TW200901637A - Fast decoding method for low density parity check code (LDPC) - Google Patents
Fast decoding method for low density parity check code (LDPC) Download PDFInfo
- Publication number
- TW200901637A TW200901637A TW096123314A TW96123314A TW200901637A TW 200901637 A TW200901637 A TW 200901637A TW 096123314 A TW096123314 A TW 096123314A TW 96123314 A TW96123314 A TW 96123314A TW 200901637 A TW200901637 A TW 200901637A
- Authority
- TW
- Taiwan
- Prior art keywords
- node
- value
- check
- bit
- density parity
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1105—Decoding
- H03M13/1111—Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms
- H03M13/1117—Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms using approximations for check node processing, e.g. an outgoing message is depending on the signs and the minimum over the magnitudes of all incoming messages according to the min-sum rule
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/65—Purpose and implementation aspects
- H03M13/6502—Reduction of hardware complexity or efficient processing
Landscapes
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Error Detection And Correction (AREA)
Description
200901637 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種解碼方法,特別是關於低密 度同位檢查碼(LDPC : Low Density Parity Check)之解 碼方法’其係以—種簡化之方法執行信息傳送法(MP : Message Passing),達到增進運算速度之目的。 【先前技術】 r 1 · 如向錯誤更正碼(FEC : Forward Error
Correction)從早期的漢明碼(Hammingc〇(je)到最近 的Μ碼、里德所羅門碼(防Code : Reed Solomon Code)、渦輪碼(Turb0 c〇de)等解碼方式,於產業界 已有諸多棚,然上述習时式解碼的複雜度,可能會 隨著碼長度而呈指數性地增大,而低密度同位檢查^ (LDPC)現今在數位通訊系統上佔有重要的地位,主要 疋因為它所提供的編解碼技術,可以把性能推至 , Shannon理論極限附近。
J
Shannon在1948年所提出的編瑪理論中證明到: 每-個受到高_針擾的通道都有—個通道容量的 屬性’-個數位通訊系統中的資料若透過適當的編碼, 當其碼字(codeword)之碼率小於通遒容量,則因通道 雜訊造成碼字的錯誤可以任意減小到所 —應年提出-種度的同位 檢查碼(parity check code),因為此竭所對應的同 位矩陣具有稀祕質,所以稱為「㈣度同位檢查 5 200901637 碼」。此法當時並不太引起注意,一直到1981年, Tanner以圖形理論的方式把低密度同位檢查碼以二 分圖(bipartite graph)表示,並利用和積演算法 (sum-product algorithm)作訊息傳遞(message passing)的演算,之後直到1997年MacKay與Neal 重新發現低密度同位檢查碼,並得到可以逼近 Shannon理論極限的結果。
此外’它的架構比渦輪碼(Turbo Code)更為 簡單,故吸引了人們投入此領域的研究,由於低密 度同位檢查碼的設計與解碼法,係使用圖形理論的 演算法,利用疊代且平行的方式,隨時都可以停止 疊代得到結果,無須像傳統的循序解法,要等到全 白丰又元成之後才能得到結果,加上其演算法可以 -用^法規則’故運算用方式快速許多。 Ο 低畨度同位檢查碼為一矩陣形式,將該矩 利用該同位元檢查矩陣Η產生一編碼矩 ^原始資料為X,將編碼矩陣G與原始資料X 資料傳送所接收到的碼字c,亦:a C在傳輪^ 足CHT = G ’否_該碼字 上逑5中產生錯誤,必須作錯誤更正。 該矩陣= =查矩陣H為一 mxn的矩陣,將 每一行視為—個7為:;個檢查節點(check node), 檢查節點及n個點(blt node),故共有m個 几郎點,傳統低密度同位檢查碼 6 ,〇1637 演曾、 由去係以下列幾種方式,計算出第/個遞迴之中, 双查節點m傳到位元節點η的信息Μ : • 0) (2) ^3) 5 〇.8<asi
迷第(2)式中的近似稱為min_sum演算法,該演 算去之缺點為會損失資訊,導致有補償之問題,第 (3)式為修正後之算法,其中, ⑽,最後計算經過z次遞迴之後,第 個位7L節點之對數可能性值(LLR )估計值 (log likelihood ratio)的估計值入"): η ^ 与+ Σ,,
、中十為通道中高斯雜訊變異數,其開根號之值 雜δίΐ標準差,'為卜丨 … 、 ,",,〜]中弟η個接收到έ 樣值,Ν則為碼字之長度,並
皮對數可能性值(L 估計值判斷各位元節點值為1成〇。 【發明内容】 如-咏之計算複雜,因 據多年來從㈣面之譏驗,並、_久努力研 7 200901637 究,並配合相關學理’終於開發設計出本發明之一種「快 速低密度同位檢查碼(LDPC)解碼法」。 本發明之主要目的,在於提供一種快速低密 位檢查碼(LDPC)之解碼法,在計算檢查節點 列簡化運算函數計算: 卜 Μ =义或办卜3.5e-x
該簡化運算函數降低傳統低密度同位檢查碼解碼 法以沏姆算之複雜度,減少運算時間, 而且位元錯誤率臓(Bit ErrQr Rate)並無明顯增加, 今曰由於積體電路設計與製造的進步,LDpc碼已成為 實用的碼,其兼具理論健與商f崎,搭配上本發明 之快速低密度同位檢查碼解碼法,更可達到高速、高容 量及高可靠性之目的。 【實施方式】
為便⑨t審查委員能對本㈣之技術手段及運 作,有^進-步之認識與瞭解, 不’誶細說明如下。 μ 解供^發3 低密度同位檢查碼(ldpc ) 解碼法」,該解碼法可應用於有線、無 具有容錯能力之解碼系統、1C解碼演算資^ 與回復等需要高可靠度的解碼演算 示’係本發明於解碼時之流程圖: 月4 θ斤 區塊碼字中取 步驟1首先接收一信息,並從該信息之 得一區塊; ^ 接著執行信息傳送法,該信息傳送法係包括. 步驟2對所有的檢查節點[/,…,Μ}與和該檢查節點 相連的位元節點叫,設定該區塊之檢查節點所傳 达至位兀節點信息的初始值,及對所有的位元 節點” 6认..·,Y} ’設定該區塊之位元節點之對數可能性 值(LLR)估計值的初始值[>,其中&為通道中 高斯雜訊變異數,其開根號之值σ為雜訊標準差,r為 r = [w”,_··,〜]中第n個接收到的採樣值,N為碼字之長 度; 步驟3設定遞迴計數器M,2,…上,該遞迴計數器可 根據需求設定適當次數,以遞迴法更新該區塊之位元節 點信息: 其中為第(/-7)個遞迴中’由位元節點η傳到檢 查節點m的信息; 更新該區塊之位元節點信息後,再藉由一簡化運算函數 更新檢查卽點信息,更新該檢查節點信息係先叶算— 運算式,該運算式中 運算函數係可為= /或/(^) = 3·5β運算式,且該 <:!,為第(/-7)個遞迴中’由位元節點η傳到檢查節 點ΙΠ的彳§息, 200901637 接著,以该運算式值代入另一 匕,=”/u」運异式什异,以完成該檢查節點之 更新,其中該另一 乃運算式中之該 /ςξ/ΓΟ;之簡化運算函數同樣係可為彻或 /问=15〆’計算該€值時,所使用之簡化運算函數, 係為一關鍵之引擎函數’可大幅降低運算時間; 步驟4透過該更新後之檢查節點信息,以下式計算出/ 次遞迴後,位元節點之對數可能性值(LLR)的估計值 λ(Ι)η : 2 最後,步驟5即可麟對數可能性值⑽)的估計值 判斷出各雜元節離,其崎條件為··若連續兩次對 數可能性值⑽)的估計值·於—預
Limn J 貝代表第η個位%節點為丨,若雜可紐值⑽) 的估計值以於料,則代表第η做元節點為〇。 第二圖所示係為本發明之簡化函數與傳統函數之 比較圖,彳村以看㈣雜伙時,响 了專統函數雜如,^,但兩者運算逮】 I簡化函速’請同時參閱圖三所示,係為本發明 9 ,、傳統函數解碼之模擬結果,從财可知, 200901637 該等簡化函數降低運算時間(約降低35%),而βΕΚ並 無明顯增加。 是以,本發明之快速低密度檢查碼(LDPC)解碼 法可改善習用技術關鍵在於: 一、 簡化函數/⑻=欠或你匕傳統使用的函數 更佳簡易,減少運算時間。 二、 該解碼法不像min-sum演算法必須先找到最小值, (; 之後再捨去其他值,會有損失資訊並給予補償之顧 慮。 一、胸== -/物吻更能夠避免因為有 限位元在運算時所造成之捨入誤差(r〇und—〇ff error) ’不會捨去可靠度高之採樣值。 按,上列洋細說明為針對本發明之一種較佳之可 行實施例說明而已,惟該實施例並非用以限定本發明之 G 申請專利範圍,舉凡其他未脫離本明所揭示之技藝精 神下所完成之均等變化與修飾變更,均應包含於本發明 所涵蓋之專利範圍中。 【圖式簡單說明】 第一圖係為本發明之解碼法流程圖。 第亡圖係為本發明之簡化函數與傳統函數之比較圖。 丨三圖係為本發明之簡化函數與傳統函數解碼之θ模擬 結果。 【主要元件符號說明】 11 200901637 1〜5 本發明解碼法流程圖之各步驟
12
Claims (1)
- 200901637 、申請專利範圍: 係包 1、一種快速低密度同位檢查碼(LDPC) 括下列步驟: 次’ 收一信息,並從該信息之—區塊碼字中取得. b、設定該區塊之檢查節點所傳送至位 之㈣節點之對數可能以:忒更新舰塊之位元節難息後,賴由_簡化運 算函數更新該檢查節點信息; d、透過該更新後之檢铸點信息,叫算出位元節 點之對數可能性值⑽)的估計值;如此,即可依 该對數可能性值(LLR)的估計值判斷出各個位元節 點值。 如申請專利制第1項所述之快速低密度同位檢查 :解碼法,其中更賴檢絲點係先計算 '1/運算式’該Σ/Γ<:ί;」運算式中你 之簡化運算函數係可為沏=欠運算式,且該 為第⑹)個遞迴中,由位元節點n傳到檢查節: m的信息 接著’以該,綱,運算式值代入另- 胸算狀算,以完賴檢查節 點之更新,其找另力運算式 J3 中之該/(乙/以二乃之簡化運算函數同樣係可為 ieNfm) \ η3、 如申請專利範圍第1項所述之快速低密度同位檢查 碼(LDPC)解碼法’其中更新該檢查節點係先計算 一 Σ/rC^運算式,該Σ/θ:!)運算式中/rc)) ieN(m)'、n ieNfm)'ίι 爪卜1 ’ 之簡化運算函數係可為= 運算式,且該 〇第(/-7)個遞迴中,由位元節點η傳到檢查 節點m的信息; 接著,以該運算式值代入另一 ieNfm) η Μ 々 乃運算式計算,以完成該檢查節 點之更新’其中該另一 =/f Σ/W㈣乃運算式 中之該之簡化運算函數同樣係可為 f(x) = 3.5ex 〇 4、 如申請專繼圍第1項所述之快速低密度同位檢查 碼(LDPC)解碼法,其中更新該位^節點及該檢查 節點的信息係使用遞迴法。 5、 如申請專利範圍第1項所述之快速低密度同位檢查 碼(LDPC)解碼法,其中判斷各個位元節點值之條 件係為:錢續兩次對數可能性值(LLR)的估計值 大於-預設值時,則代表第n個位元節點^,若對 數可能性值⑽)的估計值大於零時,則代表第n 200901637 個位元節點為〇。Ο 15
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW096123314A TW200901637A (en) | 2007-06-27 | 2007-06-27 | Fast decoding method for low density parity check code (LDPC) |
US11/838,970 US20090006924A1 (en) | 2007-06-27 | 2007-08-15 | Fast decoding method for low density parity check (ldpc) code |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW096123314A TW200901637A (en) | 2007-06-27 | 2007-06-27 | Fast decoding method for low density parity check code (LDPC) |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200901637A true TW200901637A (en) | 2009-01-01 |
Family
ID=40162243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096123314A TW200901637A (en) | 2007-06-27 | 2007-06-27 | Fast decoding method for low density parity check code (LDPC) |
Country Status (2)
Country | Link |
---|---|
US (1) | US20090006924A1 (zh) |
TW (1) | TW200901637A (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI436370B (zh) * | 2010-09-17 | 2014-05-01 | Phison Electronics Corp | 記憶體儲存裝置、其記憶體控制器與產生對數似然比之方法 |
US8510637B2 (en) | 2010-04-14 | 2013-08-13 | Phison Electronics Corp. | Data reading method, memory storage apparatus and memory controller thereof |
CN102436842B (zh) * | 2010-09-29 | 2014-05-14 | 群联电子股份有限公司 | 存储器储存装置、存储器控制器与产生对数似然比的方法 |
US10565051B2 (en) | 2018-02-06 | 2020-02-18 | Alibaba Group Holding Limited | Accommodating variable page sizes in solid-state drives using customized error correction |
TWI682636B (zh) * | 2018-06-13 | 2020-01-11 | 財團法人資訊工業策進會 | 通訊系統之低密度奇偶檢查碼的解碼方法及應用其之通訊裝置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100804793B1 (ko) * | 2005-10-07 | 2008-02-20 | 삼성전자주식회사 | 저밀도 패러티 검사 복호기에서의 검사 노드 갱신 방법 |
-
2007
- 2007-06-27 TW TW096123314A patent/TW200901637A/zh unknown
- 2007-08-15 US US11/838,970 patent/US20090006924A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20090006924A1 (en) | 2009-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101093313B1 (ko) | 패리티 검사 디코더들에서 사용하기 위한 노드 처리기들 | |
US8464142B2 (en) | Error-correction decoder employing extrinsic message averaging | |
US20200321985A1 (en) | Non-concatenated fec codes for ultra-high speed optical transport networks | |
CN100589357C (zh) | 基于单位阵及其循环移位阵的ldpc码向量译码装置和方法 | |
US10574274B2 (en) | Systems and methods for decoding error correcting codes | |
US20170331495A1 (en) | Adaptive desaturation in min-sum decoding of ldpd codes | |
JP2014099944A (ja) | ハードウェア共用および直列和積アーキテクチャを用いる低密度パリティ検査復号の方法および装置 | |
TW200901637A (en) | Fast decoding method for low density parity check code (LDPC) | |
CN106656209B (zh) | 一种采用迭代译码的纠正同步错误的级联码方法 | |
US8307255B2 (en) | Scalable decoder architecture for low density parity check codes | |
CN100539441C (zh) | 一种低密度奇偶校验码的译码方法 | |
Rao et al. | Low density parity check codes | |
US20210399744A1 (en) | LDPC Decoder Apparatus, Device, System, Method and Computer Program | |
TW201121250A (en) | Decoding apparatus and decoding method | |
Yatribi et al. | Gradient-descent decoding of one-step majority-logic decodable codes | |
Chen et al. | Improving the list decoding version of the cyclically equivariant neural decoder | |
Briffa et al. | Time‐varying block codes for synchronisation errors: maximum a posteriori decoder and practical issues | |
TWI657669B (zh) | 低密度奇偶檢查碼解碼器及其解碼方法 | |
Yang et al. | A new two‐stage decoding scheme with unreliable path search to lower the error‐floor for low‐density parity‐check codes | |
CN114982136A (zh) | 具有去饱和的低密度奇偶校验解码 | |
CN117220689B (zh) | 一种基于模型驱动深度学习的非二进制ldpc译码方法 | |
Yuan et al. | Outperforming 5 LDPCs with GRAND over long, low rate codes--making a long story short | |
Thameur et al. | Hardware complexity reduction of LDPC-CC decoders based on message-passing approaches | |
US20240120949A1 (en) | Decoding fec codewords using ldpc codes defined by a parity check matrix which is defined by rpc and qc constraints | |
US8489973B1 (en) | Numerical solution on LLR exchange in turbo equalization |