. The magnitude Di*ATi is equal to the product of the individual lens thickness and the temperature rise in the lens element i. The sum of all • (except for the L positive components themselves) represents the contribution of all lens components to the overall effect. The maximum temperature change in a planar lens element is approximately recognized by: α·Ρ Απλ ~2tn Η lens This is suitable for planar elements with conventional illumination (ie, 〇 circular illumination centered on the optical axis of the component). In this case, p indicates the irradiation power, π represents the absorption coefficient of the base e, 2 represents the thermal conductivity of the material, and (1) represents the radius of the conventional illumination, and the coffee represents the height of the lens. In the case of a liquid layer, it can be assumed that the temperature in the liquid is approximately equal to the temperature of the delimited glass surface. Under this condition, the temperature of the liquid decreases as the thermal conductivity increases (for example, quartz _CaF2). As a result, the desired thickness of the liquid layer increases as the thermal conductivity increases. A water layer with two delimited glass plates can be approximated as a homogeneous component with effective absorption and thermal conductivity. Applicable to 97112536 22 200903184: Μ. D,. "Mfater^ water +d And ^ Af 〇> :=:——Slass^slass + 乂M/ater water
Dglass +D, wat^r 圖9說明作為定界元件之厚度之函數的水層之所 度。在此狀況下,玻璃類型石英及CaFz被假設為用於= 元件之材料。所使用的值在此狀況下為仏W仏咖=〇 2 ,1 P:1 W’ “…:0-0829/cm,且〜…〇(與水相比可勿 略:計)。圖9中之曲線參數為有待在整個物鏡中補償二 波則像差(200 nm及150 nm)。此可藉纟光學元件別 是,投影物鏡中之透鏡)之溫度變化及厚度來計算。. 所表示之關係分別適用於材料系統「石英/水/石 及「CaF"水舰」適用。定界元件在此狀況下具有平」面 表面。 上文所表示的關係之一般化,可藉由定界元件之 成。在此狀況下’投影物鏡可模型化成為—個有效的平= 透^此-有效透鏡可藉由在光軸上且沿著邊緣光線的光 径長度而確m熱效應之觀點看,整個物鏡與具有正 折射率的透鏡有等同的表現。為了能夠補償此類型之透鏡 之熱效應’應使用一個具有比邊緣厚度大之中心厚 體透鏡。此透鏡是對以上表述之等效考量的結果。又圖μ 說明具妓界元件22及23的光學修正㈣21之一些例 不性實施例’而該等定界元件22及23具有非平面的表面。 97112516 23 200903184 本發明之修正元件之實現中一個可能的問題,可能由以 事實引起戶斤希望的溫度分布由於液體層中之對流而被 破壞。在此狀況下,將液體層以(例如)實質上相對於光學 上有用的輻射之方向而正交的蜂寫狀方式來建造(亦即, 該等定界it件中之-者係以將液體「填充」至個別的室 中、且如同被第m件封閉的方式建造),係有利的。 以此方式’經由對流之熱交換大大地受到抑制。此外, ,使液體之折射率調整成定界元件之周圍材料之折射率,係 有利的。如此確保了蜂窩式結構在冷狀態 質的外表’且不會導致任何干擾性的光程差。 圖^以平面圖展示修正元件之組構之兩個可能的變化 此狀況下,提供額外的元件33,將液體層(圖ι〇 ==之變化例⑷蜂高狀丄二 正V:。所說明之變化例中則被組構… / =11說明投影曝光裝置卜其中,—個本 元:皮配置在投影物鏡7中。此置 之照明裝置3被設計成為藉由照明裝 在以此方式組構的投影曝光裝、 '、、、 明分布,本發明之修正元件HZ “極不均句的照 圖13展示本發明之修正 之、取大的修正潛能。 作A、、田声,μ — I , n 牛21之另—變化例,其展現 作為流度调即兀件40的加熱線,而該 狀形式分布在修正元件21 、 ”,、線係以網格 干上且在適合的接觸逹接後可 97112516 24 200903184 在修正7C件21上產生所要的溫度 具體化成為雷射41的紅外線源,藉二明 將-個定界、定向的紅外線射束42指;7;^^ :壬何所希望的點上,如此導致對修正元件正二= 幻。了構想出局部冷卻(例如,使用冷卻、定向的流體 傳未說明h額外的元件33亦可被製造成 、:導兀件(例如,由金屬材料製成),或具備一個在光轴之 以此方式,若額外的元件33具有 σ接觸連接,在雙功能性下,則可減少液體層24内 之對流’亦可在按電阻加熱系統之方式使用額外的元件 3之傳導區域的情況下,設定所希望的溫度分布。 圖14展示用於抑制對流的另一變化例。在此狀況下, 液體層24被分離元件5〇細分為兩個部分層—及⑽。 在此狀況下,部分層24a及24b係相對於通過光學修正元 件21的光徑一前一後地配置。在此狀況下,相比於上文 戶述之實例,兩個部分層24a及24b之各別的厚度被減 少;詳言之,該等厚度在小於3 mm之範圍内,2龍或者 1 mm之厚度在此狀況下係有利的。將液體層細分成複數 個較細的部分層,具有減少部分層24a及24b中之對流、 及層平面方向中之對流的作用。在此狀況下,由於液體層 24之未憂化的總计總厚度,修正元件21之修正效應實際 上得以完全保留。在此狀況下,所提出之變化例具有可使 對流減少措施之光學效應保持較小的優點;因此,以實例 97112516 25 200903184 ,明’可將具有小量光學 作為分離元件50。 J石夬玻璃板用 圖15展示減少對·、、* μ 鱧層24之層厚度之減^又;*可能情況。在此狀況下,液 而與定界元件22及23U:二體層係藉由絕緣層51 文已屏干的;^ 熱緣事實,而成為可能。如上 又巳展不的,液體a ^ 聪禮24之所需的最小厚度亦尤苴 於液體層24分別鱼宕! _从_ 』兀八疋取决 i 之P^ 〇 ,兀件22及23之間存在的熱耦合 9q " °本已發現’液體層24分別與定界幻牛22及 之間的熱搞合越好,液體層24之厚度增加越是必需 的由於其熱絕緣效應,絕緣層51減少液體層24分別盘 定界元件22及23之間的熱轉移,且因此能有一個較薄 液體層24。以此方式’可將液體層24尺寸設定為具有結 合圖14所提出的該等量值之數量級,且因此,由於減小 之厚度’亦大大地防止了層方向上之對流。在此狀況下, 可以用將氣泡引入定界元件22及23之面向液體層的區域 中的方式,組構絕緣層51,而該等氣泡之直徑被選擇成 為使得该等氣泡之光學影響被大大地減小。視光學修正元 件在物鏡中之位置之不同,舉例而言,達到5χ〇.25之氣 泡等級應被允許。此係對應於〗· 25 mm2的總面積。根據 ISO 1010-3,只要此狀況下不發生積聚,便可允許將此面 積分配在具有相等總面積的更多氣泡之中。 圖16所§兒明的用於減少由對流導致的干擾影響之另一 變化例’在於形成液體層24的液體被定期替換,且因此 允許液體層24中之溫度分布之均質化。為此目的,修正 97112516 26 200903184 70件21具備人口及出σ 55,其確保液體層24至少部分 八被替換換5之,在其中最初形成液體層Μ中之溫度 刀布而不具有超過干擾程度的對流的時間段 學修正元件之择鄉哭乂處 ^,d . 仟之刼縱益效應。在此狀況下,時間窗(七11116 win 〇w)(其中,雖然補償溫度分布已經形成於液體層μ 中’但其對流尚未超過干擾程度)可被有利地用於操縱哭 之使用°影響該時間窗之位置及長度的基本參數,為液體 之黏度及熱導率、以及液體層24中溫度分布之形式。另 外’如已參看圖13所解釋的,存在藉由溫度調節元件(亦 即,藉由定目標的局部冷卻或加熱)影響溫度分布且因此 办響液體層中之對流的可能性。在此態樣中,目工6以實 例說明一個具體化為IR雷射41的紅外線源,藉由該紅外 '、原 疋界疋向的紅外線射束42可被指向修正元件 21或液體層24上之任何所希望的點上,如此導致對修正 元件21或液體層24之局部加熱。 【圖式簡單說明】 圖1展不先前技術之半導體光刻之投影物鏡(參考說明 書之引言)。 圖2展示例示性的光學修正元件。 圖3a及3b展示本發明基礎原理之清楚說明。 圖4a及4b展示修正後的波前(場域中心)之說明。 圖5展不投影物鏡之第一例示性實施例,其中配置有兩 個本發明之修正元件。 圖6展示投影物鏡之替代設計,其中同樣使用了兩個本 97112516 27 200903184 發明之修正元件。 圖7展示投影物鏡之另杏 之修正元件。 另“列,其中應用了多個本發明 之不同配置之修正潛能。 圖9展㈣為定界元件之厚度之函 疮66銳昍。 八《a喝 < 所 圖8a及8b展示修正元件 需 可能 厚度的說明 圖10a及l〇b以平而闰s -你 變化例。 +面圖展-修正元件之組構之兩個 個本發明之修正元 圖Π展示投影曝光裝置,其中 件被配置在投影物鏡令。 現 非::表展面示本發明之另,例’其中’定界元件呈 圖13展示本發明《具有溫度調節元件的光學修正元 件。 圖14展示用於抑制對流的額外的變化例。 ί;圖15展示用於抑制對流的另一可能情況。 圖16展示本發明之可避免對流的另一變化例。 【主要元件符號說明】 1 投影曝光裝置 2 晶圓 3 照明裝置 4 (容納、定位)裝置 5 主光罩 6 (安裝、移動、定位)裝置 97112516 28 200903184 7 成像裝置;投影物鏡 8 光學元件 9 支架 10 物鏡外殼 11 投影束;光束 21 (光學)修正元件 21, 修正元件 22 定界元件 23 定界元件 24 液體層 24a 部分層 24b 部分層 25 透鏡元件 26 (雙凸面)透鏡 31 反射元件 32 反射元件 33 (額外)元件;(細分)元件 34 部分空間 40 溫度調節元件 41 IR雷射 42 紅外線射束 50 分離元件;(額外)元件 51 絕緣層;(額外)元件 55 入口 、出口 97112516 29Dglass +D, wat^r Figure 9 illustrates the extent of the water layer as a function of the thickness of the delimiting element. In this case, glass type quartz and CaFz are assumed to be materials for the = element. The value used in this case is 仏W仏咖=〇2, 1 P:1 W' “...:0-0829/cm, and ~...〇 (comparable to water: not counting). Figure 9 The curve parameter in the middle is to compensate for the two-wavelength aberration (200 nm and 150 nm) in the entire objective lens. This can be calculated by the temperature change and thickness of the optical element in the projection objective lens. The relationship applies to the material system "Quartz / Water / Stone and "CaF " Water Ship". The delimiting element has a flat surface in this condition. The generalization of the relationships represented above can be achieved by delimiting elements. In this case, the 'projection objective can be modeled as an effective flat = transparent. This effective lens can be obtained by the optical effect of the optical path length on the optical axis and along the edge of the light. A lens with a positive refractive index has an equivalent performance. In order to be able to compensate for the thermal effects of this type of lens, a central thick lens having a thickness greater than the edge should be used. This lens is the result of an equivalent consideration for the above expression. Further, Fig. 51 illustrates some examples of optical corrections (4) 21 of the boundary elements 22 and 23, and the delimiting elements 22 and 23 have non-planar surfaces. 97112516 23 200903184 A possible problem in the implementation of the correction element of the present invention may be that the temperature distribution desired by the fact is destroyed by convection in the liquid layer. In this case, the liquid layer is constructed in a bee-like manner that is, for example, substantially orthogonal to the direction of the optically useful radiation (i.e., the ones in the delimited It is advantageous that the liquid is "filled" into individual chambers and constructed as if it were closed by the mth member. In this way, heat exchange via convection is greatly suppressed. Furthermore, it is advantageous to adjust the refractive index of the liquid to the refractive index of the material surrounding the delimiting element. This ensures that the honeycomb structure is in a cold state of appearance' and does not cause any disturbing optical path differences. Figure 2 shows in plan view two possible variations of the configuration of the correction element. In this case, an additional element 33 is provided, which will be the liquid layer (Fig. ι〇==variation (4) bee high 丄二正V:. In the variation, it is configured... /=11 illustrates the projection exposure apparatus, wherein: a primitive: the skin is disposed in the projection objective 7. The illumination device 3 is designed to be mounted in this manner by illumination. The projection exposure apparatus, ', , and the distribution of the structure, the correction element HZ of the present invention, "the image of the extremely uneven sentence" shows the correction of the present invention, and the large correction potential is obtained. As A, Tian, μ - I, n another variant of the cow 21, which exhibits a heating line as a fluidity adjustment, ie, the profile is distributed over the correction element 21,", the wire is meshed dry and in a suitable contact After the splicing, the 97112516 24 200903184 can generate the desired temperature on the modified 7C member 21 to become the infrared source of the laser 41. By means of the second, a delimited, directed infrared beam 42 is pointed; 7; ^^ :壬At the point of hope, this led to the correction of the component's positive = illusion. However (for example, the use of a cooled, directed fluid transfer does not indicate that additional elements 33 may be fabricated as: a guide member (eg, made of a metallic material), or have an optical axis in this manner, if The additional element 33 has a sigma contact connection, and in the case of dual functionality, the convection in the liquid layer 24 can be reduced. Alternatively, the desired area can be set in the case of using a conductive region of the additional element 3 in the manner of a resistive heating system. Temperature Distribution Figure 14 shows another variation for suppressing convection. In this case, the liquid layer 24 is subdivided into two partial layers by the separation element 5 - and (10). In this case, the partial layers 24a and 24b are The light path is arranged one after the other with respect to the optical path passing through the optical correction element 21. In this case, the respective thicknesses of the two partial layers 24a and 24b are reduced compared to the example of the above description; The thickness is in the range of less than 3 mm, and the thickness of 2 or 1 mm is advantageous in this case. Subdividing the liquid layer into a plurality of thinner partial layers, having reduced convection in the partial layers 24a and 24b And the pair in the plane direction of the layer In this case, the correction effect of the correction element 21 is actually completely retained due to the total thickness of the liquid layer 24 which is not worried. In this case, the proposed variation has measures for reducing the convection. The optical effect is kept to a small advantage; therefore, with the example 97112216 25 200903184, it is possible to have a small amount of optics as the separation element 50. The J sarcophagus glass plate is shown in Fig. 15 to reduce the pair of ·, , * μ 鳢 layers 24 The thickness of the layer is reduced; * possible. Under this condition, the liquid and the delimiting elements 22 and 23U: the two-layer layer is made possible by the insulating layer 51; As mentioned above, the minimum thickness required for the liquid a ^ Cong Li 24 is also particularly high in the liquid layer 24! _ From _ 』 兀 疋 疋 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i 热 热 热 热 热 热 热 热 热 热 热 热 热 热The more preferably, the greater the thickness increase of the liquid layer 24 is due to its thermal insulation effect, the insulating layer 51 reduces the heat transfer between the liquid layer 24 and the disk delimiting elements 22 and 23, respectively, and thus has a thinner liquid layer 24 . In this manner, the liquid layer 24 can be sized to have an order of magnitude equivalent to that proposed in connection with Figure 14, and thus, convection in the layer direction is greatly prevented due to the reduced thickness'. In this case, the insulating layer 51 can be organized in such a manner that bubbles are introduced into the liquid-facing regions of the delimiting members 22 and 23, and the diameters of the bubbles are selected such that the optical influence of the bubbles is greatly The ground is reduced. Depending on the position of the optical correction element in the objective lens, for example, a bubble level of 5 χ〇.25 should be allowed. This corresponds to the total area of 25 mm2. According to ISO 1010-3, this area can be allowed to be distributed among more bubbles of equal total area as long as no accumulation occurs under this condition. Another variation of the effect of the interference caused by convection shown in Fig. 16 is that the liquid forming the liquid layer 24 is periodically replaced, and thus the homogenization of the temperature distribution in the liquid layer 24 is allowed. For this purpose, the amendment 97112216 26 200903184 70 pieces 21 has a population and a σ 55 which ensures that at least a portion of the liquid layer 24 is replaced by 5, in which the temperature knives in the liquid layer are initially formed without exceeding the degree of interference. The convection time period of the correction component of the choice of the township crying ^, d. 仟 刼 刼 刼 effect. In this case, the time window (seven 11116 win 〇 w) (where the compensation temperature distribution has been formed in the liquid layer μ but its convection has not exceeded the degree of interference) can be advantageously used to manipulate the use of crying. The basic parameters of the position and length of the time window are in the form of the viscosity and thermal conductivity of the liquid and the temperature distribution in the liquid layer 24. Further, as already explained with reference to Fig. 13, there is a possibility that the temperature distribution element (i.e., local cooling or heating by a target) affects the temperature distribution and thus convection in the liquid layer. In this aspect, the eyepiece 6 illustrates, by way of example, an infrared source embodied as an IR laser 41, by which the infrared beam 42 directed toward the original boundary can be directed to the correction element 21 or the liquid layer 24. At any desired point above, this results in localized heating of the correction element 21 or liquid layer 24. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows a projection objective of a semiconductor lithography which is not prior art (refer to the introduction of the specification). Figure 2 shows an illustrative optical correction element. Figures 3a and 3b show a clear description of the basic principles of the invention. Figures 4a and 4b show an illustration of the modified wavefront (field center). Figure 5 shows a first exemplary embodiment of a projection objective in which two correction elements of the present invention are arranged. Figure 6 shows an alternative design of a projection objective in which two correction elements of the invention of 97112516 27 200903184 are also used. Figure 7 shows the correction elements of the other projection of the projection objective. In addition, "column, in which a plurality of modified potentials of different configurations of the present invention are applied. Figure 9 (4) is the thickness of the delimited element of the sore 66 sharp. Eight "a drink" Figure 8a and 8b show the correction component needs Description of Possible Thickness Figures 10a and 10b are flat and 闰s - your variation. + Surface Extension - Correction of the composition of the two components of the invention. The modified metagraph shows the projection exposure device, where the components are configured In the projection objective lens, the present invention is not shown in the following: "The 'delimiting element' is shown in Fig. 13 showing the optical correction element of the present invention having a temperature regulating element. Fig. 14 shows an additional means for suppressing convection. Fig. 15 shows another possible case for suppressing convection. Fig. 16 shows another variation of the avoidable convection of the present invention. [Main element symbol description] 1 Projection exposure device 2 Wafer 3 Illumination device 4 (accommodation, positioning) device 5 main reticle 6 (installation, movement, positioning) device 97112516 28 200903184 7 imaging device; projection objective lens 8 optical element 9 bracket 10 objective lens housing 11 projection beam; beam 21 (optical) repair Element 21, correction element 22 delimiting element 23 delimiting element 24 liquid layer 24a partial layer 24b partial layer 25 lens element 26 (double convex) lens 31 reflective element 32 reflective element 33 (extra) element; (subdivision) element 34 part space 40 temperature adjustment element 41 IR laser 42 infrared beam 50 separation element; (extra) element 51 insulation; (extra) element 55 inlet, outlet 97112516 29
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007016806 | 2007-04-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200903184A true TW200903184A (en) | 2009-01-16 |
Family
ID=39522449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97112516A TW200903184A (en) | 2007-04-05 | 2008-04-07 | Optical correction element and method for the correction of temperature-induced imaging aberrations in optical systems, projection objective and projection exposure apparatus for semiconductor lithography |
Country Status (3)
Country | Link |
---|---|
DE (1) | DE102008000968A1 (en) |
TW (1) | TW200903184A (en) |
WO (1) | WO2008122410A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI494706B (en) * | 2009-05-16 | 2015-08-01 | Zeiss Carl Smt Gmbh | Projection exposure apparatus for semiconductor lithography comprising an optical correction arrangement |
CN112130421A (en) * | 2019-06-25 | 2020-12-25 | 佳能株式会社 | Exposure apparatus, exposure method, and method of manufacturing article |
CN112859543A (en) * | 2021-02-02 | 2021-05-28 | 北京理工大学 | Design method of catadioptric deep ultraviolet lithography objective system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011077784A1 (en) | 2011-06-20 | 2012-12-20 | Carl Zeiss Smt Gmbh | projection arrangement |
DE102016218744A1 (en) | 2016-09-28 | 2018-03-29 | Carl Zeiss Smt Gmbh | Projection exposure system with liquid layer for wave front correction |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7362508B2 (en) * | 2002-08-23 | 2008-04-22 | Nikon Corporation | Projection optical system and method for photolithography and exposure apparatus and method using same |
EP1524558A1 (en) * | 2003-10-15 | 2005-04-20 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
WO2006053751A2 (en) | 2004-11-18 | 2006-05-26 | Carl Zeiss Smt Ag | Projection lens system of a microlithographic projection exposure installation |
-
2008
- 2008-04-03 DE DE102008000968A patent/DE102008000968A1/en not_active Withdrawn
- 2008-04-04 WO PCT/EP2008/002693 patent/WO2008122410A2/en active Application Filing
- 2008-04-07 TW TW97112516A patent/TW200903184A/en unknown
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI494706B (en) * | 2009-05-16 | 2015-08-01 | Zeiss Carl Smt Gmbh | Projection exposure apparatus for semiconductor lithography comprising an optical correction arrangement |
US9366977B2 (en) | 2009-05-16 | 2016-06-14 | Carl Zeiss Smt Gmbh | Semiconductor microlithography projection exposure apparatus |
CN112130421A (en) * | 2019-06-25 | 2020-12-25 | 佳能株式会社 | Exposure apparatus, exposure method, and method of manufacturing article |
CN112130421B (en) * | 2019-06-25 | 2023-11-14 | 佳能株式会社 | Exposure apparatus, exposure method, and method of manufacturing article |
CN112859543A (en) * | 2021-02-02 | 2021-05-28 | 北京理工大学 | Design method of catadioptric deep ultraviolet lithography objective system |
Also Published As
Publication number | Publication date |
---|---|
DE102008000968A1 (en) | 2008-10-09 |
WO2008122410A2 (en) | 2008-10-16 |
WO2008122410A3 (en) | 2009-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI464542B (en) | Illumination system of a microlithographic projection exposure apparatus | |
JP5863974B2 (en) | Projection objective lens of microlithography projection exposure apparatus | |
JP5731434B2 (en) | Exposure method and apparatus, illumination optical apparatus, and device manufacturing method | |
KR101444517B1 (en) | Imaging optical system and projection exposure installation for microlithography with an imaging optical system of this type | |
JP5487110B2 (en) | Microlithography projection exposure apparatus | |
TWI430042B (en) | Catadioptric projection objective with pupil mirror, projection exposure apparatus and projection exposure method | |
TW200903184A (en) | Optical correction element and method for the correction of temperature-induced imaging aberrations in optical systems, projection objective and projection exposure apparatus for semiconductor lithography | |
JP5861973B2 (en) | Method of operating a microlithographic projection exposure apparatus and projection objective of such an apparatus | |
JP2010500769A5 (en) | ||
JP2010538328A5 (en) | ||
TWI314673B (en) | Imaging system, in particular for a microlithographic projection exposure apparatus | |
JP2007298984A (en) | High-na projection objective | |
EP2253997A2 (en) | Illumination system for a microlithographic contact and proximity exposure apparatus | |
JP2002118058A (en) | Projection aligner and projection exposure method | |
JP5600377B2 (en) | Projection objectives for lithography | |
TWI572904B (en) | Wynne-dyson projection lens with reduced susceptibility to uv damage | |
TW201226968A (en) | Imaging optics, and a projection exposure apparatus for microlithography having such an imaging optics | |
TW201100974A (en) | Projection exposure apparatus for semiconductor lithography comprising an optical correction arrangement | |
JP2006177740A (en) | Multilayer film mirror and euv exposure apparatus | |
JP2006216783A (en) | Multilayer film reflecting mirror | |
JP5419900B2 (en) | Filter, exposure apparatus and device manufacturing method | |
TWI536113B (en) | Projection optical system and projection exposure device | |
JP2010232242A (en) | Reflection type projection optical system, and exposure device | |
JP2013065917A (en) | Exposure device and device manufacturing method |