TW200901458A - Variable resistance memory device with an interfacial adhesion heating layer, systems using the same and methods of forming the same - Google Patents

Variable resistance memory device with an interfacial adhesion heating layer, systems using the same and methods of forming the same Download PDF

Info

Publication number
TW200901458A
TW200901458A TW097115139A TW97115139A TW200901458A TW 200901458 A TW200901458 A TW 200901458A TW 097115139 A TW097115139 A TW 097115139A TW 97115139 A TW97115139 A TW 97115139A TW 200901458 A TW200901458 A TW 200901458A
Authority
TW
Taiwan
Prior art keywords
electrode
memory device
layer
heating layer
resistive memory
Prior art date
Application number
TW097115139A
Other languages
Chinese (zh)
Other versions
TWI370544B (en
Inventor
Jun Liu
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of TW200901458A publication Critical patent/TW200901458A/en
Application granted granted Critical
Publication of TWI370544B publication Critical patent/TWI370544B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8413Electrodes adapted for resistive heating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Switching materials based on at least one element of group IIIA, IVA or VA, e.g. elemental or compound semiconductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)

Abstract

A variable resistance memory element and method of forming the same. The memory element includes a first electrode, a resistivity interfacial layer having a first surface coupled to said first electrode; a resistance changing material, e. g. a phase change material, having a first surface coupled to a second surface of said resistivity interfacial layer, and a second electrode coupled to a second surface of said resistance changing material.

Description

200901458 九、發明說明: 【發明所屬之技術領域】 本發明之具體實施例係關於半導體裝置,且特定今之係 關於可變電阻記憶體元件以及形成其之方法。 【先前技術】 非揮發性記憶體係有用的存儲裝置,因為其具有在無電 源供應時保持資料之能力。用於非揮發性記憶體單元:的 可變電阻材料之一類別係相變材料,諸如硫屬合金,其能 在非晶相與晶相之間穩定轉變。每一相位展現一特定電阻 狀態而且該等電阻狀態區別於以此類材料形成之一記憶體 元件之邏輯值。明確地說,—非晶狀態展現相對高= 阻,而一結晶狀態展現相對低的電阻。 圖1A與1B中解說作為相變記憶體元件丨實施之—慣用的 可變電阻記憶體’且該記憶體在第—與第二電極2、4之間 常常具有一層才目變材料8。該第—電極2係配置於一介電材 料6内。依據施加於該等第一電極2與第二電極々之間的電 流量,將該相變材料8設定為一特定電阻狀態。為了獲得 一非晶狀態(圖1B) ’ 一相對高的寫入電流脈衝(_扯^"丁 (重設)脈衝)係透過該相變記憶體元件丨施加一時間週期以 熔化覆蓋該第一電極2之相變材料8之至少一部分9。移除 該電流而該相變材料8快速冷卻至低於結晶溫度之一 2 度,其導致覆蓋該第一電極2的該相變材料8之部分9具有 該非晶狀態。為了獲得一結晶狀態(圖1A),一較:電:寫 入脈衝(-SET(設定)脈衝)係於一第二時間週期(持續時間 130554.doc • 6 - 200901458 一般比該第一時間週期與非晶相變材料之結晶時間長)施 加於該相變記憶體元件丨以加熱該非晶部分9至一低於其熔 點但高於其結晶溫度之溫度。此使得該相變材料8之該非 晶部分9再結晶至該結晶狀態,一旦該電流移除而該相變 記憶體元件1冷卻便保持該結晶狀態。該相變記憶體元件工 係藉由施加一讀取電壓來加以讀取,該讀取電壓不會改變 該相變材料8之相位狀態。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a variable resistance memory device and a method of forming the same. [Prior Art] A non-volatile memory system useful storage device because it has the ability to hold data when no power is supplied. One of the types of variable resistance materials used for non-volatile memory cells is a phase change material, such as a chalcogenide alloy, which is capable of stable transition between an amorphous phase and a crystalline phase. Each phase exhibits a particular resistance state and the resistance states are distinguished from the logic values of a memory component formed from such materials. Specifically, the amorphous state exhibits a relatively high resistance, while a crystalline state exhibits a relatively low resistance. 1A and 1B illustrate a conventional variable resistance memory as a phase change memory element, and the memory often has a layer of material 8 between the first and second electrodes 2, 4. The first electrode 2 is disposed in a dielectric material 6. The phase change material 8 is set to a specific resistance state in accordance with the amount of electric current applied between the first electrode 2 and the second electrode. In order to obtain an amorphous state (Fig. 1B), a relatively high write current pulse ("Twist" pulse) is applied through the phase change memory element for a period of time to melt the cover. At least a portion 9 of the phase change material 8 of an electrode 2. The current is removed and the phase change material 8 is rapidly cooled to less than 2 degrees below the crystallization temperature, which causes the portion 9 of the phase change material 8 covering the first electrode 2 to have the amorphous state. In order to obtain a crystalline state (Fig. 1A), a comparison: the write pulse (-SET (set) pulse) is in a second time period (duration 130554.doc • 6 - 200901458 generally better than the first time period) The crystallization time of the amorphous phase change material is applied to the phase change memory element 丨 to heat the amorphous portion 9 to a temperature lower than its melting point but higher than its crystallization temperature. This causes the amorphous portion 9 of the phase change material 8 to recrystallize to the crystalline state, and once the current is removed, the phase change memory element 1 is cooled to maintain the crystalline state. The phase change memory device process is read by applying a read voltage that does not change the phase state of the phase change material 8.

由於結晶相變材料之低電阻率,可能需要一較大reset 電流密度以提供充足功率來熔化該相變材料。一較大電流 松度可在導電材料中引起不需要的電遷移而可在該相變材 料令引起相位分離。此外,在該相變材料與其他層之間的 弱黏合可在該相變記憶體元件中引入長期可靠性問題。 【發明内容】 在以下詳細說明中,參考各項具體實施例。該些具體實 施例係以充足細節來加以說明使得熟習此項技術者可以實 施本發明。應瞭解可採料他具时_,且可進行各種 結構性、邏輯性及電性改變。 在以下說明中使用的術語”基板"可包括任何支撐結構, 其包括(但*限於)具有—曝露基板表面之-半導體基板。 一半導體基板應理解為包㈣、絕緣物切(sqi)、石夕藍 寳石(SOS)、摻雜及非摻雜半導體、& _基底半導體底座 支撐的磊晶矽層與其他半導體結構(包括由除矽以外的半 導體製成的該些半導體結構)。t在τ面說明中參考一半 導體基板或晶圓時’可能已經利用先前的程序步驟以在基 130554.doc 200901458 底半導體或底座中或上形成區域或接面。該基板亦無需係 以丰導體為主,而可以係任何適用於支揮—積體電路之支 撐結構,其包括(但不限於)金屬、合金、破璃、聚合物、 陶竞以及任何其他如此項技術中所知的支撐材料。 如上所述’包括相變記憶體元件之可變電阻記憶體裝置 制相變材料之自我加熱以在非晶與結晶狀態之間引起相 ¥。由於結晶相變材料之低電阻率,可能需要一較大 RESET電流密度以提供充足功 大電流密度可在導電材料中引起不需要的電遷移而可在該 相變材料中引起相位分離。此外,在該相變材料與其他層 之間的弱黏合可在該相變記憶體元件中引入長期可靠性問 題。面溫循環與熱致性容積改變與應力可使該問題惡化。 本文揭示之具體實施例提供一種相變記憶體裝置,其包 括-配置於一電極與該相變材料之間的介面黏合加熱層。 :介面黏合加熱層改善一介電層與該相變材料之間的黏 亦用作局部加熱元件以對該相變材料提供額外加 ’、·、來辅助其自我加熱。來自該介面黏合加熱層之額外加熱 :將引起相變所需的删τ電流減少三十倍以上,而保持 上大於-百的裝置開啟’關閉電阻比率’此點符合需要。 :亥裝置開啟/關閉電阻比率表示在關閉狀態中的電阻(其中 /文材料之一部分係在一非晶狀態中)與在開啟狀態中 的電阻(其中該相變材料係在一結晶狀態中)的比率。藉由 ^小該咖灯電流密度,可以避免在導電材料中不需要的 -遷移與在電阻可變材料中的相位分離。此外,由於該介 I30554.doc 200901458 可緩解一散熱效應。 面黏合加熱層之較低熱傳導率 【實施方式】 現參考圖式來說明具體實施例 1J其中相同參考數字指示 相同特徵。圖2解說依據本發明 具體實施例所構造之 一相變記憶體元件10之一部分斷面 丨叫_。孩C憶體兀件1 〇可 儲存至少一位元,即邏輯丨或〇。Due to the low resistivity of the crystalline phase change material, a large reset current density may be required to provide sufficient power to melt the phase change material. A large current relaxation can cause unwanted electromigration in the conductive material and can cause phase separation in the phase change material. In addition, weak bonding between the phase change material and other layers can introduce long term reliability issues in the phase change memory component. SUMMARY OF THE INVENTION In the following detailed description, reference is made to the specific embodiments. The specific embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that it can be used for a variety of structural, logical and electrical changes. The term "substrate" as used in the following description may include any support structure including, but not limited to, a semiconductor substrate having an exposed substrate surface. A semiconductor substrate is understood to be a package (four), an insulator cut (sqi), Asbestos sapphire (SOS), doped and undoped semiconductor, & _ base semiconductor base supported epitaxial layer and other semiconductor structures (including those semiconductor structures made of semiconductors other than germanium). When referring to a semiconductor substrate or wafer in the τ face description, the previous program steps may have been used to form regions or junctions in or on the base or substrate of the base 130554.doc 200901458. The substrate is also not required to be a conductor. The master may be any support structure suitable for use in a support-integrated circuit including, but not limited to, metals, alloys, glass, polymers, ceramics, and any other support material known in the art. As described above, the self-heating of the phase change material made of the variable resistance memory device including the phase change memory device causes a phase between the amorphous and crystalline states. The low resistivity of the crystalline phase change material may require a large RESET current density to provide sufficient work current density to cause unwanted electromigration in the conductive material to cause phase separation in the phase change material. The weak adhesion between the phase change material and the other layers can introduce long-term reliability issues in the phase change memory element. Surface temperature cycling and thermotropic volume changes and stress can exacerbate the problem. A phase change memory device is provided, comprising: an interface bonding heating layer disposed between an electrode and the phase change material. The interface bonding heating layer improves adhesion between a dielectric layer and the phase change material and is also used as The local heating element provides an additional ', ·, to the self-heating of the phase change material. Additional heating from the interface bonding heating layer: reduces the τ current required to cause the phase change by more than thirty times while maintaining The device that is larger than -100 turns on the 'close resistor ratio'. This point meets the need. : The device opening/closing resistance ratio indicates the resistance in the off state (where one of the materials is The ratio of the electrical component in an amorphous state to the electrical resistance in the open state (wherein the phase change material is in a crystalline state). By minimizing the current density of the coffee lamp, it is avoided that it is not required in the conductive material. -migration and phase separation in a variable resistance material. In addition, since the heat dissipation effect can be alleviated by the I30554.doc 200901458. The lower thermal conductivity of the surface bonding heating layer [Embodiment] The specific implementation is now described with reference to the drawings The same reference numerals are used to identify the same features in the example 1J. Figure 2 illustrates a partial cross-sectional squeaking of a phase change memory component 10 constructed in accordance with an embodiment of the present invention. The child C memory component 1 can store at least one bit. Yuan, that is, logic or 〇.

該記憶體元件10係藉由一基板20來支撐。一第一介電層 22係配置於該基板2G上,而—第—導電金屬層μ配置二 該第-介電層22内。該導電金屬層15可由任何適當的導電 材料形成,例如氮化鈦(TiN)、氮化欽&(TiAiN)、欽缚 (TiW)、翻(Pt)或鶴(W)及其他材料。該導電金屬層^之厚 度可變化。在-具體實施例中,該導電金屬層15之厚度; 以約為1〇〇〇 A。 一第二介電層24係配置於該第一介電層22上而一底部電 極12係配置於該第二介電層24内。該底部電極^可由任何 適當的導電材料形成’例如氮化鈦(TiN)、氮化鈦銘 (TiAIN)、鈦鎢(TiW)、鉑(Pt)或鎢(W)及其他材料,該底部 電極12在尺寸上可按比例縮小以減小所需的程式化電流。 可變電阻材料層1 8與頂部電極14之厚度亦可在尺寸上按比 例縮小以在尺寸上對應於該底部電極12。在一具體實施例 中,該底部電極12可以係一插塞底部電極且其高度可約為 700 A以及其直徑可約為400 A或更小。在其他具體實施例 中,該底部電極12可以係一不同類型的電極,例如一年輪 電極或一觀塾電極。 130554.doc 200901458 一第三介電層26係配置於該第二介電層24上。一介面黏 合加熱層13係配置於該底部電極12與在該第三介電層26中 的一開口 36内的該第二介電層24上。該介面黏合加熱層13 可由一材料形成,該材料將改善一可變電阻材料層1 8與該 第二介電層24之間的黏合,及/或將提供充足電阻率以提 供一局部加熱效應,例如富N的TaN、富N的TiAIN、The memory element 10 is supported by a substrate 20. A first dielectric layer 22 is disposed on the substrate 2G, and a first conductive metal layer μ is disposed in the first dielectric layer 22. The conductive metal layer 15 may be formed of any suitable conductive material such as titanium nitride (TiN), nitrided & (TiAiN), bonded (TiW), turned (Pt) or crane (W) and other materials. The thickness of the conductive metal layer can vary. In a specific embodiment, the thickness of the conductive metal layer 15 is about 1 〇〇〇A. A second dielectric layer 24 is disposed on the first dielectric layer 22 and a bottom electrode 12 is disposed in the second dielectric layer 24. The bottom electrode can be formed of any suitable conductive material such as titanium nitride (TiN), titanium nitride (TiAIN), titanium tungsten (TiW), platinum (Pt) or tungsten (W), and other materials. 12 can be scaled down to reduce the required stylized current. The thickness of the variable resistance material layer 18 and the top electrode 14 may also be reduced in size to correspond to the bottom electrode 12 in size. In a specific embodiment, the bottom electrode 12 can be a plug bottom electrode and can have a height of about 700 A and a diameter of about 400 A or less. In other embodiments, the bottom electrode 12 can be a different type of electrode, such as a one-year wheel electrode or a Guan 塾 electrode. 130554.doc 200901458 A third dielectric layer 26 is disposed on the second dielectric layer 24. An interface bonding heating layer 13 is disposed on the bottom electrode 12 and the second dielectric layer 24 in an opening 36 in the third dielectric layer 26. The interface bonding heating layer 13 may be formed of a material that will improve adhesion between a layer of varistor material 18 and the second dielectric layer 24, and/or will provide sufficient resistivity to provide a localized heating effect. , for example, N-rich TaN, N-rich TiAIN,

AlPdRe、HfTe5、TiNiSn、PBTe、Bi2Te3、Al2〇3、A_c、AlPdRe, HfTe5, TiNiSn, PBTe, Bi2Te3, Al2〇3, A_c,

TiOxNy、TiAlxOy ' SiOxNy 或 TiOx及其他材料。富 N 的 TaN 係TaNx,其中x大於!。可在TaN濺鍍期間藉由與Ar之流速 成比例地增加N2之流速來產生富。TaNxfx的值可 依據應用要求而變化。TaNx中一更大數量的N導致一更高 的電阻率。富N的TiA1N係ΤίΑ1Νχ ’其中χ大於】。富 TiAIN可以一類似富]^的丁心之方式產生。 在具體實施例中,該介面黏合加熱層1 3之厚度範圍可 介於約5 A與約5G A之間。在另„具體實施例中,該介面 黏合加熱層13之厚度範圍可介於約2〇人與約5〇人之間。 一可變電阻材料層⑽配置於在該第三介電㈣之開口 36内的介面黏合加熱層13上。在圖示之具體實施例中,該 可變電阻材料層18係一硫屬化物材料,例如錯錄蹄化物、 Ge2Sb2Te5(GST)等。該等相變材㈣可以係或包括其他相 變材料,例如 In-Se、Sb2Te3、GaSb、InSb、Αα、4 Te、GeTe、Te_Ge_As、、Te_sn_se、Ge Se Ga、TiOxNy, TiAlxOy ' SiOxNy or TiOx and other materials. N-rich TaN TaNx, where x is greater than! . Richness can be produced by increasing the flow rate of N2 in proportion to the flow rate of Ar during TaN sputtering. The value of TaNxfx can vary depending on the application requirements. A larger number of N in TaNx results in a higher resistivity. The N-rich TiA1N system is ΤίΑ1Νχ ’ where χ is larger than 】. Rich TiAIN can be produced in a way similar to the richness of Ding. In a particular embodiment, the interface bonding heating layer 13 can have a thickness in the range of between about 5 A and about 5 G A. In another embodiment, the thickness of the interface bonding heating layer 13 may range between about 2 〇 and about 5 。. A variable resistance material layer (10) is disposed at the opening of the third dielectric (4) The interface in 36 is bonded to the heating layer 13. In the illustrated embodiment, the varistor material layer 18 is a chalcogenide material such as a misrecorded hoof compound, Ge2Sb2Te5 (GST), etc. The phase change material (d) may be or include other phase change materials, such as In-Se, Sb2Te3, GaSb, InSb, Αα, 4 Te, GeTe, Te_Ge_As, Te_sn_se, Ge Se Ga,

Bi-Se-Sb > Ga-Se-Te ^ Sn-Sb-Te . in_Sb-Ge ^ Te-Ge-Sb-S ^ Te-Ge-Sn-0 . Te-Ge-Sn-Au > Pd-Te-Ge-Sn ^ In-Se-Ti-C〇 . 130554.doc -10- 200901458Bi-Se-Sb > Ga-Se-Te ^ Sn-Sb-Te . in_Sb-Ge ^ Te-Ge-Sb-S ^ Te-Ge-Sn-0 . Te-Ge-Sn-Au > Pd- Te-Ge-Sn ^ In-Se-Ti-C〇. 130554.doc -10- 200901458

Ge-Sb-Te-Pd . Ge-Sb-Te-Co > Sb-Te-Bi Se λGe-Sb-Te-Pd . Ge-Sb-Te-Co > Sb-Te-Bi Se λ

Ge-Sb-Se_Te、Ge_Sn_Sb_Te、n g'In'Sb'Te 'Ge-Sb-Se_Te, Ge_Sn_Sb_Te, n g'In'Sb'Te '

Ge-Te-Sn-Pt。圖2顯-/· M n丨、仏七如刊與 圖2顯不在一狀態中的相變記 在该狀態中該可變電阻材料層181 心丑 ’ 八1 Q,品外 有一處於非晶狀態的部 刀19,而邊可變電阻材料層_其餘 : 態。在一且轉杳# A丨士 ’、处於、、告晶狀 ,、體實把例中,該可變電阻 為800 A。 役可約 二ΓΓ極14係配置於在該第三介電層26中之開口 36内 材料層18上。該頂部電極14可由任何適每的 電=二成,例如氮蝴啊、氮化純(tuin 叫續)或鶴(W)及其他材料。該介面黏合加^ &該可變電阻材料層18與該頂部電極⑽配置於”: 介電層26之開口 36内’但是該頂部電極14亦可以係配置:Ge-Te-Sn-Pt. Fig. 2 shows that - n · M n 丨, 仏 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如The state of the knife 19, while the edge of the variable resistance material layer _ rest: state. In the case of a 杳 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨The dielectric diode 14 is disposed on the material layer 18 in the opening 36 of the third dielectric layer 26. The top electrode 14 can be any suitable electric==20%, such as nitrogen butterfly, nitrided pure (tuin) or crane (W) and other materials. The interface of the varistor material layer 18 and the top electrode (10) are disposed in the ": opening 36 of the dielectric layer 26" but the top electrode 14 can also be configured:

在該第三介電層26之頂部上延伸。在一具體實施例中,該 頂部電極14之厚度可以約為6〇〇入。 A 各㈣電層22、24、26 U可由-絕緣材料形成, 例如一乳化物(比如Si02)、氮化石夕(siN);氧化紹;高溫聚 合物;低介電材料;絕緣玻璃;或絕緣聚合物。用來形成 該等各個介電層22、24、26、27、28之介電材料在各層之 間可以相同或不同。 該介面黏合加熱層13改善該第二介電層24與該可變電阻 材料層18之$的黏合,且因此改善該記憶體元件1〇之長期 可罪性,尤其係在尚溫循環與熱致性容積改變與應力係裝 置處理或操作條件之整合態樣時。上面已說明額外優點。、 130554.doc 200901458 圖3A至3C解說製造如圖2所解說之相變記憶體元件i〇之 一方法之一具體實施例。本文所說明的任何動作皆不需要 特定的順序,除邏輯上需要前面動作之結果者以外。因 此,雖然下述動作係以一特定順序來執行,但若需要可改 變該順序。 如圖3 A所不,該第一介電層22係藉由任何適當技術形成 於-基板20上。使用慣料微影_、㈣、毯覆式沈積Extending on top of the third dielectric layer 26. In a specific embodiment, the thickness of the top electrode 14 can be about 6 in. A (four) electrical layers 22, 24, 26 U may be formed of an insulating material, such as an emulsion (such as SiO 2 ), nitriding (siN); oxidation; high temperature polymer; low dielectric material; insulating glass; or insulation polymer. The dielectric material used to form the respective dielectric layers 22, 24, 26, 27, 28 may be the same or different between the layers. The interface bonding heating layer 13 improves the adhesion of the second dielectric layer 24 to the variable resistance material layer 18, and thus improves the long-term sin of the memory device 1 , especially in the temperature cycle and heat When the volumetric change is combined with the stress system device processing or operating conditions. Additional advantages have been explained above. 130554.doc 200901458 Figures 3A through 3C illustrate one embodiment of a method of fabricating a phase change memory element as illustrated in Figure 2. Any of the actions described herein do not require a specific order, except where the result of the previous action is logically required. Therefore, although the following actions are performed in a specific order, the order can be changed if necessary. As shown in Figure 3A, the first dielectric layer 22 is formed on the substrate 20 by any suitable technique. Using inertia lithography _, (4), blanket deposition

及化學機械拋光(CMP)技術在該第一介電層22内形成該第 一導電金屬層15。 如圖3B中戶斤*,該第二介電層24係形成於該第一介電層 22與該第—導電金屬層15之上。—開口34係藉由任何適當 技術(例如蝕刻)形成於該第二介電層24内而在該第一導電 金屬層15之上並與之對齊。該底部電極_形成於該開口 内並與該第-金屬層15電接觸。可使用化學機械抛光在該 底部電極12之頂部表面形成一平坦上部表面。 如圖3C所示,該介面黏合加熱層13、該可變電阻材料層 18與該頂部電極14係按順序沈積於該第二介電層24與該底 部電極12之上。接著使用—傳統微影#刻與兹刻技術來餘 刻該介面黏合加熱層13、該可變電阻材料層Μ與該頂部電 極M以形成一堆疊。在該堆疊上形成該第三介電層26。可 使用-CMP技術來曝露該頂部電極14並平坦化該頂部電極 14與介電層26之頂部表面。 範例1 針對該SET狀態藉由雷日逛脸a m 。稭由电如將使用一1〇〇〇 A厚度的Gs 丁相 130554.doc 12 200901458 支材料而& ’I面黏合加熱層之一記憶體元件之電阻模型 化。C-GST層具有一7·5毫歐姆公分之電阻率。該頂部電 極係1GGG Α厚度的TiN。底部電極係高度為剛q α且直徑 為50 nm的ΤιΝ。處於該贿狀態中的記憶體元件之電阻約 為200歐姆。 、 範例2 /十對該SET狀態藉由電腦將使用一 1_ A厚度的GST相 欠材料並且具有一介面黏合加熱層之一記憶體元件之電阻 模型化。C-GST相變材料具有一 75毫歐姆.公分之電阻 率 20 A厚度的介面黏合加熱層之電阻率為7500毫歐 ^公分。該頂部電極係1000 A厚度之TiN。該底部電極係 门度為1〇〇〇 A且直徑為50 nm之道。處於該set狀態中的 該記憶體元件之電阻約為4,_歐姆。該電流密度二布在 -亥面黏合加熱層上顯示極少橫向電流散佈,而在該 GST相變材料中的電流分佈類似於範例】,從而指示該介 面黏合加熱層將不會影響程式化容積之形狀而將僅在該底 部電極上提供局部加熱1介面黏合加熱層還用作—熱隔 離層以減少由於其低熱傳導率引起的熱損失。 範例3 針對該RESET狀態藉由電腦將使用一 1〇〇〇 A厚度的 相殳材料而無一介面黏合加熱層之一記憶體元件之電阻模 型化。c-GST相變材料之電阻率係75毫歐姆.公分”挪 相變材料之電阻率係7,W毫歐姆.公分。該頂部電極係 〇 A厚度的ΤιΝ〇該底部電極係高度為⑽a且直徑為 130554.doc 13 200901458 50 nm的TiN。處於該RESET狀態中的該記憶體元件之電阻 約為2x 1 06歐姆。在該電流密度分佈展開之前,其大部分 集中於一 300 A的a-GST區域内。 範例4The first conductive metal layer 15 is formed in the first dielectric layer 22 by a chemical mechanical polishing (CMP) technique. The second dielectric layer 24 is formed on the first dielectric layer 22 and the first conductive metal layer 15 as shown in FIG. 3B. The opening 34 is formed in the second dielectric layer 24 by any suitable technique (e.g., etching) over and aligned with the first conductive metal layer 15. The bottom electrode_ is formed in the opening and is in electrical contact with the first metal layer 15. A flat upper surface may be formed on the top surface of the bottom electrode 12 using chemical mechanical polishing. As shown in FIG. 3C, the interface bonding heating layer 13, the varistor material layer 18 and the top electrode 14 are sequentially deposited on the second dielectric layer 24 and the bottom electrode 12. The interface is then bonded using a conventional lithography technique to engrave the interface bonding heating layer 13, the varistor material layer Μ and the top electrode M to form a stack. The third dielectric layer 26 is formed on the stack. The top electrode 14 can be exposed using a -CMP technique and the top surface of the top electrode 14 and dielectric layer 26 can be planarized. Example 1 targets the SET state by Raytheon. The straw is electrically modeled using a resistance of a memory element of one of the G s phase of a thickness of 1 Å A. The C-GST layer has a resistivity of 7.5 milliohms. The top electrode is 1 GGG Ti thick TiN. The bottom electrode is ΤιΝ with a height of q α and a diameter of 50 nm. The resistance of the memory component in the state of the bribe is about 200 ohms. Example 2/Ten This SET state is modeled by the computer using a 1_A thick GST phase underlying material and having a memory of one of the interface bonding heating layers. The C-GST phase change material has a resistivity of 75 milliohms. centimeter and a resistivity of the interface bonding heating layer of 20 A thickness of 7500 milliohms. The top electrode is TiN of 1000 A thickness. The bottom electrode has a gate of 1 〇〇〇 A and a diameter of 50 nm. The resistance of the memory element in the set state is approximately 4, ohms. The current density of the second layer shows little lateral current spreading on the -Hear bonded heating layer, and the current distribution in the GST phase change material is similar to the example, indicating that the interface bonding heating layer will not affect the stylized volume. The shape will only provide a localized heating on the bottom electrode. The interface bonding heating layer also acts as a thermal barrier to reduce heat loss due to its low thermal conductivity. Example 3 For the RESET state, the computer will use a phase material of a thickness of 1 Å without the resistance modeling of one of the memory elements of the interface bonding heating layer. The resistivity of the c-GST phase change material is 75 milliohms. The resistivity of the phase change material is 7, W milliohms. centimeters. The thickness of the top electrode system 〇A is (ιΝ〇 the height of the bottom electrode system is (10)a and The diameter is 130554.doc 13 200901458 50 nm TiN. The resistance of the memory element in the RESET state is about 2 x 106 ohms. Before the current density distribution is expanded, most of it concentrates on a 300 A a- Within the GST area. Example 4

針對該RESET狀態藉由電腦將使用一 1〇〇〇 a厚度的GST 相變材料並且具有一介面黏合加熱層之一記憶體元件之電 阻模型化。c-GST相變材料之電阻率係7 5毫歐姆.公分。 a-GST相變材料之電阻率係7.5xl〇4毫歐姆.公分。一2〇人 介面黏合加熱層之電阻率為75〇〇毫歐姆.公分。該頂部電 極係10G0 A厚度的TiN。該底部電極係高度為i剛A且直 徑為50 _的道。處於該站咖狀態中的該記憶體元件之 電阻約為2X 105歐姆。類似於益/ ^ ^ ^ 貝似於乾例3,該電流密度分佈大部 分集中於一 300 A的a-GST區代咖 j- 域内。在該介面黏合加熱層中 的橫向電流分佈小,所以僅道_ μ Λ值導致一小的單元電阻改變。 範例5The RESET state is modeled by a computer using a GST phase change material having a thickness of 1 Å and having a memory element of an interface bonding heating layer. The resistivity of the c-GST phase change material is 75 milliohms.cm. The resistivity of the a-GST phase change material is 7.5 x 1 〇 4 milliohms. cm. The resistivity of the interface bonding heating layer is 75 〇〇 milliohm. centimeters. The top electrode is TiN of 10G0 A thickness. The bottom electrode is a track having a height i just A and a diameter of 50 _. The memory element in the station state has a resistance of approximately 2 x 105 ohms. Similar to the benefit / ^ ^ ^ shell is similar to the dry case 3, the current density distribution is mostly concentrated in a 300 A a-GST area generation j-domain. The lateral current distribution in the interface bonding heating layer is small, so only the channel _μ Λ value results in a small cell resistance change. Example 5

明 果 藉由發明者來實施奈米機 之具體實施例中使用的各種 係包括於下表1。 械四點彎曲測量以決定所說 材料之間的接合強度。其結 130554.doc 200901458 表1 · 所測試材料 黏合能量(Gc)(J/m2) SiN/c-GST 0.7 至 0.8 TiN/c-GST 2至3 SiN/a-GST 3至4 TiN/a-GST 13 至 14 TiN/c-GST(直流電濺鍍) 3.6±1.1 TiN/c-GST(射頻濺鍍) 1.1±0.4 SiN/c-GST(重度預濺鍍) 〜2.0-3.0 TEOS/c-GST(重度再濺鍍) 〜2.0-3.0 TiN/c-GST(射頻濺鍍) 〜1.0 TEOS/a-GST(射頻濺鍍) 0.2 TEOS/c-GST(射頻濺鍍) 0.3 SiC/c-GST(射頻濺鍍) 很弱 DARC/c-GST(射頻濺鍍) 很弱 LSO/c-GST(射頻濺鍍) 1.2 A1203/c-GST >1.5 TEOS/c-GST <0.5 圖2僅描述本文說明之一記憶體元件1 0之一範例。併入 t 該介面黏合加熱層13之記憶體元件10之其他設計亦可行。 例如,可依據在一特定記憶體裝置中使用的需要,重新配 置、省略或替代該第一金屬層1 5。 ^ 具體實施例還可採用一或多層其他可變電阻材料作為該 • 可變電阻材料層1 8。各層之厚度可依需要進行修改以將該 等元件與所需電阻之各種配置考慮在内。其他可變電阻材 料之範例包括諸如金屬摻雜的硫屬化物玻璃以及在讓渡給 Micron Technology公司的各個專利案與專利申請案中說明 130554.doc -15- 200901458 的该些可變電阻材料,其包括(但不限於)以下各案:美國 專利申凊案第10/765,393號;美國專利申請案第〇9/853,233 號;美國專利申請案第10/022,722號;美國專利申請案第 10/603,741號;美國專利申請案第〇9/988,984號;美國專利 申凊案第10/121,790號;美國專利申請案第09/941,544號; 美國專利申請案第1〇/193,529號;美國專利申請案第 10/100,450號;美國專利申請案第1〇/23 ^779號;美國專利The various systems used in the specific embodiments in which the inventors implement the nanomachines are included in Table 1 below. The four-point bending measurement of the tool determines the joint strength between the materials. The junction 130554.doc 200901458 Table 1 · Bonding energy (Gc) of the tested material (J/m2) SiN/c-GST 0.7 to 0.8 TiN/c-GST 2 to 3 SiN/a-GST 3 to 4 TiN/a- GST 13 to 14 TiN/c-GST (DC sputtering) 3.6±1.1 TiN/c-GST (RF sputtering) 1.1±0.4 SiN/c-GST (severe pre-sputter) ~2.0-3.0 TEOS/c-GST (Severe re-sputtering) ~2.0-3.0 TiN/c-GST (RF Sputtering) ~1.0 TEOS/a-GST (RF Sputtering) 0.2 TEOS/c-GST (Radio Frequency Sputtering) 0.3 SiC/c-GST( RF sputtering) Very weak DARC/c-GST (RF sputtering) Very weak LSO/c-GST (RF sputtering) 1.2 A1203/c-GST > 1.5 TEOS/c-GST <0.5 Figure 2 only describes this article An example of one of the memory elements 10 is illustrated. Other designs incorporating the memory element 10 of the interface bonding heating layer 13 are also possible. For example, the first metal layer 15 can be reconfigured, omitted, or replaced as needed for use in a particular memory device. The specific embodiment may also employ one or more layers of other variable resistance materials as the layer of variable resistance material 18. The thickness of each layer can be modified as needed to take into account the various configurations of the components and the desired resistance. Examples of other variable resistance materials include such materials as metal-doped chalcogenide glasses and those described in various patents and patent applications assigned to Micron Technology, pp. 130554.doc -15-200901458, It includes, but is not limited to, the following: U.S. Patent Application Serial No. 10/765,393; U.S. Patent Application Serial No. 9/853,233; U.S. Patent Application Serial No. 10/022,722; U.S. Patent Application Serial No. 10/ 603,741; U.S. Patent Application Serial No. 9/988,984; U.S. Patent Application Serial No. 10/121,790; U.S. Patent Application Serial No. 09/941,544; U.S. Patent Application Serial No. 1/193,529; Application No. 10/100,450; US Patent Application No. 1/23^779; US Patent

申凊案第10/893,299號;美國專利申請案第1〇/〇77,872號; 美國專利申請案第1〇/865,9〇3號;美國專利申請案第 10/230,327號;美國專利中請案第G9/943,19()號;美國專利 申凊案第lG/622,482號;美國專利中請案第1()舰丨’別號; 美國專利申請案第1〇/819,315號;美國專利申請案第 1 1/062,436號;美國專利申請案第1〇/899,〇1〇號;以及美國 專利申請案第10/796,000號’各案之揭示内容係以引用的 方式併入本文中。 圖4解說利用一電阻可變隨機存取記憶體裝置84〇之一範 例性處理系統900,該電阻可變隨機存取記憶體裝置84〇包 含如上文參考圖2與3八至珏所述而構造的記憶體元件1〇之 一陣列。該處理系統900包括耦合至一本機匯流排9〇4之— a己憶體控制器902及一主要匯流排橋 或多個處理器901 接器903亦係耦合至該本機匯流排9〇4。該處理系統9〇〇可 包括多個記憶體控制器902及/或多個主要匯流排橋接器 903。該記憶體控制器9〇2與主要匯流排橋接器则可以整 合為一單一裝置906。 130554.doc -16· 200901458 該⑽體控制器902亦係柄合至一或多個記憶體匯流排 9〇7。母一記憶體匯流排接受記憶體組件_,其包括本文 說明的至少一記憶體裝置84〇。或者,在一簡化系統中, 可以省略該記憶體控制請2而該等記憶體組件係直接搞 合至一或多個處理器9G1。該等記憶體組件则可以係一記 憶卡或—記憶體模組。該等記憶體組件9〇8可包括一或多 個額外裝置909叫列士口,該額外裝置9〇9可以係一組態記憶U.S. Patent Application Serial No. 10/230,872; U.S. Patent Application Serial No. 1/865,9, 3; U.S. Patent Application Serial No. 10/230,327; Case No. G9/943, 19(); US Patent Application No. 1G/622, 482; US Patent No. 1 () Ship's nickname; US Patent Application No. 1/819, 315; US Patent The disclosures of U.S. Patent Application Serial No. 1/062, 436, U.S. Patent Application Serial No. Serial No. No. No. No. No. No. No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No. 4 illustrates an exemplary processing system 900 utilizing a resistive variable random access memory device 84, the resistive variable random access memory device 84A comprising the above described with reference to FIGS. 2 and 3-8. An array of one of the constructed memory elements. The processing system 900 includes a local bus controller 902 coupled to a local bus bar 904 and a main bus bar or a plurality of processors 901 903 coupled to the local bus bar 9 4. The processing system 9A can include a plurality of memory controllers 902 and/or a plurality of primary bus bars 903. The memory controller 9〇2 and the main bus bridge can be integrated into a single device 906. 130554.doc -16· 200901458 The (10) body controller 902 is also operatively coupled to one or more memory bus bars 9〇7. The mother-memory busbar accepts a memory component_, which includes at least one memory device 84A as described herein. Alternatively, in a simplified system, the memory control can be omitted and the memory components are directly coupled to one or more processors 9G1. The memory components can be a memory card or a memory module. The memory components 9A8 may include one or more additional devices 909 called Lance, which may be a configuration memory

體。該記憶體控制器902亦可以係耦合至一快取記憶體 9〇5。該快取記憶體905可以係該處理系統中唯一的快取記 憶體。或者’其他|置(例如處理器9Q1)亦可包括快取記憶 體,該等快取記憶體可與快取記憶體9〇5形成一快取層 級。若該處理系統900包括為匯流排主控器或支援直接記 憶體存取(DMA)的周邊設備或控制器,則該記憶體控制器 9〇2可實施-快取同調協定。若將該記憶體控制器係竊 合至複數個記憶體匯流排907,則可並聯操作各 流請,或可將不同位址範圍映射至不同記憶體= 907 ° 主要匯流排橋接器903係耦合至至少一周邊匯流排91〇。 各種裝置,例如周邊設備或額外的匯流排橋接器可以係耦 合至該周邊匯流排910。此等裝置可包括—儲存控制器 911、一雜項I/O裝置914、一次要匯流排橋接器915、一多 媒體處理器9!8及一舊有裝置介面92〇。亦可將主要匯流排 橋接器903耦合至一或多個專用高速埠922。例如,在—個 人電腦中,該專用埠可能係加速圖形埠(AGp),用於將一 130554.doc 200901458 而性能視訊卡耦合至該處理系統9〇〇。 °亥儲存控制器911經由一儲存匯流排9 i 2將一或多個儲存 裝置913耦合至該周邊匯流排91〇。例如,該儲存控制器 911 可以係— SCSI(Sma11 computer system interface;小電 釤系、、’先面)控制器,而儲存裝置913可以係SCSI碟片。該 置914 了以係任一類周邊設備。例如,該I/O裝置9工4 可=係一區域網路介面(例如乙太網路卡)。次要匯流排橋 接器可用於經由另一匯流排將額外裝置與該處理系統介 接。例如,該次要匯流排橋接器可以係一通用序列匯流排 (USB)淳控制器,其係用於將USB裝置917轉合至該處理系 統9〇〇。該多媒體處理器918可以係一音效卡、一視訊操取 卡或任何其他類型的媒體介面,其亦可以係耦合至額外裝 置(例如揚聲器919)。舊有裝置介面92〇係用於將舊有裝置 1 (例如,舊式鍵盤及滑鼠)耦合至該處理系統列〇。 圖4所解說的處理系統900僅為可結合本文說明之具體實 施例使用之—範例性處理系、统。雖'然圖4解說尤其適合於 ,用電腦(例如一個人電腦或一工作站)之一處理架構,但 疋應明白可進仃熟知的修改以將處理系統9⑽組態成更適 用於各種應用。例如,可藉使用一更簡單的架構來實施許 夕品要處理的电子裝置,該架構依賴一耦合至記憶體組件 908及/或5己憶體凡件⑺之―cpu (圖2)。此等電子裝置 可包括(但不限於)音訊/視訊處理器及記錄器、遊樂器、數 位電視機、有線或無線電話、導航裝置(包括基於全球定 位系、·先(GPS)及/或f貝性導航之系、统)及數位相機及/或記錄 130554.doc 200901458 、。亥等修改可包括(例如)不必要組件之刪除、專用裝置 或電路之添加及/或複數個裝置之整八。 乂 =㈣與圖式係僅視為解說實财文說明的特 = 實施例。雖然本文說明之具體實施例在- =一=之間提供很好黏合且還減小一 的各改善在其他可變電阻記憶體裝置中 S之間的黏δ ,該等可變雷阳 化物或其他材料作為兮可"於5 :、彳置使用-硫屬 ^士構可材料。針對特定程序條件 :、:構T進订修改與替代。因此, 視為限於以上說明與圖子、體實細例 之㈣。 Μ ^僅限於隨时請專利範圍 【圖式簡單說明】 :以與18解說-慣用的相變記憶體元件。 :解說依據本發明之—具體實施例body. The memory controller 902 can also be coupled to a cache memory 9〇5. The cache memory 905 can be the only cache memory in the processing system. Alternatively, the other device (e.g., processor 9Q1) may also include a cache memory that forms a cache level with the cache memory 〇5. If the processing system 900 includes a peripheral device or controller that is a bus master or supports direct memory access (DMA), the memory controller 〇2 can implement a -cache coherency protocol. If the memory controller is stolen to a plurality of memory bus bars 907, the streams can be operated in parallel, or different address ranges can be mapped to different memories = 907 ° Main bus bar bridge 903 coupling To at least one peripheral busbar 91〇. Various devices, such as peripheral devices or additional busbar bridges, can be coupled to the peripheral busbar 910. Such devices may include a storage controller 911, a miscellaneous I/O device 914, a primary bus bar 915, a multimedia processor 9!8, and an legacy device interface 92A. Main bus bar bridge 903 can also be coupled to one or more dedicated high speed ports 922. For example, in a personal computer, the dedicated device may be an accelerated graphics port (AGp) for coupling a 130554.doc 200901458 and a performance video card to the processing system. The HI storage controller 911 couples one or more storage devices 913 to the peripheral bus bar 91A via a storage busbar 9 i 2 . For example, the storage controller 911 can be a SCSI (Sma11 computer system interface; small, first) controller, and the storage device 913 can be a SCSI disc. This is set to 914 for any type of peripheral device. For example, the I/O device can be a regional network interface (such as an Ethernet card). The secondary bus bridge can be used to interface additional devices to the processing system via another bus. For example, the secondary bus bridge can be a universal serial bus (USB) port controller for translating USB device 917 to the processing system. The multimedia processor 918 can be a sound card, a video capture card, or any other type of media interface, which can also be coupled to an additional device (e.g., speaker 919). The legacy device interface 92 is used to couple legacy devices 1 (e.g., old keyboards and mice) to the processing system. The processing system 900 illustrated in Figure 4 is merely an exemplary processing system that can be used in conjunction with the specific embodiments described herein. Although the Figure 4 illustration is particularly suitable for processing architectures using one of a computer (e.g., a personal computer or a workstation), it should be understood that well-known modifications can be made to configure the processing system 9(10) to be more suitable for various applications. For example, an electronic device to be processed by the present invention can be implemented using a simpler architecture that relies on a "cpu" (Fig. 2) coupled to the memory component 908 and/or the 5 memory component (7). Such electronic devices may include, but are not limited to, audio/video processors and recorders, game instruments, digital televisions, wired or wireless telephones, navigation devices (including global positioning systems, first (GPS) and/or f Shell navigation system, and digital camera and / or record 130554.doc 200901458,. Modifications such as Hi may include, for example, the deletion of unnecessary components, the addition of dedicated devices or circuits, and/or the entirety of a plurality of devices.乂 = (4) and the schema is only considered as a special explanation of the explanation of the real financial statement. Although the specific embodiments described herein provide a good bond between -=== and also reduce the viscosity δ between the S in other variable resistance memory devices, the variable neutrons or Other materials can be used as "兮5", 彳 使用 - 硫 硫 硫 硫 硫 硫 硫 硫 硫 硫 硫 硫. For specific program conditions: , : T to modify and replace. Therefore, it is considered to be limited to the above description and the details of the figure and the physical example (4). Μ ^Only for the scope of patents at any time [Simple description of the diagram]: Explain with the 18 - the usual phase change memory components. : Illustrated in accordance with the present invention - a specific embodiment

件之一部分斷面圖。 邳又记隐體7G 圖 3Α至3(:解說部分斷面圖, 憶 體元件之一方法。 〃、知述製&圖2之相變記 圖4係一方塊圖,其以方 一態樣之一電子系統。Α的形式顯示依據本發明之 【主要元件符號說明】 1 2 4 6 相變記憶體元件 第—電極 第二電極 介電材料 130554.doc 200901458 8 相變材料 9 相變材料之一部分/非晶部分 10 相變記憶體元件 12 底部電極 13 介面黏合加熱層 14 頂部電極 15 導電金屬層/第一金屬層 18 可變電阻材料層 19 可變電阻材料層之一部分 20 基板 22 第一介電層 24 第二介電層 26 第三介電層 34 開口 36 開口 840 電阻可變隨機存取記憶體裝置 900 處理系統 901 處理器/CPU 902 記憶體控制器 903 主要匯流排橋接器 904 本機匯流排 905 快取記憶體 906 單一裝置 907 記憶體匯流排 130554.doc -20- 200901458 908 記憶體組件 909 額外裝置 910 周邊匯流排 911 儲存控制器 912 儲存匯流排 913 儲存裝置 914 雜項I/O裝置 915 次要匯流排橋接器 917 USB裝置 918 多媒體處理器 919 揚聲器 920 舊有裝置介面 921 舊有裝置 922 而速淳 130554.docPartial sectional view of one of the pieces.邳 隐 隐 隐 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 One of the electronic systems. The form of Α shows the main component symbol description according to the present invention. 1 2 4 6 Phase change memory component No. electrode Second electrode dielectric material 130554.doc 200901458 8 Phase change material 9 Phase change material A portion/amorphous portion 10 phase change memory element 12 bottom electrode 13 interface adhesion heating layer 14 top electrode 15 conductive metal layer/first metal layer 18 variable resistance material layer 19 one portion of variable resistance material layer 20 substrate 22 A dielectric layer 24 a second dielectric layer 26 a third dielectric layer 34 opening 36 opening 840 a resistance variable random access memory device 900 processing system 901 processor / CPU 902 memory controller 903 main bus bar bridge 904 Local Bus 905 Cache Memory 906 Single Device 907 Memory Bus 130554.doc -20- 200901458 908 Memory Component 909 Additional Device 910 Peripheral Bus 911 Storage Control Storage means storing busbar 913 912 914 Miscellaneous I / O device 915 the secondary bus bridge 917 USB multimedia processor 919 speaker 918 920 921 old legacy device interface 922 and device speed sun 130554.doc

Claims (1)

200901458 十、申請專利範圍: 1. 一種電阻記憶體裝置,其包含: 一第一電極; M面黏合加熱層 一表面; 其具有耦合至該第一電極之一第 气 \ 材料’其具有-輕合至該介面黏 之一第二表面的第一表面;以及 第—電極’其係耦合至該電阻變化材料之一第二表 面。 /求頁1之電阻記憶體裝置,其中該介面黏合加熱層 係自由以下材料組成之群組中選擇的至少—材料形成: N TlA1N、A1PdRe、HfTe5、TiNiSn、PBTe、 Bl2Te3、Al203、A-C、TiOxNy、TiAlx〇y、Si〇xNy 以及 TiOx 〇 3 ·如α求項2之電阻記憶體裝置,其中該TaN係一富N ( N- nCh)的 TaN ’而該 TiAIN係一富 N的 TiAIN。 4·如清求項1之電阻記憶體裝置,其中該介面黏合加熱層 之該胃_ ± 衣面亦係搞合至一介電層。 5·如^求項4之電阻記憶體裝置,其中該介電層包含一氧 4匕物、一 & 氬化石夕、一氧化銘、一高温聚合物、一絕緣玻 璃以及—姐& π 絕緣聚合物之至少一者。 6 ·如 5奢·^ tS 1 ^貝1之電阻記憶體裝置,其中該介面黏合加熱層 之厚度係約5埃至約50埃。 7.如%求項1之電阻記憶體裝置,其中該電阻變化材料包 130554.doc 200901458 含一 G S T材料。 8. 9. 10. 11. 12. 13. 如請求们之電阻記憶體裝置,其進一步包含耦合至該 第一電極之一第一導電層與耦合至該第二電極 導電層。 弟一 如請求項1之電阻記憶體裝置’其中該第一電極與該第 二電極包含氮化鈦、氮化鈦鋁、鈦鎢、鉑以及鵝之至少 一者。 一種電阻記憶體裝置,其包括: 一第一電極; 至> 一介電材料層,其在該第—電極上具有—開口; 一介面黏合加熱層,其處於該開口内並接觸該第一電 極; 一 GST材料層,其處於該開口内並接觸該介面黏合加 熱層;以及 一第二電極,其接觸該GST材料。 如請求項10之電阻記憶體裝置,其中該第二電極係配置 於該開口内。 如請求項10之電阻記憶體裝置,其中該介面黏合加熱層 係自由以下材料組成之群組中選擇的至少一材料形成: 虽 Ν 的 TaN、富 Ν 的 TiAIN、AlPdRe、HfTe5、TiNiSn、 pBTe、Bi2Te3、Al2〇3、A_C、Ti〇xNy、TiAlx〇y、以〇為 以及Ti〇x。 如請求項10之電阻記憶體裝置,其中該介面黏合加熱層 之厚度係約5埃至約5 〇埃。 130554.doc 200901458 14·如請求項10之電阻記憶體裝置,其中該介面黏合加熱層 亦係耦合至一介電層。 1 5. —種電阻記憶體裝置,其包括: 一第一電極; 一介面黏合加熱層’其具有接觸該第一電極之一第一 表面’該介面黏合加熱層係自由TaN、TiAlN、AlPdRe、 HfTe5、TiNiSn、PBTe、Bi2Te3 以及 a12〇3、A c '200901458 X. Patent application scope: 1. A resistive memory device comprising: a first electrode; a surface of the M-side bonding heating layer; having a gas/material coupled to the first electrode; a first surface coupled to the second surface of the interface; and a first electrode coupled to the second surface of the one of the variable resistance materials. / The resistive memory device of claim 1, wherein the interface bonding heating layer is free from at least one selected from the group consisting of: N TlA1N, A1PdRe, HfTe5, TiNiSn, PBTe, Bl2Te3, Al203, AC, TiOxNy TiAlx〇y, Si〇xNy, and TiOx 〇3. A resistive memory device such as α, wherein the TaN is an N (n-nCh)-rich TaN' and the TiAIN is an N-rich TiAIN. 4. The resistor memory device of claim 1, wherein the stomach-to-face of the interface bonding heating layer is also bonded to a dielectric layer. 5. The resistor memory device of claim 4, wherein the dielectric layer comprises an oxygen species, an & argon fossil, a oxidized epoxide, a high temperature polymer, an insulating glass, and a sister & π At least one of insulating polymers. 6. A resistive memory device such as a luxury device, wherein the thickness of the interface bonding heating layer is from about 5 angstroms to about 50 angstroms. 7. The resistive memory device of item 1, wherein the resistance change material package 130554.doc 200901458 comprises a G S T material. 8. 9. 10. 11. 12. 13. The resistive memory device of claim 1 , further comprising a first conductive layer coupled to the first electrode and coupled to the second electrode conductive layer. The resistive memory device of claim 1, wherein the first electrode and the second electrode comprise at least one of titanium nitride, titanium aluminum nitride, titanium tungsten, platinum, and goose. A resistive memory device comprising: a first electrode; to > a layer of dielectric material having an opening on the first electrode; an interface bonding heating layer in the opening and contacting the first An electrode; a layer of GST material in the opening and contacting the interface bonding heating layer; and a second electrode contacting the GST material. The resistive memory device of claim 10, wherein the second electrode is disposed within the opening. The resistive memory device of claim 10, wherein the interface bonding heating layer is formed by at least one selected from the group consisting of: TaN, TiAIN, AlPdRe, HfTe5, TiNiSn, pBTe, Bi2Te3, Al2〇3, A_C, Ti〇xNy, TiAlx〇y, 〇 and Ti〇x. The resistive memory device of claim 10, wherein the interface bonding heating layer has a thickness of from about 5 angstroms to about 5 angstroms. The resistor memory device of claim 10, wherein the interface bonding heating layer is also coupled to a dielectric layer. 1 5. A resistive memory device, comprising: a first electrode; an interface bonding heating layer 'having contact with a first surface of the first electrode', the interface bonding heating layer is free of TaN, TiAlN, AlPdRe, HfTe5, TiNiSn, PBTe, Bi2Te3, and a12〇3, A c ' Tl〇xNy、TiAlx〇y、^(^…與丁丨…組成之群組中選擇的至 少一材料形成; 材料,其具有 二表面的第一表面;以及 一第二電極,其接觸該GST材料之一第二表面。 16.如請求項15之電阻記憶體裝置,其中該第—電㈣ :介電層包圍且該介面黏合加熱層亦係耗合至該:電 ί 17.如請求項16之電阻記憶體裝 ….-中該介電層包含-氧 化物、一氮化矽、一氧化鋁、 鬲溫聚合物、一絕緣坡 璃以及一絕緣聚合物之至少一者 Ι如請求項17之電阻記憶體裝置,其中該介電層“ 其中該介面黏合加熱層 該方法包含: 1 9.如請求項丨5之電阻記憶體裝置, 之厚度係約5埃至約5 0埃。 20. —種形成一記憶體元件之方法, 形成一第一電極; 130554.doc 200901458 形成一介面黏合加熱層’其具有耦合至該第一電極之 一第一表面; 形成一電阻變化材料層,其具有一耦合至該介面黏合 加熱層之一第二表面的第一表面;以及 形成一第二電極’其係耦合至該電阻變化材料層之一 第二表面。 2 1 ·如請求項20之方法,其中一介電層係形成於該介面黏合 加熱層、該電阻變化材料層與該第二電極周圍。 22.如請求項20之方法,其中藉由沈積並蝕刻一介面加熱層 材料、一電阻變化材料與一第二電極材料而在一堆疊中 形成該介面黏合加熱層、該電阻變化材料層與該第二電 ° 23‘如請求項21之方法,其中該介電層包含一氧化物、一氮 化矽、一氧化鋁、一高溫聚合物、一絕緣玻璃以及一絕 緣聚合物之至少一者。 24. 如請求項20之方法,其中該介面黏合加熱層係自由以下 材料組成之群組中選擇的至少一材料形成:τ&ν、 TiAIN、AlPdRe、HfTe5、TiNiSn、PBTe、Bi2Te3、 A1203、A-C、Ti〇xNy、TiAlx〇y、Si〇xNy 以及 τί〇χ。 25. 如請求項20之方法,其進一步包含在該第—電極周圍形 成一介電層,其中該介面黏合加熱層之該第—表面亦係 耦合至該介電層。 26. 如請求項2Q之方法,其進〆步包含將該介面黏合加熱層 形成為約5埃至約50埃之一厚度。 130554.doc 200901458 27.如請求項20之方法,其中該電阻變化材料包含一 GST材 料。 r 130554.docForming at least one material selected from the group consisting of T1〇xNy, TiAlx〇y, ^(^... and Ding; a material having a first surface having two surfaces; and a second electrode contacting the GST material A second surface. 16. The resistive memory device of claim 15, wherein the first (electrical) layer is surrounded by a dielectric layer and the interface bonding heating layer is also affixed to the electricity: 17. The resistive memory device comprises: - the dielectric layer comprising at least one of - oxide, tantalum nitride, aluminum oxide, a warm polymer, an insulating glass, and an insulating polymer, such as claim 17 The resistive memory device, wherein the dielectric layer "wherein the interface is bonded to the heating layer, the method comprises: 1. 9. The resistive memory device of claim 5, having a thickness of about 5 angstroms to about 50 angstroms. a method of forming a memory device, forming a first electrode; 130554.doc 200901458 forming an interface bonding heating layer having a first surface coupled to one of the first electrodes; forming a layer of variable resistance material having a coupling to the interface bonding plus a first surface of the second surface of the layer; and a second electrode formed to be coupled to the second surface of the one of the layers of the variable resistance material. 1 1 . The method of claim 20, wherein a dielectric layer is formed The method of claim 20, wherein the interface heating layer material, a resistance change material, and a second electrode material are deposited and etched by the interface. And forming the interface bonding heating layer, the resistance change material layer and the second method in a stack, wherein the dielectric layer comprises an oxide, a tantalum nitride, an aluminum oxide. A method of claim 20, wherein the interface bonding heating layer is formed from at least one selected from the group consisting of: τ & ν, TiAIN, AlPdRe, HfTe5, TiNiSn, PBTe, Bi2Te3, A1203, AC, Ti〇xNy, TiAlx〇y, Si〇xNy, and τί〇χ. 25. The method of claim 20, further comprising Forming a dielectric layer around the first electrode, wherein the first surface of the interface bonding heating layer is also coupled to the dielectric layer. 26. The method of claim 2Q, wherein the step comprises: The adhesive heating layer is formed to a thickness of from about 5 angstroms to about 50 angstroms. The method of claim 20, wherein the resistance change material comprises a GST material. r 130554.doc
TW097115139A 2007-05-25 2008-04-24 Variable resistance memory device with an interfacial adhesion heating layer, systems using the same and methods of forming the same TWI370544B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/754,001 US7593254B2 (en) 2007-05-25 2007-05-25 Variable resistance memory device with an interfacial adhesion heating layer, systems using the same and methods of forming the same

Publications (2)

Publication Number Publication Date
TW200901458A true TW200901458A (en) 2009-01-01
TWI370544B TWI370544B (en) 2012-08-11

Family

ID=39685857

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097115139A TWI370544B (en) 2007-05-25 2008-04-24 Variable resistance memory device with an interfacial adhesion heating layer, systems using the same and methods of forming the same

Country Status (6)

Country Link
US (3) US7593254B2 (en)
JP (1) JP2010529644A (en)
KR (1) KR20100011985A (en)
CN (1) CN101689602B (en)
TW (1) TWI370544B (en)
WO (1) WO2008147595A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1677371A1 (en) 2004-12-30 2006-07-05 STMicroelectronics S.r.l. Dual resistance heater for phase change devices and manufacturing method thereof
US7593254B2 (en) * 2007-05-25 2009-09-22 Micron Technology, Inc. Variable resistance memory device with an interfacial adhesion heating layer, systems using the same and methods of forming the same
US8278139B2 (en) * 2009-09-25 2012-10-02 Applied Materials, Inc. Passivating glue layer to improve amorphous carbon to metal adhesion
US8681536B2 (en) * 2010-01-15 2014-03-25 Qualcomm Incorporated Magnetic tunnel junction (MTJ) on planarized electrode
US8243506B2 (en) * 2010-08-26 2012-08-14 Micron Technology, Inc. Phase change memory structures and methods
CN102738389B (en) * 2011-04-12 2014-08-13 中国科学院微电子研究所 Semiconductor device with memristor characteristic and preparation method thereof
KR101250973B1 (en) * 2011-07-11 2013-04-04 광주과학기술원 Resistive random access memory and Method of manufacturing the same
US9070858B2 (en) 2012-03-16 2015-06-30 Micron Technology, Inc. Method, system, and device for storage cell, such as for memory
US9847480B2 (en) * 2012-09-28 2017-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Resistance variable memory structure and method of forming the same
US20140159770A1 (en) * 2012-12-12 2014-06-12 Alexander Mikhailovich Shukh Nonvolatile Logic Circuit
JP6162031B2 (en) * 2013-11-26 2017-07-12 株式会社日立製作所 Phase change memory and semiconductor recording / reproducing apparatus
US9711522B2 (en) 2014-10-03 2017-07-18 Sandisk Technologies Llc Memory hole structure in three dimensional memory
US9893280B2 (en) * 2015-02-06 2018-02-13 Toshiba Memory Corporation Memory device
WO2019083899A1 (en) * 2017-10-23 2019-05-02 Printed Energy Pty Ltd Thin film self-switching device
US10381558B1 (en) * 2018-03-16 2019-08-13 4D-S, Ltd. Resistive memory device having a retention layer
US10978639B2 (en) 2018-08-14 2021-04-13 Newport Fab, Llc Circuits for reducing RF signal interference and for reducing DC power loss in phase-change material (PCM) RF switches
US10770389B2 (en) 2018-08-14 2020-09-08 Newport Fab, Llc Phase-change material (PCM) radio frequency (RF) switches with capacitively coupled RF terminals
US11031555B2 (en) 2018-08-14 2021-06-08 Newport Fab, Llc Power handling improvements for phase-change material (PCM) radio frequency (RF) switch circuits
US10862032B2 (en) 2018-08-14 2020-12-08 Newport Fab, Llc Phase-change material (PCM) radio frequency (RF) switch
US10944052B2 (en) 2018-08-14 2021-03-09 Newport Fab, Llc Phase-change material (PCM) radio frequency (RF) switch using a chemically protective and thermally conductive layer
US11196401B2 (en) 2018-08-14 2021-12-07 Newport Fab, Llc Radio frequency (RF) module using a tunable RF filter with non-volatile RF switches
US11050022B2 (en) * 2018-08-14 2021-06-29 Newport Fab, Llc Radio frequency (RF) switches having phase-change material (PCM) and heat management for increased manufacturability and performance
US11031689B2 (en) 2018-08-14 2021-06-08 Newport Fab, Llc Method for rapid testing of functionality of phase-change material (PCM) radio frequency (RF) switches
US10937960B2 (en) 2018-08-14 2021-03-02 Newport Fab, Llc Concurrent fabrication of and structure for capacitive terminals and ohmic terminals in a phase-change material (PCM) radio frequency (RF) switch
US11158794B2 (en) 2018-08-14 2021-10-26 Newport Fab, Llc High-yield tunable radio frequency (RF) filter with auxiliary capacitors and non-volatile RF switches
US10862477B2 (en) 2018-08-14 2020-12-08 Newport Fab, Llc Read out integrated circuit (ROIC) for rapid testing of functionality of phase-change material (PCM) radio frequency (RF) switches
US10916540B2 (en) 2018-08-14 2021-02-09 Newport Fab, Llc Device including PCM RF switch integrated with group III-V semiconductors
US10615338B2 (en) 2018-08-14 2020-04-07 Newport Fab, Llc Phase-change material (PCM) contacts with slot lower portions and contact dielectric for reducing parasitic capacitance and improving manufacturability in PCM RF switches
CN111969107A (en) * 2020-08-25 2020-11-20 长江存储科技有限责任公司 Phase change memory and manufacturing method thereof
JP2022144071A (en) 2021-03-18 2022-10-03 キオクシア株式会社 Variable-resistance element and memory device
US11825753B2 (en) * 2021-08-19 2023-11-21 Taiwan Semiconductor Manufacturing Company, Ltd. Memory cell, integrated circuit, and manufacturing method of memory cell

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067465A (en) 1998-08-20 2000-03-03 Teijin Ltd Optical recording medium and its production
ITTO20010708A1 (en) 2001-07-19 2003-01-19 Skf Ind Spa SEALING DEVICE FOR BEARINGS.
US6549447B1 (en) * 2001-10-31 2003-04-15 Peter Fricke Memory cell structure
US6579760B1 (en) * 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
US6778420B2 (en) * 2002-09-25 2004-08-17 Ovonyx, Inc. Method of operating programmable resistant element
US6744088B1 (en) 2002-12-13 2004-06-01 Intel Corporation Phase change memory device on a planar composite layer
CN1954428B (en) 2004-05-14 2010-09-29 株式会社瑞萨科技 Semiconductor memory
KR20050111469A (en) 2004-05-22 2005-11-25 주식회사 하이닉스반도체 Method for fabricating phase changeable memory device
US7411208B2 (en) * 2004-05-27 2008-08-12 Samsung Electronics Co., Ltd. Phase-change memory device having a barrier layer and manufacturing method
US7023008B1 (en) * 2004-09-30 2006-04-04 Infineon Technologies Ag Resistive memory element
JP2006156886A (en) * 2004-12-01 2006-06-15 Renesas Technology Corp Semiconductor integrated circuit device and manufacturing method therefor
JP4646634B2 (en) * 2005-01-05 2011-03-09 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2006352082A (en) * 2005-05-19 2006-12-28 Renesas Technology Corp Semiconductor memory device and its manufacturing method
TWI290369B (en) * 2005-07-08 2007-11-21 Ind Tech Res Inst Phase change memory with adjustable resistance ratio and fabricating method thereof
KR100713943B1 (en) 2005-09-15 2007-05-07 재단법인서울대학교산학협력재단 Phase change random access memory and method for manufacturing the same
KR100695163B1 (en) * 2005-10-06 2007-03-14 삼성전자주식회사 Phase change memory device using magnetic resistance effect and methods of operating and manufacturing the same
US8129706B2 (en) * 2006-05-05 2012-03-06 Macronix International Co., Ltd. Structures and methods of a bistable resistive random access memory
WO2007148405A1 (en) 2006-06-23 2007-12-27 Renesas Technology Corp. Semiconductor device
US8106376B2 (en) * 2006-10-24 2012-01-31 Macronix International Co., Ltd. Method for manufacturing a resistor random access memory with a self-aligned air gap insulator
US7619237B2 (en) * 2007-02-21 2009-11-17 Macronix International Co., Ltd. Programmable resistive memory cell with self-forming gap
US7859036B2 (en) * 2007-04-05 2010-12-28 Micron Technology, Inc. Memory devices having electrodes comprising nanowires, systems including same and methods of forming same
US7989251B2 (en) * 2007-05-14 2011-08-02 Micron Technology, Inc. Variable resistance memory device having reduced bottom contact area and method of forming the same
US7593254B2 (en) * 2007-05-25 2009-09-22 Micron Technology, Inc. Variable resistance memory device with an interfacial adhesion heating layer, systems using the same and methods of forming the same
US8158965B2 (en) * 2008-02-05 2012-04-17 Macronix International Co., Ltd. Heating center PCRAM structure and methods for making
US8340060B2 (en) * 2008-03-03 2012-12-25 Ntt Docomo, Inc. OFDMA-based co-channel femtocell
US8031518B2 (en) * 2009-06-08 2011-10-04 Micron Technology, Inc. Methods, structures, and devices for reducing operational energy in phase change memory

Also Published As

Publication number Publication date
CN101689602A (en) 2010-03-31
CN101689602B (en) 2013-01-23
US20080291718A1 (en) 2008-11-27
US8270205B2 (en) 2012-09-18
US7593254B2 (en) 2009-09-22
TWI370544B (en) 2012-08-11
KR20100011985A (en) 2010-02-03
US8717799B2 (en) 2014-05-06
US20120305885A1 (en) 2012-12-06
JP2010529644A (en) 2010-08-26
WO2008147595A1 (en) 2008-12-04
US20100001250A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
TW200901458A (en) Variable resistance memory device with an interfacial adhesion heating layer, systems using the same and methods of forming the same
US9698344B2 (en) Dielectric thin film on electrodes for resistance change memory devices
US7969770B2 (en) Programmable via devices in back end of line level
US7659534B2 (en) Programmable via devices with air gap isolation
TW200400657A (en) Memory structures
WO2012041085A1 (en) Phase-changing memory structure having low-k dielectric thermal insulation material and method for the same
US9343676B2 (en) Heating phase change material
WO2010140210A1 (en) Semiconductor memory device and manufacturing method thereof
US11316105B2 (en) Phase change material switch and method of fabricating same
CN101257085A (en) Phase change memory