TW200850054A - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
TW200850054A
TW200850054A TW097110991A TW97110991A TW200850054A TW 200850054 A TW200850054 A TW 200850054A TW 097110991 A TW097110991 A TW 097110991A TW 97110991 A TW97110991 A TW 97110991A TW 200850054 A TW200850054 A TW 200850054A
Authority
TW
Taiwan
Prior art keywords
light
layer
group
emitting
substituted
Prior art date
Application number
TW097110991A
Other languages
Chinese (zh)
Inventor
Takashi Sekiya
Hisayuki Kawamura
Ryuji Tokuda
Original Assignee
Idemitsu Kosan Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co filed Critical Idemitsu Kosan Co
Publication of TW200850054A publication Critical patent/TW200850054A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

Provided is a light emitting element which includes an anode, a light emitting layer and a cathode by stacking them in this order. The light emitting layer includes nano crystal light emitting fine particles, and the light emitting element is driven by pulse width gradation.

Description

200850054 九、發明說明: t發明所屬之技術領域3 技術領域 本發明係有關於一種發光元件。更詳而言之,係有關 5 於一種由有機電激發光積層體與奈米結晶發光微粒子組合 而成之發光元件。 【先前技術]3 背景技術 有機電激發光(EL)元件係一種自發光元件,該自發光 10元件係利用藉施加電場於有機物薄膜,自陽極所注入之電 洞與自陰極所注入之電子於有機物薄膜中結合,產生發光 之原理者。 自Eastman Kodak公司之C.w· Tang等人作成以積層型 元件形成之低電壓驅動有機EL元件報告(非專利文獻1}以 15來,便有人積極地進行關於以有機材料作為構成材料之有 機EL元件的研究。 然而,有機EL元件會有每次改變發光色就必須進行新 發光材料分子之設計及、發光光譜之寬度較寬而不易 提升色純度等問題。 2〇 》解決前述問題,有人檢討了使用奈米結晶發光微粒 子之有機無機混成型電場發光元件。奈米結晶發光微粒子 可藉由改變其粒徑以控制發光色,且單分散之奈米結晶發 光微粒子發光光譜之半寬度小而具有發光之色純度佳之效 果0 200850054 例如’於專利文獻1中,揭示了於對向之電極間挾持有 矩陣層’且該矩陣層係含有半導體奈米結晶之發光元件。 該發光元件除了電極、電洞輸送層、電子輸送層及半導體 奈米結晶之外,亦可具有電洞阻隔層或電子阻隔層。 5 於專利文獻2中,揭示了發光層包含分散有無機螢光母 體奈米粒子之介質之電流注入型發光元件,且無機螢光母 體奈米粒子摻雜有1種或複數種元素作為發光中心。該電流 ✓主入型發光元件依據複數摻雜物以多波長發光,且電洞輸 送層之游離電位之絕對值大於無機螢光母體奈米粒子之游 10離電位之絕對值,並且電子輸送層之LUMO能階之絕對值 大於無機螢光母體奈米粒子iLU]V1〇能階之絕對值。 於專利文獻3中,揭示了於對向之電極間挾持有發光 層,且該發光層由分散有半導體超微粒子之高分子化合物 所構成的電場發光元件。該電場發光元件於陰極與發光層 15間具有電子輸送層,於發光層與電子輸送層間具有電洞阻 隔層’且於發光層與電洞輸送層間具有電子阻隔層。 於專利文獻4中,揭示了使用由半導體結晶及配位於其 表面之配位子所構成之半導體超微粒子的電場發光元件。 又,於專利文獻5中,揭示了於高分子電洞輪送層及有 20機物電子輸送層之間,包含接觸高分子電洞輸送層之獨立 奈米結晶發光層的EL元件。 除了前述者之外,亦有人提出了使用各種奈米結晶發 光微粒子之量子點發光元件(qD-LED)。例如,於非專利文 獻2中揭示了將三苯二胺(TPD)、量子點(qD)及三氯甲烷之 6 200850054 混合液於氮氣環境下旋轉塗布,並使溶媒乾燥後,使有機 物與量子點相分離,kTPD表面形成有單層奈米結晶發光 微粒子之QD-LED。 於非專利文獻3中,揭示了利用膠體qd之化學合成及 5 QD薄膜製作技術之qd_led。 於非專利文獻4中,揭示了為將發光過程自電荷傳導分 離,將單一單層QD挾持於2個有機層間,且有機層將電荷 載子運至單一單層QD附近以產生發光之qd-LED。 於非專利文獻5中,揭示了具有由聚苯基乙烯(PPV)及 10 CdSe奈米結晶所構成之異質結構之薄膜的qD_led。 於非專利文獻6中,揭示了將於聚乙烯咔唑(PVK)薄膜 (1000Α)及噚二唑衍生物中單分散之cdSe奈米結晶,以氧化 銦錫合金(ITO)及A1電極挾持的QD-LED。 於非專利文獻7中,揭示了將qd及TPD之混合溶液旋 15轉塗布,並使溶媒蒸發後,將QD與TPD相分離並形成,而 具有將QD有序化之大面積單層(>cm2)的qd_leD。 然而,於該等文獻所揭示之發光元件中,例如,非專 利文獻2揭示之發光元件中,當為使亮度上升而增加外施電 壓時,除了奈米結晶會發光之外,例如電子輸送層(Alq3) 20專亦會發光,而有無法得到所期望之發光色的問題。這表 不當使電壓改變而進行灰階顯示時,於低電壓之低亮度領 域及南電壓之高亮度領域中,顏色會改變。為活用量子點 所具有之優異單色性,需以僅奈米結晶發光微粒子會發光 之範圍的電壓使發光元件驅動,但於該範圍之電壓中所得 200850054 之亮度仍有限。 專利文獻1 :國際公開第2003/084292號文獻。 專利文獻2 :特開2005-38634號公報。 專利文獻3 :特開2004-172102號公報。 5 專利文獻4 :特開2004-315661號公報。 專利文獻5 :特開2005-353595號公報。 非專利文獻 1: C_W.Tang,S.A.Vanslyke,Applied Physics200850054 IX. INSTRUCTION DESCRIPTION: TECHNICAL FIELD The present invention relates to a light-emitting element. More specifically, it relates to a light-emitting element in which an organic electroluminescence layer is combined with a nanocrystal light-emitting particle. [Prior Art] 3 BACKGROUND OF THE INVENTION An organic electroluminescent (EL) element is a self-luminous element that utilizes an electric field applied to an organic thin film by an electric field applied thereto, and a hole injected from the anode and an electron injected from the cathode. The organic film combines to produce the principle of luminescence. A report on a low-voltage-driven organic EL element formed by a laminated element is produced by Cw. Tang et al. of Eastman Kodak Co., Ltd. (Non-Patent Document 1), and an organic EL element using an organic material as a constituent material is actively carried out. However, the organic EL element has to design the new luminescent material molecule every time the luminescent color is changed, and the width of the luminescence spectrum is wide and it is not easy to improve the color purity. 2〇"Resolving the above problems, some people have reviewed An organic-inorganic hybrid-molding electric field light-emitting element using nanocrystalline crystal light-emitting particles. The nanocrystal light-emitting fine particles can control the light-emitting color by changing the particle diameter thereof, and the half-width of the light-emitting spectrum of the monodisperse nanocrystal light-emitting fine particles is small and has light emission. Effect of good color purity 0 200850054 For example, Patent Document 1 discloses a light-emitting element in which a matrix layer is held between opposing electrodes and the matrix layer contains semiconductor nanocrystals. In addition to the transport layer, the electron transport layer, and the semiconductor nanocrystal, it may also have a hole barrier layer or electricity 5. In Patent Document 2, a current injection type light-emitting element in which a light-emitting layer contains a medium in which inorganic fluorescent mother nanoparticles are dispersed is disclosed, and inorganic fluorescent mother nanoparticles are doped with one or more kinds of elements. As the illuminating center, the current ✓ the main-in type illuminating element emits light at multiple wavelengths according to the plurality of dopants, and the absolute value of the free potential of the hole transporting layer is greater than the absolute value of the potential of the inorganic fluorescent matrix nanoparticle. And the absolute value of the LUMO energy level of the electron transport layer is greater than the absolute value of the inorganic fluorescent matrix nanoparticle iLU]V1〇 energy level. In Patent Document 3, it is disclosed that the light-emitting layer is held between the opposing electrodes, and The light-emitting layer is an electric field light-emitting element comprising a polymer compound in which semiconductor ultrafine particles are dispersed. The electric field light-emitting element has an electron transport layer between the cathode and the light-emitting layer 15, and has a hole blocking layer between the light-emitting layer and the electron transport layer. There is an electron blocking layer between the light-emitting layer and the hole transport layer. In Patent Document 4, it is disclosed that the use of a semiconductor crystal and a ligand coordinated to the surface thereof The electric field light-emitting element of the semiconductor ultrafine particles. Further, in Patent Document 5, it is disclosed that the inorganic nanoporous carrier layer and the 20-electron electron transport layer include independent nanoparticles contacting the polymer hole transport layer. EL element of the crystal light-emitting layer. In addition to the foregoing, a quantum dot light-emitting element (qD-LED) using various nanocrystal light-emitting fine particles has been proposed. For example, non-patent document 2 discloses triphenylenediamine. (TPD), quantum dot (qD) and chloroform 6 200850054 The mixed solution is spin-coated under a nitrogen atmosphere, and after drying the solvent, the organic matter is separated from the quantum dots, and a single layer of nanocrystalline luminescent particles is formed on the surface of the kTPD. QD-LED. In Non-Patent Document 3, qd_led using chemical synthesis of colloid qd and 5 QD thin film fabrication technology is disclosed. In Non-Patent Document 4, it is disclosed that in order to separate the luminescence process from charge conduction, a single single layer QD is held between two organic layers, and the organic layer transports the charge carriers to a vicinity of a single single layer QD to generate luminescence qd- LED. Non-Patent Document 5 discloses a qD_led having a film of a heterostructure composed of polyphenylethylene (PPV) and 10 CdSe nanocrystals. Non-Patent Document 6 discloses cdSe nanocrystals which are monodispersed in a polyvinylcarbazole (PVK) film (1000 Å) and an oxadiazole derivative, and are held by an indium tin oxide alloy (ITO) and an A1 electrode. QD-LED. Non-Patent Document 7 discloses that a mixed solution of qd and TPD is spin-coated, and the solvent is evaporated, and QD and TPD are separated and formed, and a large-area single layer in which QD is ordered is formed (&gt ;cm2) qd_leD. However, in the light-emitting element disclosed in the above-mentioned documents, for example, in the light-emitting element disclosed in Non-Patent Document 2, when the applied voltage is increased in order to increase the luminance, in addition to the nanocrystal, the electron transport layer is irradiated. (Alq3) 20 will also emit light, but there is a problem that the desired illuminating color cannot be obtained. When the gray scale display is performed when the voltage is changed, the color changes in the low-luminance low-voltage field and the high-luminance field of the south voltage. In order to utilize the excellent monochromaticity of the quantum dots, it is necessary to drive the light-emitting elements with a voltage in a range in which only the nanocrystalline crystal light-emitting particles emit light, but the brightness of the 200850054 obtained in the voltage of the range is still limited. Patent Document 1: International Publication No. 2003/084292. Patent Document 2: JP-A-2005-38634. Patent Document 3: JP-A-2004-172102. 5 Patent Document 4: JP-A-2004-315661. Patent Document 5: JP-A-2005-353595. Non-patent literature 1: C_W.Tang, S.A.Vanslyke, Applied Physics

Letters,51 卷,913 頁,1987年。 非專利文獻2: S.Coe_Sullivan et al,Organic Electronics, 10 4 (2003) 123-130頁。 非專利文獻3 : V.Bulovic and M.Bawendi,SID 06 Digest 35·1 (2006) 1368-1371頁。 非專利文獻4 : S.Coe et al·,Nature,420 (2002) 800-803 頁。 15 非專利文獻5: H.Mattoussi et al·,J.Appl.Phys·,83 (1998) 7965-7974頁。 非專利文獻 6 : B.O.Dabbousi and M.G.Bawendi, Appl.Phys丄ett.66 (1995) 1316-1318 頁。 專矛ij 文獻7 : S.Coe-Sullivan et al,Adv. Funct.Mater, 20 15 (2005) 1117-1124 頁。 本發明之目的係提供一種可實現無色變之灰階顯示且 具有實用之亮度的發光元件。 【項h明内^►】 發明揭示 8 200850054 依據本發明提供以下發光元件。 L包含有依序積層之陽極、發光層及陰極,且前述發 光層含有奈米結晶發光微粒子,並且以脈波寬度調變驅動 之一種發光元件。 5 2·於前述陽極及前述發光層間含有電洞輸送層之如1 之發光元件。 3·於前述陽極及前述發光層間含有電子輸送層之如i 之發光元件。 4·於前述陽極及前述發光層間含有電洞輸送層,且於 $述發光層及别述陰極間含有電子輸送層之1之發光元件。 5. 包含有陽極及陰極,並於前述陽極與前述陰極間至 少包含有2個由含有奈米結晶發光微粒子所形成之發光 層’且於前述發光層之間至少具有丨個中間連接層,並且以 脈波見度调變驅動之一種發光元件。 15 _ 6. 前述發光層之厚度係1〜i00mn之如1〜5中任一之發光 元件。 7·前述奈米結晶發光微粒子係半導體奈米結晶之如 1〜6中任一之發光元件。 > 8.前述半導體奈米結晶係内核_外殼型半導體奈米結晶 ~ <如7之發光元件 依據本發明可提供一種可實現無色變之灰階顯示且具 有實用之亮度的發光元件。 _式簡單說明 第1圖係顯示本發明發光元件之第1實施形態之概略截 9 200850054 面圖。 第2圖係顯示本發明發光元件之第2實施形態之概略截 面圖。 第3圖係顯示實施例1中製造之發光元件之電壓-亮度 5 特性之表的圖。 第4圖係顯示實施例1中製造之發光元件之發光光譜的 外施電壓相關性之表的圖。 第5圖係顯示實施例1中製造之發光元件經脈波寬度調 變驅動後色度之亮度相關性的圖。 10 第6圖係顯示實施例1中製造之發光元件經電壓梯度驅 動後色度之亮度相關性的圖。 第7圖係顯示實施例2中製造之發光元件之電壓-亮度 特性之表的圖。 第8圖係顯示實施例2中製造之發光元件經脈波寬度調 15變驅動後色度之亮度相關性的圖。 t實施方式】 實施發明之最佳形態 本發明之發光元件包含有依序積層之陽極、發光層及 陰極’且發光層含有奈米結晶發光微粒子,並且前述發光 2〇 元件係以脈波寬度調變驅動者。 本發明之發光元件宜於陽極及發光層間含有電洞輸送 層、及/或於發光層及陰極間含有電子輸送層。 又,本發明其他態樣之發光元件包含有陽極及陰極, 並於陽極與陰極間至少包含有2個由含有奈米結晶發光微 200850054 粒子所形成之發光層,且於前述發光層之間至少具有1個中 間連接層,並且前述發光元件係以脈波寬度調變驅動者。 利用圖式說明本發明元件之一例。 第1圖係顯示本發明發光元件之第1實施形態之概略截 5 面圖。 發光元件1中,於基板(未圖示)上依序積層有陽極10、 電洞輸送層20、發光層30、電子輸送層4〇、電子注入層50 及陰極60,且陽極1〇及陰極60透過脈波寬度調變控制裝置 70電連接。 10 發光元件1藉自電洞輸送層20所供給之電洞與自電子 輸送層40所供給之電子結合而發光。 發光層30含有奈米結晶發光微粒子而形成,且因奈米 結晶發光微粒子係如下述之無機物,故有較有機物不易劣 化之優點。 15 又,若奈米結晶發光微粒子係半導體奈米結晶時,其 激發狀態具有混合有單重態及三重態狀態之性質,且其壽 命通常短如10〜4〇ns,可減少在施加高電流於磷光型有機EL 疋件時而成為問題之激子_激子對消滅。另外,經混合之自 疑激發狀悲,因具有易由鄰近之施體位置(d〇n〇r site)捕捉 2〇單重悲及二重態激子兩者之性質,故含有奈米結晶發光微 粒子之發光元件可實現高效率。Letters, Vol. 51, 913, 1987. Non-Patent Document 2: S. Coe_Sullivan et al, Organic Electronics, 10 4 (2003) 123-130. Non-Patent Document 3: V. Bulovic and M. Bawendi, SID 06 Digest 35·1 (2006) 1368-1371. Non-Patent Document 4: S. Coe et al., Nature, 420 (2002) 800-803. 15 Non-Patent Document 5: H. Mattoussi et al., J. Appl. Phys., 83 (1998) 7965-7974. Non-Patent Document 6: B. O. Dabbousi and M. G. Bawendi, Appl. Phys丄ett. 66 (1995) 1316-1318. Special Spear ij Document 7: S. Coe-Sullivan et al, Adv. Funct. Mater, 20 15 (2005) 1117-1124. SUMMARY OF THE INVENTION An object of the present invention is to provide a light-emitting element which can realize a gray scale display without color change and has practical brightness. [Item h inside] ► Revealed note 8 200850054 The following light-emitting elements are provided in accordance with the present invention. L includes a light-emitting element in which the anode, the light-emitting layer, and the cathode are sequentially laminated, and the light-emitting layer contains nanocrystal light-emitting fine particles and is driven by pulse width modulation. 5 2. A light-emitting element comprising a hole transport layer between the anode and the light-emitting layer. 3. A light-emitting element such as i having an electron transport layer between the anode and the light-emitting layer. 4. A light-emitting element comprising a hole transport layer between the anode and the light-emitting layer, and comprising an electron transport layer between the light-emitting layer and a cathode. 5. The anode and the cathode are included, and at least two light-emitting layers formed of nanocrystal-containing luminescent particles are included between the anode and the cathode, and at least one intermediate connection layer is formed between the light-emitting layers, and A light-emitting element driven by pulse wave modulation. 15 _ 6. The thickness of the light-emitting layer is a light-emitting element of any one of 1 to 5, such as 1 to 5. 7. The light-emitting element according to any one of 1 to 6 wherein the nanocrystal luminescent fine particle semiconductor nanocrystal is crystallized. > 8. The above-mentioned semiconductor nanocrystal system core-shell semiconductor nanocrystals <Light-emitting element of 7, according to the present invention, it is possible to provide a light-emitting element which can realize a gray scale display without color change and has practical brightness. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view showing a schematic view of a first embodiment of a light-emitting device of the present invention. Fig. 2 is a schematic cross-sectional view showing a second embodiment of the light-emitting element of the present invention. Fig. 3 is a view showing a table of voltage-luminance 5 characteristics of the light-emitting element manufactured in Example 1. Fig. 4 is a view showing a table of voltage dependence of an emission spectrum of a light-emitting element manufactured in Example 1. Fig. 5 is a graph showing the luminance correlation of the chromaticity after the light-emitting element manufactured in Example 1 is driven by the pulse width modulation. Fig. 6 is a graph showing the luminance dependence of the chromaticity of the light-emitting element manufactured in Example 1 after being driven by a voltage gradient. Fig. 7 is a view showing a table of voltage-luminance characteristics of the light-emitting elements manufactured in Example 2. Fig. 8 is a graph showing the luminance dependence of the chromaticity of the light-emitting element manufactured in Example 2 after being driven by the pulse width modulation. t. BEST MODE FOR CARRYING OUT THE INVENTION The light-emitting device of the present invention comprises an anode, a light-emitting layer and a cathode which are sequentially laminated, and the light-emitting layer contains nanocrystal light-emitting fine particles, and the light-emitting diode element is modulated by a pulse width. Variable driver. The light-emitting element of the present invention preferably comprises a hole transport layer between the anode and the light-emitting layer, and/or an electron transport layer between the light-emitting layer and the cathode. Furthermore, a light-emitting device according to another aspect of the present invention includes an anode and a cathode, and includes at least two light-emitting layers formed of particles containing nanocrystal light-emitting micro-200850054 between the anode and the cathode, and at least between the light-emitting layers. There is one intermediate connection layer, and the aforementioned light-emitting element is driven by a pulse width modulation. An example of the elements of the present invention will be described using the drawings. Fig. 1 is a schematic cross-sectional view showing a first embodiment of a light-emitting device of the present invention. In the light-emitting element 1, an anode 10, a hole transport layer 20, a light-emitting layer 30, an electron transport layer 4, an electron injection layer 50, and a cathode 60 are sequentially laminated on a substrate (not shown), and an anode 1 and a cathode are laminated. 60 is electrically connected through the pulse width modulation control device 70. The light-emitting element 1 emits light by a hole supplied from the hole transport layer 20 in combination with electrons supplied from the electron transport layer 40. The light-emitting layer 30 is formed by containing nanocrystal light-emitting fine particles, and since the nanocrystal light-emitting fine particles are inorganic substances as described below, there is an advantage that the organic matter is less likely to be deteriorated. 15 Further, if the crystalline crystallites of nanocrystals crystallize, the excited state has the property of mixing singlet and triplet states, and its lifetime is usually as short as 10 to 4 ns, which can reduce the application of high current to phosphorescence. The type of organic EL element is sometimes an exciter of the problem - the exciton pair is eliminated. In addition, the mixed suspicious sorrows are characterized by the fact that they are easily captured by the adjacent donor site (d〇n〇r site), and contain nanocrystals and doublet excitons. The light-emitting elements of the microparticles can achieve high efficiency.

本發明之發光元件係以脈波寬度調變驅動。以脈波寬 度调變之_係將發光⑽時之外施電壓(或通電電流)控制 成一疋,且藉由改變成為〇N之時間(脈波寬度)、或改變〇N 11 200850054 及OFF之時間比(工作比),以調變作為平均時間之亮度的驅 動方法。藉由以脈波寬度驅動發光元件,可使外施電壓為 一定’亦可抑制色度因亮度而變化。 别述脈波寬度係例如,1/zs〜100ms,以10//s〜20ms為 5佳。若脈波寬度小於,因與發光元件之電氣時間常數 的關係,未能施加充足之電壓於發光元件,而有無法得到 充足之發光之虞。若脈波寬度超過1〇〇ms,則所顯示之影像 上會有產生閃爍之虞。可取〇至1〇〇%作為工作比。 另外’第1圖中發光層3〇係1層奈米結晶發光微粒子之 10顆粒’但亚未限定於此。在不損及本發明效果之範圍内, 啦光層亦可為例如,2層以上,又,亦可有空隙。此外,發 光層可為僅由奈米結晶發光微粒子所構成之發光層,亦可 為由刀政有奈米結晶發光微粒子之介質所構成之發光層。 右使用由刀政有奈米結晶發光微粒子之介質所構成之發光 15 f作為發光層時,可期望介質保持電荷傳輸特性,又,介 3亦可兼作為1洞輸送層、電子輸送層、電子注入層或中 間連接層。 20 分構造者 。本I明發u件之構造,並未限定於前述實施形態, 亦:為例如’以下所示⑴〜⑽之構造或具有以下構造之部 (1) 陽極/電洞輸 (2) 陽極/電洞注 陰極。 送層/發光層/電子輸送層/陰極。 入層/電洞輸送層/發光層/電子輸送層/ 送層/電子注入層/ (3)陽極/電洞輪送層/發光層/電子輸 12 200850054 陰極(第1圖)。 (4)陽極/電洞注入層/電 電子注入層/陰極。 洞輸送層/發光層/電子輸送層/ 5 (5)陽極/絕緣層/電洞輪送層/發光層/電子輸送層/陰核。 ()陽極/包洞輸送層/發光層/電子輸送層人絕緣層/陰拖。 ⑺陽極/!巴緣層/電洞輸送層/發光層/電子輸送層/绝緣 (8)陽極/電、; 絕緣層/陰極。 同注入層/電洞輪送層/發光層/電子輸送層 / 川…⑼陽極/絕緣層/電洞注入層/電洞輸送層/發光層 輸送層/電子注入層/陰極。 、、,(10)陽極/!巴緣層/電洞注入層/電洞輸送層/發光層/電子 輸运層/電子注入層/絕緣層/陰極。 ⑻ 月,J述構造中,通常宜使用⑴、⑺、⑶、⑷、⑺、 15及(10)之構造。 -於第1圖中,雖未記載光之取出方向,但本發明之發光 兀件可為頂部發光型,亦可為底部發光型,無論為任一型, 取出光之側之電極均具透光性。 第2圖係顯示本發明發光元件之第2實施形態之概略截 20 面圖。 發光元件2中,於陽極10及陰極60之間積層有由依序自 陽極側積層電洞輸送層20、發光層3〇及電子輸送層40所構 成之發光部90、92,且陽極10及陰極60透過脈波寬度調變 控制裝置7〇電連接。又,於該等2層之發光部90、92間挾持 13 200850054 中間連接層80。 於前述發光元件2中,發光部90自陽極10注入電洞,自 中間連接層80注入電子發光。又,發光部92自電子、、主入居 50注入電子,自中間連接層80注入電洞發光。 5 僅以發光層為主之發光範圍(電子輸送層等之發光為 非常小的範圍)的電壓所得之亮度有限,但藉由複數積層由 電洞輸送層20、發光層30及電子輸送層4〇所構成之發光 部’即使與其對應之外施電壓升高,但發光亮度大致與發 光層之積層數成比例地增加,使發光元件2可得到期望之意 10度。藉此,將施加於各發光層之電壓壓抑於電子輸送層等 不發光,且僅奈米結晶發光微粒子為主發光之電壓領域 中,則發光元件可得實用之亮度。 另外,於本實施形態中,2層之發光部9〇、92可相異亦 可相同。又,於該實施態樣中’發光元件雖積層有2層,但 15只要於發光部間積層有中間連接層的話,亦可積層2層以 上。於積層有2層以上之中間連接層時,該等中間連接層可 相異亦可相同。 ^另外,前述發光部90、92雖由電洞輸送層、發光層及 私子輸送層所構成,但本發明發光部之構造並未限定於該 20者。^光部亦可為例如,前述之發光元件構造⑴〜⑽中, 去除陽極及陰極之構造、或具有其部分構造者。 以下,說明本發明發光元件之各構成構件及其使用之 [發光層] 14 200850054 本發明發光元件之發光層含有奈米結晶發光微粒子而 形成。該發光層可為僅由奈米結晶發光微粒子所構成之發 ύ亦了為由分散有奈米結晶發光微粒子之介質所構成 之發光層。若使用由分散有奈米結晶發光微粒子之介質所 5 2成之發光層作為發光層時,介質以具有電子傳輸特性或 同傳輸特性之材料為佳,亦可適當地使用用於下述之電 洞輪送層及電子輸送層之材料。 使用於發光層之奈米結晶發光微粒子係由將無機結晶 0 粒子化至奈米級之無機奈米結晶所構成。使用可吸收 y見及/或近紫外線並發出可見螢光者作為無機奈米結 曰日因其透明性高、散射損失小,宜使用粒徑經超微粒子 化至以2〇nm以下,較佳者是l〇nm以下之無機奈米結晶。 無機奈米結晶之表面亦宜經相容處理。相容處理可舉 例如,以長鏈烧基、碟酸、樹脂等將表面改質或塗膜等處 本發明中使用之無機奈米結晶,可具體地舉例如下者。 (l-a)於金屬氧化物中摻雜有過渡金屬離子之奈米結晶 螢光體 〇 於金屬氧化物中摻雜有過渡金屬離子之奈米結晶螢光 0,可舉例如,於 Y2〇3、Gd2〇3、Zn〇、Y3Al5〇i2、Zn2Si〇4 等金屬氧化物中,摻雜有恥2+、Eu3+、Ce3+、Tb3+等可吸收 可見光之過渡金屬離子者。 (Ι-b)於金屬硫族化合物中摻雜有過渡金屬離子之奈米 、结晶螢光體 15 200850054 於金屬硫族化合物中摻雜有過渡金屬離子之奈米結晶 螢光體可舉例如,於ZnS、CdS、CdSe等金屬硫族化合物中, 摻雜有Eu2+、Eu3+、Ce3+、Tb3+等可吸收可見光之過渡金屬 離子者。為防止S與Se等因下述基質樹脂之反應成分而被抽 5離,亦可以氧化矽等金屬氧化物或有機物等進行表面改質。 (1-c)利用半導體之能隙,吸收可見光並發光之奈米結 晶螢光體(半導體奈米結晶) 半導體奈米結晶之材料可舉例如:由長週期型週期表 之IV族元素、Ila族元素_vIb族元素之化合物、nia族元素_Vb 10 族元素之化合物、Illb族元素-Vb族元素之化合物、黃銅礦 型化合物等所構成之結晶。 具體而吕’可舉例如:Si、Ge、MgS、MgSe、ZnS、The light-emitting element of the present invention is driven by pulse width modulation. The pulse width modulation is controlled by the external application voltage (or current) when the light is emitted (10), and by changing the time to become 〇N (pulse width), or changing 〇N 11 200850054 and OFF Time ratio (working ratio), which is used as a driving method for modulating the brightness of the average time. By driving the light-emitting element with the pulse width, the applied voltage can be made constant, and the chromaticity can be suppressed from changing due to the brightness. The pulse width is not limited to, for example, 1/zs to 100ms, and 5//s to 20ms is preferred. If the pulse width is smaller than the electric time constant of the light-emitting element, a sufficient voltage cannot be applied to the light-emitting element, and sufficient light emission cannot be obtained. If the pulse width exceeds 1 〇〇ms, there will be flickering on the displayed image. It can be taken as 1% as a work ratio. Further, in the first embodiment, the light-emitting layer 3 is composed of 10 particles of one layer of nanocrystalline light-emitting fine particles, but the present invention is not limited thereto. The light-emitting layer may be, for example, two or more layers, or may have voids, within a range not impairing the effects of the present invention. Further, the light-emitting layer may be a light-emitting layer composed only of nanocrystal light-emitting fine particles, or may be a light-emitting layer composed of a medium of a knife-shaped nanocrystal light-emitting fine particle. When the light-emitting 15 f composed of the medium of the knife-shaped nanocrystalline crystal light-emitting particles is used as the light-emitting layer, the medium can be expected to maintain the charge transport property, and the medium 3 can also serve as a 1-hole transport layer, an electron transport layer, and an electron. Injection layer or intermediate connection layer. 20 points constructor. The structure of the present invention is not limited to the above-described embodiment, and is, for example, a structure of the following (1) to (10) or a portion having the following structure (1) anode/hole transmission (2) anode/electricity Hole injection cathode. Delivery layer / luminescent layer / electron transport layer / cathode. Incoming/hole transport layer/light-emitting layer/electron transport layer/feed layer/electron injection layer/(3) anode/cavity transport layer/light-emitting layer/electron input 12 200850054 cathode (Fig. 1). (4) Anode/hole injection layer/electron injection layer/cathode. Hole transport layer / luminescent layer / electron transport layer / 5 (5) anode / insulation layer / hole transport layer / luminescent layer / electron transport layer / negative nucleus. () anode / hole transport layer / luminescent layer / electron transport layer human insulation / shade. (7) Anode /! Bar layer / hole transport layer / luminescent layer / electron transport layer / insulation (8) anode / electricity,; insulation layer / cathode. Same as injection layer/hole transfer layer/light-emitting layer/electron transport layer/chuan... (9) anode/insulation layer/hole injection layer/hole transport layer/light-emitting layer transport layer/electron injection layer/cathode. , (10) Anode /! Bar layer / hole injection layer / hole transport layer / light-emitting layer / electron transport layer / electron injection layer / insulation layer / cathode. (8) In the month of construction, it is generally preferable to use the structures of (1), (7), (3), (4), (7), 15 and (10). - In the first drawing, although the light extraction direction is not described, the light-emitting element of the present invention may be of the top emission type or the bottom emission type, and the electrode on the side from which the light is taken out is transparent. Light. Fig. 2 is a schematic cross-sectional view showing a second embodiment of the light-emitting device of the present invention. In the light-emitting element 2, between the anode 10 and the cathode 60, light-emitting portions 90 and 92 which are formed by sequentially stacking the hole transport layer 20, the light-emitting layer 3A, and the electron transport layer 40 from the anode side, and the anode 10 and the cathode are laminated. 60 is electrically connected through the pulse width modulation control device 7. Further, 13 200850054 intermediate connection layer 80 is held between the two light-emitting portions 90 and 92. In the light-emitting element 2, the light-emitting portion 90 is injected into the hole from the anode 10, and electron-emitting light is injected from the intermediate connection layer 80. Further, the light-emitting portion 92 injects electrons from the electrons and the main inlet 50, and injects holes from the intermediate connection layer 80 to emit light. 5 The luminance obtained by the voltage of the light-emitting range mainly of the light-emitting layer (the light emission of the electron transport layer or the like is extremely small) is limited, but the hole transport layer 20, the light-emitting layer 30, and the electron transport layer 4 are laminated by a plurality of layers. The light-emitting portion constituting the erbium increases the voltage even if it is applied, but the illuminance is increased substantially in proportion to the number of layers of the luminescent layer, so that the light-emitting element 2 can obtain a desired degree of 10 degrees. As a result, the voltage applied to each of the light-emitting layers is suppressed in a voltage region in which the electron-transporting layer or the like does not emit light, and only the nanocrystal-crystal-emitting fine particles are mainly emitted, and the light-emitting element can obtain practical brightness. Further, in the present embodiment, the light-emitting portions 9A and 92 of the two layers may be different or the same. Further, in this embodiment, the light-emitting element has two layers, but if the intermediate connection layer is laminated between the light-emitting portions, two or more layers may be laminated. When there are two or more intermediate connection layers in the laminate, the intermediate connection layers may be different or the same. Further, although the light-emitting portions 90 and 92 are composed of a hole transport layer, a light-emitting layer, and a private transport layer, the structure of the light-emitting portion of the present invention is not limited to the above. The light portion may be, for example, a structure in which the anode and the cathode are removed or a partial structure thereof is removed in the light-emitting element structures (1) to (10) described above. Hereinafter, each constituent member of the light-emitting element of the present invention and the [light-emitting layer] 14 used therein will be described. The light-emitting layer of the light-emitting element of the present invention is formed by containing nanocrystal light-emitting fine particles. The light-emitting layer may be a light-emitting layer composed only of nanocrystalline light-emitting fine particles and a medium composed of a medium in which nanocrystalline light-emitting fine particles are dispersed. When a light-emitting layer composed of a medium in which nanocrystalline crystal light-emitting fine particles are dispersed is used as the light-emitting layer, the medium is preferably a material having electron transport characteristics or the same transfer characteristics, and may be suitably used for the following electricity. The material of the hole conveyor layer and the electron transport layer. The nanocrystalline crystal luminescent fine particles used in the light-emitting layer are composed of inorganic nanocrystals in which inorganic crystal 0 is crystallized to a nanometer level. The use of absorbable y and/or near-ultraviolet light and emit visible fluorescent light as the inorganic nano-crust day is high in transparency and small in scattering loss, and it is preferred to use the ultrafine particle size to be below 2 〇 nm, preferably. It is an inorganic nanocrystal of l〇nm or less. The surface of the inorganic nanocrystals should also be compatible. For example, the inorganic nanocrystal used in the present invention may be modified by a long-chain alkyl group, a dish acid, a resin or the like. The inorganic nanocrystal used in the present invention may be specifically exemplified as follows. (la) a nanocrystalline fluorescent phosphor doped with a transition metal ion in a metal oxide, and a nanocrystalline fluorescent oxide 0 doped with a transition metal ion in a metal oxide, for example, in Y2〇3, Metal oxides such as Gd2〇3, Zn〇, Y3Al5〇i2, and Zn2Si〇4 are doped with transition metal ions such as shame 2+, Eu3+, Ce3+, and Tb3+ which absorb visible light. (Ι-b) a nano-crystal of a transition metal ion doped with a metal chalcogenide, and a crystalline phosphor 15 200850054 A nanocrystalline phosphor which is doped with a transition metal ion in a metal chalcogenide may be, for example, The metal chalcogenide such as ZnS, CdS or CdSe is doped with transition metal ions such as Eu2+, Eu3+, Ce3+, and Tb3+ which can absorb visible light. In order to prevent S and Se from being separated by the reaction component of the following matrix resin, surface modification may be carried out by using a metal oxide such as cerium oxide or an organic substance. (1-c) Nanocrystalline crystal phosphor (semiconductor nanocrystal) which absorbs visible light and emits light by using the energy gap of the semiconductor. The material of the semiconductor nanocrystal is, for example, a group IV element of the long-period periodic table, Ila. A compound composed of a compound of the group element _vIb element, a compound of the nia group element _Vb group 10 element, a compound of the group Ilb element element - the group Vb element, a chalcopyrite type compound or the like. Specifically, Lu may include, for example, Si, Ge, MgS, MgSe, ZnS,

ZnSe、ZnTe、A1P、AlAs、AlSb、GaP、GaAs、GaSb、CdS、 CdSe、CdTe、InP、InAs、InSb、AgAlAs2、AgAlSe2、AgAlTe2、 15 AgGaS2、AgGaSe2、AgGaTe2、AgInS2、AgInSe2、AglnTe〗、 ZnSiP2、ZnSiAs〗、ZnGeP2、ZnGeAs〗、ZnSnP2、ZnSnAs〗、 ZnSnSb2、CdSiP2、CdSiAs2、CdGeP2、CdGeAs2、CdSnP2、 CdSnAs2等結晶、及由該等之元素或化合物所構成之混晶結 晶。 20 宜為 Si、A1P、AlAs、AlSb、GaP、GaAs、InP、ZnSe、ZnSe, ZnTe, A1P, AlAs, AlSb, GaP, GaAs, GaSb, CdS, CdSe, CdTe, InP, InAs, InSb, AgAlAs2, AgAlSe2, AgAlTe2, 15AgGaS2, AgGaSe2, AgGaTe2, AgInS2, AgInSe2, AglnTe, ZnSiP2 ZnSiAs, ZnGeP2, ZnGeAs, ZnSnP2, ZnSnAs, ZnSnSb2, CdSiP2, CdSiAs2, CdGeP2, CdGeAs2, CdSnP2, CdSnAs2, etc., and mixed crystals composed of the elements or compounds. 20 should be Si, A1P, AlAs, AlSb, GaP, GaAs, InP, ZnSe,

ZnTe、CdS、CdSe、CdTe、CuGaSe2、CuGaTe〗、CuInS2、 CuInSe2、CuInTe2,且作為直接過渡半導體之ZnSe、ZnTe、 GaAs、CdS、CdSe、CdTe、InP、CuInS2、CuInSe2因發光 效率高而更佳。 16 200850054 即使於别述無機奈米結晶中,因可藉由粒徑輕易地控 制發光波長,並於藍色波長範圍及近紫外波長範圍中且有 很大之吸收力,且發光範圍中之吸收力與發光之重疊度 大,故以使用半導體奈米結晶為佳。 5 10 15 以下,說明半導體奈米結晶之機能。 如已知之特表層-5聰6號公報等文獻,該等半導體 材料以塊體材料(係未微粒子化之材料之意)於室溫中具有 0.5〜4.〇eV左右之能隙。以該等材料形成微粒子,藉由將立 :徑奈米尺寸化,將半導财之電子封_奈Μ晶/。、 結果,奈米結晶内之能隙會變大。 一理論上來說’已知能隙變大之寬度與半導體微粒子粒 徑之平方纽比。因此,藉由控制半導體微粒子之粒徑, 即可控制能隙。該等半導體會吸收較相當於能隙之波長小 的波長之光,並發出相當於能隙之波長之螢光。 塊體半導體之能隙以2(rcirl 〇eV〜3柳為佳。若低於 l.OeV ’因在奈米結晶化時,瑩光波長會相對於粒徑的變化 敏感地過度偏移,不易製造管理而不佳。又,若超過3 〇 V 因只會發出較近紫外領域短波長之螢光’不易作::: 光裝置應用而不佳。 半導體奈米結晶可藉由眾所周知之方法製造, 美國專利6,501,091號公報所記載之方法。該公報中載 之製造例係將於三辛基膦(TOP)中混合有硒化三辛美膦與 二甲基鎘之前驅物溶液,投入加熱至350°c之r i β • 〜二辛基氧膦 (ΤΟΡΟ)之方法。 17 200850054 前述半導體奈米結晶宜為由核心粒子與至少】層以上 之殼層所構成之内核_外殼型 V體不米結晶,且前述核心 =用於Γ 結晶所構成,並且前述殼層係由能隙 =外::之半導體材料大之半導體材料㈣ =述内^ k型半導體奈米結晶具有例如,以如Zns(能 '二^之能隙大之半導體材料之殼層包覆由Cdse(能 隙:1.74ev)所構成之核心微粒子之表面的構造。藉此,易 顯現出產生於核心微粒子内之激子之封閉效果。於前述半 導體奈米結晶之具體例中,因下述透明介質中之活性成分 (未反應之早體或水分等)會使s或岭獅,而容易產生奈 米結晶之結晶構造破壞、螢紐消料現象。因此,亦可 以氧化料金屬氧化物或有機物等進行表面改質以防止 前述現象。 内核-外殼型半導體之奈米結晶可藉由眾所周知之方 15法製造,例如,美國專利6,5〇1,〇91號公報所記載之方法。 例如,若為CdSe内核/ZnS外殼構造時,可藉由將於τ〇ρ中 混合有二乙鋅與硫化三甲矽(trimethylsilyl犯出心)之前驅 物〉谷液投入已加熱至140 C之分散有CdSe核心粒子之TOPO 溶液製造。 20 又,亦可使用形成激子之載子於内核與外殼間分離之 所謂的 Typell型奈米結晶(J. Am. Chem. Soc.,Vol. 125, Νο·38, 2003, pll466-11467) 〇 此外,亦可使用於内核上積層2層以上之層構造以作為 多殼構造,且穩定性、發光效率及發光波長之調整經改良 18 200850054 之奈米結晶(Angewandte Chemie, Vol. 115,2003, P5189-5193)等。 又,前述之發光微粒子可單獨使用一種,或,亦可組 合二種以上使用。 5 本發明發光元件之發光層厚度以1〜100nm為佳。若發 光層厚度超過100nm時,元件之電阻會增加,藉此而有元件 之驅動電壓上升、消費電力增加之虞。另一方面,若厚度 小於lnm時,因存在於發光層之發光微粒子之密度過低,而 有未具有發光層之機能之虞。 10 本叙明發光元件之發光層,可藉由例如,將使發光微 粒子分散於溶劑中調製而成之混合液經鑄造(casting)或旋 轉塗布後,使其乾燥而形成。除了前述方法之外,本發明 發光元件之發光層可藉由例如,將電洞輸送材料或電子輸 送材料與發光微粒子溶於溶劑中調製而成之混合液經鑄造 15或旋轉塗布後,使其乾燥而形成。於前述發光層之製造方 法中,更亦可使用相分離,形成僅由發光微粒子所構成之 層(1層顆粒或2層以上顆粒之積層體)。 [電洞注入·輸送層] 電洞注入·輸送層係用以幫助電洞朝發光層注入並輸 送至發光領域之層,且電洞移動度大,游離能通常小如 5.5eV以下。如此之電洞注人·輸送層宜為可以較低之電場強 度將電洞輸送至發光介質層的材料,此外,例如,於施加 1〇4〜106V/cm之電場時,電洞之移動度以至少為i〇.W/v 秒為佳。 19 200850054 形成電洞注入層·輸送層之材料,只要為具有前述較佳 性質者即可,並未特別限制,可自以往於光傳導材料中慣 用作為電洞之1:荷輸送材料者、或自有機EL元件之電洞注 入·輸送層所使用之眾所周知者中選擇任意者使用。 5 具體例可舉例如:三唑衍生物(參照美國專利3,112,197 號說明書等)、噚二唑衍生物(參照美國專利3,189,447號說明 書等)、咪唑衍生物(參照特公昭37-16096號公報等)、聚芳 基烷(polyarylalkane)衍生物(參照美國專利3,615,402號說明 書、美國專利第3,820,989號說明書、美國專利第3,542,544 10 號說明書、特公昭45-555號公報、特公昭51-10983號公報、 特開昭51-93224號公報、特開昭55-17105號公報、特開昭 56-4148號公報、特開昭55-108667號公報、特開昭55-156953 號公報、特開昭56-36656號公報等)、u比峻琳衍生物及π比唑 °弄衍生物(美國專利第3,180,729號說明書、美國專利第 15 4,278,746號說明書、特開昭55-88064號公報、特開昭 55-88065號公報、特開昭49-105537號公報、特開昭55-51086 號公報、特開昭56-80051號公報、特開昭56-88141號公報、 特開昭57-45545號公報、特開昭54-112637號公報、特開昭 55-74546號公報等)、苯二胺衍生物(美國專利第3,615,404 20 號說明書、特公昭51-10105號公報、特公昭46-3712號公報、 特公昭47-25336號公報、特公昭54-119925號公報等)、芳胺 衍生物(美國專利第3,567,450號說明書、美國專利第 3,240,597號說明書、美國專利第3,658,520號說明書、美國 專利第4,232,103號說明書、美國專利第4,H5,961號說明 20 200850054 書、美國專利第4,〇12,376號說明書、特公昭49-35702號公 報、特公昭39-27577號公報、特開昭55-144250號公報、特 開昭56-119132號公報、特開昭56-22437號公報、西德專利 第1,110,518號說明書等)、胺基取代查耳酮衍生物(參照美國 5 專利第3,526,501號說明書等)、噚唑衍生物(揭示於美國專利 第3,257,203號說明書等者)、苯乙烯基蔥(styrylanthracene) 衍生物(參照特開昭56-46234號公報等)、苐酮衍生物(參照 特開昭54-110837號公報等)、腙衍生物(參照美國專利第 3,717,462號說明書、特開昭54-59143號公報、特開昭 10 55·52063號公報、特開昭55-52064號公報、特開昭55-46760 號公報、特開昭57-11350號公報、特開昭57-148749號公報、 特開平2-311591號公報等)、二苯乙烯衍生物(參照特開昭 61-210363號公報、特開昭61_228451號公報、特開昭 6M4642號公報、特開昭61-72255號公報、特開昭62-47646 15號公報、特開昭Q-36674號公報、特開昭62_1〇652號公報、 特開昭62-30255號公報、特開昭60-93455號公報、特開昭 60-94462號公報、特開昭6〇_174749號公報、特開昭 〇52號公報荨)、石夕氮烧衍生物(美國專利第 ,明書)、聚石夕烧系(特開平2_2〇4996號公報)、苯胺系共 Γ物(特開平2_282263號公報)、導電性高分子募聚物(特別 疋嘍吩寡聚物)等。 ^洞注人.輸送層之材料雖可㈣前述者,但宜使用紫 二:物(揭示於特開昭63_295695號公報等者〕、三級芳香 σ物及笨乙烯基胺化合物(參照美國專利第 21 200850054 4,127,412號說明書、特開昭53_27〇33號公報、特開昭 54-58445號公報、特開昭55_79_號公報、特開昭55_144謂 號公報、特開昭56-119132號公報、特開昭61_295558號公 報、特開昭6M8353號公報、特開昭仏挪州號公報等), 5 且以使用三級芳香族胺化合物特佳。 又,電洞注入·輸送層之材料可舉例如,於分子内具有 美國專利弟5,061,569號中§己載之2個縮合芳香族環,例如, 4,4’-雙(N-(l-萘基)_N-苯胺)聯苯(以下略稱npd)、或特開平 4·308688號公報中記載之連結於3個星放射型(starburst)之 10三苯胺單元之4,4,,4,,-三(N-(3-甲苯)·Ν_苯胺)三苯胺(以下 略稱MTDATA)等。 電洞注入·輸送層之材料宜為以下通式(1)所表示之芳 香族胺衍生物。 [化1] AT〆 Μ m / 15ZnTe, CdS, CdSe, CdTe, CuGaSe2, CuGaTe, CuInS2, CuInSe2, CuInTe2, and ZnSe, ZnTe, GaAs, CdS, CdSe, CdTe, InP, CuInS2, CuInSe2 which are direct transition semiconductors are more preferable because of high luminous efficiency. 16 200850054 Even in the case of inorganic nanocrystals, the wavelength of light can be easily controlled by the particle size, and in the blue wavelength range and the near ultraviolet wavelength range, and there is a large absorption force, and absorption in the light-emitting range The degree of overlap between force and luminescence is large, so it is preferable to use semiconductor nanocrystals. 5 10 15 Hereinafter, the function of semiconductor nanocrystals will be described. As is known in the literature, such as the special surface layer - 5, and the like, the semiconductor material has a band gap of about 0.5 to 4. 〇eV at room temperature in the form of a bulk material (in the case of a material which is not microparticulated). The microparticles are formed from the materials, and the electrons of the semiconducting electrons are sealed by the size of the nanometers. As a result, the energy gap in the nanocrystals becomes large. Theoretically, it is known that the width of the energy gap becomes larger than the square of the semiconductor particle size. Therefore, the energy gap can be controlled by controlling the particle size of the semiconductor fine particles. The semiconductors absorb light of a wavelength smaller than the wavelength of the energy gap and emit fluorescence corresponding to the wavelength of the energy gap. The energy gap of the bulk semiconductor is 2 (rcirl 〇eV~3 Liu is better. If it is lower than l.OeV', because the wavelength of the fluorescent light is sensitively excessively shifted with respect to the change of the particle size during the crystallization of the nano, it is difficult Manufacturing management is not good. Also, if it exceeds 3 〇V, it will only emit fluorescent light with a short wavelength near the ultraviolet field. 'It is not easy to use::: The application of optical devices is not good. Semiconductor nanocrystals can be manufactured by well-known methods. The method described in U.S. Patent No. 6,501,091. The production example contained in the publication is a mixture of trioctylphosphine selenide and dimethylcadmium precursor solution mixed with trioctylphosphine (TOP). The method of heating to 350 ° C ri β • ~ dioctyl phosphine oxide (ΤΟΡΟ) 17 200850054 The above semiconductor nanocrystal is preferably a core composed of core particles and at least a shell layer of the outer layer - shell type V body The crystal is not crystallized, and the foregoing core is composed of ruthenium crystal, and the shell layer is made of a semiconductor material having a large energy semiconductor material of the energy gap = external: (4) = the inner k-type semiconductor nanocrystal has, for example, Zns (a shell of semiconductor material capable of ''energy gap') The structure of the surface of the core fine particles composed of Cdse (energy gap: 1.74 ev) is coated, whereby the sealing effect of the excitons generated in the core fine particles is easily exhibited. In the specific example of the semiconductor nanocrystal, The active component (unreacted early body, water, etc.) in the following transparent medium may cause s or lion lions, and it is easy to cause crystal structure destruction of nanocrystals and flashing of the material. Therefore, it is also possible to oxidize the metal. The surface modification of the oxide or the organic substance is carried out to prevent the above phenomenon. The nanocrystal of the core-shell type semiconductor can be produced by a well-known method, for example, as described in U.S. Patent No. 6,5,1, 〇91 For example, if it is a CdSe core/ZnS shell structure, it can be heated to 140 C by the mixture of di-zinc and trimethylsilyl in the τ〇ρ. It is also produced by a TOPO solution in which CdSe core particles are dispersed. 20 Further, a so-called Typell type nanocrystal in which an exciton-forming carrier is separated between a core and a shell can be used (J. Am. Chem. Soc., Vol. 125). , Νο·38 , 2003, pll466-11467) In addition, it is also possible to use a layer structure of two or more layers on the core as a multi-shell structure, and the stability, luminous efficiency, and adjustment of the emission wavelength are improved. 18 200850054 Nanocrystals (Angewandte Further, the above-mentioned luminescent fine particles may be used singly or in combination of two or more. 5 The thickness of the luminescent layer of the luminescent element of the present invention is preferably 1 to 100 nm. . When the thickness of the light-emitting layer exceeds 100 nm, the resistance of the element increases, whereby the driving voltage of the element rises and the power consumption increases. On the other hand, when the thickness is less than 1 nm, the density of the luminescent fine particles present in the luminescent layer is too low, and there is no possibility of having the function of the luminescent layer. In the light-emitting layer of the present invention, the light-emitting layer of the light-emitting element can be formed by, for example, casting or rotating a mixed solution prepared by dispersing the light-emitting fine particles in a solvent, followed by drying. In addition to the foregoing methods, the light-emitting layer of the light-emitting element of the present invention may be subjected to casting 15 or spin coating by, for example, mixing a mixture of a hole transport material or an electron transport material and a light-emitting fine particle in a solvent. Formed by drying. In the method for producing the light-emitting layer, phase separation may be further used to form a layer composed of only luminescent fine particles (one layer of particles or a layered body of two or more layers of particles). [Curve injection/transport layer] The hole injection/transport layer is used to help the hole to be injected into the luminescent layer and transported to the layer of the illuminating field, and the hole mobility is large, and the free energy is usually as small as 5.5 eV or less. Such a hole injection and transport layer is preferably a material that can transport holes to the luminescent medium layer at a lower electric field strength, and, for example, the mobility of the hole when an electric field of 1 〇 4 to 106 V/cm is applied. It is better to be at least i〇.W/v seconds. 19 200850054 The material for forming the hole injection layer and the transport layer is not particularly limited as long as it has the above-described preferable properties, and may be conventionally used as a hole in a light-transmitting material: a charge transport material, or Any one of the well-known ones used for the hole injection/transport layer of the organic EL element is used. Specific examples thereof include a triazole derivative (refer to the specification of U.S. Patent No. 3,112,197, etc.), an oxadiazole derivative (refer to the specification of U.S. Patent No. 3,189,447, etc.), and an imidazole derivative (refer to Japanese Patent Publication No. 37). -16096, and the like, and a polyarylalkane derivative (refer to the specification of U.S. Patent No. 3,615,402, U.S. Patent No. 3,820,989, U.S. Patent No. 3,542,544, the disclosure of Japanese Patent No. SHO 45-555, and Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. 55-105. JP-A-56-36656, etc., u-junjun derivatives and pi-pyrazole derivatives (U.S. Patent No. 3,180,729, U.S. Patent No. 15, 4,278,746, and JP-A-55-88064 Japanese Patent Publication No. Sho 55-88065, JP-A-49-105537, JP-A-55-51086, JP-A-56-80051, JP-A-56-88141 Bulletin 57-45545 and JP-A-54-112637 Japanese Patent No. 3,615,404, the disclosure of which is incorporated herein by reference. Japanese Patent No. 3,567,450, U.S. Patent No. 3,567,450, U.S. Patent No. 3,240,597, U.S. Patent No. 3,658,520, U.S. Patent No. 4,232,103, U.S. Patent No. 4, H5, 961, No. 20, 2008, 5,500, pp., No. 4, No. 4, No. 4, 376, No. 4, No. 49-35702, Japanese Patent Publication No. Sho 39-27577, JP-A-55-144250, JP-A-56-119132 No. K., No. 56-22437, No. 1,110,518, etc.), an amine-substituted chalcone derivative (refer to the specification of U.S. Patent No. 3,526,501, etc.), a carbazole derivative (disclosed) In the specification of the U.S. Patent No. 3,257,203, etc., a styrene-based onion derivative (refer to JP-A-56-46234, etc.), an anthrone derivative (refer to Japanese Patent Laid-Open No. Hei 54-110837)腙 腙 腙 ( ( ( ( ( 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. 61-148749 Japanese Unexamined Patent Publication No. Hei. No. Hei. No. Hei. No. 61-72255, No. 61-47646, No. 62-47646, No. 62-47646, No. JP-36-674674, No. 62_1〇652, and No. 62 Japanese Laid-Open Patent Publication No. -30255, JP-A-60-93455, JP-A-60-94462, JP-A-6-174749, JP-A-52-074 U.S. Patent No. 4, pp. 4996, and aniline-based conjugates (Japanese Unexamined Patent Publication No. Hei No. Hei. Things). ^洞注人. Although the material of the transport layer can be (4) the above, it is preferable to use the violet two: the material (disclosed in Japanese Patent Publication No. 63_295695, etc.), the third-grade aromatic sigma and the stupid vinylamine compound (refer to the US patent) In the case of the Japanese Unexamined-Japanese-Patent No. 55-119132, the Japanese Unexamined-Japanese-Patent No. 54-58445 In addition, it is particularly preferable to use a tertiary aromatic amine compound in addition to the use of a tertiary aromatic amine compound, etc., and the material of the hole injection/transport layer. For example, there are two condensed aromatic rings which are contained in the U.S. Patent No. 5,061,569, for example, 4,4'-bis(N-(l-naphthyl)-N-aniline)biphenyl. (hereinafter abbreviated as npd), or 4, 4, 4, and 3 (N-(3-), which are linked to three starbursts of 10 triphenylamine units described in Japanese Laid-Open Patent Publication No. Hei. Toluene, hydrazine, aniline, triphenylamine (hereinafter abbreviated as MTDATA), etc. The material of the hole injection/transport layer is preferably aroma represented by the following formula (1) Amine derivative. [Chemical 1] AT〆 Μ m / 15

Ar10 (1} [式中,係由取代或無取代之碳數5〜60之亞芳基或雜 環基所構成之2價的基,Ar7〜Ar1G分別係取代或無取代之核 原子數5〜50之取代基或以下通式所表示之取代基。Ar7與 Ar8、Ar9與Ar1G亦可直接結合形成縮合雜環。 20 [化 2] 22 200850054 >2〆Ar10 (1) [wherein, a divalent group consisting of a substituted or unsubstituted arylene group or a heterocyclic group having 5 to 60 carbon atoms, and Ar7 to Ar1G are substituted or unsubstituted, respectively, having a nuclear atom number of 5 a substituent of ~50 or a substituent represented by the following formula: Ar7 and Ar8, Ar9 and Ar1G may be directly bonded to form a condensed heterocyclic ring. 20 [Chemical 2] 22 200850054 > 2〆

AruAru

、M, M

Af12 (式中,L2係由取代或無取代之碳數5〜60之亞芳基或雜 環基所構成之2價的基,Aru〜Ar12分別係取代或無取代之核 原子數5〜50之取代基。)] 5 Li及L2可舉例如’二亞苯、聯伸三苯、 菲或伸苐(fluorenylene)等,以二亞苯、聯伸三苯為佳,較 佳者是二亞苯。Af12 (wherein L2 is a divalent group consisting of a substituted or unsubstituted arylene group or a heterocyclic group having 5 to 60 carbon atoms; and Aru~Ar12 are substituted or unsubstituted, respectively, having a nuclear atom number of 5 to 50. Substituents.)] 5 Li and L2 may, for example, be 'diphenylene, co-triphenyl, phenanthrene or fluorenylene, and the like, and diphenylene and triphenylene are preferred, and diphenylene is preferred.

Ar7〜Arp可舉例如,聯苯基、聯三苯基、菲基、第基、 1-萘基、2-萘基或苯基等,以聯苯基、聯三苯基、ι_蔡基、 10 2-萘基或苯基等為佳。 前述通式(1)所表示之化合物中’Ar?〜Ari0宜為相同之 取代基。此時,Ac〜AnQ以聯苯基、聯三苯基為佳,較佳者 是聯苯基。 i 又,雨迷通式(1)所表示之化合物中,〜之取代 基中,Ar8〜Ari〇宜為相同之取代基。此時,私〜〜以 基、聯三苯基為佳,較佳者是聯苯基,且_宜為聯笨義 聯三苯基、菲基、第基、^萘基、2_萘基或苯基等,較^者 是聯苯基、聯三苯基、1-萘基或苯基等,更佳者係Ar 為聯苯,且為聯三苯基、1-萘基。又,亦宜八『 苯環,且與Ah、Ah與Ar1G直接結合形成咔唑基。Γΐ0為 另外,前述通式⑴所表示之化合物,〜& 、 基中宜有3個以上為相異之取代基。Ar7,2宜為代 23 20 200850054 聯三苯基、菲基、苐基、1-萘基、2-萘基或苯基等,較佳者 是聯苯基、聯三苯基、1-萘基或苯基等,更佳者係Ar9〜Ar1() 為聯苯^並ΑΓ7為聯二苯基、1-秦基,且Al*8為苯基。 以下顯示可於本發明中使用之芳香族胺衍生物的具體 5 例。 [化3] 24 200850054Examples of Ar7 to Arp include a biphenyl group, a triphenylene group, a phenanthryl group, a hexyl group, a 1-naphthyl group, a 2-naphthyl group or a phenyl group, and the like, and a biphenyl group, a triphenyl group, and an iota group. , 10 2-naphthyl or phenyl is preferred. In the compound represented by the above formula (1), 'Ar? to Ari0' are preferably the same substituent. In this case, Ac~AnQ is preferably a biphenyl group or a biphenyl group, and more preferably a biphenyl group. Further, in the compound represented by the formula (1), in the substituent of the substituent, Ar8 to Ari are preferably the same substituent. In this case, the private ~ ~ base, triphenyl is preferred, preferably biphenyl, and _ is preferably phenyl, triphenyl, phenanthryl, phenyl, naphthyl, 2-naphthyl Or a phenyl group or the like, which is a biphenyl group, a triphenylene group, a 1-naphthyl group or a phenyl group. More preferably, Ar is a biphenyl group, and is a triphenyl group or a 1-naphthyl group. Further, it is also preferred to have a "benzene ring" and directly combine with Ah, Ah and Ar1G to form a carbazolyl group. Further, in the compound represented by the above formula (1), it is preferred that the compound represented by the above formula (1) has three or more substituents which are different. Ar7, 2 is preferably 23 20 200850054 tert-triphenyl, phenanthryl, anthracenyl, 1-naphthyl, 2-naphthyl or phenyl, etc., preferably biphenyl, terphenyl, 1-naphthalene Further, the phenyl group or the like is more preferably Ar9~Ar1() is a biphenyl group and the hydrazine 7 is a biphenyl group, a 1-methyl group, and Al*8 is a phenyl group. Specific examples of the aromatic amine derivatives which can be used in the present invention are shown below. [Chemical 3] 24 200850054

25 20085005425 200850054

26 20085005426 200850054

Α-4 Ο 又,芳香族胺衍生物以聚乙烯咔唑(PVK)為佳。 除此之外亦可使用專利3571977號所揭示之以下式所 表示之含氮雜環衍生物。 5 [化 4]Α-4 Ο Further, the aromatic amine derivative is preferably polyvinyl carbazole (PVK). In addition to the above, a nitrogen-containing heterocyclic derivative represented by the following formula disclosed in Patent No. 357, 1977 can also be used. 5 [Chemical 4]

(式中,R121〜R126係分別顯示任一取代或無取代之烷 27 200850054 基、取代或無取代之芳基、取代或無取代之芳烷基、取代 或無取代之雜環基,但是,〜R126可相同亦可相異。又, R12>RU2、Rl23與r124、r12>r126、r12%r126、r122與Rl23、 R124與R125亦可形成縮合環。) 此外’可使用美國公開2004_0113547中所記載之以下 式之化合物。 [化5] ^132(wherein R121 to R126 each independently represent a substituted or unsubstituted alkane 27 200850054, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted heterocyclic group, however, 〜R126 may be the same or different. Further, R12>RU2, Rl23 and r124, r12>r126, r12%r126, r122 and Rl23, R124 and R125 may also form a condensed ring.) Further, it may be used in US Publication 2004_0113547. A compound of the following formula is described. [化5] ^132

(式中’ R131〜R136係取代基,宜為氰基、硝基、磺醯基 10 (sulfonyl)、羰基、三氟甲基、函素等拉電子基。) 該等材料中具代表性之受體性材料亦可作為電洞注 入·輸送層之材料,且該等材料之具體例係如前述。 又,除了作為發光層材料所示之前述芳香族二次曱基 (aromatic dimethylidyne)化合物之外,亦可使用_si、p型 15 Sic等無機化合物作為電洞注入層之材料。 可將前述之化合物藉由例如,真空蒸錢法、旋轉塗布 法、鑄造法、LB法等眾所周知之方法,以薄膜化形成電洞 注入·輸送層,且電洞注人.輸送層切厚並未特別限制q 常係5nm〜5"m。該電洞注入·輸送層只要於電洞輪送= 2〇中含有前述化合物的話,可構成為由前述材料之—種^ 28 200850054 種以上所構成之-層,亦可為積層有由與前述電洞注入輸 送層不同之化合物所構成之電洞注入·輸送層者。 [電子注入·輸送層] 電子注入層·輸送層係用以幫助電子朝發光層注入並 5輸送至發光領域之層,且電子移動度大,又,附# + 丨何者改善層 ^ 係於該電子注入層中由與陰極之附著特別佳之材料所構成 之層。 電子輸送層雖可適當地選擇數nm〜數# m之膜厚,但於 膜厚特別厚時,為避免電壓上升,施加104〜106V/cm之電場 10 時’電子移動度以至少為lCT5cm2/Vs以上為佳。 使用於電子注入層之材料,宜使用8-羥喳啉 (hydroxyquinoline)或其衍生物之金屬錯合物、哼二唑衍生 物。前述8-經0奎琳或其衍生物之金屬錯合物的具體例係含 有奥辛(一般為8-4琳紛(quinolinol)或8-經種:琳)之螫合物 15 的金屬螫合物8-經。奎琳酮(oxinoid)化合物,可使用例如’三 (8-喳啉酚)鋁(Alq3)作為電子注入材料。 另一方面,可舉例如以下通式所表示之電子傳遞化合 物,作為σ号二唾衍生物。 [化6](In the formula, R131 to R136 are a substituent, preferably a cyano group, a nitro group, a sulfonyl group, a carbonyl group, a trifluoromethyl group, a functional group, or the like.) The acceptor material can also be used as a material for the hole injection/transport layer, and specific examples of the materials are as described above. Further, in addition to the aromatic dimethylidyne compound as the light-emitting layer material, an inorganic compound such as _si or p-type 15 Sic may be used as the material of the hole injection layer. The above-mentioned compound can be formed into a hole injection/transport layer by thin film formation by a well-known method such as vacuum evaporation method, spin coating method, casting method, LB method, etc., and the hole is injected into the hole. There is no particular limitation that q is usually 5 nm to 5 " m. When the hole injection/transport layer contains the compound in the hole transfer = 2 〇, the hole may be formed of a layer of the above-mentioned material, or a layer of the above-mentioned material, or may be a layered layer. The hole is injected into the hole injection and transport layer formed by different compounds in the transport layer. [Electron injection/transport layer] The electron injection layer and the transport layer are used to help electrons be injected into the light-emitting layer and 5 to be transported to the layer of the light-emitting region, and the electron mobility is large, and the #+ A layer of a material that is particularly well bonded to the cathode in the electron injecting layer. Although the electron transport layer can appropriately select a film thickness of several nm to several #m, when the film thickness is particularly thick, in order to avoid voltage rise, when an electric field 10 of 104 to 106 V/cm is applied, the electron mobility is at least lCT5 cm2/ Above Vs is better. As the material for the electron injecting layer, a metal complex of hydroxyquinoline or a derivative thereof, or an oxadiazole derivative is preferably used. A specific example of the above-mentioned metal complex of 8-quinone or a derivative thereof is a metal ruthenium containing a ruthenium 15 (generally 8-4 quinolinol or 8-species: lin) Compound 8--. As the oxinoid compound, for example, 'tris(8-porphyrinol)aluminum (Alq3) can be used as the electron injecting material. On the other hand, for example, an electron-transporting compound represented by the following formula may be mentioned as a sigma-disodium derivative. [Chemical 6]

Ar 29 20 200850054 (式中,Ar111、Ar】12、Ar113、Ar115、Ar】i6、Αγ119係分別 顯示取代或無取代之芳基,且亦可分別互相相同或相異。 又,Ar114與Ar117、Ar118係顯示取代或無取代之亞芳基,且 亦可分別相同或相異。) 5 此處,芳基可舉例如苯基、聯苯基、蔥基、花基 (perylenyl)、芘基(pyrenyl^。又,亞芳基可舉例如伸苯基、 伸萘基、二亞苯基、蔥二基(anthrylene)、伸花基 (petylenylene)、伸祐基等。又,取代基可舉例如碳數卜忉 之烷基、碳數1〜10之烷氧基或氰基等。該電子傳遞化合物 10 以具有薄膜形成性者佳。 前述電子傳遞性化合物之具體例可舉以下者為例 [化7]Ar 29 20 200850054 (wherein Ar111, Ar] 12, Ar113, Ar115, Ar] i6 and Αγ119 each exhibit a substituted or unsubstituted aryl group, and may be the same or different from each other. Further, Ar114 and Ar117, The Ar118 series shows a substituted or unsubstituted arylene group, and may be the same or different, respectively.) 5 Here, the aryl group may, for example, be a phenyl group, a biphenyl group, an onion group, a peryl group, or a fluorenyl group ( Further, the arylene group may, for example, be a phenyl group, a naphthyl group, a diphenylene group, an anthranylene group, a petrylenylene group, a succinyl group, or the like. Further, the substituent may be, for example, carbon. The alkyl group, the alkoxy group having a carbon number of 1 to 10, the cyano group, etc. The electron transporting compound 10 is preferably one having a film formability. Specific examples of the electron transporting compound include the following: 7]

30 200850054 [化8]30 200850054 [Chem. 8]

5 Μ係取絲無取代 碳數6 〜60之芳基、或者取代 或無取代之核碳數3〜60之雜芳基_隱⑽,Ar22係氮原 ο 子、取代或無取代之核後數6〜60之芳基、取代或無取代之 核石反數3〜6〇之雜芳基、取代或無取代之破數卜π之烧基、 或者取代或無取代之碳數Κ2〇之烧氧基、或該等之2價的 10基。但S,Ar21及Α产之任—方係取代或無取代之核碳數 10〜60之縮合環基、取代或無取代之核碳數3〜6〇之單雜 (monohetero)縮合環基、或者該等之2價的基。5 Μ 取 取 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 无 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐a 6 to 60 aryl group, a substituted or unsubstituted stellate having an inverse number of 3 to 6 Å of a heteroaryl group, a substituted or unsubstituted benzene group, or a substituted or unsubstituted carbon number Κ2〇 Alkoxy groups, or such divalent 10 groups. However, S, Ar21 and yttrium are the substituted or unsubstituted condensed cyclic group having a nuclear carbon number of 10 to 60, a substituted or unsubstituted monohetero condensed cyclic group having a core carbon number of 3 to 6 Å, Or such a two-valent base.

Ar23係取代或無取代之碳數6〜6〇之亞芳基、或者取代 或無取代之碳數3〜60之雜亞芳基(heteroarylene)。 15 LU、l12&l13係分別獨立之單鍵、取代或無取代之核 碳數6〜60之亞芳基、取代或無取代之核碳數3〜60之雜亞芳 基、或者取代或無取代之伸苐基。 R81係氫原子、取代或無取代之核碳數6〜60之芳基、取 代或無取代之核碳數3〜60之雜芳基、取代或無取代之碳數 31 200850054 1〜20之烷基、或者取代或無取代之碳數1〜20之烷氧基。n 係0〜5之整數,若η為2以上,複數之可相同亦可相異, 又,亦可以鄰接之複數R81基結合,形成碳環脂族環或碳環 芳香族環。 5 R82係氫原子、取代或無取代之核碳數6〜60之芳基、取 代或無取代之核碳數3〜60之雜芳基、取代或無取代之碳數 1〜20之烷基、或者取代或無取代之碳數丨〜汕之烷氧基、或 -Ln-Ar21-Ar22。) 式(C)所表示之含氮雜環衍生物: 10 HAr-L14-Ar24-Ar25 (〇 (式中,HAr係亦可有取代基之碳數3〜4〇之含氮雜環, L14係單鍵、可有取代基之碳數6〜6〇之亞芳基、亦可有取代 基之碳數3〜60之雜亞芳基或者亦可有取代基之伸第基, Ar24係亦可有取代基之碳數6〜6〇之2價的芳香族烴,Αρ5係 15可有取代基之碳數6〜6〇之芳基或者亦可有取代基之碳數 3〜60之雜芳基。) 式(D)所表示之石夕環戊二烯(SilaCyCl〇pentadiene)衍生 物: [化9]Ar23 is a substituted or unsubstituted arylene group having 6 to 6 carbon atoms, or a substituted or unsubstituted heteroarylene having 3 to 60 carbon atoms. 15 LU, l12 & l13 are each a single bond, a substituted or unsubstituted arylene group having a core carbon number of 6 to 60, a substituted or unsubstituted heteroarylene group having a core carbon number of 3 to 60, or a substitution or no Replace the base. R81 is a hydrogen atom, a substituted or unsubstituted aryl group having a core carbon number of 6 to 60, a substituted or unsubstituted heteroaryl group having a core carbon number of 3 to 60, a substituted or unsubstituted carbon number 31 200850054 1 to 20 alkane a group, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms. n is an integer of 0 to 5, and if η is 2 or more, the plural numbers may be the same or different, or may be bonded to a plurality of adjacent R81 groups to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring. 5 R82 is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, a substituted or unsubstituted heteroaryl group having a core number of 3 to 60, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms Or a substituted or unsubstituted carbon number 丨~汕 alkoxy group or -Ln-Ar21-Ar22. a nitrogen-containing heterocyclic derivative represented by the formula (C): 10 HAr-L14-Ar24-Ar25 (wherein, the HAr group may have a substituent having a carbon number of 3 to 4 〇, a nitrogen-containing heterocyclic ring, L14) a single bond, an arylene group having 6 to 6 carbon atoms which may have a substituent, a heteroarylene group having a carbon number of 3 to 60 which may have a substituent, or a stretching group which may have a substituent, and the Ar24 system may also be a divalent aromatic hydrocarbon having 6 to 6 carbon atoms and a aryl group having 6 to 6 carbon atoms which may have a substituent or a carbon number of 3 to 60 which may have a substituent Aryl.) Derivative of SilaCyCl〇pentadiene represented by formula (D): [Chem. 9]

(式中,X11及Y11係分別獨立之碳數i〜6之飽和或不飽和 火二基烧氧基、細氧基、炔氧基(alkynyl〇xy)、經基、取 32 200850054 代或無取代之芳基、取代或無取代之雜環、或者χ11與γΐι 結合而形成飽和或不飽和之環的構造,R85〜R88係分別獨立 之氫、鹵素原子、取代或無取代之碳數1至6之烷基、烷氧 基、芳氧基、全氟烧基、全氟烧氧基、胺基、烧戴基、芳 5幾基、燒氧幾基、芳氧幾基(aryloxycarbonyl)、偶氮基、烧 羰氧基(alkylcarbonyloxy)、芳羰氧基、烷氧羰氧基、芳氧 羰氧基、亞磺醯(sulfinyl)、磺基、磺醯基(sulfanyl)、矽基、 胺甲醯基、芳基、雜環基、烯基、炔基、硝基、甲醯基、 亞硝基、甲醯氧基、異氰基、氰酸鹽基、異氰酸鹽基、硫 10氰酸鹽基、異硫氰酸鹽基或氰基、或者於鄰接時縮合有取 代或無取代之環的構造。) 式(E)所表示之硼烷衍生物: [化 10](wherein X11 and Y11 are each independently a saturated or unsaturated sulfonyloxy group, a fine oxy group, an alkynyl oxy group, a thiol group, a transamination group, or a group of 32,500,500,54 or none. a substituted aryl group, a substituted or unsubstituted heterocyclic ring, or a structure in which χ11 and γΐι are combined to form a saturated or unsaturated ring, and R85 to R88 are independently hydrogen, a halogen atom, a substituted or unsubstituted carbon number of 1 to 6 alkyl, alkoxy, aryloxy, perfluoroalkyl, perfluoroalkoxy, amine, burntyl, aryl 5, alkoxy, aryloxycarbonyl, even Nitrogen, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, sulfinyl, sulfoyl, sulfanyl, sulfhydryl, amine Mercapto, aryl, heterocyclic, alkenyl, alkynyl, nitro, formyl, nitroso, methyloxy, isocyano, cyanate, isocyanate, sulfur 10 cyanide An acid salt group, an isothiocyanate group or a cyano group, or a structure in which a substituted or unsubstituted ring is condensed in abutment.) A borane derivative represented by the formula (E):

R95 15 (式中,Rr91〜R98及Z2係顯示分別獨立之氫原子、飽和 或不飽和之烴基、芳香族基、雜環基、取代胺基、取代氧 蝴基、烧氧基或芳氧基,X12、¥12及2!係顯示分別獨立之德 和或不飽和之炫基、芳香族基、雜環基、取代胺基、烷氧 基或芳氧基,反Z與22之取代基亦可互相結合形成縮合 20環,n係顯示1〜3之整數,若n為2以上時,ζι亦可相異。但 是,並不包含η為1 X 、Y及R92為甲基且R98為氫原子或 33 200850054 取代氧硼基、及η為3而Z1為甲基的情況。) [化 11] (F)R95 15 (wherein Rr91~R98 and Z2 are each independently a hydrogen atom, a saturated or unsaturated hydrocarbon group, an aromatic group, a heterocyclic group, a substituted amine group, a substituted oxo group, an alkoxy group or an aryloxy group. , X12, ¥12 and 2! are shown as independent and or unsaturated, aryl, aromatic, heterocyclic, substituted, alkoxy or aryloxy groups, and the substituents of anti-Z and 22 are also It can be combined with each other to form a condensation 20 ring, and n is an integer of 1 to 3. If n is 2 or more, ζι can be different. However, η is 1 X , Y and R 92 are methyl and R 98 is hydrogen. Atomic or 33 200850054 Substituted oxyboron, and η is 3 and Z1 is methyl.) [11] (F)

Ga—L15 (式中Q1及Q1係分別獨立地表示以下式(G)所不之配位 5子,且L15係表示i素原子、取代或無取代之烧基、取代或 無取代之環烷基、取代或無取代之芳基、取代或無取代之 雜環基、-〇R,(R,係氫原子、取代或無取代之烷基、取代或 無取代之環烷基、取代或無取代之芳基、取代或無取代之 雜環基)或-0-Ga-Q2(Q4)(Q2及Q4係與Q1及Q1相同)所示之配 10 位子。) [化 12]Ga—L15 (wherein Q1 and Q1 each independently represent a coordination 5 of the following formula (G), and L15 represents an i atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted naphthenic group. An aryl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, -〇R, (R, a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or a non-substituted group Substituted aryl, substituted or unsubstituted heterocyclic) or -0-Ga-Q2 (Q4) (Q2 and Q4 are the same as Q1 and Q1) with a 10-position.) [Chem. 12]

一( / (G)One ( / (G)

I \rnrr Q (式中,環A24及Ar25係亦可具有取代基之互相縮合之6 員芳環構造。) 該金屬錯合物作為η型半導體之性質強,且電子注入能 力強。此外,因錯合物形成時之生成能量亦低,故形成之 金屬錯合物之金屬魏奸之結合性亦強,故作為發光材 料之螢光量子效率亦增大。 34 1 形成式⑹配位子之環Α24及Ar25之取代基的具體例,可 2 20舉:氣、漠、蛾、氟等幽素原子;甲基、乙基、丙基、丁 200850054 基、S-丁基、t-丁基、戊基、己基、庚基、辛基、十八烧醯 基、三氯甲基等取代或無取代之烷基;苯基、萘基、3_甲 苯基、3_甲氧苯基、3-氟苯、3-三氯甲苯基、3_三氟甲苯基、 3-硝苯基等取代或無取代之芳基;甲氧基、〜丁氧基、t-T 5 氧基、三氯甲氧基、三氟乙氧基、五氟丙氧基、2,2,3,3-四 就丙氧基、1,1,1,3,3,3-六貌-2-丙氧基、6«·(全氟乙基)己氧美 (hexyloxy)等取代或無取代之烷氧基;笨氧基、p_^基苯氧 基、p-t-丁基苯氧基、3-氟苯氧基、五氟笨氧基、三就甲 基本氧基萼取代或無取代之芳氧基;甲硫*(metj1yitj1i〇)、 10乙硫基、t-丁硫基、己硫基、辛硫基、三氟曱硫基等取代或 無取代之烧硫基(alkylthio);苯硫基、p-确苯硫基、p_t_丁苯 硫基、3-氟苯硫基、五氟苯硫基、3-三氟甲苯硫基等取代或 無取代之芳硫基(arylthio);氰基、硝基、胺基、甲胺基、 二曱胺基、乙胺基、二乙胺基、二丙胺基、二丁胺基、二 15苯胺基等單或二取代之胺基;雙(乙醯氧甲基)胺基、雙(乙 醯氧乙基)胺基、雙(乙醯氧丙基)胺基、雙(乙醯氧丁基)胺基 等醯胺基;羥基、矽烷氧基、醯基、胺曱醯基、曱基胺曱 醯基、二甲基胺甲醯基、乙基胺曱醯基、二乙基胺甲醯基、 丙基胺甲醯、丁基胺甲醯基、苯基胺甲醯基等取代或無取 20代之胺甲醯基;羧酸基、磺酸基、醯亞胺基、環戊烷基、 ί衣己烷基等環烷基(cyd〇alkyl);笨基、萘基、聯苯基、蔥 土非土鼠基、比基專方基,°比。定基(pyridinyl)、。比口井基、 吻17疋基、"合畊基、三畊基、吲哚啉基、喳啉基、吖啶基、 吡咯定基、—噚烷基(dioxanly)、哌啶基(piperWinyi)、咮啉 35 200850054 。定基(morphoiidinyl)、哌畊基(piperazinyl)、三噻烷基 (tmhianyi)、咔唑基、呋喃基、苯硫基、噚唑基、噚二唑基、 苯并十坐基、嚷吐基、。塞二唾基、苯并嚷峻基、三峻基、 米坐基笨并。米唾基、π底喃基(州⑽州等。又,以上取代 5基間亦可結合而更加形成6員芳環或雜環。 於本發明之較佳形態中,於輸送電子領域或陰極與有 機層之界面領域具有含有還原性摻雜物之元件 0此處,將 還原性格雜物定義為可還原電子輸送性化合物之物質。因 此’ ’I為具有一定還原性者,可使用各種類者,可適當 10地使用選自於由例如:驗金屬、驗土金屬、稀土金屬、驗 至屬之氧化物、鹼金屬之_化物、驗土金屬之氧化物、鹼 土金屬之_化物、稀土金屬之氧化物或稀土金屬之鹵化 物、驗金屬之有機錯合物、驗土金屬之有機錯合物、稀土 金屬之有機錯合物所構成之群之至少—種物質。 15 x ’更具體而言’較佳之還原性摻雜物以工作函數為 2.9eV以下者特佳,可舉例如:選自於由Li(工作函數: eV) Na(工作函數:2.36eV)、κ(工作函數:HV)、 Rb(作函數· 2 l6eV)及&(工作函數:所構成之群 之至夕種鹼金屬、或選自於由Ca(工作函數:2.9eV)、 2〇叫作函數· 2·〇〜2.5eV)、及Ba(工作函數:mev)所構成 之群之至少一種鹼土金屬。 、^等中’車父佳之還原性摻雜物是選自於由K、Rb及 所構成之群之至少_種驗金屬’更佳者係灿或&,最佳 者為Cs。 36 200850054 。亥等驗金屬特別具有高還原能力,藉由較少量地添加 子左人域’可期待發光元件之發光亮度之提升及長壽 :化。又,工作函數為2.9eV以下之還原性摻雜物,亦以該 等2種以上之驗金屬之組合為佳,特別是,以含有Cs之組 5合’例如,Cs與Na、Cs與κ、⑽肋或心與他與尺之组合 為佳。 藉由於組合中含有Cs,可有效率地發揮還原能力,藉 由添加至電子注入範圍,可期待發光元件之發光亮度提升 及長哥命化。 10 亦可更加地於本發明中陰極與有機層間設置由絕緣體 或半導體所構成之電子注入層。此時,可有效地防止電流 之洩漏,並可使電子注入性提升。 如此之絕緣體’宜使用選自於由驗金屬硫族化合物、 鹼土金屬硫族化合物、鹼金屬之_化物及鹼土金屬之鹵化 15物所構成之群之至少一種金屬化合物,且若電子注入層係 由忒專鹼金屬硫族化合物等所構成的話,可使電子注入性 更加提升故為佳。 具體而言,較佳之鹼金屬硫族化合物可舉例如· Li20、 LiO、Na〗S、Naje及NaO。較佳之鹼土金屬硫族化合物可 20 舉例如:CaO、BaO、SrO、BeO、BaS、及CaSe。又,較佳 之鹼金屬之鹵化物可舉例如:LiF、NaF、KF、LiCl、KC1 及NaCl等。又,較佳之鹼土金屬之鹵化物可舉例如:CaF2、 BaF2、SrF2、MgF2及BeF2之氟化物、或氟化物以外之鹵化 物0 37 200850054 另外,構成電子輪送層之半導體可舉例如··含有至少 種 ^ Ca Sr、Yb、A卜 Ga、In、Li、Na、Cd、Mg、I \rnrr Q (wherein, the ring A24 and the Ar25 system may have a 6-membered aromatic ring structure in which the substituents are condensed with each other.) The metal complex is strong as an n-type semiconductor and has high electron injecting ability. Further, since the energy generated by the formation of the complex compound is also low, the metal complex of the formed metal complex is also highly combined, so that the fluorescence quantum efficiency as a light-emitting material also increases. 34 1 Specific examples of the substituents of the ring Α 24 and Ar 25 forming the ligand of the formula (6) can be exemplified by: a gas atom, a desert, a moth, a fluorine, etc.; a methyl group, an ethyl group, a propyl group, a butyl group 200850054, a substituted or unsubstituted alkyl group such as S-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, octadecylsulfonyl, trichloromethyl; phenyl, naphthyl, 3-tolyl a substituted or unsubstituted aryl group such as 3-methoxyphenyl, 3-fluorobenzene, 3-trichloromethylphenyl, 3-trifluoromethylphenyl, 3-nitrophenyl; methoxy, butyloxy, tT 5 oxy, trichloromethoxy, trifluoroethoxy, pentafluoropropoxy, 2,2,3,3-tetrapropoxy, 1,1,1,3,3,3-hexa a substituted or unsubstituted alkoxy group such as 2-propoxy, 6«·(perfluoroethyl)hexyloxy; phenyloxy, p-phenoxy, pt-butylphenoxy a 3-fluorophenoxy group, a pentafluorophenoxy group, a tri-methyl-hydroxy oxime-substituted or unsubstituted aryloxy group; methylthio*(metj1yitj1i〇), 10 ethylthio group, t-butylthio group, a substituted or unsubstituted alkylthio group such as hexylthio, octylthio or trifluorosulfonylthio; phenylthio, p-phenylenethio, p_t_butyl Substituted or unsubstituted arylthio such as thio, 3-fluorophenylthio, pentafluorophenylthio, 3-trifluorotolylthio; cyano, nitro, amine, methylamino, Mono- or disubstituted amine groups such as guanylamino, ethylamino, diethylamino, dipropylamino, dibutylamino, di 15-anilino; bis(ethyloxymethyl)amino, bis(acetonitrile) Anthranyl group such as oxyethyl)amine, bis(acetoxypropyl)amino, bis(ethionoxybutyl)amine; hydroxy, decyloxy, decyl, amidino, decylamine Substituted or absent such as mercapto, dimethylamine, mercapto, ethylamine, diethylamine, propylamine, butylamine, phenylamine, phenylamine 20th generation of aminomethyl thiol; carboxylic acid group, sulfonic acid group, sulfonium imino group, cyclopentyl group, ε hexyl group, etc. cyd〇alkyl; stupid, naphthyl, biphenyl Base, green onion, non-terrane, base, base, ratio. Pyridinyl,.比井井基, kiss 17疋基, "合耕基,三耕基, porphyrinyl, porphyrinyl, acridinyl, pyrrolidine,-dioxanly, piperidinyl (piperWinyi) , porphyrin 35 200850054. Morphooidinyl, piperazinyl, trithiazide (tmhianyi), carbazolyl, furyl, phenylthio, oxazolyl, oxadiazolyl, benzoxazepine, oxime, . It is a stupid base, a benzopyrene base, a three-square base, and a base. Rice sulphate, π decyl group (state (10) state, etc. Further, the above substituted 5 groups may also be combined to form a 6-membered aromatic ring or a heterocyclic ring. In a preferred embodiment of the invention, in the field of transport electrons or cathode The interface region with the organic layer has a component containing a reducing dopant. Here, the reducing dopant is defined as a substance capable of reducing an electron transporting compound. Therefore, 'I is a certain reducing property, and various types can be used. Alternatively, it may be selected from, for example, a metal, a metal, a rare earth metal, an oxide of an genus, an alkali metal, an oxide of a soil, an alkaline earth metal, or a rare earth. At least one substance consisting of a metal oxide or a rare earth metal halide, an organic metal complex, an organic compound of a soil test metal, and an organic complex of a rare earth metal. 15 x 'more specific The preferred reducing dopant is particularly preferably a work function of 2.9 eV or less, and is selected, for example, from Li (working function: eV) Na (working function: 2.36 eV), κ (working function: HV), Rb (for function · 2 l6eV) and &am p; (working function: the group of the alkali metal, or selected from Ca (working function: 2.9 eV), 2 〇 called function · 2 · 〇 ~ 2.5eV), and Ba (working function) :mev) at least one type of alkaline earth metal formed by the group of .m., etc. The 'reducing dopant of the car's father is selected from the group consisting of K, Rb and the group of the metal. Can or &, the best is Cs. 36 200850054. The metal such as Hai has a high reduction ability, and it is expected to increase the luminance and longevity of the light-emitting element by adding a small left human domain. Further, the reducing dopant having a working function of 2.9 eV or less is preferably a combination of the two or more kinds of metal, in particular, a group of Cs containing Cs, for example, Cs and Na, Cs and κ. (10) The rib or the heart is preferably combined with the ruler and the ruler. Since the combination contains Cs, the reduction ability can be efficiently utilized, and by adding to the electron injection range, the luminance of the light-emitting element can be expected to be improved and long-lived. 10 Further, in the present invention, the cathode and the organic layer are provided by an insulator or a semiconductor. Into this, the electron injection layer can effectively prevent the leakage of current and improve the electron injectability. Such an insulator should be selected from the group consisting of metal chalcogenides, alkaline earth metal chalcogenides, and alkali metals. When at least one metal compound of the group consisting of halogenated materials of the compound and the alkaline earth metal is formed of a ruthenium-base metal chalcogenide or the like, the electron injectability can be further improved. The preferred alkali metal chalcogenide may, for example, be Li20, LiO, Na, S, Naje or NaO. Preferred alkaline earth metal chalcogenides may be, for example, CaO, BaO, SrO, BeO, BaS, and CaSe. . Further, preferred halides of the alkali metal include, for example, LiF, NaF, KF, LiCl, KC1, and NaCl. Further, preferred halides of alkaline earth metals include, for example, fluorides of CaF2, BaF2, SrF2, MgF2, and BeF2, or halides other than fluorides. 0 37 200850054 Further, the semiconductor constituting the electron-transporting layer may be, for example, Containing at least species of Ca Sr, Yb, A, Ga, In, Li, Na, Cd, Mg,

Ta Sb及Zn元素之氧化物、氮化物或氧化氮化物等一 種或二種以上之組合。 5 X ’構成電子輸送層之無機化合物崎結晶或非晶質 之絕緣性薄膜為佳。只要電子輸送層係以該等絕緣性薄膜 所構成的4 S形成更均質之薄膜,而可使暗點等畫素缺 陷減少。 另外如此之無機化合物可舉例如:前述之驗金屬硫 !〇族化合物、鹼土金屬硫族化合物、驗金屬之⑹匕物及驗土 金屬之齒化物等。 [中間連接層] 中間連接層係連接二個發光部之層。 中間連接層具有例如,自陰極側依序積層有受體層、 施體層及電子輸送材料層之構造。受體層係自鄰接之發光 部吸引電子(接受電子),並送至施體層之層。又,施體層係 將自受體層接收之電子注入電子輸送材料層(施予電子)之 層。電子輸送材料層係將電子注入鄰接之發光部之層。 另外,例如第二實施形態之發光元件,將電子^送層 20包含於發光部時,亦可省略中間連接層之電子輸送材料層。 受體係易還原性之有機化合物。 可以氧化還原電位測定化合物之還原容易度。該氧化還 原電位係例如’於以飽和甘汞(SCE)電極作為參考電極之還 原電位中,以-0.8V以上為佳,更佳者係_〇 3v以上且以具 38 200850054 電位(約0V)大之值之 有較四氰基苯醌二甲烷(TCNQ)之還原 化合物特佳。 電子環之有機化 文體以具有電子吸引性之取代基或缺 合物為佳。 5 電子吸引性之取代基可舉例如, 硼基等。 *素、CN… 羰基、芳 10 20 缺電子環可舉例如選自於由例如〜比唆基、3 基、44定基、2㈣基、3_料基、4驾基^米:定 4+坐、⑽坐、坐”荅啡、錢”比啡、啊、、 嗜鱗、奸琳、HU,·)·三絲、5似4傅三唾基、、 5-四唑基、4_(1-〇,3-Ν)-噚唑、5-(i-〇,3-N)-噚唑、4彳3 n 噻唑、5-(l-S,3-N)_噻唑、2_苯并噚唑、孓笨并嘍唑j 4-(1,2,3-Ν)_苯并三。坐、及苯并㈣所構成之群之化合物 等。又,並未受限於該等。 ° 更具體而言,可較佳地舉例如·· ΤΑΖ(3_(4_聯笨基)·4 苯·5+丁基苯基_1,2,4-三唾)或Bcp(2,9_二甲基_4,7_聯笨 啉)。 受體宜為醌(quinoid)衍生物、芳基硼烷衍生物、一氧 噻喃(thiopyran dioxide)衍生物、萘二甲醯亞胺 (naphthalimide)衍生物等醯亞胺衍生物、及六氮聯伸三笨 (hexaazatriphenylene)衍生物等。 酉昆竹生物宜為以下所示之化合物。 [化 13] 39 x 200850054One or a combination of two or more oxides, nitrides or oxynitrides of Ta Sb and Zn. 5 X ' is preferably an inorganic film of an inorganic compound which is an electron transport layer, or an amorphous insulating film. As long as the electron transporting layer forms a more homogeneous film with 4S composed of the insulating films, the pixel defects such as dark spots can be reduced. Further, such an inorganic compound may, for example, be a metal sulphur compound, an alkaline earth metal chalcogenide, a metal (6) sputum, or a tooth of a soil test metal. [Intermediate Connection Layer] The intermediate connection layer is a layer that connects the two light-emitting portions. The intermediate connection layer has, for example, a structure in which an acceptor layer, a donor layer, and an electron transport material layer are sequentially laminated from the cathode side. The acceptor layer attracts electrons (accepting electrons) from adjacent light-emitting portions and sends them to the layer of the donor layer. Further, the donor layer injects electrons received from the acceptor layer into a layer of an electron transport material layer (electron donating). The electron transport material layer injects electrons into the layers of adjacent light emitting portions. Further, for example, in the light-emitting element of the second embodiment, when the electron-emitting layer 20 is included in the light-emitting portion, the electron transport material layer of the intermediate connection layer may be omitted. An organic compound that is susceptible to reduction by the system. The ease of reduction of the compound can be determined by an oxidation reduction potential. The oxidation-reduction potential is, for example, a reduction potential of a saturated calomel (SCE) electrode as a reference electrode, preferably -0.8 V or more, more preferably _ 〇 3 v or more and a potential of 38 200850054 (about 0 V). Larger values are particularly preferred for reducing compounds than tetracyanoquinone dimethane (TCNQ). The organic form of the electron ring is preferably a substituent or a defect having an electron attracting property. The electron-attracting substituent may, for example, be a boron group or the like.素, CN... carbonyl, aryl 10 20 electron-deficient ring may, for example, be selected from, for example, 唆 唆 、, 3, 44, 2, 4, 3, 4, 4, 4, 4, 4 (10) Sitting, sitting "荅 、, money" than morphine, ah, 嗜 scale, 香琳, HU, ·) · three silk, 5 like 4 Fu Sansyl, 5-tetrazolyl, 4_(1- 〇, 3-Ν)-carbazole, 5-(i-〇,3-N)-carbazole, 4彳3 n thiazole, 5-(lS,3-N)-thiazole, 2-benzoxazole, It is stupid and carbazole j 4-(1,2,3-Ν)_benzotriene. Sitting, and compounds of the group consisting of benzo (4). Again, it is not limited by these. More specifically, for example, ·(3_(4_ 联基基)·4 苯·5+butylphenyl_1,2,4-trisal) or Bcp (2,9) _Dimethyl_4,7_linked porphyrin). The acceptor is preferably a quinoid derivative, an arylborane derivative, a thiopyran dioxide derivative, a naphthalimide derivative, or the like, and a hexanitrogen derivative. A hexaazatriphenylene derivative or the like. The 酉Kun bamboo organism is preferably a compound shown below. [化 13] 39 x 200850054

基、烷基或芳基。但是,R1〜R48於相同分子中係為全部去 除氫或氟者。X係拉電子基,並由以下任一式⑴〜(p)之構造 所構成,且以⑴、(k)、(1)之構造為佳。 [化 14] I Nc γ0Ν ^°1Γ〇〇〇^§ r^ooo%|<coor51 ⑽丫妒2 (k) ® ⑽ (η) (〇) (py (式中,R49〜R52分別係氫、氟烷基、烷基、芳基或雜環 基,且R50與R51亦可形成環。) Y係-N=或-CH=。) 靦衍生物之具體例可舉以下之化合物為例。 40 10 200850054 [化 15]Base, alkyl or aryl. However, R1 to R48 are all dehydrogenated or fluorine in the same molecule. X is an electron-based group and is composed of any of the following formulas (1) to (p), and is preferably a structure of (1), (k), or (1). I Nc γ0Ν ^°1Γ〇〇〇^§ r^ooo%|<coor51 (10)丫妒2 (k) ® (10) (η) (〇) (py (wherein, R49 to R52 are hydrogen, respectively) And a fluoroalkyl group, an alkyl group, an aryl group or a heterocyclic group, and R50 and R51 may form a ring.) Y-type - N= or -CH=.) Specific examples of the anthracene derivative include the following compounds. 40 10 200850054 [Chem. 15]

芳基硼烷衍生物以具有以下構造之化合物為佳。 [化 16] 41 .101 .101200850054The arylborane derivative is preferably a compound having the following structure. [化16] 41 .101 .101200850054

(式中’Ar 士1。7分別係具有拉電子基 環)’且A,係具有拉電子基之亞芳基,而s係】或2 ) ‘ 芳基硼烧衍生物之具體例可舉以下之化合物為例。 [化 17](In the formula, 'Ar, 1.7, respectively, has an electron-withdrawing ring'), and A, an arylene group having an electron-withdrawing group, and a specific example of an aryl group or 2) 'arylborane derivative The following compounds are exemplified. [Chem. 17]

特佳者係具有將至少一個之氟作為對芳基之取代基之 化合物,可舉三/5-(五氟萘基)爛烷(PNB)等為例。 醯亞胺衍生物宜為萘四羧酸二醯亞胺 10 (naphathalenetetracarboxylic dimide)化合物及焦蜜石酸二 醯亞胺(pyromelliticdimide)化合物。 二氧嘍喃衍生物可分別舉例如以下式(3a)所示之化合 物、及以下式(3b)所示之化合物。 [化 18] 42 200850054Particularly preferred are compounds having at least one fluorine as a substituent for a p-aryl group, and examples thereof include tris/5-(pentafluoronaphthyl) ranane (PNB). The quinone imine derivative is preferably a naphathalene tetracarboxylic dimide compound and a pyromellitic dimide compound. The dioxin derivative may, for example, be a compound represented by the following formula (3a) and a compound represented by the following formula (3b). [化 18] 42 200850054

於式(3a)及式(3b)中,r53〜r64分別係氯 '齒素、氣烧基、 氰基、烷基或芳基,且以氫、氰基為佳。 於式(3a)及式(3b)中,X係與顯示拉電子基之式(la)〜(u) 5之X相同,且以⑴、(k)、⑴之構造為佳。 R53〜R64所不之鹵素、氟烷基、氰基、烷基及芳基係與 R1〜R48相同。 以下顯示式(3a)所示之二氧嘍喃衍生物、式(3b)所示之 硫口山嗟(thioxanthene)衍生物之具體例。 10 [化 19]In the formulae (3a) and (3b), r53 to r64 are each a chlorine dentate, a gas-burning group, a cyano group, an alkyl group or an aryl group, and hydrogen or a cyano group is preferred. In the formulas (3a) and (3b), the X system is the same as the X of the formula (la) to (u) 5 which exhibits a pull electron group, and the structure of (1), (k), and (1) is preferred. The halogen, fluoroalkyl, cyano group, alkyl group and aryl group which are not represented by R53 to R64 are the same as those of R1 to R48. Specific examples of the dioxin derivative represented by the formula (3a) and the thioxanthene derivative represented by the formula (3b) are shown below. 10 [Chem. 19]

(式中’ tBu係t-丁基。) 此外’於前述式(la)〜(li)、(3a)〜(3b)中,拉電子基X亦 可為以下式所表示之取代基(X)或(y)。 15 [化 20] 43 200850054 NC—C== 丄r1⑽⑻(wherein tBu is a t-butyl group.) Further, in the above formulas (la) to (li), (3a) to (3b), the electron-withdrawing group X may be a substituent represented by the following formula (X). ) or (y). 15 [Chem. 20] 43 200850054 NC—C== 丄r1(10)(8)

Ar卿一C=Ar Qingyi C=

Ar110 (y) 式中,Ar1G9及Ar11G係取代或無取代之雜環、取代或無 取代之芳氧基羰基或醛(aldehyde),且以吡啶、σ比啡、嗅〇号 啉為佳。Ar1G9與Ar11G亦可互相連結形成5員或6員之環狀構 造。 六氮聯伸三苯宜為以下所舉之構造,且以具有氛基之 化合物特佳。 [化21』 R65Ar110(y) wherein Ar1G9 and Ar11G are substituted or unsubstituted heterocyclic, substituted or unsubstituted aryloxycarbonyl or aldehyde, and preferably pyridine, sigmamorph, or olfactory morpholine. Ar1G9 and Ar11G can also be joined to each other to form a ring structure of 5 or 6 members. The hexanitrogen triphenylene is preferably the structure exemplified below, and is particularly excellent as a compound having an atmosphere. [化21] R65

R^5 R66R^5 R66

10 /*% (式中,R65分別係氰基、芳氧羰基、烷氧羰基、二燒廢 甲醯、二芳基胺甲醯、函素原子、硝基、或羧基。) 受體以具有薄膜形成性者為佳。即,可以蒸鍍形成声 體層。「可形成薄膜」係可於基板上以真空蒸鍍、旋轉塗_ 等之一般薄膜形成方法製作平坦之薄膜,此處之平土曰係拍 15薄膜之凹凸小者,且以表面粗糙度(Ra)為l〇nm以下為佳, 較佳者是表面粗链度(Ra)為1.5nm以下,更佳者係表面粗相 度(Ra)為lnm以下。另外,表面粗糙度可藉原子力顯微# (AFM)測定。 具有薄膜形成性之有機化合物以非晶性之有機化人衫 44 200850054 為佳,較佳者是非晶性之苯醌二甲烷衍生物,更佳者係非 曰曰性且CN-基之數為5以上之苯g昆二甲烧衍生物。可舉例 如,前述之(CN)2-TCNQ。 包含於受體層之受體之含有量相對於層全體以iyOO 5 莫耳%為佳,較佳者是50〜1〇〇莫耳〇/〇。 受體層除了受體之外,亦可含有以電洞輸送性而具有 透光性者,但並未限定於該者。 受體層之膜厚以1〜lOOnm為佳。 施體層係將含有選自於由施體性金屬、施體性金屬化 10合物及施體性金屬錯合物所構成之群之至少一種者作為施 體之層。 施體性金屬係工作函數為3.8eV以下之金屬,以鹼金 屬、驗土金屬及稀土金屬為佳,較佳者是Cs、Li、Na、Sr、 κ、Mg、Ca、Ba、Yb、Eu及Ce。 15 施體性金屬化合物係含有前述施體性金屬之化合物, 以含有鹼金屬、鹼土金屬或稀土金屬之化合物為佳,較佳 者是該等之ifi化物、氧化物、碳酸鹽、硼酸。例如:MOx(M 係施體性金屬,X係0·5〜1.5)、MFx(x係1〜3)、M(C03)x(x係 〇·5〜1·5)所表示之化合物。 20 施體性金屬錯合物係前述之施體性金屬之錯合物,以 驗金屬、鹼土金屬或稀土金屬之有機金屬錯合物為佳,且 宜為以下式(I)所表示之有機金屬錯合物。 [化 22]10 /*% (wherein R65 is a cyano group, an aryloxycarbonyl group, an alkoxycarbonyl group, a second calcined formazan, a diarylamine formazan, a hydroxyl atom, a nitro group, or a carboxyl group, respectively). Film formability is preferred. That is, the acoustic layer can be formed by vapor deposition. The "film-forming film" can be formed into a flat film by a general film forming method such as vacuum evaporation or spin coating on a substrate. Here, the flat soil is a film having a small unevenness and a surface roughness ( Ra) is preferably 1 nm or less, preferably a surface roughness (Ra) of 1.5 nm or less, and more preferably a surface coarse phase (Ra) of 1 nm or less. In addition, the surface roughness can be measured by atomic force microscopy # (AFM). The film-forming organic compound is preferably amorphous amorphous organic shirt 44 200850054, preferably amorphous benzoquinone derivative, more preferably non-曰曰 and CN-based More than 5 benzene g Kunming derivatives. For example, the aforementioned (CN) 2-TCNQ. The content of the acceptor contained in the receptor layer is preferably iyOO 5 mol% relative to the entire layer, preferably 50 to 1 mol. The receptor layer may contain translucent properties in addition to the receptor, but is not limited thereto. The film thickness of the acceptor layer is preferably from 1 to 100 nm. The donor layer is a layer containing at least one selected from the group consisting of a donor metal, a donor metallization compound, and a donor metal complex as a donor. The donor metal system has a working function of 3.8 eV or less, preferably alkali metal, soil test metal and rare earth metal, preferably Cs, Li, Na, Sr, κ, Mg, Ca, Ba, Yb, Eu. And Ce. The donor metal compound is a compound containing the above-mentioned donor metal, preferably a compound containing an alkali metal, an alkaline earth metal or a rare earth metal, preferably such an ifi compound, an oxide, a carbonate or a boric acid. For example, a compound represented by MOx (M system donor metal, X system 0·5 to 1.5), MFx (x system 1 to 3), and M (C03) x (x system 5 5 to 1.5). 20 The donor metal complex is a complex of the above-mentioned donor metal, preferably an organometallic complex of a metal, an alkaline earth metal or a rare earth metal, and preferably an organic compound represented by the following formula (I) Metal complex. [化22]

η (η 45 200850054 (式中,Μ係受體性金屬,Q係配位子,宜為魏酸衍生 物、二i同衍生物、唆琳衍生物,且η係1〜4之整數。) 施體性金屬錯合物之具體例可舉例如,特開 2005-72012 號公報所記載之鎢水車 5 (Wolfram-Paddlewheel)([W2(hpp)4]:hpp 係 1,3,4,6,7,8-六氫 -2H-嘧啶并[l,2-a]-吡啶)等。此外,亦可使用特開平 11-345687號公報所記載之中心金屬為鹼金屬、鹼土金屬之 酉大青素(phthalocyanine)化合物等作為施體性金屬錯合物。 前述之施體可單獨使用一種,亦可組合二種以上使用。 10 包含於施體層之施體之含有量相對於層全體以1〜100 莫耳%為佳,較佳者是50〜100莫耳%。 施體層除了前述施體之外,只要為具透光性之物質的 話,可含有單一或複數種類之物質。具體而言,可使用胺 化合物、縮合環化合物、含氮環化合物、金屬錯合物等有 15 機物、或金屬氧化物、金屬氮化物、金屬敗化物、碳酸鹽 等無機物,但並未限定為該者。 施體層之膜厚以1〜l〇〇nm為佳。 電子輸送材料層中係使用例如,含有非錯合物之含氮 雜環構造之化合物,且以含有含氮5員雜環構造之化合物為 20 佳。具體而言,宜為下式(1)所表示之化合物。 [化 23]η (η 45 200850054 (In the formula, the lanthanide acceptor metal, the Q-based ligand, preferably a derivative of a ferulic acid, a derivative of di-i, a derivative of ruthenium, and an integer of η-line 1 to 4.) Specific examples of the donor metal complex compound include, for example, the Wolfram-Paddle Wheel ([W2(hpp)4]: hpp system 1, 3, 4, 6 described in JP-A-2005-72012. And 7,8-hexahydro-2H-pyrimido[l,2-a]-pyridine), etc. Further, the central metal described in JP-A-11-345687 may be used as an alkali metal or an alkaline earth metal. A phthalocyanine compound or the like is used as the donor metal complex. The above-mentioned donors may be used alone or in combination of two or more. 10 The content of the donor contained in the donor layer is 1 with respect to the entire layer. Preferably, it is 50 to 100% by mole. The body layer may contain a single or plural kinds of substances as long as it is a light transmissive substance in addition to the above-mentioned donor body. , an amine compound, a condensed ring compound, a nitrogen-containing ring compound, a metal complex, etc. may be used, or a metal oxide or a metal nitrogen An inorganic substance such as a substance, a metal compound, or a carbonate is not limited thereto. The film thickness of the donor layer is preferably 1 to 1 〇〇 nm. The electron transport material layer is used, for example, containing a non-aliased compound. The compound having a nitrogen heterocyclic structure is preferably a compound having a nitrogen-containing 5-membered heterocyclic structure. Specifically, it is preferably a compound represented by the following formula (1).

46 200850054 (式中,R1〜R8係取代或無取代之核原子數5〜60之芳 基、取代或無取代之核原子數5〜60之雜芳基、取代或無取 代之碳數1〜50之烷基、取代或無取代之碳數3〜50之環烷基 取代或無取代之核原子數6〜50之芳烧基、取代或無取代之 5 碳數1〜50之烷氧基 '取代或無取代之核原子數5〜50之芳氧 基、取代或無取代之核原子數5〜50之芳硫基、取代或無取 代之碳數1〜50之烷氧基羰基、以取代或無取代之核原子數 5〜50之芳基所取代之胺基、鹵素原子、氰基、硝基、羥基 或羧基,且R1〜R8之相鄰取代基之一組亦可互相結合形成芳 1〇 香環或雜環。) 又,可使用以下式(2)所表示之化合物。 [化 24]46 200850054 (wherein R1 to R8 are substituted or unsubstituted aryl groups having 5 to 60 nucleus groups, substituted or unsubstituted aryl groups having 5 to 60 carbon atoms, substituted or unsubstituted carbon number 1~ 50 alkyl, substituted or unsubstituted cycloalkyl group having 3 to 50 carbon atoms substituted or unsubstituted, aryl group having 6 to 50 atomic number, substituted or unsubstituted 5 alkoxy group having 1 to 50 carbon atoms a substituted or unsubstituted aryloxy group having a nuclear atom number of 5 to 50, a substituted or unsubstituted arylthio group having a nuclear atom number of 5 to 50, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a substituted or unsubstituted amino group having 5 to 50 aryl groups substituted with an amine group, a halogen atom, a cyano group, a nitro group, a hydroxyl group or a carboxyl group, and a group of adjacent substituents of R1 to R8 may be bonded to each other to form a group. The aryl group is a musk ring or a hetero ring.) Further, a compound represented by the following formula (2) can be used. [Chem. 24]

(式中,R9〜R2G係氫原子、取代或無取代之核原子數5〜60 15 之芳基、取代或無取代之核原子數5〜60之雜芳基、取代或 無取代之碳數1〜50之烷基、取代或無取代之碳數3〜50之環 烷基、取代或無取代之核原子數6〜50之芳烷基、取代或無 取代之碳數1〜50之烷氧基、取代或無取代之核原子數5〜50 之芳氧基、取代或無取代之核原子數5〜50之芳硫基、取代 20 或無取代之碳數1〜50之烷氧基羰基、以取代或無取代之核 原子數5〜50之芳基所取代之胺基、鹵素原子、氰基、硝基 47 200850054 經基或魏基’且R9〜R2G之相鄰基之一組亦可互相結合形成 芳香環,並且R9〜R2G之至少一者係以下式所示之取代基。 [化 25] 5 (L係取代或無取代之碳數6〜60之亞芳基、取代或無取 代之碳數5〜60之雜亞芳基、或者取代或無取代之伸苐基; Ar1係取代或無取代之碳數6〜60之亞芳基、取代或無取代之 °比°定基或者取代或無取代之伸嗜琳基;Ar2係氫原子、取代 或無取代之核原子數5〜60之芳基、取代或無取代之u比咬 10 基、取代或無取代之喳啉基、取代或無取代之碳數1〜5〇之 燒基、取代或無取代之碳數3〜50之環燒基、取代或無取代 之核原子數6〜50之芳烧基、取代或無取代之破數丨〜%之烧 氧基、取代或無取代之核原子數5〜50之芳氧基、取代或無 取代之核原子數5〜50之芳硫基、取代或無取代之碳數丨〜刈 15之烷氧基羰基、以取代或無取代之核原子數5〜50之芳基所 取代之胺基、函素原子、氰基、硝基超基或羧基。)) 以下例示以别述式(2)所表示之化合物之具體例。 [化 26] 48 200850054(wherein R9 to R2G are a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 60 15 aryl groups, a substituted or unsubstituted heteroaryl group having 5 to 60 carbon atoms, a substituted or unsubstituted carbon number 1 to 50 alkyl, substituted or unsubstituted cycloalkyl having 3 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 6 to 50 atomic number, substituted or unsubstituted carbon number 1 to 50 An oxy group, a substituted or unsubstituted aryloxy group having a core number of 5 to 50, a substituted or unsubstituted arylthio group having 5 to 50 atomic number, a substituted 20 or an unsubstituted alkoxy group having 1 to 50 carbon atoms. A group of a carbonyl group, an amine group substituted with a substituted or unsubstituted aryl group having a core number of 5 to 50, a halogen atom, a cyano group, a nitro group 47 200850054, a group of adjacent groups of a radical or a thiol group and R9 to R2G The aromatic ring may be bonded to each other, and at least one of R9 to R2G is a substituent represented by the following formula: (L-substituted or unsubstituted arylene group having 6 to 60 carbon atoms, substitution or Unsubstituted heteroarylene having 5 to 60 carbon atoms, or substituted or unsubstituted exudylene; Ar1 substituted or unsubstituted arylene having 6 to 60 carbon atoms, substituted or unsubstituted Arbitrarily substituted or substituted or unsubstituted; Ar2 hydrogen atom, substituted or unsubstituted aryl group having 5 to 60 nucleus, substituted or unsubstituted ur than biting 10 group, substituted or none Substituted porphyrin group, substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, substituted or unsubstituted carbon group having 3 to 50 carbon atoms, substituted or unsubstituted core atom number 6 to 50 a substituted, unsubstituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group having a nuclear atom number of 5 to 50, a substituted or unsubstituted aryl group having 5 to 50 atomic number, and a substitution Or an unsubstituted alkoxycarbonyl group having a carbon number of 丨~刈15, an amine group substituted with an aryl group having a substituted or unsubstituted core number of 5 to 50, a hydroxyl atom, a cyano group, a nitro group or a carboxyl group .)) Specific examples of the compound represented by the formula (2) are exemplified below. [Chem. 26] 48 200850054

(於式中,Rla〜R5c、La〜Lc、Arla〜Ar2c#分別與前述式⑺ 之 R9〜R20、L、Ar1、Ar2相同。)(In the formula, Rla to R5c, La to Lc, and Arla to Ar2c# are respectively the same as R9 to R20, L, Ar1, and Ar2 of the above formula (7).)

La〜Le及Arla〜Arle宜為取代或無取代之伸苯基、取代或 5無取代之二亞苯基、取代或無取代之伸萘基、取代或無取 代之伸憲基(anthracenylene)、或者取代或無取代之伸比疋 基(pyridylene)。較佳者是伸苯基、以甲基取代之伸本基 二亞苯基、伸萘基或伸蔥基(anthracenylene)。La~Le and Arla~Arle are preferably substituted or unsubstituted phenyl, substituted or 5 unsubstituted diphenylene, substituted or unsubstituted anthracenyl, substituted or unsubstituted anthracenylene, Or a substituted or unsubstituted stretch of pyridylene. Preferred are a phenyl group, a methyl group substituted with a diphenylene group, an anthranyl group or an anthracenylene group.

Ar2a〜Ar2e係取代或無取代之苯基、取代或無取代之聯 10 苯基、取代或無取代之三苯基、取代或無取代之萘基、取 代或無取代之碳數6〜20之芳基。較佳者是苯基、以甲基取 代之苯基、聯苯基、三苯基、萘基、以萘基取代之苯基。Ar2a~Ar2e are substituted or unsubstituted phenyl, substituted or unsubstituted 10 phenyl, substituted or unsubstituted triphenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted carbon number 6~20 Aryl. Preferred are a phenyl group, a phenyl group substituted with a methyl group, a biphenyl group, a triphenyl group, a naphthyl group, and a phenyl group substituted with a naphthyl group.

Rla、Rle宜為取代或無取代之碳數丨〜6之烷基、取代或 無取代之碳數6〜20之芳基。較佳者是甲基、乙基、丙基、 15 丁基、苯基、以甲基取代之笨基、聯笨基、萘基。 49 200850054 p 2b 2C 、 、R宜為氫原子、取代或無取代之碳數卜6之烷基、 取代或無取代之碳數6〜20之芳基。較佳者是甲基、乙基、 丙基、丁基、苯基、以甲基取代之笨基、聯苯基、萘基。 R3b〜R6b、R3e〜R6e宜為氫原子、取代或無取代 5之妷數1〜6之烷基、取代或無取代之碳數6〜20之芳基、氰 基。較佳者是氫原子、甲基、苯基、聯苯基、萘基、氰基、 二鼠甲基。 笔子輸送材料層之膜厚以0.1〜l〇〇nm為佳。 另外’如前述,中間連接層係受體層、施體層及電子 10輸送材料層之積層體,但其他之中間連接層亦可為眾所周 知之中間連接層。構成如此中間連接層之材料可舉例如··Rla and Rle are preferably a substituted or unsubstituted alkyl group having a carbon number of 66, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms. Preferred are methyl, ethyl, propyl, 15 butyl, phenyl, stylyl substituted with methyl, phenyl, naphthyl. 49 200850054 p 2b 2C , , R are preferably a hydrogen atom, a substituted or unsubstituted carbon number, an alkyl group, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms. Preferred are methyl, ethyl, propyl, butyl, phenyl, stylyl substituted with methyl, biphenyl, naphthyl. R3b to R6b and R3e to R6e are preferably a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 6 moles, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and a cyano group. Preferred are a hydrogen atom, a methyl group, a phenyl group, a biphenyl group, a naphthyl group, a cyano group, or a di-methyl group. The film thickness of the pen transport material layer is preferably 0.1 to 1 〇〇 nm. Further, as described above, the intermediate connecting layer is a laminate of the acceptor layer, the donor layer and the electron transporting material layer, but the other intermediate connecting layer may be a well-known intermediate connecting layer. The material constituting such an intermediate connection layer can be, for example,

In、Sn、Zn、Ti、Zr、Hf、V、Mo、Cu、Ga、Sr、La、Ru 等金屬氧化物、氮化物、碘化物、硼化物等。又,可舉由 該等金屬之複數種類所構成之多元系金屬化合物,其具體 15 例可舉例如:使用 ITO、IZO、SnOx、ZnOx、TiN、ZrN、 HfN、TiOx、VOx、MoOx、Cul' InN、GaN、CuA102、CuGa02、Metal oxides, nitrides, iodides, borides, etc. of In, Sn, Zn, Ti, Zr, Hf, V, Mo, Cu, Ga, Sr, La, Ru, and the like. Further, a polyvalent metal compound composed of a plurality of kinds of such metals may be mentioned, and specific examples thereof include ITO, IZO, SnOx, ZnOx, TiN, ZrN, HfN, TiOx, VOx, MoOx, and Cul'. InN, GaN, CuA102, CuGa02,

SrCu2〇2、LaB6、Ru〇x之透明導電材料。其中亦特別適用 ITO、IZO、SnOx、ZnOx、TiOx、VOx、MoOx、RuOx等導電 性金屬氧化物。 20 為提升發光元件之視角特性等,可使用含有低折射率 與前述透明導電材料之膜作為中間連接層。低折射率材料 可使用金屬氧化物(SiOx等)或金屬氟化物(NaF、LiF、CaF2、 Na3AlF6、A1F3 ' MgF2、ThF4、LaF4、NdF3 等)等金屬鹵化 物之無機化合物、含氟樹脂等有機化合物。 50 200850054 [基板] 本發明發光元件係於基板上製作者。此處所稱之基板 係用以支撐發光元件之基板,且宜為4〇〇〜7〇〇11111之可見領 域之光透過率50%以上之平滑基板。 具體而言,可舉玻璃板、高分子板為例。玻璃板可特 別舉例如:驗石灰玻璃、含有鋇·銷之玻璃、錯玻璃、鋁石夕 酸玻璃、硼矽酸玻璃、硼矽酸鋇玻璃、石英等。又,高分 子板可舉例如:聚碳酸酯、丙烯酸、聚對苯二甲酸乙二酯、 聚醚硫(polyestersulfide)、聚颯(p〇lysuifone)等。 另外,若支撐基板位於光取出方向之相反側,則不需 透光性。 [陽極] 發光元件之陽極擔任將電洞注入電洞輸送層或發光層 之角色,若陽極側需要透明性時,可適當地使用氧化銦錫 15合金(IT0)、氧化錫(NESA)、氧化銦辞合金(IZ0) '金、銀、 白金、銅等。又,若為不需透明性之反射型電極時,除了 該等金屬之外,亦可使用鋁、鉬、鉻、鎳等金屬或合金。 該等材料可單獨使用,亦可適當地選擇並使用該等材 料之合金、或添加有其他元素之材料。 20 從陽極取出發自發光層之光時,其相對於陽極之發光 之透過率宜大於1〇%。又,陽極之片材電阻以數百Ω/□以 下為佳。雖亦依據材料來取決陽極之膜厚,但通常係選擇 1 Onm〜1 // rn ’且以1 〇〜2〇〇nmi範圍内為佳。 [陰極] 51 200850054 陰極中可使用卫作常數小(4eV以下)之金屬、合金、電 傳導性化合物及該等之混合物作為電極物質。如此之電極 物質之具體例可舉例如:鈉、鈉_鉀合金、鎂、Μ、鎮·銀合 至、銘/氧化!呂、|呂·鍾合金、鋼、稀土金屬等。 5 #由療㈣濺鍍等方法使該等電極物質形成薄膜,即 可製作該陰極。 此處若從陰極取出發自發光層之光時,其相對於陰極 之發光之透過率宜大於10%。 又,陰極之片材電阻以數百Ω/□以下為佳,且膜厚通 1〇常係10nm〜,以5〇〜2〇〇nm之範圍為佳。 [絕緣層] 發光兀件為施加電場於超薄膜,易因洩漏或短路而產 一素缺卩曰為了防止此種情況,亦可於一對之電極間插 入絕緣性之薄膜層。 15 使用於絕緣層之材料可舉例如··氧化紹、氟化鐘、氧 化鋰、氟化鉋、氧化铯、氧化鎂、氟化鎂、氧化鈣、氟化 鈣、碳酸铯、氮化铭' 氧化敛、氧化石夕、氧化錯、氮化石夕、 氮化硼、氧化鉬、氧化釕、氧化釩等。 亦可使用该寺之混合物或積層物。 2〇 於本發明發光元件中,各層之形成方法並未特別限 疋,但可利用真空蒸鍍法、LB法、電阻加熱蒸鍍法、電子 束法、濺鍍法、分子積層法、塗膜法(旋轉塗布法、鑄造法、 β塗法專)、贺墨法、印刷法等各種方法。 又,本發明有機EL元件之各有機層之膜厚並未特別限 52 200850054 制,但一般因膜厚過薄時容易產生針孔等缺陷,反之若過 厚時需更高之外施電壓而使效率惡化,故通常宜於數11111至1 # m之範圍内。 [實施例] 5 其次,舉實施例更加具體地說明本發明,又,本發明 並未限定於该等貫施例。另外,使用分光輻射亮度計 (CS-1000,Minolta製)測定各實施例中製作之元件之亮度及 色度。又,使用任意函數產生器(BIOMATION社製2202A) 作為脈波見度调變控制裝置,且使用功率放大器(Νρ電路設 1〇計block社製NF4005)放大其輸出並施加於實施例中製作 之元件,求出其特性。 實施例1 將IT0(陽極)以120nm之厚度成膜於厚度〇 7mrn之玻璃 基板上’作為附有透明電極之玻璃基板。 15 將CdSe/ZnS内核-外殼型半導體奈米結晶(發光峰值波 長:590nm,發光半寬度:30nm)分散於三氯甲烷中,並將 於長波長側之吸收極大之波長(575nm)之半導體奈米結晶/ 三氯甲烷分散液lcm長之吸光度調整至2.04。另外,使用 UV-3100S分光光度計(島津製作所株式會社製)及光徑長度 20 lcm之角型光室(optical cell)測定吸光度。於2.48g之該分散 液中添加0.02g之N,N,-聯苯-N,N,-雙(3-甲苯聯 苯)-4,4’-二胺(丁卩0),得到2.5§之混合液。 於已控制成低氧濃度、低溼度之封氮套手工作箱内, 將該混合液旋轉塗布(15〇〇rpm,30秒)於已形成之附有透明 53 200850054 電極之玻璃基板之ITO膜側之面上,以覆蓋ITO膜。另外, 旋轉塗布係於已控制成低氧濃度、低溼度之封氮套手工作 箱内實施。使用透過型電子顯微鏡觀察基板之斷面,發現 於TPD膜之表面,半導體奈米結晶析出並構成層,且 5 TPD+QD層之厚度係40nm。又,半導體奈米結晶之直徑係 7nm。另外,TPD層具有作為電洞注入層之機能,且QD層 具有作為發光層之機能。 將所得之基板移動至真空蒸鍍裝置内,並藉由眾所周 知之真空蒸鍍法反覆進行追加之製膜,製造出具有以下元 10 件構造之發光元件。元件構造:玻璃基板 (0.7mm)/IT〇(130nm)/TPD+QD(40nm)/TAZ(10nm)/Alq3(30n m)/LiF(lnm)/Al(150nm)。 於前述發光元件中TAZ係3-(4_聯苯基)-4-苯基-5-tert-丁基苯基-1,2,4-三唑。又,於前述發光元件中,TAZ及Alq3 15係分別具有作為電子輸送層及電子注入層之機能,且LiF及 A1具有作為陰極之機能。 施加電壓於該發光元件,並評價其特性。 第3圖係顯示實施例1之發光元件之電壓_亮度特性。實 施例1之發光元件於外施電壓25V中得到200nit之亮度。 20 第4圖係顯示所得之發光元件之發光光譜的外施電壓 相關性。於該發光元件中,波長59〇nm附近之發光係屬於半 導體奈米結晶之發光,且以該峰值使第4圖之發光光譜規袼 化。於波長520mn附近所觀測之光譜之肩係屬於Alq3之發 光,並且確認了隨著外施電壓的增加,相對於半導體奈米 54 200850054 結晶之發光,該肩之強度會相對地增加。 由第4圖可知,為抑制Alq3之發光,並有效率地利用半 導體奈米結晶之發光,外施電壓以22V(相當於亮度6〇nit) 以下為佳。 5 使用電壓振幅0〜22V且頻率100Hz之矩形驅動所得之 發光元件,於矩形波之工作比為0〜100%中,分別測定亮度 及色度變化。於第5圖顯示該發光元件色度之亮度相關性。 以脈波寬度調變驅動之實施例1之發光元件,相對於亮度變 化幾乎無色度變化,而得到良好之驅動結果。 10 比較例1 藉由直流電壓電壓梯度驅動實施例1中製造之發光元 件。於第6圖顯示該發光元件色度之亮度相關性。電壓梯度 驅動之發光元件之色度因亮度而大幅改變,可知難以作為 顯示器用途或背光源用途利用。 15 實施例2 將ITO(陽極)以120nm之厚度成膜於厚度〇.7mm之玻璃 基板上,作為附有透明電極之玻璃基板。 將C d S e / Z n S内核-外殼型半導體奈米結晶分散於三氯 甲烷中,並將於長波長側之吸收極大之波長(575nm)之半導 20 體奈米結晶三氯甲烧分傲液lcm長之吸光度調整至2.04。於 1.43g之該分散液中添加O.Olg之TPD,再添加三氯甲烷,得 到3.5g之混合液。 於已控制成低氧濃度、低溼度之封氮套手工作箱内, 將該混合液之一半旋轉塗布(1500rpm,30秒)於已形成之附 55 200850054 有透明電極之玻璃基板之ITO膜側之面上,以覆蓋ITO膜。 另外,旋轉塗布係於已控制成低氧濃度、低溼度之封氮套 手工作箱内實施。使用透過型電子顯微鏡觀察基板之斷 面,發現於TPD膜之表面,半導體奈米結晶析出並構成層, 5 且TPD+QD層之厚度係20nm。又,半導體奈米結晶之直徑 係7nm。另外,TPD具有作為電洞注入層之機能,且QD層 具有作為發光層之機能。 將所得之基板移動至真空蒸鍍裝置内,並藉由眾所周 知之真空蒸鍍法,製造出具有以下構造之部分元件。元件 10 構造 : 玻 璃基板 (0.7mm)/ITO(130nm)/TPD+QD(20nm)/TAZ(10nm)/Alq3(30n m)/MgAg(10nm)/Ac(150nm)。 於前述發光元件中,Ac係2,3,6,7,10,11-六氰 -1,4,5,8,9,12-六氮聯伸三苯(11入1>又,於前述發光元件中, 15 MgAg及Ac具有作為中間連接層之機能。 [化 27]SrCu2〇2, LaB6, Ru〇x transparent conductive material. Among them, conductive metal oxides such as ITO, IZO, SnOx, ZnOx, TiOx, VOx, MoOx, and RuOx are particularly suitable. In order to enhance the viewing angle characteristics and the like of the light-emitting element, a film containing a low refractive index and the aforementioned transparent conductive material may be used as the intermediate connection layer. As the low refractive index material, an inorganic compound such as a metal oxide (SiOx or the like) or a metal fluoride (NaF, LiF, CaF2, Na3AlF6, A1F3 'MgF2, ThF4, LaF4, NdF3, etc.) or a fluorine-containing resin can be used. Compound. 50 200850054 [Substrate] The light-emitting element of the present invention is produced on a substrate. The substrate referred to herein is a substrate for supporting a light-emitting element, and is preferably a smooth substrate having a light transmittance of 50% or more in a visible region of 4 Å to 7 〇〇 11111. Specifically, a glass plate or a polymer plate is exemplified. For the glass plate, for example, lime glass, glass containing bismuth pin, mis-glass, alumite glass, borosilicate glass, barium borosilicate glass, quartz, and the like can be mentioned. Further, examples of the polymer plate include polycarbonate, acrylic acid, polyethylene terephthalate, polyestersulfide, and p〇lysuifone. Further, if the support substrate is located on the opposite side of the light extraction direction, light transmission is not required. [Anode] The anode of the light-emitting element serves as a hole for injecting a hole into the hole transport layer or the light-emitting layer. When the anode side requires transparency, indium tin oxide 15 alloy (IT0), tin oxide (NESA), and oxidation can be suitably used. Indium alloy (IZ0) 'Gold, silver, platinum, copper, etc. Further, in the case of a reflective electrode which does not require transparency, a metal or an alloy such as aluminum, molybdenum, chromium or nickel may be used in addition to the metals. These materials may be used singly, and alloys of the materials or materials to which other elements are added may be appropriately selected and used. When the light emitted from the luminescent layer is taken out from the anode, the transmittance of the luminescent light with respect to the anode is preferably more than 1%. Further, the sheet resistance of the anode is preferably several hundred Ω / □ or less. Although the film thickness of the anode is also determined depending on the material, it is usually selected from 1 Onm to 1 // rn ' and preferably in the range of 1 〇 to 2 〇〇 nmi. [Cathode] 51 200850054 Metals, alloys, electrically conductive compounds and mixtures of these having a small constant (4 eV or less) can be used as the electrode material in the cathode. Specific examples of such an electrode material include sodium, sodium-potassium alloy, magnesium, strontium, strontium, silver, and oxidized! Lu, | Lu · Zhong alloy, steel, rare earth metals. The cathode can be formed by forming the film by the method of sputtering (4) sputtering or the like. Here, when the light emitted from the light-emitting layer is taken out from the cathode, the transmittance of the light emitted from the cathode is preferably more than 10%. Further, the sheet resistance of the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually 10 nm to 10 nm, preferably 5 Å to 2 〇〇 nm. [Insulating Layer] The light-emitting element is an ultra-thin film that is applied to an ultra-thin film. It is easy to produce a defect due to leakage or short-circuit. To prevent this, an insulating film layer may be inserted between a pair of electrodes. 15 Materials used for the insulating layer include, for example, oxidation, fluorination clock, lithium oxide, fluorinated planing, cerium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, barium carbonate, and nitriding Oxidation, oxidized stone, oxidation, nitriding, boron nitride, molybdenum oxide, cerium oxide, vanadium oxide, and the like. Mixtures or laminates of the temple can also be used. 2. In the light-emitting device of the present invention, the formation method of each layer is not particularly limited, but a vacuum deposition method, an LB method, a resistance heating vapor deposition method, an electron beam method, a sputtering method, a molecular lamination method, a coating film can be used. Various methods such as a spin coating method, a casting method, a β coating method, a He ink method, and a printing method. Further, the film thickness of each organic layer of the organic EL device of the present invention is not particularly limited to 52,500,500,54, but generally, when the film thickness is too thin, defects such as pinholes are likely to occur, and if it is too thick, a higher voltage is applied. The efficiency is deteriorated, so it is usually within the range of 11111 to 1 #m. [Embodiment] 5 Next, the present invention will be described more specifically by way of examples, and the present invention is not limited to the embodiments. Further, the luminance and chromaticity of the elements fabricated in the respective examples were measured using a spectroradiometer (CS-1000, manufactured by Minolta). In addition, an arbitrary function generator (manufactured by BIOMATION Co., Ltd., 2202A) was used as the pulse-wave visibility modulation control device, and a power amplifier (NF4005 manufactured by Νρ Circuit Design Co., Ltd.) was used to amplify the output and was applied to the example. Component, find its characteristics. Example 1 IT0 (anode) was formed into a film having a thickness of 120 nm on a glass substrate having a thickness of 7 mrn as a glass substrate with a transparent electrode. 15 Dispersing CdSe/ZnS core-shell semiconductor nanocrystals (luminescence peak wavelength: 590 nm, emission half-width: 30 nm) in chloroform, and absorbing the wavelength of the long wavelength side (575 nm) The absorbance of the rice crystal/trichloromethane dispersion lcm was adjusted to 2.04. Further, the absorbance was measured using a UV-3100S spectrophotometer (manufactured by Shimadzu Corporation) and an angular optical cell having an optical path length of 20 lcm. 0.02 g of N,N,-biphenyl-N,N,-bis(3-toluenebiphenyl)-4,4'-diamine (butanol 0) was added to 2.48 g of the dispersion to obtain 2.5 § Mixture. The ITO film of the glass substrate with the transparent 53 200850054 electrode was formed by spin coating (15 rpm, 30 seconds) in a nitrogen sealing hand working box which has been controlled to a low oxygen concentration and a low humidity. The side of the side is covered with an ITO film. Further, the spin coating is carried out in a nitrogen sealing kit which has been controlled to have a low oxygen concentration and a low humidity. The cross section of the substrate was observed by a transmission electron microscope, and it was found that the semiconductor nanocrystals were crystallized and formed a layer on the surface of the TPD film, and the thickness of the 5 TPD+QD layer was 40 nm. Further, the diameter of the semiconductor nanocrystal is 7 nm. Further, the TPD layer has a function as a hole injection layer, and the QD layer has a function as a light-emitting layer. The obtained substrate was moved into a vacuum vapor deposition apparatus, and additional film formation was carried out by a vacuum evaporation method known in the art to produce a light-emitting element having the following structure. Element configuration: glass substrate (0.7 mm) / IT 〇 (130 nm) / TPD + QD (40 nm) / TAZ (10 nm) / Alq3 (30 nm) / LiF (lnm) / Al (150 nm). In the above light-emitting element, TAZ is 3-(4-diphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole. Further, in the light-emitting element, TAZ and Alq3 15 have functions as an electron transport layer and an electron injection layer, respectively, and LiF and A1 have functions as a cathode. A voltage was applied to the light-emitting element, and its characteristics were evaluated. Fig. 3 is a graph showing the voltage_luminance characteristics of the light-emitting element of Example 1. The light-emitting element of Example 1 gave a luminance of 200 nit at an applied voltage of 25V. 20 Fig. 4 shows the applied voltage dependence of the luminescence spectrum of the obtained light-emitting element. In the light-emitting element, the light emission near the wavelength of 59 〇 nm belongs to the luminescence of the semiconductor nanocrystal, and the luminescence spectrum of Fig. 4 is normalized by the peak. The shoulder of the spectrum observed around the wavelength 520mn belongs to the luminescence of Alq3, and it is confirmed that the intensity of the shoulder relatively increases with respect to the luminescence of the semiconductor nano 54 200850054 as the applied voltage increases. As is clear from Fig. 4, in order to suppress the light emission of Alq3, the light emission of the semiconductor nanocrystal is efficiently utilized, and the applied voltage is preferably 22 V (corresponding to a luminance of 6 〇 nit) or less. 5 The light-emitting element obtained by driving a rectangular light having a voltage amplitude of 0 to 22 V and a frequency of 100 Hz was used to measure luminance and chromaticity change in a rectangular wave operating ratio of 0 to 100%. The luminance dependence of the chromaticity of the illuminating element is shown in Fig. 5. The light-emitting element of Example 1 which was driven by the pulse width modulation was almost free from chromaticity change with respect to luminance change, and a good driving result was obtained. 10 Comparative Example 1 The light-emitting element manufactured in Example 1 was driven by a DC voltage gradient. The luminance dependence of the chromaticity of the illuminating element is shown in Fig. 6. The chromaticity of the light-emitting element driven by the voltage gradient is largely changed by the brightness, and it is found that it is difficult to use it for display use or backlight use. 15 Example 2 ITO (anode) was formed on a glass substrate having a thickness of 77 mm on a glass substrate having a thickness of 120 nm as a glass substrate with a transparent electrode. Dispersing C d S e / Z n S core-shell semiconductor nanocrystals in chloroform and absorbing a very large wavelength (575 nm) of the long-wavelength side of the semiconductor nanocrystals The absorbance of the long-term liquid lcm is adjusted to 2.04. To the dispersion of 1.43 g, OPD of O.Olg was added, and then chloroform was added to obtain a mixed liquid of 3.5 g. One half of the mixture was spin-coated (1500 rpm, 30 seconds) on the ITO film side of the formed glass substrate with transparent electrodes in a nitrogen-sealed handle box that has been controlled to a low oxygen concentration and low humidity. On the surface, to cover the ITO film. Further, the spin coating is carried out in a nitrogen sealing kit which has been controlled to have a low oxygen concentration and a low humidity. The cross section of the substrate was observed by a transmission electron microscope, and it was found that the semiconductor nanocrystals were crystallized on the surface of the TPD film to form a layer, and the thickness of the TPD + QD layer was 20 nm. Further, the diameter of the semiconductor nanocrystal was 7 nm. In addition, the TPD has a function as a hole injection layer, and the QD layer has a function as a light-emitting layer. The obtained substrate was moved into a vacuum evaporation apparatus, and a part of the elements having the following structures were produced by a vacuum evaporation method well known. Element 10 Construction: Glass substrate (0.7 mm) / ITO (130 nm) / TPD + QD (20 nm) / TAZ (10 nm) / Alq3 (30 n m) / MgAg (10 nm) / Ac (150 nm). In the above light-emitting element, Ac is 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexanitro-stranded triphenyl (11 into 1); Among the components, 15 MgAg and Ac have functions as intermediate connection layers.

CNCN

HAT 將該部分元件再移動至封氮套手工作箱内,並將殘餘 之於積層TPD+QD層時使用之混合液,旋轉塗布 56 200850054 (1500rpm,30秒)於已形成Ac層之側之面上,以覆蓋Ac層。 將所得之基板再移動至真空蒸鍍裝置内,並藉由眾所周知 之真空蒸鍍法,製造出具有以下構造之發光元件。元件構 造:玻 璃基板 5 (0.7mm)/ITO(130nm)/TPD+QD(20nm)/TAZ(10nm)/Alq3(30n m)/Mg Ag( 10nm)/Ac( 15 0nm)/TPD+QD(20nm)/TAZ( 10nm)/Al q3(30nm)/LiF(lnm)/Al(150nm)。 施加電壓於該發光元件,並評價其特性。 第7圖係顯示實施例2之發光元件之電壓-亮度特性。 10 使用電壓振幅0〜44V且頻率ιοοΗζ之矩形驅動所得之 發光元件,於矩形波之工作比為〇〜1〇〇%中,分別測定亮度 及色度變化。於第8圖顯示該發光元件色度之亮度相關性。 以脈波寬度調變驅動之實施例2之發光元件,相對於亮度變 化成乎無色度變化,且,具有超過1〇〇nit之亮度,而得到良 15 好之驅動結果。 產業上利用之可能性 本發明之發光元件適用於7^等之平面顯示器。又,亦 適用於平面發光體或顯示器之背光源等光源 >手機>PDA ~ 衛生^航系統、車之儀表面板等之顯示部、照明等。 ° 於此凡全引用本說明書記载之文獻内容。 【鬮式簡單說明】 第1圖係顯不本發明發光元件之第J實施形態之概略截 面圖。 第2圖係顯示本發明發光元件之第2實施形態之概略截 57 200850054 面圖。 第3圖係顯示實施例1中製造之發光元件之電壓-亮度 特性之表的圖。 第4圖係顯示實施例1中製造之發光元件之發光光譜的 外施電壓相關性之表的圖。 第5圖係顯示實施例1中製造之發光元件經脈波寬度調 變驅動後色度之亮度相關性的圖。 第6圖係顯示實施例1中製造之發光元件經電壓梯度驅 動後色度之亮度相關性的圖。 10 第7圖係顯示實施例2中製造之發光元件之電壓-亮度 特性之表的圖。 第8圖係顯示實施例2中製造之發光元件經脈波寬度調 變驅動後色度之亮度相關性的圖。 【主要元件符號說明】 1,2…發光元件 10."陽極 20…電洞輸送層 30…發光層 40…電子輸送層 50…電子注入層 60.··陰極 70…脈波寬度調變控制裝置 80…中間連接層 90,92···發光部 58HAT moves the part of the component to the nitrogen-sealed handle box, and the mixture used in the build-up of the TPD+QD layer is spin-coated 56 200850054 (1500 rpm, 30 seconds) on the side where the Ac layer has been formed. On the surface to cover the Ac layer. The obtained substrate was moved again into a vacuum evaporation apparatus, and a light-emitting element having the following structure was produced by a well-known vacuum evaporation method. Component construction: glass substrate 5 (0.7 mm) / ITO (130 nm) / TPD + QD (20 nm) / TAZ (10 nm) / Alq3 (30 n m) / Mg Ag (10 nm) / Ac (15 0 nm) / TPD + QD ( 20 nm) / TAZ (10 nm) / Al q3 (30 nm) / LiF (lnm) / Al (150 nm). A voltage was applied to the light-emitting element, and its characteristics were evaluated. Fig. 7 is a graph showing the voltage-luminance characteristics of the light-emitting element of Example 2. 10 The light-emitting elements obtained by driving the rectangular light having a voltage amplitude of 0 to 44 V and a frequency of ιοοΗζ were measured for luminance and chromaticity change in a rectangular wave operating ratio of 〇1 to 1%. The brightness dependence of the chromaticity of the illuminating element is shown in Fig. 8. The light-emitting element of Example 2, which was driven by pulse width modulation, changed to a colorless change with respect to luminance, and had a luminance of more than 1 〇〇 nit, resulting in a good driving result. Industrial Applicability The light-emitting element of the present invention is suitable for use in a flat panel display such as 7^. Moreover, it is also applicable to a light source such as a backlight of a planar illuminant or a display, a display unit, a light source, etc. of a mobile phone, a PDA, a sanitary system, a dashboard of a vehicle, and the like. ° The contents of the documents described in this manual are fully quoted here. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a Jth embodiment of a light-emitting device of the present invention. Fig. 2 is a plan view showing a schematic view of a second embodiment of the light-emitting device of the present invention. Fig. 3 is a view showing a table of voltage-luminance characteristics of the light-emitting element manufactured in Example 1. Fig. 4 is a view showing a table of voltage dependence of an emission spectrum of a light-emitting element manufactured in Example 1. Fig. 5 is a graph showing the luminance correlation of the chromaticity after the light-emitting element manufactured in Example 1 is driven by the pulse width modulation. Fig. 6 is a graph showing the luminance dependence of the chromaticity of the light-emitting element manufactured in Example 1 after being driven by a voltage gradient. Fig. 7 is a view showing a table of voltage-luminance characteristics of the light-emitting elements manufactured in Example 2. Fig. 8 is a graph showing the luminance correlation of the chromaticity after the light-emitting element manufactured in Example 2 is driven by the pulse width modulation. [Main component symbol description] 1, 2... Light-emitting element 10. "Anode 20... Hole transport layer 30... Light-emitting layer 40... Electron transport layer 50... Electron injection layer 60. · Cathode 70... Pulse width modulation control Device 80... intermediate connection layer 90, 92···light emitting unit 58

Claims (1)

200850054 十、申請專利範圍: 種M7L件,包含有依序積層之陽極、發光層及陰 '’且前述發光層含有奈米結晶發光微粒子,並且前述 發光7L件係以脈波寬度調變驅動者。 5 2. 專利範圍第i項之發光^件,其中於前述陽極及 前述發光層間含有電洞輸送層。 3.如:請專·圍第丨項之發光元件,其中於前述發光層 及前述陰極間含有電子輪送層。 《^申請專利範圍第i項之發統件,其中於前述陽極及 1〇 别述發光層間含有電洞輸送層,且於前述發光層及前述 陰極間含有電子輸送層。 5·種务光元件,包含有陽極及陰極,並於前述陽極與前 述陰極間至少包含有2個由含有奈米結晶發光微粒子所 形成之發光層,且於前述發光層之間至少具有丨個中間 15 連接層,並且前述發光元件係以脈波寬度調變驅動者。 6·如申請專利範圍第丨〜5項中任一項之發光元件,其中前 述發光層之厚度係1〜1〇〇nm。 7·如申請專利範圍第1〜5項中任一項之發光元件,其中前 述奈米結晶發光微粒子係半導體奈米結晶。 20 8·如申請專利範圍第7項之發光元件,其中前述半導體奈 米結晶係内核-外殼型半導體奈米結晶。 59200850054 X. Patent application scope: A kind of M7L piece, comprising an anode, a light-emitting layer and a cathode layer which are sequentially laminated, and the light-emitting layer contains nano crystal light-emitting particles, and the light-emitting 7L piece is driven by a pulse width modulation driver. . 5 2. The illuminating device of item i of the patent scope, wherein a hole transport layer is contained between the anode and the luminescent layer. 3. For example, the light-emitting element of the above-mentioned item, wherein the electron-emitting layer is contained between the light-emitting layer and the cathode. The invention of claim i, wherein the anode and the light-emitting layer comprise a hole transport layer, and an electron transport layer is contained between the light-emitting layer and the cathode. 5. The zoning optical element includes an anode and a cathode, and at least two luminescent layers formed of luminescent particles containing nanocrystals are included between the anode and the cathode, and at least one of the luminescent layers is provided between the anode and the cathode. The middle 15 is connected to the layer, and the aforementioned light-emitting element is driven by the pulse width modulation. The light-emitting element according to any one of the above-mentioned items, wherein the thickness of the light-emitting layer is 1 to 1 nm. The light-emitting element according to any one of claims 1 to 5, wherein the nanocrystalline crystal light-emitting fine particles are semiconductor nanocrystals. The light-emitting element of claim 7, wherein the semiconductor nanocrystal is a core-shell type semiconductor nanocrystal. 59
TW097110991A 2007-03-30 2008-03-27 Light emitting element TW200850054A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007091290 2007-03-30

Publications (1)

Publication Number Publication Date
TW200850054A true TW200850054A (en) 2008-12-16

Family

ID=39808185

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097110991A TW200850054A (en) 2007-03-30 2008-03-27 Light emitting element

Country Status (2)

Country Link
TW (1) TW200850054A (en)
WO (1) WO2008120603A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504034B (en) * 2009-05-13 2015-10-11 Global Oled Technology Llc Internal connector for organic electronic devices
US10910579B2 (en) 2009-05-29 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101094282B1 (en) * 2009-12-04 2011-12-19 삼성모바일디스플레이주식회사 Organic light emitting diode device
JP6225912B2 (en) * 2012-10-10 2017-11-08 コニカミノルタ株式会社 Electroluminescence element
US20230255039A1 (en) * 2020-07-29 2023-08-10 Sharp Kabushiki Kaisha Light-emitting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217861A (en) * 2002-01-22 2003-07-31 Matsushita Electric Ind Co Ltd Electroluminescent element
JP2003234181A (en) * 2002-02-08 2003-08-22 Denso Corp Display equipment and driving method of display equipment
JP3933591B2 (en) * 2002-03-26 2007-06-20 淳二 城戸 Organic electroluminescent device
EP1493308A4 (en) * 2002-03-29 2009-09-16 Massachusetts Inst Technology Light emitting device including semiconductor nanocrystals
JP2004226673A (en) * 2003-01-23 2004-08-12 Toyota Industries Corp Organic electroluminescence system
TWI267822B (en) * 2004-04-30 2006-12-01 Fuji Photo Film Co Ltd Organic electroluminescence device that can adjust chromaticity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504034B (en) * 2009-05-13 2015-10-11 Global Oled Technology Llc Internal connector for organic electronic devices
US10910579B2 (en) 2009-05-29 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11889711B2 (en) 2009-05-29 2024-01-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device

Also Published As

Publication number Publication date
WO2008120603A1 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP6963821B2 (en) Organic light emitting element
WO2022237668A1 (en) Fused ring compound, application thereof, and organic electroluminescent device containing same
Zhang et al. Blue and white organic electroluminescent devices based on 9, 10-bis (2′-naphthyl) anthracene
JP2002100478A (en) Organic electroluminescence element and its method of manufacture
TW200533230A (en) White color organic electroluminescence device
TW200305630A (en) Organic light emitting diode devices with improved operational stability
TW200915915A (en) High-performance tandem white OLED
WO2005117500A1 (en) White organic electroluminescent device
JP2002100482A (en) Organic electroluminescence element
KR20100106415A (en) Organic electroluminescent device
WO2007148660A1 (en) Organic electroluminescent device employing heterocycle-containing arylamine derivative
TW200808116A (en) Organic electroluminescent device
JP2009187956A (en) Organic electroluminescence element having two luminescent layers through electron barrier layer
JPWO2007032162A1 (en) Pyrene derivatives and organic electroluminescence devices using them
JP2009194042A (en) Charge transporting material for use of organic electroluminescence element containing carbazolyl group and its use
TW200418343A (en) Organic electroluminescent element
JP2013518373A (en) Organic electroluminescent devices with integrated layers for color conversion
TW200910660A (en) Light emitting device
Kumar et al. White organic light emitting diodes based on DCM dye sandwiched in 2-methyl-8-hydroxyquinolinolatolithium
JP2005276583A (en) Organic electroluminescent element and indicating device
JP2020066733A (en) Luminescence material, and electroluminescence element, ink composition and printed matter using the same
CN112909211B (en) Material for forming blue light-emitting layer, light-emitting device, light-emitting substrate, and light-emitting device
KR20080052589A (en) Asymmetric fluorene derivative and organic electroluminescent element containing the same
JP2020095936A (en) Electroluminescence element
TW200850054A (en) Light emitting element