TW200900458A - Methods of preparing polymer-organoclay composites and articles derived therefrom - Google Patents

Methods of preparing polymer-organoclay composites and articles derived therefrom Download PDF

Info

Publication number
TW200900458A
TW200900458A TW96136622A TW96136622A TW200900458A TW 200900458 A TW200900458 A TW 200900458A TW 96136622 A TW96136622 A TW 96136622A TW 96136622 A TW96136622 A TW 96136622A TW 200900458 A TW200900458 A TW 200900458A
Authority
TW
Taiwan
Prior art keywords
polymer
solvent
mixture
organic
group
Prior art date
Application number
TW96136622A
Other languages
Chinese (zh)
Inventor
Kwok Pong Chan
John Lester Maxam
Sarah Elizabeth Genovese
Tara J Mullen
Erik C Hagberg
Roy Ray Odle
David Bruce Hall
Albert Santo Stella
James Mitchell White
Original Assignee
Sabic Innovative Plastics Ip
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/766,456 external-priority patent/US7928154B2/en
Application filed by Sabic Innovative Plastics Ip filed Critical Sabic Innovative Plastics Ip
Publication of TW200900458A publication Critical patent/TW200900458A/en

Links

Abstract

A method for preparing a polymer-organoclay composite composition comprises combining a solvent and an unexfoliated organoclay to provide a first mixture, wherein the unexfoliated organoclay comprises alternating inorganic silicate layers and organic layers, and has an initial spacing between the silicate layers; exposing the first mixture to an energized condition of a sufficient intensity and duration to increase the initial spacing of the inorganic silicate layers, to provide a second mixture; contacting the second mixture with a polymer composition so that the polymer composition fills at least one region located between at least one pair of silicate layers, wherein the polymer composition is at least partially soluble in the solvent; and removing at least a portion of the solvent from the second mixture, wherein the inorganic silicate layers remain separated by the polymer after removal of the solvent.

Description

200900458 九、發明說明 相關申請案之交互參照 本申請案主張於審理中於2006年6月26日申請的美 國臨時專利申請案號60/805,82 1和於2007年6月20曰 申請的美國臨時專利申請案號60/945,1 50之優先權;該 兩件申請案係全部納入本文作爲參考。 【發明所屬之技術領域】 本發明有關製備聚合物-有機黏土複合材料之方法及 該等複合材料之用途,例如於形成溶劑流延膜上之用途。 本發明亦揭示一種包含聚醯亞胺之溶劑流延膜和製造該等 物件之方法。薄膜係藉由二酐成分和二胺成分之聚合作用 形成且具有介於180°C和450°C之間,特別是19(TC或更 大的Tg,且其中該薄膜具有:a)小於7〇 ppm/°C,特別 是小於60 ppm/°C之CTE ; b)介於0.1微米和250微米之 間’特別是5至2 5 0微米的厚度;及,c )包含小於5重 量%殘餘溶劑。 【先前技術】 發明背景 熱塑性片材和薄膜具有廣泛的應用範圍。例如,熱塑 性薄膜和片材可發現應用於汽車應用、電子應用、軍事應 用、用具、工業設備及家具。 薄膜的一個重要用途爲作爲基板或軟性電路應用上之 -5- 200900458 塗層。爲了充當此角色,新穎薄膜應符合二個軟性電路基 板之決定性需求,即低熱脹係數(CTE )和高溫度殘存性 (特別是當採用高溫步驟時)。 低CTE必須符合(儘可能接近地)銅之CTE ( CTE = 17 PPm/°C )。當薄膜爲一種用於銅層之基板或銅電路佈 線(circuit traces )時,此低CTE阻止薄膜在溫度改變化 時捲曲。低CTE也防止在熱循環時銅和基板層之間的尺 寸之不相符合的改變,其因減少應力和圖案化銅佈線之疲 勞而增加最終軟性電路板之壽命。換句話說,當軟性電路 板之薄膜基板和外加傳導性金屬層以相同速率膨脹和收縮 時,對軟性電路板之性質是有益的。當這些層不以相同的 比率膨脹和收縮時,關於黏著和該等層之定向的爭議可且 確實出現。而小於70 ppm/°C,特別是小於60 ppm/°C, 甚至更特別是小於30 ppm/t之CTE將允許熱循環時之低 翹曲且爲通常目標,當薄膜之CTE變得接近銅之CTE時 將達成較佳結果。 CTE係以TMA或熱機械分析測試。薄膜樣品之尺寸 改變以溫度之函數測定,且自此改變的斜率計算CTE。典 型地’ C TE必須測量在軟性電路板加工期間預期看見薄膜 之溫度範圍。20至25〇°C的溫度範圍爲測定CTE之合理 溫度範圍。 高溫度殘存性也可爲基板薄膜在軟性電路板製造期間 焊接過程殘存之重要性質。對於新穎無鉛焊接方法,薄膜 應呈現在(例如)260 °C之高溫下短期殘存性。溫度殘存 200900458 性之標準試驗爲浮焊試驗(solder float test),其中小片 薄膜附著於軟木塞且在熔融焊料中浸漬ίο秒。然後移出 薄膜,抹去焊料,和檢查薄膜。如果有任何看得見的翹曲 或起泡,則薄膜試驗不及格。雖然此測試沒有標準厚度, 但可報告薄膜通過浮焊試驗之最小厚度。26 (TC和2 8 8 °c 之溫度分別爲鉛共熔和無鉛焊料之標準浮焊溫度。 軟性電路基板之低CTE和耐高溫需求已經由使用聚 醯亞胺膜處理。許多商業聚醯亞胺(PI)薄膜具有高玻璃 轉移溫度(大於350 °C)且可部分交聯,產生異常的溫度 殘存性。在這些薄膜中之聚合物分子當他們被製備時些微 地承受應力,導致聚合物分子之定向(alignment)和給 予PI薄膜低CTE。因爲薄膜從未見到材料的玻璃轉移溫 度(Tg )以上之溫度,所以應力從不能夠鬆弛且薄膜在軟 性製造溫度下尺寸安定。 當熱塑性片材和薄膜使用於逐漸增加地各種各樣的應 用時’熱塑性片材和薄膜需要可抵抗高溫經適當時段而沒 有實質上的降解增加。繼續需要具有:a)在70 ppm/〇c下 ’特別是在30 ppm/°C下且技術上儘可能接近銅之CTE的 CTE ;和b)高熱殘存性之薄膜。 【發明內容】 發明槪述 本發明關於製備聚合物-有機黏土複合材料之方法及 由該複合材料衍生之物件,例如熱塑性片材和薄膜。該等 200900458 片材和薄膜可供廣泛範圍之應用, 子應用、軍事應用、用具、工業設 在一體系中,一種製備聚合彩 成物之方法,其包含:合併一種丨 unexfoliated )有機黏土以提供第_ 剝離型有機黏土包含交替之無機矽 酸鹽層之間具有初間距;使第一種 和期間之激發條件下以增加無機矽 以提供第二種混合物;使第二種混 觸以使該聚合物組成物塡充至少一 層之間的區域,其中該聚合物組成 該溶劑中;及從第二種混合物中除 中在除去溶劑之後該無機矽酸鹽層 在另一體系中,一種製備聚名 組成物之方法包含:合倂一種溶劑 土以提供第一種混合物,其中該有 矽酸鹽層和有機層,及式(1)之2 R9 R*—Q—R10。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Priority of Provisional Patent Application No. 60/945, filed on Jan. 5, the entire disclosure of which is incorporated herein by reference. TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of preparing a polymer-organic clay composite and the use of such composite materials, for example, in forming a solvent cast film. The present invention also discloses a solvent cast film comprising polyimine and a method of making the same. The film is formed by polymerization of a dianhydride component and a diamine component and has a relationship between 180 ° C and 450 ° C, particularly 19 (TC or greater Tg, and wherein the film has: a) is less than 7 〇ppm/°C, especially CTE less than 60 ppm/°C; b) between 0.1 and 250 microns 'in particular 5 to 250 microns thickness; and, c) containing less than 5% by weight residual Solvent. [Prior Art] Background of the Invention Thermoplastic sheets and films have a wide range of applications. For example, thermoplastic films and sheets can be found in automotive applications, electronic applications, military applications, appliances, industrial equipment, and furniture. An important use of the film is as a substrate or flexible circuit application -5-200900458 coating. In order to play this role, the novel film should meet the decisive requirements of two flexible circuit substrates, namely low coefficient of thermal expansion (CTE) and high temperature residual (especially when high temperature steps are employed). The low CTE must meet (as close as possible) the CTE of copper (CTE = 17 PPm/°C). When the film is a substrate or copper circuit traces for a copper layer, this low CTE prevents the film from curling as the temperature changes. The low CTE also prevents inconsistent changes in the dimensions between the copper and substrate layers during thermal cycling, which increases the lifetime of the final flexible circuit board by reducing stress and fatigue of the patterned copper wiring. In other words, the properties of the flexible circuit board are beneficial when the film substrate of the flexible circuit board and the applied conductive metal layer expand and contract at the same rate. When these layers do not expand and contract at the same rate, controversy about the adhesion and orientation of the layers can and does occur. A CTE of less than 70 ppm/°C, especially less than 60 ppm/°C, and even more specifically less than 30 ppm/t will allow for low warpage during thermal cycling and is a common goal when the CTE of the film becomes close to copper. Better results will be achieved at CTE. CTE is tested by TMA or thermomechanical analysis. The change in size of the film sample is measured as a function of temperature and the slope of the change is calculated from the CTE. Typically, C TE must measure the temperature range in which the film is expected to be seen during processing of the flexible circuit board. The temperature range of 20 to 25 °C is a reasonable temperature range for determining CTE. The high temperature residual property can also be an important property of the substrate film remaining in the soldering process during the manufacture of the flexible circuit board. For novel lead-free soldering methods, the film should exhibit short-term residual properties at, for example, a high temperature of 260 °C. Temperature Residual The standard test for 200900458 is a solder float test in which a small piece of film is attached to a cork stopper and immersed in molten solder for 0.25 seconds. Then remove the film, wipe off the solder, and inspect the film. If there is any visible warpage or blistering, the film test fails. Although this test does not have a standard thickness, the minimum thickness of the film through the float welding test can be reported. 26 (TC and 2 8 8 °c are the standard float soldering temperatures for lead eutectic and lead-free solder respectively. The low CTE and high temperature requirements of flexible circuit substrates have been treated with polyimine membranes. Many commercial poly Amine (PI) films have high glass transition temperatures (greater than 350 ° C) and can be partially crosslinked, resulting in anomalous temperature remnants. The polymer molecules in these films are slightly stressed when they are prepared, resulting in polymers. The alignment of the molecules and the low CTE of the given PI film. Since the film never sees a temperature above the glass transition temperature (Tg) of the material, the stress can never be relaxed and the film is dimensionally stable at soft manufacturing temperatures. Materials and films are used in a wide variety of applications. 'The thermoplastic sheets and films need to be resistant to high temperatures for a suitable period of time without substantial degradation. Continue to need to have: a) at 70 ppm/〇c' special It is a CTE at 30 ppm/°C and technically as close as possible to the CTE of copper; and b) a film with high heat residual. SUMMARY OF THE INVENTION The present invention is directed to a method of making a polymer-organic clay composite and articles derived therefrom, such as thermoplastic sheets and films. The 200900458 sheets and films are available for a wide range of applications, sub-applications, military applications, appliances, and industrial systems, in a system for preparing polymeric colorants comprising: combining a 丨unexfoliated organic clay to provide The _ peel-off type organic clay comprises alternating initial inorganic citrate layers having an initial spacing; the first and the period of the excitation conditions are increased to increase the inorganic cerium to provide a second mixture; and the second mixing is made to The polymer composition is filled in a region between at least one layer, wherein the polymer constitutes the solvent; and from the second mixture, the inorganic silicate layer is in another system after removal of the solvent, and a preparation is performed The method of the composition comprises: combining a solvent soil to provide a first mixture, wherein the citrate layer and the organic layer, and the formula (1) 2 R9 R*-Q-R10

I R7 其中Q爲磷或氮;且R7、R8、R9 脂烴基、c5-c2Q環脂烴基、c2-c20 有機黏土另具有矽酸鹽層之間的初 暴露於激發條件下以形成第二種混 -8- 例如用於汽車應用、電 備及家具。 J -有機黏土複合材料組 容劑和一種非剝離型( -種混合物,其中該非 酸鹽層和有機層,且矽 混合物暴露於足夠強度 酸鹽層間之初間距,藉 合物與聚合物組成物接 個位在至少一對砂酸鹽 物係至少部分地溶解在 去至少部分之溶劑,其 保持被該聚合物分開。 Γ物-有機黏土複合材料 和一種非剝離型有機黏 機黏土包含交替之無機 3級有機陽離子 及R1()獨立地爲 芳族基或聚合物鏈’且 間距;使第一種混合物 合物,其中該激發條件 200900458 具有足夠強度和期間以產生有機黏土組成物的無機矽酸鹽 層間之初間距的淨增加;使第二種混合物與分開該無機矽 酸鹽層之聚醯亞胺接觸以形成第三種混合物,其中該聚醯 亞胺係至少部分地溶解在該溶劑中;及從第三種混合物中 除去至少部分之溶劑,其中除去溶劑之後該矽酸鹽層保持 被該聚合物分開。 另一製備聚合物-有機黏土複合材料之方法包含合倂 一種溶劑和一種非剝離型有機黏土以形成第一種混合物, 其中該有機黏土包含交替之無機矽酸鹽層和有機層且矽酸 鹽層之間具有初間距;使第一種混合物暴露於足夠強度和 期間之激發條件下以增加無機矽酸鹽層間之初間距,藉以 形成第二種混合物;使第一種或第二種混合物與聚合物前 驅物接觸;使聚合物前驅物聚合以形成聚合物;及從第二 種混合物中除去至少部分之溶劑,其中除去溶劑之後該無 機矽酸鹽層保持被該聚合物分開。 在另一體系中,一種製備聚合物-有機黏土複合材料 組成物之方法包含合倂溶劑、非剝離型有機黏土、二酐成 分及二胺成分以形成第一種混合物,其中該有機黏土包含 交替之無機矽酸鹽層和有機層且矽酸鹽層之間具有初間距 ;使第一種混合物暴露於足夠強度和期間之激發條件下以 增加無機矽酸鹽層間之初間距,藉以形成第二種混合物; 使二酐成分和二胺成分聚合以形成聚醯胺酸;及從聚醯胺 酸混合物除去至少部分之溶劑以提供聚醯亞胺,其中除去 溶劑之後該無機矽酸鹽層保持被該聚醯亞胺分開。 -9- 200900458 在另一體系中物件包含藉白 有機黏土複合材料。 發明之詳細說明 當熱塑性片材和薄膜使用於 時,將進行參考許多的被定義爲 數形式“一(a) ”、“一( an) ” 的指示物,除非文中另有清楚地 則本文中所使用之技術和科學的 一般所了解者相同的意義。使用 除了在操作例中或另有指示 和申請專利範圍之關於成分的量 數字或表示應了解爲以術語“約’ 表示存在所列成分之一或多種, 似成分一起。各種數字的範圍係 因爲這些範圍是連續的,所以它 之間的每一個値。除非明白地指 之各種數字範圍爲近似値。關於 圍的終點包括終點在內且可獨立 爲了本發明,“薄膜”爲一種 薄之熱塑性樹脂或其他材料的平 術語“流延”係指一種模製 impression)係藉由將流暢或溶 上且在該模子中或該片材上硬化 上述方法製備之聚合物- 下列說明和申請專利範圍 具有下列意義之術語。單 、和“該(the ) ”包括複數 指定。除非另有定義,否 術語具有與熟習該技藝者 標準命名法描述化合物。 之外,否則使用於說明書 、反應條件、等等的所有 ’修飾。術語“彼等之組合” 任意與一或多種未列之類 揭示於本專利申請案中。 們包括介於最小和最大値 示’否則本申請案所指定 相同成分或性質之所有範 地組合。 與其長度和寬度比較爲極 面區段。 :或形成方法,其中型( 融材料注入模子中或片材 或固化該材料而製造。 -10- 200900458 “溶劑流延膜”爲一種經由流體在形成成表面上流延以 形成片材或網且從流延流體中除去溶劑所形成之薄膜。 所有的AS TM試驗和數據係來自1991版之AS TM標 準年刊,除非另有指示。 “熱脹係數”爲單位體積的聚合物於固定壓力下溫度增 加1 °C之體積增加。爲了本發明,CTE測量係藉由使用5 °C/分鐘之熱升温速率的熱機械分析(TMA )進行。試樣 尺寸爲23毫米長x5毫米寛。試樣進行首先以5°C /分鐘加 熱率從0°C加熱至250°c和CTE値係在0.05牛頓之力下從 涵蓋30°C至2〇〇°C之溫度範圍的長度變化之斜率測定。 “化學抗性”爲固體材料抵抗因化學反應性或溶劑作用 之損害的能力,且可根據A S TM試驗D 5 4 3 - 0 6測定。 “介電常數”(介電常數(permittivity constant)): 任何二個帶電體之間有一種力(吸引或排斥),其係根據 電荷強度’ q 1和q2、帶電體之間的距離,r、和稱爲介電 常數(S )的分開帶電體之介質(介電)的特性改變。此 力以方程式:F = ql.q2/( e.r2)產生。 “撓曲模數”(撓曲模數(flex modulus))爲在彈性 界限內’試樣在三個點的靜態屈曲之最外纖維中的外加應 力對最外纖維中的計算應力之比率且可根據ASTM試驗 D790 或 D790M 湏fj 定。 撓曲強度(斷裂燒曲模數)爲進彳了二點負荷的試 棒之最外纖維中龜裂或斷裂瞬間的最大計算應力。ASTM 試驗D 7 90和D 790M廣泛地用於測量此性質。對於大多 -11 - 200900458 數的塑膠’撓曲強度通常實質上高於直(straight)抗拉 強度。 “玻璃轉移”爲一種當在非晶形聚合物或在部分結晶聚 合物之非晶形區從非常低溫度加熱到某範圍(各聚合物特 有的)時發生的可逆變化’其特徵在於從硬、玻璃或易碎 條件相當突然地改變至軟性或彈性條件。物理性質(例如 熱脹係數、比熱、和密度)通常以其溫度導數( derivatives )同時進行改變。在轉移期間,分子鏈(在低 溫下正常地盤繞、纏結、和不動)變成彼此自由旋轉和滑 過。 “玻璃轉移溫度”(Tg )爲大約在涵蓋玻璃轉移發生的 溫度範圍之中點。T g不明顯(像熔點),和在第二種性 質(例如隨特定體積之溫度或電或機械性質而改變速率) 中藉由隨升高溫度之改變檢測。而且,所觀察的Tg可隨 医I觀察而選擇之特定性質和根據實驗細節例如加熱速率或 電頻率而顯著地改變。所報告的Tg因此應被視爲一種評 估。最可靠的評估正常地從動態力學試驗(dynamic-mechanical test) 中之 損耗峰 或從膨 脹數據 獲得。 爲了本 發明,玻璃轉移溫度(Tg )係藉由ό曲線之最大點測定。 Tg也可藉由DSC (微差掃描熱量法)痕跡之反曲點( ASTM試驗D3 148 )測定。 “熔融溫度”(後文以其符號“Tm”識別)爲熱能在固體 材' 料中足以克服晶格中之分子間吸引力致使晶格崩潰和材 料變成液體,也就是其熔融的溫度。根據本發明之Tm係 -12- 200900458 根據ASTM試驗D3 148測量。 “熔融黏度”爲在熔融樹脂中之抗剪切性,定量爲 力除以在流動材料之任何點的剪率之商數。類似地定 長黏度,其應用於擠出物之拉製( drawing )。在聚 中’黏度不僅視溫度和較不強烈地視壓力而定,且也 應力(或剪率)之程度而定。爲了本發明,熔融黏度 據ASTM D3 8 3 5藉由毛細管流變測定時係於3 8 0°C測: “吸濕性”爲當材料暴露於指定濕度和溫度之氛圍 定時間間隔所吸收之水蒸汽。沒有存在用於此性 A STM試驗試驗。於5〇%相對濕度和藉由浸漬在水中 濕性係藉由增重測量。 “拉伸模數”或“彈性模數”爲材料的比例限制以下 稱拉應力對對應伸長之比率。有關的ASTM試驗爲 〇 “抗拉強度”爲在指定的溫度和在指定的拉伸率兩 拉伸的試樣所維持的最大標稱應力。當最大標稱應力 伏點發生時,其將被指定爲降伏點抗拉強度。當其在 發生時,其將被指定爲斷裂抗拉強度。塑膠之AS TM 爲D63 8 (公制,D63 8M )。抗拉強度之SI單位爲帕 (pascal) ( N/m2 )。 “有機黏土”係指一種已進行離子交換而以有機陽 置換金屬離子之奈米矽酸鹽(也稱爲奈米黏土)。本 使用之有機黏土包含了術語改質之有機改質奈米黏土 質奈米黏土、改質黏土、改質矽酸鹽、改質奈米矽酸 剪應 義伸 合物 視剪 如根 定。 中一 質之 的吸 的標 D638 端被 在降 斷裂 試驗 斯卡 離子 文所 、改 鹽、 -13- 200900458 奈米複合材料、和改質奈米塡充劑。 “改質劑”係指可與奈米黏土之金屬離子離子交換以形 成有機黏土的有機陽離子,包括聚合物有機陽離子。I R7 wherein Q is phosphorus or nitrogen; and R7, R8, R9 aliphatic hydrocarbon, c5-c2Q cycloaliphatic, c2-c20 organoclay additionally have an initial exposure between the citrate layers to form a second Hybrid-8 - for example for automotive applications, electrical equipment and furniture. J-organic clay composite compatibilizer and a non-peeling type (the mixture, wherein the non-salt layer and the organic layer, and the cerium mixture is exposed to a sufficient spacing between the layers of the acid salt, the polymer and the polymer composition The at least one pair of sulphate systems are at least partially dissolved in at least a portion of the solvent which remains separated by the polymer. The mash-organic clay composite and the non-peeling organic viscous clay comprise alternating An inorganic grade 3 organic cation and R1() are independently an aromatic or polymer chain 'and a spacing; a first mixture, wherein the excitation condition 200900458 has sufficient strength and period to produce an organic clay composition of inorganic cerium a net increase in the initial spacing between the acid salt layers; contacting the second mixture with a polyamidene separating the inorganic silicate layer to form a third mixture, wherein the polyamidene is at least partially dissolved in the solvent And removing at least a portion of the solvent from the third mixture, wherein the citrate layer remains separated by the polymer after removal of the solvent. The method of organic clay composite comprises combining a solvent and a non-peeling type organic clay to form a first mixture, wherein the organic clay comprises alternating inorganic silicate layers and an organic layer with an initial layer between the citrate layers a spacing; exposing the first mixture to a sufficient strength and period of excitation to increase the initial spacing between the inorganic bismuth silicate layers to form a second mixture; contacting the first or second mixture with the polymer precursor And polymerizing the polymer precursor to form a polymer; and removing at least a portion of the solvent from the second mixture, wherein the inorganic silicate layer remains separated by the polymer after removal of the solvent. In another system, a preparation The method of polymer-organic clay composite composition comprises a combined solvent, a non-peeling organic clay, a dianhydride component and a diamine component to form a first mixture, wherein the organic clay comprises alternating inorganic silicate layers and organic a layer having an initial spacing between the citrate layers; exposing the first mixture to a sufficient strength and period of excitation to increase An initial spacing between the inorganic silicate layers to form a second mixture; polymerizing the dianhydride component and the diamine component to form a poly-proline; and removing at least a portion of the solvent from the polyamid acid mixture to provide a polyimine The inorganic tellurite layer remains separated by the polyimine after removal of the solvent. -9- 200900458 In another system the article comprises a white organic clay composite. DETAILED DESCRIPTION OF THE INVENTION When thermoplastic sheets and films are used Reference will be made to a number of indicators that are defined in the form "a (a)" and "an", unless the context clearly dictates otherwise the technical and scientific knowledge used herein is the same. The use of quantity numbers or representations of ingredients in addition to those in the operating examples or the scope of the claims and claims should be understood to mean that one or more of the listed ingredients are present in the term "about". The range of various numbers is because each of these ranges is continuous, so each one between them. Unless explicitly indicated, the various numerical ranges are approximate. With respect to the endpoint of the circumference including the endpoint and independently for the present invention, the term "film" is a thin thermoplastic resin or other material. The term "casting" means a molding impression by smoothing or dissolving it. The polymer prepared by the above method is hardened in the mold or on the sheet - the following description and the scope of the patent application have the following meanings. Single, and "the" include plural designations. Unless otherwise defined, the term has a compound that is described in the standard nomenclature of those skilled in the art. In addition, all the 'modifications' used in the instructions, reaction conditions, and the like. The term "combination of any of these" is arbitrarily combined with one or more of those listed in the present patent application. They include all combinations of the same components or properties as specified in the minimum and maximum indications. It is compared to its length and width as a pole section. Or a forming method in which a type (a molten material is injected into a mold or a sheet or cured). -10-200900458 "Solvent cast film" is a type formed by casting a fluid on a surface to form a sheet or mesh. A film formed by removing solvent from a casting fluid. All ASTM tests and data are from the 1991 edition of the ASTM Standard, unless otherwise indicated. “Coefficient of expansion” is the temperature at a fixed pressure per unit volume of polymer. An increase in volume of 1 ° C was added. For the purposes of the present invention, CTE measurements were carried out by thermomechanical analysis (TMA) using a thermal ramp rate of 5 ° C/min. The sample size was 23 mm long x 5 mm 寛. First, the heating rate from 0 ° C to 250 ° C at a heating rate of 5 ° C / min and the CTE lanthanum are measured at a pressure of 0.05 Newton from the slope of the temperature range from 30 ° C to 2 ° C. Chemical resistance is the ability of a solid material to resist damage due to chemical reactivity or solvent action and can be determined according to ASTM Test D 5 4 3 - 0 6. "Dielectric Constant" (permittivity constant): Any two charged bodies There is a force (attraction or repulsion) based on the charge strength 'q 1 and q2, the distance between the charged bodies, r, and the dielectric (dielectric) characteristics of the separate charged body called the dielectric constant (S). Change. This force is generated by the equation: F = ql.q2/(e.r2). "Flexing modulus" (flex modulus) is the static of the sample at three points within the elastic limit The ratio of the applied stress in the outermost fiber of the buckling to the calculated stress in the outermost fiber and can be determined according to ASTM test D790 or D790M 湏fj. The flexural strength (fracture modulus of the fracture) is a test with two points of load. The maximum calculated stress at the moment of cracking or breaking in the outermost fiber of the rod. ASTM tests D 7 90 and D 790M are widely used to measure this property. For most -11 - 200900458 plastics, the flexural strength is usually substantially higher than Straight tensile strength. "Glass transfer" is a reversible change that occurs when an amorphous polymer or an amorphous region of a partially crystalline polymer is heated from a very low temperature to a certain range (specific to each polymer). 'It is characterized by hard, glass or easy Conditions change quite abruptly to soft or elastic conditions. Physical properties (such as coefficient of thermal expansion, specific heat, and density) are usually changed simultaneously with their temperature derivatives. During the transfer, the molecular chains (normally coiled at low temperatures, The entanglement, and immobility) become free to rotate and slide over each other. The "glass transition temperature" (Tg) is approximately the midpoint of the temperature range in which the glass transition occurs. Tg is not obvious (like the melting point), and in the second Properties (eg, varying rates as a function of temperature or electrical or mechanical properties of a particular volume) are detected by changes in elevated temperature. Moreover, the observed Tg can vary significantly depending on the particular properties selected for medical observation and based on experimental details such as heating rate or electrical frequency. The reported Tg should therefore be considered as an assessment. The most reliable assessment is normally obtained from the loss peaks in the dynamic-mechanical test or from the expansion data. For the purposes of the present invention, the glass transition temperature (Tg) is determined by the maximum point of the enthalpy curve. Tg can also be determined by the inflection point of the DSC (Differential Scanning Thermal Method) trace (ASTM Test D3 148). The "melting temperature" (identified by its symbol "Tm" hereinafter) is the temperature at which the thermal energy in the solid material is sufficient to overcome the intermolecular attraction in the crystal lattice, causing the lattice to collapse and the material to become liquid, i.e., its melting temperature. The Tm system -12-200900458 according to the present invention is measured in accordance with ASTM test D3 148. "Fused viscosity" is the shear resistance in molten resin, and the quantitative is the quotient divided by the shear rate at any point of the flowing material. Similarly, the long viscosity is applied to the drawing of the extrudate. In the polymerization, the viscosity depends not only on the temperature but also on the pressure, and also on the degree of stress (or shear rate). For the purposes of the present invention, the melt viscosity is measured at 380 ° C by capillary rheometry according to ASTM D3 8 3 5: "hygroscopicity" is absorbed by the time interval when the material is exposed to the specified humidity and temperature. steam. There is no test for this A STM test. At 5 〇 % relative humidity and by immersion in water, the wetness is measured by weight gain. The "tensile modulus" or "elastic modulus" is the ratio of the material to the ratio of the tensile stress to the corresponding elongation. The relevant ASTM test is: 抗 "Tensile strength" is the maximum nominal stress maintained at a specified temperature and at a specified tensile rate. When the maximum nominal stress volts occurs, it will be specified as the drop point tensile strength. When it occurs, it will be designated as the tensile strength at break. The ASTM of the plastic is D63 8 (metric, D63 8M). The SI unit of tensile strength is pascal (N/m2). "Organic clay" means a nano silicate (also known as nano-clay) which has undergone ion exchange to replace metal ions with organic cations. The organic clay used in this article contains the term modified organically modified nano-clay nano-clay, modified clay, modified citrate, modified nano-nanoic acid, and the modified excision. The D638 end of the suction of the medium quality was tested by the drop-break test, the salt, the -13-200900458 nano composite, and the modified nano-filler. "Modifier" means an organic cation that can be ion exchanged with a metal ion of a nanoclay to form an organic clay, including a polymeric organic cation.

Gallery間距或d-間距爲各種組成奈米黏土或有機黏 土的微板(microplates )之間的距離。間距之改變似乎視 有機黏土和溶劑的組成物而定。 “間夾”係指一種方法,d-間距藉該方法以在板片之間 倂入改質劑、溶劑或聚合物來增加。改質奈米黏土具有大 於相同未改質奈米黏土之d-間距的d -間距。 “剝離”係指組成黏土結構之板片的完全分離。具有稱 爲片疊(tactoid)之多層板片的較小結構有時有不完全的 剝離。 “聚醯胺酸溶液”(也稱爲聚-醯胺-酸、聚(醯胺酸) 、醯胺酸、聚醯胺酸、聚(醯胺酸)、聚(醯胺-酸)或 聚醯胺-酸)爲一種包含具有與周圍有機部分反應而形成 醯亞胺基團的能力之醯胺酸單元的溶液。 “聚醯亞胺”如使用於本文中係指包含重複醯亞胺官能 基和任意額外官能基例如醯胺類及/或醚類之聚合物。“ 聚醯亞胺”因此其範圍內包括聚醯胺醯亞胺類和聚醚醯亞 胺類。 術語“惰性”表示在容器內之氛圍以惰性氣體(例如氮 )替代。 “回收”表示根據本發明之聚合物的全部或一部分可再 使用於聚合物爲其而製造之最初利用。例如,如果聚合物 -14- 200900458 的最初用途作爲用於有軟性電路板之溶劑流延膜,回收全 部或一部分的聚合物且再溶解於溶劑中,有或沒有使用額 外單體或聚合物。回收也可表示聚合物可藉由其他加工方 法部分或完全地再使用於其他利用例如注射形成零件。 在此當化學部分之結構單元據說形式上衍生自前驅物 部分時,不意味限制可用以產生該化學部分之實際化學反 應。例如當化學部分例如聚醚醯亞胺據說具有形式上衍生 自二酐和二胺的結構單元時,則任何已知方法可用來製備 聚醚醯亞胺,包括二酐和二胺之反應,或苯氧化物種類和 具有可置換基團的醯亞胺之間的置換反應,或其他已知方 法,其只需要化學部分包含可以所述前驅物部分表示之結 構單元。在一體系中,聚合物爲一種藉由二酐成分和二胺 成分之聚合作用形成且具有介於約180°C和45〇°C之間的 Tg之聚醯亞胺。一衍生自該聚合物-有機黏土複合材料的 物件爲一種溶劑流延膜,其具有:a )小於70 ppm/°C之 CTE; b)介於約0.1微米和1000微米之間的厚度;及,c )包含小於5 %殘餘溶劑。 本發明係關於包含溶劑流延膜之物件,該溶劑流延膜 包含二酐成分和二胺成分及介於180°C和450°C之間,特 別是190 °C或更大的Tg,且其中該薄膜具有:a)小於70 ppm/°C (特別是小於60 ppm/°C )之CTE ; b )介於0.1微 米和250微米之間(例如,5至250微米)的厚度;及, c)包含小於5 %重量殘餘溶劑。 根據本發明之溶劑流延膜可由至少一種具有介於1 8 0 -15- 200900458 °C和450°C之間的Tg之聚醯亞胺製成。在另一體系中, 聚醯亞胺具有190 °C或更大,特別是190。(:至500 °C,更 特別是190 °C至400 °C的Tg。熟習該項技術者應瞭解任何 特殊聚醯亞胺的Tg可視包括二酐單體的選擇、不同二酐 單體(不是單元之結構)的數目、二胺單體的選擇、不同 二胺單體(不是單元之結構)的數目、製備薄膜期間的加 工條件、用以硬化聚合物之醯胺化方法的類型、等等的因 素而廣泛地改變。熟習該項技術者應瞭解產生具有在上述 Tg範圍內的任何所要Tg之聚合物的能力,視所使用之單 體、結構及/或封端之使用、等等而定。 組成薄膜之聚醯亞胺的類型同樣地可改變。本發明特 別是包括於本發明聚醯亞胺類可從其製造的一或多種二酐 和一或多種二胺之所有組合物的無規和嵌段聚合物和共-聚合物。可存在一種類型以上的聚醯亞胺,例如聚醯胺醯 亞胺和聚醚醯亞胺之組合,或二種不同種類之聚醚醯亞胺 。即,本發明係關於包含一或多種聚醯亞胺膜之溶劑流延 膜,其包括其他選自包括PPSU (聚苯颯)、PSU (聚碾 )、PC (聚碳酸酯)、PPO (聚苯醚)、PMMA (聚甲基 丙烯酸甲酯)、ABS (丙烯腈-丁二烯-苯乙烯三共聚物) 、PS (聚苯乙烯)、PVC (聚氯乙烯)之非晶形熱塑性聚 合物、包括PFA (全氟烷氧基烷)、MFA ( TFE (四氟乙 烯)和PFVE (全氟化乙烯基醚)之共聚物)、FEP (氟 化乙烯丙烯聚合物)、PPS (聚苯硫)、PEK (聚醚酮) 、PEEK (聚醚-醚酮)、ECTFE (乙烯-氯三氟乙烯共聚物 -16- 200900458 )、PVDF (聚偏二氟乙烯)、PTFE (聚四氟乙烯)、 PET (聚對酞酸乙二酯)、POM (聚縮醛)、PA (聚醯胺 )、UHMW-PE (超高分子量聚乙烯)、PP (聚丙烯)、 PE (聚乙烯)、HDPE (高密度聚乙烯)、LDPE (低密度 聚乙烯)之結晶熱塑性樹脂類、和高等工程樹脂類例如 PBI (聚苯並咪唑)、聚(醚碾)、聚(芳基碾)、聚苯 醚、聚苯並噁唑類、和聚苯並噻唑、以及其摻合物和共聚 物的聚合物。 測得之薄膜的c T E可爲由於材料化學組成的材料之 固有性質。或者’經由使用添加劑及或藉由進行額加工步 驟CTE可顯著低於薄膜材料之固有CTE。溶劑流延膜之 CTE可爲任何70 ppm/°C以下,特別是60 ppm/T:以下之 C T E ’且使薄膜作用於所欲利用性。例如,對於軟性電路 板,可選擇CTE足夠接近相連金屬導電層之CTE,薄膜 能夠作爲其充當介電基板(層板及/或軟電路板之覆蓋中 的一層)之所欲利用性。在分開之體系中,C T E小於7 0 ppm/°C、小於 50 ppm/°C、小於 40 ppm/°c、小於 3 5 ppm/ °C、小於3 0 p p m / °C或小於2 0 p p m / °C。根據其他體系, 薄膜具有至少5 ppm/°C之CTE。薄膜也可具有5 ppm/t: 至60 ppm/°C之CTE’和更特別是熱膨脹係數爲ppm/ °(:至 30 ppm/°C ’ 和甚至更特別是 10 ppm/°c 至 20 ppm/t: 〇 或者’調整薄膜之CTE以符合薄膜配置在其上之基 片材料。在一體系中,薄膜具有在銅、矽、鋁、金、銀、 -17- 200900458 鎳、玻璃、陶瓷或聚合物之CTE的±20 ppm/°C內’特別 是在銅、矽、鋁、金、銀或鎳之CTE的±20 ppm/T:內的 CTE。在另一體系中,薄膜具有在銅、矽、鋁、金、銀或 鎳(特別是銅)之熱膨脹係數的±15 PpnW°C內的CTE。 在一有利的特徵中,傾發現薄膜之CTE非常穩定。 例如,薄膜於從2 5 0至4 5 0 °C下之溫度層壓至基板之後’ 具有薄膜在層壓之前的(:丁£之±1〇0?111/°(:內的<^£。 薄膜之厚度可視最終用途應用、製造薄膜之方法、流 延溶液之固體含量、任命的少數的標的參數而廣泛地改變 。厚度可從0.1微米改變至最多至10,000微米,或更特 別的是從5微米最多至looo微米,然而一般預期使用在 軟電路板中最有可能的厚度將介於0.1微米和250微米之 間。 最後溶劑流延膜可包含殘餘溶劑且能夠起其所欲目的 之作用。殘餘溶劑之最小量將是在其下薄膜仍將具有所欲 利用性之作用的最多殘餘溶劑含量。另一方面,溶劑流延 膜也可包含儘可能達成的低殘餘溶劑含量。例如,溶劑是 貴的且可能危害環境。節省成本和環境情況之改善二者可 藉由將包含在最後產物中的溶劑量減到最少達成。殘餘溶 劑含量將小於薄膜總重量之5 %。在另一體系中,殘餘溶 劑之量將小於薄膜總重量之1 % ^ 可使用於該方法中之溶劑包括任何可用其製造溶劑流 延膜之溶劑。溶劑可爲聚醯亞胺類之良溶劑,藉由例如具 有較商沸點以幫助溶液薄膜形成或經由擠壓直接排氣。用 -18- 200900458 於薄膜形成之溶劑可與用以製造下述聚酸胺酸溶液之溶劑 相同。適當溶劑的例子包括(但不限制於)N 一甲基11 比略 Π定酮(NMP)、三氣乙院、N,N_ 一甲基乙醯fl女(DMAc) 、N _甲基吡咯啶酮(NMP )、二甲亞颯(DMSO )、環 丁碾、四氫呋喃(THF )、二苯基酮、環己酮、苯酣、 鄰-、對-和間-甲酚類之混合物、甲酚與苯酚之混合物、 乙苯酚類、異丙苯酚類、第三-丁基苯酚類、二甲酚類、 2,4,6—三甲苯酣類、氯苯酚類、二氯苯酚類、鄰-二氯苯 (鄰- DCB)、苯基苯酚類、烷基中具有1至4個碳原子 之乙二醇的單烷醚、烷基中具有1至4個碳原子之二乙二 醇的單烷醚、單芳基醚二醇、丙二醇之單芳基醚、N,N_ 二甲基甲醯胺、四甲基脲、苯氧基乙醇、丙二醇苯醚、大 茴香醚、藜蘆醚、鄰-二氯苯、氯苯、三氯苯、三氯乙烷 、二氯甲烷、氯仿、吡啶、N —環己基吡咯啶酮、乳酸乙 酯、離子液體、及包含彼等溶劑之一或多種的混合物。離 子液體通常包括具有較低(100 °C以下)熔點之鹽類。離 子液體的例子包括但不限制於銨、咪銼-、鱗-、吡錠-、 吡咯錠-、和锍-基鹽類。在該液體中之相對離子可包括( 但不限制於)下列:溴陰離子、氯陰離子、四氟硼酸根離 子、乙酸根離子、磷酸根離子、碳酸根離子、硫酸根離子 、甲院硫酸根離子、硝酸根離子、硫氰酸根離子及彼等之 組合。 $胃Μ I頁S術者應瞭解所使用之特定溶劑係視包括( 例如)聚醯亞胺和前驅物單體在溶劑中的溶解度、和溶劑 -19- 200900458 揮發性之任何數目的因素而定,例如。 根據本發明之溶劑流延膜可藉由該技藝中已知的任何 方法製造。下列受讓予GE之專利揭示製造溶劑流延膜和 流延溶液之通用方法:4,115,341; 4,157,996; 4,307,226 ;4,360,633; 4,374,972;及 3,847,867。 一製造方法可包 括下列步驟:形成包含一種單體成分的聚醯胺酸溶液,該 單體成分包含至少部分地溶解在溶劑系統中之一或多種二 酐類和一或多種有機二胺類;在基板上流延聚醯胺酸溶液 以使聚醯胺酸溶液在基板之表面上呈現具有長度、寬度和 深度之形式;除去溶劑,和硬化聚醯胺酸溶液以形成具有 小於70 ppm/°C (特別是小於60 ppm/°C )之CTE和從0.1 微米至250微米(特別是5至250微米)之厚度的薄膜。 或者,該方法可包含製造一種溶劑流延膜,其包含: 製備包含由單體成分和溶劑成分組成的聚醯胺酸溶液之流 延溶液;在載體基座上流延流延溶液之薄膜;從流延薄膜 除去溶劑經預定時段以形成具有小於70 ppm/°C (特別是 小於60 ppm/°C )之CTE和介於0.1微米和25 0微米之間 (特別是介於5和2 5 0微米之間)的厚度之溶劑流延膜; 和在溶劑流延膜上進行額外的步驟以產生30 ppm/°C以下 之薄膜的C T E。 聚醯胺酸溶液可藉由攪拌混合一或多種二酐(類)、 水、和溶劑直到一或多種二酐成分溶解而製備。然後可加 入一或多種單體二胺和攪拌溶液直到胺類溶解。組成二酐 成分和二胺成分之成分可包括1、2、3、4、5或更多種不 -20- 200900458 同二酐類和二胺類。本發明之範圍特別是意欲包括所有二 酐和二胺單體的數目和種類的置換及組合。例如,在一體 系中,聚醯胺酸溶液將由二種不同二酐類和二種不同二胺 類組成。在另一體系中,一或多種二酐類之一爲ODPA。 一般而言’有機胺成分可包括於從0.5莫耳至2.0莫 耳之量,或’更特別地,從1至1.3莫耳,每莫耳之二酐 成分。在大於一種化合物包括在本發明溶液成分中的情形 ,該成分之份、莫耳或其他量當作分別地包括在該成分之 各化合物的份、莫耳或該其他量的總和。因此,例如,總 胺含量係將在胺成分中之各二胺的當量量相加計算例如, 2(第一種二胺之莫耳數)+2 (第2種二胺之莫耳數)=胺 總當量。 以相似方式計算總酐含量。可使用稍微過量之胺以賦 予額外薄膜彈性或可能的交聯。傾發現聚醯亞胺搪瓷可具 有5至500重複二酐-二胺反應產物單元且較佳可從1〇至 200。也可存在終端胺基和酞酸或酞酐或各種適當端基基 團。 經驗已經顯示應利用充分溶劑以提供一種提供溶液攪 拌和處理之可工作黏度的固體含量。在一體系中,固體含 量將爲1一 65重量%。在其他體系中固體含量將爲1— 40 %、1-25% ' 1— 15% 或 1—12.5 重量 %。 具有高比例之單體反應物對有機溶劑成分的溶液在製 造溶劑流延膜中後來之聚醚醯亞胺樹脂的形成和硬化期間 有利地將有機溶劑的量減到最少。該等具有高量單體反應 -21 - 200900458 物之溶液可具有高於一些溶劑流延膜所要之黏度。典型地 ,包含水減少溶液黏度。給定之黏度減少可使用相對於產 生相同黏度減少所需加入之有機溶劑成分的量爲低之加入 水之量產生。 水可爲或不爲聚醯胺酸溶液的部分。水可以最多至溶 液實質上沒有沈澱物之最大量的任何量存在。雖然水可以 實質上所有比例與有機溶劑成分混合,但在本發明單體溶 液中包含太多水導致沈澱物或其他複數相形成。可存在之 水的量視特定二酐和二胺成分、特定有機溶劑成分、和單 體反應物對有機溶劑之重量比而定。 有利地,本發明聚醯胺酸溶液可包括於以溶液之重量 爲基準的40或更多重量百分比(例如40至75或更多重 量百分比)之合倂量的單體反應物。一般而言,該高單體 含量溶液(如需要時可包括水)在正常用以製造溶劑流延 膜之溫度範圍(例如)15°C至200 °C下具有適當黏度。 藉由將單體反應物成分加至水和有機溶劑成分的溶液 中並攪拌可更容易地製備包括水之液溶。溶液之製備通常 在高溫下被加速。 添加劑可存在於聚醯亞胺膜中,例如藉由加至聚醯胺 酸溶液中以便減少C T E至在沒有添加劑之材料的C T E以 下。這些添加劑包括該等將幫助降低溶劑流延膜之CTE 者,和該等可幫助產生本發明薄膜中另一所要性質者。這 些成分可使用於0.001至60份之添加劑的比例(每1〇〇 重量份之聚醯亞胺)的任何量以給予所要之性質。或者這 -22- 200900458 些添加劑可以每100重量份之聚醯亞胺0.01至30份之添 加劑,和更特別是〇 . 1至1 〇份之添加劑的量加入。 可用以降低溶劑流延聚醯亞胺膜之CTE的添加劑之 類型包括改質奈米-複合材料矽酸鹽類(奈米黏土類)。 適當奈米黏土包括高嶺石、狄克石、珍珠石、禾樂石、葉 蛇紋石、纖蛇紋石、葉蠟石、微晶高嶺石、鋁膨潤石、鐵 膨潤石、皂石、鋅皂石、矽鎂石、水輝石、四矽烷型( tetrasilylic)雲母、鈉帶雲母、白雲母、珍珠雲母、滑石 、蛭石、金雲母、綠脆雲母、綠泥石、合成矽酸鹽類、及 包含至少一種前述奈米黏土的組合。 在一特殊體系中,本揭不描述形成奈米黏土複合材料 (特別是聚合物-有機黏土複合材料)之方法和包含該聚 合物-有機黏土複合材料的物件(例如薄膜)。聚合物-有 機黏土複合材料可藉由溶液流延形成薄膜。該等有機黏土 可在薄膜形成加工溫度下是熱穩定的。 可使用不同聚合物形成該聚合物-有機黏土複合材料 ,包括熱固性和熱塑性聚合物。典型聚合物包括該等上述 之聚合物,特別是聚氯乙烯類、聚烯烴類、聚酯類(包括 芳族聚酯類)、聚醯胺類、聚楓類、聚醯亞胺類、(包括 聚醯胺醯亞胺類和聚醚醯亞胺類)、聚醚颯、聚苯硫類、 聚醚酮類、聚醚醚酮類、ABS、聚苯乙烯類、聚丁二烯類 、聚丙烯酸酯類、聚烷基丙烯酸酯類、聚丙烯腈類、聚縮 醛類、聚碳酸酯類、聚苯醚類、乙烯-乙烯乙酯共聚物類 、聚乙酸乙烯酯類、液晶聚合物類、乙烯-四氟乙烯共聚 -23- 200900458 物類、聚氟乙烯類、聚偏二氟乙烯類、聚偏二氯乙稀類、 聚四氟乙烯、及包含至少一種前述聚合物之組合。特定聚 合物爲聚醯亞胺。 聚合物-有機黏土複合材料進一步包含有機黏土。有 機黏土爲具有多數個通常與有機層交替之無機矽酸鹽層的 有機改質奈米黏土。有機黏土可藉由奈米黏土中之金屬陽 離子與有機陽離子之離子交換製備。例如,在微晶高嶺石 奈米黏土中之納離子可與有機陽離子例如四煙基錢或四烴 基鱗陽離子交換。離子交換通常藉由已知方法在水或水和 水-互溶有機溶劑之組合中進行。 在一體系中有機陽離子爲四級有機陽離子,例如式( 1 )之銨或鳞離子 R9 R®—Q—R10The gallery spacing or d-spacing is the distance between the various microplates that make up the nanoclay or organic clay. The change in spacing seems to depend on the composition of the organic clay and solvent. By "inter-clip" is meant a method by which the d-spacing is increased by the incorporation of modifiers, solvents or polymers between the sheets. The modified nanoclay has a d-spacing greater than the d-spacing of the same unmodified nanoclay. "Peeling" refers to the complete separation of the sheets that make up the clay structure. Smaller structures with multilayer sheets called tactoids sometimes have incomplete peeling. "Polyuric acid solution" (also known as poly-guanamine-acid, poly(proline), lysine, polylysine, poly(proline), poly(deamine-acid) or poly The indoleamine-acid) is a solution comprising a proline unit having the ability to react with the surrounding organic moiety to form a quinone imine group. "Polyimine" as used herein refers to a polymer comprising a repeating quinone imine functional group and any additional functional groups such as guanamines and/or ethers. "Polyimine" thus includes polyamidoenimines and polyetherimines in its scope. The term "inert" means that the atmosphere within the container is replaced with an inert gas such as nitrogen. "Recycled" means that all or a portion of the polymer according to the present invention can be reused for the initial use of the polymer. For example, if the original use of polymer -14-200900458 is used as a solvent cast film for flexible circuit boards, all or a portion of the polymer is recovered and redissolved in the solvent, with or without the use of additional monomers or polymers. Recycling can also mean that the polymer can be partially or completely reused by other processing methods to form parts using other processes such as injection. When the structural unit of the chemical moiety is said to be formally derived from the precursor moiety, it is not meant to limit the actual chemical reaction that can be used to produce the chemical moiety. For example, when a chemical moiety such as a polyetherimine is said to have a structural unit derived formally derived from a dianhydride and a diamine, any known method can be used to prepare a polyetherimine, including a reaction of a dianhydride and a diamine, or The displacement reaction between the phenoxide species and the quinone imine having a displaceable group, or other known methods, requires only the chemical moiety to comprise a structural unit that can be represented by the precursor moiety. In one system, the polymer is a polyimine formed by the polymerization of a dianhydride component and a diamine component and having a Tg between about 180 ° C and 45 ° C. An article derived from the polymer-organic clay composite is a solvent cast film having: a) a CTE of less than 70 ppm/° C; b) a thickness of between about 0.1 and 1000 microns; , c ) contains less than 5% residual solvent. The present invention relates to an article comprising a solvent cast film comprising a dianhydride component and a diamine component and a Tg between 180 ° C and 450 ° C, particularly 190 ° C or more, and Wherein the film has: a) a CTE of less than 70 ppm/° C. (especially less than 60 ppm/° C.); b) a thickness between 0.1 and 250 microns (eg, 5 to 250 microns); c) contains less than 5% by weight residual solvent. The solvent cast film according to the present invention may be made of at least one polyimine having a Tg of between 1 80 -15 and 200900 458 ° C and 450 ° C. In another system, the polyimine has a temperature of 190 ° C or greater, especially 190. (: Tg to 500 ° C, more particularly 190 ° C to 400 ° C. Those skilled in the art should be aware that the Tg of any particular polyimine may include the choice of dianhydride monomer, different dianhydride monomers ( The number of the structure of the unit, the choice of the diamine monomer, the number of different diamine monomers (not the structure of the unit), the processing conditions during the preparation of the film, the type of the amidation method used to harden the polymer, etc. The factors vary widely, and those skilled in the art will be aware of the ability to produce polymers having any desired Tg within the above Tg range, depending on the monomer, structure and/or end cap used, etc. The type of polyimine constituting the film is likewise variable. The invention is particularly encompassed by all compositions of one or more dianhydrides and one or more diamines from which the polyimines of the invention can be made. Random and block polymers and co-polymers. There may be more than one type of polyimine, such as a combination of polyamidoximine and polyetherimine, or two different types of polyether Imine. That is, the present invention relates to A solvent cast film of various polyimine films, including other options including PPSU (polyphenylene), PSU (poly), PC (polycarbonate), PPO (polyphenylene ether), PMMA (polymethyl) Amorphous thermoplastic polymer of methyl acrylate), ABS (acrylonitrile-butadiene-styrene tri-copolymer), PS (polystyrene), PVC (polyvinyl chloride), including PFA (perfluoroalkoxyalkylene) ), MFA (copolymer of TFE (tetrafluoroethylene) and PFVE (perfluorinated vinyl ether)), FEP (fluorinated ethylene propylene polymer), PPS (polyphenylene sulfide), PEK (polyether ketone), PEEK (Polyether-ether ketone), ECTFE (ethylene-chlorotrifluoroethylene copolymer-16- 200900458), PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), PET (polyethylene terephthalate) ), POM (polyacetal), PA (polyamide), UHMW-PE (ultra high molecular weight polyethylene), PP (polypropylene), PE (polyethylene), HDPE (high density polyethylene), LDPE (low Density polyethylene) crystalline thermoplastic resins, and advanced engineering resins such as PBI (polybenzimidazole), poly (ether milling), poly (aryl milling), polyphenylene ether, poly And benzoxazoles, and polybenzothiazoles, and polymers of blends and copolymers thereof. The measured c TE of the film may be inherent in the material due to the chemical composition of the material. Or 'via the use of additives and or The CTE from the processing step can be significantly lower than the inherent CTE of the film material. The CTE of the solvent cast film can be any CTP' below 70 ppm/°C, especially below 60 ppm/T: and the film acts on the desired Usability. For example, for a flexible circuit board, the CTE can be chosen to be close enough to the CTE of the connected metal conductive layer, and the film can be used as a dielectric substrate (a layer of a laminate and/or a layer of a flexible circuit board). . In a separate system, the CTE is less than 70 ppm/°C, less than 50 ppm/°C, less than 40 ppm/°c, less than 35 ppm/°C, less than 30 ppm/°C, or less than 20 ppm / °C. According to other systems, the film has a CTE of at least 5 ppm/°C. The film may also have a CTE' of 5 ppm/t: to 60 ppm/°C and more particularly a coefficient of thermal expansion of ppm/° (: to 30 ppm/°C ' and even more particularly 10 ppm/°c to 20 ppm) /t: 〇 or 'adjust the CTE of the film to match the substrate material on which the film is disposed. In one system, the film has copper, tantalum, aluminum, gold, silver, -17-200900458 nickel, glass, ceramic or The CTE of the polymer has a CTE within ±20 ppm/°C, especially within ±20 ppm/T of the CTE of copper, tantalum, aluminum, gold, silver or nickel. In another system, the film has copper in , C, TE, aluminum, gold, silver or nickel (especially copper) thermal expansion coefficient of ± 15 PpnW ° C CTE. In an advantageous feature, the CTE of the film is found to be very stable. For example, the film from 2 5 After laminating to the substrate at a temperature of 0 to 4500 °C, the film has a thickness of ±1〇0?111/° (: within ±1. The application, the method of making the film, the solids content of the casting solution, and the few nominal parameters of the appointment vary widely. The thickness can vary from 0.1 micron to the maximum. Up to 10,000 microns, or more specifically from 5 microns up to looo microns, however it is generally expected that the most likely thickness to be used in a flexible circuit board will be between 0.1 and 250 microns. Finally the solvent cast film may contain residues The solvent can act for its intended purpose. The minimum amount of residual solvent will be the maximum residual solvent content under which the film will still have the desired effect. On the other hand, the solvent cast film may also contain as much A low residual solvent content achieved. For example, solvents are expensive and can be hazardous to the environment. Both cost savings and environmental improvements can be achieved by minimizing the amount of solvent contained in the final product. The residual solvent content will be less than the film. 5% of the total weight. In another system, the amount of residual solvent will be less than 1% of the total weight of the film. ^ The solvent used in the process may include any solvent from which the solvent casting film can be made. The solvent may be polyfluorene. A good solvent for imines, for example, having a relatively boiling point to aid in the formation of a solution film or direct venting via extrusion. Using a solvent for film formation from -18 to 200900458 It may be the same as the solvent used to produce the following polyamic acid solution. Examples of suitable solvents include, but are not limited to, N-methyl 11 succinyl ketone (NMP), Sanqi Yiyuan, N, N_ Methylacetone fl female (DMAc), N-methylpyrrolidone (NMP), dimethyl hydrazine (DMSO), cyclobutyl milling, tetrahydrofuran (THF), diphenyl ketone, cyclohexanone, benzoquinone, a mixture of o-, p-, and m-cresols, a mixture of cresol and phenol, acetol, isopropyl phenol, tri-butyl phenol, xylenol, 2, 4, 6 - 3 Toluene, chlorophenols, dichlorophenols, o-dichlorobenzene (o-DCB), phenylphenols, monoalkyl ethers, alkyl groups of ethylene glycol having 1 to 4 carbon atoms in the alkyl group a monoalkyl ether having a diethylene glycol of 1 to 4 carbon atoms, a monoaryl ether glycol, a monoaryl ether of propylene glycol, N,N-dimethylformamide, tetramethylurea, a phenoxy group Ethanol, propylene glycol phenyl ether, anisole, cucurbit ether, o-dichlorobenzene, chlorobenzene, trichlorobenzene, trichloroethane, dichloromethane, chloroform, pyridine, N-cyclohexyl pyrrolidone, lactate B Ester, ion Thereof, and mixtures comprising one or more of their solvent. Ionic liquids typically include salts having a lower (below 100 °C) melting point. Examples of the ionic liquid include, but are not limited to, ammonium, imipenone, scaly-, pyridinium-, pyrrole-indene-, and sulfonium-based salts. The relative ions in the liquid may include, but are not limited to, the following: bromine anion, chloride anion, tetrafluoroborate ion, acetate ion, phosphate ion, carbonate ion, sulfate ion, sulfate ion , nitrate ions, thiocyanate ions and combinations thereof. $gastric sputum I page S operator should be aware that the particular solvent used will include, for example, the solubility of the polyimine and precursor monomers in the solvent, and any number of factors of solvent -19-200900458 volatility. Set, for example. The solvent cast film according to the present invention can be produced by any method known in the art. The following patents assigned to GE disclose the general methods for making solvent cast films and casting solutions: 4,115,341; 4,157,996; 4,307,226; 4,360,633; 4,374,972; and 3,847,867. A manufacturing method can include the steps of: forming a polyamic acid solution comprising a monomer component comprising one or more dianhydrides and one or more organic diamines at least partially dissolved in a solvent system; The polyamic acid solution is cast on the substrate such that the polyaminic acid solution is in the form of length, width and depth on the surface of the substrate; the solvent is removed, and the polyamic acid solution is hardened to form less than 70 ppm/°C. (especially less than 60 ppm/°C) CTE and films from 0.1 microns to 250 microns (especially 5 to 250 microns). Alternatively, the method may comprise producing a solvent cast film comprising: preparing a casting solution comprising a polyamic acid solution consisting of a monomer component and a solvent component; casting a film of the casting solution on the carrier base; The cast film removes the solvent for a predetermined period of time to form a CTE having less than 70 ppm/° C. (especially less than 60 ppm/° C.) and between 0.1 μm and 25 μm (especially between 5 and 2 50) A solvent cast film having a thickness between micrometers; and an additional step on the solvent cast film to produce a CTE of a film of 30 ppm/° C. or less. The polyaminic acid solution can be prepared by stirring and mixing one or more dianhydrides, water, and a solvent until one or more dianhydride components are dissolved. One or more monomeric diamines and a stirred solution can then be added until the amines are dissolved. The components constituting the dianhydride component and the diamine component may include 1, 2, 3, 4, 5 or more non--20- 200900458 homo-dianhydrides and diamines. The scope of the invention is particularly intended to include substitutions and combinations of the numbers and types of all dianhydride and diamine monomers. For example, in a monolithic system, the polyaminic acid solution will consist of two different dianhydrides and two different diamines. In another system, one of the one or more dianhydrides is ODPA. In general, the 'organoamine component can be included in an amount from 0.5 moles to 2.0 moles, or ' more specifically, from 1 to 1.3 moles per gram of dianhydride component. In the case where more than one compound is included in the solution component of the present invention, the ingredient, mole or other amount of the ingredient is taken as the sum of the parts, the molars or the other amounts of the respective compounds of the ingredient, respectively. Thus, for example, the total amine content is calculated by adding the equivalent amounts of the respective diamines in the amine component, for example, 2 (the number of moles of the first diamine) + 2 (the number of moles of the second diamine) = total amine equivalent. The total anhydride content was calculated in a similar manner. A slight excess of amine can be used to impart additional film elasticity or possible crosslinking. The polyamidene enamel may be found to have 5 to 500 repeating dianhydride-diamine reaction product units and preferably from 1 to 200. Terminal amine groups and capric acid or phthalic anhydride or various suitable terminal groups may also be present. Experience has shown that sufficient solvent should be utilized to provide a solids content that provides a workable viscosity for solution agitation and handling. In a system, the solids content will be from 1 to 65 wt%. In other systems the solids content will be 1-4%, 1-25% '1-15% or 1-12.5% by weight. The solution having a high proportion of the monomer reactant to the organic solvent component advantageously minimizes the amount of the organic solvent during the formation and hardening of the polyether oximine resin in the solvent cast film. These solutions having a high amount of monomer reaction -21 - 200900458 may have a higher viscosity than those of some solvent cast films. Typically, the inclusion of water reduces the viscosity of the solution. A given viscosity reduction can be produced using an amount of added water that is lower than the amount of organic solvent component required to produce the same viscosity reduction. The water may or may not be part of a polyaminic acid solution. Water can be present in any amount up to the maximum amount of solution substantially free of precipitates. Although water can be mixed with the organic solvent component in substantially all proportions, the inclusion of too much water in the monomer solution of the present invention results in the formation of precipitates or other complex phases. The amount of water which may be present depends on the specific dianhydride and diamine component, the specific organic solvent component, and the weight ratio of the monomer reactant to the organic solvent. Advantageously, the poly-proline solution of the present invention may comprise a total of 40 or more weight percent (e.g., 40 to 75 or more weight percent) of the monomer reactant based on the weight of the solution. In general, the high monomer content solution (which may include water if desired) has an appropriate viscosity at a temperature range (e.g., 15 ° C to 200 ° C) which is normally used to produce a solvent cast film. The liquid solution including water can be more easily prepared by adding a monomer reactant component to a solution of water and an organic solvent component and stirring. The preparation of the solution is usually accelerated at high temperatures. The additive may be present in the polyimide film, for example by addition to a polyamine solution to reduce C T E to below the C T E of the material without the additive. These additives include those which will help reduce the CTE of the solvent cast film, and those which may help to produce another desirable property in the film of the present invention. These ingredients can be used in any amount of 0.001 to 60 parts by weight of the additive (per 1 part by weight of the polyimine) to impart the desired properties. Alternatively, these additives may be added in an amount of from 0.01 to 30 parts by weight per 100 parts by weight of the polyimine, and more particularly from 1 to 1 part by weight of the additive. Types of additives that can be used to reduce the CTE of the solvent cast polyimine film include modified nano-composite silicates (nano clays). Suitable nano-clay includes kaolinite, dick stone, pearl stone, Hele stone, leaf serpentine, serpentine, pyrophyllite, microcrystalline kaolinite, aluminum bentonite, iron bentonite, saponite, and saponite , strontite, hectorite, tetrasilylic mica, sodium mica, muscovite, pearl mica, talc, vermiculite, phlogopite, green fragile mica, chlorite, synthetic silicate, and A combination of at least one of the foregoing nano clays. In a particular system, the method of forming a nano-clay composite (particularly a polymer-organic clay composite) and an article (e.g., a film) comprising the polymer-organic clay composite are not described herein. The polymer-organic clay composite can be formed into a film by solution casting. These organic clays are thermally stable at film forming processing temperatures. The polymer-organic clay composite can be formed using different polymers, including thermoset and thermoplastic polymers. Typical polymers include such polymers as described above, particularly polyvinyl chlorides, polyolefins, polyesters (including aromatic polyesters), polyamines, poly-stripes, poly-imines, Including polyamidoquinones and polyetherimines, polyether oximes, polyphenylenes, polyether ketones, polyetheretherketones, ABS, polystyrenes, polybutadienes, Polyacrylates, polyalkyl acrylates, polyacrylonitriles, polyacetals, polycarbonates, polyphenylene ethers, ethylene-vinyl ethyl ester copolymers, polyvinyl acetates, liquid crystal polymers Class, ethylene-tetrafluoroethylene copolymerization-23- 200900458 A material, a polyvinyl fluoride, a polyvinylidene fluoride, a polyvinylidene chloride, a polytetrafluoroethylene, and a combination comprising at least one of the foregoing polymers. The specific polymer is polyimine. The polymer-organic clay composite further comprises an organic clay. Organic clay is an organically modified nano-clay with a plurality of inorganic silicate layers that are usually alternating with organic layers. Organic clay can be prepared by ion exchange of metal cations in organic clay with organic cations. For example, the nano ions in the microcrystalline kaolinite nanoclay can be exchanged with organic cations such as tetrakiles or tetrahydrocarbon cations. Ion exchange is usually carried out by a known method in water or a combination of water and a water-miscible organic solvent. In a system, the organic cation is a quaternary organic cation, such as ammonium or scaly ion of formula (1) R9 R®-Q-R10

I R7 (1) 其中Q爲氮或憐;且R7、R8、R9及R1G各自獨立地爲I-C2〇脂烴基、h-Cu環脂烴基、芳族基或聚合物鏈 。前述基可未經取代或例如經Cl_C^烴及/或一個或多 個官能基,例如經基、疏基、硝基、氰基、齒素、羧酸、 羧酸酯、羰基、醯胺、醯亞胺、和酐取代。 在另一體系中有機陽離子爲式(2)之四級鱗陽離子 -24- 200900458I R7 (1) wherein Q is nitrogen or pity; and R7, R8, R9 and R1G are each independently an I-C2 oxime hydrocarbon group, an h-Cu cycloaliphatic hydrocarbon group, an aromatic group or a polymer chain. The aforementioned group may be unsubstituted or, for example, a Cl_C^ hydrocarbon and/or one or more functional groups such as a trans group, a sulfhydryl group, a nitro group, a cyano group, a dentate, a carboxylic acid, a carboxylic acid ester, a carbonyl group, a decylamine, Substituted by quinone imine and anhydride. In another system, the organic cation is a quaternary cation of formula (2) -24- 200900458

其中Ar1、Ar2、Ar3及Ar4各自獨立地爲C6-C5〇芳族基; “a”爲從1至約200之數;“c”爲從0至3之數;R1於每次 出現時獨立地爲鹵素原子、Ci-C^脂烴基、C5-C2Q環脂烴 基或C2-C20芳族基;且112爲CrCn脂烴基、c5-c20環月旨 烴基、C2-C5Q芳族基或聚合物鏈。 子 離 陽 鱗 級 四 之 3 式 爲 可 子 離 陽 機 有 AT1Wherein Ar1, Ar2, Ar3 and Ar4 are each independently a C6-C5〇 aromatic group; "a" is a number from 1 to about 200; "c" is a number from 0 to 3; R1 is independent at each occurrence The ground is a halogen atom, a Ci-C^ aliphatic hydrocarbon group, a C5-C2Q cycloaliphatic hydrocarbon group or a C2-C20 aromatic group; and 112 is a CrCn aliphatic hydrocarbon group, a c5-c20 cyclohexyl hydrocarbon group, a C2-C5Q aromatic group or a polymer. chain. The child is separated from the phoenix scale, and the third type is the detachable yang machine.

ΑΓ1AI,4ui_JI 011 ΑΓ1 (3) 其中Ar12、Ar13、Ar14及Ar15獨立地爲C6-C5〇芳族基; 且Ar16爲Ca-C^o芳族基或包含至少一個芳族基之聚合物 鏈。 典型四級銨陽離子包括式(4)之吡錠陽離子ΑΓ1AI, 4ui_JI 011 ΑΓ1 (3) wherein Ar12, Ar13, Ar14 and Ar15 are independently a C6-C5〇 aromatic group; and Ar16 is a Ca-C^o aromatic group or a polymer chain containing at least one aromatic group. Typical quaternary ammonium cations include pyridinium cations of formula (4)

其中Ar6 ' Ar7、及Ar8獨立地爲c6-C5G芳族基;“b”從〇 -25- 200900458 至2之數;R3於每次出現時獨立地爲幽素原子、C^Czo 脂烴基、C5-C2Q環脂烴基或C6-C2〇芳族基;且Ar11爲C6-C2〇〇芳族基、或包含至少一個芳族基之聚合物鏈。此類型 之陽離子的特殊例子爲式(5)之陽離子Wherein Ar6 'Ar7, and Ar8 are independently a c6-C5G aromatic group; "b" is from 〇-25-200900458 to 2; R3 is independently a cryptin atom, a C^Czo aliphatic hydrocarbon group at each occurrence, a C5-C2Q cycloaliphatic or C6-C2 fluorene aromatic group; and Ar11 is a C6-C2 fluorene aromatic group or a polymer chain comprising at least one aromatic group. A specific example of this type of cation is the cation of formula (5)

其中Ar6、Ar7、及Ar8獨立地爲C2-C5〇芳族基;“b”從0 至2之數;“d”從0至4之數;R3和R4於每次出現時獨立 地爲鹵素原子、C^-Cm脂烴基、C5-C2G環脂烴基,或C2-C2〇芳族基;Z爲鍵結、二價(:丨-(:2()脂烴基、二價C5-C20 環脂烴基 '二價C2-C2G芳族基、氧鍵聯基、硫鍵聯基、 S〇2鍵聯基或Se鍵聯基;且Ar9爲芳族基、或 包含至少一個芳族基之聚合物鏈。 離子交換之後,無機矽酸鹽層之間的間距(“d-間距” )大於15、20、25、30、40或75埃。然後剝離有機黏土 以產生該聚合物-有機黏土複合材料。當有機黏土暴露於 足夠強度和期間之激發條件時發生剝離,且導致無機矽酸 鹽層之間的間距(“d-間距”)的增加。剝離有機黏土中之 d -間距可爲任何大於初d -間距,也就是,在非剝離有機黏 土中之d -間距的距離。在一體系中,d _間距足以有效地提 供降低聚醯亞胺膜之CTE的聚合物-有機黏土複合材料。 在一些體系中,剝離有機黏土具有5至90埃,特別是大 -26- 200900458 於1 5、2 0、2 5、3 0、4 0或7 5埃之初d -間距的增加。在 其他體系中’增加之後,在剝離有機黏土中之d-間距是 隨機的。當d-間距增加時導致隨機分布,該等片材以d-間距不再可測量之方式定向。在其他體系中,有機黏土之 初d -間距的淨增加爲約1 〇至約5 0 0百分比。 剝離之一方法爲音波振動處理。剝離也可藉由高能量 混合完成。音波振動處理和高能量混合係在溶劑系統中( 例如在一種包含1至90重量%的有機黏土和1 〇至99重 量%的溶劑系統,特別是1至50重量%的有機黏土和50 至9 9重量%的溶劑系統,更特別是1至1 5重量%的有機 黏土和85至99重量%的溶劑系統之系統中)進行。 適當溶劑系統允許有機黏土良好分散、有效剝離、以 及溶解如下所述之聚合物或聚合物前驅物。適當溶劑包括 N,N -二甲基乙醯胺、N,N —二甲基甲醯胺、N -甲基吡略 啶酮、二甲亞颯、環丁颯、四氫呋喃、二苯基酮、環己酮 、苯酚、鄰-甲酚、對-甲酚、間-甲酚、苯酚、乙苯酚、 異丙苯酚、第三-丁基苯酚、二甲苯酚、2,4,6—三甲苯酚 、氯苯酚、二氯苯酚、苯基苯酚、烷基中具有1至約4個 碳原子之乙二醇的單烷醚、烷基中具有1至約4個碳原子 之二乙二醇的單烷醚、單芳基醚二醇、丙二醇之芳基醚、 四甲基脲、苯氧基乙醇、丙二醇苯醚在、大茴香醚、藜蘆 醚、鄰-二氯苯、氯苯、三氯苯、三氯乙烷、二氯甲烷、 氯仿、吡啶、N -環己基吡咯啶酮、乳酸乙酯、離子液體 及彼等之組合。 -27- 200900458 在一體系中,第一種混合物係藉由將有機黏土合倂( 例如,均質化)於所選擇之溶劑系統中,接著剝離,也就 是,將第一種混合物暴露於激發條件以形成第二種混合物 。激發條件係在足夠強度和期間下以增加無機矽酸鹽層間 之初間距,例如,音波振動處理。典型音波振動器爲可得 自Misonix公司之超音波液體處理器、Weber Ultrasonics 之固定頻率 SONOPUSH MONO HD®超音波轉換器、和 MPI販賣之管狀潛水轉換器。音波振動處理可以分批或連 續法進行。在分批法中,均質化第一種混合物係在與音波 來源接觸時發生。均勻攪拌混合物以確定整個混合的均勻 音波振動處理。在連續方法中,第一種混合物以所給予之 速度流過音波振動處理區。均勻攪拌混合物以確定奈米矽 酸鹽之均勻分散液。在批次或連續法中,剝離所需之音波 振動處理條件(也就是,流動速度、音波振動處理力、音 波振動處理時間)視所用改質劑之類型、溶劑、批式產能 、音速源之組態和大小、和音波振動處理發生時之溫度而 定。熟悉該技藝者應了解其他設備和方法可用以給予激發 條件。在另一體系中’例如,可使用silversontm混合 器。視當前特定需要而定,可使用不同模式。可使用任何 其功能上相等之剪切機/粉碎混合機。 可經由所產生溶液之X射線繞射(XRD )觀察有機黏 土之間夾和剝離。剝離也可藉由合倂音波震動(sonicated )之有機黏土混合物與聚合物、除去溶劑,例如,藉由蒸 發、沈澱或經由排氣擠壓機、和然後流延或加壓薄膜、及 -28- 200900458 進行TEM分析觀察。 剝離可在與聚合物組合之前、與聚合物組合之後、與 聚合物前驅物組合之前或與聚合物前驅物組合之後進行。 換句話說,聚合物或聚合物前驅物可加至第一種混合物( 溶劑和非剝離型奈米黏土)或加至第二種混合物(溶劑和 剝離型奈米黏土)。 因此,在特定體系中,剝離係在非剝離型奈米黏土與 聚合物例如聚醯亞胺組合之後進行。在其他特定體系中’ 剝離係在與聚醯亞胺組合之前進行。在此體系中,第三種 混合物係藉由組合剝離型奈米黏土與聚醯亞胺(或其他聚 合物)形成。聚醯亞胺(或其他聚合物)可預先溶解在溶 劑(例如,DM Ac或ΝΜΡ )中或直接加至包含剝離有機黏 土之混合物中以提供在5至25重量%範圍之固體含量。 聚醯亞胺(或其他聚合物)至少部分地溶解在溶劑中,和 進一步分離在有機黏土中之矽酸鹽層。然後從第三種混合 物至少部分地除去溶劑。 或者,在與聚醯胺酸溶液(或其他聚合物前驅物)合 倂之前發生剝離以提供一種具有(例如)從5至2 5重量 %固體之固體含量的第二種混合物。然後使聚醯胺酸溶液 如上所述聚合。在一體系中,在從剝離型奈米黏土和聚醯 胺酸組合物中除去溶劑期間發生聚合。如此形成之聚醯亞 胺至少部分地溶解在溶劑中,和進一步分開有機黏土中的 矽酸鹽層。然後可連續從聚醯亞胺-有機黏土複合材料除 去溶劑。有機黏土之矽酸鹽層在溶劑除去之後保持分開。 -29- 200900458 在另一體系中,在混合物暴露於激發條件之前,聚合 物前驅物與非剝離型有機黏土合倂於溶劑系統中。聚合物 前驅物可在剝離之前、剝離期間及/或剝離之後至少部分 地聚合以提供聚合物。如此形成之聚合物至少部分地溶解 在溶劑中,和進一步分開有機黏土中的矽酸鹽層。然後至 少部分地除去溶劑以提供該聚合物-有機黏土複合材料組 成物。例如,合倂二酐成分和有機二胺成分與有機黏土於 溶劑系統(例如,DM Ac )中,以提供一種具有(例如)2 至15重量%固體,或更特別地,1至5重量%固體之固 體含量的混合物。以音波震動(sonicated )有機黏土和單 體以增加有機黏土之初d-間距。然後加熱剝離有機黏土 和單體混合物以形成聚醯胺酸。如此形成之聚醯胺酸至少 部分地溶解在溶劑中。從然後第二種混合物中至少部分地 除去溶劑,將聚醯胺酸轉化成聚醯亞胺。傾發現二胺和二 酐在有機黏土存在下之聚合作用產生有機黏土之良好分散 液。 在另一體系中,在與二酐成分和有機二胺成分合倂於 溶劑系統(例如,DM Ac )中之前剝離有機黏土,以提供 —種具有(例如)2至15重量%固體,或更特別地,1至 5重量%固體之固體含量的混合物。然後使二酐和有機二 胺物聚合以提供一種聚醯胺酸,及然後一種聚醯亞胺。如 此形成之聚醯亞胺至少部分地溶解在溶劑中,且進一步分 開有機黏土中的矽酸鹽層。然後從聚醯胺酸或聚醯亞胺混 合物至少部分地除去溶劑。有機黏土之矽酸鹽層在溶劑除 -30- 200900458 去之後保持分開。 在任何前述體系中溶劑之除去可藉由排氣或沈澱於非 溶劑中。在除去溶劑之後維持剝離。所得聚合物-有機黏 土組成物可經由溶液流延或熔融擠壓而形成薄膜。 傾發現有機黏土(特別是剝離型有機黏土)之使用, 提供非預期優點。包含有機黏土之薄膜可具有較低於沒有 有機黏土之相同組成物的薄膜之CTE。或者,或除此之外 ’包含機黏土之薄膜可具有與沒有有機黏土之相同組成物 的薄膜相同之Tg。包含有機黏土之薄膜也可爲透明的。 使用於薄膜中的有機黏土之量將視所要薄膜性質而改變。 例如’薄膜可包含0.1至10重量%的有機黏土,特別是i 至10重量%的有機黏土,以薄膜之總重爲基準。 將單體(至少一個二酐單體和至少一個二胺單體)加 至黏土分散液中以形成一種改質聚醯胺酸溶液。且,替代 將聚醯胺酸加至黏土分散液,在另一體系中,乾燥薄膜在 二甲基乙醯胺或N—甲基吡咯啶酮中之1〇重量%的溶液 具有大於〇_ 05 dl/g之固有黏度。聚醯亞胺溶液然後可與 黏土分散液合倂且如上述流延。 可用以降低溶劑流延聚醯亞胺膜之CTE的另〜類M 之添加劑包括可溶性奈米粒子前驅物例如 (乙醯基丙酮酸)3 銘(aluminum(acetylacetonoate)3 )。 可用以降低溶劑流延聚醯亞胺膜之CTE的另〜添力口 劑爲金屬氧化物奈米粒子,其可由有機-金屬前驅物形成 。金屬氧化物奈米粒子可就地藉由分解有機金屬前驅物產 -31 - 200900458 生。該類材料之一例子爲(乙醯基丙酮酸)3銘( )。(Al(acac)3 )之熱解產生氧化鋁。當在稀釋 分子溶劑或聚合物熔融)中進行時,A12 Ο 3奈米 。對準在最後聚合物中的1重量%裝載的ai2o3 和二胺單體(特別是氧基二酞酐和二胺基二苯基 合作用前期加入前驅物。所得塡充A1203奈米粒 物顯示比未塡充樣品低15%以上之CTE。 除了將有機金屬前驅物加到聚合物之外,前 聚醯胺酸溶液或成品可溶性聚醯亞胺溶劑摻合, 聚合物摻合和擠壓以產生一種塡充系統。在溶液 可流延成薄膜和硬化以產生塡充薄膜。其他適| 屬前驅物包括金屬(acac)錯合物、和陶瓷前驅 化鉬。 可用以產生非降低聚醯亞胺膜之CTE或之 性質之其他種類的添加劑包括塡充劑和強化劑例 璃、磨碎玻璃、玻璃珠、薄片等等。可加入礦物 、矽灰石、雲母、高嶺石或微晶高嶺石黏土、矽 黑(fumed silica )、珍珠岩、石英、和重晶石 也可用有效量之無機塡充劑,例如(例如)碳纖 管、玻璃纖維、金屬纖維、金屬粉、導電碳、和 劑包括奈米-等級強化劑改質。 在一些例子中金屬氧化物可加至本發明之聚 在一些例子中金屬氧化物藉由減少熱釋放和增加 放之時間可進一步改良耐火性(FR )性能。二Wherein Ar6, Ar7, and Ar8 are independently a C2-C5〇 aromatic group; "b" is from 0 to 2; "d" is from 0 to 4; and R3 and R4 are independently halogen at each occurrence. Atom, C^-Cm aliphatic hydrocarbon group, C5-C2G cycloaliphatic hydrocarbon group, or C2-C2 fluorene aromatic group; Z is bonded, divalent (: 丨-(:2() aliphatic hydrocarbon group, divalent C5-C20 ring An aliphatic hydrocarbon group 'divalent C2-C2G aromatic group, an oxygen bond group, a sulfur bond group, an S〇2 bond group or a Se bond group; and Ar9 is an aromatic group or an aggregation comprising at least one aromatic group After the ion exchange, the spacing between the inorganic citrate layers ("d-spacing") is greater than 15, 20, 25, 30, 40 or 75 angstroms. The organic clay is then stripped to produce the polymer-organic clay composite. Material. Peeling occurs when the organic clay is exposed to sufficient strength and excitation conditions during the period, and results in an increase in the spacing ("d-spacing") between the inorganic citrate layers. The d-spacing in the exfoliated organic clay can be any Greater than the initial d-spacing, that is, the d-spacing distance in the non-peeled organic clay. In a system, the d_-spacing is sufficient to effectively provide a reduction in the CTE of the polyimide film. Polymer-organic clay composites. In some systems, exfoliated organic clays have a 5 to 90 angstroms, especially large -26-200900458 at the beginning of 15, 5, 25, 30, 40 or 7 5 angstroms. d - increase in spacing. After increasing in other systems, the d-spacing in the exfoliated organic clay is random. When the d-spacing increases, resulting in a random distribution, the sheets are no longer measurable at d-spacing. Mode orientation. In other systems, the net increase in d-spacing of organic clay is from about 1 〇 to about 5%. One method of stripping is sonic vibration processing. Peeling can also be done by high-energy mixing. The treatment and high energy mixing are in a solvent system (for example in a solvent system comprising from 1 to 90% by weight of organic clay and from 1 to 99% by weight, in particular from 1 to 50% by weight of organic clay and from 50 to 99% by weight % solvent system, more particularly 1 to 15% by weight of organic clay and 85 to 99% by weight of solvent system). Suitable solvent systems allow good dispersion, effective stripping, and dissolution of organic clay as described below. Polymer or poly Precursor. Suitable solvents include N,N-dimethylacetamide, N,N-dimethylformamide, N-methylpyridinone, dimethyl hydrazine, cyclobutane, tetrahydrofuran, Phenyl ketone, cyclohexanone, phenol, o-cresol, p-cresol, m-cresol, phenol, acetol, isopropyl phenol, tri-butyl phenol, xylenol, 2, 4, 6 a trimethylphenol, a chlorophenol, a dichlorophenol, a phenylphenol, a monoalkyl ether of ethylene glycol having from 1 to about 4 carbon atoms in the alkyl group, and a diethylene group having from 1 to about 4 carbon atoms in the alkyl group. Alcohol monoalkyl ether, monoaryl ether glycol, propylene glycol aryl ether, tetramethyl urea, phenoxyethanol, propylene glycol phenyl ether, anisole, veratrol, o-dichlorobenzene, chlorobenzene , trichlorobenzene, trichloroethane, dichloromethane, chloroform, pyridine, N-cyclohexyl pyrrolidone, ethyl lactate, ionic liquids, and combinations thereof. -27- 200900458 In a system, the first mixture is obtained by combining (for example, homogenizing) an organic clay into a solvent system of choice, followed by stripping, that is, exposing the first mixture to an excitation condition. To form a second mixture. The excitation conditions are at a sufficient strength and duration to increase the initial spacing between the inorganic tellurite layers, for example, sonic vibration processing. Typical sonic vibrators are ultrasonic liquid processors available from Misonix, fixed-frequency SONOPUSH MONO HD® ultrasonic transducers from Weber Ultrasonics, and tubular diving converters sold by MPI. The sonic vibration processing can be performed in batch or continuous mode. In the batch process, homogenization of the first mixture occurs when it comes into contact with the source of the sound wave. The mixture was stirred evenly to determine the uniform sonic vibration treatment of the entire mixture. In a continuous process, the first mixture flows through the sonic vibration processing zone at a rate that is imparted. The mixture was stirred evenly to determine a uniform dispersion of the nanocaprate. In batch or continuous processes, the sonic vibration processing conditions required for stripping (ie, flow velocity, sonic vibration processing force, sonic vibration processing time) depend on the type of modifier used, solvent, batch capacity, and sonic source. The configuration and size, and the temperature at which the sonic vibration treatment occurs. Those skilled in the art will appreciate that other devices and methods can be used to impart an excitation condition. In another system, for example, a silversontm mixer can be used. Different modes can be used depending on the specific needs of the present. Any functionally equivalent shear/grinding mixer can be used. The sandwich and peeling between the organic clays can be observed by X-ray diffraction (XRD) of the resulting solution. Peeling can also be accomplished by combining a sonicated organic clay mixture with a polymer, removing the solvent, for example, by evaporating, precipitating or passing through a venting extruder, and then casting or pressing the film, and -28 - 200900458 Perform TEM analysis and observation. Exfoliation can be carried out prior to combination with the polymer, after combination with the polymer, prior to combination with the polymer precursor, or after combination with the polymer precursor. In other words, the polymer or polymer precursor can be added to the first mixture (solvent and non-peeled nano-clay) or to the second mixture (solvent and exfoliated nano-clay). Thus, in a particular system, the stripping is carried out after combining the non-exfoliating nanoclay with a polymer such as polyimine. In other specific systems, the exfoliation is carried out prior to combination with the polyimine. In this system, the third mixture is formed by combining exfoliated nano clay with polyimine (or other polymer). The polyimine (or other polymer) may be pre-dissolved in a solvent (e.g., DM Ac or hydrazine) or directly added to the mixture comprising the exfoliated organic clay to provide a solids content in the range of 5 to 25 wt%. The polyimine (or other polymer) is at least partially dissolved in the solvent, and the citrate layer in the organic clay is further separated. The solvent is then at least partially removed from the third mixture. Alternatively, exfoliation occurs prior to merging with the polyamic acid solution (or other polymeric precursor) to provide a second mixture having a solids content of, for example, from 5 to 25 wt% solids. The polylysine solution is then polymerized as described above. In one system, polymerization occurs during removal of the solvent from the exfoliated nanoclay and polylysine compositions. The polyimine thus formed is at least partially dissolved in a solvent, and further separates the silicate layer in the organic clay. The solvent can then be removed continuously from the polyimide-organic clay composite. The silicate layer of organic clay remains separated after solvent removal. -29- 200900458 In another system, the polymer precursor is combined with the non-peelable organic clay in a solvent system prior to exposure of the mixture to the excitation conditions. The polymer precursor can be at least partially polymerized prior to stripping, during stripping, and/or after stripping to provide a polymer. The polymer thus formed is at least partially dissolved in a solvent, and further separates the silicate layer in the organic clay. The solvent is then removed at least partially to provide the polymer-organic clay composite composition. For example, the hydrazine dianhydride component and the organic diamine component and the organic clay are in a solvent system (eg, DM Ac ) to provide a solid having, for example, 2 to 15% by weight, or more specifically, 1 to 5% by weight. a mixture of solids solids. Sonicated organic clay and monomer to increase the initial d-spacing of organic clay. The organic clay and monomer mixture are then heat stripped to form polylysine. The polylysine thus formed is at least partially dissolved in a solvent. The polyamine acid is converted to the polyimine by at least partially removing the solvent from the second mixture. The polymerization of diamines and dianhydrides in the presence of organic clays was found to produce a good dispersion of organic clay. In another system, the organic clay is stripped prior to combining with the dianhydride component and the organic diamine component in a solvent system (eg, DM Ac ) to provide, for example, 2 to 15 wt% solids, or In particular, a mixture of solids content of 1 to 5% by weight solids. The dianhydride and the organic diamine are then polymerized to provide a poly-proline, and then a polyimine. The polyimine thus formed is at least partially dissolved in a solvent and further separates the silicate layer in the organic clay. The solvent is then at least partially removed from the polyaminic acid or polyamidiamine mixture. The silicate layer of organic clay remains separated after the solvent has been removed -30-200900458. Removal of the solvent in any of the foregoing systems can be accomplished by venting or precipitating in a non-solvent. The peeling was maintained after the solvent was removed. The resulting polymer-organic clay composition can be formed into a film by solution casting or melt extrusion. The use of organic clays (especially exfoliated organic clays) is found to provide unexpected advantages. The film comprising the organic clay may have a lower CTE than the film of the same composition without the organic clay. Alternatively, or in addition, the film containing the machine clay may have the same Tg as the film of the same composition without the organic clay. Films containing organic clay can also be transparent. The amount of organic clay used in the film will vary depending on the nature of the film desired. For example, the film may comprise from 0.1 to 10% by weight of organic clay, especially from i to 10% by weight of organic clay, based on the total weight of the film. A monomer (at least one dianhydride monomer and at least one diamine monomer) is added to the clay dispersion to form a modified polyaminic acid solution. Moreover, instead of adding polyamic acid to the clay dispersion, in another system, the dry film has a solution of 1% by weight in dimethylacetamide or N-methylpyrrolidone greater than 〇_05 Intrinsic viscosity of dl/g. The polyimine solution can then be combined with the clay dispersion and cast as described above. Another type of additive that can be used to reduce the CTE of the solvent cast polyimine film includes a soluble nanoparticle precursor such as aluminum (acetylacetonoate) 3 . Another additional filler which can be used to reduce the CTE of the solvent cast polyimine film is a metal oxide nanoparticle which can be formed from an organic-metal precursor. Metal oxide nanoparticles can be produced in situ by decomposing organometallic precursors -31 - 200900458. An example of such a material is (acetylthiopyruvate) 3 Ming ( ). The pyrolysis of (Al(acac)3) produces alumina. A12 Ο 3 nm when carried out in a dilute molecular solvent or polymer melt). Aligning the 1% by weight of the loaded ai2o3 and the diamine monomer in the final polymer (especially the oxydiphthalic anhydride and the diaminodiphenyl group were added to the precursor in advance. The obtained fluorene A1203 nanoparticle showed a ratio CTE less than 15% lower than the unfilled sample. In addition to the addition of the organometallic precursor to the polymer, the propolyamine solution or the finished soluble polyimine solvent is blended, polymer blended and extruded to produce An entanglement system in which a solution can be cast into a film and hardened to produce a entangled film. Other precursors include a metal (acac) complex, and a ceramic precursor molybdenum. Other types of additives for the CTE or properties of the film include enamels and fortifiers, glass, glass beads, flakes, etc. Minerals, ash, mica, kaolinite or microcrystalline kaolinite may be added. , fumed silica, perlite, quartz, and barite may also be used in an effective amount of an inorganic chelating agent, such as, for example, carbon fiber tubes, glass fibers, metal fibers, metal powders, conductive carbons, and agents including naphthalenes. Meter-grade The metal oxide can be added to the polymerization of the present invention. In some examples, the metal oxide can further improve the fire resistance (FR) performance by reducing heat release and increasing the release time.

Al(acac)3 溶液(小 粒子形成 ,在二酐 颯)之聚 子之聚合 驅物可與 或與成品 中之材料 ί有機-金 物例如硫 外的所要 如纖維玻 例如滑石 石、白炭 。組成物 維和奈米 其他添加 合物中。 至峰熱釋 氧化欽是 -32- 200900458 値得注意的。其他金屬氧化物包括氧化鋅類、氧化硼類、 氧化銻類、氧化鐵類、和過渡金屬氧化物。在一些例子中 需要白色金屬氧化物。金屬氧化物可單獨使用或與其他金 屬氧化物組合使用。金屬氧化物可使用於任何有效量’一 些例子中於聚合物之0.01至20重量%。 其他有效添加劑包括抑煙劑例如金屬硼酸鹽類(例如 硼酸鋅)、鹼金屬或鹼土金屬硼酸鹽或其他硼酸鹽類。額 外其他含硼化合物,例如硼酸、硼酸酯類、氧化硼類或其 他硼之氧化合物可爲有用的。可使用額外其他阻焰添加劑 ,例如磷酸芳酯類和溴化芳族化合物,包括從溴化芳基化 合物製造之包含鍵聯的聚合物。鹵化芳族化合物的例子爲 溴化苯氧基樹脂類、鹵化聚苯乙烯類、鹵化醯亞胺類、溴 化聚碳酸酯類、溴化環氧基樹脂類和彼等之混合物。 在一些例子中也許需要有基本上無鹵素原子(尤其是 溴和氯)之阻焰組成物。基本上無鹵素原子表示在一些體 系中組成物具有小於3 %鹵素(特別是氯及/或溴),以 組成物之重量計,和在其他體系中小於1重量%之組成物 包含鹵素原子’特別是氯及/或溴。鹵素原子之量可藉由 平常化學分析測定。 組成物也可任意地包括於組成物重量之〇 . 〇 1至5.0 % 氟聚合物的量之氟聚合物。氟聚合物可使用於任何有效量 以提供樹脂組成物抗滴性質。適當氟聚合物和製造該氟聚 合物之方法的一些例子發表於(例如)美國專利第 3,671,487、3,723,373 和 3,383,092 號。適當氟聚合物包 -33- 200900458 括均聚物和共聚物,該均聚物和共聚物包含衍生自一或多 種氟化《 -烯烴單體之結構單元。術語“氟化α -烯烴單 體”表示一種包括至少一個氟原子取代基之α -烯烴單體 。一些適當氟化α-烯烴單體包括(例如)氟乙烯類如( 例如)cf2 = cf2、CHF = CF2、CH2 = CF2、和 CH2=CHF 和氟 丙嫌類如(例如)cf3cf = cf2 、 cf3cf=chf 、 cf3ch=cf2 ' CF3CH-CH2 ' CF3CF = CHF ' CHF2CH = CHF ' fn CF3CF = CH2。 一些適當氟化a -烯烴共聚物包括包含衍生自二或更 多種氟化α -烯烴單體之結構單元的共聚物例如(例如) 聚(四氟乙烯-六氟乙烯),及包含衍生自一或多種氟化 單體和一或多種與氟化單體共聚合之非氟化單烯鍵式不飽 和單體的結構單元之共聚物例如(例如)聚(四氟乙烯-乙烯-丙烯)共聚物。適當非氟化單烯鍵式不飽和單體包 括例如,α -烯烴單體例如(例如)乙烯、丙烯、丁烯、 丙烯酸酯單體例如(例如)甲基丙烯酸甲酯、丙烯酸丁酯 、等等,且聚(四氟乙烯)均聚物(PTFE )較佳。 其他可加至溶劑流延膜之添加劑包括抗氧化劑例如亞 磷酸酯類、亞鱗酸醋類、和位阻苯酣類。含磷穩定劑(包 括亞磷酸三芳酯和膦酸芳酯)注意是作爲有效添加劑。也 可使用二官能含碟化合物。具有大於或等於300道爾頓之 分子量的穩定劑爲較佳。在其他例子中具有大於或等於 5 00道爾頓的含磷穩定劑是有用的。含磷穩定劑典型地以 調配物之0 ·0 5 一 0.5重量%存在於組成物中。也可使用著 -34- 200900458 色劑以及光穩定劑和UV吸收劑。也打算流動助劑和脫模 化合物。脫模劑的例子爲羧酸烷酯類(例如)新戊四醇四 硬脂酸酯、甘油三硬脂酸酯、和乙二醇二硬脂酸酯。脫模 劑和加工助劑典型地以調配物之0 · 0 5 - 0.5重量%存在於 組成物中。較佳脫模劑將具有高分子量,典型地大於3 0 0 道爾頓,以防止在熔融加工期間損失,如果脫模劑來自熔 融聚合物混合物。 用以形成根據本發明物件之組成物也包括各種添加劑 例如成核劑、澄清劑、挺度劑及/或結晶速度劑。這些 試劑可以習知物質及習知量使用。 組成物可藉由各種包括均勻摻合材料與任何調配物中 所需要之額外添加劑的方法與上述的成分摻合。一種較佳 步驟包括溶液摻合,雖然在製造溶劑流延膜之後可使用熔 融摻合。使用於該等溶融加工方法中的設備之說明例包括 同向旋轉和逆向旋轉擠壓機、單螺桿擠壓機、共-捏合機 、圓盤組(disc-pack )處理機、和各種其他類型之擠壓設 備。 液體塗料溶液可使用上述聚醯亞胺組成物以及薄膜形 成溶液形成。液體塗料溶液具有許多和不同的用途。塗料 溶液可使用任何適當塗佈方法(例如浸漬、塗刷、噴霧、 擦拭等等)施用至各種基板,和其後加熱以蒸發溶劑系統 和形成硬化聚醚醯亞胺樹脂塗層。較佳逐漸地增加溫度以 製備平滑樹脂塗層。聚合和硬化有利地於125°C至3 00 °C 或更大之溫度下進行。 -35- 200900458 聚醯胺酸溶液也可用作一種塗料溶液,其可在使用之 前立刻製備或儲存。一般而言’最大的儲藏壽命可藉由在 氮氛圍沒光下儲存溶液而獲得。 用以製造溶劑流延膜和塗層之聚合物爲聚醯亞胺類且 在一些特定例子中’爲聚醚醯亞胺類。根據本發明之聚醯 亞胺類具有通式(6):The polymerization of the poly(acac)3 solution (small particle formation, in the dianhydride oxime) can be used with or in the finished product. ί Organic-gold, such as sulfur, such as fiberglass such as talc, white carbon. Compositions and nanoparticles are added to other additives. The peak heat release oxidation is -32- 200900458 I have to pay attention. Other metal oxides include zinc oxides, boron oxides, cerium oxides, iron oxides, and transition metal oxides. In some cases a white metal oxide is required. Metal oxides can be used alone or in combination with other metal oxides. The metal oxide can be used in any effective amount & in some examples from 0.01 to 20% by weight of the polymer. Other effective additives include smoke suppressants such as metal borates (e.g., zinc borate), alkali metal or alkaline earth metal borates or other borates. Additional boron-containing compounds, such as boric acid, borate esters, boron oxides or other boron oxygen compounds, may be useful. Additional flame retardant additives can be used, such as aryl phosphates and brominated aromatic compounds, including polymers comprising linkages made from brominated aryl compounds. Examples of the halogenated aromatic compound are brominated phenoxy resins, halogenated polystyrenes, guanidinium halides, brominated polycarbonates, brominated epoxy resins, and mixtures thereof. In some instances, a flame-retardant composition of substantially halogen-free atoms (especially bromine and chlorine) may be required. Substantially halogen-free atoms means that in some systems the composition has less than 3% halogen (especially chlorine and/or bromine), based on the weight of the composition, and in other systems less than 1% by weight of the composition contains a halogen atom' Especially chlorine and / or bromine. The amount of halogen atoms can be determined by ordinary chemical analysis. The composition may also optionally be included in the weight of the composition. 〇 1 to 5.0% by weight of the fluoropolymer of the fluoropolymer. The fluoropolymer can be used in any effective amount to provide anti-drip properties of the resin composition. Examples of suitable fluoropolymers and methods of making the fluoropolymers are disclosed in, for example, U.S. Patent Nos. 3,671,487, 3,723,373 and 3,383,092. Suitable fluoropolymer packages -33- 200900458 include homopolymers and copolymers comprising structural units derived from one or more fluorinated "-olefin monomers." The term "fluorinated alpha-olefin monomer" means an alpha-olefin monomer comprising at least one fluorine atom substituent. Some suitable fluorinated alpha-olefin monomers include, for example, fluoroethylenes such as, for example, cf2 = cf2, CHF = CF2, CH2 = CF2, and CH2 = CHF and fluoropropene such as, for example, cf3cf = cf2, cf3cf =chf , cf3ch=cf2 ' CF3CH-CH2 ' CF3CF = CHF ' CHF2CH = CHF ' fn CF3CF = CH2. Some suitable fluorinated a-olefin copolymers include copolymers comprising structural units derived from two or more fluorinated alpha-olefin monomers such as, for example, poly(tetrafluoroethylene-hexafluoroethylene), and the derivatives are derived from a copolymer of one or more fluorinated monomers and one or more structural units of a non-fluorinated monoethylenically unsaturated monomer copolymerized with a fluorinated monomer such as, for example, poly(tetrafluoroethylene-ethylene-propylene) Copolymer. Suitable non-fluorinated monoethylenically unsaturated monomers include, for example, alpha-olefin monomers such as, for example, ethylene, propylene, butylene, acrylate monomers such as, for example, methyl methacrylate, butyl acrylate, etc. Etc., and a poly(tetrafluoroethylene) homopolymer (PTFE) is preferred. Other additives which may be added to the solvent cast film include antioxidants such as phosphites, linoleic acid vinegars, and hindered benzoquinones. Phosphorus-containing stabilizers, including triaryl phosphites and aryl phosphonates, are noted as effective additives. Difunctional dish-containing compounds can also be used. Stabilizers having a molecular weight greater than or equal to 300 Daltons are preferred. Phosphorus-containing stabilizers having greater than or equal to 500 Daltons are useful in other examples. The phosphorus-containing stabilizer is typically present in the composition at from 0.5 to 0.5% by weight of the formulation. Also available are -34- 200900458 colorants as well as light stabilizers and UV absorbers. Flow aids and mold release compounds are also contemplated. Examples of the release agent are alkyl carboxylates such as pentaerythritol tetrastearate, glyceryl tristearate, and ethylene glycol distearate. The release agent and processing aid are typically present in the composition at from 0.5 to 0.5% by weight of the formulation. The preferred release agent will have a high molecular weight, typically greater than 300 Daltons, to prevent loss during melt processing if the release agent is from the molten polymer mixture. The composition used to form the article according to the invention also includes various additives such as nucleating agents, fining agents, stiffnessing agents and/or crystallization rate agents. These reagents can be used in conventional materials and in conventional amounts. The composition can be blended with the above ingredients by a variety of methods including uniform blending of the materials and additional additives required in any formulation. A preferred procedure involves solution blending, although melt blending can be used after the solvent cast film is made. Illustrative examples of equipment used in such melt processing methods include co-rotating and counter-rotating extruders, single-screw extruders, co-kneaders, disc-pack processors, and various other types The extrusion equipment. The liquid coating solution can be formed using the above polyimine composition and a film forming solution. Liquid coating solutions have many and different uses. The coating solution can be applied to various substrates using any suitable coating method (e.g., dipping, brushing, spraying, wiping, etc.), and thereafter heated to evaporate the solvent system and form a hardened polyetherimide resin coating. It is preferred to gradually increase the temperature to prepare a smooth resin coating. The polymerization and hardening are advantageously carried out at a temperature of from 125 ° C to 300 ° C or more. -35- 200900458 Polyammonic acid solution can also be used as a coating solution which can be prepared or stored immediately before use. In general, the maximum shelf life can be obtained by storing the solution in the absence of light in a nitrogen atmosphere. The polymers used to make the solvent cast film and coating are polyamidomines and in some specific examples are polyetherimine. The polyimines according to the present invention have the general formula (6):

Ο 0 」a⑹ 其中a大於1,典型地10至1,000或更多,或更特別是 10至500 ;及其中V爲一種四價連接體但沒有限制,只 要該連接體不阻礙聚醯亞胺之合成或使用。適當連接體包 括但不限制於:(a )具有5至50個碳原子的經取代或未 經取代之飽和、不飽和或芳族單環和多環基團、(b)具 有1至3 0個碳原子的經取代或未經取代之直鏈或支鏈的 飽和或不飽和烷基;或包含上述之至少一個的組合物。適 當取代基及/或連接體包括(但不限制於)醚類、環氧化 物類、酿胺類、酯類、和包含上述之至少一個的組合物。 在一體系中’至少部分之連接體V包含衍生自雙酚之部 分。在另一體系中,沒有連接體V必須包含衍生自雙酣 之部分。理想地連接體包括但不限制於下式之四價芳族基 -36- 200900458 )0〇c ) 其中 w 爲一種包括- 〇-、-s-、-c(o)-、-so2-、-so-、 -CyH2y- ( y爲從1至5之整數)的二價部分,和其鹵化衍 生物,包括全氟伸烷基團,或式-0-Z-0-之基團,其中該 -0-或-0-2-0-基團之二價鍵於3,3’、3,4’、4,3’或4,4’位 置,及其中Z包括但不限制於下式之二價基團=Ο 0 ” a (6) wherein a is greater than 1, typically 10 to 1,000 or more, or more specifically 10 to 500; and wherein V is a tetravalent linker but is not limited as long as the linker does not hinder the poly Synthesis or use of amines. Suitable linkers include, but are not limited to, (a) substituted or unsubstituted saturated, unsaturated or aromatic monocyclic and polycyclic groups having 5 to 50 carbon atoms, (b) having 1 to 3 0 A substituted or unsubstituted linear or branched saturated or unsaturated alkyl group of one carbon atom; or a composition comprising at least one of the foregoing. Suitable substituents and/or linkers include, but are not limited to, ethers, epoxides, amines, esters, and compositions comprising at least one of the foregoing. In a system, at least a portion of the linker V comprises a moiety derived from bisphenol. In another system, no linker V must contain a portion derived from a double enthalpy. Desirably, the linker includes, but is not limited to, a tetravalent aromatic group of the formula: -36-200900458)0〇c) wherein w is one including -〇-, -s-, -c(o)-, -so2-, a divalent moiety of -so-, -CyH2y- (y is an integer from 1 to 5), and a halogenated derivative thereof, including a perfluoroalkylene group, or a group of the formula -0-Z-0-, wherein The divalent bond of the -0- or -0-2-0- group is at the 3,3', 3,4', 4,3' or 4,4' position, and wherein Z is included but not limited to Divalent group =

其中Q包括但不限制於一種包括-〇-、-S-、-C(0) -、-S02- -37- 200900458 、-SO-、-CyH2y-(y爲從1至5之整數)的二價部分,和 其鹵化衍生物,包括全氟伸烷基團。 在式(6 )中R包括但不限制於經取代或未經取代之 二價有機基團例如:(a)具有6至20個碳原子之芳族烴 基團和其鹵化衍生物;(b)具有2至20個碳原子之直鏈 或支鏈伸烷基團;(c)具有3至20個碳原子之伸環烷基 團,或(d)通式(7)之二價基團Wherein Q includes, but is not limited to, one including -〇-, -S-, -C(0)-, -S02--37-200900458, -SO-, -CyH2y- (y is an integer from 1 to 5) a divalent moiety, and a halogenated derivative thereof, including a perfluoroalkylene group. R in the formula (6) includes, but is not limited to, a substituted or unsubstituted divalent organic group such as: (a) an aromatic hydrocarbon group having 6 to 20 carbon atoms and a halogenated derivative thereof; (b) a linear or branched alkyl group having 2 to 20 carbon atoms; (c) a cycloalkyl group having 3 to 20 carbon atoms, or (d) a divalent group of the formula (7)

⑺ 其中Q包括但不限制於一種包括-〇-、-S-、-c(0)-、-so2-、-SO-、-CyH2y-(y爲從1至5之整數)的二價部分,和 其鹵化衍生物,包括全氟伸烷基團, 聚醯亞胺類的典型類別包括聚醯胺醯亞胺類和聚醚醯 亞胺類’特別是該等可熔融加工的聚醚醯亞胺類,例如該 等其製備和性質描述於美國專利第3,8 〇 3,〇 8 5和3,9 〇 5,9 4 2 號中者。 典型聚醚醯亞胺樹脂包含大於1個,典型地1〇至 1,000個’或更特別是10至500個之式(8)的結構單元(7) wherein Q includes, but is not limited to, a divalent moiety comprising -〇-, -S-, -c(0)-, -so2-, -SO-, -CyH2y- (y is an integer from 1 to 5) And its halogenated derivatives, including perfluoroalkylene groups, typical classes of polyamidiamines include polyamidoximines and polyetherimines, especially such melt-processable polyethers The imines, such as their preparation and properties, are described in U.S. Patent Nos. 3,8,3, 〇8 5 and 3,9,5,9,42. Typical polyetherimide resins comprise more than one, typically from 1 to 1,000 or more specifically from 10 to 500, structural units of formula (8)

其中T爲-〇 -或式- 0- Z- 0-之基團,其中該-〇-或_〇_/_〇_基 -38- 200900458 團之二價鍵於3,3’、3,4,、4,3,或4,4,位置,且其中Z包 括(但不限制於)如上所述之二價基團。 在一體系中,聚醚醯亞胺可爲共聚物’其除了上述酸 醯适胺單元之外,另外包含式(9)之聚醯亞胺結構單元 Ο 0Wherein T is a group of -〇- or formula - 0-Z- 0-, wherein the -〇- or _〇_/_〇_yl-38-200900458 group has a divalent bond at 3,3', 3, 4, 4, 3, or 4, 4, position, and wherein Z includes, but is not limited to, a divalent group as described above. In one system, the polyether quinone imine may be a copolymer which additionally comprises a polyamidimide structural unit of the formula (9) in addition to the above-mentioned acid amide amine unit Ο 0

A A —Ν Μ ^Ν—R— Υ Υ Ο Ο (9) 其中R如前述式(6 )之定義和μ包括(但不限制於)下 列基團:A A —Ν Μ ^Ν—R— Υ Ο Ο Ο (9) wherein R is as defined in the above formula (6) and μ includes (but is not limited to) the following groups:

h2n-r-nh2 (11) -39 200900458 其中R和T如前述式(6 )和(8 )相關所定義。 特定芳族雙(醚酐)類和有機二胺類的例子係揭示於 例如美國專利第3,972,902和4,45 5,4 1 0號中。二酐分之 說明例包括= 2.2- 雙[4- (3,4-二羧苯氧基)苯基]丙烷二酐; 4,4’-雙(3,4-二羧苯氧基)二苯基醚二酐; 4,4’-雙(3,4 -二羧苯氧基)二苯基硫醚二酐; 4,4’-雙(3,4-二羧苯氧基)二苯基酮二酐; 4,4’-雙(3,4-二羧苯氧基)二苯基楓二酐; 2.2- 雙[4- (2,3-二羧苯氧基)苯基]丙烷二酐; 4,4’-雙(2,3-二羧苯氧基)二苯基醚二酐; 4,4’-雙(2,3 -二羧苯氧基)二苯基硫醚二酐; 4,4’-雙(2,3-二羧苯氧基)二苯基酮二酐; 4,4’-雙(2,3-二羧苯氧基)二苯基楓二酐; 4- (2,3-二羧苯氧基)-4’- (3,4-二羧苯氧基)二苯 基-2,2-丙烷二酐; 4-(2,3-二羧苯氧基)-4’-(3,4-二羧苯氧基)二苯基 醚二酐; 4-(2,3-二羧苯氧基)-4’-(3,4-二羧苯氧基)二苯基 硫醚二酐; 4-(2,3-二羧苯氧基)-4’-(3,4-二羧苯氧基)二苯基 酮二酐; 4-(2,3-二羧苯氧基)-4’-(3,4-二羧苯氧基)二苯基 -40- 200900458 碾二酐; 1.3- 雙(2,3-二羧苯氧基)苯二酐; 1,4-雙(2,3-二羧苯氧基)苯二酐; 1.3- 雙(3,4-二羧苯氧基)苯二酐; 1,4-雙(3,4-二羧苯氧基)苯二酐; 3,3’,4,4’-二苯基四甲酸二酐; 3,3’,4,4’-二苯基酮四甲酸二酐; 萘二酐類,例如 2,3,6,7-萘二酐,等等; 3,3’,4,4’-聯苯磺(“1?11〇1^(〇四甲酸二酐; 3,3’,4,4’-聯苯醚四甲酸二酐; 3,3’,4,4’-二甲基二苯基矽烷四甲酸二酐; 4,4’-雙(3,4-二羧苯氧基)二苯基硫醚二酐; 4,4’-雙(3,4 -二羧苯氧基)二苯基楓二酐; 4,4’-雙(3,4-二羧苯氧基)二苯基丙烷二酐; 3,3’,4,4’-聯苯四甲酸二酐; 雙(酞)苯基隣氧化物(sulphineoxide)二酐; 對-伸苯基-雙(三苯基酞)二酐; 間-伸苯基-雙(三苯基酞)二酐; 雙(三苯基酞)-4,4’-二苯基醚二酐; 雙(三苯基酞)-4,4’-二苯基甲烷二酐; 2,2’-雙(3,4_二羧苯基)六氟丙烷二酐; 4,4’-氧基二酞二酐; 苯均四酸二酐; 3,3’,4,4’-二苯基楓四甲酸二酐; -41 - 200900458 4’,4’-雙酚A二酐; 氫醌二酞二酐; 6,6’-雙(3,4-二羧苯氧基)-2,2’,3,3’-四氫-3,3,3’,3’ 第三-四甲基-1,1’-螺二[1H-茚]二酐; 7,7,-雙(3,4-二羧苯氧基)-3,3,,4,4,-四氫-4,4,4,,4,-四甲基-2,2’-螺二[2H-1-苯並毗喃]二酐; 1,1’-雙[1-(3,4-二羧苯氧基)-2-甲基-4-苯基]環己烷 二酐; 3,3’,4,4’-二苯基颯四甲酸二酐; 3,3’,4,4’-二苯基硫醚四甲酸二酐; 3,3’,4,4’-二苯基亞碉四甲酸二酐; 4,4’-氧基二酞二酐; 3,4’-氧基二酞二酐; 3,3’-氧基二酞二酐; 3,3’-二苯基酮四甲酸二酐; 4,4’-羰基二酞二酐; 3,3’,4,4’-二苯基甲烷四甲酸二酐; 2.2- 雙(4- (3, 3-二羧苯基)丙烷二酐; 2.2- 雙(4-(3,3-二羧苯基)六氟丙烷二酐; (3,3’,4,4’-二苯基)苯基膦四甲酸二酐; (3,3’,4,4’_二苯基)苯基膦氧化物四甲酸二酐; 2,2’-二氯-3,3’,4,4’-聯苯四甲酸二酐; 2,2’-二甲基-3,3’,4,4’-聯苯四甲酸二酐; 2,2’-二氰基-3,3’,4,4’-聯苯四甲酸二酐; -42- 200900458 2,2’-二溴-3,3’,4,4’-聯苯四甲酸二酐 2,2’-二碘- 3,3’,4,4’-聯苯四甲酸二酐 2,2,-二. 三氟甲基_3,3’,4,4’-聯苯四甲酸二酐; 2,2,-雙 (;!_甲基-4-苯基)-3,3’,4,4’-聯苯四甲酸二酐 > 2,2,-雙 (1-三氟甲基-2-苯基)-3,3’,4,4’-聯苯四甲酸 —0T , 2,2,-雙 (1-三氟甲基-3-苯基)-3,3’,4,4’-聯苯四甲酸 —0Τ , 2,2,-雙 (1-三氟甲基-4-苯基)-3,3’,4,4’-聯苯四甲酸 —-ST , 2,2,-雙 (1-苯基-4-苯基)-3,3’,4,4’-聯苯四甲酸二酐 4.4 ’ -雙酚A二酐; 3.4 ’ -雙酚A二酐; 3,3 ’ -雙酚A二酐; 3,3’,4,4’-二苯基亞砸四甲酸二酐; 4,4’-羰基二酞二酐; 3,3’,4,4’-二苯基甲烷四甲酸二酐; 2,2’-雙(1,3-三氟甲基-4-苯基)-3,3’,4,4’-聯苯四甲 酸二酐,和其所有異構物,以及前述之組合物。 雙(醚酐)類可藉由硝基取代之苯基二腈與雙酚化合 物(例如,BPA )之金屬鹽在偶極非質子性溶劑存在下的 反應產物之水解作用,接著脫水作用而製備。上述式(7 -43- 200900458 )所包括之芳族雙(醚酐)類的典型類別包括(但不限制 於)其中T具有式(12); —ΟH2n-r-nh2 (11) -39 200900458 wherein R and T are as defined in relation to the above formulas (6) and (8). Examples of specific aromatic bis(ether anhydride) and organic diamines are disclosed in, for example, U.S. Patent Nos. 3,972,902 and 4,45 5,410. Illustrative examples of dianhydride include = 2.2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride; 4,4'-bis(3,4-dicarboxyphenoxy)di Phenyl ether dianhydride; 4,4'-bis(3,4-dicarboxyphenoxy)diphenyl sulfide dianhydride; 4,4'-bis(3,4-dicarboxyphenoxy)diphenyl Keto dianhydride; 4,4'-bis(3,4-dicarboxyphenoxy)diphenylphosphoric dianhydride; 2.2-bis[4-(2,3-dicarboxyphenoxy)phenyl]propane Dihydride; 4,4'-bis(2,3-dicarboxyphenoxy)diphenyl ether dianhydride; 4,4'-bis(2,3-dicarboxyphenoxy)diphenyl sulfide Anhydride; 4,4'-bis(2,3-dicarboxyphenoxy)diphenyl ketone dianhydride; 4,4'-bis(2,3-dicarboxyphenoxy)diphenylphosphoric anhydride; 4-(2,3-dicarboxyphenoxy)-4'-(3,4-dicarboxyphenoxy)diphenyl-2,2-propane dianhydride; 4-(2,3-dicarboxybenzene Oxy)-4'-(3,4-dicarboxyphenoxy)diphenyl ether dianhydride; 4-(2,3-dicarboxyphenoxy)-4'-(3,4-dicarboxybenzene Oxy)diphenyl sulfide dianhydride; 4-(2,3-dicarboxyphenoxy)-4'-(3,4-dicarboxyphenoxy)diphenyl ketone dianhydride; 4-(2 ,3-dicarboxyphenoxy)-4'-(3,4-dicarboxyphenoxy)diphenyl -40- 200900458 milled dianhydride; 1.3-bis(2,3-dicarboxyphenoxy)phthalic anhydride; 1,4-bis(2,3-dicarboxyphenoxy)phthalic anhydride; 1.3- double ( 3,4-dicarboxyphenoxy)phthalic anhydride; 1,4-bis(3,4-dicarboxyphenoxy)phthalic anhydride; 3,3',4,4'-diphenyltetracarboxylic acid Anhydride; 3,3',4,4'-diphenyl ketone tetracarboxylic dianhydride; naphthalic dianhydrides, such as 2,3,6,7-naphthalenedihydride, etc.; 3,3',4,4 '-Biphenyl sulfonate ("1?11〇1^(〇tetracarboxylic dianhydride; 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride; 3,3',4,4'-dimethyl Diphenyl decane tetracarboxylic dianhydride; 4,4'-bis(3,4-dicarboxyphenoxy)diphenyl sulfide dianhydride; 4,4'-bis(3,4-dicarboxyphenoxy Diphenyltriamine; 4,4'-bis(3,4-dicarboxyphenoxy)diphenylpropane dianhydride; 3,3',4,4'-biphenyltetracarboxylic dianhydride; Sulphur sulphate dianhydride; p-phenyl-bis(triphenylphosphonium) dianhydride; m-phenyl-bis(triphenylphosphonium) dianhydride; Phenylhydrazine)-4,4'-diphenyl ether dianhydride; bis(triphenylphosphonium)-4,4'-diphenylmethane dianhydride; , 2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride; 4,4'-oxydiphthalic anhydride; pyromellitic dianhydride; 3,3',4,4'- Diphenyl maple tetracarboxylic acid dianhydride; -41 - 200900458 4',4'-bisphenol A dianhydride; hydroquinone dianhydride; 6,6'-bis(3,4-dicarboxyphenoxy)- 2,2',3,3'-tetrahydro-3,3,3',3' tris-tetramethyl-1,1'-spirobis[1H-indole] dianhydride; 7,7,-double (3,4-dicarboxyphenoxy)-3,3,,4,4,-tetrahydro-4,4,4,,4,-tetramethyl-2,2'-spiro[2H-1 -benzophenanthrene dianhydride; 1,1'-bis[1-(3,4-dicarboxyphenoxy)-2-methyl-4-phenyl]cyclohexane dianhydride; 3,3' , 4,4'-diphenylphosphonium tetracarboxylic dianhydride; 3,3',4,4'-diphenyl sulfide tetracarboxylic dianhydride; 3,3',4,4'-diphenylarylene Tetracarboxylic acid dianhydride; 4,4'-oxydiphthalic anhydride; 3,4'-oxydiphthalic anhydride; 3,3'-oxydiphthalic anhydride; 3,3'-diphenyl ketone Tetracarboxylic acid dianhydride; 4,4'-carbonyldiphthalic anhydride; 3,3',4,4'-diphenylmethanetetracarboxylic dianhydride; 2.2-bis(4-(3,3-dicarboxyphenyl) Propane dianhydride; 2.2-bis(4-(3,3-dicarboxyphenyl)hexafluoropropane dianhydride (3,3',4,4'-diphenyl)phenylphosphinetetracarboxylic dianhydride; (3,3',4,4'-diphenyl)phenylphosphine oxide tetracarboxylic dianhydride; , 2'-dichloro-3,3',4,4'-biphenyltetracarboxylic dianhydride; 2,2'-dimethyl-3,3',4,4'-biphenyltetracarboxylic dianhydride; 2,2'-dicyano-3,3',4,4'-biphenyltetracarboxylic dianhydride; -42- 200900458 2,2'-dibromo-3,3',4,4'-biphenyl Tetracarboxylic acid dianhydride 2,2'-diiodo-3,3',4,4'-biphenyltetracarboxylic dianhydride 2,2,-di. Trifluoromethyl_3,3',4,4'- Biphenyltetracarboxylic dianhydride; 2,2,-bis(;!_methyl-4-phenyl)-3,3',4,4'-biphenyltetracarboxylic dianhydride> 2,2,-double (1-Trifluoromethyl-2-phenyl)-3,3',4,4'-biphenyltetracarboxylic acid - 0T, 2,2,-bis(1-trifluoromethyl-3-phenyl) -3,3',4,4'-biphenyltetracarboxylic acid-O, 2,2,-bis(1-trifluoromethyl-4-phenyl)-3,3',4,4'-biphenyl Tetraformic acid--ST, 2,2,-bis(1-phenyl-4-phenyl)-3,3',4,4'-biphenyltetracarboxylic dianhydride 4.4 '-bisphenol A dianhydride; 3.4 '-bisphenol A dianhydride; 3,3 '-bisphenol A dianhydride; 3,3',4,4'-diphenylarylene Formic acid dianhydride; 4,4'-carbonyldiphthalic anhydride; 3,3',4,4'-diphenylmethanetetracarboxylic dianhydride; 2,2'-bis(1,3-trifluoromethyl- 4-phenyl)-3,3',4,4'-biphenyltetracarboxylic dianhydride, and all of its isomers, as well as the foregoing combinations. The bis(ether anhydride) can be prepared by hydrolysis of a reaction product of a nitro-substituted phenyl dinitrile with a metal salt of a bisphenol compound (for example, BPA) in the presence of a dipolar aprotic solvent, followed by dehydration. . Typical classes of aromatic bis(ether anhydrides) included in the above formula (7-43-200900458) include, but are not limited to, wherein T has the formula (12);

〇— (12) 和醚鍵聯(例如)於3 , 3 ’、3,4 ’、4,3 ’或4,4 ’位置之化合 物,和包含前述之至少一個的混合物且其中 Q如上述所 定義。 可使用任何二胺基化合物。適當化合物的例子爲: 間-苯二胺; 對-苯二胺; 2,4-二胺甲苯; 2,6 -二胺甲苯; 間-苯二甲胺; 對-苯二甲胺; 聯苯胺; 3,3 ’ -二甲基聯苯胺; 3,3 ’ -二甲氧基聯苯胺; 1,5 -二胺基萘; 雙(4-胺苯基)甲烷; 雙(4-胺苯基)丙烷; 雙(4_胺苯基)硫醚; 雙(4-胺苯基)颯; 雙(4-胺苯基)醚; -44- 200900458 4,4’-二胺基二苯基丙烷; 4,4’-二胺基二苯基甲烷(4,4,-亞甲基二苯胺); 4,4’-二胺基二苯基硫醚; 4,4’-二胺基二苯基楓; 4,4’-二胺基二苯基醚(4,4,-氧基二苯胺); 1,5-二胺基萘; 3,3’二甲基聯苯胺; 3 -甲基庚二胺; 4,4-二甲基庚二胺; 2,2,,3,3’ -四氫-3,3,3’,3,-四甲基-1,1,-螺雙[1H-茚]-6,6,-二胺; 3,3,,4,4’-四氫-4,4,4,,4,-四甲基- 2,2,-螺雙[2H-1-苯並 吡喃]-7,7 ’ -二胺; 1,1’-雙Π-胺基-2-甲基-4-苯基]環己烷,及其異構物 以及包含前述之至少一個的混合物和摻合物。 理想地’二胺基化合物爲芳族二胺類,特別是間-和 對-苯二胺和包含前述之至少一個的混合物。 在一體系中’聚醚醯亞胺樹脂包含根據式(8)之結 構單元,其中R各自獨立爲對-伸苯基或間-伸苯基或包含 前述之至少一個的混合物和T爲式(13)之二價基團〇— (12) a compound linked to an ether (for example) at the 3, 3 ', 3, 4 ', 4, 3 ' or 4, 4 ' position, and a mixture comprising at least one of the foregoing, and wherein Q is as described above definition. Any diamine based compound can be used. Examples of suitable compounds are: m-phenylenediamine; p-phenylenediamine; 2,4-diamine toluene; 2,6-diamine toluene; m-xylylenediamine; p-xylylenediamine; benzidine 3,3 '-dimethylbenzidine; 3,3'-dimethoxybenzidine; 1,5-diaminonaphthalene; bis(4-aminophenyl)methane; bis(4-aminophenyl) Propane; bis(4-aminophenyl) sulfide; bis(4-aminophenyl)anthracene; bis(4-aminophenyl)ether; -44- 200900458 4,4'-diaminodiphenylpropane 4,4'-diaminodiphenylmethane (4,4,-methylenediphenylamine); 4,4'-diaminodiphenyl sulfide; 4,4'-diaminodiphenyl Base, 4,4'-diaminodiphenyl ether (4,4,-oxydiphenylamine); 1,5-diaminonaphthalene; 3,3'dimethylbenzidine; 3-methyl Heptanediamine; 4,4-dimethylheptanediamine; 2,2,3,3'-tetrahydro-3,3,3',3,-tetramethyl-1,1,-spiro[ 1H-茚]-6,6,-diamine; 3,3,,4,4'-tetrahydro-4,4,4,,4,-tetramethyl-2,2,-spirobis[2H- 1-benzopyran]-7,7 '-diamine; 1,1'-biguanide-amino-2-methyl-4-phenyl]cyclohexane, and isomers thereof Comprising at least one of the mixtures and blends thereof. Desirably, the 'diamine-based compound is an aromatic diamine, particularly m- and p-phenylenediamine, and a mixture comprising at least one of the foregoing. In one system, the 'polyether phthalimide resin comprises a structural unit according to formula (8), wherein each R is independently a p-phenylene or meta-phenylene group or a mixture comprising at least one of the foregoing and T is a formula ( 13) Divalent group

包括在製造聚醯亞胺類(特別是聚醚醯亞胺類)的許 -45- 200900458 多方法之中,爲該等揭示於美國專利第 3,850,885 ' 3,852,242 、 3,855,178 ' 3,983,093 4,443,591 號中者。 反應可使用溶劑(例如)鄰-二氯苯、間_ 等進行,以於l〇〇°C至2 5 0 °C的溫度下在式( (1 1 )二胺之間產生反應,鏈停止劑和支化齊丨 反應中。 當使用含醚-和含非醚之次單元的聚醯亞 ,二酐(例如苯均四酸酐)與雙(醚酐)組合 亞胺類可任意地從芳族雙(醚酐)與有機二肢 ,其中二胺以小於或等於0·2莫耳過量存在於 中。在該等條件下聚醚醯亞胺樹脂可具有小) 微當量每克(微當量/克)酸可滴定基團,或 小於或等於1 〇微當量/克酸可滴定基團,如ΰ 量百分比(重量% )氫溴酸在冰醋酸中的溶液 滴定顯示。酸可滴定基團基本上是由於在聚酸 中的胺端基團。 合成聚醯亞胺類之一路徑係經由具有下歹! 之雙(4一鹵酞醯亞胺)進行: 3,847,867 、 、和 甲酚/甲苯等 1 0 )酐和式 也可使用於 胺共聚物時 使用。聚醯 之反應製備 反應混合物 ί令或等於1 5 ,更特別是 [具有33重 :之氯仿溶液 :醯亞胺樹脂 ί結構(1 4 )Included in U.S. Patent Nos. 3,850,885, 3, 852, 242, 3, 855, 178, 3, 983, 093, 4, 443, 591, the disclosure of which is incorporated herein by reference. The reaction can be carried out using a solvent such as o-dichlorobenzene, m- or the like to cause a reaction between the formula ((1 1 ) diamine at a temperature of from 1 ° C to 250 ° C, and the chain is stopped. In the reaction of the agent and the branching. When using a poly(fluorene) containing an ether- and a non-ether-containing subunit, a dianhydride (for example, pyromellitic anhydride) and a bis(ether anhydride) combination imine can be optionally obtained from the aryl group. a bis(ether anhydride) and an organic limb, wherein the diamine is present in a molar excess of less than or equal to 0.2 molar. Under these conditions, the polyether quinone imide resin may have a small equivalent of one microgram per gram (micro equivalent weight) / gram) acid titratable group, or less than or equal to 1 〇 microequivalent per gram of acid titratable group, such as percent by weight (% by weight) of solution titration of hydrobromic acid in glacial acetic acid. The acid titratable group is essentially due to the amine end group in the polyacid. One of the synthetic polyamidiamine pathways has a squat! The bis (4-haloquinone imine) is carried out: 3,847,867, , and cresol/toluene, etc. 1 0) Anhydride and a formula can also be used for the use of an amine copolymer. Preparation of the reaction mixture of polyfluorene ί or equal to 1 5 , more particularly [has 33 weight: chloroform solution: quinone imine resin ί structure (1 4 )

其中R如上所述和X爲鹵素。其中R爲如 (1 5 )中所 -46- (14) 200900458 示之1,3 -苯基的雙(4-鹵酞醯亞胺)特別地有用。Wherein R is as described above and X is a halogen. Among them, R is a bis(4-haloininimide) of 1,3-phenyl group as shown in (15), which is particularly useful.

X (15) 雙(鹵酞醯亞胺)(14)和(15)典型地藉由胺類( 例如’ 1,3 —二胺基苯)與酐類(例如,4 一鹵酞酐(16 ) )之縮合作用形成: 〇X (15) bis(haloinin) (14) and (15) are typically employed by amines (eg, '1,3-diaminobenzene) and anhydrides (eg, 4 halophthalic anhydride (16) )) The condensation formed: 〇

(16) 聚醚醯亞胺類可藉由雙(鹵酞醯亞胺)與雙酚例如雙 酚A之鹼金屬鹽或雙酚之鹼金屬鹽和另一個二羥基取代 之芳族烴的鹼金屬鹽之組合物在相轉移觸媒存在下或不存 在下的反應合成。適當相轉移觸媒揭示於美國專利第 5,229,4 82號。適當二羥基取代之芳族烴類包括該等具有 式(17)者 H〇-A2-〇H (17) 其中A爲二價芳族烴基。適當A2基包括間-伸苯基、對_ 伸苯基、4,4, 一伸聯苯基、和相似的基。 如上所述,未用聚@ 55月安類'可' $ &开多$丨容齊11流* Μ % 釀亞胺膜。然而,在一特殊體系中’聚醯亞胺膜包含最多 -47- 200900458 至50重量% (特別是最多至30重量%)之回收聚醯亞胺 ,其中在回收之前該回收聚醯亞胺膜具有210 °C至450 °C 之玻璃轉移溫度。在一體系中’未用聚薩亞胺與回收聚醯 亞胺(例如已形成薄膜之聚醯亞胺)熔融混合。在另一體 系中,未用聚醯亞胺與回收聚醯亞胺(例如如上所述之已 形成薄膜之聚醯亞胺)溶劑混合。包含回收聚醯亞胺之聚 醯亞胺組成物然後可形成一種流延組成物且如本文所述’ 例如從包含1至3 0重量%固體之組成物流延。在前述體 系中,包含回收聚醯亞胺之薄膜的CTE可在具有相同組 成物而沒有回收聚醯亞胺之薄膜的±1 0 PPm/°C內。 —作爲產生具有CTE小於70 ppm/°c,在另一體系中 小於60 ppm/°C,或在另一體系中’小於35 ppm/°C之溶 劑流延膜的替代性選擇,可能增加一額外步驟以將具有 70 ppm/°C以上、60 ppm/°C以上’或在另一體系中,35 Ppm/°C以上之CTE的溶劑流延膜之CTE降低至60 ppm/ °C以下和在另一體系中小於 35 ppm/°C,特別是小於30 PPm/°C 之 CTE。 溶劑流延膜之CTE可藉由美國專利第5,460,890號中 所述之雙軸拉伸減少。同樣地,熔融擠製膜或完全醯亞胺 化溶劑流延膜之CTE可藉由如美國專利第5,260,407號中 所述之熱雙軸拉伸減少。熟諳此技藝者將熟悉其他降低聚 醯亞胺膜之CTE的已知方法》 例如’具有低面內CTE之薄膜可從聚醯亞胺樹脂組 成物獲得,因爲樹脂退火之後顯示部分結晶性,和晶相在 -48- 200900458 擠壓之後可經過雙軸拉伸以二個方向排列。薄膜然後熱固 定同時限制於一結構(frame )中,將薄膜的非晶形部分 回復到隨機未定向組態同時保留晶相之排列(且也包括更 對齊的結晶型區)。晶相之排列產生具有低CTE之薄膜 。因爲材料的非晶形部分回到其隨機狀態,所以薄膜將不 顯示收縮,即使當在材料之Tg以上。此可導致於軟製造 (flex fabrication)溫度下尺寸穩定性薄膜,因爲結晶型 區穩定至400 °C以上溫度。薄膜由於材料的高Tg和部分 結晶性而具有高溫殘存性。材料的Tg爲浮焊試驗之溫度 以上,其也使材料殘存在此測試中。聚合物結晶不熔直到 溫度過400°C,其在軟製造期間所看到的溫度以上是好的 。結晶作爲在Tm以下之有效交聯,爲了高溫殘存性將材 料結合在一起。下列鑑定之組成物的結晶動力學相當地慢 ’在顯著結晶發生之前使材料被熔融擠壓成薄膜。薄膜然 後可在Tg以上熱固定以誘導結晶性。 廣泛範圍的包含單體4,4’一氧基二酞酐(〇DPA)、 雙酚A二酐(BPADA)、間-苯二胺(mPD)、和對-苯二 胺(PPD )之組合的聚醚醯亞胺共聚物顯示薄膜顯示所要 性質之所需要的部分結晶性和高熱。聚合物可用(例如) 苯胺封端。本發明之範圍特別是意欲包含具有部分結晶性 和維持加工性所需之單體和封端物(endcaps )。—特定 例子可爲80- 100%ODPA作爲二酐和30 — 100%pPD作 爲二胺,與3 . 5 — 5 %苯胺作爲封端劑。(16) Polyether oximines may be obtained by the alkali metal salt of bis(haloinin) and bisphenol such as bisphenol A or the alkali metal salt of bisphenol and the base of another dihydroxy-substituted aromatic hydrocarbon The composition of the metal salt is synthesized in the presence or absence of a phase transfer catalyst. Suitable phase transfer catalysts are disclosed in U.S. Patent No. 5,229,4,82. Suitable dihydroxy-substituted aromatic hydrocarbons include those having the formula (17) H〇-A2-〇H (17) wherein A is a divalent aromatic hydrocarbon group. Suitable A2 groups include m-phenyl, p-phenyl, 4,4, biphenyl, and the like. As mentioned above, the poly-@55月安类' can' $ & open more than $丨容齐流* Μ % of the imine film. However, in a particular system, the polyimine film contains up to -47 to 200900458 to 50% by weight (especially up to 30% by weight) of recycled polyimine, wherein the recycled polyimide film is recovered prior to recovery. It has a glass transition temperature of 210 °C to 450 °C. In a system, the unused polyisoimine is melt mixed with a recycled polyimine (e.g., a film-forming polyimine). In another embodiment, the polyimine is not solvent mixed with the recovered polyimine (e.g., a film-forming polyimine as described above). The polyimine composition comprising recycled polyimine may then form a cast composition and, as described herein, for example, from a composition comprising from 1 to 30% by weight solids. In the foregoing system, the CTE containing the film of the recovered polyimine may be within ±10 PPm/°C of the film having the same composition without recovering the polyimide. - an alternative to producing a solvent cast film having a CTE of less than 70 ppm/°c, less than 60 ppm/°C in another system, or 'less than 35 ppm/°C in another system, possibly adding one An additional step to reduce the CTE of a solvent cast film having a CTE of 70 ppm/°C or more, 60 ppm/°C or more or 35 Cpm/°C or more in another system to 60 ppm/°C or less In another system less than 35 ppm/°C, especially less than 30 PPm/°C. The CTE of the solvent cast film can be reduced by biaxial stretching as described in U.S. Patent No. 5,460,890. Similarly, the CTE of the melt extruded film or the fully yttrium imidized solvent cast film can be reduced by thermal biaxial stretching as described in U.S. Patent No. 5,260,407. Those skilled in the art will be familiar with other known methods for lowering the CTE of polyimine films. For example, a film having a low in-plane CTE can be obtained from a polyimide resin composition because the resin exhibits partial crystallinity after annealing, and The crystal phase can be biaxially stretched in two directions after extrusion at -48-200900458. The film is then thermally fixed while confined to a frame, returning the amorphous portion of the film to a random unoriented configuration while preserving the alignment of the crystal phases (and also including more aligned crystalline regions). The alignment of the crystal phases produces a film with a low CTE. Since the amorphous portion of the material returns to its random state, the film will not exhibit shrinkage, even when it is above the Tg of the material. This can result in dimensionally stable films at flex fabrication temperatures because the crystalline regions are stable to temperatures above 400 °C. The film has high temperature residual properties due to the high Tg and partial crystallinity of the material. The Tg of the material is above the temperature of the float solder test, which also causes the material to remain in this test. The polymer crystals did not melt until the temperature exceeded 400 ° C, which was good above the temperature seen during soft manufacturing. Crystallization acts as an effective crosslink below Tm, and the materials are bonded together for high temperature residual. The crystallization kinetics of the compositions identified below were rather slow 'the material was melt extruded into a film before significant crystallization occurred. The film can then be thermally fixed above Tg to induce crystallinity. A wide range of monomers including 4,4'-oxydiphthalic anhydride (〇DPA), bisphenol A dianhydride (BPADA), m-phenylenediamine (mPD), and p-phenylenediamine (PPD) The polyetherimine copolymer shows that the film exhibits the desired partial crystallinity and high heat for the desired properties. The polymer can be capped with, for example, aniline. The scope of the present invention is particularly intended to include monomers and endcaps which are required to have partial crystallinity and to maintain processability. - A specific example may be 80-100% ODPA as a dianhydride and 30-100% pPD as a diamine, and 3.5-5% aniline as a blocking agent.

改變這些組成物可改變結晶動力學以達成減少CTE -49- 200900458 之加工性和可達成的結晶性之所要平衡。在一體系中,根 據加工性、延性、慢結晶動力學、和最大可達成的結晶性 之最適組成物爲一種包含95% ODPA和5% BP ADA之二酐 成分,以一當量爲基準,和包含70%mPD和3〇%pPD之 二胺成分,以一當量爲基準,與5%苯胺一起,以二酐成 分和二胺成分之總當量爲基準。 當使用二酐類的特定組合時,尤其是當特定二酐類與 特定二胺類組合使用時,獲得非常好的薄膜性質。在一體 系中,二酐類包含3,4’ 一氧基二酞酐、3,3’一氧基二酞酐 、4,4’ -氧基二酞酐及彼等之組合。其他,額外二酐類可 存在以調節薄膜之性質。然而,在一體系中,聚醯亞胺具 有小於1 5莫耳%的衍生自聯苯四羧酸、聯苯四羧酸之二 酐、聯苯四羧酸之酯及彼等的成員之結構單元。 或者,聚醯亞胺類從基本上由3,4’ 一氧基二酞酐、 3 , 3 ’ 一氧基二酞酐、4,4 ’ 一氧基二酞酐及彼等之組合組成 的二酐成分形成。在另一體系中,聚醯亞胺類從由3,4 ’ -氧基二酞酐、3,3’ 一氧基二酞酐、4,4’ 一氧基二酞酐及彼 等之組合組成的二酐成分形成。 進一步傾發現當二胺成分包含4,4’一二胺基二苯基楓 、間-苯二胺、對-苯二胺、4,4’一氧基二苯胺、1,3_雙( 4一胺基苯氧基)苯、1,3 —雙(3 -胺基苯氧基)苯及彼 等之組合時,獲得具有優異性質之薄膜。在一體系中’二 胺成分基本上由4,4,一二胺基二苯基颯、間-苯二胺、對-苯二胺、4,4,一氧基二苯胺、1,3—雙(4 一胺基苯氧基) -50- 200900458 苯、1,3—雙(3-胺基苯氧基)苯及彼等之組合組成。在 另一體系中’二胺成分由4,4 ’一二胺基二苯基楓、間-苯 二胺、對-苯二胺、4,4’ 一氧基二苯胺、1,3_雙(4一胺基 苯氧基)苯、1,3-雙(3-胺基苯氧基)本及彼等之組合 組成,且沒有其他二胺類存在。 聚釀亞胺類進一步有利地從結構單兀形成’其中一月女 成分包含大於或等於10莫耳%之4,4’一二胺基二苯基颯 ,以二胺成分之總莫耳爲基準。在一體系中二胺成分包含 10至1〇〇莫耳%之4,4’一二胺基二苯基碾。 薄膜可具有許多有利的性質,除了低CTE '有效Tg 、和低溶劑滯留之外。在一體系中,薄膜是穩定的,也就 是說,在25t儲藏24小時之後,損失小於其初重的5% ,特別是在25 °C儲藏24小時之後,損失小於其初重的2 %。 在一意想不到的特徵中,發明人頃發現聚醯亞胺類, 特別是包含衍生自特定二胺類之單元的聚醚醯亞胺類,可 調配以顯示較固定的CTE同時達成從220至375 °C之Tg 。此結果是意想不到的,因爲通常在熱塑性非晶形薄膜中 ’ CTE以線性關係隨Tg改變。因此可能選擇Tg同時維持 特定CTE。 本發明之液體塗料溶液、薄膜流延溶液、塗料、和溶 劑流延膜具有許多和各種的用途。塗料溶液可使用任何適 當塗佈方法(例如浸漬、塗刷、噴霧、擦拭等等)塗覆至 各種基板’且其後加熱以蒸發溶劑系統和形成硬化聚醯亞 -51 - 200900458 胺樹脂塗層及/或溶劑流延膜。溫度較佳逐漸地增加以 產生平滑樹脂塗層。聚醯亞胺-形成反應有利地在1 25 至450C或更大溫度下進行。可使用各種基板,例如銅、 矽、鋁、金、銀、鎳、玻璃、陶瓷、和聚合物,包括聚合 物釋放層。具有相同或不同組成物之第一和第二基板可配 置在溶劑流延聚醯亞胺膜的對邊上。 在一體系中’塗料和流延溶液係用以製造一種包含溶 劑流延聚醯亞胺膜、包含金屬之導電層的層板,其中薄膜 之一側黏著配置在導電層之一側。導電金屬可爲銅、銀、 金、鋁或包含前述金屬之至少一個的合金。在一特殊體系 中’金屬爲銅及其中該溶劑流延薄膜具有小於3 5 ppm/t 之熱脹係數。 在另一體系中’本塗料和流延溶液可用以製造電路板 (包括軟性電路板)之薄膜。在此體系中,溶劑流延聚醯 亞胺膜黏著配置在導電基板上,例如金屬層例如銅之一面 ’其中該金屬被触刻以提供電路。第二基板(例如,另一 層導電金屬例如銅、矽、鋁、金、銀或鎳)可配置在第一 基板對面的薄膜側。軟性印刷電路可另外包含介電層,該 介電層包含非薄膜之聚醯亞胺的第二種介電材料。 其他可使用溶劑流延聚醯亞胺膜製造之特定物件包括 電容器,在其最簡單的體系中其包含配置在二個導電層( 例如二個銅層)之間的溶劑流延聚醯亞胺膜。 在另一體系中,溶液可用作漆包線漆以在銅和鋁線上 形成樹脂絕緣塗層。在此體系中,聚醯亞胺膜在導電線上 -52- 200900458 形成圍繞至少部分之電線徑向表面的塗層。 溶液也可用作塗佈或浸漬各種基板例如前述絕緣線之 線圈(例如在馬達和發生器線圈中),以及織物和非-織 物’等等之清漆。本發明之溶劑流延膜也可用於軟性印刷 電路板(FPC)、軟膜覆晶接合技術(Chip on Flex,COF )、和捲帶接合(tape automated bonding,TAB)應用。 術s吾“物件”也可包括喇卩八薄膜(s p e a k e r C ο n e )、錄音帶 和標籤、電線套、等等。 【實施方式】 實例 沒有進一步的詳盡闡述,咸信熟習該項技術者使用本 文中說明可製造和使用本發明。包括下列實例以提供熟習 該項技術者實施所主張之發明的額外指導。提供這些實例 作爲工作的代表且有助於本發明的教示。因此,這些例子 不意欲以任何方式限制本發明的範圍。除非下文另有指示 ’所有的部分以重量計和所有的溫度以攝氏度表示。 材料 ODPA爲一種也稱爲 4,4’ 一氧基二酞酐(CAS號 1823-59-2)之二酐單體,其可如 US 6,028,203、 US 4,870,194 或 US 5,〇21,168 中所述製造。〇DPA(99% 純度)係得自美國堪薩斯州Lenexa之Chriskev公司。 BPDA爲一種也稱爲3,3’,4,4,-聯苯四甲酸二酐之二 -53- 200900458 酐單體,其商業上可得自 Chriskev公司,堪薩斯州 Leawood辦公室。 PMD A爲一種也稱爲苯均四酸二酐之二酐單體,其商 業上可得自Aldrich化學公司,威斯康辛州密爾瓦基辦公 室。 BPADA爲一種也稱爲2,2—雙[4— (3,4—二羧苯氧 基)苯基]丙烷二酐之二酐單體,其商業上可得自Aldrich 化學公司,威斯康辛州密爾瓦基辦公室。 BTDA爲一種也稱爲3,3’一二苯基酮四甲酸二酐之二 酐單體’其商業上可得自美國TCI,奧勒岡州波特蘭市辦 公室。 BPhDA爲一種也稱爲4,4’—雙(3,4—二羧基苯氧基Varying these compositions changes the crystallization kinetics to achieve a desired balance that reduces the processability and achievable crystallinity of CTE-49-200900458. In a system, the optimum composition according to processability, ductility, slow crystallization kinetics, and maximum achievable crystallinity is a dianhydride component comprising 95% ODPA and 5% BP ADA, based on one equivalent, and A diamine component comprising 70% mPD and 3 % pPD, based on one equivalent, based on the total equivalents of the dianhydride component and the diamine component, together with 5% aniline. Very good film properties are obtained when a particular combination of dianhydrides is used, especially when a particular dianhydride is used in combination with a particular diamine. In the monolith, the dianhydride comprises 3,4'-oxydianic anhydride, 3,3'-oxydianic anhydride, 4,4'-oxydianic anhydride, and combinations thereof. In addition, additional dianhydrides may be present to adjust the properties of the film. However, in one system, the polyimine has less than 15 mole % of a structure derived from biphenyltetracarboxylic acid, a dianhydride of biphenyltetracarboxylic acid, an ester of biphenyltetracarboxylic acid, and members thereof. unit. Alternatively, the polyimines consist essentially of a combination of 3,4'-oxyphthalic anhydride, 3,3'-oxy-dianic anhydride, 4,4'-oxydianic anhydride, and combinations thereof. The dianhydride component is formed. In another system, the polyamidiamines are selected from the group consisting of 3,4'-oxydic phthalic anhydride, 3,3'-oxydianic anhydride, 4,4'-oxydianic anhydride, and combinations thereof. The composition of the dianhydride component is formed. Further, it was found that when the diamine component contains 4,4'-diaminodiphenyl maple, m-phenylenediamine, p-phenylenediamine, 4,4'-oxydiphenylamine, 1,3_bis (4) When a combination of monoaminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, and the like, a film having excellent properties is obtained. In a system, the 'diamine component consists essentially of 4,4,monodiaminodiphenylphosphonium, m-phenylenediamine, p-phenylenediamine, 4,4,monooxydiphenylamine, 1,3- Bis(4-monoaminophenoxy)-50-200900458 Benzene, 1,3-bis(3-aminophenoxy)benzene and combinations thereof. In another system, the 'diamine component consists of 4,4 'monodiaminodiphenyl maple, m-phenylenediamine, p-phenylenediamine, 4,4'-oxydiphenylamine, 1,3_double (4-Aminophenoxy)benzene, 1,3-bis(3-aminophenoxy), and combinations thereof, and no other diamines are present. The poly-imines are further advantageously formed from the structural monolayers. The female component in January contains 4,4'-diaminodiphenylphosphonium, which is greater than or equal to 10 mol%, and the total molar amount of the diamine component is Benchmark. In one system, the diamine component comprises 10 to 1 mole % of 4,4'-diaminodiphenyl milling. Films can have a number of advantageous properties in addition to low CTE 'effective Tg, and low solvent retention. In one system, the film is stable, that is, after 24 hours of storage at 25t, the loss is less than 5% of its initial weight, especially after storage at 25 °C for 24 hours, the loss is less than 2% of its initial weight. In an unexpected feature, the inventors have discovered that polyimines, particularly polyetherimines containing units derived from specific diamines, can be formulated to exhibit a relatively fixed CTE while achieving from 220 to 375. Tg of °C. This result is unexpected because the 'CTE' typically changes linearly with Tg in a thermoplastic amorphous film. It is therefore possible to choose Tg while maintaining a specific CTE. The liquid coating solution, film casting solution, coating, and solvent cast film of the present invention have many and various uses. The coating solution can be applied to various substrates using any suitable coating method (eg, dipping, brushing, spraying, wiping, etc.) and thereafter heated to evaporate the solvent system and form a hardened poly-Asian-51 - 200900458 amine resin coating. And / or solvent cast film. The temperature is preferably gradually increased to produce a smooth resin coating. The polyimine-forming reaction is advantageously carried out at a temperature of from 1 25 to 450 C or more. Various substrates can be used, such as copper, ruthenium, aluminum, gold, silver, nickel, glass, ceramics, and polymers, including polymeric release layers. The first and second substrates having the same or different compositions may be disposed on opposite sides of the solvent cast polyimide film. In a system, the coating and casting solution is used to produce a laminate comprising a solvent-casting polyimide film comprising a conductive layer of a metal, wherein one side of the film is adhesively disposed on one side of the conductive layer. The conductive metal may be copper, silver, gold, aluminum or an alloy comprising at least one of the foregoing metals. In a particular system, the metal is copper and the solvent cast film thereof has a coefficient of thermal expansion of less than 35 ppm/t. In another system, the present coating and casting solution can be used to make a film of a circuit board (including a flexible circuit board). In this system, a solvent cast polyimide film is adhesively disposed on a conductive substrate, such as a metal layer such as a side of copper where the metal is tacted to provide circuitry. The second substrate (e.g., another layer of conductive metal such as copper, tantalum, aluminum, gold, silver or nickel) may be disposed on the film side opposite the first substrate. The flexible printed circuit may additionally comprise a dielectric layer comprising a second dielectric material of a non-film polyimine. Other specific articles that can be fabricated using solvent-casting polyimide membranes include capacitors, which in their simplest system contain solvent-casting polyimine disposed between two conductive layers (eg, two copper layers) membrane. In another system, the solution can be used as an enamelled wire lacquer to form a resin insulating coating on copper and aluminum wires. In this system, the polyimide film forms a coating around at least a portion of the radial surface of the wire on the conductive line -52-200900458. The solution can also be used as a varnish for coating or impregnating various substrates such as the aforementioned insulated wire coils (e.g., in motors and generator coils), as well as fabrics and non-wovens'. The solvent cast film of the present invention can also be used for flexible printed circuit board (FPC), chip on TFT (COF), and tape automated bonding (TAB) applications. The "object" may also include a s p e a k e r C ο n e , an audio tape and a label, a wire sleeve, and the like. [Embodiment] EXAMPLES Without further elaboration, the skilled artisan will be able to make and use the invention as described herein. The following examples are included to provide additional guidance to those skilled in the art to implement the claimed invention. These examples are provided as representative of the work and contribute to the teachings of the present invention. Therefore, the examples are not intended to limit the scope of the invention in any way. Unless otherwise indicated below, 'all parts are expressed in degrees Celsius by weight and all temperatures. The material ODPA is a dianhydride monomer, also known as 4,4'-oxy-dianic anhydride (CAS No. 1823-59-2), which can be produced as described in US 6,028,203, US 4,870,194 or US 5,〇21,168. . 〇DPA (99% purity) was obtained from Chriskev Corporation of Lenexa, Kansas, USA. BPDA is a bis-53-200900458 anhydride monomer, also known as 3,3',4,4,-biphenyltetracarboxylic dianhydride, commercially available from Chriskev, Inc., Leawood, Kansas. PMD A is a dianhydride monomer, also known as pyromellitic dianhydride, commercially available from Aldrich Chemical Company, Milwaukee, Wisconsin. BPADA is a dianhydride monomer also known as 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride commercially available from Aldrich Chemical Company, Wisconsin State Erwaji office. BTDA is a dianhydride monomer also known as 3,3'-diphenyl ketone tetracarboxylic dianhydride, which is commercially available from TCI, Portland, OR. BPhDA is also known as 4,4'-bis(3,4-dicarboxyphenoxy)

)聯苯二酐之二酐單體’其可如聚合物科學期刊,聚合物 化學版(the Journal of P〇lymer S cience, Polymera dianhydride of a biphenyl dianhydride, which can be, for example, the Journal of Polymer Science, Polymer Chemical Edition (the Journal of P〇lymer Science, Polymer)

Chemistry Edition, 1 9 85 第 23 ( 6)冊,第 1 759.1 769 苜 )中所述製造。 DDS爲一種也稱爲4,4’ —二胺基二苯基颯之二胺單體 ,其商業上可得自Chriskev公司’堪薩斯州Leawood辦 公室。 MPD爲一種也稱爲間-苯二胺之二胺單體,其商業上 可得自Aldrich化學公司’威斯康辛州密爾瓦基辦公室。 PPD爲一種也稱爲對-苯二胺之二胺單體,其商業上 可得自Aldrich化學公司,威斯康辛州密爾瓦基辦公室。 0DA爲一種也稱爲4,4’ 一氧基二苯胺之二胺單體, -54- 200900458 其商業上可得自Chriskev公司,堪薩斯州Leawood辦公 室。 1,3,4— APB爲一種也稱爲1,3 -雙(4一胺基苯氧基 )苯之二胺單體,其商業上可得自Chriskev公司,堪薩 斯州Leawood辦公室。 1,3,3 _ APB爲一種也稱爲1,3-雙(3-胺基苯氧基 )苯之二胺單體,其商業上可得自Chriskev公司,堪薩 斯州Leawood辦公室。 TPPBr爲一種也稱爲四苯基化銹之鎸鹽,其商業上可 得自Fluorochem公司,英國OldGlossop辦公室。 鈉微晶高嶺石爲一種無機層化矽酸鹽,其商業上可得 自 Sud-Chemie。德國 Dusseldorf 辦公室。 雙酚A二酐(BPADA ) ( 97.7%純度)係得自GE塑 膠部門(GE Plastics )。 2,4,6 —三苯基-pyrylium四氟硼酸鹽、苯胺、4一苯 氧基苯胺、4一異丙苯基苯酚、碳酸鉀、1 一氟一 4一硝基-苯、鈀/碳、和甲酸銨係購自Aldrich。 實例以下列定義的術語進行: DSC:微差掃描熱量法係在Perkin Elmer DSC 7上 以20°C /分鐘加熱速率和玻璃轉移測量於第二加熱進行。 此方法係根據AS TM D 3 4 1 8。 DMA :精確地切割以產生已知的長度、寬度和厚度的 薄膜樣品在動態機械分析儀上以拉力模態用1 Hz的頻率和 5 t /分鐘的加熱速率經溫度範圍40 — 3 50 °C分析。動態機 -55- 200900458 械分析(DMA)係根據ASTM測試D5 026進行,例外的 是只有測試一件測試樣品。玻璃轉移溫度(Tg )係藉由 tan 5曲線的最大點測定。 TMA :流延膜之CTE値係在熱機械分析儀上以拉力 模態用5 °C /分鐘的加熱速率從〇 一 2 5 0。(:測量。C TE値係 從經3 0 — 2 0 0 °C之範圍的斜率計算。 平衡水分:平衡水分含量係定義爲在實驗室中於周圍 條件下放置7 2小時(約2 5 °C和7 0 % RH )之薄膜的水分 含量。水分含量係藉由乾燥之前和之後精確地秤重薄膜 10.2公分χ1·27公分χ63·5微米(約4吋χθ.5吋χθ.0025吋 )的樣品測量。秤重薄膜(至0.00005克),在150。(:烘 箱中乾燥4小時’及然後立刻秤重以測定水分損失。平衡 水分含量爲加熱時質量損失除以乾燥薄膜之質量的百分比 〇 吸濕性:已知質量之乾燥薄膜樣品(烘箱於1 5 0 °C經 4小時)在周圍溫度下沈沒在水中經7 2小時(2 5 °C )。 在該時間周期之後’從水中移出薄膜和藉由用Kimwipe 乾燥除去過量水分。吸濕性爲浸在水中時所吸收之質量除 以乾燥薄膜之重量的百分比。 溶解度:正結果指示於10%固體之濃度,得自聚( 醯胺酸)溶液流延之完全醯亞胺化薄膜溶解在二甲基乙醯 胺或N —甲基吡咯啶酮(在測試中所指示之溶劑)中且可 通過0.45微米過濾器。 -56- 200900458 實例1,A部分 製備有機改質黏土(有機黏土)之步驟 有機改質黏土係經由在水或水和醇或水 物中之離子交換製備。以1至5重量%之奈 將Na + MMT (具有鈉相對離子之黏土)分散 /溶劑組合物中,且加熱至8 0 °C。有機陽離 化鱗,以致使當有機陽離子之溶液或分散液 液時有機陽離子等於或過量的分散黏土之陽 容量的比率溶解或分散在上述水或溶劑組合 然後加熱至回流經1至2小時。冷卻至室溫 土藉由離心收集。倒掉上清液,及固體改質 黏土再分散在去離子水或去離子水溶劑組合 由離心再收集。倒掉洗液和重複洗滌過程兩 後離心之後,在烘箱中乾燥固體黏土且然後 實例1,B部分 詳細實例:將2.0克的Na + ΜΜΤ黏土( Na + /克的黏土之陽離子交換容量;0.001852 總和)分散在200毫升的去離子水和乙醇之 中且進行回流。加入四苯基溴化銹(1.4 1 6 7 莫耳)和使分散液於回流下攪拌二小時。將 室溫和轉移至四個5 0毫升離心管。將離心 機中且於3 000 rpm旋轉5分鐘。倒掉上清 分散於5 0/5 0去離子水和乙醇的新鮮混合物 和乙腈之組合 米黏土的濃度 在水中或在水 子,四苯基溴 加至黏土分散 離子離子交換 物中。混合物 之後,改質黏 黏土係藉由將 物中洗滌和藉 次以上。在最 硏磨成細粉。 0.000926 莫耳 莫耳之陽離子 5 0 / 5 0混合物 克,0.0022 1 6 混合物冷卻至 管放置於離心 液,將黏土再 中以洗滌殘留 -57- 200900458 固體,和再次藉由離心收集固體。重複洗滌過程兩次以上 。在最後離心和傾析之後,剩下固體在120°C烘箱中乾燥 二小時且然後硏磨成細粉。表1顯示有機改質微晶高嶺石 有機黏土之性質。 表1 改質劑 d-間距 (埃) 改質劑 之MW 在N2下於900°C之 在TGA上的重量損 失(%) 在N2下之 TGA5%損失 rc) 在N2下於400 °C經30分鐘之 重量損失(%) TPP 9 17.8 339.4 25.0 449.0 3.1 實例2 包含聚醯亞胺-有機黏土複合材料之溶劑流延膜 借助於音波振動處理將得自實例1之四苯基鳞處理之 微晶高嶺石黏土(TPP-MMT)分散在NMP中。將氧基二 苯胺(ODA )加至所產生之溶液中且在室溫下機械攪拌直 到二胺完全溶解。然後將氧基二酞二酐(ODPA )加至溶 液中且藉由機械攪拌分散以形成於20重量%固體之各種 聚(醯胺酸)溶液。使溶液於室溫下反應1 2小時。於70 。〇在玻璃基板上流延溶液和藉由連續的加熱於70°C經2 小時、1 5 0 t:經4小時、2 0 0 °C經1小時和3 0 0 °C經1小時 而醯亞胺化(imidized )。從玻璃基板剝離所得奈米塡充 之聚醯亞胺膜以用於測試。結果顯示在表2中。 -58- 200900458 表2 實例號 聚合物 奈米黏土 重量% 矽酸鹽 CTE%( ppm/°C) 第二次掃描(0-200) %CTE減少 (第二次掃描) 正規化d% CTE減少 (第二次掃描) 2A 440DPA- 440DA te j\w 0 44.0 0% 2B 440DPA- 440DA 是 3.8 39.4 11% 2.8% 2C 440DPA- 440DA 是 7.5 37.2 15% 2.1% 2D 440DPA- 440DA 是 15.0 30.9 30% 2.0% 實例3 (3-胺苯基)三苯基碘化鱗(18)之製備Chemistry Edition, 1 9 85 Manufactured as described in Volume 23 (6), No. 1 759.1 769 苜). DDS is a diamine monomer also known as 4,4'-diaminodiphenylphosphonium, which is commercially available from Chriskev's Leawood Office, Kansas. MPD is a diamine monomer, also known as m-phenylenediamine, which is commercially available from Aldrich Chemical Company, Milwaukee, Wisconsin. PPD is a diamine monomer, also known as p-phenylenediamine, which is commercially available from Aldrich Chemical Company, Milwaukee, Wisconsin. 0DA is a diamine monomer also known as 4,4'-oxydiphenylamine, -54-200900458 which is commercially available from Chriskev Corporation, Leawood, Kansas. 1,3,4—APB is a diamine monomer also known as 1,3-bis(4-aminophenoxy)benzene, which is commercially available from Chriskev, Inc., Leawood, Kan. 1,3,3 _ APB is a diamine monomer also known as 1,3-bis(3-aminophenoxy)benzene, which is commercially available from Chriskev, Inc., Leawood, Kan. TPPBr is a barium salt, also known as tetraphenyl rust, which is commercially available from Fluorochem, Inc., Old Glossop Office, England. Sodium microcrystalline kaolinite is an inorganic layered silicate which is commercially available from Sud-Chemie. Dusseldorf office, Germany. Bisphenol A dianhydride (BPADA) (97.7% purity) was obtained from GE Plastics. 2,4,6-triphenyl-pyrylium tetrafluoroborate, aniline, 4-phenoxyaniline, 4-isopropylphenylphenol, potassium carbonate, 1-fluoro-4-ninitro-benzene, palladium/carbon And ammonium formate were purchased from Aldrich. The examples were carried out in the following terms: DSC: Differential Scanning Thermal Method was performed on a Perkin Elmer DSC 7 at a heating rate of 20 ° C / min and glass transfer measurements on a second heating. This method is based on ASTM D 3 4 18 . DMA: Film samples that are precisely cut to produce known lengths, widths, and thicknesses on a dynamic mechanical analyzer with a tensile mode at a frequency of 1 Hz and a heating rate of 5 t / minute over a temperature range of 40 - 3 50 °C analysis. Dynamic Machine -55- 200900458 Mechanical Analysis (DMA) is performed in accordance with ASTM Test D5 026, with the exception that only one test sample is tested. The glass transition temperature (Tg) is determined by the maximum point of the tan 5 curve. TMA: The CTE tantalum of the cast film was applied to a thermomechanical analyzer at a heating rate of 5 ° C / min from 〇 1 250 on a tensile mechanical mode. (:Measurement. C TE値 is calculated from the slope in the range of 30 to 200 ° C. Balanced moisture: equilibrium moisture content is defined as being placed in the laboratory under ambient conditions for 72 hours (about 2 5 °) The moisture content of the film of C and 70% RH). The moisture content is accurately weighed by 10.2 cm χ1·27 cm χ63·5 μm (about 4 吋χθ.5吋χθ.0025吋) before and after drying. Sample measurement. Weigh the film (to 0.00005 g) at 150 ((: drying in an oven for 4 hours) and then weigh immediately to determine the moisture loss. The equilibrium moisture content is the mass loss during heating divided by the mass of the dried film. 〇 Hygroscopicity: Dry film samples of known quality (bake at 150 ° C for 4 hours) are submerged in water at ambient temperature for 72 hours (25 ° C). After this period of time 'from the water The film was removed and excess moisture was removed by drying with Kimwipe. The hygroscopicity is the percentage of the mass absorbed when immersed in water divided by the weight of the dried film. Solubility: Positive results are indicated at a concentration of 10% solids, obtained from poly(醯Amine acid) solution casting The ruthenium imidized film was dissolved in dimethylacetamide or N-methylpyrrolidone (the solvent indicated in the test) and passed through a 0.45 micron filter. -56- 200900458 Example 1, Part A Preparation of Organic Steps of upgrading clay (organic clay) The organically modified clay is prepared by ion exchange in water or water and alcohol or water. Na + MMT (clay with sodium relative ions) at 1 to 5 wt% In a dispersion/solvent composition, and heated to 80 ° C. The organic cation is liberated to such a degree that the ratio of the positive capacity of the dispersed cation of the organic cation is equal to or excessive when the solution or dispersion of the organic cation is dissolved or dispersed. The above water or solvent combination is then heated to reflux for 1 to 2 hours. Cooled to room temperature and collected by centrifugation. The supernatant is decanted, and the solid modified clay is redispersed in deionized water or deionized water. Collect again. Pour off the wash solution and repeat the washing process after two centrifugation, dry the solid clay in the oven and then Example 1, Part B detailed example: 2.0 g of Na + ΜΜΤ clay (Na + / gram of clay yang The sub-exchange capacity; 0.001852 sum) was dispersed in 200 ml of deionized water and ethanol and refluxed. Tetraphenyl bromine rust (1.4 1 6 7 mol) was added and the dispersion was stirred under reflux for two hours. Transfer to room temperature and transfer to four 50 ml centrifuge tubes. Rotate in a centrifuge at 3 000 rpm for 5 minutes. Pour off the supernatant and mix the fresh mixture of 5 0/5 0 deionized water and ethanol with acetonitrile. The concentration is in water or in water, and tetraphenyl bromide is added to the clay-dispersed ion exchanger. After the mixture, the modified clay is washed and borrowed by the above. At the most honed into a fine powder. 0.000926 Moer molar cation 5 0 / 5 0 mixture gram, 0.0022 1 6 The mixture is cooled until the tube is placed in a centrifuge, the clay is re-treated to wash the residue -57-200900458 solid, and the solid is collected again by centrifugation. Repeat the washing process twice or more. After the final centrifugation and decantation, the remaining solid was dried in an oven at 120 ° C for two hours and then honed to a fine powder. Table 1 shows the properties of organically modified microcrystalline kaolinite organic clay. Table 1 Modifier d-spacing (Angstrom) Modifier MW Weight loss at TGA at 900 °C at N ° (%) TGA 5% loss at N2 rc) at 400 ° C under N2 Weight loss in 30 minutes (%) TPP 9 17.8 339.4 25.0 449.0 3.1 Example 2 Solvent cast film containing polyimine-organic clay composite material The treatment of tetraphenyl squama obtained from Example 1 was carried out by means of sonic vibration treatment. Crystal kaolinite clay (TPP-MMT) is dispersed in NMP. Oxydiphenylamine (ODA) was added to the resulting solution and mechanically stirred at room temperature until the diamine was completely dissolved. Oxydipic dianhydride (ODPA) was then added to the solution and dispersed by mechanical stirring to form a solution of various poly(proline) in 20% by weight solids. The solution was allowed to react at room temperature for 12 hours. At 70. 〇 Cast the solution on a glass substrate and continue heating at 70 ° C for 2 hours, 150 ton: 4 hours, 200 ° C for 1 hour and 300 ° C for 1 hour. Aminated (imidized). The resulting nano-filled polyimide film was peeled off from the glass substrate for testing. The results are shown in Table 2. -58- 200900458 Table 2 Example No. Polymer Nano-Clay Weight % Citrate CTE% (ppm/°C) Second Scan (0-200) %CTE Reduction (Second Scan) Normalized d% CTE Reduction (Second scan) 2A 440DPA- 440DA te j\w 0 44.0 0% 2B 440DPA- 440DA is 3.8 39.4 11% 2.8% 2C 440DPA- 440DA is 7.5 37.2 15% 2.1% 2D 440DPA- 440DA is 15.0 30.9 30% 2.0 % Example 3 Preparation of (3-aminophenyl)triphenyl iodide scale (18)

將約3 29.3 3克(1 _25莫耳)的三苯基膦(PPh3 )、 Pd(乙酸鹽)2(2.82克,0.0126莫耳)和1600毫升之 除氣二甲苯加至安裝有冷凝器、機械攪拌器和氣體入口之 3 000毫升3 -頸圓底燒瓶中。在氬氣下攪拌混合物直到 PPh3溶解。加入間-碘苯胺(約27 5.00克;1.25莫耳)和 回流黃橙色溶液約80分鐘。從溶液分離呈黃橙色固體之 -59- 200900458 產物鱗化合物((3 -胺苯基)Ξ苯基碘化錢)。避免過 度回流以防止產物鱗化合物之變色。使用薄層層析法( TLC)以則0己…乙酸2醋_液監測反應之進展。回 流之後’過濾產物。產% 1 5用甲苯再形成獎液,且擾泮 15分鐘。然後過濾溶液和用額外甲苯/二甲苯沖洗。在 150C真空烘箱中乾燥20小時之後獲得於96%產率之 585.01克的灰白色產物。熔點和NMR數據與產物 之結構一致。MP: 316.(TC。lH NMR(占,D6_dms〇) 8 —6.6(m,19H,芳族),5.88(S,2H)。 實例4 4·(4_異丙本基)_本串|基-駄膳(19)之製備Approximately 3 29.3 3 grams (1 _25 moles) of triphenylphosphine (PPh3), Pd (acetate) 2 (2.82 grams, 0.0126 moles) and 1600 milliliters of degassed xylene were added to the condenser, A mechanical stirrer and a gas inlet were placed in a 3 000 ml 3-neck round bottom flask. The mixture was stirred under argon until PPh3 dissolved. Meta-iodoaniline (about 27 5.00 g; 1.25 m) was added and the yellow-orange solution was refluxed for about 80 minutes. Separation of the yellow orange solid from the solution -59- 200900458 product scale compound ((3-aminophenyl) phenyl phenyl iodide). Avoid excessive reflux to prevent discoloration of the product scale compounds. The progress of the reaction was monitored using thin layer chromatography (TLC) with 0%...acetic acid 2 vinegar. After refluxing, the product was filtered. Production % 1 5 Re-formed the prize liquid with toluene and disturbed for 15 minutes. The solution was then filtered and rinsed with additional toluene/xylene. After drying for 20 hours in a 150 C vacuum oven, 585.01 g of an off-white product was obtained in 96% yield. The melting point and NMR data are consistent with the structure of the product. MP: 316. (TC.lH NMR (occupies, D6_dms〇) 8 - 6.6 (m, 19H, aromatic), 5.88 (S, 2H). Example 4 4·(4_isopropyl base)_本串| Preparation of base-駄 meal (19)

3升燒瓶中進料4 一異丙苯基苯酚(170.9克,0.80 莫耳)、4一硝基酞腈(150克,〇·87莫耳)、碳酸鉀( 155.8克,1.13莫耳)、和二甲基甲醯胺(1.4升)。在 氮下加熱溶液至約9 0 °C並攪拌約1 〇 〇分鐘。藉由薄層層 析法監測反應之進展。冷卻深棕色反應混合物和加入2M HC1溶液(600毫升)並攪拌。用氯仿(3x300毫升)萃 取有機層。分離氯仿層,和用水(3&gt;&lt;100毫升)洗滌’和 乾燥(MgSCU)。過濾混合物和於油浴上在大於約i〇〇°c -60- 200900458 的溫度蒸發溶劑以產生黏綠色油的粗腈(1 5 ) ( 278克, 84% 產率)。1H NMR( (5 ,D6-DMSO) : 8.09(d,1H)In a 3 liter flask, feed 4 cumylphenol (170.9 g, 0.80 mol), 4 nitroquinonitrile (150 g, 〇·87 mol), potassium carbonate (155.8 g, 1.13 mol), And dimethylformamide (1.4 liters). The solution was heated to about 90 ° C under nitrogen and stirred for about 1 〇 〇. The progress of the reaction was monitored by thin layer chromatography. The dark brown reaction mixture was cooled and 2M HCl solution (600 mL) was added and stirred. The organic layer was extracted with chloroform (3×300 mL). The chloroform layer was separated, and washed with water (3 &lt;&lt; 100 ml) and dried (MgSCU). The mixture was filtered and the solvent was evaporated on an oil bath at a temperature greater than ca. </ RTI> </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; 1H NMR ((5, D6-DMSO): 8.09 (d, 1H)

5 7.78 ( d &gt; 1Η ) ,7.40— 7.15 (m,8H) ,7.10(d,2H ),1 ·66 ( s,6H,Me )。 實例5 4· ( 4-異丙苯基)苯氧基-酞酐(20)之製備5 7.78 ( d &gt; 1Η ) , 7.40 — 7.15 (m, 8H) , 7.10(d, 2H ), 1 · 66 ( s, 6H, Me ). Example 5 Preparation of 4·(4-isopropylphenyl)phenoxy-phthalic anhydride (20)

將3升3-頸圓底燒瓶安裝冷凝器、機械攪拌器和添 加漏斗。將燒瓶進料4 一(4 一異丙苯基苯氧基)_酞腈( 278克,〇·82莫耳)和乙酸(1.6升)。添加漏斗裝滿70 %硫酸(670毫升)。將溶液加熱至12(TC,和然後經2 小時將硫酸逐滴加進反應混合物中。將所得混合物回流過 夜(1 2小時)。將反應混合物冷卻至室溫,和倒進冰-水 混合物(約1公斤)。用乙酸乙酯(3x300毫升)萃取產 物。單離乙酸乙酯層和用無水MgS04乾燥。過濾溶液以 除去MgS〇4和在旋轉蒸發器上除去溶劑。所得棕色液體 在真空烘箱中於下1 6 0 °C乾燥過夜。此產生所要的黏棕色 油之酐(17) (276 克,94% 產率)NMR ( 5 ,d6- DMs〇 ) :7.96(d,lH) ,7_50- 7.20 (m,9H) ,7.〇3 (d,2H) ,1 _ 76 ( s,6H,Me )。 -61 - 200900458 實例6 異丙苯基PA-mATPP-I ( 21)的合成A 3 liter 3-neck round bottom flask was fitted with a condenser, mechanical stirrer and addition funnel. The flask was charged with 4-(4-isopropylidenephenoxy)-indenenitrile (278 g, 〇82 mol) and acetic acid (1.6 L). The addition funnel was filled with 70% sulfuric acid (670 mL). The solution was heated to 12 (TC, and then sulfuric acid was added dropwise to the reaction mixture over 2 hours. The resulting mixture was refluxed overnight (12 hours). The reaction mixture was cooled to room temperature and poured into ice-water mixture ( About 1 kg). The product was extracted with ethyl acetate (3×300 mL). The ethyl acetate layer was separated and dried over anhydrous MgS04. The solution was filtered to remove MgS〇4 and the solvent was removed on a rotary evaporator. Dry overnight at 1600 ° C. This gave the desired viscous brown oil anhydride (17) (276 g, 94% yield) NMR (5, d6-DMs): 7.96 (d, lH), 7_50 - 7.20 (m, 9H) , 7. 〇 3 (d, 2H) , 1 _ 76 ( s, 6H, Me ). -61 - 200900458 Example 6 Synthesis of cumene PA-mATPP-I ( 21)

安裝機械攪拌器、氮入口和氣體出口之500毫升玻璃 反應容器中進料66.27克(0.1848莫耳)4— (4 —異丙苯 基)苯氧基-酞酐和88.97克(0.1848莫耳)3 —胺苯基) 三苯基碘化鱗(mATPP碘化物)。然後將容器放置在加 熱包罩中且加熱至約3 00 °C以產生熔融反應混合物。攪拌 約三分鐘之後,施加真空以除去以副產物形成之水,約 1 5分鐘總計反應時間之後’將反應混合物倒進Teflon盤 且冷卻以提供化合物(18) (145.19克,95.6%)之平滑 的棕色玻璃。h NMR( (5 ’ D6-DMSO) : 8.07 - 7.0 8 ( 3 1H,芳族)’ 1 .68 ( s ’ 6H )。66.27 g (0.1848 mol) of 4-(4-isopropylphenyl)phenoxy-phthalic anhydride and 88.97 g (0.1848 m) were charged in a 500 ml glass reaction vessel equipped with a mechanical stirrer, nitrogen inlet and gas outlet. 3-aminophenyl) Triphenyl iodide scale (mATPP iodide). The vessel was then placed in a heating mantle and heated to about 300 °C to produce a molten reaction mixture. After stirring for about three minutes, a vacuum was applied to remove water formed as a by-product, and after about 15 minutes total reaction time, the reaction mixture was poured into a Teflon disk and cooled to provide smoothing of compound (18) (145.19 g, 95.6%). Brown glass. h NMR ((5 ' D6-DMSO): 8.07 - 7.0 8 (3 1H, aromatic)' 1.68 (s '6H).

實例6A 異丙苯基PA-mATPP-I ( 1 8 )的代替性一鍋法(One Pot ) 合成 將試劑,間-胺基四苯基碘化銹22.14克(0.046莫耳 )和4 —氯酿酐8.40克( 0.046)坪重和加至裝有Dean-Example 6A Substituted one-pot method (One Pot) of cumene PA-mATPP-I (18) The reagent, m-aminotetraphenyl iodine rust 22.14 g (0.046 mol) and 4-chloro 8.80 g (0.046) gram of anhydride and added to Dean-

Stark 冷 凝器之 25〇 毫升 圓底燒 瓶中且 溶解在 150 毫升之 -62- 200900458 鄰·二氯苯中。內含物加熱至回流和藉由共沸蒸餾和氮沖 洗除去水。在回流下4小時之後,加入10.78克的異丙苯 基苯酚鈉(0.046莫耳)且將內含物攪拌和加熱另4小時 。冷卻至室溫之後,將溶液倒進400毫升之乙醚中和藉由 真空過濾收集所得固體。將固體溶解在1 〇〇毫升之氯仿中 和將所產生之溶液倒進300毫升之乙醚中。藉由真空過濾 收集且所得固體且在真空下乾燥過夜。13c-nmr與結構一 致。總產率:約6 0 %。 實例7 BPADAPA-mATPP-I ( 22)的合成Stark cold condenser 25 liters in a round bottom flask and dissolved in 150 ml -62- 200900458 o-dichlorobenzene. The contents were heated to reflux and the water was removed by azeotropic distillation and nitrogen flushing. After 4 hours under reflux, 10.78 g of sodium cumylphenolate (0.046 mol) was added and the contents were stirred and heated for another 4 hours. After cooling to room temperature, the solution was poured into 400 ml of diethyl ether and the obtained solid was collected by vacuum filtration. The solid was dissolved in 1 mL of chloroform and the resulting solution was poured into 300 ml of diethyl ether. The resulting solid was collected by vacuum filtration and dried under vacuum overnight. 13c-nmr is consistent with the structure. Total yield: about 60%. Example 7 Synthesis of BPADAPA-mATPP-I (22)

約58.0克(0.1114莫耳)的雙酚a二酐(BPADA) 和107.27克(0.2229莫耳)3 —胺苯基)三苯基碘化鱗( m A T P P -1 ) 1 —起搖動。然後使用長紙漏斗將乾燥混合物 加至玻璃反應燒瓶中以防止試劑黏在燒瓶的上內部。將反 應燒瓶抽氣和用氮裝塡兩次。開啓外加熱器和設定於約 3 0 0 °C。當試劑熔融’形成棕色溶液。試劑已經熔融3 — 5 分鐘之後’將反應燒瓶抽氣以除去水。壓力最初被設定成 600毫巴(mb)且連續地降低到1〇 mb。當反應完全,壓 力將設定爲回至1〇〇〇 mb和關閉攪拌器。冷卻產物二鐵雙 -63- 200900458 璃 烴 醯亞胺(19)以產生158.48克(98.28 %)之棕色玻 。NMR ( 5 ,D6-DMSO ) : 8. 1 — 7. 1 ( m,52H ’ 芳 ),1 .73 ( s,6H )。 實例8 4- (4 -苯基苯氧基)-酞腈的合成About 58.0 g (0.1114 mol) of bisphenol a dianhydride (BPADA) and 107.27 g (0.2229 mol) of 3-aminophenyl)triphenyl iodide scale (m A T P P -1 ) 1 were shaken. The dried mixture was then added to a glass reaction flask using a long paper funnel to prevent the reagent from sticking to the upper interior of the flask. The reaction flask was evacuated and mounted twice with nitrogen. Turn on the external heater and set it at approximately 300 °C. When the reagent melts, a brown solution is formed. After the reagent has been melted for 3-5 minutes, the reaction flask is evacuated to remove water. The pressure was initially set to 600 mbar (mb) and continuously reduced to 1 〇 mb. When the reaction is complete, the pressure will be set back to 1 〇〇〇 mb and the stirrer is turned off. The product diiron bis-63- 200900458 glaze quinone imine (19) was cooled to yield 158.48 g (98.28 %) of brown glass. NMR (5, D6-DMSO): 8. 1 - 7. 1 (m, 52H' aryl), 1.73 (s, 6H). Example 8 Synthesis of 4-(4-Phenylphenoxy)-phthalonitrile

4-硝基酞腈 4-(4-苯基苯氧基)-酞腈 將1升3—頸圓底燒瓶進料4 一苯基苯酚(45.7克 0.27莫耳)、4_硝基酞腈(50克,0.29莫耳)、碳酸 (51.9克,0.38莫耳),和二甲基甲醯胺(470毫升) 在氮下加熱所產生之溶液並攪拌至90 °C經1.5小時(反 之進展可藉由TLC監測)。深棕色反應混合物然後倒 2M HC1水溶液(3〇0毫升)中並攪拌。產物以淡棕色 末沈殿。藉由過濾收集粉末和在真空烘箱中於1 5 〇 下 燥以產生所要之產物(71克,94%產率)。iH NMR( &gt; D6-DMSO) :8.13(d’lH) ’7_87(d’lH) &gt; 7.80 d’2H) ’7.70(d’2H),7.55 - 7.35 (m’4H),7· (d,2 H )。 4- (4 -苯基苯氧基)-酞酐的合成 鉀 〇 應 進 粉 乾 δ ( -64 - 30 2009004584-nitrophthalonitrile 4-(4-phenylphenoxy)-phthalonitrile The 1 liter 3-neck round bottom flask was charged with 4-phenylphenol (45.7 g 0.27 mol), 4-nitroguanonitrile (50 g, 0.29 mol), carbonic acid (51.9 g, 0.38 mol), and dimethylformamide (470 ml). The resulting solution was heated under nitrogen and stirred to 90 ° C for 1.5 hours (and vice versa) Can be monitored by TLC). The dark brown reaction mixture was then poured into 2M aqueous HCl (3 mL) and stirred. The product was light brown and finally sank. The powder was collected by filtration and dried in a vacuum oven at 15 C to give the desired product (71 g, 94% yield). iH NMR (&gt; D6-DMSO): 8.13 (d'lH) '7_87(d'lH) &gt; 7.80 d'2H) '7.70(d'2H), 7.55 - 7.35 (m'4H), 7· ( d, 2 H ). Synthesis of 4-(4-phenylphenoxy)-phthalic anhydride Potassium 〇 should be powdered dry δ ( -64 - 30 200900458

1升3-頸圓底燒瓶安裝冷凝器、機械攪拌器、和添 加漏斗。燒瓶中進料4一(4 一苯基苯氧基)-駄腈(71克 ’ 0.24莫耳)和乙酸(450毫升)。添加漏斗被裝滿70% 硫酸(200毫升)。將溶液加熱至120 °C ’和然後經2小 時將硫酸逐滴加入反應混合物。將所得混合物回流過夜( 1 2小時)。將反應混合物冷卻至室溫’和倒進冰-水混合 物(〜1公斤)。產物以淡棕色粉末沈澱出來。藉由過瀘 收集粉末,和藉由使用乙酐(25 5毫升)再結晶將其進— 步純化。藉由過濾收集結晶和在真空烘箱中於下15〇。(:乾 燥過夜以產生所要之產物(75.0克,99%產率)。MP 199 °C。NMR ( &lt;5 ,D6-DMSO) : 8.11 (d,1Η ), 7.82 ( d &gt; 2H ) ,7.71(d,2H) ,7.58(dd,lH) ,7.55 —7.35 ( m,4H ) ,7_30 ( d,2H )。 聯苯基PA-mATPP-I改質劑的合成A 1 liter 3-neck round bottom flask was fitted with a condenser, mechanical stirrer, and addition funnel. The flask was charged with 4-(4-phenylphenoxy)-phthalonitrile (71 g '0.24 mol) and acetic acid (450 ml). The addition funnel was filled with 70% sulfuric acid (200 mL). The solution was heated to 120 ° C ' and then sulfuric acid was added dropwise to the reaction mixture over 2 hours. The resulting mixture was refluxed overnight (12 h). The reaction mixture was cooled to room temperature&apos; and poured into an ice-water mixture (~1 kg). The product precipitated as a light brown powder. The powder was collected by hydrazine and purified by recrystallization using acetic anhydride (25 5 ml). The crystals were collected by filtration and placed under vacuum in a vacuum oven. (: Dry overnight to give the desired product (75.0 g, 99% yield). MP 199 ° C. NMR ( &lt;5, D6-DMSO): 8.11 (d, 1 Η ), 7.82 ( d &gt; 2H ) , 7.71(d,2H) , 7.58(dd,lH) , 7.55 —7.35 ( m,4H ) , 7_30 ( d,2H ). Synthesis of biphenyl PA-mATPP-I modifier

將250毫升玻璃反應容器安裝機械攪拌器 '氮入口和 -65- 200900458 氣體出口。將4— (4 —苯基苯氧基)_酞酐(15·8克, 0.050旲耳)和mATPP-I (24.0克,0.050莫耳)加至其 中。然後將容器放置在加熱包罩中且加熱至3〇(rc。當試 劑開始熔融/溶解時’反應可只攪拌。熔融試劑攪拌三分 fe之後’施加真空以除去水副產物。1 5分鐘總反應時間 之後’將棕色液體產物倒進特夫綸(t e Η 〇 n )盤其因此冷 卻而形成平滑棕色玻璃狀固體。反應產生3 6.3克的產物 ,產生 93% 產率。4 NMR( &lt;5,D6-DMSO) : 8.10 — 7.25 ( m &gt; 3 1 Η )。 實例9-12 有機黏土組成物製備之一般步驟 將無機黏土(納微晶尚嶺石,“Na-MMT”,可得自南 方黏土公司(Southern Clay, Inc.))成漿於75體積去離 子水(“ M i 11 i Q水”)中,相對於黏土之重量和在室溫( 22 — 2 5 °C )攪拌1小時和然後在90 — 9 5 °C下攪拌1小時 。得自實例36之有機鳞鹽在甲醇或乙腈中的溶液然後逐 部分加至無機黏土的漿液中,於65- 95 °C下攪拌該反應 物料1 8 - 20小時。一旦冷卻過濾粗有機黏土組成物和洗 滌到洗滌液沒有鹵化物且然後於125 _ 150 °C下乾燥至固 定重量以產生表3中所示結構。 -66- 200900458 表3 實例 號 結構 9 0 MMT- 10 ΧΧ〇χ(ΧΧΧ}χ)Γν ° ° ΜΜΤ- 11 9 *3 ^ ΜΜΤ- 12 ^ ΜΜΤ- 實例12 合成聯苯基PA-mATPP-MMT之特殊步驟Install a 250 ml glass reaction vessel with a mechanical stirrer 'nitrogen inlet and -65- 200900458 gas outlet. 4-(4-Phenylphenoxy)-phthalic anhydride (15·8 g, 0.050 旲) and mATPP-I (24.0 g, 0.050 mol) were added thereto. The container was then placed in a heating mantle and heated to 3 Torr (rc. When the reagent started to melt/dissolve, the reaction was allowed to stir only. After the molten reagent was stirred for three minutes, 'vacuum was applied to remove water by-products. 1 5 minutes total After the reaction time, the brown liquid product was poured into a teflon (t Η 〇n) tray which was then cooled to form a smooth brown glassy solid. The reaction produced 3 6.3 g of product, yielding 93% yield. 4 NMR ( &lt; 5, D6-DMSO): 8.10 — 7.25 ( m &gt; 3 1 Η ). Example 9-12 General procedure for the preparation of organic clay compositions. Inorganic clay (Nano-Mingjingshan, "Na-MMT", available From Southern Clay, Inc., slurried in 75 volumes of deionized water ("M i 11 i Q water"), relative to the weight of the clay and stirred at room temperature (22 - 25 ° C) Stir for 1 hour and then at 90-95 ° C for 1 hour. The solution of the organic scale salt from Example 36 in methanol or acetonitrile was then added portionwise to a slurry of inorganic clay and stirred at 65-95 °C. The reaction material is 18 to 20 hours. Once cooled, the crude organic clay composition is filtered and washed. The washing liquid was free of halides and then dried to a fixed weight at 125 _ 150 ° C to produce the structure shown in Table 3. -66- 200900458 Table 3 Example No. Structure 9 0 MMT- 10 ΧΧ〇χ(ΧΧΧ}χ) Γν ° ° ΜΜΤ- 11 9 *3 ^ ΜΜΤ- 12 ^ ΜΜΤ- Example 12 Special steps for the synthesis of biphenyl PA-mATPP-MMT

聯苯基 PA-mATPP-I: MW = 779.6 裝有機械攪拌器之3升圓底燒瓶被進料鈉微晶高嶺石 (20克,0.021莫耳當量)和去離子水(1.6升)。將溶 -67- 200900458 液擾拌&amp;加熱至85°C,和均勻分散鈉微晶高嶺石。經1〇 分鐘將聯苯基PA-mATPP-I( 17.9克,〇_〇23莫耳)在乙 腈(3 60毫升)中的60°C溶液加至鈉微晶高嶺石的懸浮液 中。加入鹽溶液之後於8 5 °C下攪拌反應混合物另3小時 。藉由過濾收集改質微晶高嶺石,和用熱水(2升,80 °C )洗條以除去無機鹽雜質。藉由於60 t:下將其再分散於 乙腈(1.5升)中’接著藉由過濾除去過量吡錠鹽進一步 純化改質黏土。純化之黏土在真空中於1 5 0 °C下乾燥2 4 小時且硏磨以產生細粉(27.9克,S8%產率)。 實例1 3 — 2 1 改質有機黏土之溶液剝離 使用下列記錄製備實例1 3 - 2 1。將改質奈米矽酸鹽 樣品以4 · 6重量%砂酸鹽懸浮在2 5克的溶劑中。使用轉 子-定子均質機,1〇111111鋸齒尖端(UP)於約9,〇〇〇RPM將 樣品均質化1 〇分鐘。均質化之後,樣品顯示均勻分散。 然後使用安裝1/2”超聲裝置(sonic horn)之 Sonics VCF1500W音波振動器將其音波震動(sonicated) 10分鐘 。XRD分析在以音波震動(sonicated )之奈米矽酸鹽/溶 劑混合物上進行(參見表4 )。 -68- 200900458 表4 : 奈米黏土在溶劑中之d- 間距的增加 實例號 改質劑/ 黏土系統 溶劑 乾粉d-間距 (埃) 均質化後之d-間距 (埃) 以音波震動後之d-間距⑽ 13 9 大茴香醚 17.8 18.7 大部分/完全剝離 14 9 NMP 17.8 85、18.5 於18.5之小峰 15 9 DMAc 17.8 18.5 78、51,於 18.5 之小 峰 16 9 藜蘆醚 17.8 86,60 峰&gt;40 17 8 大茴香醚 27 64,40 29 18 8 NMP 27 49 ' 31 ' 27 60、52、45 19 7 藜蘆醚 25.5 83、65、46、32 大部分/完全剝離 20 10 大茴香醚 25 &gt;50 於29之小峰,一些 Igr峰 21 10 藜蘆醚 25 許多&gt;28 許多&gt;28 實例2 2 — 3 7 PEI奈米複合材料之形成 形成聚醚醯亞胺奈米複合材料之典型步驟如下。將得 自實驗1 1 - 1 9之樣品組成物懸浮在聚醚醯亞胺溶液中。 於400°C下很快地除去溶劑,薄膜係由這些複合材料壓製 ,和進行TEM分析(參見表2和表3 )。各種改質奈米 矽酸鹽之間觀察到剝離程度的清楚差異。在所硏究之不同 類型的PEI或不同溶劑之間沒有觀察到TEM影像之大差 異。 實例3 8 — 4 9 溶劑摻合之PEI奈米複合材料的薄膜擠壓 爲了此材料之薄膜擠壓,數批次之得自實驗7的陽離 -69- 200900458 子/黏土在藜蘆醚中以音波震動(sonicated )。各批次包 含在500毫升藜蘆醚中之2.7%改質奈米矽酸鹽。於浸在 水浴中之1000毫升圓底燒瓶內使用安裝於〜40%功率輸 出之Η音波探針的Branson 450W音波震碎器將這些混合 物音波震動(sonicated)約16小時。加工和組合五批次 。此材料與BPADA-DDS聚醚醯亞胺在藜蘆醚中之20重 量%溶液溶劑摻合。然後在摻合器中於甲醇存在下沈澱此 混合物,在220 °C真空烘箱中乾燥以除去溶劑,以表4中 所述之BPADA-DDS聚醚醯亞胺:ODPA-DDS聚醚醯亞胺 的比與ODPA-DDS聚醚醯亞胺摻合,且在裝有通氣/加工 螺桿和3-吋薄膜模之16毫米PRISM擠壓機中擠壓成薄膜 。以每小時約0.5磅之速率進料樹脂組成物。螺桿速度設 定於2 0 0 r p m ’筒溫於3 7 0 °C,和薄膜模溫度於3 8 0 °C。 在實例3 7 — 46中,ODPA-DDS聚醚醯亞胺與沈澱之奈米 塡充的BPADA-DDS聚醚醯亞胺摻合和擠壓。在實例36 和實例47中’ ODPA-DDS聚醚醯亞胺在與沈澱之奈米塡 充的BPADA-DDS聚醚醯亞胺摻合之前先擠壓一次。然後 擠壓混合物第二次。 -70- 200900458 ^ bO m m (N 226 262.8 252 1- :267 260 258 266 CTETD 50.92 41.76 cn uo 36.04 ΓΛ U-) 1- 43.09 39.72 39.52 32.75 CTEMD 58.2 48.68 38.41 48.51 33.02 m 45.95 38.88 38.54 28.7 TEM 蝴 岷 不是 Μ 蝈 s ^ g ^ § 1¾ 3 ^ 彳塵名塵 ^ m &lt;m 〇 m m K 0:100 0:100 31:69 31:69 60:40 60:40 60:40 60:40 60:40 60:40 60:40 铤 μ Q惩 Q泡 &lt; m g m 〇齡 二次擠壓 一次擠壓 —次擠壓 —次擠壓 一次擠壓 —次擠壓 一次擠壓 —次擠壓 —次擠壓 一次擠壓 一次擠壓 二次擠壓 4n g狴訟 t; 9 1¾ Ϊ 燦S _ _ w ^ m h in 〇 〇 yri in 改質/ 黏土系統 卜 卜 卜 卜 卜 卜 卜 卜 最後重量%矽酸鹽 〇 〇 〇 〇 m in ο 卜 卜 卜 00 Os cn 〇 1—1 9 CO 5 -71 - 200900458 圖3顯示溶劑除去之沈澱方法(於非溶劑中)與直接 排氣方法相同之TEM證據。所得薄膜具有7%的奈米矽 酸鹽負載,33.0 ppm/°C 之縱向(machine direction) CTE,和25 5 °C之Tg。具有相同BPADA-DDS聚醚醯亞胺 對沒有黏土的0DPA-DDS聚醚醯亞胺之比的薄膜具有 48.5 ppm/°C之縱向 C TE和2 6 2 °C的Tg。薄膜也與6 0 : 4 0 之BPADA-DDS聚醚醯亞胺:ODPA-DDS聚醚醯亞胺和7 %的奈米矽酸鹽負載一起擠壓。薄膜具有2 8.7 ppm/°C之 縱向CTE和26 6°C的Tg。 實例50 使用流經音波振動器製備PEI奈米複合材料 在流動池中之音波振動處理也已顯示實例7奈米矽酸 鹽在藜蘆醚中之剝離是有效的。使用具有SAE-DRC-DPP 雙頻反應池音波振動器之 Advanced Sonics DRC-4-DPP-Hastelloy將得自實驗7之奈米砂酸鹽在500毫升藜蘆酸 中的2.7%溶液音波震動(sonicated)。奈米矽酸鹽/藜蘆 醚混合物以10毫升/分鐘泵過音波振動器,一次通過一個 。進行二十五個通過,和在流動池反應器的音波區中之總 時間爲37.5分鐘。將音波震動(sonicated )之奈米矽酸 鹽/藜蘆醚混合物懸浮於在藜蘆醚中的20% BPADA-DDS 聚醚醯亞胺溶液中,沈澱在甲醇中,放置在220 °C真空烘 箱中以除去過量溶劑,壓成薄膜,和以TEM分析剝離。 圖4顯示在流動池中音波震動(sonicated)之實驗7奈米 -72- 200900458 矽酸鹽製造的薄膜對以批次模式使用探針音波振動器音波 震動(sonicated)之實驗7製造的薄膜之比較。這二個方 法藉由TEM產生相同結果。 實例51 用於降低CTE之具有奈米塡充劑的溶劑流延膜的詳細說 明例 藉由使用Silverson混合器高剪力混合將得自南方泥 土(Southern Clay ) Cloisite 30B 黏土 分散於 N,N-二甲 基乙醯胺(DMAc)中(13克的黏土在5001毫升溶劑中 )。將單體,4,4’_氧基二酞酐(0.5640克)、4,4 一二胺 基二苯基颯(0.3611克)、和氧基二苯胺(0.0903克) 加至黏土分散液中和用額外DM Ac稀釋混合物以產生1 2.5 %固體(聚合物對溶劑)之最後混合物和3 %塡充劑(黏 土對聚合物)。用N2將小瓶惰性化和振盪過夜以形成各 種聚醯胺酸溶液。然後在預先潔淨玻璃載玻片上流延此溶 液和使用前述加熱輪廓(profile )醯亞胺化。從玻璃基板 剝離所得奈米塡充之聚醯亞胺膜用於測試。所得薄膜具有 Tg = 3 04°C 和 44 ppm/°C 之 CTE。 在本文中所揭示之所有專利、專利申請案、和其他刊 物以引用之方式經由完全陳述之全文將其合倂於本文中。 而本發明已參考較佳體系描述,熟習該項技術者應了 解可進行各種改變,和替換其要素之同等物而沒有離開本 發明之範圍。除此之外,可進行許多改良以使本發明之教 -73- 200900458 不適應特別情形或材料而沒有離開其範圍。因此,意欲本 發明不被限制於打算進&amp;本發明之最佳模式而揭示的特定 體系’而是本發明將包括所有落在所附申請專利範圍之範 圍內的體系。 【圖式簡單說明】 圖1顯示在藜蘆醚中以音波震動(sonicated )且懸浮 在各種聚醚醯亞胺類中之改質奈米矽酸鹽的穿透式電子顯 微鏡(TEM)圖像。 圖2顯示在各種溶劑中以音波震動且懸浮在各種聚醚 醯亞胺類中之改質奈米矽酸鹽的TEM圖像。 圖3顯示在各種溶劑中以音波震動且懸浮在各種聚醚 醯亞胺類中之改質奈米矽酸鹽的TEM圖像。 圖4顯示說明排氣和沈澱單離路徑之間剝離的等價之 TEM圖像。 圖5顯示在流動池音波振動器和探針式音波振動器中 以音波震動之異丙苯基-改質奈米矽酸鹽的TEM比較。 -74-Biphenyl PA-mATPP-I: MW = 779.6 A 3 liter round bottom flask equipped with a mechanical stirrer was charged with sodium microcrystalline kaolinite (20 g, 0.021 mol equivalent) and deionized water (1.6 L). Dissolve -67-200900458 liquid scramble &amp; to 85 ° C, and uniformly disperse sodium microcrystalline kaolinite. A solution of biphenylPA-mATPP-I (1.79 g, 〇_〇 23 mol) in acetonitrile (3 60 ml) at 60 ° C was added to a suspension of sodium microcrystalline kaolinite over 1 min. After the addition of the salt solution, the reaction mixture was stirred at 85 ° C for another 3 hours. The modified microcrystalline kaolinite was collected by filtration, and washed with hot water (2 liters, 80 ° C) to remove inorganic salt impurities. The modified clay was further purified by redispersing it in acetonitrile (1.5 liters) at 60 t: followed by removal of excess pyridinium salt by filtration. The purified clay was dried in a vacuum at 150 ° C for 24 hours and honed to give a fine powder (27.9 g, S8% yield). Example 1 3 - 2 1 Solution Peeling of Modified Organic Clay Examples 1 3 - 2 1 were prepared using the following records. The modified nano citrate sample was suspended in 25 grams of solvent with 4·6 wt% of the sulphate. The sample was homogenized for 1 〇 minutes using a rotor-stator homogenizer with a 1〇111111 serrated tip (UP) at approximately 9, 〇〇〇RPM. After homogenization, the sample showed uniform dispersion. The sonicated sound was then sonicated for 10 minutes using a Sonics VCF 1500 W sonic vibrator equipped with a 1/2" sonic horn. XRD analysis was performed on a sonicated nanocaprate/solvent mixture ( See Table 4) -68- 200900458 Table 4: Increase in d-spacing of nano-clay in solvent Example No. Modifier / Clay system Solvent dry powder d-spacing (Angstrom) d-spacing after homogenization (Angstrom) D-spacing after sonication (10) 13 9 anisole 17.8 18.7 majority/complete stripping 14 9 NMP 17.8 85, 18.5 small peak at 18.5 15 9 DMAc 17.8 18.5 78, 51, at 18.5 small peak 16 9 cucurbit ether 17.8 86,60 peaks&gt;40 17 8 anisole 27 64,40 29 18 8 NMP 27 49 ' 31 ' 27 60,52,45 19 7 cucurbit ether 25.5 83,65,46,32 mostly/completely stripped 20 10 anisole 25 &gt; 50 at 29 small peaks, some Igr peaks 21 10 cucurbit ether 25 many &gt;28 many &gt;28 examples 2 2 - 3 7 PEI nanocomposite formation to form polyether quinone Typical steps for nanocomposites are as follows. Samples from Experiments 1 1 - 19 will be taken. The product was suspended in a polyether oxime solution. The solvent was quickly removed at 400 ° C, the film was pressed from these composites, and subjected to TEM analysis (see Table 2 and Table 3). Various modified nano 矽A clear difference in the degree of exfoliation was observed between the acid salts. No significant differences in TEM images were observed between the different types of PEI or different solvents studied. Example 3 8 - 4 9 Solvent-blended PEI nanocomposites Film Extrusion For the film extrusion of this material, several batches of the cation-69-200900458 sub/clay from Experiment 7 were sonicated in the cucurbit ether. Each batch was contained in 500 ml 藜. 2.7% modified nano citrate in lye. These mixtures were sonicated in a 1000 ml round bottom flask immersed in a water bath using a Branson 450W sonic shredder mounted on a ~40% power output Η sonic probe. Sonicated for about 16 hours. Processed and combined five batches. This material was blended with a 20% by weight solution of BPADA-DDS polyetherimine in veratrol. Then in a blender in the presence of methanol Precipitate this mixture in a vacuum oven at 220 °C Drying to remove the solvent, the ratio of BPADA-DDS polyether quinone imide: ODPA-DDS polyether quinone imide described in Table 4 is blended with ODPA-DDS polyether phthalimide, and is equipped with aeration/processing The screw and the 3-inch film mold were extruded into a film in a 16 mm PRISM extruder. The resin composition was fed at a rate of about 0.5 pounds per hour. The screw speed was set at 2 0 0 r p m 'the barrel temperature was 370 ° C, and the film mold temperature was 380 ° C. In Examples 3-7-46, ODPA-DDS polyetherimine was blended and extruded with precipitated nano-mineralized BPADA-DDS polyetherimine. In Example 36 and Example 47, the &apos;ODPA-DDS polyetherimine was first extruded once prior to blending with the precipitated nano-mineralized BPADA-DDS polyetherimine. Then squeeze the mixture a second time. -70- 200900458 ^ bO mm (N 226 262.8 252 1- :267 260 258 266 CTETD 50.92 41.76 cn uo 36.04 ΓΛ U-) 1- 43.09 39.72 39.52 32.75 CTEMD 58.2 48.68 38.41 48.51 33.02 m 45.95 38.88 38.54 28.7 TEM Μ 蝈s ^ g ^ § 13⁄4 3 ^ 彳尘名尘^ m &lt;m 〇mm K 0:100 0:100 31:69 31:69 60:40 60:40 60:40 60:40 60:40 60 :40 60:40 铤μ Q QQ bubble&lt;mgm 〇 二次 二次 二次 一次 — — — — — 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次Squeeze once extrusion, secondary extrusion, 4n g狴, l; 9 13⁄4 Ϊ Can S _ _ w ^ mh in 〇〇yri in Modification / Clay system, Bub, Bub, final weight % bismuth 〇 〇〇〇m in ο 卜卜卜 00 Os cn 〇1—1 9 CO 5 -71 - 200900458 Figure 3 shows the TEM evidence for the solvent removal method (in non-solvent) as in the direct venting method. The resulting film had a 7% nanocaprate loading, a machine direction CTE of 33.0 ppm/°C, and a Tg of 25 5 °C. A film having the same ratio of BPADA-DDS polyether quinone to the 0DPA-DDS polyether quinone having no clay has a longitudinal C TE of 48.5 ppm/°C and a Tg of 262 °C. The film was also extruded with a 6 0:400 BPADA-DDS polyether quinone imine: ODPA-DDS polyether quinone and a 7% nano citrate loading. The film had a longitudinal CTE of 2 8.7 ppm/°C and a Tg of 26 6 °C. Example 50 Preparation of a PEI Nanocomposite Using a Sonic Vibrator The sonication treatment in a flow cell has also been shown to be effective in the exfoliation of Example 7 nanocaprate in veratroxe. Advanced Sonics DRC-4-DPP-Hastelloy with a SAE-DRC-DPP dual-frequency reaction cell sonic vibrator was used to sonicate a 2.7% solution of the nanosalt from Experiment 7 in 500 ml of cucurbitic acid. ). The nanocaprate/cucurbit ether mixture was pumped through the sonic vibrator at 10 ml/min and passed through one at a time. Twenty-five passes were made, and the total time in the sonic zone of the flow cell reactor was 37.5 minutes. The sonicated nano citrate/cucurbit ether mixture was suspended in 20% BPADA-DDS polyether quinone solution in veratrol, precipitated in methanol, and placed in a vacuum oven at 220 °C. The excess solvent was removed, pressed into a film, and peeled off by TEM analysis. Figure 4 shows a sonicated experiment in a flow cell. 7 nm-72-200900458 A film made of tantalate is applied to a film made in Experiment 7 using a sonicated probe sonicator in batch mode. Comparison. These two methods produce the same result by TEM. Example 51 Detailed Description of Solvent Cast Films with Nano-Condensation for Reducing CTE Dispersion of Southern Clay Cloisite 30B Clay in N, N- by High Shear Mixing Using a Silverson Mixer In dimethylacetamide (DMAc) (13 grams of clay in 5001 ml of solvent). Adding monomer, 4,4'-oxydianic anhydride (0.5640 g), 4,4-diaminodiphenylphosphonium (0.3611 g), and oxydiphenylamine (0.0903 g) to the clay dispersion The mixture was diluted with additional DM Ac to yield a final mixture of 12.5 % solids (polymer to solvent) and 3 % hydrazine (clay versus polymer). The vials were inertized with N2 and shaken overnight to form various polyamine solutions. This solution was then cast on a pre-clean glass slide and imidized using the aforementioned heating profile. The resulting nano-imide-coated polyimide film was peeled off from the glass substrate for testing. The resulting film had a CTE of Tg = 3 04 ° C and 44 ppm / ° C. All of the patents, patent applications, and other publications disclosed herein are hereby incorporated by reference in their entirety in their entirety in their entirety. While the present invention has been described with reference to the preferred embodiments of the present invention, it should be understood that In addition, many modifications may be made to the teachings of the present invention - 73- 200900458 without adapting to particular circumstances or materials without departing from the scope. Therefore, the invention is not intended to be limited to the particular embodiments disclosed herein, and the invention is intended to include all of the embodiments within the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a transmission electron microscope (TEM) image of a modified nanocitrate that is sonicated and suspended in various polyether oximines in verat ether. . Figure 2 shows a TEM image of a modified nanocitrate which is sonicated in various solvents and suspended in various polyether oximines. Figure 3 shows a TEM image of a modified nanocitrate which is sonicated in various solvents and suspended in various polyether oximines. Figure 4 shows an equivalent TEM image illustrating the peeling between the venting and the precipitation single path. Figure 5 shows a TEM comparison of cumene-modified nanocitrate which is sonicated in a flow cell sonic vibrator and a probe-type sonic vibrator. -74-

Claims (1)

200900458 十、申請專利範圍 1. 一種製備聚合物-有機黏土複合材料組成物之方法 ,其包含: 合併一種溶劑和一種非剝離型(unexf〇liated )有機 黏土以提供第一種混合物,其中該非剝離型有機黏土包含 交替之無機矽酸鹽層和有機層且矽酸鹽層之間具有初間距 &gt; 使第一種混合物暴露於足夠強度和期間之激發條件下 以增加無機矽酸鹽層間之初間距,藉以提供第二種混合物 &gt; 使第二種混合物與聚合物組成物接觸以使該聚合物組 成物塡充至少一個位在至少一對矽酸鹽層之間的區域,其 中該聚合物組成物係至少部分地溶解在該溶劑中;及 從第二種混合物中除去至少部分之溶劑,其中在除去 溶劑之後該無機矽酸鹽層保持被該聚合物分開。 2. 如申請專利範圍第1項之方法,其中該激發條件 係由聲能源產生。 3. 如申請專利範圍第2項之方法,其中該聲能之來 源爲超音波液體處理器。 4. 如申請專利範圍第1項之方法,其中該激發條件 係由高剪切混合器產生。 5. 如申請專利範圍第1 — 4項中任一項之方法,其中 該能量具有產生有機黏土之初d-間距的淨增加之足夠強度 和期間。 -75- 200900458 6 .如申請專利範圍第1 - 4項中任一項之方法,其中 該第一種混合物係暴露於增加無機矽酸鹽層之初間距從5 埃至90埃之量的足夠強度和期間之激發條件。 7.如申請專利範圍第1 一 4項中任一項之方法,其中 該無機砂酸鹽層之初間距的增加導致該無機砂酸鹽層之隨 機間距。 8 .如申請專利範圍第1 一 4項中任一項之方法,其中 有機黏土的初d-間距之淨增加爲從約1 0至約5 00百分比 〇 9 .如申請專利範圍第1 一 4項中任一項之方法,其中 該有機黏土另包含式(1)之四級有機陽離子: R9 R8—Q—R10 I R7 (1) 其中Q爲氮或磷;且R7、R8、R9及R1()獨立地爲Ci-Cw 脂烴基、C5-C2Q環脂烴基、C2-C2Q芳族基或聚合物鏈。 1 0.如申請專利範圍第9項之方法,其中該四級有機 陽離子爲四級錢陽離子。 11. 如申請專利範圍第9項之方法,其中該四級有機 陽離子爲四級銨陽離子。 12. 如申請專利範圍第1 一 4項中任一項之方法,其 中該有機黏土另包含式(2)之四級鐵陽離子: -76- 200900458200900458 X. Patent application scope 1. A method for preparing a polymer-organic clay composite composition, comprising: combining a solvent and a non-exfoliating organic clay to provide a first mixture, wherein the non-peeling Type of organic clay comprising alternating inorganic citrate layers and organic layers with a preliminary spacing between the citrate layers&gt; exposing the first mixture to sufficient strength and period of excitation to increase the initial between inorganic silicate layers a spacing to provide a second mixture&gt; contacting the second mixture with the polymer composition such that the polymer composition is filled with at least one region between at least one pair of tantalate layers, wherein the polymer The composition is at least partially dissolved in the solvent; and at least a portion of the solvent is removed from the second mixture, wherein the inorganic silicate layer remains separated by the polymer after removal of the solvent. 2. The method of claim 1, wherein the excitation condition is generated by an acoustic energy source. 3. The method of claim 2, wherein the source of the acoustic energy is an ultrasonic liquid processor. 4. The method of claim 1, wherein the excitation condition is produced by a high shear mixer. 5. The method of any one of claims 1 to 4 wherein the energy has sufficient strength and duration to produce a net increase in the initial d-spacing of the organic clay. The method of any one of claims 1 to 4, wherein the first mixture is exposed to an amount sufficient to increase the initial spacing of the inorganic bismuth layer from 5 angstroms to 90 angstroms. Intensity and period of excitation conditions. 7. The method of any one of claims 1 to 4 wherein the increase in the initial spacing of the inorganic sulphate layer results in a random spacing of the inorganic sulphate layer. 8. The method of any one of claims 1 to 4, wherein the net increase in the initial d-spacing of the organic clay is from about 10 to about 500 percent 〇9. As claimed in the first 1-4 The method according to any one of the preceding claims, wherein the organic clay further comprises a fourth-order organic cation of the formula (1): R9 R8—Q—R10 I R7 (1) wherein Q is nitrogen or phosphorus; and R7, R8, R9 and R1 () is independently a Ci-Cw aliphatic hydrocarbon group, a C5-C2Q cycloaliphatic hydrocarbon group, a C2-C2Q aromatic group or a polymer chain. The method of claim 9, wherein the quaternary organic cation is a quaternary cation. 11. The method of claim 9, wherein the quaternary organic cation is a quaternary ammonium cation. 12. The method of any one of claims 1 to 4, wherein the organic clay further comprises a quaternary iron cation of formula (2): -76- 200900458 -R2 其中Ar1 從1至約 時獨立地 C2-C20 芳 、c6-c50 13. 中該有機 其中Ar1 且 Ar16 | 鏈。 14. 中該有機 个r3 〇 七(2) 、Ar2、Ar3及Ar4獨立地爲C6-C5〇芳族基;“a”爲 2 00之數;“c”爲從0至3之數;R1於每次出現 爲鹵素原子、C^-Cm脂烴基、C5-C2〇環脂烴基或 族基;且R2爲C^-Cu脂烴基、C5-C2〇環脂烴基 芳族基或聚合物鏈。 如申請專利範圍第1 一 4項中任一項之方法,其 黏土另包含式(3 )之四級錢陽離子: j1'4 〇 Ar13-P——At15—^-Ai16 Ar12 (3) 2、人1&quot;13、八^4及八1'15獨立地爲C6-C5G#族基; i c6-c2〇«3芳族基或包含至少一個芳族基之聚合物 如申請專利範圍第1 一 4項中任一項之方法,其 黏土另包含式(4)之吡錠陽離子:-R2 wherein Ar1 is independently from 1 to about C2-C20 aryl, c6-c50 13. The organic of which is Ar1 and Ar16 | 14. The organic r3 〇7(2), Ar2, Ar3 and Ar4 are independently a C6-C5 〇 aromatic group; "a" is a number of 00; "c" is a number from 0 to 3; R1 Each occurrence of a halogen atom, a C^-Cm aliphatic hydrocarbon group, a C5-C2 anthracycline or a group; and R2 is a C^-Cu aliphatic hydrocarbon group, a C5-C2 anthracycline aromatic group or a polymer chain . The method of any one of claims 1 to 4, wherein the clay further comprises a quaternary cation of formula (3): j1'4 〇Ar13-P-At15-^-Ai16 Ar12 (3) Human 1&quot;13, 八^4, and 八1'15 are independently a C6-C5G# group; i c6-c2 〇 «3 aromatic group or a polymer containing at least one aromatic group as claimed in claim 1 In one of the four methods, the clay further comprises a pyridinium cation of formula (4): 其中Ar6 2之數; 基、C5-C 、Ar7及Ar8獨立地爲C6-C5G芳族基;“b”從0至 R3於每次出現時獨立地爲鹵素原子、C^-Cm脂烴 2〇環脂烴基或C2-C2Q芳族基;且Ar11爲C6-C200 -77- 200900458 芳族基、或包含至少一個芳族基之聚合物鏈。 15.如申請專利範圍第14項之方法’其中該有機黏 土另包含式(5 )之四級吡錠陽離子:Wherein the number of Ar6 2; the group, C5-C, Ar7 and Ar8 are independently a C6-C5G aromatic group; "b" from 0 to R3 is independently a halogen atom, C^-Cm aliphatic hydrocarbon 2 at each occurrence. An anthracene cycloaliphatic group or a C2-C2Q aromatic group; and Ar11 is a C6-C200-77-200900458 aromatic group, or a polymer chain comprising at least one aromatic group. 15. The method of claim 14, wherein the organic clay further comprises a quaternary pyridinium cation of formula (5): 其中Ar6、Ar7及Ar8獨立地爲C6-C5〇芳族基;“b”從0至 2之數;”d”從〇至4之數;R3和R4於每次出現時獨立地 爲鹵素原子、G-Cm脂烴基、C5-C2G環脂烴基或C6-C2〇芳 族基;Z爲鍵結、二價Ci-C^脂烴基、二價C5-C2G環脂烴 基、二價C6-C2G芳族基、氧鍵聯基、硫鍵聯基、S02鍵聯 基或Se鍵聯基;且Ar9爲C1Q-C2()()芳族基、或包含至少 一個芳族基之聚合物鏈。 16.如申請專利範圍第1 一 4項中任一項之方法,其 中該無機矽酸鹽層係衍生自選自高嶺石、狄克石、珍珠石 、禾樂石、葉蛇紋石、纖蛇紋石、葉蠟石、微晶高嶺石、 鋁膨潤石、鐵膨潤石、皂石、鋅皂石、矽鎂石、水輝石、 四矽烷型(tetrasilylic )雲母、鈉帶雲母、白雲母、珍珠 雲母、滑石、蛭石、金雲母、綠脆雲母、綠泥石、合成矽 酸鹽類或彼等之組合之無機黏土。 1 7 ·如申請專利範圍第1 一 4項中任一項之方法,其 中該溶劑係選自Ν,Ν -二甲基乙醯胺、Ν,Ν —二甲基甲醯 胺、Ν—甲基吡咯啶酮、二甲亞碾、環丁碾、四氫呋喃、 二苯基酮、環己酮、苯酚、鄰-甲酚、對-甲酚、間-甲酚、 -78- 200900458 苯酚、乙苯酚、異丙苯酚、第三-丁基苯酚、二甲苯酚、 2,4,6—三甲苯酚、氯苯酚、二氯苯酚、苯基苯酚、烷基中 具有1至約4個碳原子之乙二醇的單烷醚、烷基中具有1 至約4個碳原子之·二乙二醇的單烷醚、單芳基醚二醇、丙 二醇之單芳基醚、四甲基脲、苯氧基乙醇、丙二醇苯醚、 大茴香醚、藜蘆醚、鄰-二氯苯、氯苯、三氯乙烷、二氯 甲烷、氯仿、吡啶、N -環己基吡咯啶酮、乳酸乙酯、離 子液體或彼等之組合。 18.如申請專利範圍第1 一 4項中任一項之方法,其 中該聚合物-有機黏土複合材料包含選自聚氯乙烯、聚烯 烴、聚酯、聚醯胺、聚楓、聚醯亞胺、聚醚醯亞胺、聚醚 颯、聚苯硫、聚醚酮、聚醚醚酮、丙烯腈-丁二烯-苯乙烯 、聚苯乙烯、聚丁二烯、聚丙烯酸酯、聚烷基丙烯酸酯、 聚丙烯腈、聚縮醛、聚碳酸酯、聚苯醚、乙烯-乙烯乙酯 共聚物、聚乙烯乙酯、液晶聚合物、芳族聚酯、乙烯-四 氟乙烯共聚物、聚氟乙烯、聚偏二氟乙烯、聚偏二氯乙烯 、聚四氟乙烯、或包含至少一個前述聚合物的組合之聚合 物。 1 9 .如申請專利範圍第1 8項之方法,其中該聚合物-有機黏土包含聚醚颯。 2 0 .如申請專利範圍第1 8項之方法,其中該聚合物-有機黏土複合材料包含聚醯亞胺。 2 1 .如申請專利範圍第1 8項之方法,其中該聚合物-有機黏土複合材料包含聚醚醯亞胺。 -79- 200900458 22. 如申請專利範圍第1 8項之方法’其中該聚合物-有機黏土複合材料包含聚醚酮。 23. 如申請專利範圍第1 一 4項中任一項之方法’其 中該聚合物-有機黏土複合材料包含一種具有約1 8 0 °C至約 4 5 0 °C之玻璃轉移溫度的聚合物。 24. 如申請專利範圍第1 一 4項中任一項之方法,其 中除去至少部分之溶劑係在排氣擠出機中進行。 25. —種製備聚合物-有機黏土複合材料組成物之方 法,該方法包含: 合倂一種溶劑和一種非剝離型(unexfoliated )有機 黏土以提供第一種混合物,其中該有機黏土包含交替之無 機矽酸鹽層和有機層,及式(1 )之四級有機陽離子 R9 R8—Q^-R10 I R7 (1) 其中Q爲磷或氮;且R7、R8、R9及R1()獨立地爲心-(:20 脂烴基、c5-c2G環脂烴基、c2-c2Q芳族基或聚合物鏈,且 有機黏土另具有矽酸鹽層之間的初間距; 使第一種混合物暴露於激發條件下以形成第二種混合 物,其中該激發條件具有足夠強度和期間以產生有機黏土 組成物的無機矽酸鹽層間之初間距的淨增加; 使第二種混合物與分開該無機矽酸鹽層之聚醯亞胺接 觸以形成第三種混合物,其中該聚醯亞胺至少部分地溶解 在該溶劑中;及 從第三種混合物中除去至少部分之溶劑,其中除去溶 -80- 200900458 劑之後該矽酸鹽層保持被該聚合物分開。 2 6 如申請專利範圍第2 5項之方法,其中該溶劑係 在排氣擠出機中除去。 27· —種物件,其包含藉由申請專利範圍第1 一 24項 中任一項之方法製備之聚合物-有機黏土複合材料。 2 8 ·如申請專利範圍第2 7項之物件,其係呈厚度爲 0.1至1000微米之薄膜之形式。 2 9 .如申請專利範圍第2 7 — 2 8項中任一項之物件, 其中該薄膜爲溶劑流延膜。 30. —種製備聚合物-有機黏土複合材料之方法,其 包含 合倂一種溶劑和一種非剝離型(unexfoliated )有機 黏土以形成第一種混合物,其中該有機黏土包含交替之無 機矽酸鹽層和有機層且矽酸鹽層之間具有初間距; 使第一種混合物暴露於足夠強度和期間之激發條件下 以增加無機矽酸鹽層間之初間距,藉以以形成第二種混合 物; 使第一種或第二種混合物與聚合物前驅物接觸; 使聚合物前驅物聚合以形成聚合物;及 從第二種混合物中除去至少部分之溶劑,其中除去溶 劑之後該無機矽酸鹽層保持被該聚合物分開。 31-如申請專利範圍第3 0項之方法,其中該聚合係 至少部分在暴露期間發生。 32·如申請專利範圍第30項之方法,其中該聚合係 -81 - 200900458 至少部分在暴露之後發生。 33.如申請專利範圍第30項之方法,其中該聚合係 至少部分在除去溶劑期間發生。 3 4 .如申請專利範圍第3 0 — 3 3項中任〜項之方法, 其中該聚合物前驅物爲聚醯胺酸。 3 5 ·如申請專利範圍第3 0 — 3 3項中任〜·項之方法, 其中該聚合物前驅物包含二酐成分和二胺成分。 3 6 · —種製備聚合物-有機黏土複合材料之方、法,其 包含: 合倂溶劑、非剝離型有機黏土、二酐成分及二胺成分 以形成第一種混合物,其中該有機黏土包含交替之無機砂 酸鹽層和有機層且矽酸鹽層之間具有初間距; 使第一種混合物暴露於足夠強度和期間之激發條件下 以增加無機矽酸鹽層間之初間距,藉以形成第二種混合物 t 使二酐成分和二胺成分聚合以形成聚醯胺酸;及 從聚醯胺酸混合物除去至少部分之溶劑以提供聚醯亞 胺,其中除去溶劑之後該無機矽酸鹽層保持被該聚醯亞胺 分開。 -82- 200900458 七 無 • 明 圖說 )單 1簡 C號 符 ^ 為代 圖件 表元 代之 定圖 指表 :案代 圖本本 表、、 代 /-•'N 定一二 八、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:式(1 ) R9 R8—Q—R10 I R7 (1) -4-Wherein Ar6, Ar7 and Ar8 are independently C6-C5〇 aromatic groups; "b" is from 0 to 2; "d" is from 〇 to 4; R3 and R4 are independently halogen atoms at each occurrence. , G-Cm aliphatic hydrocarbon group, C5-C2G cycloaliphatic hydrocarbon group or C6-C2 fluorene aromatic group; Z is bonded, divalent Ci-C^ aliphatic hydrocarbon group, divalent C5-C2G cycloaliphatic hydrocarbon group, divalent C6-C2G An aromatic group, an oxygen bond group, a sulfur bond group, an S02 bond group or a Se bond group; and Ar9 is a C1Q-C2()() aromatic group or a polymer chain containing at least one aromatic group. The method of any one of claims 1 to 4, wherein the inorganic silicate layer is derived from a group selected from the group consisting of kaolinite, dickite, perlite, sapphire, serpentine, serpentine , pyrophyllite, microcrystalline kaolinite, aluminum bentonite, iron bentonite, saponite, saponite, strontite, hectorite, tetrasilylic mica, sodium band mica, muscovite, pearl mica, Inorganic clays of talc, vermiculite, phlogopite, green-clay mica, chlorite, synthetic silicates or combinations thereof. The method of any one of claims 1 to 4, wherein the solvent is selected from the group consisting of hydrazine, hydrazine-dimethylacetamide, hydrazine, hydrazine-dimethylformamide, hydrazine-methyl Pyrrolidone, dimethyl arsenide, cyclobutyl milling, tetrahydrofuran, diphenyl ketone, cyclohexanone, phenol, o-cresol, p-cresol, m-cresol, -78- 200900458 phenol, acetol , isopropyl phenol, tert-butyl phenol, xylenol, 2,4,6-trimethylphenol, chlorophenol, dichlorophenol, phenylphenol, ethylene having from 1 to about 4 carbon atoms in the alkyl group a monoalkyl ether of an alcohol, a monoalkyl ether having a diethylene glycol of 1 to about 4 carbon atoms in the alkyl group, a monoaryl ether glycol, a monoaryl ether of propylene glycol, a tetramethyl urea, a phenoxy group Ethanol, propylene glycol phenyl ether, anisole, cucurbit ether, o-dichlorobenzene, chlorobenzene, trichloroethane, dichloromethane, chloroform, pyridine, N-cyclohexylpyrrolidone, ethyl lactate, ionic liquid Or a combination of them. The method of any one of claims 1 to 4, wherein the polymer-organic clay composite comprises a material selected from the group consisting of polyvinyl chloride, polyolefin, polyester, polyamine, poly maple, polyphthalamide Amine, polyether phthalimide, polyether oxime, polyphenylene sulfide, polyether ketone, polyether ether ketone, acrylonitrile-butadiene-styrene, polystyrene, polybutadiene, polyacrylate, polyalkane Acrylate, polyacrylonitrile, polyacetal, polycarbonate, polyphenylene ether, ethylene-vinyl ethyl ester copolymer, polyethylene ethyl ester, liquid crystal polymer, aromatic polyester, ethylene-tetrafluoroethylene copolymer, A polymer of polyvinyl fluoride, polyvinylidene fluoride, polyvinylidene chloride, polytetrafluoroethylene, or a combination comprising at least one of the foregoing polymers. The method of claim 18, wherein the polymer-organic clay comprises a polyether oxime. The method of claim 18, wherein the polymer-organic clay composite comprises polyimine. The method of claim 18, wherein the polymer-organic clay composite comprises polyetherimine. -79- 200900458 22. The method of claim 18, wherein the polymer-organic clay composite comprises polyetherketone. The method of any one of claims 1 to 4 wherein the polymer-organic clay composite comprises a polymer having a glass transition temperature of from about 180 ° C to about 450 ° C. . 24. The method of any one of claims 1 to 4 wherein at least a portion of the solvent is removed in a venting extruder. 25. A method of preparing a polymer-organic clay composite composition, the method comprising: combining a solvent and a non-exfoliated organic clay to provide a first mixture, wherein the organic clay comprises alternating inorganic a citrate layer and an organic layer, and a quaternary organic cation of the formula (1) R9 R8—Q^-R10 I R7 (1) wherein Q is phosphorus or nitrogen; and R7, R8, R9 and R1() are independently Heart-(: 20 aliphatic hydrocarbon group, c5-c2G cycloaliphatic hydrocarbon group, c2-c2Q aromatic group or polymer chain, and the organic clay additionally has an initial spacing between the citrate layers; exposing the first mixture to the excitation condition Forming a second mixture, wherein the excitation condition has sufficient strength and a period of time to produce a net increase in the initial spacing between the inorganic silicate layers; the second mixture is separated from the inorganic bismuth layer The polyimide is contacted to form a third mixture, wherein the polyimine is at least partially dissolved in the solvent; and at least a portion of the solvent is removed from the third mixture, wherein after the dissolution of -80-200900458 agent is removed矽The acid salt layer is kept separated by the polymer. 2 6 The method of claim 25, wherein the solvent is removed in a venting extruder. 27 - an object comprising a patent application scope The polymer-organic clay composite prepared by the method of any one of the items 1 to 24. The object of claim 27, which is in the form of a film having a thickness of 0.1 to 1000 μm. The article of any one of claims 2-7 to 28, wherein the film is a solvent cast film. 30. A method for preparing a polymer-organic clay composite comprising a solvent and An unexfoliated organic clay to form a first mixture, wherein the organic clay comprises alternating inorganic silicate layers and an organic layer with an initial spacing between the citrate layers; exposing the first mixture to sufficient Strength and duration of the excitation conditions to increase the initial spacing between the inorganic silicate layers to form a second mixture; contacting the first or second mixture with the polymer precursor; The precursor polymerizes to form a polymer; and at least a portion of the solvent is removed from the second mixture, wherein the inorganic citrate layer remains separated by the polymer after removal of the solvent. 31 - Method of claim 30 Wherein the polymerization occurs at least partially during the exposure. 32. The method of claim 30, wherein the polymerization system -81 - 200900458 occurs at least partially after exposure. 33. The method of claim 30 And wherein the polymerization is carried out at least in part during the removal of the solvent. The method of any one of claims 3 to 3, wherein the polymer precursor is polylysine. The method of any one of the above-mentioned claims, wherein the polymer precursor comprises a dianhydride component and a diamine component. 3 6 · A method for preparing a polymer-organic clay composite comprising: a combined solvent, a non-peeling organic clay, a dianhydride component, and a diamine component to form a first mixture, wherein the organic clay comprises The alternating inorganic sulphate layer and the organic layer have an initial spacing between the silicate layers; exposing the first mixture to a sufficient strength and during the excitation conditions to increase the initial spacing between the inorganic silicate layers, thereby forming a The two mixtures t polymerize the dianhydride component and the diamine component to form poly-proline; and remove at least a portion of the solvent from the polyamid acid mixture to provide a polyimine, wherein the inorganic silicate layer remains after removal of the solvent Separated by the polyimine. -82- 200900458 七无• 明图说) Single 1 Jane C No. ^ For the generation of map elements, the map refers to the table: the representative of the case, the table, the generation /-•'N fixed one two eight, this case When there is a chemical formula, please reveal the chemical formula that best shows the characteristics of the invention: Formula (1) R9 R8—Q—R10 I R7 (1) -4-
TW96136622A 2007-06-20 2007-09-29 Methods of preparing polymer-organoclay composites and articles derived therefrom TW200900458A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US94515007P 2007-06-20 2007-06-20
US11/766,456 US7928154B2 (en) 2006-06-26 2007-06-21 Methods of preparing polymer-organoclay composites and articles derived therefrom

Publications (1)

Publication Number Publication Date
TW200900458A true TW200900458A (en) 2009-01-01

Family

ID=44721355

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96136622A TW200900458A (en) 2007-06-20 2007-09-29 Methods of preparing polymer-organoclay composites and articles derived therefrom

Country Status (1)

Country Link
TW (1) TW200900458A (en)

Similar Documents

Publication Publication Date Title
US8158243B2 (en) Methods of preparing polymer-organoclay composites and articles derived therefrom
EP2032634B1 (en) Polyimide solvent cast films having low coefficient of thermal expansion and method of manufacture thereof
US9161440B2 (en) Articles comprising a polyimide solvent cast film having a low coefficient of thermal expansion and method of manufacture thereof
US8545975B2 (en) Articles comprising a polyimide solvent cast film having a low coefficient of thermal expansion and method of manufacture thereof
US8568867B2 (en) Polyimide solvent cast films having a low coefficient of thermal expansion and method of manufacture thereof
TWI303647B (en) Resin composition
TW200302851A (en) Resin composition
WO2020189354A1 (en) Polyamic acid resin, polyimide resin, and resin composition including these
CN101506244A (en) Methods of preparing polymer-organoclay composites and articles derived therefrom
KR20120026539A (en) A film prepared from a casting composition comprising a polymer and surface modified hexagonal boron nitride particles
TW200900450A (en) Compositions and methods for polymer composites
JP2010280807A (en) Composition for polyimide resin
TW200900458A (en) Methods of preparing polymer-organoclay composites and articles derived therefrom
TWI518147B (en) Ink composition
JP2007130767A (en) Manufacturing method of copper clad laminated sheet
TW202406988A (en) Maleimide resin, resin composition, cured product, sheet, laminated body, and printed wiring board
JP2024052953A (en) Resin composition
TW200900453A (en) Compositions and methods for polymer composites
JP2014177558A (en) Resin composition, and laminate using the same