TW200901323A - Structure and method for device-specific fill for improved anneal uniformity - Google Patents

Structure and method for device-specific fill for improved anneal uniformity Download PDF

Info

Publication number
TW200901323A
TW200901323A TW97105500A TW97105500A TW200901323A TW 200901323 A TW200901323 A TW 200901323A TW 97105500 A TW97105500 A TW 97105500A TW 97105500 A TW97105500 A TW 97105500A TW 200901323 A TW200901323 A TW 200901323A
Authority
TW
Taiwan
Prior art keywords
wafer
filling
region
semiconductor
design
Prior art date
Application number
TW97105500A
Other languages
Chinese (zh)
Inventor
Brent A Anderson
Edward J Nowak
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/678,745 external-priority patent/US7692275B2/en
Priority claimed from US11/869,768 external-priority patent/US20090096066A1/en
Application filed by Ibm filed Critical Ibm
Publication of TW200901323A publication Critical patent/TW200901323A/en

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

Disclosed are embodiments of a wafer that incorporates fill structures with varying configurations to provide uniform reflectance and a design structure embodiment thereof. Uniform reflectance is achieved by distributing across the wafer fill structures having different semiconductor materials such that approximately the same ratio and density between the different semiconductor materials is achieved within each region and, optimally, each sub-region. Alternatively, it is achieved by distributing across the wafer fill structures, including one or more hybrid fill structure containing varying proportions of different semiconductor materials, such that approximately the same ratio between the different semiconductor materials is achieved within each region and, optimally, each sub-region. Alternatively, it is achieved by distributing across the wafer fill structures having semiconductor materials with different thicknesses such that approximately the same overall ratio between the semiconductor material with the different thicknesses is achieved within each region and, optimally, each sub-region.

Description

200901323 九、發明說明. 【相關申請案】 此申請案為2007生〇 D ^ 年2月26日申請之美國專利申 請案11/678,745之部份拉你 切接續案,其完整揭露内容將併 入於此作為參考。 【發明所屬之技術領域】 〇 纟發明具體實施例—般有關半導體晶圓,尤其有 . _半導體晶圓結構及形成使反射率及吸收特性差異保 持平衡之結構的方法。 【先前技術】 半導體晶圓的製造通常涉及使用快速退火(RTA) 程序來影響晶圓上主動裝置的電性。明確地說,可使 用tRTA &序使摻雜物活化、使摻雜物擴散、再使結 構=為非晶性、修復因離子植入程序造成的損壞等。 通上利用基於強光鹵素燈的加熱設備執行RTA,該加 熱^備將韓射導向晶圓表面,以便讓晶圓溫度發生快 速文化。然而,晶圓不同區域申反射率及吸收的差異 將在整個晶圓上造成不均勻的溫度變化(如,變動i 〇。C 或10°c以上)。 1如ίΐ率及吸㈣㈣差異料_因素所造成, 老如曰曰圓不同區域中的不同材料及/或材料的不同厚 200901323 度。這些不均句的溫度變化將使整個晶圓上的摻雜物 活化、損壞修復等有所變化,因而造成臨限電壓、薄 片電阻、驅動電流、漏電流等各項的差異。因此,不 均勻的溫度變化將使裝置性能發生明顯、與位置有關 的差異。 近來研發的互補金氧半導體(CMOS)裝置為了提 高性能,在P型場效電晶體的源極/汲極區域中併入蟲 晶生長的矽鍺(eSiGe)。因此,這些裝置包含具矽鍺的 PFET及具單晶矽的n型場效電晶體(NFET)二者。然 而,石夕鍺及單晶矽的反射率及吸收特性不同,因而造 成性能消散。明確地說,eSiGe的反射性高於單晶石夕 的反射性多達10%,致使性能消散多達2〇%。 同樣地,也已研發混合定向(H〇T)晶圓,其絕緣 層上石夕(SOI)區段具有提高一個場效電晶體類型(如, PFE^I^性能的胃一個定向(如,11〇),及其塊狀矽區段具 有提高另一場效電晶體類型(如,NFET)性能的不同定 向(如’娜)。然而,由於其不同厚度,SOI區段及塊 狀矽區&具有不同的反射率特性。明確地說,s〇I區 段的反射性尚於塊狀矽區段的反射性多達15%,致使 性能消散多達3〇〇/Q。 此外&著技術持續進展,退火完成時間將持續 200901323 = 、’減少至次秒級的完成時間),且除了這些較 明二成時間外’還附帶有對整個晶圓上之反射率及 及收特性差異甚至更大的感受性。 【發明内容】 例及述’本文所揭露的是半導體結構具體實施 填充結2遠結構的相關方法,其使用變動組態的虛設 射率。f,以提供整個晶圓上的均勻反射率(即,使反 .^及收^性保持平衡,以確保反射率及吸收特性 _、近相專等)’以確保整個晶圓上在快速退火期間的均 勻溫度變化。一項具體實施例藉由以下方式達成均勻 反射率.在整個晶圓上分配包含不同半導體材料的填 充結構’致使在每-區域内且最好是在晶圓每一子區 域内,在不同的半導體材料之間達成幾 率及密度。另-具體實補藉由叮方錢成均^^ 射率··在整個晶圓上分配包括一或多個含有變動比例 的不同半賴㈣之混合填充結構的填充結構, 在每:區域内且最好是在晶圓每—子區域内,在 的半導體材料之間達成幾近相同的總比率及密度。 另-具體實闕11*以下方錢成均勾反射率.在敕 個晶圓上分配包含不同厚度之半導體材料的 = 構,致使在每-區域内且最好是在晶圓每—子= 内,在具不同厚度的半導體材料之間達成幾近二 總比率及密度。 』的 200901323 尤其,本發明每一半導體結構具體實施例包含具 多個最後從中切割個別晶粒之區域的晶圓。一般而 言,每一區域包含積體電路且進一步包含多個含有積 體電路之各種不同電路的子區域。這些電路中的每一 個可由第一類型裝置(如,p型場效電晶體(PFET))及第 二類型裝置(如,η型場效電晶體(NFET))組成。 在前兩個結構具體實施例中,兩個不同類型的裝 置可包含具有不同反射率及吸收特性的不同材料。為 達成最佳場效電晶體性能,可選擇這些不同的材料。 也就是說,每一第一裝置可包含具第一反射性的第一 材料(如’在源極及極區域中具蠢晶生長砍錯的 PFET)。同樣地,每一第二裝置可包含具第二反射性 的弟二材料(如,在源極/〉及極區域中具早晶砍的 NFET)。 第一結構具體實施例包含填充結構(即,第一填充 結構及第二填充結構)。例如,第一填充結構可包含虛 設第一裝置(即,按第一裝置的相同方式建構的無作用 裝置,致使其包含第一裝置的相同第一材料(如,矽 鍺))。同樣地,例如,第二填充結構可包含虛設第二 裝置(即,按第二裝置的相同方式建構的無作用裝置, 致使其包含第二裝置的相同第二材料(如,單晶矽))。 200901323 為只現整個晶圓上的均勻反射率(即率 ^性保持顿,狀供幾近轉的反射料吸收特性 丄)。’在晶圓上的不同區域中以及在每一區域内的不同 以區域中之第—及第二填充結構的分配可根據第一及 弟一装置的分配而有所變化。 吏明確地說’當晶圓的每—區域(最好是當每一區200901323 IX. Invention Description. [Related application] This application is part of the US patent application 11/678,745 filed on February 26, 2007. The full disclosure of the application will be incorporated. This is for reference. TECHNICAL FIELD OF THE INVENTION The present invention relates generally to semiconductor wafers, and more particularly to a semiconductor wafer structure and a method of forming a structure that balances differences in reflectance and absorption characteristics. [Prior Art] The fabrication of semiconductor wafers typically involves the use of a rapid annealing (RTA) process to affect the electrical properties of the active devices on the wafer. Specifically, the tRTA & order can be used to activate the dopant, diffuse the dopant, make the structure = amorphous, repair damage caused by the ion implantation process, and the like. The RTA is performed by a heating device based on a glare-based halogen lamp that directs the Korean shot to the surface of the wafer to allow a rapid temperature culture of the wafer. However, the difference in reflectance and absorption in different areas of the wafer will cause uneven temperature variations across the wafer (e.g., variation i 〇 C or more than 10 ° C). 1 If the ΐ rate and the suction (4) (4) difference material _ factors are caused, the different thickness of different materials and / or materials in different areas of the old circle is 200901323 degrees. The temperature variation of these uneven sentences will cause changes in dopant activation, damage repair, etc. on the entire wafer, resulting in differences in threshold voltage, sheet resistance, drive current, and leakage current. Therefore, uneven temperature changes will result in significant, position-dependent differences in device performance. Recently, a complementary metal oxide semiconductor (CMOS) device has been developed to incorporate insect-grown germanium (eSiGe) in the source/drain region of a P-type field effect transistor in order to improve performance. Therefore, these devices include both PFETs with germanium and n-type field effect transistors (NFETs) with single crystal germanium. However, the reflectance and absorption characteristics of the stone scorpion and the single crystal yttrium are different, and the performance is dissipated. Specifically, the reflectivity of eSiGe is higher than that of single crystal stone by as much as 10%, resulting in performance dissipation of up to 2%. Similarly, hybrid orientation (H〇T) wafers have been developed with a SOI segment on the insulating layer that has an orientation that enhances a field effect transistor type (eg, PFE^I^ performance (eg, 11〇), and its massive 矽 section has different orientations (such as 'na) that improve the performance of another field of transistor type (eg, NFET). However, due to its different thickness, SOI segment and block 矽 zone & Having different reflectivity characteristics. Specifically, the reflectivity of the s〇I section is as high as 15% of the reflectivity of the block 矽 section, resulting in performance dissipation of up to 3〇〇/Q. The technology continues to progress, the annealing completion time will continue for 200901323 = , 'reduced to the sub-second completion time, and in addition to these more than 20% of the time, 'there is a difference in reflectivity and acceptance characteristics on the entire wafer. Greater sensibility. SUMMARY OF THE INVENTION The present invention discloses a semiconductor structure in which a method of filling a junction 2 far structure is used, which uses a varying configuration of the radiance. f, to provide uniform reflectivity across the wafer (ie, to balance the anti-reflection and recovery properties to ensure reflectivity and absorption characteristics _, near-phase specificity) to ensure rapid annealing on the entire wafer Uniform temperature change during the period. A specific embodiment achieves uniform reflectivity by distributing a fill structure comprising different semiconductor materials across the wafer 'in a per-region and preferably in each sub-region of the wafer, at a different The probability and density between semiconductor materials is achieved. In addition, the specific compensation is obtained by distributing the filling structure including one or more mixed filling structures containing different proportions of varying proportions (4) over the entire wafer. It is preferred to achieve nearly the same total ratio and density between the semiconductor materials in each sub-region of the wafer. Another-specific implementation of the 11% or less square money into the average reflectivity. On a single wafer, the distribution of semiconductor materials containing different thicknesses, so that in each region and preferably in the wafer per-sub = In the meantime, nearly two total ratios and densities are achieved between semiconductor materials having different thicknesses. In particular, each semiconductor structure embodiment of the present invention includes a wafer having a plurality of regions from which the individual dies are ultimately cut. In general, each region includes an integrated circuit and further includes a plurality of sub-regions containing various different circuits of the integrated circuit. Each of these circuits may be comprised of a first type of device (e.g., a p-type field effect transistor (PFET)) and a second type of device (e.g., an n-type field effect transistor (NFET)). In the first two structural embodiments, two different types of devices may comprise different materials having different reflectivity and absorption characteristics. These different materials can be chosen to achieve the best field effect transistor performance. That is, each of the first devices may comprise a first material having a first reflectivity (e.g., a PFET having a stray growth crack in the source and the polar regions). Similarly, each second device may comprise a second reflective material (e.g., an NFET with an early crystal cut in the source/> and polar regions). The first structural embodiment includes a filling structure (i.e., a first filling structure and a second filling structure). For example, the first fill structure can comprise a dummy first device (i.e., an inactive device constructed in the same manner as the first device such that it contains the same first material (e.g., 矽) of the first device). Likewise, for example, the second filling structure can comprise a dummy second device (ie, an inactive device constructed in the same manner as the second device, such that it contains the same second material of the second device (eg, single crystal germanium)) . 200901323 is the uniform reflectivity of the entire wafer (that is, the absorption property of the reflective material which is nearly constant). The distribution of the first and second fill structures in different regions on the wafer and in each region may vary depending on the distribution of the first and second devices.吏 Exactly say 'when each area of the wafer (preferably when each area)

^的任何特疋子區域)具有不同反射性之不同材料 2近相同的總比率及密度時,可達成幾近均句的.反 牲ΐ於第—裝置對第二裝置的比率及其在晶圓上 域内及/或任何特定子區域内的位置將根 ΪΓ 玄所變化’第—及第二填充結構為達成均勻 反射率所需的分配(即’量及位置)也將有所變化。 第二結構具體實施例包含至少 構。混合填充結構包含按預定比率 ^;填充結 錄)及第二材料(如,單晶石夕)。如同羊先的料(如,石夕 . έ+Φ/Β ) 先刖的具體實施例, ,見句勻反射率(即’使反射率及 衡,以提供幾近相等的反射率及吸 保持+ 決定填充結構在整個晶ϋ上相對於第it’ 分配。 久弟一裝置的 坤即闯日、J母一區域(最杯Β木—^ 域内的任何特定子區域)具有不同反射性::= -10- 200901323 近:同的總比率及密度時,可達成幾近均句的反 射千。由於第-裝置對第二裝置的比率以及1在?二 根内及/或任何特定子區域内的位Ϊ將 第!變化’填充結構(包括至少-個具預定 1勻反射率所需的分配(即,量及位置)將在不同的ί 域中及在不_子區域中有所變化,如同在這些區二 或子區域内之任何混合填充結構内之第一材料對第: 材料的比率也會有所不同·。 圓 晶 第二結構具體實施例包含混合定向晶圓(Η〇丁)的 。HOT晶圓可包含具第一定向(如,具11〇定向的 單晶矽)及第一厚度的第一區段和具第二定向(如'^具 100定向的單晶矽)及第二厚度的第二區段。第—區^ 位於介電層上(即,絕緣層上矽(s〇I)區段)。由於第二 及第二區段的不同厚度,在區段之間的反射率及吸收 特性亦有所變化。如同先前所述的具體實施例,第二 具體貫施例中HOT晶圓的每一區域包含積體電路且 進一步包含多個含有積體電路之各種不同電路的子區 域。這些電路中的每一個可由第一類型裝置(. 品 ,p型 場效電晶體(PFET))及第二類型裝置(如,n型場效带曰 體(NFET))組成。然而,在此具體實施例中,並不 不同材料,而是在晶圓的不同石夕區段中形成兩個 不同類型的裝置’因此’這兩個不同類型的裝置具有 200901323 有不同的以及不冋厚度’且因而具 〜 ’、〜ν " 6瓜紙㈣唭兄結構(即,第When any of the special sub-regions of the ^) have different reflectivities of different materials 2 and the same total ratio and density, the near-average sentence can be achieved. The ratio of the anti-animation to the second device and its presence in the crystal The position in the upper circle and/or in any particular sub-area will vary depending on the change of the root and the second filling structure to achieve uniform reflectivity (ie, 'quantity and position') will also vary. The second structural embodiment includes at least a configuration. The hybrid fill structure comprises a fill ratio at a predetermined ratio ^; and a second material (e.g., single crystal eve). Like the material of the sheep first (eg, Shi Xi. έ+Φ/Β), the specific embodiment of the first ,, see the uniform reflectivity (ie 'to make the reflectivity and balance, to provide nearly equal reflectivity and suction retention + Decide that the fill structure is allocated on the entire wafer relative to the first it's. The kun of the Jiuji device is the same as the day of the J, and the area of the J-mother (the most cups of the coffin-^ domain) has different reflectivity: = -10- 200901323 Near: The same total ratio and density, the reflection of a nearly uniform sentence can be achieved. Because of the ratio of the first device to the second device and 1 within the two roots and / or any specific sub-region The position of the 'change' padding structure (including at least one of the required distributions (ie, quantity and position) with a predetermined 1 uniform reflectance will vary in different ί domains and in the _ sub-regions, The ratio of the first material to the material: as in any hybrid fill structure within the two or sub-regions of these regions may also vary. The second embodiment of the wafer includes a hybrid directional wafer (Kenting) The HOT wafer may comprise a first orientation (eg, a single crystal germanium having an orientation of 11 turns) and a a first segment of thickness and a second segment having a second orientation (eg, a single crystal germanium oriented with 100 orientations) and a second thickness of the second thickness. The first region is located on the dielectric layer (ie, the upper layer of the insulating layer (ie s 〇 I) segment). The reflectivity and absorption characteristics between the segments also vary due to the different thicknesses of the second and second segments. As with the specific embodiments previously described, the second specific implementation Each region of the HOT wafer in the example includes an integrated circuit and further includes a plurality of sub-regions including various circuits of the integrated circuit. Each of these circuits can be a device of the first type (., p-type field effect) A crystal (PFET) and a second type of device (eg, an n-type field effect ribbon (NFET)). However, in this embodiment, the material is not different, but in different stone regions of the wafer. Two different types of devices are formed in the segment 'so the two different types of devices have 200901323 different and not thicker' and thus have ~ ', ~ ν " 6 melon (four) 唭 brother structure (ie, the first

&及第二填充結構)。例如,第一填充結構可包含具有 苐衣置之相同厚度及相同反射性的虛設第一吃。 同樣地,例如,第二填充結構可包含具有第二= 目同反射性的虛設第二裝置。為Ϊ現整個 =0上的均勻反射率(即’使反射率及吸收特性保 衡,以提供幾近相等的反射率及吸收特性 曰 不同區域中以及在每―區域内的不同子區域中之 及第二填充結構的分配可根據第—及第 分配而有所變化。 衣罝扪 炅月確地說,當晶圓的每一區域且最好去一 區域内的任何特定子區域具有幾近相同之具不^严声 ::此具不同反射性之材料的總比率及密度時,: ^近均勻的反射率。由於第—裝置對第二裝置的比 2其在晶®上任何特定區軸及/或任何特定子區 3内的位置將根據設計而有所變化,第—及第二填充 ::為達成均句反射率所需的分配(即,量及位一置 將有所變化。 亦揭露了形成上述結構的方法。 -12- 200901323& and second fill structure). For example, the first fill structure can comprise a dummy first eat having the same thickness and the same reflectivity of the garment. Likewise, for example, the second fill structure can comprise a dummy second device having a second = co-reflectivity. To achieve a uniform reflectance over the entire =0 (ie 'balance the reflectivity and absorption characteristics to provide nearly equal reflectivity and absorption characteristics 曰 in different regions and in different sub-regions within each region And the allocation of the second filling structure may vary according to the first and the first allocation. It is said that each region of the wafer, and preferably any specific sub-region within a region, has a near The same is true: When the total ratio and density of the materials with different reflectivity are: ^ Nearly uniform reflectivity. Because of the ratio of the first device to the second device, it is in any specific region on the crystal. The position within the axis and/or any particular sub-area 3 will vary depending on the design, and the first and second fills: the distribution required to achieve a uniform reflectance (ie, the amount and position will vary) The method of forming the above structure is also disclosed. -12- 200901323

在第一方法具體實施例中,提供晶圓及在晶圓上 形成積體電路的設計。積體電路設計可包含多個電 路,其併入具有第一反射性之第一材料(如,蟲晶生長 矽鍺)的第一類型裝置(如’ P型場效電晶體(PFET))及 具有第二反射性之第二材料(如,單晶矽)的第二類型 裝置(如,η型場效電晶體(NFET))。基於積體電路設 σ十’在晶圓上映射將形成電路的第一及第二事置。然 後,基於第一及第二裝置的映射,預先決定在晶圓上 不同的區域中以及在每一區域内不同的子區域中之填 充結構(即,第一及第二填充結構)的分配,使得在整 個晶圓上的反射率幾近均勻。 人π隹…❿勺的汉射竿(即,維持平衡的 反射率及吸收特性、幾近相等的反射率及吸收特性等) 可藉由以下方式來達成:分配填充結構使得晶圓每一 區域且最好是在每一區域内的每一子區域具有幾近相 同之具不同反射性的不同材料的總比率及密度。由於 第-裝置對第二裝置的比率及其在晶圓上 域内及/或任何特定子區域_位置將根據設計而有 所變化m填錢構為達綱勻反 的分配(即,量及位置)也將有所變化。 旦映射電路及預先決定填充結構的位置及量, -13· 200901323 即同時在晶圓上形成第一及第二裝置及第一及第二填 充結構。另外’隨著形成第一裝置,可例如藉由形成 按第一裝置之相同方式建構,致使其包含第一裝置的 相同第一材料的虛設第一裝置(即,無作用裝置),形 成,—填充結構。同樣地,隨著形成第二裝置,可例 ^藉由形成按第二裝置之相同方式建構,致使其包含 裝置的相同第二材料的虛設第二裝置(即,無作用 旋置)’形成第二填充結構。 圓弟二方法具體實施例同樣地包含提供晶圓及在晶 士形成之積體電路的設計。積體電路 可包含 個電路,甘 生手 ^併入具有第一反射性之第一材料(如,磊晶 及的第—類型裴置(如,Ρ型場效電晶體(PFET)) 型裝二反射性之第二材料(如,單晶矽)的第二類 計 二’ η型場效電晶體(NFET))。基於積體電路設 ㈣上映射將形成各種電路的第—裝置及第二 丞於第 圓上在不同的區域中及在每:=射,預先決定晶 的填充結構組成物及分=使=内不同的子區域中 幾近均勾。填充結構可包含使晶圓上的反射率 充結構、包含第二材料的第:二材料的第-填 個包含兩種材料的混合埴構、, 』、、口構。因此,決定填充結 -14- Ο Ο 200901323 ====:第,結構的分配(即, 及決定具第-::;ί 混合填充結構的分配w, f及m預仏率之不同 更明確地說,為達成幾近均 性、幾近相等反射二= ®上填絲構(包括含第一材料 第一的八疋比率的混合填充結構)相對於第-及 ,使得晶圓每—區域且最好是在每― 二㈣"! +區域具有幾近相同之具不同反射性的 料的總比率及密度。由於第一裝置對第二裳置 及其在晶圓任何特定區域内及/或在任何特 二二°:内的位置將根據設計而有所變化’填充結構 if,混合填充結構)為達成均勻反射率所需的分 置)在不同的區域中及在不·同的子區域 映射笔路且一旦預先決定不同填充結構以及 其t目應,置及量的組態,即可在晶圓上同時形成第— 及第#置及填充結構(包括任何混合填充結構)。 第二方法具體實施例包含提供混合定向晶圓 (HOT)的晶圓。可使用習知處理技術形成Η〇τ晶圓, -15- 200901323 3第=段包含11()fiPFET性能為最佳的定向單 ::曰:弟一區段包含對贿性能為最佳的定 二古由於形成第—及第二區段所用的程序,這 同厚度。因此,第-及第二區段將具有 率及吸收特性(即,分別為第-反射性及第 二反射性;)。In a first method embodiment, a wafer and a design for forming an integrated circuit on the wafer are provided. The integrated circuit design can include a plurality of circuits that incorporate a first type of device (eg, a P-type field effect transistor (PFET)) having a first reflective first material (eg, a silicon grown germanium) and A second type of device having a second reflective second material (eg, single crystal germanium) (eg, an n-type field effect transistor (NFET)). Mapping the on-wafer based on the integrated circuit will form the first and second events of the circuit. Then, based on the mapping of the first and second devices, the allocation of the filling structures (ie, the first and second filling structures) in different regions on the wafer and in different sub-regions in each region is determined in advance, The reflectivity across the wafer is nearly uniform. The 汉 隹 ❿ 的 的 的 的 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿 竿And preferably, each sub-region within each region has a total ratio and density of nearly identical materials of different reflectivity. Since the ratio of the first device to the second device and its location within the wafer and/or any particular sub-region _ position will vary according to the design, m is configured to achieve a uniform distribution (ie, quantity and position). ) will also change. Once the mapping circuit and the position and amount of the filling structure are predetermined, -13· 200901323 simultaneously forms the first and second devices and the first and second filling structures on the wafer. In addition, as the first device is formed, it may be formed, for example, by forming a dummy first device (ie, no action device) of the same first material of the first device in the same manner as the first device. Fill the structure. Similarly, as the second device is formed, it can be constructed by forming a second device of the same second material of the device (ie, no action rotation) by forming the second device in the same manner. Two filled structures. The second embodiment of the method similarly includes the design of providing the wafer and the integrated circuit formed in the crystal. The integrated circuit can include a circuit that is incorporated into the first material having the first reflectivity (eg, epitaxial and type-type devices (eg, 场-type field effect transistor (PFET)) type A second type of two reflective second material (eg, single crystal germanium) is a two-n-type field effect transistor (NFET). Based on the integrated circuit design (4), the mapping will form the first device of the various circuits and the second device on the first circle in different regions and in each: = shot, pre-determined crystal filling structure composition and sub-== Nearly different hooks in different sub-areas. The filling structure may comprise a structure in which the reflectivity on the wafer is filled, and the first filling of the second material comprising the second material comprises a mixture of two materials, a structure, and a mouth structure. Therefore, it is decided that the filling junction -14 - Ο Ο 200901323 ====:, the allocation of the structure (that is, and the decision to have the -::; ί mixed filling structure of the distribution w, f and m pre-expansion rate is more clear To achieve a nearly uniform, nearly equal reflection of the second = ® upper fill structure (including the first fill ratio of the first material containing the first fill ratio of the filling structure) relative to the first - and so that the wafer per-area And preferably, the total ratio and density of materials having nearly the same reflectivity in each of the two (four) "! + regions. Since the first device is placed on the second device and in any particular area of the wafer and/or Or in any special two or two: the position will vary according to the design 'fill structure if, mixed fill structure' to achieve the uniform reflectivity required for the separation) in different areas and in the same sub The region maps the pen path and once the different filling structures are determined, and the configuration of the t mesh and the amount is set, the first and the tenth and the filling structure (including any mixed filling structure) can be simultaneously formed on the wafer. A second method embodiment includes a wafer that provides hybrid directional wafer (HOT). The ττ wafer can be formed using conventional processing techniques, -15- 200901323 3 paragraph = 11 () fiPFET performance is the best orientation sheet:: 曰: the first section contains the best performance for bribery Ergu has the same thickness due to the procedures used to form the first and second sections. Therefore, the first and second sections will have rate and absorption characteristics (i.e., first-reflectivity and second reflectivity, respectively).

疋彳八在日日圓上形成之積體電路的設計。積體電 二η入一第—類型裝置(如,ρ型場效電晶體 及第一類型裝置(如,η型場效電晶體 。基於積體電路設計及HOT晶圓的組態,在 晶圓亡映射第—裝置及第二裝置。明確地說,映射第 了及弟=裝置使得其分财第—及第二區段中形成, 以=保最佳性能。例如,如果第一石夕區段為11〇定向 及第一裝置為PFET,則第-裝置將在第—區段中形成 以確保最佳性能。‘同樣地,如果第二料段為1〇〇定 向及第二農置為NFET’則第二裝置將在第二區段中 形成以確保最佳性能。 然後,基於第一及第二裝置的映射,預先決定填 充結構(即,第一及第二填充結構)在晶圓上不同的區 域中以及在每一區域内不同的子區域中的分配(即,量 及位置)’使得整個晶圓上的反射率幾近均勻(即,使 知反射率及吸收特性維持平衡等)。更明確地說,當晶 -16- 200901323 圓的每一區域(最好是當在每一區域内的任何特定子 區域)之具第一厚度及第一反射性的半導體材料和具 第二厚度及第二反射性的半導體材料具有幾近相同的 總比率及密度時,可達成幾近均勻的反射率。由於第 一裝置對第二裝置的比率及其在晶圓上任何特定區域 内及/或任何特定子區域内的位置將根據設計而有所 變化,第一及第二填充結構為達成均勻反射率所需的 分配(即,量及位置)也將有所變化。 一旦映射電路及預先決定填充結構的位置及量, 即同時在晶圓上形成第一及第二裝置及第一及第二填 充結構。例如,可使用在相同HOT晶圓上在第一定向 (如,110)矽的第一區段形成PFET及在第二定向(如, 100)矽的第二區段形成NFET的習知處理技術,形成 第一及第二裝置。另外,隨著形成第一裝置,例如, 可藉由形成包含相同厚度之相同定向矽的虛設第一裝 置(即,無作用裝置),形成第一填充結構。同樣地, 隨著形成第二裝置,例如,可藉由形成包含相同厚度 之相同定向矽的虛設第二裝置(即,無作用裝置),形 成第二填充結構。 參考以下說明及附圖,即可更加瞭解本發明各項 具體實施例的以上及其他方面。然而,應明白,雖然 以下說明指出本發明較佳具體實施例及其許多特定細 -17- 200901323 即’但僅是用來解說而非限制。在本發明各頊具體實 施例的範如且不背離其#神下,可騎0變更及 t改及本發明的各項具體實施例包括所有此類修改。 【實施方式】 將參考附圖所示並於下列說明詳細解説的非限制The design of the integrated circuit formed on the Japanese yen. Integral two-in-one-type device (eg, p-type field effect transistor and first type device (eg, n-type field effect transistor. Based on integrated circuit design and configuration of HOT wafer, in crystal The mapping of the first device and the second device. Specifically, the mapping of the first and the younger = device makes it divided into the first and the second segment, to ensure optimal performance. For example, if the first stone eve The segment is 11〇 oriented and the first device is a PFET, then the first device will be formed in the first segment to ensure optimal performance. 'Similarly, if the second segment is 1〇〇 oriented and the second farm The second device will be formed in the second segment to ensure optimal performance. Then, based on the mapping of the first and second devices, the filling structure (ie, the first and second filling structures) is predetermined in the crystal. The distribution (ie, amount and position) in different regions of the circle and in different sub-regions within each region makes the reflectivity across the wafer nearly uniform (ie, balances the known reflectance and absorption characteristics) Etc.) More specifically, when each area of the crystal-16-200901323 circle ( Preferably, when the first thickness and the first reflective semiconductor material and the second thickness and the second reflective semiconductor material have nearly the same total ratio and density in any particular sub-region within each region) Nearly uniform reflectivity can be achieved. Since the ratio of the first device to the second device and its position in any particular area on the wafer and/or in any particular sub-area will vary depending on the design, first And the distribution (ie, amount and position) required for achieving a uniform reflectance in the second filling structure will also vary. Once the mapping circuit and the position and amount of the filling structure are predetermined, the first and the first on the wafer are formed. a second device and first and second fill structures. For example, a PFET can be formed in a first segment of a first orientation (eg, 110) on the same HOT wafer and in a second orientation (eg, 100) The second section of the crucible forms a conventional processing technique for the NFET to form the first and second devices. Additionally, as the first device is formed, for example, a dummy first device comprising the same orientation 相同 of the same thickness can be formed ( which is, Actuating means) forming a first filling structure. Likewise, as the second means is formed, for example, a second filling can be formed by forming a dummy second means (ie, no acting means) comprising the same orientation enthalpy of the same thickness The above and other aspects of the specific embodiments of the present invention will become more apparent from the following description and the accompanying drawings. <RTIgt; </ RTI> <RTIgt; 200901323 is intended to be illustrative only and not limiting. The specific embodiments of the present invention may be modified and modified without departing from the scope of the invention. Such a modification. [Embodiment] Unlimited restrictions will be explained in detail with reference to the accompanying drawings and the following description.

具體實施例,詳細說明本發_各料體實施例及其 各種特色與有利的細節。餘意,圖式解特色未必 按照比彳翁製。將省略仏时鱗理技_說明,. 以免混淆本發_各項具體實施例。此賴用範例的 =、的僅在促進瞭解實施本發明各項具體實施例的方 …,進-步使熟習本技術魏夠實施本發明的各項 :、體汽施例。因此,不應將這些範例視為限制本發明 各項具體實施例的範疇。 、如上述,反射率及吸收特性的差異由.不同的因 所造成,諸如晶圓不同區域中的不同材料及/或材料的 不同厚度。這些不均勻的溫度變化將使整個晶圓上的 推雜物活化、損壞修復等有所變化,因而造成臨限带 壤、薄片電阻、驅動電流、漏電流等各項的差異广= 此,不均勻的溫度變化將使裝置性能發生明顯與位 近來研發的互補金氧半導體(CMOS)裳置為了提 -18- 200901323 同性忐,在ρ型場效電晶體的源極/没極區域中併入磊 晶生長的矽鍺(eSiGe)。因此,這些裝置包含具矽鍺的 PFET及具單晶矽的η型場效電晶體(NFET)二者。然 而,矽鍺及單晶矽的反射率及吸收特性不同,因而^ 成性能消散。明確地說,eSiGe的反射性高於單晶矽 的反射性多達10%,致使性能消散多達2〇%。同樣地, ΟDETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention, as well as various features and advantageous details thereof, are described in detail. I mean, the characteristics of the schema solution may not be in accordance with the system. The 鳞 鳞 鳞 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The use of the exemplification of the present invention is only to facilitate understanding of the implementation of various embodiments of the present invention, and to enable the skilled artisan to practice the various aspects of the present invention. Therefore, the examples are not to be considered as limiting the scope of the specific embodiments of the invention. As noted above, the difference in reflectance and absorption characteristics is caused by different causes, such as different thicknesses of different materials and/or materials in different regions of the wafer. These uneven temperature changes will cause the activation of the tamper on the entire wafer, damage repair, etc., resulting in a wide variation of the threshold, sheet resistance, drive current, leakage current, etc. Uniform temperature changes will make the performance of the device significantly similar to the recent development of complementary metal oxide semiconductor (CMOS) skirts for the purpose of -18-200901323 isotropic 忐, incorporated in the source/no-polar region of the p-type field effect transistor Epitaxially grown germanium (eSiGe). Therefore, these devices include both PFETs with germanium and n-type field effect transistors (NFETs) with single crystal germanium. However, the reflectance and absorption characteristics of germanium and single crystal germanium are different, and thus the performance is dissipated. Specifically, the reflectivity of eSiGe is higher than that of single crystal germanium by up to 10%, resulting in performance dissipation of up to 2%. Similarly, Ο

C ^已研發,合定向(HOT)晶圓,其絕緣層上矽(s〇I)區 丰又具有提南一個場效電晶體類型(如,pFET)性能的一 個疋向(如’ 110),及其塊狀石夕區段具有提高另一場效 電晶體類型(如,NFET)性能的不㈤定向(如,100)。然 而,由於其不同厚度,S0I區段及塊狀石夕區段具有不 f的反射率特性。明確地說,SQI區段的反射性高於 ⑽狀石夕區段的反射性多達15% ’致使性能消散多達 此外’隨著技術持續進展,退火完成時間將持 ,減少至次秒級的完成時間),且除了這些 ^、的完成時間外,還附帶有對整個晶圓上之反射 兩,收特性差異甚至更大的感受性。因此,本技藝中 :化退火程序期間確保整個晶圓均勻:度 勺半V肢晶圓結構及相關技術。 例及述,本文所揭露的是半導體結構具體實施 埴充二冓雜f的相關方法,其使用變動組態的虛設 射^構,以提供整個晶圓上的均勻反射率(即,使反 …及吸收特性保持平衡’以提供幾近相等的反射率 •19- 200901323 及吸收特性等),以確保整個晶圓上在快速退火期間的 均勻溫度變化。一項具體實施例藉由以下方式達成均 勻反射率:在整個晶圓上分配包含不同半導體材料的 填充結構,致使在每一區域内且最好是在晶圓每一子 區域内^在不同的半導體材料之間達成幾近相同的總 比率及密度。另一具體實施例藉由以下方式達成均勻 反射率:在整個晶圓上分配包括一或多個含有變動比 例的不同半導體材料之混合填充結構的填充結構,致 使在每一區域内且最好是在晶圓每一子區域内,在不 同的半導體材料之間達成幾近相同的總比率及密度。 又另一具體實施例藉由以下方式達成均勻反射率:在 整個晶圓上分配包含不同厚度之半導體材料的填充結 構,致使在每一區域内且最好是在晶圓每一子區域 内,在具不同厚度的半導體材料之間達成幾近相同的 總比率及密度。 特別參考圖1,本發明每一半導體結構具體實施 例包含晶圓100,其具有最後從中切割個別晶粒的多 個區域110。這些區域110例如可以利用刻劃線150 分開來。 圖2描述如圖1晶圓結構之區域210的分解圖。 一般而言,每一區域包含積體電路,且進一步包含多 個子區域(如211、212),其含有積體電路的各種不同 -20- 200901323 :(、^°’靜態隨機存取記憶體(SRAMs)、邏輯電路 楚這些電路的每—個可由侧裝置减,例如併入 颌型放置2〇1(如p型場效電晶體(pFET))及第二類 置2〇2(如η型場效電晶體(NFET))的互補金氧半 導體(CMOS)装置。 礼干C ^ has developed a combined orientation (HOT) wafer with a germanium (s〇I) region on the insulating layer and a trend in the performance of a field-effect transistor type (eg, pFET) in the south (eg '110) And its block-like stellite section has a (5) orientation (eg, 100) that improves the performance of another field-effect transistor type (eg, NFET). However, due to their different thicknesses, the SOI segment and the block-like segment have a reflectivity characteristic of not f. Specifically, the reflectivity of the SQI segment is higher than the reflectivity of the (10)-like Shixia segment by as much as 15% 'causing the performance to dissipate as much as the other'. As the technology continues to progress, the annealing completion time will be reduced to the next second. The completion time), in addition to the completion time of these ^, is accompanied by the reflection on the entire wafer, the sensitivity difference is even greater. Therefore, in the art, the entire wafer is uniform during the annealing process: a scoop half V-well wafer structure and related technology. For example and description, the related method disclosed in the present invention is a method for implementing a semiconductor structure, which uses a variable configuration of the dummy structure to provide uniform reflectivity on the entire wafer (ie, to make the reverse... And the absorption characteristics are balanced 'to provide nearly equal reflectivity•19-200901323 and absorption characteristics, etc.) to ensure uniform temperature variation over the entire wafer during rapid annealing. A specific embodiment achieves a uniform reflectance by dispensing a fill structure comprising different semiconductor materials throughout the wafer such that it is different in each region and preferably in each sub-region of the wafer. Nearly the same total ratio and density are achieved between semiconductor materials. Another embodiment achieves uniform reflectivity by dispensing a fill structure comprising one or more mixed fill structures of varying semiconductor materials of varying proportions across the wafer, such that in each region and preferably Nearly the same total ratio and density are achieved between different semiconductor materials in each sub-area of the wafer. Yet another embodiment achieves uniform reflectivity by dispensing a fill structure comprising semiconductor materials of different thicknesses over the entire wafer such that in each region, and preferably within each sub-region of the wafer, Nearly the same total ratio and density are achieved between semiconductor materials having different thicknesses. With particular reference to Figure 1, each semiconductor structure embodiment of the present invention includes a wafer 100 having a plurality of regions 110 from which individual dies are finally cut. These regions 110 can be separated, for example, by a score line 150. 2 depicts an exploded view of region 210 of the wafer structure of FIG. In general, each region includes an integrated circuit, and further includes a plurality of sub-regions (such as 211, 212), which contain various integrative circuits -20-200901323: (, ^ ° 'static random access memory ( SRAMs), logic circuits, each of these circuits can be reduced by side devices, for example, incorporating a jaw type 2〇1 (such as a p-type field effect transistor (pFET)) and a second type of 2〇2 (such as an n-type) Complementary Metal Oxide Semiconductor (CMOS) device for Field Effect Transistor (NFET).

、圖3彳田述如圖1晶圓結構之區域31Θ的分解圖。 在過去,併入晶圓的虛設填充結構300為各種電路(即 在第-裝置3 01及第二裝置搬附近),用以在整個晶 圓上均勻地分配裝置錢,及藉此降低在整個晶圓上 各種位置形成之結構賴刻偏差及斜度剖面差異 2001年7月17日核發給㈣等人之美國專利第 6,262,435號中所說明’其在此以提及方式併入本文)。 這些虛設填充結構通常全部屬於相同類型(即以相 同材料、相同厚度製成及以相同方式組態)。Fig. 3 is an exploded view of the area 31Θ of the wafer structure shown in Fig. 1. In the past, the dummy fill structure 300 incorporated into the wafer was a variety of circuits (i.e., near the first device 310 and the second device) for evenly distributing the device money across the wafer, and thereby reducing the overall </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; These dummy fill structures are generally all of the same type (i.e., made of the same material, of the same thickness, and configured in the same manner).

相反地,本發明具體實施例使用多個有所變化之 不同材料、厚度、及/或组態的不同虛設填充結構,不 僅在整個晶圓上均勻地分配裝置密度,且均勻°地分配 反射率及吸收特性,藉此確保快速退火處理 勻溫度變化。 / S 參考圖4及5 ’在前兩個結構具體實施例中,兩 個不同類型的裝置(如圖4的401-402及圖5的5〇1_5〇2) -2]- 200901323 包含具有^反射率及錢特性料㈣料。為達成 取佳晶5性能,可選擇這些不同的材料。更明 確地《兄^第-裝置401、5〇1可包含具第一反射性 的第一材料(如在源極/没極區域中具遙晶生長石夕鍺的 PFET)。同樣地’每一第二農置4〇2、5〇2可包含具第 二反射性的第二材料(如在源極/汲極區域中且單晶石夕 的 NFET)。 、 Ο Ο 圖4彳田述如圖1晶圓結構之兩個相鄰區域41〇、· 420的分&quot;解圖。在此第一具體實施例中,填充結構450 可包含第一填充結構451及第二填充結構452。例如, 第一填充結構451可包含虛設第一裝置(即按第一裝置 401的相同方式建構的無作用裝置,致使其包含相同 之在第一裝置401的第一材料(如矽鍺))。同樣地,例 如’第二填充結構452可包含虛設第二裝置(即按第二 I置402的相同方式建構的無作用裝置,致使其包含 相同之在第二裝置402的第二材料(如單晶矽))。 為貫現整個晶圓上的均勻反射率(即,使反射率及 吸收特性保持平衡,以提供幾近相等的反射率及吸收 特性等),可根據第一及第二裝置4〇1、402的分配, 使在晶圓上的不同區域中以及在每一區域内的不同子 區域中之第一及第二填充結構45卜452的分配有所變 化。更明確地說’當晶圓的每一區域41〇、420(最好是 -22- 200901323 當衣每一區域内的任何特定子區域(如區域41〇的子區 威411_412、區域420的子區域421-422等))具有幾近 相同之具不同反射性的不同材料的總比率及密度時, 町達成紇近均勻的反射率。也就是說,每一區域41〇、 42〇(最好是每一子區域)在第一裝置及第一填充結構 中第/材料表面積總和與第二裝置及第二填充結構中 第二材料表面積總和之間具有幾近相同的總比率。可 預先決定此相同總比率,且此總比率可例如取決於晶 〇 圖上全部第一裴置401與晶圓·上全部第二裝置4〇2的 比率。 口此,僅為描述目的,如果晶圓設計包括一百個 第衣置及二百個第二裝置,則每一區域410、420之 第一材料對第二材料的預定比率應該幾近1:3。然而, 第一裝置對第二裝置的比率及其在晶圓上任何特 定區域内及/或任何特定子區域内的位置將根據設計 ^ 而有所變化,第一及第二填充結構45卜452為達成均 勾反射率所需的分配(即,量及位置)也將有所變化。 例如,區域410及420各描述第一材料對第二材 科之幾近1:3比率(即,第一裝置及第一填充結構之第 ’材料表面積總和對第二裝置及第二填充結構之第二 讨料表面積總和的比率)。然而,由於區域410之子區 威411 412及區域420之子區域421-422中的電路不 -23· 200901323 同(即,農冬古丁 401、402、),&gt;_同,數目及/或組態的第一及第二裝置 區域410 3 及第二填充結構451、452的分配在 區域具有有所變化。另外,由於不同子 第二填充丄广―衣置對第二裝置的比率,第-及 所變化。。卜452的分配在不同子區域之間亦有 C)Conversely, embodiments of the present invention use a plurality of different dummy fill structures of varying materials, thicknesses, and/or configurations to evenly distribute device density evenly across the wafer and evenly distribute reflectance And absorption characteristics, thereby ensuring rapid annealing to uniform temperature changes. / S Referring to Figures 4 and 5' In the first two structural embodiments, two different types of devices (such as 401-402 of Figure 4 and 5〇1_5〇2 of Figure 5) -2]- 200901323 contain ^ Reflectivity and money characteristics (four) material. In order to achieve the performance of Jiajing 5, these different materials can be selected. More specifically, the "brothers" - devices 401, 5"1 may comprise a first material having a first reflectivity (e.g., a PFET having a telecrystal growth in the source/drain region). Similarly, each second farm 4, 2, 5, 2 may comprise a second material having a second reflectivity (e.g., an NFET in the source/drain region and single crystal). Ο Ο Figure 4 shows the sub-quote of the two adjacent areas of the wafer structure, 41〇, · 420. In this first embodiment, the filling structure 450 can include a first filling structure 451 and a second filling structure 452. For example, the first fill structure 451 can include a dummy first device (i.e., an inactive device constructed in the same manner as the first device 401, such that it contains the same first material (e.g., helium) at the first device 401). Likewise, for example, the 'second fill structure 452 can include a dummy second device (ie, an inactive device constructed in the same manner as the second I-set 402, such that it contains the same second material in the second device 402 (eg, Crystal 矽)). In order to achieve uniform reflectivity across the wafer (ie, to maintain reflectivity and absorption characteristics balanced to provide nearly equal reflectivity and absorption characteristics, etc.), according to the first and second devices 4〇1, 402 The assignment of the first and second fill structures 45 452 in different regions on the wafer and in different sub-regions within each region varies. More specifically, 'When each area of the wafer is 41〇, 420 (preferably -22-200901323), any specific sub-area in each area of the clothing (such as the sub-area of the area 41〇 411_412, the sub-area of the area 420) When the regions 421-422, etc.)) have a total ratio and density of different materials having nearly the same different reflectivities, the town achieves a nearly uniform reflectance. That is, each region 41〇, 42〇 (preferably each sub-region) in the first device and the first filling structure, the sum of the material/surface area and the second material and the second material in the second and second filling structures There is almost the same total ratio between the sums. This same overall ratio can be predetermined, and this total ratio can depend, for example, on the ratio of all of the first devices 401 on the wafer to all of the second devices 4〇2 on the wafer. For the purpose of description, if the wafer design includes one hundred first garments and two hundred second devices, the predetermined ratio of the first material to the second material of each of the regions 410, 420 should be approximately 1: 3. However, the ratio of the first device to the second device and its location in any particular area on the wafer and/or in any particular sub-area will vary depending on the design, the first and second filling structures 45 452 The distribution (ie, quantity and location) required to achieve a uniform reflectance will also vary. For example, regions 410 and 420 each describe a nearly 1:3 ratio of the first material to the second material (ie, the sum of the 'th surface area of the first device and the first filling structure' versus the second device and the second filling structure The ratio of the total surface area of the second material). However, since the circuit in sub-area 411 412 of area 410 and sub-area 421-422 of area 420 is not -23·200901323 (ie, 冬冬古丁401, 402,), &gt;_ the same, the number and/or configuration The distribution of the first and second device regions 410 3 and the second filling structures 451, 452 has a variation in the region. In addition, due to the difference between the different sub-second fillings and the ratio of the clothes to the second device, the first and the other are changed. . The allocation of Bu 452 is also between different sub-areas.

520的如圖1晶圓結構之兩個相鄰區域510 ' 的一個、部二。在此第二具體實施例中,填充結構中 合填充結播t或全部可包含混合填充結構550。混 (如單彳 為包含第一材料(如矽鍺)及第二材料 射率二收:t::實:句勻反射率(即’使反 及吸收特㈣ +衡,以提供幾近相等的反射率 材料的第=二決定填充結構(包括:包含第-钕椹 ,、充…構556、包含第二材料的第二填充 ::、及/或—或多個混合結構55〇)在整個晶圓上 相對於弟—及第二裝置5〇1、5〇2的分配。 ^ ,明確地說,當晶圓的每一區域510、520(最好是 當在每一區域内的任何特定子區域(如,區域51Θ的子 區域511_5U、區域52〇的子區域似_523等))具有幾 $相同之具不同反射性的不同材料的總比率及密度 3寸,可達成幾近均勻的反射率。也就是說,每一區域 51〇、520(最好是每一子區域)在第一裝置5〇1之第一 -24- Ο Ο 200901323 材料表面積、任何第一填充結構556之第 550 夕笛“第―材科表面積、及任何混合填充結構55〇 弟:材枓表面積的總和之間,具有幾近相同的娘比 ί比率:同先前所述的具體實施例,可預先決定此相同 〜比率,且此總比率可例如取決於晶圓 置训對晶圓上全部第二裝置502的比率^弟4 筮一2 ’僅為描述㈣’如果晶圓設計包括-百個 f衣置及三百個第二裝置,則每一區域51〇、52〇之 第一材料對第二材料的預定比率應該幾近1:3。然而, 由^第t置對第二裝置的比率以及其在晶圓任何特 或在任何特定子區域内的位置將根據設 &quot; 受化,填充結構(包括任何混合填充結構550) 為達成均勻反射率所需的分配(即,量及位置)在不同 ^區域中及在不_子區域中可有所變化,且在任何 混合結構550内之第-材料對第二材料的比率也會有 所變化。 '例如Q域510及520各描述第一材料對第二材 料的幾近1:3比率(即,第一裝置51〇、任何第一虛設 裝置556、及任何混合填充結構55〇中第—材料表= 積總和對第二裝置502、任何第二虛設裝置557、及任 -25- 200901323 何混合填充結構550中第二材料表面積總和的比率)。 然而,由於區域510中子區域511-512的電路及區域 520中子區域521-522的電路不同(即,其含有不同數 目及/或組態的第一及第二裝置501、502),填充結構 556、557、及550的分配以及在任何混合填充結構550 内第一材料對第二材料的比率將有所變化。也就是 說,可在晶圓上形成具有不同之第一材料對第二材料 之比率的第一填充結構556、第二填充結構557、及/ 或一或多個混合填充結構550(如,見混合填充結構 551-552),以確保均勻的反射率。 例如,在較不密集的子區域(如區域510的子區域 513及區域520的子區域523)中或在已呈現第一材料 對第二材料的預定比率的子區域(如區域510的子區域 511)中,可使用包含與每一區域預定比率相同之第一 材料對第二材料比率(如1:3)的第一混合填充結構551 〇 及/或按此相同預定比率的第一及第二虛設裝置556、 557。然而,在第一裝置對第二裝置之比率大於或小於 每一區域之預定比率的子區域中,可使用額外混合填 充結構(如552-553)及/或第一虛設裝置556對第二虛 設裝置557的不同比率。例如,在區域510的子區域 512中,可以利用比例上比第一混合填充結構551具 有更多第二材料量的第二混合填充結構552,以平衡 第一裝置對第二裝置之較大比率。或者,在區域520 -26- 200901323 的子區域521 -522中’可以利用比例上比第一混合填 充結構5 51具有更少弟二材料夏的第三混合填充結構 553 ’以平衡第一裝置對第二裝置之較小比率。. 圖6描述如圖1晶圓結構之兩個相鄰區域61〇、 620的分解圖。在此第三結構具體實施例中,晶圓1〇〇 特別包含混合定向晶圓(HOT)晶圓。如圖7所描述, HOT晶圓具有不同定向的半導體材料區段(即第一及 第二區段751、752),其藉由介電層78〇及隔離結構 790彼此隔離。也就是說,HOT晶圓可包含:具第一 定向的第一區段751(如具11〇定向的單晶矽)及具第二 定向的第二區段752(如具1〇〇定向具的單晶石夕)。第一 區段二51位於介電層780上(即絕緣層上矽(s〇I)區 段)。第一區段752位置相鄰於第一區段751並與第一 區段751以隔離結構790分開來。第二區段乃2(即塊 狀矽區段)另外延伸至介電層78〇及/或穿過介電層78〇 到達半導體基板。因此,第一及第二區段751_752具 有不同定向及不同厚度(如分別為761及762)。由於 soi區段及塊狀矽區段的不同厚度,在區段751_752 之間的反射率及吸收特性亦有所變化(即,第一區段 751具有第一反射性及第二區段752具有第二反射 性)。 結合參考圖6及7,如同先前所述的具體實施例, -27- 200901323 晶圓的每一區域(如610、620)均包含積體電路。— 而言,每一區域610、620包含積體電路且進—步包二 多個子區域(如,區域610的611412、區域62〇二 621-622等)’其含有積體電路的各種不同電路(如靜熊 隨機存取記憶體(SRAM)、邏輯電路等)。這些電路的 每一個可由個別裝置組成,例如,併入第一類型裝置 601(如p型場效電晶體(PFET))及第二類型裝置6〇2&quot;(如 η型場效電晶體(NFET))的互補金氧半導體(CM〇s)裝 置。然而,在此具體實施例中,並不包含不同材料, 而是在HOT晶圓的不同石夕區段中形成兩個不同類型 的裝置601、602 ’因此,這兩個不同類型的裝置具有 不同晶向以及不同厚度且因而具有不同反射率及吸收 特性的相同半導體材料。例如,第一裝置601可在HOT 晶圓的第一區段751中形成’可具有第一厚度761、520 is one and two of two adjacent regions 510' of the wafer structure of FIG. In this second embodiment, the fill structure t-fill or all of the fill structure may comprise a hybrid fill structure 550. Mixed (such as a single 包含 containing the first material (such as 矽锗) and a second material 射 rate: t:: real: sentence uniform reflectivity (ie 'to make the opposite and absorb the special (four) + balance to provide almost equal The second of the reflectivity materials determines the filling structure (including: including the first -, the filling, the second filling::, and / or - or a plurality of mixed structures 55) The distribution of the entire wafer relative to the second and the second device 5〇1, 5〇2. ^ , specifically, each region of the wafer 510, 520 (preferably when any in each region) A specific sub-area (eg, sub-area 511_5U of area 51Θ, sub-area of area 52〇 like _523, etc.)) has a total ratio of three different materials of different reflectivity and a density of 3 inches, which can achieve near uniformity The reflectivity. That is, each region 51〇, 520 (preferably each sub-region) is at the first -24-Ο Ο 200901323 material surface area of the first device 5〇1, any first filling structure 556 The 550th eve flute "the first material surface area, and any mixed filling structure 55 brother: between the sum of the surface area of the material, has a near phase Ratio of mother to ί: as with the specific embodiments described above, the same ratio can be predetermined, and the total ratio can depend, for example, on the ratio of wafer training to all second devices 502 on the wafer. A 2' is only a description (4) 'If the wafer design includes - a hundred f-coating and three hundred second devices, then the predetermined ratio of the first material to the second material of each region 51〇, 52〇 should be close 1:3. However, the ratio of the second device to the second device and its position in the wafer or in any particular sub-region will be based on the configuration, the filling structure (including any hybrid filling structure 550). The distribution (ie, amount and position) required to achieve uniform reflectance may vary in different regions and in the non-sub-region, and the first material in any hybrid structure 550 versus the second material The ratio will also vary. 'For example, Q fields 510 and 520 each describe a nearly 1:3 ratio of the first material to the second material (ie, first device 51〇, any first dummy device 556, and any hybrid fill) Structure 55 第 - material table = product sum for the second device 502, any The second dummy device 557, and the ratio of the total surface area of the second material in the hybrid filling structure 550. However, due to the circuit of the sub-regions 511-512 in the region 510 and the sub-regions 521-522 in the region 520 The circuit is different (i.e., it contains different numbers and/or configurations of first and second devices 501, 502), the distribution of fill structures 556, 557, and 550, and the first material pair in any hybrid fill structure 550 The ratio of materials will vary. That is, a first fill structure 556, a second fill structure 557, and/or one or more having a different ratio of first material to second material may be formed on the wafer. The fill structure 550 is mixed (see, for example, the hybrid fill structures 551-552) to ensure uniform reflectivity. For example, in a less dense sub-region (such as sub-region 513 of region 510 and sub-region 523 of region 520) or a sub-region that has a predetermined ratio of first material to second material (eg, sub-region of region 510) In 511), a first mixed filling structure 551 comprising a first material to a second material ratio (eg, 1:3) having the same ratio as a predetermined ratio of each region, and/or first and second ratios of the same predetermined ratio may be used. Two dummy devices 556, 557. However, in a sub-region where the ratio of the first device to the second device is greater than or less than a predetermined ratio of each region, an additional hybrid fill structure (eg, 552-553) and/or a first dummy device 556 may be used for the second dummy Different ratios of devices 557. For example, in sub-region 512 of region 510, a second hybrid fill structure 552 having a second, greater amount of material than the first hybrid fill structure 551 can be utilized to balance a larger ratio of the first device to the second device. . Alternatively, in the sub-regions 521 - 522 of the region 520 -26 - 200901323 'the third hybrid filling structure 553 ' having a smaller ratio than the first hybrid filling structure 5 51 may be utilized to balance the first device pair A smaller ratio of the second device. Figure 6 depicts an exploded view of two adjacent regions 61, 620 of the wafer structure of Figure 1. In this third structural embodiment, the wafer 1 〇〇 specifically includes a hybrid directional wafer (HOT) wafer. As depicted in Figure 7, the HOT wafer has segments of semiconductor material of different orientations (i.e., first and second sections 751, 752) that are isolated from each other by dielectric layer 78 and isolation structure 790. That is, the HOT wafer can include: a first segment 751 having a first orientation (eg, a single crystal germanium having an orientation of 11 turns) and a second segment 752 having a second orientation (eg, having a orientation of 1) Single crystal stone eve). The first segment two 51 is located on the dielectric layer 780 (i.e., the upper layer of the insulating layer (s〇I)). The first section 752 is positioned adjacent to the first section 751 and is separated from the first section 751 by an isolation structure 790. The second segment, 2 (i.e., the bulk germanium segment), additionally extends to the dielectric layer 78 and/or through the dielectric layer 78A to the semiconductor substrate. Therefore, the first and second sections 751_752 have different orientations and different thicknesses (e.g., 761 and 762, respectively). The reflectivity and absorption characteristics between sections 751_752 also vary due to the different thicknesses of the soi section and the bulky section (ie, the first section 751 has a first reflectivity and the second section 752 has Second reflective). Referring to Figures 6 and 7, in conjunction with the specific embodiments previously described, each region of the -27-200901323 wafer (e.g., 610, 620) includes an integrated circuit. In other words, each of the regions 610, 620 includes an integrated circuit and further includes two sub-regions (eg, 611412 of region 610, region 62 221-622, etc.), which contain various circuits of the integrated circuit. (such as static bear random access memory (SRAM), logic circuits, etc.). Each of these circuits may be comprised of individual devices, for example, incorporating a first type of device 601 (such as a p-type field effect transistor (PFET)) and a second type of device 6〇2&quot; (such as an n-type field effect transistor (NFET) )) A complementary metal oxide semiconductor (CM〇s) device. However, in this particular embodiment, different materials are not included, but two different types of devices 601, 602 are formed in different different segments of the HOT wafer. Thus, the two different types of devices have different The crystal orientation and the same semiconductor material of different thicknesses and thus different reflectance and absorption characteristics. For example, the first device 601 can be formed in the first section 751 of the HOT wafer to have a first thickness 761,

及可包含達最佳性能之110定向矽的PFET;及第二裝 置602可在第二矽區段752中形成、可具有第二厚度 762、及可包含達最佳性能之1〇〇定向矽的NFET。 如同先前所述的具體實施例,晶圓的每一區域 610、620亦包含複數個填充結構650,其位置相鄰於 積體電路的第一及第二裝置601、602。在此具體實施 例中,填充結構650包含第一填充結構651及第二填 充結構652。第一填充結構651包含例如虛設第一裝 置(即,按HOT晶圓之第〆區段751中第一裝置的相 -28 - 200901323 同方式形成的無作用裝置,使得其具有與第一裝置601 相同的厚度761且因此具有相同反射性)。同樣地,第 二填充結構652包含例如虛設第二裝置(即,按HOT 之第二區段752中第二裝置602的相同方式建構的無 作用裝置,使得其具有第二裝置602相同的厚度762 且因此具有相同反射性)。 〇 為實現整個晶圓上的均勻反射率(即,使反射率及 吸收特性保持平衡,以提供幾近相等的反射率及吸收 特性等),可根據第一及第二裝置601、602的分配, 使在晶圓上的不同區域中以及在每一區域内的不同子 區域中之第一及第二填充結構651、652的分配有所變 化。更明確地說,當晶圓的每一區域610、620(最好是 富在母—區域内的任何特定子區域(如,區域610的子 區域611-612、區域620的子區域621-622等))具有幾 ^ .近相同之具不同厚度且因而具不同反射性的材料的總 比率及密度時’可達成幾近均勻的反射率。也就是說, 每一區域610、620(最好是每一子區域)在第一裝置6〇1 及第—填充結構651中具第一厚度761之半導體材料 表面積總和對第二裝置602及第二填充結構652中具 第二厚度762之半導體材料表面積總和之間,具有幾 近相同的總比率。可預先決定此相同總比率,且此總 比率可例如取決於晶圓上全部第一裝置6〇1與晶圓上 全部第二裝置602的比率。因此,僅為描述目的,如 -29. 200901323 果晶圓設計包括一百個第一裝置及三百個第二裝置, 則每一區域610、620之第一材料與第二材料的預定比 率應該幾近1:3。然而,由於第一裝置與第二裝置的比 率及其在晶圓上任何特定區域内及/或任何特定子區 域内的位置將根據設計而有所變化,第一及第二填充 結構651、652為達成均勻反射率所需的分配(即,量 及位置)也將有所變化。 例如,區域610及620各描述第一厚度之半導體 材料對第二厚度之半導體材料之幾近1:3比率Q卩,第 一裝置601及第一填充結構651中具第一厚度761之 半導體材料表面積總和對第二裝置602及第二填充結 構652中具第二厚度762之半導體材料表面積總和的 比率)。然而,由於區域610之子區域611-612及區域 620之子區域621-622中的電路不同(即,其含有不同 數目及/或組態的第一及第二裝置601、602),第一及 〇 第二填充結構651、652的分配在區域610及620之間 有所變化。另外,由於不同子區域具有第一裝置對第 二裝置的不同比率,第一及第二填充結構651、652的 分配在不同子區域之間亦有所變化。 亦揭露了形成上述結構的方法。 結合圖4參考圖8,在本發明一項方法具體實施 -30- 200901323 例中’提供晶圓及在晶圓上形成之積體電路的設叶 (802-804) ° 積體電路設計可包含多個電路(如靜態 記憶體(SRAM)及邏輯電路),且這些多個電路之:二 個可包含例如互補金氧半導體(CM〇s)裝置,其… 一類型裝置410(如,具第一反射性之第—材料(如磊= 生長矽鍺)的p型場效電晶體(PFET))及第二類型 402(如’具第一反射性之第二材料(如單晶石夕)的打型尸 效電晶體(NFET))(806-808)。 两 基於積體電路設計,將形成電路的第一裝置4〇1 及第一裝置402映射至晶圓(81〇)。然後,基於第—及 第二裝置401-402的映射,預先決定在晶圓上不同的 區域中以及在每一區域内不同的子區域中之填充結構 450(即第一及第二填充結構451、452)的分配(.即,量 及位置),使得整個晶圓上的反射率幾近均勻(即,使 得反射率及吸收特性維持平衡、使得反射率及吸收特 性幾近相等等)(812)。 更明確地說’幾近均勻的反射率可藉由以下方式 來達成:分配填充結構450,使得晶圓的每一區域 41〇、420(最好是在每一區域内的每一子區域(如區域 41〇的子區域411-412、區域420的子區域42M22等)) -31 - 200901323And a PFET that can include 110 directional turns of optimum performance; and the second device 602 can be formed in the second turn section 752, can have a second thickness 762, and can include an orientation of 最佳 optimal performance. NFET. As with the previously described embodiments, each region 610, 620 of the wafer also includes a plurality of fill structures 650 positioned adjacent to the first and second devices 601, 602 of the integrated circuit. In this embodiment, the fill structure 650 includes a first fill structure 651 and a second fill structure 652. The first filling structure 651 includes, for example, a dummy first device (ie, an inactive device formed in the same manner as the phase -28 - 200901323 of the first device in the second segment 751 of the HOT wafer, such that it has the same device 601 as the first device 601 The same thickness 761 and therefore the same reflectivity). Likewise, the second fill structure 652 includes, for example, a dummy second device (ie, an inactive device constructed in the same manner as the second device 602 in the second segment 752 of the HOT such that it has the same thickness 762 as the second device 602 And therefore have the same reflectivity). 〇According to the distribution of the first and second devices 601, 602 in order to achieve uniform reflectivity across the wafer (ie, to maintain reflectivity and absorption characteristics balanced to provide nearly equal reflectivity and absorption characteristics, etc.) The assignment of the first and second fill structures 651, 652 in different regions on the wafer and in different sub-regions within each region is varied. More specifically, each region 610, 620 of the wafer (preferably any particular sub-region within the parent-region) (eg, sub-regions 611-612 of region 610, sub-regions 621-622 of region 620) Etc.)) When the total ratio and density of materials having different thicknesses and thus different reflectivities are similar, a nearly uniform reflectance can be achieved. That is, each region 610, 620 (preferably each sub-region) has a first thickness 761 of semiconductor material surface area sum in the first device 6〇1 and the first filling structure 651 to the second device 602 and Between the sum of the surface areas of the semiconductor material having the second thickness 762 in the second fill structure 652, there is approximately the same overall ratio. This same overall ratio can be predetermined, and this total ratio can depend, for example, on the ratio of all first devices 6〇1 on the wafer to all second devices 602 on the wafer. Therefore, for the purpose of description only, such as -29. 200901323 If the wafer design includes one hundred first devices and three hundred second devices, the predetermined ratio of the first material to the second material of each region 610, 620 should be Almost 1:3. However, since the ratio of the first device to the second device and its position in any particular region on the wafer and/or in any particular sub-region will vary depending on the design, the first and second fill structures 651, 652 The distribution (ie, amount and position) required to achieve a uniform reflectance will also vary. For example, regions 610 and 620 each describe a semiconductor composition of a first thickness 601 and a semiconductor material having a first thickness 761 in a first device 601 and a first filling structure 651. The sum of the surface areas is the ratio of the surface area of the semiconductor material having the second thickness 762 of the second device 602 and the second filling structure 652). However, since the circuits in sub-regions 611-612 of region 610 and sub-regions 621-622 of region 620 are different (ie, they contain different numbers and/or configurations of first and second devices 601, 602), the first The distribution of the second fill structures 651, 652 varies between regions 610 and 620. In addition, since the different sub-regions have different ratios of the first device to the second device, the allocation of the first and second filling structures 651, 652 also varies between different sub-regions. A method of forming the above structure is also disclosed. Referring to FIG. 8 in conjunction with FIG. 4, in the method of the present invention, the implementation of the method -30-200901323 'providing the wafer and the integrated circuit formed on the wafer (802-804) ° integrated circuit design may include a plurality of circuits (such as static memory (SRAM) and logic circuits), and the plurality of circuits: two may include, for example, a complementary metal oxide semiconductor (CM〇s) device, such as a type device 410 (eg, having a reflective type - material (such as Lei = growth 矽锗) p-type field effect transistor (PFET)) and a second type 402 (such as 'the first reflective second material (such as single crystal eve) The type of corpse transistor (NFET) (806-808). Based on the integrated circuit design, the first device 4〇1 and the first device 402 forming the circuit are mapped to the wafer (81〇). Then, based on the mapping of the first and second devices 401-402, the filling structure 450 (ie, the first and second filling structures 451) in different regions on the wafer and in different sub-regions in each region are predetermined. , 452) the distribution (ie, quantity and position), so that the reflectivity on the entire wafer is nearly uniform (ie, the reflectivity and absorption characteristics are balanced, so that the reflectivity and absorption characteristics are nearly phase, etc.) (812 ). More specifically, 'nearly uniform reflectivity can be achieved by allocating a fill structure 450 such that each region of the wafer 41〇, 420 (preferably in each sub-region within each region ( Such as sub-areas 411-412 of area 41〇, sub-area 42M22 of area 420, etc.)) -31 - 200901323

U 具有幾近相同之具有不同反射性的不同材料的總比率 及密度(814)。也就是說,預先決定填充結構451及452 的分配’使得每一區域410、420(最好是每—子區域) 在第一裝置401及第一填充結構451中的第—材料表 面積總和對第二裝置402及第二填充結構452中的第 一材料表面積總和之間具有幾近相同的總比率。可預 先決定此相同總比率,且此總比率可例如取決於晶圓 上全部第一裝置401與晶圓上全部第二裝置4〇2 :比 率。因此,僅為描述目的,如果晶圓設計包括一百個 第一裝置及三百個第二裝置,則每一區域41〇、42〇之 第一材料對苐二材料的預定比率應該幾近1 。然而, 由於第一裝置對第二裝置的比率及其在晶圓上任何特 定區域内及/或任何特定子區域内的位置將根 而有所變化,第-及第二填充結構45卜452為達成均 勻反射率所需的分配(即,量及位置)也將有所變化。 一且映射電路及預先決定填充結構彻的位置及 量^即同時在晶圓上形成第一及第二裝置40卜402以 及第二及第二填充結構451_452(818)。例如,可使用 在^7圓上形成具蠢晶生長之石夕錯源極及沒極區域 ^二及具單晶石夕源極及波極區域之随的習知 取王何,形成第一及第二裝置401、402。另外 著裝置·,可例如藉由形成按 : 相同方式建構之虛設第—裝置(即,無作用裝置)而形 -32- 200901323 成第一填充結構451,使其包含與第—裝置相同的第 一材料(如磊晶生長的矽鍺源極/汲極區域)(82〇)。同樣 地,隨著形成第二裝置402,可例如藉由形成按第二 裝置之相同方式建構之虛設第二裝置(即,無作用装 而形成第二填充結構452,使其包含與第二裝置^同 的第二材料的(如單晶矽)(822)。 結合圖5麥考圖9,另一方法具體實施例同樣地 包含提供晶圓及將在晶圓上形成之積體電路的設計 (902-904)。積體電路設計可包含多個電路(如,靜態隨 機存取記憶體(SRAM)及邏輯電路),且這些多個 之每一個可包含例如互補金氧半導體(CM〇s)裝置甩其 合併第一類型裝置501(如具第一反射性之第一材料 (如磊晶生長矽鍺)的p型場效電晶體(PFE1^及第二類 型裝置5G2(如具第二反射性之第二材料(如單晶石^' •η 型場效電晶體(NFET))(806-808)。 基於積體電路設計,將形成各種電路的第一裝置 501及~第二裝置502映射至晶圓(91〇)。然後,基於第 -及第二裝置谢哪@映射,預先決定在晶圓上不 同的區域中及在每—區域内不同的子區域中之填充结 構組成物及分配(即,量及位置),使得整個晶圓上的 反射率,近均勻(即’使得反射率及吸收特性維持平 衡、使得反射率及吸收特性幾近相等等⑽以⑹。填 ** 33 - 200901323 充結構可包含:包含第一材料的第一填充結構556、 包含第二材料的第二填充結構557、及/或一或多個包 含兩種材料的混合填充結構55〇。因此,決定填充結 構組成物及分配包含:決定第一填充結構的分配(即, 曹及位置)、決定第二填充結構的分配(即,量及位置)、 及決疋具第一材料對第二材料之不同預定比率之不同 混合填充結構的分配(即,量及位置)(如,見混合填充 結構 551-553)。 、 ^更明確地說,為達成幾近均勻的反射率,預先決 定,充結構(包括任何混合填充結構5 5 〇)相對於第一 ^第二裝置501、502的組態及分配,使得晶圓的每一 區域510、520(最好是在每一區域内的每一子區域 (如’區域510的子區域511_513、區域52〇的子區域 …523 4))具有幾近相同之具不同反射性的不同材 料之總比率及妓。也歧說,預先衫填充結構的 組態及分配’致使每一區域510、520(最好是每一子區 域)在第-裝i5〇1之第一材料表面積、任何第一填充 3 556之第—材料表面積、及任何混合填充結構550 之弟-材料表面積的總和對第二裝置5〇2之第二材料 f面積、任何第二填充結構557之第二材料表面積、 任何混合填充結構55Q之第二材料表面積的總和之 間,具有幾近相同的總比率。 -34- 200901323 她=同先前所述的具體實施例,可預先決定此相同 、、、'乙比率且此總比率可例如取決於晶圓上全部第—裝 置=1、對晶圓上全部第二裝置502的比率。因此,僅 為“述目的,如果晶圓設計包括一百個第一裝置及二 百個第—裝置,則每一區域510、520之第一材料對第 二=料的預定比率應該幾近1:3。然而,由於第—裝置 ,第二裝置的比率以及其在晶圓任何特定區域内&quot;及/ 或在任何特定子區域内的位置將根據設計而有所變 化,填充結構為達成均勻反料所需的分配(即,包括 任何此合填充結構5 5 〇之填充結構的量及位置)在不同 =域中及在不_子區域中將有所變化,且在混合 。才550内之第一材料對第二材料的比率也會有所變 例如 〇 °°或 及520各描述第一材料對第二材 浐、’f1/3比率(即,第-裝置51〇第-材料中表面 知^何弟-填充結構556中第—材料表面積、及任 :;二:13構550、中第一材料表面積之總和對第二 ^ 第一材料表面積、任何第二填充結構557 材斗^ 積、及任何混合填充結構550中第二 面積之總和的比率)。然而,由於區域51〇中子 的電路及區域52〇中子區域521_522的 瞻,其含有不同數目及/或組態的第一及第二 又 、502) ’包括任何混合填充結構之填充結 -35 - 200901323 構的分配以及在任何混合填充結構550内第一材料對 第二材料的比率將有所變化。 例如,在較不密集的子區域(如區域510的子區域 513及區域520的子區域523)中或在已呈現第一材料 對第二材料的預定比率的子區域(如區域520的子區域 511)中,可形成包含與每一區域預定比率相同(如,1:3) 之第一材料對第二材料比率的第一混合填充結構551 及/或按相同比率的第一及第二填充結構556、557。然 而,在第一裝置對第二裝置之比率大於或小於每一區 域之預定比率的子區域中,可使用額外混合填充結構 (如552-553)、第一填充結構556及/或第二填充結構 557。例如,在區域510的子區域512中,可以利用比 例上比第一混合填充結構551具有更多第二材料量的 第二混合填充結構552,以平衡第一裝置對第二裝置 之較大比率。或者,在區域520的子區域521-522中, 可以利用比例上比第一混合填充結構551具有更少第 二材料量的第三混合填充結構553,以平衡第一裝置 對第二裝置之較小比率。 一旦映射電路及預先決定包括任何混合填充結構 551-553之填充結構的位置及量,即可在晶圓上同時形 成第一及第二裝置501、502及混合填充結構 551-553(918)。如同先前所述的具體實施例,可使用在 -36- 200901323U has a total ratio and density of nearly identical materials of different reflectivity (814). That is, the distribution of the filling structures 451 and 452 is predetermined such that the sum of the first surface areas of the first device 401 and the first filling structure 451 for each of the regions 410, 420 (preferably each sub-region) There is approximately the same overall ratio between the sum of the surface areas of the first materials in the second device 402 and the second filling structure 452. This same overall ratio can be predetermined, and this total ratio can depend, for example, on all of the first device 401 on the wafer and all of the second devices on the wafer 4:2 ratio. Therefore, for the purpose of description only, if the wafer design includes one hundred first devices and three hundred second devices, the predetermined ratio of the first material to the second material of each region 41〇, 42〇 should be approximately 1 . However, since the ratio of the first device to the second device and its position in any particular region on the wafer and/or in any particular sub-region will vary, the first and second filling structures 45 452 are The distribution (ie, amount and position) required to achieve a uniform reflectance will also vary. The mapping circuit and the position and amount of the filling structure are determined in advance, that is, the first and second devices 40 and the second and second filling structures 451 to 452 (818) are simultaneously formed on the wafer. For example, it is possible to use the conventional method of forming a stone-like source and a immersed region with a stray crystal growth on a ^7 circle and a single crystal stone source and a wave region. And second devices 401, 402. In addition, the first filling structure 451 can be formed into a first filling structure 451 by forming a dummy first device (ie, an inactive device) constructed in the same manner, so as to include the same first device as the first device. A material (such as the source/drain region of the epitaxial growth) (82〇). Similarly, as the second device 402 is formed, the second filling structure 452 can be formed to be included with the second device, for example, by forming a dummy second device constructed in the same manner as the second device (ie, inactively mounted) ^The same second material (such as single crystal germanium) (822). In conjunction with Figure 5, McCatur 9, another method embodiment similarly includes the design of providing the wafer and the integrated circuit to be formed on the wafer. (902-904) The integrated circuit design may include a plurality of circuits (eg, static random access memory (SRAM) and logic circuits), and each of these may include, for example, a complementary metal oxide semiconductor (CM〇s) a device that incorporates a first type of device 501 (such as a p-type field effect transistor with a first reflective first material (eg, epitaxial growth germanium) (PFE1^ and a second type device 5G2 (if with a second Reflective second material (such as single crystal ^' η type field effect transistor (NFET)) (806-808). Based on the integrated circuit design, the first device 501 and the second device will form various circuits. 502 is mapped to the wafer (91 〇). Then, based on the first and second devices Xie's @ mapping, the wafer is pre-determined Filling structure composition and distribution (ie, amount and position) in different regions and in different sub-regions of each region, so that the reflectivity on the entire wafer is nearly uniform (ie, 'to make reflectance and absorption The characteristics are balanced, such that the reflectance and absorption characteristics are nearly phased, etc. (10) by (6). Filling 33 - 200901323 The filling structure may comprise: a first filling structure 556 comprising a first material, a second filling structure 557 comprising a second material And/or one or more mixed filling structures 55〇 comprising two materials. Therefore, determining the filling structure composition and the distribution comprises: determining the distribution of the first filling structure (ie, Cao and position), and determining the second filling structure. The distribution (ie, amount and position), and the distribution (ie, amount and position) of the different mixed filling structures of the first predetermined material to the second material at different predetermined ratios (eg, see hybrid filling structure 551-553). More specifically, in order to achieve a nearly uniform reflectivity, it is predetermined that the configuration and distribution of the charging structure (including any mixed filling structure 5 5 相对) relative to the first second device 501, 502 Each region 510, 520 of the wafer (preferably each sub-region within each region (eg, sub-region 511_513 of region 510, sub-region 523 4 of region 52 ))) has nearly the same The total ratio and 妓 of different materials with different reflectivity. It is also said that the configuration and distribution of the pre-shirt filling structure 'cause each area 510, 520 (preferably each sub-area) in the first-loaded i5〇1 The first material surface area, the first material surface area of any first fill 3 556, and the sum of the surface area of any mixed fill structure 550 to the second material f area of the second device 5〇2, any second fill structure Between the second material surface area of 557, the sum of the surface areas of the second material of any mixed fill structure 55Q, there is approximately the same total ratio. -34- 200901323 she = with the specific embodiment described above, the same, , 'B ratio can be determined in advance and the total ratio can be determined, for example, by all the first devices on the wafer = 1, all on the wafer The ratio of the second device 502. Therefore, for the purpose of description, if the wafer design includes one hundred first devices and two hundred first devices, the predetermined ratio of the first material to the second material in each region 510, 520 should be approximately 1 : 3. However, due to the first device, the ratio of the second device and its position in any particular area of the wafer &quot; and / or in any particular sub-area will vary according to the design, the filling structure is to achieve uniformity The required distribution (ie, the amount and location of the filling structure including any such filling structure) will vary in the different = domain and in the non-sub-region, and will be mixed. The ratio of the first material to the second material may also vary, for example, 〇°° and 520, each describing the first material to the second material ', the 'f1/3 ratio (ie, the first device - 〇 〇 - material The surface knows the structure of the material - the surface area of the filling structure 556, and the:: 2: 13 structure 550, the sum of the surface area of the first material, the second surface area of the first material, any second filling structure 557 Ratio of the sum of the second areas in the product and any mixed fill structure 550 However, due to the region 51 〇 neutron circuit and region 52 〇 neutron region 521_522, it contains different numbers and / or configurations of the first and second, 502) 'including any mixed filling structure of the filling junction -35 - 200901323 The distribution of the structure and the ratio of the first material to the second material in any of the hybrid fill structures 550 will vary, for example, in less dense sub-regions (e.g., sub-region 513 and region 520 of region 510) In the sub-region 523) or in a sub-region (such as the sub-region 511 of the region 520) that has been presented with a predetermined ratio of the first material to the second material, the formation may include the same ratio as each region (eg, 1:3) a first mixed fill structure 551 of the first material to second material ratio and/or first and second fill structures 556, 557 in the same ratio. However, the ratio of the first device to the second device is greater or less than each In a sub-region of a predetermined ratio of regions, an additional hybrid fill structure (e.g., 552-553), a first fill structure 556, and/or a second fill structure 557 may be used. For example, in sub-region 512 of region 510, Proportion A hybrid fill structure 551 has a second mixed fill structure 552 of a second amount of material to balance a larger ratio of the first device to the second device. Alternatively, in the sub-regions 521-522 of region 520, a ratio can be utilized A third hybrid fill structure 553 having a second amount of material less than the first hybrid fill structure 551 to balance a smaller ratio of the first device to the second device. Once the mapping circuit and predetermined to include any hybrid fill structure 551- The position and amount of the 553 filling structure allows the first and second devices 501, 502 and the hybrid filling structures 551-553 (918) to be simultaneously formed on the wafer. As with the specific embodiments previously described, it can be used at -36- 200901323

極及沒極區威: [FET的習知處癦 5〇2。在混合結構55〇 的一部分。 結合圖6及7參考圖10Extreme and immersed area: [The familiar knowledge of FET 癦 5〇2. Part of the hybrid structure 55〇. Referring to FIG. 10 in conjunction with FIGS. 6 and 7

明確地說,參考圖7,例如可藉由在半導體其板 、上沈積介電層780及在介電層上沈積;^廣, 形成HOT晶圓。應選擇半導體層使得其具有不同於半 導體基板的晶向。將溝渠圖案化至半導體及 向下到達半導體基板,因此形成具有第一定向之^導 f材料的區段(如第一區段751)。然後,在基板上的溝 渠中磊晶生長相同的半導體材料,致使其具有與基板 相同的定向,因此形成具第二定向之半導體材料的額 外區段(如第二區段752)。第一區段75丨可例如包含對 PFET性能為最佳的11〇定向單晶矽,而第二區段752 可例如包含對NFET性能為最佳的1〇〇定向單晶矽。 由於形成第一及第二區段751、752所用的程序,這些 區段具有不同厚度。也就是說,具第一晶向之半導體 材料之第—區段751的第一厚度761將小於具第二晶 向之半導體材料之第二區段752的第二厚度762。因 •37- 200901323 7^52將具有不同的反射率及 第一反射性及第二s於 —反射 此’第一及第二區段751、752 4 吸收特性(即,分別為第一 性)(1001-1003)。 積體電路設計可包含多個電路(如靜態隨機 記憶體(SRAM)及邏輯電路)’且這些多個電路之每— 者可包含例如互補金氧半導體(CM〇s)裝置,其合=第 一類型裝置601 (如p型場效電晶體(PFET))及第二類= 裝置602(如η型場效電晶體(NFET))(904-906,見圖6) 基於積體電路設計及HOT晶圓的組態’映射第— 裝置601及第二裝置602至晶圓(丨008)。明確地說, 映射第一及第一裝置601、602 ’使得其分別將形成於 第一及第二區段751、752以確保最佳性能 (1009-1010)。例如,如果第一石夕區段是η。定向 及第一裝置601是pFET,則第一裝置601將形成於第 一區段751中,以確保最佳性能(1〇〇9)。同樣地,如 果第二矽區段752是100定向及第二裝置6〇2是 NFET,則第二裝置602將形成於第二區段乃2中,以 確保最佳性能(1010)。 然後’基於弟一及弟二裝置601 -602的映射,預 先決定在晶圓上不同的區域中以及在每一區域内不同 的子區域中之填充結構65〇(即第一及第二填充結構 -38- 200901323 65卜652)的分配(即,量及位置),使得整個晶圓上的 反射率幾近均勻(即,使得反射率及吸收特性維持平 衡、使得反射率及吸收特性幾近相等)(1012)。更明確 地說,當晶圓的每一區域610、620(最好是當每一區域 =任何之特定子區域(如區域610的子區域01K612、 區域620的子區域621-622等))之第一厚度及第—反射 性之半導體材料對第二厚度及第二反射性之半導體材 ζ) 料具有幾近相同的總比率及密度時,可達成幾近均勻 的反射率(1014)。也就是說,預先決定填充結構65ι 及652的分配,致使每一區域610、620(最好是每—子 區域)在第一裝置601及第一填充結構651中具第_厚 度761之半導體材料表面積總和對第二裝置602及第 二填充結構652中具第二厚度762之半導體材料表面 積總和之間具有幾近相同的總比率。可預先決定此相 同總比率’且此總比率可例如取決於晶圓上全部第_ 裝置601與晶圓上全部第二裝置602的比率。因此, (J 僅為描述目的,如果晶圓設計包括一百個第一裝置及 三百個第二裝置,則每一區域610、620的預定比率應 該幾近1:3。然而,由於第一裝置與第二裝置的比率及 其在晶圓上任何特定區域内及/或任何特定子區域内 的位置將根據設計而有所變化,第一及第二填充結構 651、652為達成均勻反射率所需的分配(即,量及位置) 也將有所變化。 -39- 200901323 一旦映射電路及預先決定填充結構650的位置及 量,即同時在晶圓上形成第一及第二裝置601、602及 第一及第二填充結構65卜652(1018)。例如,可使用用 以在相同HOT晶圓上形成具有第一定向(如110)矽的 第一區段之PFET及具有第二定向(如,100)矽的第二 區段之NFET的習知製程技術,形成第一及第二裝置 601、602。另外,隨著第一裝置601形成,可例如藉 ^ 由形成與第一裝置601相同方式建構且形成於晶圓上 之相同第一.區段中之虛設第一裝置(即,無作用裝置) 而形成第一填充結構651,使其包含具相同厚度之相 同定向的矽(1020)。同樣地,隨著第二裝置602形成, 可例如藉由形成與第二裝置602相同方式建構且形成 於晶圓上之相同第二區段中的虛設第二裝置(即,無作 用裝置)而形成第二填充結構652,使其包含具相同厚 度之相同定向的矽(1022)。 (j 圖11顯示範例設計流程00的方塊圖。設計流 程1100可根據所設計1C類型而有所變化。例如,建 造特定應用IC(ASIC)的設計流程1100與設計標準組 件的設計流程1100有所不同。設計結構1120較佳是 設計程序1110的輸入,其來自於IP提供者、核心研 發人員、或其他設計公司,或可由設計流程業者產生 或從其他來源產生。設計結構1120包含圖1-7中的電 路,其形式為示意圖或HDL、硬體描述語言(如, -40 - 200901323Specifically, referring to FIG. 7, a HOT wafer can be formed, for example, by depositing a dielectric layer 780 on a semiconductor substrate, and depositing a dielectric layer thereon. The semiconductor layer should be chosen such that it has a different crystal orientation than the semiconductor substrate. The trench is patterned to the semiconductor and down to the semiconductor substrate, thus forming a segment (e.g., first segment 751) having a first orientation of material. The same semiconductor material is then epitaxially grown in the trenches on the substrate such that it has the same orientation as the substrate, thus forming an additional segment of the second oriented semiconductor material (e.g., second segment 752). The first section 75A can, for example, comprise 11 〇 oriented single crystal germanium that is optimal for PFET performance, while the second section 752 can, for example, comprise 1 〇〇 oriented single crystal germanium that is optimal for NFET performance. These sections have different thicknesses due to the procedure used to form the first and second sections 751, 752. That is, the first thickness 761 of the first segment 751 of the semiconductor material having the first orientation will be less than the second thickness 762 of the second segment 752 of the semiconductor material having the second orientation. Since 37-200901323 7^52 will have different reflectivity and first reflectivity and the second s will reflect the absorption characteristics of the first and second sections 751, 752 4 (ie, first nature) (1001-1003). The integrated circuit design may include a plurality of circuits (such as static random access memory (SRAM) and logic circuits)' and each of the plurality of circuits may include, for example, a complementary metal oxide semiconductor (CM〇s) device, One type of device 601 (such as p-type field effect transistor (PFET)) and the second type = device 602 (such as n-type field effect transistor (NFET)) (904-906, see Figure 6) based on integrated circuit design and The configuration of the HOT wafer 'maps the first device 601 and the second device 602 to the wafer (丨008). In particular, the first and first devices 601, 602' are mapped such that they will be formed in the first and second segments 751, 752, respectively, to ensure optimal performance (1009-1010). For example, if the first Shishi section is η. The orientation and first device 601 is a pFET, and the first device 601 will be formed in the first segment 751 to ensure optimal performance (1 〇〇 9). Similarly, if the second turn section 752 is 100 oriented and the second device 6〇2 is an NFET, the second device 602 will be formed in the second section 2 to ensure optimal performance (1010). Then, based on the mapping of the first and second devices 601-602, the filling structure 65〇 (ie, the first and second filling structures) in different regions on the wafer and in different sub-regions in each region is predetermined. -38- 200901323 65 652) the distribution (ie, amount and position) such that the reflectivity across the wafer is nearly uniform (ie, the reflectivity and absorption characteristics are balanced, such that the reflectance and absorption characteristics are nearly equal) ) (1012). More specifically, each region 610, 620 of the wafer (preferably when each region = any particular sub-region (e.g., sub-region 01K612 of region 610, sub-regions 621-622 of region 620, etc.)) When the first thickness and the first reflective semiconductor material have nearly the same total ratio and density for the second thickness and the second reflective semiconductor material, a nearly uniform reflectance (1014) can be achieved. That is, the distribution of the filling structures 65ι and 652 is predetermined such that each of the regions 610, 620 (preferably each sub-region) has a semiconductor material having a thickness 761 in the first device 601 and the first filling structure 651. The sum of the surface areas has approximately the same total ratio between the sum of the surface areas of the semiconductor materials having the second thickness 762 of the second device 602 and the second filling structure 652. This same overall ratio can be predetermined&apos; and this total ratio can depend, for example, on the ratio of all of the first device 601 on the wafer to all of the second devices 602 on the wafer. Therefore, (J is for descriptive purposes only, if the wafer design includes one hundred first devices and three hundred second devices, the predetermined ratio of each region 610, 620 should be approximately 1:3. However, due to the first The ratio of the device to the second device and its location within any particular region of the wafer and/or any particular sub-region will vary depending on the design, and the first and second fill structures 651, 652 achieve uniform reflectance The required allocation (ie, quantity and position) will also vary. -39- 200901323 Once the mapping circuit and the position and amount of the filling structure 650 are predetermined, the first and second devices 601 are simultaneously formed on the wafer, 602 and first and second fill structures 65 652 (1018). For example, a PFET for forming a first segment having a first orientation (eg, 110) 在 on the same HOT wafer and having a second The prior art process of directing (e.g., 100) the second section of the NFET forms the first and second devices 601, 602. Additionally, as the first device 601 is formed, it may be formed and The device 601 is constructed in the same manner and formed on the wafer. The dummy first device (i.e., the inactive device) in the segment forms the first filling structure 651 to include the same orientation of the crucible (1020) having the same thickness. Similarly, as the second device 602 is formed, The second filling structure 652 can be formed, for example, by forming a dummy second device (ie, an inactive device) that is constructed in the same manner as the second device 602 and formed in the same second segment on the wafer. The same orientation of 矽 (1022) of the same thickness. (j Figure 11 shows a block diagram of an example design flow 00. The design flow 1100 can vary depending on the type of 1C being designed. For example, the design flow for building an application specific IC (ASIC) The 1100 differs from the design flow 1100 of the design standard component. The design structure 1120 is preferably an input to the design program 1110 from an IP provider, a core developer, or other design company, or may be generated by a design process operator or from another Source generation. Design structure 1120 includes the circuits of Figures 1-7 in the form of schematics or HDL, hardware description languages (eg, -40 - 200901323)

Verilog、VHDl、c 多個機器可讀取媒體中。纟可包含在-或 圖W之電路的文字料計結構咖可以是 佳是將圖U7中 ,形表不。設計輕序1110較 _,其中線路連接L =或?譯)為線路連接表 輯閘、控制電路、線路、電晶體、邏 體電路設計中其他 連接表’其描述對積 Γ: 一個機器可讀取媒體中=之連接,並記錄於至少 路的設計規格二二為接反,序,其中根據電 或多次。 、、路連接表1180可重新合成一 頂目^程序1110包括使用各種輸入,例如來自以下 項目的輸入:程式座开放^ r 件30,其容納一組常用元件、 衣置,包括特定製造技術(如 ’不同技術節點: nm 5_、90nm等)的模型、佈局及符號表示;設 計規格特徵資料1150;確認資料1160;設計規 貝J im’及測試貧料檔案ιΐ85(包括測試模式及其他 =試資訊)。設計程序111G進-步包括例如標準電路 5又计程序,諸如時序分析、確認、設計規則檢查、設 置興佈線作業等。在不背離本發㈣鱗及精神下, 積體電路設制—般技術者卿白可行的電子設計自 動化工具及設計程序lnG所用應用程式的範圍。本發 明的設計結構並不限於任何蚊的設計流程。 41 200901323 设§十程序111 〇較佳县 實施例連同任何額外積體 譯為第二輯邱⑽。科划nrtn 積體電路之佈局資料“ ^ 0以用於父換 難、或任=====⑴、 存的㈣的資料格式駐存二=合=Verilog, VHDl, c Multiple machines can read in the media.纟 can be included in the - or Figure W circuit of the text meter structure coffee can be better than the figure U7, the shape table does not. Design light sequence 1110 compared to _, where the line connection L = or? For the line connection table, the control circuit, the circuit, the transistor, the other connection table in the logic circuit design's description of the accumulation: a machine readable medium = connection, and recorded in at least the road design Specification 22 is reversed, preface, which is based on electricity or multiple times. The road connection table 1180 can be recombined into a top program. The program 1110 includes the use of various inputs, such as input from the following items: a program block opener, which houses a set of common components, clothing, including specific manufacturing techniques ( Models, layouts, and symbolic representations such as 'different technology nodes: nm 5_, 90 nm, etc.; design specification data 1150; confirmation data 1160; design specifications Jim's and test poor materials file ιΐ85 (including test mode and other = test News). The design program 111G further includes, for example, a standard circuit 5 program, such as timing analysis, confirmation, design rule check, setting wiring work, and the like. Without departing from the scope and spirit of this (4) scale, the integrated circuit is designed to be a range of applications for the electronic design automation tools and design programs lnG. The design structure of the present invention is not limited to any mosquito design flow. 41 200901323 § § Ten Procedures 111 〇 Better County The example, together with any additional integrators, is translated into the second series of Qiu (10). The layout data of the nrtn integrated circuit is "^ 0 for the father to change, or for the =====(1), the stored (four) data format to reside in the second = combined =

Ο ==r測試資_、設計= 狀、在制、—ί多數、線路、金屬層級、介層孔、形 發明ίΓΓΓ線的資料、及半導體廠商為生產本 二士椹;m所:具體實施例所需的任何其他資料。設 構1&quot;19〇 :、隹接著進行至階段1195,其中(例如)設計結 ♦ •進行至試產(tape-out)、發表以進行製造、送 至光罩廢送至另一設計廠、送回客戶等。 上述為半導體結構具體實施例及形成該結 冓=相關方法,其使用具變動組態的虛設填充結構, Μ提供整個晶圓±的均勻反射率,以確保整個晶圓上 在决速退火期間的均勻溫度變化。一項具體實施例藉 以&quot;I方式達成均勻反射率:在整個晶圓上分配包含 不,半導體材料的填充結構’致使在每一區域内且最 t疋ΐ晶圓每—子區域内,在不同的半導體材料之間 、、成成近相同的總比率及密度。另一具體實施例藉由 二了方式達成均勻反射率 :在整個晶圓上分配包括一 5、多個含有變動比例的不同半導體材料之混合填充結 -42- 200901323 構的填充結構,致使在每一區域内且最好是在晶圓每 一子區域内,在不同的半導體材料之間達成幾近相同 的總比率及氆度。又另一具體實施例藉由以下方式達 成均勻反射率.在整個晶圓上分配包含不同厚度之半 導體材料的填充結構,致使在每一區域内且最好是在 晶圓每一子區域内,在具不同厚度的半導體材料之間 達成幾近相同的總比率及密度。Ο ==r test _, design = shape, in-process, - ί majority, line, metal level, via hole, shape invented ΓΓΓ line information, and semiconductor manufacturers for the production of two 椹 椹; m: implementation Any other information required for the example. Arranging 1&quot;19〇:, then proceeding to stage 1195, where (for example) designing the knot ♦ • proceeding to tape-out, publishing for manufacturing, sending to the mask for scrapping to another design factory, Return to the customer, etc. The above is a semiconductor structure embodiment and the formation of the junction = correlation method using a dummy fill structure with a variable configuration to provide a uniform reflectance of the entire wafer ± to ensure that the entire wafer is in a deceleration annealing period. Uniform temperature change. A specific embodiment achieves a uniform reflectivity by &quot;I: distributing the filling structure of the semiconductor material over the entire wafer, so that in each region and in the most sub-region of the wafer, The same total ratio and density are formed between different semiconductor materials. Another embodiment achieves a uniform reflectance by disposing a filling structure comprising a plurality of mixed filler junctions of different semiconductor materials containing varying proportions of -43-200901323 over the entire wafer, resulting in Within a region and preferably within each sub-region of the wafer, nearly identical total ratios and twists are achieved between different semiconductor materials. Yet another embodiment achieves uniform reflectivity by distributing a fill structure comprising semiconductor materials of different thicknesses throughout the wafer such that in each region, and preferably within each sub-region of the wafer, Nearly the same total ratio and density are achieved between semiconductor materials having different thicknesses.

應注意,上述具體實施例的發明人已發明以下關 於晶圓在快速退火期間之反射率及吸收特性的其他額 外發明,其每一者與本案同時申請且完全併入本文作 為參考:(1)共同申請的美國專利申請案序號: 11/678783 ’標題「快速退火期間的局部溫度控制 (Localized Temperature Control During Rapid Thermal Anneal)」,代理人檔案號碼:BUR 920060028US1 ; (2) 共同申請的美國專利申請案序號:11/678756,標題「-為 快速退火均勻度使反射率及吸收特性維持平衡的半導 體晶圓結構(Semiconductor Wafer Structure With Balanced Reflectance And Absorption Characteristics For Rapid Thermal Anneal Uniformity)」,代理人樓案號 碼:BUR 920060024US1 ;及(3)共同申請的美國專利 申請案序號:11/678799,標題「快速退火期間的局部 溫度控制(Localized Temperature Control During Rapid Thermal Anneal)」,代理人樓案號碼:BUR -43 · 200901323 920060130US1 ° 上述特定具體實施例的說明完全揭露本發明的一 般特性,因而藉由應用目前的知識,在不背離一般概 念下,即可將此種特定具體實施例修改及/或調適用於 各種應用,因此,應在所揭露具體實施例之均等物的 意義與範圍内理解此類調適與修改。應明白,此處所 ρ 用措辭或用語係用於說明而非限制。因此,熟習本技 術者應明白,.可在隨附申請專利範圍的精神及範轉 内,在修改的情形下實行本發明的具體實施例。 【圖式簡單說明】 從以下參考圖式的詳細說明,即可更加瞭解本發 明的各項具體實施例,其中: 圖1為描述不範性晶圓的不意圖, 圖2為描述不範性積體電路的不意圖, U 圖3為描述在晶圓結構中併入填充結構的示意 圖; 圖4為描述本發明結構具體實施例的示意圖; 圖5為描述本發明另一結構具體實施例的示意 圖; 圖6為描述本發明又另一結構具體實施例的示意 圖; 圖7為描述示範性混合定向(HOT)晶圓的示意圖; -44- 200901323 圖8為描述本發明方法具體實施例的流程圖; 圖9為描述本發明另一方法具體實施例的流程 圖; 圖10為描述本發明又另一方法具體實施例的流 程圖;及 圖11為半導體設計、製造、及/或測試中所用設 計程序的流程圖。 .. 【主要元件符號說明】 100 晶圓 110 區域 150 刻劃線 201 第一裝置 202 第二裝置 210 區域 211 '-212 子區域 300 虛設填充結構 301 第一裝置 302 第二裝置 401 第一裝置 402 第二裝置 410 、 420 區域 411 、 412 、 421 、 422 子區域 450 填充結構 -45 - 200901323It should be noted that the inventors of the above-described embodiments have invented the following additional inventions relating to the reflectance and absorption characteristics of wafers during rapid annealing, each of which is hereby incorporated by reference in its entirety herein in its entirety herein in U.S. Patent Application Serial No.: 11/678,783, entitled "Localized Temperature Control During Rapid Thermal Anneal", Agent File Number: BUR 920060028US1; (2) Commonly Applied US Patent Application Case No.: 11/678756, entitled "Semiconductor Wafer Structure With Balanced Reflectance And Absorption Characteristics For Rapid Thermal Anneal Uniformity", Agent Building Case No.: BUR 920060024US1; and (3) U.S. Patent Application Serial No. 11/678,799, entitled "Localized Temperature Control During Rapid Thermal Anneal", Agent Building Number: BUR - 43 · 200901323 92006 0130 US1 ° The description of the specific embodiments above fully discloses the general characteristics of the present invention, and thus, by applying the present knowledge, such specific embodiments can be modified and/or adapted to various applications without departing from the general concept. Therefore, such adaptations and modifications should be understood within the meaning and scope of the equivalents of the specific embodiments disclosed. It should be understood that the phrase or phrase used herein is for the purpose of description and not limitation. Therefore, it is to be understood by those skilled in the art that the specific embodiments of the invention may be practiced. BRIEF DESCRIPTION OF THE DRAWINGS The specific embodiments of the present invention will be more fully understood from the following detailed description of the drawings, wherein: FIG. 1 is not intended to describe an exemplary wafer, and FIG. FIG. 4 is a schematic diagram for describing a specific embodiment of the structure of the present invention; FIG. 5 is a schematic diagram for describing another embodiment of the present invention. FIG. Figure 6 is a schematic diagram showing still another structural embodiment of the present invention; Figure 7 is a schematic diagram depicting an exemplary hybrid orientation (HOT) wafer; -44- 200901323 Figure 8 is a flow chart describing a specific embodiment of the method of the present invention Figure 9 is a flow chart depicting another embodiment of the method of the present invention; Figure 10 is a flow chart depicting another embodiment of the method of the present invention; and Figure 11 is used in semiconductor design, fabrication, and/or testing Flow chart of the design program. .. [Major component symbol description] 100 wafer 110 region 150 scribe line 201 first device 202 second device 210 region 211 '-212 sub-region 300 dummy fill structure 301 first device 302 second device 401 first device 402 Second device 410, 420 area 411, 412, 421, 422 sub-area 450 filling structure -45 - 200901323

ϋ 451 第一填充結構 452 第二填充結構 501 第一裝置 502 第二裝置 510、 520 區域 511、 512、513、521、522、523 子區域 550 ' 551 ' 552 ' 553 混合填充結構 556 第一虛設裝置 557 第二虛設裝置 601 第一裝置 602 第二裝置 610、 620 區域 611、 612、621、622 子區域 650、 651 、 652 填充結構 700 半導體基板 751 第一區段 752 第二區段 761 第一厚度 762 第二厚度 780 介電層 790 隔離結構 1100 設計流程 1110 設計程序 1120 設計結構 -46- 200901323 1130 程式庫元 1140 設計規格 1150 特徵資料 1160 確認貧料 1170 設計規則 1180 線路連接表 1185 測試貢料檐案 1190 設計結構 1195 階段451 451 first filling structure 452 second filling structure 501 first device 502 second device 510, 520 region 511, 512, 513, 521, 522, 523 sub-region 550 ' 551 ' 552 ' 553 hybrid filling structure 556 first dummy Device 557 second dummy device 601 first device 602 second device 610, 620 region 611, 612, 621, 622 sub-region 650, 651, 652 filling structure 700 semiconductor substrate 751 first segment 752 second segment 761 first Thickness 762 Second Thickness 780 Dielectric Layer 790 Isolation Structure 1100 Design Flow 1110 Design Procedure 1120 Design Structure -46- 200901323 1130 Library Element 1140 Design Specification 1150 Characteristic Data 1160 Confirming Poor Material 1170 Design Rule 1180 Line Connection Table 1185 Test Dividend Case 1190 Design Structure 1195 Stage

C -47-C -47-

Claims (1)

200901323 申請專利範圍: 1. -種半導體結構,其包含: 曰曰 且圓 複數個第一裝置在該晶圓上,其中該第—裝置 包含具有一第一反射性之一第一材料; 複數個弟二裝置在該晶圓上,其中該第二麥置 包含具有一第二反射性之一第二材料,且其中該第 一反射性不同於該第二反射性;以及 。複數個第一填充結構及第二填充結構在該晶 ,上,其中該第一填充結構包含該第一材料,且該 苐一填充結構包含該二材料; 其中該第-填充結構及該第二填充結構在整 個該晶圓上相對於該第一裝置及該第二裝置的分 配係致使在整個該晶gj上的反射率幾近均勾。 2. =項】所述之半導體結構,其中 =:二其中該第-填充結構及該第二填充 上對於〜-裝置及該第二裝置在該區域一 的該分配係致使該區域中每-區域具有幾近 相Η之该弟—材料對該第二材料的比率。 3·如請求項2所述之半導體 區域具有不同之該第—裝置對該中第亥一曰曰壯固之^ 率,且因而具有不同之該第—填充結淑^ = -48- 200901323 充結構的分配 口=項3所述之半導體結構,其中該區域之至少 區域=的不同子區域具有不同之該第—裝置對 且因而具有不同之該第-填充 …構及该弟二填充結構的分配。 5·,請求項1職之半導體結構 含石夕錯,且其中該第二材料包含石//弟材科包 6. 種半導體結構,其包含 晶圓 包含m弟—裝置在該晶圓上,其中該第-裝置 3具有—弟—反射性之一第一材料; I數個第u在該晶圓上,其 ”具有-第二反射性之一第二材料,且其 反射性不同於該第二反射性; j复數個填充結構,包含至少一個混合填充結 及該YiH.—個混合填充結構包含該第—材料 一壯其中該填充結構在整個該晶圓上相對於該第 的分配係致使在整個該:圓 -49- 200901323 7. 項之半導體結構,其中該晶圓包含多 Γ且 蚊該填充結構相對於該第- 裒置及该第一裝置在該區域中每一區八 配,致使該區域巾每—區域具 材料對該第二材料的比率。 』之°亥弟 體結構,其中該晶圓之不同 ί域具有不同之該第-裝置對該第二裝置的t 率,且因而具有該魏結構的不同分配。 9.如請求項8所述之半導體結構,並中 一區域内的不同子區域具有不同之‘第 =:衣置的比率,且因而具有該填充結構的不同 10·如請求項6所述之半導體結構, 結構包m材料該: 定比率。 χ乐一材#之一預 η·如請求項1G所述之半導體 =;r含多個混合填充結構= 材枓對该第二材料的預定比率。 匕“亥弟 12·如請求項11所述之半導 M、,、口構,其中該混合填充 -50- 200901323 結構之該第一材料對該第二材料的該預定比率有 所不同。 13. 如請求項6所述之半導體結構,其中該第一材料包 含矽鍺,且其中該第二材料包含矽。 14. 一種半導體結構,其包含: 一晶圓, 複數個第一裝置在該晶圓上,其中該第一裝置 包含具有一第一厚度的一半導體材料; 複數個第二裝置在該晶圓上,其中該第二裝置 包含具有一第二厚度的一第二材料,且其中該第一 厚度不同於該第二厚度;及 複數個第一填充結構及第二填充結構在該晶 圓上,其中該第一填充結構包含具該第一厚度的該 半導體材料,且第二填充結構包含具該第二厚度的 該半導體材料; 其中該第一填充結構及該第二填充結構在整 個該晶圓上相對於該第一裝置及該第二裝置的分 配係致使在整個該晶圓上的反射率幾近均勻。 15. 如請求項14所述之半導體結構,其中該晶圓包含 一混合定向晶圓,其包含:具有該第一厚度及一第 一定向之該半導體材料的第一區段,及相鄰該第一 -51 - 200901323 區段及具有該第二厚度及—第二定向之該 才料的第二區段,及其中該第—裝置及該第一填充 結構在該第—區段中,及 ’、 結構在該第及&amp;二裝置及該第二填充 16.:=:述之半導體結構,其中該半導體材 多個區域,且:J V : : J椹其十該晶圓包含 構在,二―真充結構及該第二填充結 一 μ區域之母一區域中相對於該第一裝置 該分ί係致使該區域之每-區域具有 第二,目二之具5亥弟一厚度之該半導體材料對具該 弟一届度之該半導體材料的比率。 队如請求項π所述之半導體結構,其 之該第-裝置對該第 料—魅結淑科二填充結構 19·,請求項18所述之半導體結構,其中該區域之至 二的不同子區域具有不同之第—裝 的比率,且因而具有該第—填充結構及該 第一填充結構的不同分配。 -52- 200901323 20. 如請求項14所述之半導體結構,其中該第一定向 包含一 110定向且該第一裝置包含p型場效電晶 體,以及其中該第二定向包含一 100定向且該第二 裝置包含η型場效電晶體。 21. —種形成一半導體結構之方法,其包含: 在一晶圓上形成包含具一第一反射性之一第 一材料的第一裝置及包含具一第二反射性之一第 二材料的第二裝置;及 在該晶圓上形成複數個包含該第一材料及該 第二材料的填充結構,其_該形成包含在整個該晶 圓上相對於該第一裝置及該第二裝置分配該填充 結構,致使在整個該晶圓上的反射率幾近均勻。 22. 如請求項21所述之方法,進一步包含在該第一裝 置、該第二裝置、及該填充結構的該形成之前,基 於一設計映射該第一裝置及該第二裝置之每一者 至該晶圓。 23. 如請求項22所述之方法,其中該複數個填充結構 的該形成包含:形成包含該第一材料的第一填充結 構及包含該第二材料的第二填充結構。 -53 - 200901323 24. 如請求項23所述之方法,進一步包含基於該映射 決定該第一填充結構及該第二填充結構的量及位 置,使得該晶圓之每一區域具有幾近相同之該第一 材料對該第二材料的比率。 25. 如請求項24所述之方法,其中該第一填充結構的 該形成包含在該第一裝置的該形成期間,形成無作 用第一裝置,及其中該第二填充結構的該形成包含 在該第二裝置的該形成期間,形成無作用第二裝 置。 26. 如請求項23所述之方法,其中該第一材料包含磊 晶生長的矽鍺,且其中該第二材料包含單晶矽。 27. 如請求項21所述之方法,其中該複數個填充結構 的該形成包含形成至少一個包含該第一材料及該 第二材料之混合填充結構。 28. 如請求項27所述之方法,進一步包含基於該映 射,針對該至少一個混合填充結構決定一位置及一 第一材料對第二材料比率。 29. 如請求項27所述之方法,其中該複數個填充結構 的該形成包含形成具有不同之預定的第一材料對 -54- 200901323 第二材料比率之多個混合填充結構,且其中該多個 混合填充結構之該不同之預定的第一材料對第二 材料比率確保該晶圓之每一區域具有幾近相同之 該第一材料對該第二材料的比率。 30. —種形成一半導體結構之方法,該方法包含: 在一晶圓上形成包含具一第一厚度之一半導 體材料的第一裝置及包含具第二厚度之該半導體 材料的第二裝置;及 - 在該晶圓上形成包含具該第一厚度之該半導 體材料的第一填充結構以及包含具該第二厚度之 該半導體材料的第二填充結構,其中該第一填充結 構及該第二填充結構的該形成包含在整個該晶圓 上相對於該第一裝置及該第二裝置分配該第一填 充結構及該第二填充結構,致使在整個該晶圓上的 反射率幾近均勻。· 31. 如請求項30所述之方法,其中該晶圓的該提供包 含提供一混合定向晶圓,該混合定向晶圓包含具有 該第一厚度及一第一定向的第一矽區段及具有該 第二厚度及一第二定向的第二矽區段。 32. 如請求項31所述之方法,其中該第一裝置的該形 成及該第一填充結構的該形成包含在該第一矽區 -55- 200901323 段中同時形成該第一裝置及該第一填充結構,及其 中該第二裝置的該形成及該第二填充結構的該形 成包含在該第二矽區段中同時形成該第二裝置及 該第二填充結構。 f 33. 如請求項30所述之方法,其中該第一填充結構的 該形成進一步包含形成無作用第一裝置,及其中該 第二填充結構的該形成包含形成無作用第二裝置。 34. 如請求項30所述之方法,在該裝置及該填充結構 的該形成之前,進一步包含: 基於一設計而映射該第一裝置及該第二裝置 的每一者至該晶圓;以及 Ο 基於該映射,決定該第一填充結構及該第二填 充結構的量及位置,使得該晶圓之每一區域具有幾 近相同之具該第一厚度之該半導體材料對具該第 二厚度之該半導體材料的比率。 35. —種具體化於用於一設計程序之一機器可讀取媒 體的設計結構’該設計結構包含如請求項1 -2中任 一項之半導體結構。 3 6 ·如請求項3 5所述之設計結構’其中該設計結構包 含描述一電路之一線路連接表。 -56- 200901323 37.如請求項35所述之設計結構,其中該設計結構駐 存於一儲存媒體,作為用於積體電路之佈局資料之 交換的一資料格式。 3 8.如請求項3 5所述之設計結構’其中該設計結構包 括測試貧料標案、特徵育料、確認貢料、及設計規 格中至少一項。 39. —種具體化於用於一設計程序之一機器可讀取媒 體的設計結構,該設計結構包含如請求項6-10中 任一項之半導體結構。 40. 如請求項39所述之設計結構’其中該設計結構包 含描述一電路的一線路連接表。 41. 如請求項3 9所述之設計結構’其中該設計結構駐 存於一儲存媒體,作為用於積體電路之佈局資料之 交換的資料格式。 42. 如請求項39所述之設計結構5其中該設計結構包 括測試資料檔案、特徵資料、確認資料、及設計規 格中至少一項。 -57- 200901323 43. —種具體化於用於一設計程序之一機器可讀取媒 體的設計結構,該設計結構包含如請求項14-17中 任一項之半導體結構。 44. 如請求項43所述之設計結構’其中該設計結構包 含描述一電路的一線路連接表。 45. 如請求項43所述之設計結構,其中該設計結構駐 存於一儲存媒體,作為用於積體電路之佈局資料之 交換的資料格式。 46. 如請求項43所述之設計結構’其中該設計結構包 括測試資料檔案、特徵資料、確認資料、及設計規 格中至少一項。200901323 Patent Application Range: 1. A semiconductor structure comprising: 圆 and a plurality of first devices on the wafer, wherein the first device comprises a first material having a first reflectivity; The second device is mounted on the wafer, wherein the second wafer comprises a second material having a second reflectivity, and wherein the first reflectivity is different from the second reflectivity; a plurality of first filling structures and a second filling structure on the crystal, wherein the first filling structure comprises the first material, and the first filling structure comprises the two materials; wherein the first filling structure and the second The distribution of the filling structure over the wafer relative to the first device and the second device causes the reflectivity across the crystal gj to be nearly uniform. 2. = item] the semiconductor structure described, wherein =: two of the first-filled structure and the second fill for the ~-device and the second device in the region of the distribution system cause each of the regions - The area has a nearly opposite ratio of the ratio of the material to the second material. 3. The semiconductor region according to claim 2 has a different ratio of the first device to the middle of the device, and thus has a different first-filled junction ^ = -48- 200901323 charge The semiconductor structure of item 3, wherein the at least region=the different sub-regions of the region have different first-device pairs and thus have different first-filled structures and the second-filled structure distribution. 5. The semiconductor structure of the request item 1 contains a stone fault, and wherein the second material comprises a stone semiconductor structure, which comprises a wafer containing a device, on the wafer, Wherein the first device 3 has one of the first materials of the discriminating property; a plurality of the second materials are on the wafer, and the second material of the second reflective material is different from the first material. a second plurality of filling structures, comprising at least one mixed filling junction and the YiH. The hybrid filling structure comprises the first material, wherein the filling structure is on the entire wafer relative to the first distribution system The semiconductor structure of the above-mentioned: -49-200901323, wherein the wafer comprises a plurality of rafts and the filling structure of the mosquito relative to the first 裒 and the first device is occluded in each of the regions in the region , the ratio of the material to the second material in each region of the region. The structure of the wafer, wherein the different regions of the wafer have different t-rates of the second device to the second device, And thus have different assignments of the Wei structure. 9. The semiconductor structure of claim 8, wherein the different sub-regions in one of the regions have different ratios of: = clothing, and thus have different filling structures. 10 as recited in claim 6. Semiconductor structure, structure package m material: fixed ratio. χ乐一材# one pre-n· semiconductor as claimed in claim 1G; r contains multiple mixed filling structures = predetermined ratio of material 枓 to the second material亥"Hai 12" The semiconducting M, as described in claim 11, wherein the first material of the hybrid filling -50-200901323 structure differs in the predetermined ratio of the second material. 13. The semiconductor structure of claim 6, wherein the first material comprises germanium, and wherein the second material comprises germanium. 14. A semiconductor structure, comprising: a wafer, a plurality of first devices on the wafer, wherein the first device comprises a semiconductor material having a first thickness; and a plurality of second devices are on the wafer The second device includes a second material having a second thickness, and wherein the first thickness is different from the second thickness; and the plurality of first filling structures and the second filling structure are on the wafer, wherein The first filling structure includes the semiconductor material having the first thickness, and the second filling structure comprises the semiconductor material having the second thickness; wherein the first filling structure and the second filling structure are on the entire wafer The distribution relative to the first device and the second device causes the reflectivity across the wafer to be nearly uniform. 15. The semiconductor structure of claim 14, wherein the wafer comprises a hybrid directional wafer comprising: a first segment of the semiconductor material having the first thickness and a first orientation, and adjacent The first -51 - 200901323 section and the second section having the second thickness and the second orientation of the material, and wherein the first device and the first filling structure are in the first section, And a structure in the first &amp; second device and the second padding 16.:=: the semiconductor structure, wherein the semiconductor material has a plurality of regions, and: JV: : J椹 ten of the wafer comprises a structure The second true charging structure and the second filling junction of the parent region of the μ region are opposite to the first device, so that each region of the region has a second, and the second has a thickness of 5 The ratio of the semiconductor material to the semiconductor material of the younger generation. The semiconductor structure of claim π, the first device of the first device, the semiconductor structure described in claim 18, wherein the region is different from the second The regions have different ratios of the first mounts and thus have different assignments of the first fill structure and the first fill structure. The semiconductor structure of claim 14, wherein the first orientation comprises a 110 orientation and the first device comprises a p-type field effect transistor, and wherein the second orientation comprises a 100 orientation and The second device comprises an n-type field effect transistor. 21. A method of forming a semiconductor structure, comprising: forming a first device comprising a first material having a first reflectivity and a second material comprising a second reflective material on a wafer a second device; and forming, on the wafer, a plurality of filling structures including the first material and the second material, the forming being included on the entire wafer relative to the first device and the second device The fill structure results in a nearly uniform reflectivity across the wafer. 22. The method of claim 21, further comprising mapping each of the first device and the second device based on a design prior to the forming of the first device, the second device, and the fill structure. To the wafer. 23. The method of claim 22, wherein the forming of the plurality of fill structures comprises: forming a first fill structure comprising the first material and a second fill structure comprising the second material. The method of claim 23, further comprising determining the amount and location of the first filling structure and the second filling structure based on the mapping such that each region of the wafer has approximately the same The ratio of the first material to the second material. 25. The method of claim 24, wherein the forming of the first filling structure comprises forming an inactive first device during the forming of the first device, and wherein the forming of the second filling structure is included During this formation of the second device, an inactive second device is formed. 26. The method of claim 23, wherein the first material comprises epitaxially grown germanium, and wherein the second material comprises single crystal germanium. 27. The method of claim 21, wherein the forming of the plurality of filling structures comprises forming at least one hybrid filling structure comprising the first material and the second material. 28. The method of claim 27, further comprising determining a location and a first material to second material ratio for the at least one hybrid fill structure based on the mapping. 29. The method of claim 27, wherein the forming of the plurality of fill structures comprises forming a plurality of hybrid fill structures having different predetermined first material pairs -54 - 200901323 second material ratio, and wherein the plurality The different predetermined first material to second material ratio of the hybrid fill structures ensures that each region of the wafer has approximately the same ratio of the first material to the second material. 30. A method of forming a semiconductor structure, the method comprising: forming a first device comprising a semiconductor material having a first thickness and a second device comprising the semiconductor material having a second thickness on a wafer; And forming a first filling structure comprising the semiconductor material having the first thickness and a second filling structure comprising the semiconductor material having the second thickness on the wafer, wherein the first filling structure and the second The forming of the fill structure includes dispensing the first fill structure and the second fill structure over the entire wafer relative to the first device and the second device such that the reflectivity across the wafer is nearly uniform. The method of claim 30, wherein the providing of the wafer comprises providing a hybrid directional wafer comprising a first germanium segment having the first thickness and a first orientation And a second meandering section having the second thickness and a second orientation. 32. The method of claim 31, wherein the forming of the first device and the forming of the first filling structure comprise simultaneously forming the first device and the first portion in the first region -55-200901323 A fill structure, and the formation of the second device and the formation of the second fill structure comprise simultaneously forming the second device and the second fill structure in the second turn region. The method of claim 30, wherein the forming of the first filling structure further comprises forming an inactive first device, and wherein the forming of the second filling structure comprises forming an inactive second device. 34. The method of claim 30, before the forming of the device and the filling structure, further comprising: mapping each of the first device and the second device to the wafer based on a design; Determining, according to the mapping, the amount and position of the first filling structure and the second filling structure, such that each region of the wafer has nearly the same thickness of the semiconductor material having the first thickness The ratio of the semiconductor material. 35. A design structure embodied in a machine readable medium for use in a design program. The design structure comprises the semiconductor structure of any one of claims 1 to 2. 3 6 - The design structure as claimed in claim 3' wherein the design structure includes a line connection table describing one of the circuits. The design of claim 35, wherein the design structure resides in a storage medium as a data format for the exchange of layout data for the integrated circuit. 3 8. The design structure of claim 3, wherein the design structure comprises at least one of a test poor condition, a characteristic feed, a confirmation tribute, and a design specification. 39. A design structure embodied in a machine readable medium for use in a design program, the design structure comprising the semiconductor structure of any one of claims 6-10. 40. The design structure of claim 39 wherein the design structure includes a line connection table describing a circuit. 41. The design structure of claim 39 wherein the design structure resides in a storage medium as a data format for the exchange of layout data for the integrated circuit. 42. The design structure 5 of claim 39, wherein the design structure comprises at least one of a test data file, a feature data, a confirmation data, and a design specification. - 57- 200901323 43. A design structure embodied in a machine readable medium for use in a design program, the design structure comprising the semiconductor structure of any one of claims 14-17. 44. The design structure of claim 43 wherein the design structure includes a line connection table describing a circuit. 45. The design structure of claim 43, wherein the design structure resides in a storage medium as a data format for the exchange of layout data for the integrated circuit. 46. The design structure of claim 43 wherein the design structure comprises at least one of a test data file, a feature data, a confirmation material, and a design specification. -58--58-
TW97105500A 2007-02-26 2008-02-15 Structure and method for device-specific fill for improved anneal uniformity TW200901323A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/678,745 US7692275B2 (en) 2007-02-26 2007-02-26 Structure and method for device-specific fill for improved anneal uniformity
US11/869,768 US20090096066A1 (en) 2007-10-10 2007-10-10 Structure and Method for Device-Specific Fill for Improved Anneal Uniformity

Publications (1)

Publication Number Publication Date
TW200901323A true TW200901323A (en) 2009-01-01

Family

ID=39787204

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97105500A TW200901323A (en) 2007-02-26 2008-02-15 Structure and method for device-specific fill for improved anneal uniformity

Country Status (2)

Country Link
JP (1) JP5314902B2 (en)
TW (1) TW200901323A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110102293A (en) * 2008-11-28 2011-09-16 스미또모 가가꾸 가부시키가이샤 Method for producing semiconductor substrate, semiconductor substrate, method for manufacturing electronic device, and reaction apparatus
JP5439491B2 (en) 2009-09-18 2014-03-12 株式会社東芝 Manufacturing method of semiconductor device
JP5551409B2 (en) 2009-10-23 2014-07-16 ルネサスエレクトロニクス株式会社 Semiconductor device design method, design apparatus, design program, and semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082012A1 (en) * 2003-03-13 2004-09-23 Fujitsu Limited Semiconductor device with dummy patterns
JP2005136382A (en) * 2003-10-09 2005-05-26 Toshiba Corp Method of manufacturing semiconductor device
JP4874830B2 (en) * 2007-02-06 2012-02-15 株式会社東芝 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2008211214A (en) 2008-09-11
JP5314902B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
CN100583438C (en) Structure and method for device-specific fill for improved anneal uniformity
CN104838499B (en) graphene field effect transistor
CN102640274B (en) Electronic installation and system and for the manufacture of with the method that uses this electronic installation and system
CN106206567B (en) The method of semiconductor device layout, memory device layout and manufacturing semiconductor devices
Noel et al. Multi-$ V_ {T} $ UTBB FDSOI device architectures for low-power CMOS circuit
TWI654737B (en) System comprising a semiconductor device and structure
CN109791943A (en) Quantum dot device with single-electronic transistor detector
TWI555135B (en) Method of fabricating isolated capacitors
TW201017820A (en) 3D integrated circuit device fabrication with precisely controllable substrate removal
CN103890905A (en) FinFET structures and methods to adjust threshold voltage in a FinFET structure
TW201142989A (en) Read transistor for single poly non-volatile memory using body contacted SOI device
TW200901323A (en) Structure and method for device-specific fill for improved anneal uniformity
US8236637B2 (en) Planar silicide semiconductor structure
Stiffler et al. Process technology for IBM 14-nm processor designs featuring silicon-on-insulator FinFETs
Li et al. Skybridge-3D-CMOS: A fine-grained 3D CMOS integrated circuit technology
CN106463368A (en) Tungsten alloys in semiconductor devices
JP2011529632A (en) Semiconductor-on-insulator substrate coated with intrinsic and doped diamond layers
Dabrowski et al. Predictive simulation of semiconductor processing: status and challenges
US9548270B2 (en) Electrical fuse with metal line migration
JP2012523691A (en) Integrated circuit device having stress reduction layer
US20090096066A1 (en) Structure and Method for Device-Specific Fill for Improved Anneal Uniformity
Kaushal et al. Novel Design Methodology Using $ L_ {\bf EXT} $ Sizing in Nanowire CMOS Logic
Or-Bach Monolithic 3D Integration—An Update
Plummer et al. Integrated Circuit Fabrication: Science and Technology
US11756952B2 (en) Integrated circuit and method of forming the same