JP2010232242A - Reflection type projection optical system, and exposure device - Google Patents

Reflection type projection optical system, and exposure device Download PDF

Info

Publication number
JP2010232242A
JP2010232242A JP2009075484A JP2009075484A JP2010232242A JP 2010232242 A JP2010232242 A JP 2010232242A JP 2009075484 A JP2009075484 A JP 2009075484A JP 2009075484 A JP2009075484 A JP 2009075484A JP 2010232242 A JP2010232242 A JP 2010232242A
Authority
JP
Japan
Prior art keywords
optical system
projection optical
image
plane
reflection type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009075484A
Other languages
Japanese (ja)
Inventor
Masatsugu Nakano
正嗣 中野
Keisuke Araki
敬介 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009075484A priority Critical patent/JP2010232242A/en
Publication of JP2010232242A publication Critical patent/JP2010232242A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflection type projection optical system and an exposure device that easily achieve a high NA. <P>SOLUTION: The reflection type projection optical system which has an object plane side made non-telecentric and projects an image of an object plane MS on an image plane W includes a plurality of reflecting mirrors M1 to M6, and a diaphragm member AS inclined to a plane perpendicular to an optical axis AX. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、反射型投影光学系及び露光装置に関する。   The present invention relates to a reflective projection optical system and an exposure apparatus.

特許文献1は、極紫外(Extreme Ultraviolet)光を使用する露光装置において6枚の反射鏡から構成される反射型投影光学系を開示している。特許文献2は、像側の開口数(NA)が比較的大きく第1の反射面と第2の反射面の間に開口絞りを配置した、6枚の反射鏡から構成される反射型投影光学系を開示している。   Patent Document 1 discloses a reflection type projection optical system including six reflecting mirrors in an exposure apparatus that uses extreme ultraviolet light. Patent Document 2 discloses a reflection type projection optical system including six reflecting mirrors having a relatively large numerical aperture (NA) on the image side and an aperture stop disposed between a first reflecting surface and a second reflecting surface. The system is disclosed.

国際公開第02/48796号パンフレットInternational Publication No. 02/48796 特開2005−101591号公報JP 2005-101591 A

高NAは高解像度を達成する上で効果的であるが、従来は高NA化を図ろうとしても開口絞り付近で光束がケラレるため、十分にNAを高めることができなかった。   High NA is effective in achieving high resolution, but conventionally, even if an attempt was made to increase NA, the luminous flux was vignetted in the vicinity of the aperture stop, so that the NA could not be sufficiently increased.

本発明は、高NAを達成しやすい反射型投影光学系及び露光装置を提供することを例示的な目的とする。   An object of the present invention is to provide a reflective projection optical system and an exposure apparatus that can easily achieve a high NA.

本発明の一側面としての反射型投影光学系は、物体面側が非テレセントリックに構成され、物体面の像を像面に投影する反射型投影光学系であって、複数の反射鏡と、光軸に垂直な面に対して傾いている絞り部材と、を有することを特徴とする。   A reflective projection optical system according to one aspect of the present invention is a reflective projection optical system in which an object plane side is configured to be non-telecentric and projects an image of an object plane onto an image plane. And a diaphragm member inclined with respect to a plane perpendicular to the surface.

本発明は、高NAを達成しやすい反射型投影光学系及び露光装置を提供することができる。   The present invention can provide a reflective projection optical system and an exposure apparatus that can easily achieve a high NA.

本実施例の投影光学系の光路図である。It is an optical path figure of the projection optical system of a present Example. 図1の部分拡大図である。It is the elements on larger scale of FIG.

図1は、本実施例の露光装置の反射型投影光学系近傍の光路図である。露光装置は、EUV光を利用して原版(マスク又はレチクル)のパターンの像を基板(ウエハ又は液晶基板)に露光する露光装置である。露光装置は、光源、照明光学系、原版ステージ、反射型投影光学系、基板ステージを有する。   FIG. 1 is an optical path diagram in the vicinity of the reflective projection optical system of the exposure apparatus of the present embodiment. The exposure apparatus is an exposure apparatus that exposes an image of an original (mask or reticle) pattern onto a substrate (wafer or liquid crystal substrate) using EUV light. The exposure apparatus includes a light source, an illumination optical system, an original stage, a reflective projection optical system, and a substrate stage.

光源は、EUV光を射出し、レーザープラズマ光源や放電プラズマ光源を使用することができる。照明光学系は、原版を均一に照明し、集光反射鏡やオプティカルインテグレータを有する。原版は転写されるパターンを有し、物体面MSに配置される反射型原版である。原版ステージは原版を支持及び駆動する。基板は像面Wに配置されて、フォトレジストが塗布されている。基板ステージは基板を支持及び駆動する。   The light source emits EUV light, and a laser plasma light source or a discharge plasma light source can be used. The illumination optical system uniformly illuminates the original, and has a condensing reflector and an optical integrator. The original is a reflective original having a pattern to be transferred and disposed on the object surface MS. The original stage supports and drives the original. The substrate is placed on the image plane W and is coated with a photoresist. The substrate stage supports and drives the substrate.

反射型投影光学系は、物体面MSと像面Wを共役な関係に維持し、原版(マスク又はレチクル)のパターンの像を基板(ウエハ又は液晶基板)に縮小投影する。物体面上の照明領域と像面上の露光領域は光軸AX上にはない。これは、光束が反射型光学素子や絞り部材によってケラレないようにするためである。また、反射型原版を使用するために反射型投影光学系は物体面側では非テレセントリックである。   The reflective projection optical system maintains a conjugate relationship between the object plane MS and the image plane W, and reduces and projects a pattern image of the original (mask or reticle) onto the substrate (wafer or liquid crystal substrate). The illumination area on the object plane and the exposure area on the image plane are not on the optical axis AX. This is to prevent the light flux from being vignetted by the reflective optical element or the diaphragm member. In addition, since the reflective master is used, the reflective projection optical system is non-telecentric on the object plane side.

反射型投影光学系は、複数の反射鏡を有する。各反射鏡にはEUV光を反射させる多層膜が施されている。複数の反射鏡は、本実施例では6枚の反射鏡であるが、本発明は4枚から8枚など6枚に限定されない。   The reflective projection optical system has a plurality of reflecting mirrors. Each reflecting mirror is provided with a multilayer film that reflects EUV light. The plurality of reflecting mirrors are six reflecting mirrors in this embodiment, but the present invention is not limited to six such as four to eight.

本実施例では、複数の反射鏡は、物体面MSから光路に沿って光を反射する順に、第1の反射鏡M1、第2の反射鏡M2、第3の反射鏡M3、第4の反射鏡M4、第5の反射鏡M5、第6の反射鏡M6から構成される。光路に沿って第四の反射鏡M4と第五の反射鏡M5の間で中間像IMが形成される。反射型投影光学系は、共軸系をなすように配置されているが、反射鏡を偏心させたり、回転させたりしてもよい。   In the present embodiment, the plurality of reflecting mirrors reflect the first reflecting mirror M1, the second reflecting mirror M2, the third reflecting mirror M3, and the fourth reflecting in the order in which light is reflected from the object plane MS along the optical path. It comprises a mirror M4, a fifth reflecting mirror M5, and a sixth reflecting mirror M6. An intermediate image IM is formed between the fourth reflecting mirror M4 and the fifth reflecting mirror M5 along the optical path. The reflective projection optical system is arranged so as to form a coaxial system, but the reflecting mirror may be decentered or rotated.

各反射鏡の曲率半径をrとすると、次式で示すペッツバール項の和がゼロかほぼゼロになることが必要である。 If the radius of curvature of each reflecting mirror is r i , the sum of Petzval terms expressed by the following equation must be zero or almost zero.

複数の反射鏡は、少なくとも1枚以上が非球面を含む。非球面形状は次式で規定される。収差補正の観点からは、できるだけ非球面の枚数が多い方がよい。   At least one of the plurality of reflecting mirrors includes an aspherical surface. The aspheric shape is defined by the following equation. From the viewpoint of aberration correction, it is better to have as many aspheric surfaces as possible.

数式3においてZは光軸方向の座標、cは曲率(曲率半径rの逆数)、hは光軸からの高さ、kは円錐係数、A、B、C、D、E、F、G、H、J・・・は各々、4次、6次、8次、10次、12次、14次、16次、18次、20次、・・・の非球面係数である。   In Equation 3, Z is the coordinate in the optical axis direction, c is the curvature (the reciprocal of the radius of curvature r), h is the height from the optical axis, k is the cone coefficient, A, B, C, D, E, F, G, H, J... Are aspherical coefficients of 4th order, 6th order, 8th order, 10th order, 12th order, 14th order, 16th order, 18th order, 20th order,.

第1の反射鏡M1と第2の反射鏡M2の間には、絞り部材(開口絞り)ASが配置される。絞り部材ASは光軸AXに垂直な面に対して傾いている(即ち、光軸AXに垂直ではない)。第1の反射鏡M1から第2の反射鏡M2に向かう光線は、図1の右上から左下に(像面側から物体面側に)向かっているので、この場合には絞り部材ASを後述する図2に示す点O周りに反時計回りに傾斜する。この方向に絞り部材ASを傾斜させることによって光線のケラレを少なくして高NA化を図ることができる。これについては、後で更に詳しく説明する。   A diaphragm member (aperture diaphragm) AS is disposed between the first reflecting mirror M1 and the second reflecting mirror M2. The aperture member AS is inclined with respect to a plane perpendicular to the optical axis AX (that is, not perpendicular to the optical axis AX). The light beam traveling from the first reflecting mirror M1 toward the second reflecting mirror M2 is directed from the upper right to the lower left (from the image plane side to the object plane side) in FIG. 1, and in this case, the diaphragm member AS will be described later. It tilts counterclockwise around the point O shown in FIG. By tilting the aperture member AS in this direction, the vignetting of the light beam can be reduced and the NA can be increased. This will be described in more detail later.

絞り部材ASの径は固定でも可変でもよく、可変の場合には、絞り部材の径を変化させることによって反射型投影光学系のNAを変化させることができる。絞り部材ASの形状は円形でも楕円形でもよい。   The diameter of the aperture member AS may be fixed or variable. In the case of being variable, the NA of the reflective projection optical system can be changed by changing the diameter of the aperture member. The shape of the aperture member AS may be circular or elliptical.

図2は、図1の部分拡大図であり、絞り部材ASの近傍のメリディオナル面の拡大図である。図2は、開口絞りASの開口の上端を通る外縁光線(又は周縁光線:Marginal Ray)R1、主光線PR、開口絞りASの開口の下端を通る外縁光線(又は周縁光線:Marginal Ray)R2を示している。また、AS1は、従来のように、光軸AXに対して垂直に配置された絞り部材である。点Oは、主光線PRと光軸AXの交点である。絞り部材ASと絞り部材AS1の一対の太線が遮光部であり、その間は開口である。   FIG. 2 is a partially enlarged view of FIG. 1 and an enlarged view of the meridional surface in the vicinity of the aperture member AS. FIG. 2 shows an outer edge ray (or marginal ray) R1 passing through the upper end of the aperture stop AS, a principal ray PR, and an outer edge ray (or marginal ray) R2 passing through the lower end of the aperture stop AS. Show. Further, AS1 is a diaphragm member arranged perpendicular to the optical axis AX as in the prior art. Point O is the intersection of principal ray PR and optical axis AX. A pair of thick lines of the diaphragm member AS and the diaphragm member AS1 are light shielding portions, and an opening is provided between them.

図2において、一対の外縁光線R1及びR2が絞り部材AS1に入射する角度をそれぞれα(°)及びβ(°)とする。即ち、外縁光線R1が絞り部材AS1に入射する角度をα(°)とする。また、外縁光線R2が絞り部材AS1に入射する角度をβ(°)とする。また、外縁光線R1の像側の開口数をNAa(=n・sinαimg)、外縁光線R1の像側の開口数をNAb(=n・sinβimg)とする。但し、nは屈折率、αimg(°)は外縁光線R1が像面Wに入射する角度、βimg(°)は外縁光線R2が像面Wに入射する角度である。更に、A、B、Sを下式のように規定する。 In FIG. 2, the angles at which the pair of outer edge rays R1 and R2 enter the diaphragm member AS1 are α (°) and β (°), respectively. That is, the angle at which the outer edge ray R1 is incident on the aperture member AS1 is α (°). Further, an angle at which the outer edge ray R2 is incident on the aperture member AS1 is β (°). The numerical aperture on the image side of the outer edge ray R1 is NA a (= n · sin α img ), and the numerical aperture on the image side of the outer edge ray R1 is NA b (= n · sin β img ). However, n is a refractive index, α img (°) is an angle at which the outer edge ray R 1 is incident on the image plane W, and β img (°) is an angle at which the outer edge ray R 2 is incident on the image plane W. Furthermore, A, B, and S are defined as the following formulas.

絞り部材ASと光軸AXに垂直な面(又は絞り部材AS1)に対する傾き角度をθ(°)とすると、θは次式を満足する。   Assuming that the inclination angle with respect to the surface perpendicular to the aperture member AS and the optical axis AX (or the aperture member AS1) is θ (°), θ satisfies the following equation.

数式8は絞り部材ASと物体面MSとの角度関係を表している。上限又は下限を超えると像側で上線と下線のNA差が大きくなる。上述したように、反射型原版を使用するために反射型投影光学系は物体面側では非テレセントリックであるため、像高ごとに光束の開口数が方向性をもつことになる。異方性は解像力に方向性をもつことになり、基板に形成されるパターンに不均一性が生じる。数式8はパターンの不均一性を実用的な範囲内に低減するための条件である。   Formula 8 represents the angular relationship between the aperture member AS and the object plane MS. When the upper limit or lower limit is exceeded, the NA difference between the upper line and the lower line increases on the image side. As described above, since the reflection type projection optical system is non-telecentric on the object plane side in order to use the reflection type master, the numerical aperture of the light beam has directionality for each image height. The anisotropy has directionality in the resolving power, and nonuniformity occurs in the pattern formed on the substrate. Equation 8 is a condition for reducing the pattern non-uniformity within a practical range.

露光において、EUV光は原版を照明し、原版パターンを基板に結像する。像面は円弧状の像面となり、原版と基板を縮小倍率比の速度比で走査することにより、原版全面を露光する。   In exposure, EUV light illuminates the original and forms an original pattern on the substrate. The image surface becomes an arc-shaped image surface, and the entire surface of the original is exposed by scanning the original and the substrate at a reduction ratio.

表A及び表Bは、反射型投影光学系の仕様(曲率半径R、面間隔D、非球面係数)を示す。
(表A)
ミラー番号 曲率半径(mm) 面間隔(mm)
M(マスク) 0 694.84276
M1 -716.2476 -219.13081
開口絞り 0 -114.33524
M2 -1550 241.59945
M3 721.61644 -261.49378
M4 586.31403 817.09236
M5 296.69119 -353.73198
M6 430.1551 401.2495
W(ウエハ) 0 0
(表B)
非球面係数 K A B C
M1 -1.92463E+00 8.59913E-10 -2.03466E-14 4.62151E-19
M2 -2.88259E-01 -2.29465E-09 8.45007E-14 -1.61951E-17
M3 1.17791E+00 -1.85904E-09 -8.39806E-14 1.11840E-17
M4 -3.00880E-02 2.80737E-11 -1.37915E-15 2.11145E-20
M5 3.12023E-01 -1.03445E-09 1.58463E-12 -8.00021E-17
M6 3.02209E-02 4.87630E-11 3.48587E-16 5.93966E-22
非球面係数 D E F G
M1 -8.54869E-24 -2.76473E-28 3.16917E-32 -7.82844E-37
M2 7.60003E-21 -1.92909E-24 2.47481E-28 -1.19995E-32
M3 -8.47167E-22 3.85393E-26 -9.68293E-31 1.03379E-35
M4 -9.66767E-26 -1.37500E-30 1.93512E-35 -6.99842E-41
M5 2.19921E-21 8.72805E-24 -3.83620E-27 5.39287E-31
M6 1.37823E-25 -5.78066E-30 1.46588E-34 -1.55827E-39
実施例1では、絞り部材ASは光軸ASに垂直な面に対して20度傾いている。表Cは、図2におけるa〜dの長さを示している。絞り部材ASを傾けることで光線の干渉に余裕ができ、高NA化に有利である。また、装置の配置にも余裕ができる。
(表C)
クリアランス(mm)
a 9.642
b 4.034
c 17.55
d 12.44
実施例1において、光軸上における物体面MSと像面Wとの距離(全長)は1206.092mmである。像側の開口数は0.27で、倍率は1/4倍、物体高は126〜134 mm(像側で幅2 mmの円弧状視野)である。波面収差のRMSは14.4mλ、スタティックディストーションはレンジで2.3nmである。
Tables A and B show the specifications of the reflective projection optical system (curvature radius R, surface interval D, aspheric coefficient).
(Table A)
Mirror number Curvature radius (mm) Surface spacing (mm)
M (mask) 0 694.84276
M1 -716.2476 -219.13081
Aperture stop 0 -114.33524
M2 -1550 241.59945
M3 721.61644 -261.49378
M4 586.31403 817.09236
M5 296.69119 -353.73198
M6 430.1551 401.2495
W (wafer) 0 0
(Table B)
Aspheric coefficient K A B C
M1 -1.92463E + 00 8.59913E-10 -2.03466E-14 4.62151E-19
M2 -2.88259E-01 -2.29465E-09 8.45007E-14 -1.61951E-17
M3 1.17791E + 00 -1.85904E-09 -8.39806E-14 1.11840E-17
M4 -3.00880E-02 2.80737E-11 -1.37915E-15 2.11145E-20
M5 3.12023E-01 -1.03445E-09 1.58463E-12 -8.00021E-17
M6 3.02209E-02 4.87630E-11 3.48587E-16 5.93966E-22
Aspheric coefficient D E F G
M1 -8.54869E-24 -2.76473E-28 3.16917E-32 -7.82844E-37
M2 7.60003E-21 -1.92909E-24 2.47481E-28 -1.19995E-32
M3 -8.47167E-22 3.85393E-26 -9.68293E-31 1.03379E-35
M4 -9.66767E-26 -1.37500E-30 1.93512E-35 -6.99842E-41
M5 2.19921E-21 8.72805E-24 -3.83620E-27 5.39287E-31
M6 1.37823E-25 -5.78066E-30 1.46588E-34 -1.55827E-39
In the first embodiment, the diaphragm member AS is inclined by 20 degrees with respect to a plane perpendicular to the optical axis AS. Table C shows the lengths a to d in FIG. By tilting the aperture member AS, there is a margin for light beam interference, which is advantageous for increasing the NA. In addition, there is room for the arrangement of the apparatus.
(Table C)
Clearance (mm)
a 9.642
b 4.034
c 17.55
d 12.44
In Example 1, the distance (full length) between the object plane MS and the image plane W on the optical axis is 1206.0092 mm. The numerical aperture on the image side is 0.27, the magnification is 1/4, and the object height is 126 to 134 mm (arc-shaped field of view with a width of 2 mm on the image side). The RMS of wavefront aberration is 14.4 mλ, and the static distortion is 2.3 nm in range.

一方、図2の開口絞りAS1を使用した場合、NAaは0.2642、NAbは0.2758でNA差が生じる。NAaは外縁光線R1の像側の開口数であるので、絞り部材AS1の上側の径を絞り部材AS1の下側の径よりも大きくすることでNAaとNAbの差を小さくすることができる。 On the other hand, when the aperture stop AS1 shown in FIG. 2 is used, NA a is 0.2642, NA b is 0.2758, and an NA difference is generated. Since NA a is the numerical aperture on the image side of the outer edge ray R1, the difference between NA a and NA b can be reduced by making the upper diameter of the diaphragm member AS1 larger than the diameter of the lower side of the diaphragm member AS1. it can.

この補正を行うにはα>βにおいては、図2に示すように、光線のケラレを回避する方向に絞り部材AS1を絞り部材ASのように傾けることで絞り部材の上側の径を絞り部材の下側の径より大きくすることができる。図2では、α=18.27°、β=11.31°であるので条件を満たし、数式7からθopt=19.64°となる。−5°<0.36°<5°となり、数式7を満足している。 In order to perform this correction, when α> β, as shown in FIG. 2, the aperture member AS1 is tilted like the aperture member AS in the direction to avoid the vignetting of the light beam so that the upper diameter of the aperture member is reduced. It can be larger than the lower diameter. In FIG. 2, since α = 18.27 ° and β = 11.31 °, the condition is satisfied, and from Equation 7, θ opt = 19.64 °. −5 ° <0.36 ° <5 °, which satisfies Expression 7.

絞り部材AS1を使用した場合の各像高に対するNAを表Dに示す。絞り部材ASを使用した場合の各像高に対するNAを表Eに示す。表D及び表Eにおいて、「NA上線」は、上側の外縁光線R1が像面Wに入射する角度から算出されるNAである。「NA下線」は、下側の外縁光線R2が像面Wに入射する角度から算出されるNAである。
(表D)
物体高(mm) NA上線 NA下線 NA上線−NA下線 NAメリ NAサジ
126 0.265176 -0.27629 -0.011114 0.270733 0.278261
130 0.264197 -0.2758 -0.011606 0.27 0.277993
134 0.263187 -0.27531 -0.012123 0.2692485 0.277718
(表E)
物体高(mm) NA上線 NA下線 NA上線−NA下線 NAメリ NAサジ
126 0.270213 -0.26976 0.000454 0.269986 0.270474
130 0.269949 -0.27005 -0.000102 0.27 0.270215
134 0.269652 -0.27034 -0.000688 0.269996 0.26995
上記の表からわかるように、絞り部材を光軸AXに垂直な面から傾けたことにより外縁光線R1及びR2のNA差が全像高で低減される。また、メリディオナル方向とサジタル方向のNA差も小さくなり、NAの異方性が低減される。
Table D shows the NA for each image height when the aperture member AS1 is used. Table E shows the NA for each image height when the aperture member AS is used. In Tables D and E, the “NA upper line” is the NA calculated from the angle at which the upper outer edge ray R1 is incident on the image plane W. The “NA underline” is an NA calculated from an angle at which the lower outer edge ray R2 enters the image plane W.
(Table D)
Object height (mm) NA overline NA underline NA overline-NA underline NA meli NA saji
126 0.265176 -0.27629 -0.011114 0.270733 0.278261
130 0.264197 -0.2758 -0.011606 0.27 0.277993
134 0.263187 -0.27531 -0.012123 0.2692485 0.277718
(Table E)
Object height (mm) NA overline NA underline NA overline-NA underline NA meli NA saji
126 0.270213 -0.26976 0.000454 0.269986 0.270474
130 0.269949 -0.27005 -0.000102 0.27 0.270215
134 0.269652 -0.27034 -0.000688 0.269996 0.26995
As can be seen from the above table, the NA difference between the outer edge rays R1 and R2 is reduced by the total image height by tilting the diaphragm member from the plane perpendicular to the optical axis AX. Further, the NA difference between the meridional direction and the sagittal direction is also reduced, and the anisotropy of NA is reduced.

このように、本実施例の反射型投影光学系は、絞り部材付近の光線のクリアランスに余裕ができることでNAが拡大でき、像高ごとのNAの異方性を低減することができ、高解像度と良好な像性能を達成することができる。   As described above, the reflection type projection optical system of the present embodiment can increase the NA by allowing the clearance of the light beam in the vicinity of the diaphragm member to be increased, can reduce the anisotropy of the NA for each image height, and can achieve high resolution. Good image performance can be achieved.

デバイス(半導体集積回路素子、液晶表示素子等)は、露光装置を使用して感光剤を塗布した基板(ウエハ、ガラスプレート等)を露光する工程と、基板を現像する工程と、他の周知の工程と、を経ることにより製造される(デバイス製造方法)。   Devices (semiconductor integrated circuit elements, liquid crystal display elements, etc.) use an exposure apparatus to expose a substrate (wafer, glass plate, etc.) coated with a photosensitive agent, develop a substrate, and other well-known methods And a process (device manufacturing method).

反射型投影光学系は、露光装置に適用することができる。露光装置は、デバイスを製造する用途に適用することができる。   The reflective projection optical system can be applied to an exposure apparatus. The exposure apparatus can be applied to an application for manufacturing a device.

MS 物体面
W 像面
AS 絞り部材
M1〜M6 反射鏡
AX 光軸
MS Object surface W Image surface AS Aperture member M1 to M6 Reflector AX Optical axis

Claims (4)

物体面側が非テレセントリックに構成され、物体面の像を像面に投影する反射型投影光学系であって、
複数の反射鏡と、
光軸に垂直な面に対して傾いている絞り部材と、
を有することを特徴とする反射型投影光学系。
A reflection type projection optical system configured such that the object plane side is non-telecentric and projects an image of the object plane onto the image plane;
Multiple reflectors,
A diaphragm member inclined with respect to a plane perpendicular to the optical axis;
A reflective projection optical system comprising:
メリディオナル面において一対の外縁光線が前記光軸に垂直な面に入射する角度をそれぞれα及びβ、前記一対の外縁光線の像側の開口数をそれぞれNAa及びNAbとし、A、B、Sを下式のように規定し、前記絞り部材と前記光軸に垂直な面に対する傾き角度をθとすると、θは次式を満足することを特徴とする請求項1に記載の反射型投影光学系。




The angles at which a pair of outer edge rays are incident on the plane perpendicular to the optical axis on the meridional plane are α and β, respectively, and the numerical apertures on the image side of the pair of outer edge rays are NA a and NA b , respectively. The reflective projection optics according to claim 1, wherein θ satisfies the following equation, where θ is defined as the following equation, and an inclination angle with respect to a plane perpendicular to the diaphragm member and the optical axis is θ. system.




請求項1又は2に記載の反射型投影光学系を有することを特徴とする露光装置。   An exposure apparatus comprising the reflective projection optical system according to claim 1. 請求項3に記載の露光装置を使用して基板を露光するステップと、
露光された前記基板を現像するステップと、
を有することを特徴とするデバイス製造方法。
Exposing the substrate using the exposure apparatus of claim 3;
Developing the exposed substrate;
A device manufacturing method comprising:
JP2009075484A 2009-03-26 2009-03-26 Reflection type projection optical system, and exposure device Pending JP2010232242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009075484A JP2010232242A (en) 2009-03-26 2009-03-26 Reflection type projection optical system, and exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009075484A JP2010232242A (en) 2009-03-26 2009-03-26 Reflection type projection optical system, and exposure device

Publications (1)

Publication Number Publication Date
JP2010232242A true JP2010232242A (en) 2010-10-14

Family

ID=43047833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009075484A Pending JP2010232242A (en) 2009-03-26 2009-03-26 Reflection type projection optical system, and exposure device

Country Status (1)

Country Link
JP (1) JP2010232242A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522275A (en) * 2009-03-30 2012-09-20 カール・ツァイス・エスエムティー・ゲーエムベーハー Imaging optical system and projection exposure apparatus for microlithography provided with this kind of imaging optical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522275A (en) * 2009-03-30 2012-09-20 カール・ツァイス・エスエムティー・ゲーエムベーハー Imaging optical system and projection exposure apparatus for microlithography provided with this kind of imaging optical system
JP2015052797A (en) * 2009-03-30 2015-03-19 カール・ツァイス・エスエムティー・ゲーエムベーハー Imaging optics and projection exposure device for microlithography with imaging optics of this type

Similar Documents

Publication Publication Date Title
KR102438345B1 (en) Image-forming optical system, exposure apparatus, and device producing method
JP2008262223A (en) Reflective projection lens for euv-photolithography
JP2004214242A (en) Reflection-type projection optical system, aligner and device manufacturing method
JP5913471B2 (en) Catadioptric projection objective having an inclined deflection mirror, projection exposure apparatus, projection exposure method, and mirror
JP5067674B2 (en) Projection optical system, exposure apparatus, and device manufacturing method
JP5888585B2 (en) Reflective imaging optical system, exposure apparatus, and device manufacturing method
TW200406593A (en) Projection optical system and exposure device equipped with the projection optical system
JP4569157B2 (en) Reflective projection optical system and exposure apparatus provided with the reflective projection optical system
JP2010107596A (en) Reflection type projection optical system, exposure device, and method of manufacturing device
JP2010257998A (en) Reflective projection optical system, exposure apparatus, and method of manufacturing device
JP5682248B2 (en) Reflective imaging optical system, exposure apparatus, and device manufacturing method
JP6931469B2 (en) Illumination optics, exposure equipment, and device manufacturing methods
JP2010232242A (en) Reflection type projection optical system, and exposure device
JP2005172988A (en) Projection optical system and exposure device equipped with the projection optical system
JP2005189247A (en) Projection optical system and exposure device provided with the projection optical system
JP2008304711A (en) Projection optical system, exposure device, and device manufacturing method
JP7332415B2 (en) Projection optical system, scanning exposure apparatus and article manufacturing method
JP2009069448A (en) Projection optical system, exposure device, and device manufacturing method
JP2004258178A (en) Projection optical system and aligner provided with the projection optical system
JP2004252359A (en) Reflection type projection optical system and aligner having the same
JP2005189248A (en) Projection optical system and exposure device provided with the projection optical system
JP2009162951A (en) Catadioptric projection optical system and exposure device having the same
WO2010052961A1 (en) Imaging optical system, exposure apparatus and device manufacturing method
JP2009258461A (en) Imaging optical system, exposure device, and device manufacturing method