TW200900741A - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
TW200900741A
TW200900741A TW96123914A TW96123914A TW200900741A TW 200900741 A TW200900741 A TW 200900741A TW 96123914 A TW96123914 A TW 96123914A TW 96123914 A TW96123914 A TW 96123914A TW 200900741 A TW200900741 A TW 200900741A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
crystal display
display device
optical
disposed
Prior art date
Application number
TW96123914A
Other languages
Chinese (zh)
Other versions
TWI364556B (en
Inventor
Wen-Jyh Sah
Original Assignee
Gigno Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigno Technology Co Ltd filed Critical Gigno Technology Co Ltd
Priority to TW96123914A priority Critical patent/TWI364556B/en
Publication of TW200900741A publication Critical patent/TW200900741A/en
Application granted granted Critical
Publication of TWI364556B publication Critical patent/TWI364556B/en

Links

Abstract

A liquid crystal display (LCD)device includes an optical modifying substance, which is characterized in that at a confronting position of the LCD device, whose angel of depression is zero degree, and azimuth angle is between zero and 360 degrees, the optical modifying substance is inspected to obtain a first chromaticity coordinates. At a shifted position of the LCD device, whose angel of depression is greater than or equal to 30 degrees, and azimuth angle is between zero to 360 degrees, the optical modifying substance is inspected to obtain a second chromaticity coordinates. The color shift value between the first chromaticity coordinates and the second chromaticity coordinates is greater than or equal to 0. 005.

Description

200900741 九、發明說明: 【發明所屬之技術領域】 特別是能解決色差 本發明係關於一種液晶顯示裝置 問題之液晶顯示裝置。 【先前技術】 ^近年來,由於平面顯示技術的發展,傳統的陰極射線 管顯示裝ϊ逐漸被液晶顯示裝置所取代。近來,液晶顯示 裝置已經應用至許多_之電子產品,例如手機、筆記型 電腦:電視及桌上型螢幕等等。—般而言,液晶顯示裝置 主要係包含一液晶顯示面板(Liquid Crystal以邛丨叮Panel) 與一背光模組(Backlight Module )。 明參照圖1所示,其係為習知技術中之一種液晶顯示 面板之一示意圖。液晶顯示面板1主要依序包含一下偏光 片(Lower Polarizer) u、一薄膜電晶體基板12、一液晶 層13、一彩色濾光片基板14以及一上偏光片(Upper200900741 IX. Description of the Invention: [Technical Field of the Invention] In particular, the present invention relates to a liquid crystal display device having a problem of a liquid crystal display device. [Prior Art] In recent years, due to the development of flat display technology, conventional cathode ray tube display devices have been gradually replaced by liquid crystal display devices. Recently, liquid crystal display devices have been applied to many electronic products such as mobile phones, notebook computers, televisions, and desktop displays. In general, a liquid crystal display device mainly includes a liquid crystal display panel (Liquid Crystal) and a backlight module (Backlight Module). Referring to Figure 1, it is a schematic diagram of one of the liquid crystal display panels of the prior art. The liquid crystal display panel 1 mainly includes a lower polarizer (u), a thin film transistor substrate 12, a liquid crystal layer 13, a color filter substrate 14, and an upper polarizer (Upper).

Polarizer) 15。 下偏光片11及上偏光板15之偏光軸則相互正 交且分別設置於薄膜電晶體基板12的一側及彩色濾 光片基板14的一側。薄膜電晶體基板12係至少具 有一玻璃基板121及複數個晝素電極122(圖中以一 個晝素電極122為例)。彩色濾光片基板14係具有 另一玻璃基板141、複數不同顏色的濾光層142 (圖 中以一個濾光層142為例)及一對向電極143。液晶 200900741 層13則設置於對向電極143及該等晝素電極Η]之 間,而各個濾光層142係分別與各個晝素電極a〕 相對應。 當背光模組(圖中未示)發出光線時,該光線係經 過下偏光片11以具有—特定的偏振方向,然後依序 經過玻璃基板121、晝素電極122、液晶層13、對向 電極143以依據液晶層13所承受電壓的不同而改變 光線的偏振方向,再經由濾光層142形成不同顏色 的光,而後經過玻璃基板141及上偏光片15,以射 出液晶顯示面板1 °其中’上偏光片15係讓和下偏 光片11具有正交方向的光線通過。 、由於液晶分子大多由棒狀或是碟狀分子所形 成,具有結構上的異方性(anisotropic),因此與液晶 分子長軸平行或垂直方向上的光電特性(例i折= 率及介電係數)也會不相同。 明同時參照圖1及圖2所示,為了解釋液晶分 子之異方向所造成的影響,於圖2中只繪出液晶顯 示面板1中之液晶層13來進行說明。當一背光模組 B所出發的光線由液晶層13之A點入射液晶層13 後,於第一位置P1的使用者所觀察到的光線Li (俯 角度),其穿過液晶層13的光程差為Λη(ΐι, /、中’ Δη係為液晶分子複折射率的差值,即非尋常 斤射率(extraordinary index of refraction)與尋常折 射率(ordinary index of refraction)之間的差值,di 為 200900741 光線穿過液晶層.1 3的距離。而背光模組B所發出的 可見光(波長380nm到780nm)經過下偏光片11過滤而 成為線偏振光,各波長之光線則依據光程差δΡ1而產生不 同的位相差角(σρ^ΙπΑηο^/λ),並依據位相差角σΡι及上 下偏光片11、15而形成各種偏光形態,例如圓偏振光、 櫥圓偏振光及線偏振光,再經上偏光片15過濾、成為線偏 振光後’進入使用者的眼睛。通常習知技術中,液晶顯示 面板1之白平衡、對比及其他光學參數的最佳化設計,均 以正視液晶顯示面板1之光程差δΡ1來進行計算。 然而’習知的液晶顯不面板1卻存在考色差(Color Shift)的問題。當使用者於第二位置p2所觀察到的斜 射光線L2係與液晶分子的光抽具有一俯角㊀(㊀#〇 ) 時’斜射光線L2所通過液晶層13的距離則變成d2,光 線L2穿過液晶層13的光程差δρ2則成為AM2。其中, d2大於di。因此’光程差Ant係大於△ndi。如此一來, 光線L2中各波長產生的位相差角σΡ2=2πΛηά2/λ與光線L1 中各波長產生的位相差角具有差異,使得 可見光中各個波長的光線因為兩個位相差角度間經過上 下偏光片11、15過濾後的強度比例有差異,造成使用者 於第一位置P1 (正視)與第二位置P2 (斜視)觀賞相同 晝面時’會產生顏色不一致的狀況。例如,當斜視時黃色 光通過偏光片的比例較高時,會使得斜視晝面偏黃,也就 是所謂的色差現象。 請參照圖3,其係為習知液晶顯示裝置中,色度差值 200900741 與俯角Θ角度的關係。由圖3可知,液晶顯示裝置中晝面 顏色的偏差,會隨著使用者觀看時俯角角度的增加而變 大。另外,隨著使用者觀看時俯角的增加,色度差值也會 隨著增加(圖中未示)。 而目前業界上仍無法解決色差的問題,而只能全面的 調整光源的顏色,例如調整背光模組Β中螢光燈管之螢光 粉比例,以確認正視角(俯角θ=0)的白平衡點正確,但 仍然無法避免使用者於正視或斜視液晶顯示面板1時所產 生色差現象,進而導致產品品質下降。 因此,如何提供一種有效改善液晶顯示裝置的畫面色 差問題,實為一重要課題。 【發明内容】 有鑑於上述課題,本發明之目的為提供一種可改善液 晶顯示裝置的晝面色差問題之液晶顯示裝置。 緣是,為達上述目的,依本發明之一種液晶顯示裝置 包含一光學修飾物,其特徵在於:於液晶顯示裝置之一正 視位置,其俯角Θ i為0度,方位角叫為介於0~360度, 量測光學修飾物得一第一色度座標,而於液晶顯示裝置一 偏移位置,其俯角θ2大於等於30度,其方位角Φ2介於 0〜360度,量測光學修飾物得一第二色度座標,其中第一 色度座標與第二色度座標之一色度差值係大於等於0.005。 承上所述,因依本發明之一種液晶顯示裝置係具有光 學修飾物,其位於液晶顯示裝置中背光模組的光源所發出 8 200900741 的光線形成一面光源以後至使用者之間的位置。與習知技 術相比,本發明之液晶顯示裝置由於具有光學修飾物,其 係可設置於背光模組的光源所發出的光線形成面光源以 後至使用者之間的複數元件的任一表面;或是摻雜或形成 一圖案層於面光源至使用者之間的複數元件中;亦或是摻 — 雜或形成於一光學修飾膜片中,並將光學修飾膜片設置於 面光源至使用者之間。由於光學修飾物為一光吸收物質或 為一光反射物質,且其色度差值與俯角呈正相關,因此液 晶顯示裝置原本具有的色偏現象會因為光修飾物之設置 而減少,進而增進液晶顯示裝置的品質。 «Τ 【貫施方式】 以下將參照相關圖式,說明依本發明複數實施例之一 種液晶顯示裝置。 本發明之液晶顯示裝置包含一光學修飾物,光學修飾 物係位於液晶顯示裝置中背光模組的光源所發出的光線 形成一面光源以後的位置。其中,面光源可定義為一出光 區域中,亮度最低與亮度最高的比值大於等於0.5。若液 .晶顯示裝置中的背光模組為直下式,光學修飾物可設置於 使用者至擴散板出光面之間的位置;若背光模組可側向式 為例,則光學修飾物則可摻雜於導光板内或設置於導光板 至使用者之間的位置。當然,上述只是概略的描述光學修 飾物可設置的位置,任何背光模組之結構上的改變均應在 本發明之範*壽。另外,光學修飾物也可設置於液晶顯示面 200900741 板,此部份容後再述。 請參照圖4所示’在定義光學修飾物的特徵之前,需 要先定義使用者於觀看液晶顯示裝置2時之角度。由圖4 可知,使用者觀看液晶顯示裝置2所在的位置,可對應至 一俯角(angle of depression ) Θ 及一方位角(azimuth angle ) Φ。隨著使用者觀看位置的不同,俯角Θ可介於〇度至正 負90度之間;而方位角Φ可介於〇度至360度之間。 量測光學修飾物或含有光學修飾物之一光學修飾膜 片可於一均勻背光源下進行,其係使用國際標準光源(Α沉 C light source )與國際標準照明體(D65, D50...)當作背 光源。而量測時’背光源的均勻性應大於85% (Minimum/Maxinmm*100% ),背光源的亮度應在 2000〜3000 nits。 液晶顯示裝置2中已具有光學修飾物,於液晶顯示襄 置2之一正視位置(俯角©!為〇度,方位角%為介於〇〜36〇 度),單獨量測光學修飾物可得一第一色度座標(Xl,yi ); 而於一第一偏移位置(俯角Θ2大於等於30度,方位角φ2 介於0~360度),單獨量測光學修飾物可得一第二色度座 標(Χ2, 丫2)。其中,色度差值定義為~Xif +(^2 , 且光學修飾物之色度差值係大於等於0.005。 另外’光學修飾物係為一光吸收物質或一光反射物 質,可直接形成或摻雜於既有的物體上,當然,光學修飾 物也可形成或摻雜於一光學修飾膜片中,再將此光學修錦 膜片設置於液晶顯示裝置。而且’當方位角φ為固定時, 200900741 色度差值係與俯角θ呈正相關,且角度愈大,色度差值也 愈大。舉例來說,於一第二偏移位置,其俯角θ2大於等 於60度(大於Θ!),其方位角Φ3介於0~360度,量測光 學修飾物可得一第三色度座標,其中第一色度座標與第三 色度座標之色度差值則會大於等於0.02。由於色偏現象是 因為斜看晝面時,各波長之光線穿過液晶分子時具有不同 的光程差而造成的,因此,利用本發明光學修飾物之色度 差值係與俯角Θ呈正相關的特性,再加上光學修飾物為一 光吸收物質或一光反射物質,實施上可先判斷液晶顯示裝 置2之顏色偏向哪一種顏色,以加入可吸收該顏色的光學 修御物,即可減少色偏的現象。 請參照圖5所示,本發明中之液晶顯示裝置2係包含 一背光模組3與一液晶顯示面板5。以下,將參照複數圖 式以說明本發明之液晶顯示裝置2中,光學修飾物設置位 置的複數實施例。 第一實施例 本實施例中,係以光學'修飾物位於背光模組為例,而 光學修飾物可為一光吸收物質或一光反射物質,或是,光 學修飾物也可以形成或摻雜於一光學修飾膜片,而光學修 飾物或光學修飾膜片只要設置於背光模組中光源所發出 之光線已形成一面光源的位置即可,也可以是背光模組之 一出光面。由於習知技術中,對於背光模組已有許多不同 的結構設計,以下係以數種常見的背光模組為例,來說明 光學修飾物所設置的位置。需注意者,以下所列舉之背光 11 200900741 模組’並不會限制本發明中具有光學修飾物之背光模組態 樣。 通常,背光模組3可依光源設置的位置來分類成侧光 式背光模組及直下式背光模組。以下’先以背光模組3為 一直下式背光模組來進行說明。 如圖6所示,背光模組3包含複數光源31以及一擴 散元件32。其中,光源31可為一螢光燈或為複數發光二 極體,且設置於擴散元件下方,而擴散元件32可具有一 擴散板(Light Diffusing Plate) 321,其厚度較厚(約1.5〜2 mm),可協助光線擴散成一面光源。 另外,擴散元件32更可包含一上擴散膜片(UpperPolarizer) 15. The polarizing axes of the lower polarizer 11 and the upper polarizing plate 15 are orthogonal to each other and are provided on one side of the thin film transistor substrate 12 and one side of the color filter substrate 14, respectively. The thin film transistor substrate 12 has at least one glass substrate 121 and a plurality of halogen electrodes 122 (in the figure, a single pixel electrode 122 is taken as an example). The color filter substrate 14 has another glass substrate 141, a plurality of filter layers 142 of different colors (one filter layer 142 is exemplified in the drawing), and a pair of electrodes 143. The liquid crystal 200900741 layer 13 is disposed between the counter electrode 143 and the halogen electrodes Η, and each of the filter layers 142 corresponds to each of the pixel electrodes a]. When the backlight module (not shown) emits light, the light passes through the lower polarizer 11 to have a specific polarization direction, and then sequentially passes through the glass substrate 121, the halogen electrode 122, the liquid crystal layer 13, and the opposite electrode. 143, according to the difference in the voltage of the liquid crystal layer 13 to change the polarization direction of the light, and then through the filter layer 142 to form different colors of light, and then through the glass substrate 141 and the upper polarizer 15 to emit the liquid crystal display panel 1 ° The upper polarizer 15 allows light having an orthogonal direction with the lower polarizer 11 to pass therethrough. Since liquid crystal molecules are mostly formed of rod-like or dish-shaped molecules, and have an anisotropic structure, photoelectric characteristics parallel or perpendicular to the long axis of the liquid crystal molecules (example i==rate and dielectric) The coefficient) will also be different. Referring to Fig. 1 and Fig. 2 simultaneously, in order to explain the influence of the different directions of the liquid crystal molecules, only the liquid crystal layer 13 in the liquid crystal display panel 1 will be described with reference to Fig. 2 . When the light from the backlight module B is incident on the liquid crystal layer 13 from the point A of the liquid crystal layer 13, the light Li (pitch angle) observed by the user at the first position P1, the light passing through the liquid crystal layer 13 The path difference is Λη(ΐι, /, 中' Δη is the difference between the complex refractive index of the liquid crystal molecules, that is, the difference between the extraordinary index of refraction and the ordinary index of refraction. , di is 200900741 The distance of light passing through the liquid crystal layer is 13.1, and the visible light (wavelength 380nm to 780nm) emitted by the backlight module B is filtered by the lower polarizer 11 to become linearly polarized light, and the light of each wavelength is according to the optical path. The difference δΡ1 produces different phase difference angles (σρ^ΙπΑηο^/λ), and forms various polarization forms according to the phase difference angle σΡι and the upper and lower polarizers 11, 15 such as circularly polarized light, cabinet circularly polarized light, and linearly polarized light. And then filtered by the polarizer 15 to become linearly polarized light and then enter the user's eyes. Generally, in the prior art, the white balance, contrast and other optical parameters of the liquid crystal display panel 1 are optimally designed. Display The optical path difference δΡ1 of the panel 1 is calculated. However, the conventional liquid crystal display panel 1 has a problem of color shift (color Shift). When the user observes the oblique light L2 and the liquid crystal at the second position p2 When the light pumping of the molecule has a depression angle of one (one #〇), the distance of the oblique light L2 passing through the liquid crystal layer 13 becomes d2, and the optical path difference δρ2 of the light ray L2 passing through the liquid crystal layer 13 becomes AM2, wherein d2 is larger than di Therefore, the optical path difference Ant is larger than Δndi. Thus, the phase difference angle σΡ2=2πΛηά2/λ generated by each wavelength in the light L2 is different from the phase difference angle generated by each wavelength in the light L1, so that each wavelength in the visible light The light is different in the intensity ratio between the two phase difference angles filtered by the upper and lower polarizers 11, 15 , causing the user to view the same face when the first position P1 (front view) and the second position P2 (strabismus) are viewed. A situation in which the colors are inconsistent is produced. For example, when the proportion of the yellow light passing through the polarizer is high when squinting, the squint surface is yellowish, which is a so-called chromatic aberration phenomenon. Referring to FIG. 3, it is a conventional liquid crystal. In the display device, the relationship between the chromaticity difference value 200900741 and the depression angle Θ angle. As can be seen from Fig. 3, the deviation of the color of the enamel surface in the liquid crystal display device becomes larger as the angle of the depression angle of the user increases. When the user observes the increase of the depression angle, the chromaticity difference will also increase (not shown). However, the problem of chromatic aberration is still not solved in the industry, and only the color of the light source can be adjusted comprehensively, for example, the backlight module is adjusted. The proportion of the phosphor powder in the fluorescent tube in the middle of the tube is correct to confirm that the white balance point of the positive viewing angle (the depression angle θ = 0) is correct, but the chromatic aberration caused by the user when facing or squinting the liquid crystal display panel 1 cannot be avoided, thereby causing Product quality has declined. Therefore, how to provide an effective improvement of the screen chromatic aberration of a liquid crystal display device is an important subject. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a liquid crystal display device which can improve the problem of chromatic aberration of a liquid crystal display device. In order to achieve the above object, a liquid crystal display device according to the present invention comprises an optical modification characterized in that, in a front view position of a liquid crystal display device, the depression angle Θ i is 0 degrees, and the azimuth angle is called 0. ~360 degrees, the optical modifier has a first chromaticity coordinate, and at an offset position of the liquid crystal display device, the depression angle θ2 is greater than or equal to 30 degrees, and the azimuth angle Φ2 is between 0 and 360 degrees, and the optical modification is measured. The object obtains a second chromaticity coordinate, wherein a chromaticity difference between the first chromaticity coordinate and the second chromaticity coordinate is greater than or equal to 0.005. As described above, a liquid crystal display device according to the present invention has an optical modification in which a light source of a backlight module of a liquid crystal display device emits light of a light source of 200900741 to form a position between a light source and a user. Compared with the prior art, the liquid crystal display device of the present invention has an optical modification, which can be disposed on any surface of the plurality of components between the light source formed by the light source of the backlight module and the surface light source; Or doping or forming a pattern layer in a plurality of elements between the surface light source and the user; or doping or forming in an optically modified film, and placing the optically modified film on the surface light source to use Between the people. Since the optical modifier is a light absorbing material or a light reflecting material, and the chromaticity difference is positively correlated with the depression angle, the color shift phenomenon originally possessed by the liquid crystal display device is reduced due to the setting of the light modification, thereby enhancing the liquid crystal. The quality of the display device. «Τ [Comprehensive Mode] Hereinafter, a liquid crystal display device according to a plurality of embodiments of the present invention will be described with reference to the related drawings. The liquid crystal display device of the present invention comprises an optical modification in which the light emitted by the light source of the backlight module in the liquid crystal display device forms a light source. Wherein, the surface light source can be defined as a light-emitting region, and the ratio of the lowest brightness to the highest brightness is greater than or equal to 0.5. If the backlight module in the liquid crystal display device is of a direct type, the optical modification can be disposed between the user and the light exit surface of the diffusion plate; if the backlight module can be used as an example, the optical modification can be Doped in the light guide plate or at a position between the light guide plate and the user. Of course, the above is only a brief description of the position where the optical trim can be set, and any structural change of the backlight module should be in the scope of the present invention. In addition, the optical modification can also be placed on the liquid crystal display surface 200900741, which will be described later. Referring to Fig. 4, before defining the characteristics of the optical modifier, it is necessary to define the angle at which the user views the liquid crystal display device 2. As can be seen from FIG. 4, the user can view the position of the liquid crystal display device 2 corresponding to an angle of depression Θ and an azimuth angle Φ. The depression angle Θ can be between 〇 and plus or minus 90 degrees with the user's viewing position; and the azimuth Φ can be between 〇 and 360 degrees. Measuring optical modifications or optically modified patches containing optical modifiers can be performed under a uniform backlight using an international standard light source (C light source) and international standard illuminators (D65, D50... ) as a backlight. In the measurement, the uniformity of the backlight should be greater than 85% (Minimum/Maxinmm*100%), and the brightness of the backlight should be 2000~3000 nits. The liquid crystal display device 2 already has an optical modification, and one of the front view positions of the liquid crystal display device 2 (the depression angle ©! is the twist, the azimuth angle is between 〇~36〇), and the optical modification can be measured separately. a first chromaticity coordinate (Xl, yi); and at a first offset position (the depression angle Θ2 is greater than or equal to 30 degrees, the azimuth angle φ2 is between 0 and 360 degrees), and the optical measurement can be separately measured to obtain a second Chromaticity coordinates (Χ2, 丫2). Wherein, the chromaticity difference is defined as ~Xif +(^2 , and the chromaticity difference of the optical modifier is greater than or equal to 0.005. In addition, the optical modification is a light absorbing material or a light reflecting material, which can be directly formed or Doped on an existing object, of course, the optical modification can also be formed or doped in an optically modified film, and then the optical repair film is placed on the liquid crystal display device. And when the azimuth angle φ is fixed When, 200900741 chromaticity difference is positively correlated with the depression angle θ, and the larger the angle, the larger the chromaticity difference. For example, at a second offset position, the depression angle θ2 is greater than or equal to 60 degrees (greater than Θ! ), the azimuth angle Φ3 is between 0 and 360 degrees, and the optical modifier can obtain a third chromaticity coordinate, wherein the chromaticity difference between the first chromaticity coordinate and the third chromaticity coordinate is greater than or equal to 0.02. Since the color shift phenomenon is caused by different optical path differences when the light of each wavelength passes through the liquid crystal molecules when the surface is viewed obliquely, the chromaticity difference system of the optical modifier of the present invention is positively correlated with the depression angle Θ. Characteristics, plus optical modifiers for a light In the case of receiving a substance or a light-reflecting substance, it is possible to first determine which color the liquid crystal display device 2 is biased toward, and to add an optical retouchable substance that can absorb the color, thereby reducing the color shift phenomenon. Referring to FIG. 5, The liquid crystal display device 2 of the present invention includes a backlight module 3 and a liquid crystal display panel 5. Hereinafter, a plurality of embodiments in which the optical modifiers are disposed in the liquid crystal display device 2 of the present invention will be described with reference to the plural drawings. In the present embodiment, the optical 'modification is located in the backlight module, and the optical modification may be a light absorbing material or a light reflecting material, or the optical modification may be formed or doped. In the optical modification film, the optical modification or the optical modification film may be disposed in the backlight module, and the light emitted by the light source may form a light source, or may be a light-emitting surface of the backlight module. In the known technology, there are many different structural designs for the backlight module. The following is a description of several common backlight modules to illustrate the position of the optical modifier. It should be noted that the backlight 11 200900741 module listed below does not limit the backlight module configuration with optical modification in the present invention. Generally, the backlight module 3 can be classified into an edge-light type according to the position set by the light source. The backlight module and the direct type backlight module are described below. The backlight module 3 is described as a direct backlight module. As shown in FIG. 6, the backlight module 3 includes a plurality of light sources 31 and a diffusion element 32. The light source 31 can be a fluorescent lamp or a plurality of light emitting diodes and disposed under the diffusing element, and the diffusing element 32 can have a diffusing plate (Light Diffusing Plate) 321 having a thick thickness (about 1.5 to 2 mm). ), which can help the light to diffuse into a light source. In addition, the diffusing element 32 can further comprise an upper diffusion diaphragm (Upper)

Optical Diffusing Sheet) 322 及一下擴散膜片 323,而背光 模組3更可包含一稜鏡片(Prism Sheet) 33,而下擴散膜 片323、稜鏡片33以及上擴散膜片322係可依序設置於擴 散板321之上。其中,稜鏡片33可為一增亮片(Brightness Enhancement Film)或一反射式偏光增亮片(DBEF)。 光學修飾物可设置於擴散板321之一出光面321a、或 設置於下擴散膜片323、稜鏡片33以及上擴散膜片322之 任一表面上。光學修飾物也可以摻雜於下擴散膜片323、 稜鏡片33以及上擴散膜片322至少其中之一,而使得下 擴政膜片323 '棱鏡片33以及上擴散膜片322即為一光學 修傅物。另外,光學修飾物可形成1案層(利用圖案之 高低段差來影響斜看時的光學特性)或一平坦層。再者, 光學修飾物也可形成或摻雜於一光學修飾膜片M,而光學 12 200900741 修飾膜片Μ則位於擴散板321之一出光側,或者下擴散膜 片323、稜鏡片33以及上擴散膜月322之間、或上擴散膜 片322之一出光側的任意位置。另外,光學修飾膜片Μ係 為一透光膜片,其材質可具有聚碳酸酯(Polycarbonate, PC )、聚苯乙烯(Polystyrene,PS )、曱基丙烯酸甲酯-笨乙 • 婦(Methly-methacrylate-Styrene,MS )、聚甲基丙稀酸甲酯 (Polymethly Methacrylate, PMMA )、聚對苯二曱酸乙二酯 (Poly Ethylene Terephthalate,PET)或玻璃。需注意者,光學 修飾物或光學修飾膜片Μ之厚度係小於等於2.5mm。 本實施例中,係以光學儀器斜視量測圖5之液晶顯示 衣置2日守,液晶顯示裝置2所發出的光線係偏黃光為例。 光學修飾物係摻雜於一光學修飾膜片M中,且光學修飾膜 片Μ係位於擴散板321之一出光側。由於液晶顯示裝置2 係偏黃,因此光學修飾物可為一黃光吸收物質,例如為摻 雜藍色或青色顏料,以降低液晶顯示裝s 2 +黃光的比 例。如此一來,使用者於斜看液晶顯示裝置2時,俯角愈 、 大,夕光線通過光學修飾膜片Μ中的藍色或青色顏料顆粒也 ,多(光,修飾物之色度差值與俯角呈正相關),故能減 -二光線偏頁的現象。需注意者,光學修飾膜片Μ也可同時 — 置;個以上的地方,本實施例中係以設置於一個地方 為例。 第二實% 一办貫知例中,光學修飾物同樣以位於液晶顯示裴置2 之月光模组為例,不同的是,本實施例之背光模、组4係 13 200900741 為一側光式背光模組。 明麥照圖7,背光模組4包含一光源41、一導光板 (Light Guiding Plate,LGp) 42、一下擴散膜片 43、一棱 鏡片44以及一上擴散膜片45。其中,光源41係鄰設於導 光板42之一入光面421 ’導光板42於其底面422具有複 數印刷網點423,印刷網.點423係有散射光線的功用。下 擴散膜片43係鄰設於導光板42之一出光面424,而稜鏡 片44係鄰設於下擴散臈片43之上,上擴散膜片45則位 於稜鏡片44之上。 由於背光模組4之光源41所發出之光線,通過下擴 散膜片43後即成為一面光源,因此,光學修飾物可設置 於下擴散膜片43之一出光面431或者設置於稜鏡片44以 上擴政膜片45之任一表面上。本實施例中,係以光 予修饰物為一圖案層(例如為網狀、格狀或蜂窩狀)G形 成於下擴散膜片43之一出光面,利用圖案之高低段差來 影響使用者斜看時的光學特性。 1·^·^施例 睛再參照圖5,除了背光模組3之外,光學修飾物也 可同時設置於液晶顯示面板5中’或者是只設置於液晶顯 不面板5中。其中,光學修飾物可為一光吸收物質或一光 反射物質’或是,光學修飾物也可以形成或摻雜於一光學 修飾膜片。由於習知技術中,對於液晶顯示面板5已有許 多不同的結構設計,以下係以一常見的液晶顯示面板5為 例’來說明光學修飾物所設置的位置。需注意者,以下所 14 200900741 列舉之液晶顯示面板5 ’並不會限制本發明中具有光學予良 飾物之液晶顯示面板5態樣。 請參照圖8 ’液晶顯示面板5主要包含一下偏光片 (Lower P〇larizer) 5卜一薄膜電晶體基板52、一液晶層 53、一彩色濾光片基板54、一上偏光片(Upper p〇larizer) '55以及複數間隔子(Spacers) 56 〇 下偏光片51及上偏光板55之偏光軸則相互正 交且分別設置於薄膜電晶體基板52的一側及彩色渡 ’ 光片基板54的一側。薄膜電晶體基板52係至少具 有一玻璃基板521、複數個晝素電極522以及一第一 配向膜523。彩色濾光片基板54係具有另一玻璃基 板541、複數不同顏色的濾光層542、一對向電極 以及一第二配向膜544。複數間隔子56係設置於薄 膜電晶體基板52及彩色濾光片基板54之間,以形 成一液晶容置空間,液晶分子則充填於液晶容置空 間,並形成液晶層53。而各個濾光層542係分別盥 各,晝素電極522相對應。另外,第一配向膜52'3 及第二配向膜5料係設置於液晶層53之二側,以協 • 助液晶分子排列。 &於射至液晶顯示面板5之光線已形成_面光源,因 此,光學修飾物或具有光學修鋅物之光學修飾膜片只要設 置、摻雜或形成於液晶顯示面板5中,或設置、形成於液 晶顯不面板5之一出光面或-入光面即可。舉例來說,光 學修飾物可設置或形成於上下偏光片55、51、第―配向膜 15 200900741 523、第二配向膜544、薄膜電晶體基板52之玻璃基板 521、間隔子56、彩色濾光片基板54之玻璃基板541以及 彩色濾、光片基板54之遽光層542等之任一表面至少其中 之一。或者,可摻雜於上下偏光片55、51、第一配向膜 523、第二配向膜544、薄膜電晶體基板52之玻璃基板 _ 521、間隔子56、彩色濾光片基板54之玻璃基板541以及 彩色遽光片基板54之濾光層542中之一紅色光阻、一綠 色光阻或一藍色光阻至少其中之一。另外,光學修飾膜片 則可設置於下偏光片51、薄膜電晶體基板52、彩色濾光 片基板54以及上偏光片55至少其中之一的一側。 本實施例中,係以光學儀器斜視量測圖5之液晶顯示 裝置2時,液晶顯示裝置2係偏藍為例。光學修飾物可摻 雜於彩色濾光片基板54之藍色光阻(濾光層542)中。由於 液晶顯示裝置2係偏藍,因此光學修飾物可為一光吸收物 質(例如為深色或藍色染料顏料),或一光反射物質摻雜於 藍色光阻中,以降低通過藍色光阻之光線的比例,進而增 ' 強其他顏色光線的比例。 第四實施例 - 請參照圖9,其係為光學修飾物位於液晶顯示面板5’ 中之另一態樣。光修飾物除了可以摻雜在彩色濾光片基板 54之濾光層542 (如圖8所示)之外,本實施例中,光學 修飾物可以是一具有光學修飾物之保護層M’,且以位於上 偏光片55之一出光面為例,而濾光層542’則可不具有光 學修飾物。如此一來,保護層M’可保護上偏光片55,避 16 200900741 免上偏光片55被刮傷。 綜上所述,依本發明之一種液晶顯示裝置係具有光學 修飾物,其位於液晶顯示裝置中背光模組的光源所發出的 光線形成一面光源以後至使用者之間的位置。與習知技術 相比,本發明之液晶顯示裝置由於具有光學修飾物,其係 ' 可設置於背光模組的光源所發出的光線形成面光源以後 至使用者之間的複數元件的任一表面;或是摻雜或形成一 圖案層於面光源至使用者之間的複數元件中;亦或是摻雜 或形成於一光學修飾膜片中,並將光學修飾膜片設置於面 光源至使用者之間。由於光學修飾物為一光吸收物質或為 一光反射物質,且其色度差值與俯:角呈正相關,因此液晶 顯示裝置原本具有的色偏現象會因為光修飾物之設置而 減少,進而增進液晶顯示裝置的品質。 以上所述僅為舉例性,而非為限制性者。任何未脫離 本發明之精神與範疇,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 【圖式簡單說明】 - 圖1為一種習知技術中之一種液晶顯示面板之一示意 圖; 圖2為習知技術中液晶顯示面板中,光線通過液晶層 而造成光程差之一示意圖; 圖3為習知液晶顯示裝置中,色度差值與俯角的關係 圖; 17 200900741 圖4為依據本發明之液晶顯示裝置,來定義使用者之 觀看位置所對應之俯角及方位角的一示意圖; 圖5為依據本發明之液晶顯示裝置之背光模組及液晶 顯示面板之一示意圖; 圖6為依據本發明第一實施例之液晶顯示裝置之背光 模組之一示意圖,其中光學修飾物係位於一直下式背光模 組; 圖7為依據本發明第二實施例之液晶顯示裝置之背光 模組之一示意圖,其中光學修飾物係位於一側光式背光模 組; 圖8為依據本發明第三實施例之液晶顯示裝置之液晶 顯示面板一示意圖,其中光學修飾物係位於液晶顯示面板 之光阻中;以及 圖9為依據本發明第四實施例之液晶顯示裝置之液晶 顯示面板一示意圖,其中光學修飾物係位於上偏光片之一 出光面。 【主要元件符號說明】 I、 5、5 ’ :液晶顯示面板 II、 51 :下偏光片 12、 52 :薄膜電晶體基板 121、 141、521、541 :玻璃基板 122、 522 :晝素電極 13、 53 :液晶層 18 200900741 14、 54 :彩色濾光片基板 142、 542、542’ :濾光層 143、 543 :對向電極 15、 55 :上偏光片 2 :液晶顯示裝置 ' 3、4、B :背光模組 31、41 :光源 32:擴散元件 321 :擴散板 321a、424、431 :出光面 322、 45 :上擴散膜片 323、 43 :下擴散膜片 33、44 :棱鏡片 42 :導光板 421 :入光面 422 :底面 423 :印刷網點 523 :第一配向膜 .544 :第二配向膜 56 :間隔子 G :圖案層 LI、L2 :光線 Μ:光學修飾膜片 Μ’ :保護層 19 200900741 pi :第一位置 P2 :第二位置 Θ、Θ !、Θ 2 :俯角 Φ、Φΐ、Φ2 :方位角 δρι、δρ2 .光程差The optical Diffusing Sheet 322 and the lower diffusion film 323, and the backlight module 3 further includes a Prism Sheet 33, and the lower diffusion film 323, the cymbal 33 and the upper diffusion film 322 are sequentially disposed. Above the diffusion plate 321 . The bake piece 33 can be a brightness enhancement film or a reflective polarizing brightness enhancement film (DBEF). The optical modification may be disposed on one of the light-emitting surfaces 321a of the diffusion plate 321 or on either of the lower diffusion film 323, the gusset 33, and the upper diffusion film 322. The optical modification may also be doped to at least one of the lower diffusion film 323, the cymbal 33 and the upper diffusion film 322, so that the lower expansion film 323 'the prism sheet 33 and the upper diffusion film 322 are an optical Repair things. Alternatively, the optical modifier can form a layer (using the height difference of the pattern to affect the optical properties when viewed obliquely) or a flat layer. Furthermore, the optical modification may also be formed or doped on an optically modified film M, and the optical 12 200900741 modified film defect is located on one of the light-emitting sides of the diffusion plate 321 or the lower diffusion film 323, the cymbal 33 and the upper Any position between the diffusion film months 322 or one of the upper diffusion film sheets 322 on the light exit side. In addition, the optically modified film is a light-transmissive film which is made of polycarbonate (Polycarbonate, PC), polystyrene (PS), methyl methacrylate-Methly- methacrylate-Styrene, MS), Polymethly Methacrylate (PMMA), Poly Ethylene Terephthalate (PET) or glass. It should be noted that the thickness of the optically modified or optically modified film Μ is less than or equal to 2.5 mm. In the present embodiment, the liquid crystal display device of Fig. 5 is measured by squinting optical instruments for 2 days, and the light emitted by the liquid crystal display device 2 is yellowish light as an example. The optical modification is doped in an optically modified film M, and the optically modified film is attached to one of the light-emitting sides of the diffusion plate 321 . Since the liquid crystal display device 2 is yellowish, the optical modification may be a yellow light absorbing material such as a doped blue or cyan pigment to reduce the ratio of the liquid crystal display device to s 2 + yellow light. In this way, when the user obliquely looks at the liquid crystal display device 2, the depression angle is larger and larger, and the light rays passing through the optically modified film sheet are also blue or cyan pigment particles, and the chromaticity difference between the light and the modifier is The depression angle is positively correlated, so it can reduce the phenomenon of two-light deviation. It should be noted that the optically modified diaphragm Μ can also be placed at the same time; more than one place, in this embodiment, is set in one place as an example. In the second embodiment, the optical modifier is also exemplified by the moonlight module located in the liquid crystal display device 2, except that the backlight module and the group 4 system 13 200900741 of the present embodiment are one-side optical type. Backlight module. As shown in FIG. 7, the backlight module 4 includes a light source 41, a light guide plate (LGp) 42, a lower diffusion film 43, a prism lens 44, and an upper diffusion film 45. The light source 41 is disposed adjacent to the light incident surface 421 of the light guide plate 42. The light guide plate 42 has a plurality of printed dots 423 on the bottom surface 422 thereof, and the printing mesh point 423 has the function of scattering light. The lower diffusion film 43 is disposed adjacent to one of the light-emitting surfaces 424 of the light guide plate 42, and the stencil 44 is disposed adjacent to the lower diffusion slab 43 and the upper diffusion film 45 is positioned above the slab 44. Since the light emitted by the light source 41 of the backlight module 4 passes through the lower diffusion film 43 and becomes a light source, the optical modification can be disposed on one of the light-emitting surfaces 431 of the lower diffusion film 43 or above the silicon wafer 44. On either surface of the expansion membrane 45. In this embodiment, the light pre-modification is a pattern layer (for example, a mesh, a grid or a honeycomb) G is formed on one of the light-emitting surfaces of the lower diffusion film 43, and the height difference of the pattern is used to affect the user's inclination. The optical characteristics of the time. 1·^·^ Example In addition to Fig. 5, in addition to the backlight module 3, the optical modification may be simultaneously disposed in the liquid crystal display panel 5 or only in the liquid crystal display panel 5. Wherein, the optical modification may be a light absorbing material or a light reflecting material' or the optical modification may be formed or doped to an optically modified film. Since there are many different structural designs for the liquid crystal display panel 5 in the prior art, the position of the optical modifier is explained by taking a conventional liquid crystal display panel 5 as an example. It should be noted that the liquid crystal display panel 5' listed in the following 14 200900741 does not limit the aspect of the liquid crystal display panel 5 having the optical decorative article in the present invention. Please refer to FIG. 8 'The liquid crystal display panel 5 mainly includes a lower polarizer (Lower P〇larizer), a thin film transistor substrate 52, a liquid crystal layer 53, a color filter substrate 54, and an upper polarizer (Upper p〇). Larizer) '55 and a plurality of spacers 56 The polarization axes of the underarm polarizer 51 and the upper polarizer 55 are orthogonal to each other and are respectively disposed on one side of the thin film transistor substrate 52 and the color of the optical substrate 54 One side. The thin film transistor substrate 52 has at least one glass substrate 521, a plurality of halogen electrodes 522, and a first alignment film 523. The color filter substrate 54 has another glass substrate 541, a plurality of filter layers 542 of different colors, a pair of electrodes, and a second alignment film 544. The plurality of spacers 56 are disposed between the thin film transistor substrate 52 and the color filter substrate 54 to form a liquid crystal accommodating space, and the liquid crystal molecules are filled in the liquid crystal accommodating space to form the liquid crystal layer 53. The respective filter layers 542 are respectively associated with each other, and the halogen electrodes 522 correspond to each other. In addition, the first alignment film 52'3 and the second alignment film 5 are disposed on both sides of the liquid crystal layer 53 to assist in aligning the liquid crystal molecules. The light that is incident on the liquid crystal display panel 5 has formed a _ surface light source. Therefore, the optical modification or the optically modified film having the optical chrome-plated material may be disposed, doped or formed in the liquid crystal display panel 5, or provided, It may be formed on one of the light-emitting surface or the light-incident surface of the liquid crystal display panel 5. For example, the optical modification may be disposed or formed on the upper and lower polarizers 55, 51, the first alignment film 15 200900741 523, the second alignment film 544, the glass substrate 521 of the thin film transistor substrate 52, the spacer 56, and the color filter. At least one of the surface of the glass substrate 541 of the sheet substrate 54 and the color filter layer 542 of the color filter, the light sheet substrate 54, and the like. Alternatively, the glass substrate 541 may be doped to the upper and lower polarizers 55, 51, the first alignment film 523, the second alignment film 544, the glass substrate 521 of the thin film transistor substrate 52, the spacer 56, and the color filter substrate 54. And at least one of a red photoresist, a green photoresist or a blue photoresist in the filter layer 542 of the color slab substrate 54. Further, the optically modified film may be disposed on one side of at least one of the lower polarizer 51, the thin film transistor substrate 52, the color filter substrate 54, and the upper polarizer 55. In the present embodiment, when the liquid crystal display device 2 of Fig. 5 is measured obliquely by an optical instrument, the liquid crystal display device 2 is exemplified by bluish color. The optical modifier can be incorporated into the blue photoresist (filter layer 542) of the color filter substrate 54. Since the liquid crystal display device 2 is bluish, the optical modification may be a light absorbing material (for example, a dark or blue dye pigment), or a light reflecting substance is doped in the blue photoresist to reduce the passage of the blue photoresist. The proportion of the light, which in turn increases the proportion of light in other colors. Fourth Embodiment - Please refer to Fig. 9, which is another aspect in which the optical modifier is located in the liquid crystal display panel 5'. The optical modification may be a protective layer M' having an optical modification, in this embodiment, except that the light modification may be doped on the filter layer 542 of the color filter substrate 54 (as shown in FIG. 8). The light-emitting surface of one of the upper polarizers 55 is exemplified, and the filter layer 542' may not have an optical modifier. As a result, the protective layer M' protects the upper polarizer 55 from the damage of the polarizer 55. In summary, a liquid crystal display device according to the present invention has an optical modification in which the light emitted by the light source of the backlight module in the liquid crystal display device forms a position between the light source and the user. Compared with the prior art, the liquid crystal display device of the present invention has an optical modification, which can be disposed on any surface of a plurality of components between the light source formed by the light source of the backlight module and the surface light source to the user. Or doping or forming a pattern layer in a plurality of elements between the surface light source and the user; or doping or forming in an optically modified film, and placing the optically modified film on the surface light source to use Between the people. Since the optical modifier is a light absorbing material or a light reflecting material, and the chromaticity difference is positively correlated with the tilt angle, the color shift phenomenon originally possessed by the liquid crystal display device is reduced due to the setting of the light modifier, and further Improve the quality of liquid crystal display devices. The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the present invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a liquid crystal display panel in a conventional technique; FIG. 2 is a schematic view showing a light path difference caused by light passing through a liquid crystal layer in a liquid crystal display panel of the prior art; 3 is a relationship diagram of a chromaticity difference value and a depression angle in a conventional liquid crystal display device; 17 200900741 FIG. 4 is a schematic view showing a liquid crystal display device according to the present invention, which defines a depression angle and an azimuth angle corresponding to a viewing position of a user; 5 is a schematic diagram of a backlight module and a liquid crystal display panel of a liquid crystal display device according to the present invention; FIG. 6 is a schematic diagram of a backlight module of a liquid crystal display device according to a first embodiment of the present invention, wherein an optical modification system is located FIG. 7 is a schematic diagram of a backlight module of a liquid crystal display device according to a second embodiment of the present invention, wherein the optical modification is located on one side of the backlight module; FIG. 8 is in accordance with the present invention. A schematic diagram of a liquid crystal display panel of a liquid crystal display device of the third embodiment, wherein the optical modification is located in the photoresist of the liquid crystal display panel; and FIG. 9 is According to a fourth embodiment of the present invention, a liquid crystal display panel embodiment of a schematic diagram of the liquid crystal display device, wherein one of the optical system was modified polarizer located on the surface. [Description of main component symbols] I, 5, 5 ': liquid crystal display panel II, 51: lower polarizer 12, 52: thin film transistor substrate 121, 141, 521, 541: glass substrate 122, 522: halogen electrode 13, 53: liquid crystal layer 18 200900741 14, 54: color filter substrates 142, 542, 542': filter layers 143, 543: opposite electrodes 15, 55: upper polarizer 2: liquid crystal display device '3, 4, B : backlight module 31, 41: light source 32: diffusing element 321: diffusing plates 321a, 424, 431: light emitting surface 322, 45: upper diffusing film 323, 43: lower diffusing film 33, 44: prism sheet 42: guiding Light plate 421: light incident surface 422: bottom surface 423: printing dot 523: first alignment film .544: second alignment film 56: spacer G: pattern layer LI, L2: light ray: optically modified film Μ ': protective layer 19 200900741 pi : First position P2 : Second position Θ, Θ !, Θ 2 : Depression angle Φ, Φ ΐ, Φ2 : Azimuth angle δρι, δρ2. Optical path difference

An :液晶分子複折射率的差值 20An : difference in complex refractive index of liquid crystal molecules 20

Claims (1)

200900741 十、申請專利範圍: 1. 一種液晶顯示裝置,包含一光學修飾物,其特徵在於: 於該液晶顯示裝置之一正視位置,其俯角㊀〗為0产, 方位角叫介於0〜360度,量測該光學修飾物得—第 一色度座標,而於該液晶顯示裝置之一偏移位置,其 俯角㊀2大於等於30度,其方位角%介於〇〜36〇度, 量測該光學修飾物得一第二色度座標,其中該第一&色 度座標與該第二色度座標之一色度差值係大於等於 0.005。 ' 2.如申請專利範圍第1項所述之液晶顯示裝置,其中該第 色度座標為(Xl,yi),該第二色度座標為(X2, y2), 该色度差值s義為^f(x2 -x^ + (y2 〇 3. =申請專利範圍第i項所述之液晶顯示ι置,其中於一 第二偏移位置,其俯角63大於等於60度,其方位角% 介於〇〜3 60度,量測該光學修飾物得—第三色度座標, 其中該第-色度座標與該第三色度 值係大於等於0.02。 色度差 4. 如申請專利範圍第1項所述之液晶顯示裝置,其中含該 方位角為固定,該色度差值係無俯角呈正相關。田< 5. 如申請專職圍第丨項所述之液晶顯示裝置,其中該光 21 200900741 學修飾物係為一光吸收物質或一光反射物質。 6.如申請專利範圍第1項所述之液晶顯示裝置,其中該光 學修飾物之厚度係小於等於2.5mm。 '7.如申請專利範圍第1項所述之液晶顯示裝置,更包含一 背光模組,該背光模組具有一擴散元件,該光學修飾物 係位於該擴散元件之一出光面至一使用者之間。 8.如申請專利範圍第1項所述之液晶顯示裝置,更包含一 光學修飾膜片及一背光模組,其中該光學修飾物係形成 或摻雜於該光學修飾膜片,該光學修飾膜片係位於該背 光模組内。 9. 如申請專利範圍第7項所述之液晶顯示裝置,其中該光 學修飾膜物係為一圖案層或一平坦層。 10. 如申請專利範圍第7項所述之液晶顯示裝置,其中該擴 散元件係具有一擴散板,該光學修飾物係設置於該擴散 板之該出光面。 11. 如申請專利範圍第7項所述之液晶顯示裝置,其中該擴 散元件係具有一擴散膜片,該光學修飾物係設置於該擴 散膜片之一表面或摻雜於該擴散膜片内。 22 200900741 12·如申請專利範圍第7項所述之液晶㈣裝置’其中該背 先模組係具有-稜鏡片,該光學修飾物係設置於該稜鏡 片之一表面或摻雜於該稜鏡片内。 13·如申請專利範圍第7項所述之浪晶顯7^裝置’其中&月 . 光模組係具有-反射式偏光增亮片’該光學修飾物係設 置於該反射式偏光增亮片之〆表面或摻雜於該反射式 偏光增亮片内。 14.如申請專利範圍第1項所述之液晶顯示裝置,更包含一 液晶顯示面板,其中該光學修飾物係设置、形成或換雜 於該液晶顯示面板。 15.如申請專利範圍第14項所述之液晶顯示裝置,其中該 光學修飾物係為一圖案層或一平坦層。 16. 如申請專利範圍第 、产曰郎_ $ 14項所述之液晶顯示裝置,其中該 液日日顯不面板係具, 該偏光片之-表心扁光片,該光學修倚物係設置於 面或摻雜於該偏光片内。 17. 如申請專利範圍第 液晶顯示面板係具有„之液晶顯示裝置,其中該 於該玻璃基板之1麵基板,該絲修傅物係設置 面或摻雜於該玻璃基板内。 23 200900741 18. 如申請專利範圍第17項所述之液晶顯示裝置,其中該 玻璃基板係為一薄膜電晶體基板之玻璃基板或一彩色 濾光片基板之玻璃基板。 19. 如申請專利範圍第14項所述之液晶顯示裝置,其中該 * 液晶顯示面板係具有一彩色濾光片基板,該光學修飾物 係設置於該彩色滤光’片基板之一濾·光層表面或換雜於 該濾光層之一紅色光阻、一綠色光阻或一藍色光阻内。 20. 如申請專利範圍第14項所述之液晶顯示裝置,其中該 液晶顯示面板係具有一配向膜,該光學修飾物係設置於 該配向膜之一表面或摻雜於該配向膜内。 21. 如申請專利範圍第14項所述之液晶顯示裝置,其中該 液晶顯示面板係具有複數間隔子,該光學修飾物係位於 該間隔子之外表面或摻雜於該間隔子内。 22. 如申請專利範圍第1項所述之液晶顯示裝置,更包含一 . 液晶顯示面板及一光學修飾膜片,其中該光學修飾物係 _ 形成或摻雜於該光學修飾膜片,該光學修飾膜片係設置 於該液晶顯示面板。 23. 如申請專利範圍第22項所述之液晶顯示裝置,其中該 光學修飾膜物係為一圖案層或一平坦層。 24 200900741 24.如申請專利範圍第22項所述之液晶顯示裝置,其中該 光學修飾膜片係設置於該液晶顯示面板之一入光面或 一出光面。 — 25.如申請專利範圍第22項所述之液晶顯示裝置,其中該 液晶顯示面板係包含一偏光片及一玻璃基板,該光學修 飾膜片係設置於該偏光片或該玻璃基板之一側。 25200900741 X. Patent application scope: 1. A liquid crystal display device comprising an optical modification, characterized in that: in a front view position of the liquid crystal display device, the depression angle is 0, and the azimuth angle is between 0 and 360. Degree, measuring the optical modifier to obtain a first chromaticity coordinate, and at an offset position of the liquid crystal display device, the depression angle of 2 is greater than or equal to 30 degrees, and the azimuth angle is between 〇~36〇, measurement The optical modifier has a second chromaticity coordinate, wherein a chromaticity difference between the first & chromaticity coordinate and the second chromaticity coordinate is greater than or equal to 0.005. 2. The liquid crystal display device of claim 1, wherein the first chromaticity coordinate is (X1, yi), and the second chromaticity coordinate is (X2, y2), the chromaticity difference s ^f(x2 -x^ + (y2 〇3. = the liquid crystal display ι described in the scope of claim i, wherein at a second offset position, the depression angle 63 is greater than or equal to 60 degrees, the azimuth % thereof Between 〇~3 60 degrees, measuring the optical modifier to obtain a third chromaticity coordinate, wherein the first chromaticity coordinate and the third chromaticity value are greater than or equal to 0.02. The chromaticity difference is 4. The liquid crystal display device of claim 1, wherein the azimuth angle is fixed, and the chromaticity difference is positively correlated without a depression angle. 5. The liquid crystal display device according to the application of the full-time item, wherein The liquid crystal display device of claim 1, wherein the thickness of the optical modifier is less than or equal to 2.5 mm. The liquid crystal display device of claim 1, further comprising a backlight module, the backlight module The liquid crystal display device of the first aspect of the present invention further comprises an optically modified film and a light-emitting surface. The backlight module, wherein the optical modification is formed or doped on the optically modified film, and the optically modified film is disposed in the backlight module. 9. The liquid crystal display device according to claim 7, The liquid crystal display device of claim 7, wherein the diffusing element has a diffusing plate, and the optical modifying device is disposed on the liquid crystal display device. The liquid crystal display device of claim 7, wherein the diffusion element has a diffusion film disposed on a surface of the diffusion film or doped The liquid crystal (four) device of the seventh aspect of the invention, wherein the back module has a cymbal, the optical modification is disposed in the film One surface of the lens or is doped into the cymbal. 13· As described in the scope of claim 7 of the wave crystal display 7^ device 'where & month. The optical module has a reflective polarizing brightening sheet' The liquid crystal display device is further disposed on the surface of the reflective polarizing plate or is doped in the reflective polarizing plate. The liquid crystal display device according to claim 1, further comprising a liquid crystal display panel. The optical modification is provided, formed or replaced with the liquid crystal display panel. The liquid crystal display device of claim 14, wherein the optical modification is a pattern layer or a flat layer. 16. The liquid crystal display device of claim 1, wherein the liquid exhibits a panel, the polarizer of the polarizer, the optical flat, the optical repair system It is disposed on the surface or doped in the polarizer. 17. The liquid crystal display panel of the patent application scope has a liquid crystal display device in which the one surface substrate of the glass substrate is disposed or doped in the glass substrate. 23 200900741 18. The liquid crystal display device of claim 17, wherein the glass substrate is a glass substrate of a thin film transistor substrate or a glass substrate of a color filter substrate. 19. As described in claim 14 a liquid crystal display device, wherein the liquid crystal display panel has a color filter substrate, and the optical modification is disposed on a surface of the filter/light layer of the color filter 'sheet substrate or is replaced with the filter layer The liquid crystal display device of claim 14, wherein the liquid crystal display panel has an alignment film, and the optical modification is disposed on the liquid crystal display device. The surface of one of the alignment films is doped or doped in the alignment film. The liquid crystal display device of claim 14, wherein the liquid crystal display panel has a plurality of intervals The optical modification is located on the outer surface of the spacer or is doped in the spacer. 22. The liquid crystal display device according to claim 1, further comprising: a liquid crystal display panel and an optically modified film a liquid crystal display device according to claim 22, wherein the optically modified film is formed or doped with the optically modified film, wherein the optically modified film is disposed on the liquid crystal display panel, wherein the liquid crystal display device of claim 22, wherein The optically modified film is a pattern layer or a flat layer. The liquid crystal display device of claim 22, wherein the optically modified film is disposed in one of the liquid crystal display panels. The liquid crystal display device of claim 22, wherein the liquid crystal display panel comprises a polarizer and a glass substrate, and the optically modified film is disposed on the polarizer or One side of the glass substrate. 25
TW96123914A 2007-06-29 2007-06-29 Liquid crystal display device TWI364556B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96123914A TWI364556B (en) 2007-06-29 2007-06-29 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96123914A TWI364556B (en) 2007-06-29 2007-06-29 Liquid crystal display device

Publications (2)

Publication Number Publication Date
TW200900741A true TW200900741A (en) 2009-01-01
TWI364556B TWI364556B (en) 2012-05-21

Family

ID=44721456

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96123914A TWI364556B (en) 2007-06-29 2007-06-29 Liquid crystal display device

Country Status (1)

Country Link
TW (1) TWI364556B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI724763B (en) * 2020-01-21 2021-04-11 恆顥科技股份有限公司 Display module

Also Published As

Publication number Publication date
TWI364556B (en) 2012-05-21

Similar Documents

Publication Publication Date Title
US10802306B2 (en) Viewing angle switchable device and viewing angle switchable display module
JP4122808B2 (en) Liquid crystal display device and electronic device
US8558970B2 (en) Display unit
KR20020024547A (en) Method for fabricating a laminate film, laminate film, and method for fabricating a display device
TW201142422A (en) Liquid crystal display
KR20140065704A (en) Polarizer and liquid crystal display using the same
US20120154712A1 (en) Liquid crystal display device and backlight module thereof
US20090122226A1 (en) Liquid Crystal Display Device and Mobile Station Having the Same
TW201243456A (en) Backlight device
WO2010047144A1 (en) Liquid crystal display apparatus
KR20080001504A (en) Liquid crystal display device and the fabrication method thereof
WO2016049959A1 (en) Liquid crystal display device
TW200424628A (en) LCD apparatus and electronic machine
JP2009059498A (en) Lighting device and liquid crystal display device
WO2018176601A1 (en) Transflective liquid crystal display apparatus
CN108287423B (en) Curved surface liquid crystal display
US20070047111A1 (en) Prism sheet and backlight unit employed in a liquid crystal display
KR100989046B1 (en) Optical Sheet, Back Light Unit And Liquid Crystal Display Device Comprising The Same
TWI390302B (en) Back light module and optical device using the same
CN110873979A (en) Liquid crystal display device having a plurality of pixel electrodes
KR100880217B1 (en) A Back light
KR101331814B1 (en) Polariation sheet and lliquid crystal display device having therof
TW200900741A (en) Liquid crystal display device
KR20140141304A (en) Light guide plate having rounded polyggon pattern and liquid cyrstal display device having thereof
CN109212817B (en) Wide viewing angle display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees