200849716 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種智慧型天線,且特別是有關於一 種可調場型的智慧型天線。 【先前技術】 傳統的智慧型天線技術多利用相位可調式陣列天線來 達成。以一傳統四天線元件的陣列天線為例,當每一天線 元件的相位相差60度,因此輻射波束會移動至2〇度附近。 陣列天線只需動態調整天線前端的移相器(phase shiftei^即 可控制輻射的場型或控制輻射場型零點的角度。然而,可 動恶控制的移相器成本居高不下,所以該設計方法的瓶頸 在於設計成本高。另一方面,陣列天線的間距一般採用半 波長的間距來設計,導致天線不易達成小型化的設計。上 述的種種問題都不利於將智慧型天線應用於資訊家電產品 【發明内容】 據此,本發明提供一種可調場型的智慧型天線。 根據本發明之一實施例,提出一種可調場型的智慧型 天線。此智慧型天線包含以下元件,金屬層、複數=槽型 天線、絕緣層、同軸線饋入架構、複數個微帶線、複^個 開關與複數個偏壓電路。其中,複數個槽型天線形成於接 地之金屬層,這些槽型天線之槽線開口分別朝向不同的方 向。絕緣層之一表面覆蓋上述金屬層。同軸線饋入架構貫 200849716 穿絕緣層而設置且電性連接於金屬層,複數微帶線形成於 絕緣層之另一表面,這些微帶線可分別地饋入射頻訊號至 各槽型天線。複數個開關係用以連接同軸線饋入架構與每 一微帶線。每一偏壓電路電性連接至每一開關,藉以控制 開關的狀態,進而個別調整該些槽型天線的動作狀態,使 得天線輻射場型能夠調整。 因此’本發明的智慧型天線,利用切換複數個槽型天 線的動作狀態,使得天線場型的能夠調整至所需的場型。 此外,此智慧型天線的設計易於小型化,而能應用於各種 輕薄短小的資訊家電產品上。 【實施方式】 如上所述,本發明提出一種可調場型的智慧型天線, 利用其容易小型化的特點,能應用於各種輕薄短小的資訊 家電產品上。以下將藉由實施例來說明本發明的細節,其 中’槽型天線係採用L槽型天線。 請參照ffi 1,其繪示依照本發明一較佳實施例的一種可 調場型的智慧型天線。此智慧型天線100包含四個L槽型 天線AVA2/A3/A4。四個L槽型天線Ai/A2/A3/a4形成於一 金屬接地層BL上”f注意,圖丨中央的智慧型天線_ 上視圖是不㈣絕緣層1L的示意®。所謂的L槽型天線就 是在接地層虹_出L型凹槽的天線乂槽型天線的長度 d約等於1/4射頻訊號波長4槽型天線的數量可視需求而 變化,並不限於四個。 在本實施例中,四個L槽型天線Ai/A2/A3/A4的槽線開 200849716 口 CV〇2/〇3/〇4分別朝向4不同的方向(例如指向〇、9〇、18〇 和270度),且槽線開口方向之間的夾角是相等的度)。 在其他實施例中,智慧型天線可以包含3個L槽型天線, 而槽線開口方向之間的夾角就可以是120度。 智慧型天線100更包含一絕緣層IL覆蓋於金屬接地層 BL上,而其他大部份的天線元件就形成於絕緣層I]L上的 — 頂層TL。 • 一同軸線饋入架構102貫穿絕緣層IL而設置(請參照 f 圖1内同軸線饋入架構102的剖面圖),且距離每一 l槽型 天線約相等。同軸線饋入架構102包含一同軸線連接器(由 圖面上的探針1 〇2a、同軸絕緣層1 〇2b以及一金屬1 〇2c所 組成)。同軸線連接器可以與一對應的連接器連接,因此射 頻訊號可以從外部經探針102a傳遞至頂層TL或從頂層TL 經探針102a傳遞至外部。同軸絕緣層1 〇2b用以絕緣探針 102a與金屬i〇2c。 智慧型天線 100 還需要四個微帶線 G MWMWMWML4(位於頂層TL),用以連接同軸線饋入架 構102與四個金屬片Ri/RVh/R4。微帶線的一端電性連接 至同軸線饋入架構102,微帶線的另一端為一矩形金屬片 Ri/RVRVR4。矩形金屬片R^/I^/R3/!^位於絕緣層IL上且分 別對應至L槽型天線Ai/AVA^/A4的直角夾角。請參照開路 饋入剖面110,射頻訊號採用開路方式從微帶線的矩形金屬 片Ri/RVRVIU饋入L槽型天線或從L槽型天 線Ai/AVAs/A4饋入微帶線的矩形金屬片。換言 之,矩形金屬片Rj/R^/Rs/R4與L槽型天線a!/A2/A3/A4之 200849716 間沒有實體上的電性連接(矩形金屬片與L槽型天線之間的 絕緣層IL上沒有通孔)。 四個開關Di/DVDVD4(位於頂層TL)電性連接於微帶線 MIVMLVMIVML4與同軸線饋入架構1〇2之間。開關 Di/D^Ds/D4可以是二極體(piN Di〇de)或其它種類開關。在 本實施例中,開關Di/DVDs/D4是二極體(PIN Di〇de),且其 P型端電性連接至每一微帶線,而N型端電性連接至同軸 線饋入架構102之探針l〇2a。 四個偏壓電路1〇5(位於頂層TL)電性連接至每一開關 (經由微帶線MWMWMWML4),藉以控制開關 Di/DVDs/D4的狀態(通路或斷路),進而調整[槽型天線 Ai/Az/As/A4的動作狀態。例如,當偏壓電路1〇5控制^ 開關為通路而其他開關為斷路時,L槽型天線Ai就合處於 動作狀態,而其他L槽型天線就會處於不動作狀態。 每一偏壓電路105包含一 1/4射頻訊號波長微帶線 106、一電容108以及一電阻109。電容1〇8電性連接於1/4 射頻訊號波長微帶線106與金屬接地層BL之間(藉由穿越 導孔108a)。電阻109電性連接於1/4射頻訊號波長微帶線 106與一偏壓(施加於控制電極l〇9a上)之間。電容1〇8與 電阻109是開關DVDa/DVD4的過負載保護元件。 清參P、?、接地剖面112 ’微帶線1 〇4a(位於頂層TL)用以 將同軸線饋入架構102穿越接地導孔1〇4電性連接至金屬 接地層BL。微帶線104a的長度約等於1 /4射頻訊號波長。 請參照圖2-圖11 ’分別繪示第1圖的智慧型天線的1 〇 種場型圖。當使用者以四個偏壓電路1 〇5控制四個開關 200849716200849716 IX. Description of the Invention: [Technical Field] The present invention relates to a smart antenna, and more particularly to a smart antenna of an adjustable field type. [Prior Art] Conventional smart antenna technology is mostly achieved by using a phase-adjustable array antenna. Taking an array antenna of a conventional four-antenna element as an example, when the phase of each antenna element is different by 60 degrees, the radiation beam will move to near 2 degrees. The array antenna only needs to dynamically adjust the phase shifter at the front end of the antenna (phase shiftei^ can control the field pattern of the radiation or control the angle of the zero point of the radiation field type. However, the cost of the movable phase control phase shifter is high, so the design method The bottleneck is that the design cost is high. On the other hand, the spacing of the array antennas is generally designed with a half-wavelength spacing, which makes the antenna difficult to achieve a miniaturized design. All of the above problems are not conducive to the application of smart antennas to information appliances [ SUMMARY OF THE INVENTION Accordingly, the present invention provides a tunable field type smart antenna. According to an embodiment of the present invention, a tunable field type smart antenna is provided. The smart antenna includes the following components, a metal layer, and a plurality of = slot antenna, insulation layer, coaxial feed structure, a plurality of microstrip lines, a plurality of switches and a plurality of bias circuits, wherein a plurality of slot antennas are formed on the grounded metal layer, and the slot antennas The slot line openings are respectively oriented in different directions. One surface of the insulating layer covers the above metal layer. The coaxial line feed structure is 200849716. The edge layer is disposed and electrically connected to the metal layer, and the plurality of microstrip lines are formed on the other surface of the insulating layer, and the microstrip lines can respectively feed the RF signals to the slot antennas. The plurality of open lines are used to connect the coaxial lines. The line feed structure and each microstrip line. Each bias circuit is electrically connected to each switch, thereby controlling the state of the switch, and then individually adjusting the operating states of the slot antennas, so that the antenna radiation field can be adjusted. Therefore, the intelligent antenna of the present invention can adjust the antenna field type to the desired field type by switching the operation states of the plurality of slot antennas. In addition, the design of the smart antenna is easy to be miniaturized and can be applied. [Embodiment] As described above, the present invention provides a smart antenna with adjustable field type, which can be applied to various light, short and small information home appliances by utilizing the characteristics of being easy to miniaturize. The details of the present invention will be described below by way of embodiments, in which the 'slot antenna is an L-slot antenna. Please refer to ffi 1, which is shown in accordance with the present invention. A tunable field type smart antenna of the preferred embodiment. The smart antenna 100 includes four L-slot antennas AVA2/A3/A4. Four L-slot antennas Ai/A2/A3/a4 are formed in a metal On the ground plane BL "f Note, the smart antenna in the center of the figure _ the upper view is not the (4) schematic of the insulating layer 1L. The so-called L-slot antenna is the antenna type in the ground layer rainbow_out L-shaped groove The length d of the antenna is approximately equal to 1/4 of the RF signal wavelength. The number of 4 slot antennas can vary depending on the requirements, and is not limited to four. In this embodiment, the slots of the four L-slot antennas Ai/A2/A3/A4 Line opening 200849716 port CV〇2/〇3/〇4 are respectively oriented in 4 different directions (for example, pointing to 〇, 9〇, 18〇 and 270 degrees), and the angle between the opening directions of the groove lines is equal). In other embodiments, the smart antenna may include three L-slot antennas, and the angle between the opening directions of the slot lines may be 120 degrees. The smart antenna 100 further includes an insulating layer IL covering the metal ground layer BL, and most other antenna elements are formed on the insulating layer I]L - the top layer TL. • A coaxial feedthrough structure 102 is placed through the insulating layer IL (see the cross-sectional view of the coaxial feedthrough architecture 102 in Figure 1) and is approximately equal to each 1-slot antenna. The coaxial feed structure 102 includes a coaxial connector (composed of probe 1 〇 2a on the drawing, coaxial insulating layer 1 〇 2b, and a metal 1 〇 2c). The coaxial connector can be coupled to a corresponding connector so that the RF signal can be transmitted from the outside via the probe 102a to the top layer TL or from the top layer TL through the probe 102a to the outside. The coaxial insulating layer 1 〇 2b is for insulating the probe 102a and the metal i 〇 2c. The smart antenna 100 also requires four microstrip lines G MWMWMWML4 (located on the top layer TL) for connecting the coaxial feed structure 102 to the four metal sheets Ri/RVh/R4. One end of the microstrip line is electrically connected to the coaxial feed structure 102, and the other end of the microstrip line is a rectangular metal piece Ri/RVRVR4. The rectangular metal pieces R^/I^/R3/!^ are located on the insulating layer IL and correspond to the right angles of the L-slot antennas Ai/AVA^/A4, respectively. Please refer to the open feed profile 110. The RF signal is fed into the L-slot antenna from the rectangular strip of the microstrip line Ri/RVRVIU or the rectangular strip of the microstrip line fed from the L-slot antenna Ai/AVAs/A4. In other words, there is no physical electrical connection between the rectangular metal piece Rj/R^/Rs/R4 and the L-channel antenna a!/A2/A3/A4 200849716 (the insulating layer between the rectangular metal piece and the L-slot type antenna) There are no through holes on the IL). Four switches Di/DVDVD4 (located on the top layer TL) are electrically connected between the microstrip line MIVMLVMIVML4 and the coaxial line feed architecture 1〇2. The switch Di/D^Ds/D4 can be a diode (piN Di〇de) or other type of switch. In this embodiment, the switch Di/DVDs/D4 is a diode (PIN Di〇de), and its P-type end is electrically connected to each microstrip line, and the N-type end is electrically connected to the coaxial line feed. The probe 102 of the architecture 102 is 〇2a. Four bias circuits 1〇5 (located at the top layer TL) are electrically connected to each switch (via the microstrip line MWMWMWML4) to control the state of the switch Di/DVDs/D4 (path or open circuit), thereby adjusting the [groove type The operating state of the antenna Ai/Az/As/A4. For example, when the bias circuit 1〇5 controls the switch to be a path and the other switches are open, the L-slot antenna Ai is in an active state, and the other L-slot antennas are in a non-operating state. Each bias circuit 105 includes a 1/4 RF signal wavelength microstrip line 106, a capacitor 108, and a resistor 109. Capacitor 1〇8 is electrically connected between 1/4 RF signal wavelength microstrip line 106 and metal ground plane BL (by traversing via hole 108a). The resistor 109 is electrically connected between the 1/4 RF signal wavelength microstrip line 106 and a bias voltage (applied to the control electrode 10a). Capacitor 1 〇 8 and resistor 109 are overload protection elements of switch DVDa/DVD4. The ginseng P, ?, and grounding section 112' microstrip line 1 〇 4a (located at the top layer TL) are used to electrically connect the coaxial feed structure 102 through the ground vias 1 〇 4 to the metal ground plane BL. The length of the microstrip line 104a is approximately equal to 1/4 of the RF signal wavelength. Please refer to Fig. 2 - Fig. 11' for the 1 〇 field pattern of the smart antenna of Fig. 1, respectively. When the user controls four switches with four bias circuits 1 〇 5 200849716
Di/D^Ds/D4的狀態時,智慧型天線1〇()能夠產生以下所述 的10種不同場型圖。智慧型天線1〇〇能夠藉由切換至所需 的場型(10種場型其中之一),藉以維持天線較佳的收發效 率。 請參照圖2,其繪示智慧型天線1〇〇的天線a3動作而 其他天線不動作時的場型圖。 請參照圖3,其繪示智慧型天線1〇〇的天線a3/A4動作 而其他天線不動作時的場型圖。 請參照圖4,其繪示智慧型天線1〇〇的天線a4動作而 其他天線不動作時的場型圖。 請參照圖5’其繪示智慧型天線1〇〇的天線'/Μ動作 而其他天線不動作時的場型圖。 請參照圖6,其繪示智慧型天線1〇〇的天線、動作而 其他天線不動作時的場型圖。 請參照圖7,其繪示智慧型天線100的天線Ai/A2動作 而其他天線不動作時的場型圖。 請參照® 8,#繪示智慧型天、線100的天、線A2動作而 其他天線不動作時的場型圖。 請參照圖9,其繪示智慧型天線100的天線A2/A3動作 而其他天線不動作時的場型圖。 请參照圖10,其繪示智慧型天線1〇〇的天線Αι/Α3動 作而其他天線不動作時的場型圖。 凊參照圖11,其繪示智慧型天線1〇〇的天線心/心動 作而其他天線不動作時的場型圖。 由上述本發明較佳實施例可知,應用本發明的智慧型天 200849716 線,利用切換複數個L槽型天線的動作狀態,使得天線場型 的月b夠调至一所需的場型。此外,此智慧型天線的設計易於小 型化’而能應用於各種輕薄短小的資訊家電產品上。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 圖1繪示依照本發明一較佳實施例的一種可調場型的 智慧型天線;以及 圖2-圖11分別繪示第i圖的智慧型天線的1〇種場型 圖0 【主要元件符號說明】 A1 : L槽型天線 A2 : L槽型天線 As : L槽型天線 Μ : L槽型天線 d :長度 ΜΧι ·微帶線 ml2 :微帶線 ML3 :微帶線 BL :金屬接地層 IL ·絕緣層 100 :智慧型天線 102 :同軸線饋入架構 102a ··探針 102b :同軸絕緣層 102c :金屬 104 :接地導孔 200849716 ML4 :微帶線 104a :微帶線 h :開關 105 :偏壓電路 D2 :開關 106 :微帶線 D3 :開關 108 :電容 D4 :開關 108a :導孔 TL :頂層 109 :電阻 Ri :矩形金屬片 109a :控制電極 R2 :矩形金屬片 110 :開路饋入剖面 R3 :矩形金屬片 112 :接地剖面 R4 ··矩形金屬片 Ch :槽線開口 〇2 :槽線開口 〇3 :槽線開口 〇4 :槽線開口In the state of Di/D^Ds/D4, the smart antenna 1〇() can generate 10 different field patterns as described below. The smart antenna 1 can maintain the better transmission efficiency of the antenna by switching to the desired field type (one of the 10 field types). Referring to FIG. 2, a field diagram of the antenna a3 of the smart antenna 1 动作 while the other antennas are not operating is shown. Please refer to FIG. 3, which shows a field diagram when the antenna a3/A4 of the smart antenna 1〇〇 operates and the other antennas do not operate. Referring to Fig. 4, there is shown a field diagram of the antenna a4 of the smart antenna 1 动作 while the other antennas are not operating. Referring to Fig. 5', a field diagram of the antenna '/'''''''''''''' Please refer to FIG. 6 , which shows a field diagram of the antenna of the smart antenna 1 、 and the other antennas when the antenna does not operate. Please refer to FIG. 7 , which illustrates a field diagram when the antenna Ai/A2 of the smart antenna 100 operates and the other antennas do not operate. Please refer to ® 8, # depicting the smart day, the day of line 100, the line A2 action, and the field pattern when other antennas are not operating. Referring to FIG. 9, a field diagram of the antenna A2/A3 of the smart antenna 100 operating while the other antennas are not operating is illustrated. Referring to FIG. 10, a field diagram of the antenna Αι/Α3 of the smart antenna 1〇〇 is operated while other antennas are not operating. Referring to Fig. 11, there is shown a field diagram of the antenna core/cardiac motion of the smart antenna 1〇〇 and the other antennas not operating. It can be seen from the above preferred embodiment of the present invention that the smart day 200849716 line of the present invention is used to switch the operating state of a plurality of L-slot antennas so that the month b of the antenna pattern is adjusted to a desired field type. In addition, the design of this smart antenna is easy to miniaturize and can be applied to a variety of light and short information appliances. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; A smart field antenna with adjustable field type; and FIG. 2 to FIG. 11 respectively show a field pattern of the smart antenna of the first figure. FIG. 0 [Description of main component symbols] A1 : L-slot antenna A2: L-slot Type antenna As : L-slot type antenna Μ : L-slot type antenna d : Length ΜΧι · Microstrip line ml2 : Microstrip line ML3 : Microstrip line BL : Metal ground plane IL · Insulation layer 100 : Smart antenna 102 : Coaxial line Feeding structure 102a · Probe 102b: Coaxial insulating layer 102c: Metal 104: Grounding via 200849716 ML4: Microstrip line 104a: Microstrip line h: Switch 105: Bias circuit D2: Switch 106: Microstrip line D3 Switch 108: Capacitor D4: Switch 108a: Via TL: Top layer 109: Resistor Ri: Rectangular metal piece 109a: Control electrode R2: Rectangular metal piece 110: Open feed profile R3: Rectangular metal piece 112: Grounding profile R4 ·· Rectangular metal sheet Ch: slot line opening 〇2: slot line opening 〇3: slot line 〇4 port: opening slot line
G 11G 11