200900842 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種運 特別有關於一種利用杂將^技術的投影幕,且 投影幕。 %奸共振效職生•篩選效果的 【先前技術】 隨著單搶投影機的低價化,正投影 議簡報、教學用途、家庭的視聽媒樂上L而曰及地使用在會 明亮環境光下無法得到良好的黑度,^正投影技術在 其對比度仍舊甚差,因此必_^ 機的免度提升, 環境,造成使用上諸多不便。、&吊要以窗簾製造黑暗的 由此可知,環境光造成對比下降乃 缺點,因此早在1934车,τ . 杈〜技術的重大 · lmizu寺即提出抗環境井於旦;,狄 幕的概念,希望能在明亮的環境下播放電景X美國專=== 號案)。此後持續有人提出不同的專利 目的。這些想法料触㈣ 兄先的200900842 IX. Description of the Invention: [Technical Field to Be Invented by the Invention] The present invention relates to a projection screen, and a projection screen, which is particularly useful in a technique utilizing hybrid technology. [Prior Art] The effect of the screening effect [Previous technology] With the low price of the single-robbing projector, the projection of the briefing, the teaching use, and the family's audio-visual media are used in the bright ambient light. Under the circumstances can not get a good blackness, ^ the positive projection technology in its contrast is still very poor, so the machine will increase the degree of freedom, the environment, resulting in a lot of inconvenience. And &hang; to make the darkness of the curtains, it is known that the contrast of the ambient light is a disadvantage, so as early as 1934, τ. 杈~Technical major · lmizu Temple is proposed to resist environmental wells; The concept, I hope to play the electric scenery X US special === case in a bright environment). Since then, different patents have been proposed. These ideas are expected to touch (4)
Si反if 地吸收環境光,而仍對投影機的光 : 所叫制鄕幕麵境光下看起來應是深色 以現今正投影技術的應用而言,投影幕的尺寸往往在 80叶或上,因此抗環境光投影幕 = 積的製程。另-方面,近來正、用於大面 ,,,,. 技衫技術發展趨勢走向微小 化、可I式的應用’但微小化的投影機無法提供高亮度的 0954-A22066TWF(N2);P54950)26Tw;foreVer769 200900842 光源,環境光造成對比度下降 可攜式的應用,投影機和二,更加尖銳。為了因應 位,因此影像不之間往往沒有財的定 白知技術中師選環境光之方法下 於投影光線和環境光的人射角 有下列—種.⑴由 來篩選之门、士从 ㈣度不问,因此可利用方向性 木師n⑺由於環境光是非偏 偏極光,故可用低垴自t七〜嘴 而投汾先線可e又為 RGB Jf A ^ 4 Λ師、之。(3)由於投影機光線由 刀布不间,故可用頻譜來篩選之。 利用方向性篩選需要精密對位的 。種方法之中, 和螢幕的相對位置必鮮確地安裝, 缺乏便利性亦不適合可攜式應用。 — 合房間燈光設計,適用受限。j用偏極'㈣選則需配 已有人接ΐ:第奎(3)種屬於頻譜篩選的方法,在習知技術中 已有人提出下列專利··⑻在投影幕結 肋: 膜干涉原理來達觸某些波長·性反^、’利用溥 綱5018_2號案)。⑼在投影幕結構中加人ζ ^國專利 電質奈米球,利用其布拉格反射來達到些二 的效果(美國專利2〇〇5〇18_3號案Wc)利用不同螺= (Hdical pitch)的膽固醇液晶的—維光子晶體效應 及 臟三色(錢專利謂15號案),在投縣結構中力^ 顏料或染料,選擇性吸收RGB以外不需要的波長範圍。 以(a)〜(c)之方法而言,由於係根據光波干涉原理,對入射 角度十分敏感,是故其視角有限。(a)之方法的多層膜需以真* 〇954-A22066TWF(N2);P54950126TW;forever769 200900842 鍍膜技術製作,不適合大面積生產。(d)之方法則由於顏料或染 料的光譜特性決定於分子結構,不易調控設計。 因此,業界亟需一種可以克服環境光的技術,以製作出抗 環境光的投影幕。 【發明内容】 基於上述目的,本發明實施例揭露了一種具有電漿子 粒子的正投影幕,包括:一基板;一透明材料層,置於該 基板上;以及複數種電漿子粒子,分散於該透明材料層内。 上述實施例之正投影幕具有可以壓制環境光而提高對 比,同時具有易於大面積製作、不受視角影響等優點。 【實施方式】 為了讓本發明之目的、特徵、及優點能更明顯易懂, 下文特舉較佳實施例,並配合所附圖示,做詳細之說明。 本發明說明書提供不同的實施例來說明本發明不同實施方 式的技術特徵。其中,實施例中的各元件之配置係為說明 之用,並非用以限制本發明。且實施例中圖式標號之部分 重複,係為了簡化說明,並非意指不同實施例之間的關聯 性。 請參考圖式,其中相似的參考符號係透過不同角度說 明相似的元件’且下列圖式說明本發明之貫施例。這些圖 式並不需要被縮放,而且為了說明之目的而在某些例子中 這些圖式已經被放大或簡化。熟悉此技藝之人士應該了解 根據本發明下列之實施可以做一些可能的應用及變動。 0954-A22066TWF(N2);P54950126TW;forever769 7 200900842 第1實施例 本實施例所提出的投影幕結構如第1圖所示,其工作 原理為選擇性散射。其中,參考符號11〜13分別表示三種 不同大小形狀之電漿子粒子,分別用於散射藍光、綠光和 紅光。參考符號14為吸收性的基板,能吸收可見光範圍内 T t 的光線。參考符號15為一透明材料,用以支持或包覆電漿 子粒子。由於環境光大部分的頻譜不在奈米粒子的共振波 長範圍内,因此少部分入射到奈米金屬粒子的散射截面, 大部分係直接穿透到基板14而被吸收掉。在這樣的設計 下,投影機投射的三原色(R、G、B)光線能被散射回到 觀眾的眼睛,而環境光100則被吸收而壓制掉。 第2實施例 本實施例所提出的投影幕結構如第2圖所示,其工作 原理為選擇性散射。其中,參考符號21〜23為三種不同大 小形狀電漿子粒子,分別用於散射藍光、綠光和紅光。參 考符號24為吸收性的基板,能吸收可見光範圍内的光線。 參考符號25〜27為透明材料,用以支持或包覆電漿子粒 子。由於環境光大部分的頻譜不在奈米粒子的共振波長範 圍内,因此少部分入射到奈米金屬粒子的散射截面,大部 分係直接穿透到基板14而被吸收掉。在這樣的設計下,投 影機投射的三原色光線能被散射回到觀眾的眼睛,而環境 光200被吸收而壓制掉。 第3實施例 本實施例所提出的投影幕結構如第3圖所示,其工作 0954-A22066TWF(N2);P54950126TW;forever769 8 200900842 原理為選擇性吸收。其中,參考符號31〜32為二種不同大 小形狀電漿子粒子,分別用於吸收紅光與綠光之間的波 長、綠光與藍光之間的波長。參考符號3 3為反射性的基 板,能反射可見光範圍内的光線。參考符號34為透明材 料,用以支持或包覆電漿子粒子。由於投影機投線的三原 色不在奈米粒子的共振波長範圍内,因此少部分入射到奈 米金屬粒子的吸收截面,大部分直接穿透到基板33再反射 回去。在這樣的設計下,投影機投射的三原色光線310能 被反射回到觀眾的眼睛,而環境光300被吸收而壓制掉。 第4實施例 本實施例所提出的投影幕結構如第4圖所示,其工作 原理為選擇性吸收。其中,參考符號41〜42為二種不同大 小形狀電漿子粒子,分別用於吸收紅光與綠光之間的波 長、綠光與藍光之間的波長。參考符號43為反射性的基 板,能反射可見光範圍内的光線。參考符號44〜45為透明 材料,用以支持或包覆電漿子粒子。由於投影機投線的三 原色不在奈米粒子的共振波長範圍内’因此少部分入射到 奈米金屬粒子的吸收截面,大部分直接穿透到基板43再反 射回去。在這樣的設計下’投影機投射的二原色光線410 能被反射回到觀眾的眼睛,而環境光400被吸收而壓制掉。 上述實施例之電漿子粒子係可藉由幾何形狀及尺寸設 計,而調整其共振波長、散射效率及吸收效率。較常使用 的形狀包含球形、半球形、球殼結構、三角形及圓柱形。 第5 (a)〜5 (c)圖為針對選擇性散射之電漿子粒子的設 0954-A22066TWF(N2);P54950126TW;iorever769 9 200900842 球=子=編構(如第A)、5 (b)圖 亦為銀ϋ球殼材f驗;球雜子的材質 巧射红本、包水砬子的透明材料為PMMA。在此例中, 90nm之門的甩桌子粒子採球殼結構,其外徑D介於40〜 d 4 6〇i^ ;7t 4^;3n^^ tSi counter-absorbing ambient light, but still the light of the projector: The surface of the called curtain should look dark. In the application of today's orthographic projection technology, the size of the projection screen is often 80 leaves or On, therefore, the anti-ambient light projection screen = product process. In addition, the recent, for the big face,,,,. The development trend of the technology of the technical shirt is becoming smaller and can be applied in type I. However, the miniaturized projector cannot provide high brightness of 0954-A22066TWF(N2); P54950 26Tw; foreVer769 200900842 Light source, ambient light causes contrast reduction for portable applications, projectors and two, more sharp. In order to respond to the position, there is often no wealth between the images. The method of selecting the ambient light in the technique of the ambient light is as follows: (1) The door to screen, the follower (four) degrees Do not ask, so you can use the directional wood division n (7) because the ambient light is non-biased aurora, so you can use the low 垴 from t seven ~ mouth and cast the first line can be RGB Jf A ^ 4 Λ division, it. (3) Since the light of the projector is not covered by the knife, the spectrum can be used to filter it. The use of directional screening requires precise alignment. Among the methods, the relative position of the screen must be installed neatly, lacking convenience and not suitable for portable applications. — The room lighting design is limited. j uses the polar pole '(four) selection needs to be matched with the existing ones: Dikui (3) belongs to the method of spectrum screening, and the following patents have been proposed in the prior art. (8) In the projection screen rib: the principle of membrane interference Touching certain wavelengths, sex, and ^, using the case of 溥纲#5018_2). (9) In the structure of the projection screen, the national patent electric nanosphere is used to achieve the effect of two by using Bragg reflection (U.S. Patent No. 2〇〇5〇18_3, Wc) using different snails (Hdical pitch) The chromosomal liquid crystal-dimensional photonic crystal effect and the dirty three-color (the patent of the money is said to be No. 15), in the structure of the county, the pigment or dye, selectively absorbs the wavelength range not required outside of RGB. In the method of (a) to (c), since the principle of light wave interference is very sensitive to the incident angle, the viewing angle is limited. The multilayer film of the method (a) needs to be fabricated by the coating technology of true * 〇 954-A22066TWF (N2); P54950126TW; forever769 200900842, which is not suitable for large-area production. The method of (d) is that the spectral characteristics of the pigment or dye are determined by the molecular structure and it is difficult to regulate the design. Therefore, there is a need in the industry for a technology that can overcome ambient light to produce a projection screen that is resistant to ambient light. SUMMARY OF THE INVENTION In view of the above, an embodiment of the present invention discloses a front projection screen having plasmonic particles, comprising: a substrate; a transparent material layer disposed on the substrate; and a plurality of plasmonic particles dispersed Within the layer of transparent material. The front projection screen of the above embodiment has the advantages of being able to suppress ambient light and improving contrast, and has the advantages of being easy to manufacture in a large area, being unaffected by the viewing angle, and the like. DETAILED DESCRIPTION OF THE INVENTION The objects, features, and advantages of the invention will be apparent from the description and appended claims The present specification provides various embodiments to illustrate the technical features of various embodiments of the present invention. The arrangement of the various elements in the embodiments is for illustrative purposes and is not intended to limit the invention. In the embodiment, the portions of the drawings are repeated for the purpose of simplifying the description, and do not mean the relationship between the different embodiments. Reference is made to the drawings in which like reference numerals refer to the These patterns do not need to be scaled, and for illustrative purposes these patterns have been enlarged or simplified in some examples. Those skilled in the art will appreciate that some of the possible applications and variations can be made in accordance with the following implementations of the invention. 0954-A22066TWF(N2); P54950126TW; forever769 7 200900842 First Embodiment The projection screen structure proposed in the present embodiment is as shown in Fig. 1, and its working principle is selective scattering. Here, reference symbols 11 to 13 respectively represent three different sized plasmonic particles for scattering blue light, green light and red light, respectively. Reference numeral 14 is an absorptive substrate capable of absorbing light of T t in the visible range. Reference numeral 15 is a transparent material for supporting or coating the plasmonic particles. Since most of the spectrum of ambient light is not within the resonance wavelength range of the nanoparticle, a small portion of the scattering cross section incident on the nano metal particles is mostly absorbed directly into the substrate 14 and absorbed. Under such a design, the three primary colors (R, G, B) light projected by the projector can be scattered back into the eyes of the viewer, while the ambient light 100 is absorbed and suppressed. Second Embodiment The projection screen structure proposed in the present embodiment is as shown in Fig. 2, and its working principle is selective scattering. Among them, reference symbols 21 to 23 are three different small-sized plasmonic particles for scattering blue light, green light, and red light, respectively. Reference numeral 24 is an absorptive substrate that absorbs light in the visible range. Reference symbols 25 to 27 are transparent materials for supporting or coating the plasmonic particles. Since most of the spectrum of ambient light is not within the resonance wavelength range of the nanoparticle, a small portion of the scattering cross section incident on the nanoparticle is directly absorbed into the substrate 14 and absorbed. With such a design, the three primary colors of light projected by the projector can be scattered back into the viewer's eyes, while the ambient light 200 is absorbed and suppressed. Third Embodiment The projection screen structure proposed in this embodiment is as shown in Fig. 3, and its operation is 0954-A22066TWF (N2); P54950126TW; forever769 8 200900842 The principle is selective absorption. Here, reference numerals 31 to 32 are two different small-sized plasmonic particles for absorbing the wavelength between red light and green light, and the wavelength between green light and blue light, respectively. Reference numeral 3 3 is a reflective substrate that reflects light in the visible range. Reference numeral 34 is a transparent material for supporting or coating the plasmonic particles. Since the three primary colors of the projection line of the projector are not within the resonance wavelength range of the nanoparticle, a small part of the absorption cross section incident on the nano metal particles directly penetrates to the substrate 33 and is reflected back. With such a design, the three primary ray 310 projected by the projector can be reflected back to the viewer's eyes while the ambient light 300 is absorbed and suppressed. Fourth Embodiment The projection screen structure proposed in the present embodiment is as shown in Fig. 4, and its working principle is selective absorption. Here, reference symbols 41 to 42 are two different large-sized plasmonic particles for absorbing the wavelength between red light and green light, and the wavelength between green light and blue light, respectively. Reference numeral 43 is a reflective substrate that reflects light in the visible range. Reference symbols 44 to 45 are transparent materials for supporting or coating the plasmonic particles. Since the three primary colors of the projector are not in the resonance wavelength range of the nanoparticles, so a small portion of the absorption cross section of the nano metal particles is incident directly on the substrate 43 and then reflected back. Under such a design, the two primary ray 410 projected by the projector can be reflected back to the viewer's eyes, while the ambient light 400 is absorbed and suppressed. The plasmonic particles of the above embodiment can be adjusted in geometry and size to adjust their resonance wavelength, scattering efficiency and absorption efficiency. More commonly used shapes include spheres, hemispheres, spherical shell structures, triangles, and cylinders. Sections 5 (a) to 5 (c) are for the selective scattering of plasmonic particles. 0954-A22066TWF(N2); P54950126TW; iorever769 9 200900842 Sphere = Sub = Construction (eg, A), 5 (b) The picture is also the silver ϋ ball shell material f test; the material of the ball miscellaneous is red and the transparent material of the water-filled scorpion is PMMA. In this example, the 90 nm gate of the 甩 table particle picking shell structure has an outer diameter D of 40~d 4 6〇i^ ; 7t 4^; 3n^^ t
子度t為7nm,散射綠光的電漿子粒子採 球^構’其外徑D介於3G〜7Qnm之間,厚度t介於6 〜13疆之間。在-實施例中係外徑D為50nm,厚度t為 散射監光的電漿子粒子採球形粒子,其外徑D介於 40 80_之間。在一實施例中係外徑〇為6〇謹。第6圖 係由米氏散射理論(Mie scattering the〇r力計算所得到之在 不同波長下的散射效率及吸收效率(第ό圖中區域I、II、 ΠΙ刀別對應於第5 (c)〜第5 (a)圖之電漿子粒子;其 中、Qsca表示粒子的散射效率,而Qabs表示粒子的吸收 效卞,R、G、B分別表示紅、綠、藍光)。由第6圖可知 這三種電漿子粒子分別可散射紅光、綠光及藍光,而達成 選擇性散射的效果。 第7圖針對選擇性吸收之電漿子粒子的設計實施例。 在此,採用球殼結構,其核心材質為二氧化矽,球殼材質 為銀’支持電漿子粒子的透明材料為PMMA。在此例中, 以吸收紅綠光間之光譜的球殼結構而言,其外徑D介於2 〜70nm之間,厚度t介於1〜3 5nm之間。在一實施例中係 其外徑D為28nm、厚度t為4nm ;以吸收綠藍之間光講的 0954-A22066TWF(N2);P54950126TW;forever769 10 200900842 球殼結構而言,其外徑介於2〜60nm之間,厚度t介於 1〜30nm之間。在一實施例中係其外徑D為30nm、厚度t 為6nm。第8圖係米氏散射理論(Mie scattering theory)計算 所得到之在不同波長下的散射效率及吸收效率(第8圖中 區域IV、V分別對應於第7 (b)〜第7 (a)圖之電漿子 粒子)。由第8圖可知這二種電漿子粒子分別可吸收紅光 與綠光之間的波長、綠光與藍光之間的波長,可達成選擇 性吸收的效果。 相較於習知技術而言’為了克服環境光的問題,上述實施 例乃是藉由電漿子效應而達成頻譜篩選的目的,也就是說,在 投影幕結構中加入電漿子(plasmon)粒子,由於不同幾何或 尺寸的金屬奈米粒子會對不同波長發生電漿子共振,而在電漿 子共振發生時,其散射截面及吸收截面均大幅增加,因此可用 於選擇性地散射RGB的波長,或用於選擇性地吸收RGB以外 不需要的波長範圍。 相較於習知技術而言,本案具有以下優點:(1)具有可 調控性:藉由粒子幾何尺寸調控,可設計出需要的頻譜。 (2)廣視角:由於電漿子共振頻譜對入射/觀察角度不敏感, 可做到大視角的效果。(3)有利於大面積製程:可配合溼式 的溶液塗佈製程、金屬膜退火製程等大面積仍適用的生產 方式。 —般而言’在溼式溶液塗佈製程中,首先,製作出所 需的各種奈米金屬粒子,再將這些奈米金屬粒子溶於適合 的溶劑中,使之有效地分散,溶劑中亦可同時加入聚合物 0954-A22066TWF(N2);P54950126TW;forever769 11 200900842 材料如PMMA,形成一溶液。之後,可將該溶液以各種溼 式塗佈製程塗佈於基材之上,例如旋鑛法(Spin c〇ating )、 浸沾式塗佈(Dip⑶也哗)、滾筒式塗佈(R〇llc〇ating)、 喷灑式塗佈(Spray coating)、狹缝模具式塗佈(sl〇t die Coating )、斜板式塗佈(Slide Coating)、淋幕式塗佈( Coating)等。接著,再以加熱或自然乾燥的方式去除溶劑, 即可形成内部包覆著奈米金屬粒子的透明材料層。 另外,金屬膜退火製程乃先以蒸鍍或濺鍍方式在基材 之上鍍以一至數十奈米的金屬薄膜。由於在此厚度之下金 屬尚未有效成膜,因此予以加熱退火時,表面張力會使原 本的金屬薄膜收縮為一顆顆的金屬顆粒。該金屬顆粒的形 狀、大小可以由製程上溫度、加熱時間,以及基材材料的 選擇加以控制。完成此步驟之後,可於金屬顆粒之上再覆 蓋以一透明材料如PMMA,用以保護金屬顆粒。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内’當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 0954~A22066TWF{N2)»P54950126TW^forever769 12 200900842 【圖式簡單說明】 第1圖係繪示具有散射式電漿子粒子之正投影幕的示意 圖。 第2圖係奢示另一種具有散射式電漿子粒子之正投影幕 的不意圖。 第3圖係緣示具有吸收式電漿子粒子之正投影幕的示意 圖。 第4圖係繪示另一種具有吸收式電漿子粒子之正投影幕 的不意圖。 第5a、5b、5c圖係分別繪示散射用電漿子粒子之幾何形 狀的不意圖。 第6圖係繪示散射用電漿子粒子在不同波長下的散射及 吸收效率。 第7a、7b圖係分別繪示吸收用電漿子粒子之幾何形狀的 示意圖。 第8圖係繪示吸收用電漿子粒子在不同波長下的散射 及吸收效率。 【圖式簡單說明】 11〜電漿子粒子 12〜電漿子粒子 13〜電漿子粒子 14〜基板 15〜透明材料 21〜電漿子粒子 0954-A22066TWF(N2):P54950126TW;forever769 13 200900842 22〜電漿子粒子 23〜電漿子粒子 24〜基板 25〜27〜透明材料 31〜電漿子粒子 32〜電漿子粒子 33〜基板 34〜透明材料 41〜電漿子粒子 42〜電漿子粒子 43〜基板 44〜45〜透明材料 D〜外徑 t〜厚度 0954-A22066TWF(N2);P54950126TW;iorever769 14The sub-degree t is 7 nm, and the plasmon particles that scatter green light have an outer diameter D between 3G and 7Qnm and a thickness t between 6 and 13 degrees. In the embodiment, the outer diameter D is 50 nm, and the thickness t is a scatter particle of the plasmonic particles, and the outer diameter D is between 40 80 Å. In one embodiment, the outer diameter 〇 is 6 〇. Figure 6 is the scattering efficiency and absorption efficiency at different wavelengths obtained by Mie scattering the 〇r force calculation (in the figure, the regions I, II, and the file correspond to the fifth (c) ~ 5th (a) of the plasmonic particles; wherein Qsca represents the scattering efficiency of the particles, and Qabs represents the absorption effect of the particles, R, G, B represent red, green, blue light respectively). Figure 6 shows The three kinds of plasmonic particles can respectively scatter red light, green light and blue light to achieve the effect of selective scattering. Fig. 7 is a design example of selectively absorbing plasmonic particles. Here, a spherical shell structure is adopted. The core material is ceria, and the spherical material is silver. The transparent material supporting the plasmonic particles is PMMA. In this case, the outer diameter of the spherical shell structure that absorbs the spectrum between red and green light Between 2 and 70 nm, the thickness t is between 1 and 35 nm. In one embodiment, the outer diameter D is 28 nm and the thickness t is 4 nm; to absorb the light between the green and blue 0954-A22066TWF (N2) ); P54950126TW; forever769 10 200900842 spherical shell structure, its outer diameter is between 2~60nm, The degree t is between 1 and 30 nm. In one embodiment, the outer diameter D is 30 nm and the thickness t is 6 nm. Fig. 8 is a Mie scattering theory calculated at different wavelengths. Scattering efficiency and absorption efficiency (the regions IV and V in Fig. 8 correspond to the plasmonic particles in the seventh (b) to the seventh (a), respectively). It can be seen from Fig. 8 that the two kinds of plasmonic particles are respectively The effect of selective absorption can be achieved by absorbing the wavelength between red and green light, and the wavelength between green and blue light. Compared with the prior art, the above embodiment is borrowed to overcome the problem of ambient light. The purpose of spectrum screening is achieved by the plasmon effect, that is, the addition of plasmon particles to the projection screen structure, because the metal nanoparticles of different geometries or sizes will plasmon resonance at different wavelengths, When the plasmon resonance occurs, both the scattering cross section and the absorption cross section are greatly increased, so that it can be used to selectively scatter the wavelength of RGB, or to selectively absorb an unnecessary wavelength range other than RGB. Technically, the case has the following Advantages: (1) Controllability: The required spectrum can be designed by particle geometry control. (2) Wide viewing angle: Since the plasmon resonance spectrum is not sensitive to the incident/observation angle, a large viewing angle can be achieved. (3) Conducive to large-area process: It can be combined with wet-type solution coating process, metal film annealing process and other large-area still applicable production methods. - Generally speaking, in the wet solution coating process, first of all, The various nano metal particles are prepared, and the nano metal particles are dissolved in a suitable solvent to be effectively dispersed. The solvent can also be added to the polymer 0954-A22066TWF (N2); P54950126TW; forever769 11 200900842 Materials such as PMMA form a solution. Thereafter, the solution can be applied to the substrate in various wet coating processes, such as spin coating, dip coating (Dip (3)), and roller coating (R〇). 〇 ) ating, spray coating, slit coating, slide coating, coating, and the like. Then, the solvent is removed by heating or natural drying to form a transparent material layer in which the nano metal particles are coated. In addition, the metal film annealing process is performed by first depositing a metal film of one to several tens of nanometers on the substrate by evaporation or sputtering. Since the metal is not effectively formed under this thickness, the surface tension causes the original metal film to shrink into individual metal particles when subjected to heat annealing. The shape and size of the metal particles can be controlled by the temperature of the process, the heating time, and the choice of substrate material. After this step is completed, a transparent material such as PMMA may be overlaid on the metal particles to protect the metal particles. While the invention has been described above by way of a preferred embodiment, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. 0954~A22066TWF{N2)»P54950126TW^forever769 12 200900842 [Simplified Schematic] Fig. 1 is a schematic diagram showing a front projection screen with scattering plasmonic particles. Fig. 2 is a schematic illustration of another type of orthographic projection screen having scattering plasmonic particles. Figure 3 is a schematic representation of an orthographic projection screen having absorptive plasmonic particles. Figure 4 is a schematic illustration of another orthographic projection screen having absorbing plasmonic particles. The 5a, 5b, and 5c diagrams respectively show the geometrical shape of the plasmonic particles for scattering. Figure 6 is a graph showing the scattering and absorption efficiency of scattering plasmonic particles at different wavelengths. Figures 7a and 7b are schematic views showing the geometry of the absorbing plasmonic particles, respectively. Figure 8 is a graph showing the scattering and absorption efficiency of absorbing plasmonic particles at different wavelengths. [Simple description of the drawings] 11 to plasmonic particles 12 to plasmonic particles 13 to plasmonic particles 14 to substrate 15 to transparent material 21 to plasmonic particles 0954-A22066TWF (N2): P54950126TW; forever769 13 200900842 22 ~ plasmonic particles 23 to plasmonic particles 24 to substrate 25 to 27 to transparent material 31 to plasmonic particles 32 to plasmonic particles 33 to substrate 34 to transparent material 41 to plasmonic particles 42 to plasmonic Particle 43~substrate 44~45~transparent material D~outer diameter t~thickness 0954-A22066TWF(N2); P54950126TW; iorever769 14