TW200849563A - NAND flash memory cell array and method of fabricating the same - Google Patents

NAND flash memory cell array and method of fabricating the same Download PDF

Info

Publication number
TW200849563A
TW200849563A TW96120287A TW96120287A TW200849563A TW 200849563 A TW200849563 A TW 200849563A TW 96120287 A TW96120287 A TW 96120287A TW 96120287 A TW96120287 A TW 96120287A TW 200849563 A TW200849563 A TW 200849563A
Authority
TW
Taiwan
Prior art keywords
flash memory
cell array
type flash
memory cell
gate type
Prior art date
Application number
TW96120287A
Other languages
Chinese (zh)
Other versions
TWI357150B (en
Inventor
Chung-We Pan
Shou-Yu Chang
Tzeng-Wen Tzeng
Ching-Hung Fu
Chih-Ping Chung
Original Assignee
Promos Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Promos Technologies Inc filed Critical Promos Technologies Inc
Priority to TW96120287A priority Critical patent/TWI357150B/en
Publication of TW200849563A publication Critical patent/TW200849563A/en
Application granted granted Critical
Publication of TWI357150B publication Critical patent/TWI357150B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A novel NAND flash memory cell array and the method of fabricating the same are disclosed in this invention. The NAND flash memory cell array comprises a substrate with an active area; a plurality of cells arranged in a row on the active area; a first barrier layer covering the cells and the active area around each end of the row; a first oxide deposited to fill a gap between the cells; an oxide spacer formed along the sidewall of a cell located at each end of the row; and a poly spacer formed on the oxide spacer acting as a selection gate for driving the row of cells.

Description

200849563 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種反及閘型快閃記憶體(NAND flash memory)的製造方法,特別係有關於一種具有自對準 製程(self-aligned process)的反及閘型快閃記憶體的製造方 法。 【先前技#f】 快閃記憶體(flash memory)具有面積小、省電、高速、 耐受性佳和低操作電壓等優點。因此,快閃記憶體係成為 例如數位相機、行動電話、印表機、個人數位助理(PDA) 等產品的重要元件。反及閘型快閃記憶體(NAND flash memory)是快閃記憶體的一種類型。反及閘型快閃記憶體 的晶胞係彼此連接且排成一陣列,其中僅上述陣列之其中 一列的第一個晶胞和最後一個晶胞係分別連接一字元線 I (word line)和一位元線(bit-line)。由於上述的結構,反及閘 型快閃記憶體可以存取較反或閘型快閃記憶體(NOR flash memory)多的資料(data)。表示反及閘型快閃記憶體具有較 大的^憶容量和較快的再寫入速度(rewriting speed)。反及 閘型快閃記憶體係廣泛地用於儲存大量資料,且可做為數 位相機或音樂數位槽案播放器(Mp3 player)的記憶卡。 美國專利號碼US 6,936,885係揭露了一種反及閘型快 閃記憶體元件及其製造方法。第la圖為一上視圖,其顯示 部分反及閘型快閃記憶體元件的晶胞陣列區。第lb圖係沿200849563 IX. Description of the Invention: [Technical Field] The present invention relates to a method for fabricating a NAND flash memory, and more particularly to a self-aligned process (self-aligned) Process) A method of manufacturing a gate-type flash memory. [Previous technique #f] Flash memory has the advantages of small area, power saving, high speed, good tolerance and low operating voltage. Therefore, the flash memory system has become an important component of products such as digital cameras, mobile phones, printers, and personal digital assistants (PDAs). NAND flash memory is a type of flash memory. The cell lines of the gate-type flash memory are connected to each other and arranged in an array, wherein only the first cell and the last cell of one of the arrays are connected to a word line, respectively. And a bit-line. Due to the above structure, the inverse type flash memory can access more data than the reverse or NOR flash memory. It means that the anti-gate type flash memory has a larger memory capacity and a faster rewriting speed. The anti-gate flash memory system is widely used to store large amounts of data and can be used as a memory card for a digital camera or a music digital slot player (Mp3 player). U.S. Patent No. 6,936,885 discloses an anti-gate type flash memory device and a method of fabricating the same. Figure la is a top view showing a cell array region partially transmissive to the gate type flash memory device. Lb diagram

Client’s Docket No·: 95146TW TT^s Docket No:0593-A41201-TW/Finayianchen/070605 5 200849563 第la圖的I-Ι切線的剖面圖,其顯示一快閃記憶體元件。 請參考第la和lb圖,字串選擇線(string selection line)圖 案Is和接地選擇線(ground selection line)圖案lg本質上係 定義字串選擇電晶體(string selection transistor)13和接地 選擇電晶體(ground selection transistor)19。複數個晶胞電 晶體15和17,形成於主動區2和字元線WP1〜WPn的交 叉處上。字串選擇電晶體(string selection transistor) 13和接 地選擇電晶體(ground selection transistor) 19係用來驅動上 述列的晶胞15和17。由於這種特殊結構及兩個選擇電晶 體13和19,而增加了製程複雜度。此外,習知反及閘蜜 快閃記憶體元件的選擇電晶體13和19係有高精確度需求 的問題。這種必要的南精嫁度必然會增加製程成本。 美國專利?虎碼U S 6,8 8 5,5 8 6係揭露了一種自對準 (self-aligned)的分離閘(split-gate)反及閘型快閃記憶體及 其製造方法。首先,沉積一層包括摻雜多晶矽或多晶矽化 物的導電層。然後’非等向性姓刻上述導電層,以形成用 來驅動一列反及閘型快閃記憶體晶胞的選擇閘極。上述習 知反及閘型快閃記憶體的結構係有晶胞之間的間隙寬度太 大的問題,會使反及閘型快閃記憶體的尺寸難以降低。 因此,需要一種反及閘型快閃記憶體晶胞陣列及其製 造方法’以解決習知技術之南製程成本或製程複雜等缺點。 【發明内容】 有鑑於此,本發明的目的係減少定義反及閘型快閃記 憶體晶胞陣列中選擇電晶體的光罩數目和降低其機台等Client's Docket No: 95146TW TT^s Docket No:0593-A41201-TW/Finayianchen/070605 5 200849563 A cross-sectional view of the I-inch line of the first drawing showing a flash memory component. Referring to the first and lb diagrams, the string selection line pattern Is and the ground selection line pattern lg essentially define a string selection transistor 13 and a ground selection transistor. (ground selection transistor) 19. A plurality of unit cell transistors 15 and 17 are formed at the intersection of the active area 2 and the word lines WP1 WPWPn. A string selection transistor 13 and a ground selection transistor 19 are used to drive the cells 15 and 17 of the above columns. Due to this special structure and the selection of the two crystals 13 and 19, the process complexity is increased. In addition, the selection of transistors 13 and 19, which are conventionally opposed to the glare flash memory components, have problems with high precision requirements. This necessary South Jincheng will inevitably increase the cost of the process. U.S. Patent No. 6,8 8 5,5 8 6 discloses a self-aligned split-gate and gate-type flash memory and a method of fabricating the same. First, a layer of conductive layer comprising doped polysilicon or polysilicon is deposited. The aforesaid conductive layer is then anisotropically patterned to form a select gate for driving a column of inverted gate-type flash memory cells. The above-mentioned conventional structure of the gate type flash memory has a problem that the gap width between the unit cells is too large, and the size of the anti-gate type flash memory is hard to be reduced. Therefore, there is a need for an anti-gate type flash memory cell array and a method of fabricating the same to solve the shortcomings of the conventional process, such as the south process cost or the complicated process. SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to reduce the number of masks for selecting a transistor in a reverse-gate type flash memory cell array and to reduce the number of such masks, etc.

Client’s Docket No·: 95146TW TT’s Docket Νο:0593-Α41201-Τλν/Ρίη&1/ί&η(:1ΐ6η/070605 . 200849563 級,以控制製程成本。 本發明之另—目的係減少反及開型快閃記憶體晶胞之 間的間隙寬度’其可有效縮小晶片尺寸,且可增加晶片的 元件密度。 fClient's Docket No:: 95146TW TT's Docket Νο:0593-Α41201-Τλν/Ρίη&1/ί&η(:1ΐ6η/070605 . 200849563, to control process cost. Another aspect of the present invention is to reduce the reverse and open type The gap width between the flash memory cells can effectively reduce the size of the wafer and increase the component density of the wafer.

本發明提供-種反及閘型快閃記憶體晶胞陣列,包 括:-基板’其包括—主動區;複數個排成—列的晶胞, 位於上述主動區上;-第—阻障層,覆蓋上述複數個晶胞 和圍繞上述列之各末端的上述主動區;—第—氧化物,沉 積於上述複數個晶胞之間的—間隙中’且填充上述間隙. -氧化物《壁’形成於沿著上述列之各末端之上述晶胞 的侧壁上;-多晶矽間隙壁’形成於上述氧化物間隙壁上, 上述多晶矽間隙壁係做為驅動上述列晶胞的一選擇閘極。 上述間隙的深寬比(aspect rati〇)較佳介於18至3 2 間。 ' · ·The invention provides a reverse-gate type flash memory cell array, comprising: a substrate comprising: an active region; a plurality of aligned cells arranged on the active region; and a first barrier layer Covering the plurality of unit cells and the active regions surrounding each end of the column; a first oxide deposited in the gap between the plurality of unit cells and filling the gap. - oxide "wall" Formed on the sidewalls of the unit cell along each end of the column; a polysilicon spacer spacer is formed on the oxide spacer, and the polysilicon spacer is used as a selection gate for driving the column cell. The aspect ratio of the above gap is preferably between 18 and 32. ' · ·

上述第一氧化物係具有優異的階梯覆蓋能力,可在填 充上述晶胞之間的上述間隙時不會有孔洞的形成。在另” 實施例中,只密封上述晶胞之間的上述間隙,也可 低階梯覆蓋能力的材料。 X 本發明較佳實施例的反及閘型快閃記憶體晶胞陣列, 更包括-植人區’其係利用植人預定離子方式形成於 上述列之各末端的上述主動區中;一氧化;,、凡 9 >儿積於上述 夕晶石夕間隙壁、上述氧化物間隙壁、部分卜 刀上迹弟一阻障層 和上述第-氧化物上—第二阻障層,沉積於上述氧化芦 上;一層間介電層,沉積於上述第二阻障B 曰 曰上及圍繞上述The first oxide layer has excellent step coverage ability, and the pores can be formed without filling the gap between the unit cells. In another embodiment, only the gap between the unit cells is sealed, and the material having a low step coverage capability is also used. X The reverse gate type flash memory cell array of the preferred embodiment of the present invention further includes - The irrigating area is formed in the active region at each end of the above column by using a predetermined ion implantation method; an oxidized;, 9 9 is accumulated in the cerevisiae spacer, the oxide spacer a portion of the barrier layer and the first oxide-second barrier layer deposited on the oxidized reed; an interlayer dielectric layer deposited on the second barrier B 及Around the above

Client,s Docket No·: 95146TW TT5s Docket No:0593-A41201-TW/Finayianchen/070605 7 200849563 列之各末端的上述主動區上;一接觸孔插塞,其利用沉積 一插塞材料於位於上述列各末端的一開口中,再利用一化 學機械研磨製程平坦化上述插塞材料的方式形成;一金屬 線,形成於上述接觸孔插塞上;一金屬層間介電層,形成 於不同之上述金屬線之間。此外,上述第一阻障層和上述 弟一阻卩早層儀為氮化層或薄氮氧化物層製成。Client, s Docket No:: 95146TW TT5s Docket No:0593-A41201-TW/Finayianchen/070605 7 200849563 On each of the active regions at each end of the column; a contact plug that uses a plug material to deposit in the above column An opening of each end is formed by planarizing the plug material by a chemical mechanical polishing process; a metal line is formed on the contact hole plug; and a metal interlayer dielectric layer is formed on the different metal Between the lines. Further, the first barrier layer and the above-mentioned first barrier layer are made of a nitride layer or a thin oxynitride layer.

上述金屬線較佳為鋁-銅合金或其他類似的材料製成。 在另一實施例中,於形成上述金屬線之後,沉積一金 屬層間介電層以防止晶胞陣列中的導電物彼此電性連接。 此外、,本發明提供-種反及閘型快閃記憶體晶胞陣列 的製造方法’包括:形成複數個排成—列的晶胞於一基板 的-主動區上;沉積-第-阻障層,其覆蓋上述複數個晶 胞和圍繞上述列之各末端的上述主動區;沉積一第一氧化 物於上述複數個晶胞之間的一間隙中,以填充上述間隙; 形成-氧化物間隙壁於沿著上述列之各末端之上述晶胞的 側壁上;形成一多晶矽間隙壁於上述氧化物間隙壁上。 在本發明另一實施例中,沿著位於上述列之各末端之 上述晶胞的侧壁上形成上述氧化物間隙壁之後,更包括進 行一預清潔(pre-clean)製程,然後進行一穿隧氧化層(tunnel oxide)氧化製程。 在本發明另一實施例中,更包括去除部分上述第一阻 障層,以及植入預定離子於圍繞上述列之各末端的上述主 動區中;沉積一氧化層於上述基板上方;形成一第二阻障 層於上述氧化層上;接著於上述基板上方形成一層間介電The above metal wires are preferably made of an aluminum-copper alloy or the like. In another embodiment, after forming the metal lines, a metal interlayer dielectric layer is deposited to prevent the conductive elements in the cell array from being electrically connected to each other. In addition, the present invention provides a method for fabricating a reverse-gate type flash memory cell array, which includes: forming a plurality of aligned cells in an active region of a substrate; and depositing-first blocking a layer covering the plurality of unit cells and the active region surrounding each end of the column; depositing a first oxide in a gap between the plurality of unit cells to fill the gap; forming an oxide gap The walls are on the sidewalls of the unit cell along each end of the column; a polysilicon spacer is formed on the oxide spacer. In another embodiment of the present invention, after the oxide spacer is formed on sidewalls of the unit cell at each end of the column, a pre-clean process is further performed, and then a through-hole process is performed. Tunnel oxide oxidation process. In another embodiment of the present invention, the method further includes removing a portion of the first barrier layer, and implanting predetermined ions in the active region surrounding each end of the column; depositing an oxide layer over the substrate; forming a first a second barrier layer on the oxide layer; and then forming an interlayer dielectric over the substrate

Client’s Docket No·: 95146TW TT5s Docket No:0593-A41201-TW/Final/ianchen/070605 8 200849563 層;形成一接觸孔插塞於上述列的各末端;於上述列的各 末端形成上述接觸孔插塞;形成一金屬線於上述接觸孔插 塞上。 在本發明另一實施例中,上述金屬線係各別連接至一 導電接墊(conductive pad)。然而,上述反及閘型快閃記憶 體晶胞陣列的上述金屬線可連接至一導電溝槽。 本發明較佳實施例之反及閘型快閃記憶體晶胞陣列, 其具有較簡單的結構及較高的深寬比,並結合自對準製 程’使其具有許多優於習知反及閘型快閃記憶體晶胞陣列 的優點。 【實施方式】 以下利用製程剖面圖,以更詳細地說明本發明較佳實 施例之反及閘型快閃記憶體晶胞陣列及其形成方法,在本 發明各實施例中,相同的符號表示相同或類似的元件。 口月參考弟2a至2b圖’其顯示本發明較佳實施例之利 用自對準淺溝槽隔離製程(Self-Aligned-Shallow Trench Isolation Technology,SA-STI Technology)形成的佈局 (layout)。在各佈局中,標號”Wl〜Wn,,係用以定義基板上的 字元線。佈局的標號” AA”係用以定義基板上的主動區 (active region),而佈局的標號”FP”係用以定義複數個漂浮 多晶石夕層(floating poly layer)。另外,佈局的標號,,CB ”係用 以定義位元線(bit-line)的接觸孔,而佈局的符號”cs,,係用 以定義基板上的源極線接觸孔(Source line c〇ntact)。複數個 反及閘型快閃記憶體晶胞係形成於佈局”AA”和任_佈局,,Client's Docket No:: 95146TW TT5s Docket No:0593-A41201-TW/Final/ianchen/070605 8 200849563 layer; forming a contact hole plug at each end of the above column; forming the above contact hole plug at each end of the above column Forming a metal line on the contact hole plug. In another embodiment of the invention, the metal wires are each connected to a conductive pad. However, the above metal lines of the above-described anti-gate type flash memory cell array can be connected to a conductive trench. The anti-gate type flash memory cell array of the preferred embodiment of the present invention has a simple structure and a high aspect ratio, and combines with a self-aligned process to make it have many advantages over conventional ones. The advantages of gate-type flash memory cell arrays. [Embodiment] Hereinafter, a reverse-gate type flash memory cell array and a method for forming the same according to a preferred embodiment of the present invention will be described in more detail by using a process cross-sectional view. In the embodiments of the present invention, the same reference numerals are used. The same or similar components. The mouth reference brothers 2a to 2b show a layout formed by a Self-Aligned-Shallow Trench Isolation Technology (SA-STI Technology) according to a preferred embodiment of the present invention. In each layout, the label "Wl~Wn" is used to define the word line on the substrate. The label "AA" of the layout is used to define the active region on the substrate, and the layout label "FP" Used to define a plurality of floating polycrystalline layers. In addition, the layout label, CB" is used to define the contact hole of the bit-line, and the layout symbol "cs," Used to define a source line contact hole on the substrate. A plurality of inverse gate type flash memory cell systems are formed in the layout "AA" and the layout.

Client’s Docket No·: 95146TW TT’s Docket No:0593-A41201-TW/Final/ianchen/070605 9 200849563 ,,的交叉處上;且上述晶胞係以陣列⑽叫)形式排 列。反及閘型快閃記憶體晶胞的操作係被位元線接觸孔、 共用(common)的源極線接觸孔、陣列閘極層和選擇閘極 (selection gate)(圖未顯示)的外加電壓所控制。必須注意的 是,每個源極線接觸孔係連接一金屬線。 如第2b圖顯示的本發明另一實施例中,源極線接觸孔 係連接一導電溝槽(conductive trench)。上述結構可導致較 低的電阻並可使製程簡化。 、 清參考弟3a至3b圖,其顯示兩種類型的反及閘型快 閃記憶體晶胞的佈局,上述兩種類型的反及閘型快閃記憶 體日日胞係利用自對準多晶秒製程(Self-Aligned Poly Technology,SAP Technology)形成。第3a圖中的每個源極 線接觸孔為一金屬線,而第3b圖中的每個源極線接觸孔為 一溝槽。將第3a圖與第2a圖相比,不同處為第3a圖缺少 佈局”FP”。在利用SA_STI製程的第2a圖中,佈局”FP”定 義的漂浮多晶矽層係做為反及閘型快閃記憶體晶胞列之間 ί ; 的隔絕物。當反及閘型快閃記憶體晶胞採用0· 1 μηι(或小於 0.1/xm)的製程製造時,佈局”FP”係從設計規則(design rule) 中移除以簡化製程,並且避免微影製程期間的對準誤差 (misalignment)。在利用SAP製程的第3a圖中,首先沉積 漂浮多晶矽層,再利用化學機械研磨製程移除上述漂浮多 晶矽層。因此可以減少定義反及閘型快閃記憶體晶胞所需 的光罩數目。 另外,上述的反及閘型快閃記憶體結構係位於單一區Client's Docket No.: 95146TW TT’s Docket No:0593-A41201-TW/Final/ianchen/070605 9 200849563, at the intersection; and the above cell lines are arranged in the array (10). The operation of the gate-type flash memory cell is replaced by a bit line contact hole, a common source line contact hole, an array gate layer, and a selection gate (not shown). The voltage is controlled. It must be noted that each source line contact hole is connected to a metal wire. In another embodiment of the invention as shown in Figure 2b, the source line contact holes are connected to a conductive trench. The above structure can result in lower resistance and simplification of the process. Clear reference brothers 3a to 3b, which show the layout of two types of anti-gate type flash memory cells, and the above two types of anti-gate type flash memory cells use self-alignment Formed by Self-Aligned Poly Technology (SAP Technology). Each of the source line contact holes in Fig. 3a is a metal line, and each of the source line contact holes in Fig. 3b is a groove. Comparing Fig. 3a with Fig. 2a, the difference is that the 3a figure lacks the layout "FP". In Figure 2a, which uses the SA_STI process, the floating polysilicon layer defined by the layout "FP" is used as an isolation between the gate cell and the gate cell. When the anti-gate type flash memory cell is fabricated using a 0. 1 μηι (or less than 0.1/xm) process, the layout "FP" is removed from the design rule to simplify the process and avoid micro Misalignment during the shadowing process. In Figure 3a, which utilizes the SAP process, a floating polycrystalline germanium layer is first deposited, and the floating polycrystalline germanium layer is removed using a chemical mechanical polishing process. Therefore, it is possible to reduce the number of masks required to define the gate memory of the gate type flash memory. In addition, the above-mentioned anti-gate type flash memory structure is located in a single area.

Clienfs Docket No.: 95146TW TT^ Docket No:0593-A41201-TW/Final/ianchen/070605 10 200849563 塊(single block)上。利用上述組成方式重覆形成於晶片 上,佈局”CB”和佈局”CS”係位於兩區塊之間。 請參考第4a圖,於基板30上形成複數個排成一列的 晶胞32。首先,利用SA_STI或SAP製程形成主動區(active area)結構。進行漂浮多晶矽閘極(圖未顯示)的银刻製程 後,於基板30上形成一閘極疊層。接著,利用微影和乾蝕 刻製程,於基板30上形成複數個存取多晶矽閘極(access polysilicon gate)36 〇 之後,進行一離子植入製程,以調整晶胞32和選擇電 晶體(select transistor)的源/汲極特性。另外,依序於基板 30和存取多晶石夕閘極(access polysilicon gate)36上設置一 氧化層42和一第一阻障層43。氧化層42通常為一薄氧化 層。第一阻障層43通常為利用遙控電漿化學氣相沉積 (remote plasma chemical vapor deposition,RPCVD)或電衆 增強型化學氣相沉積(plasma enhancement chemical vapor deposition,PECVD)方式於氧化層42上形成的薄氮化層或 薄氮氧化物層,且其厚度介於5〇A至150A之間。第一阻 障層43對氧化層42的蝕刻選擇比須夠高,以使後續的回 蝕刻製程可以進行。 請參考第4b圖,利用高密度電漿化學氣相沉積(high density plasma chemical vapor deposition,HDP-CVD)或類 似的方式,於晶胞32之間的間隙填入第一氧化物47,且 設置於圍繞上述列之各末端的主動區上,第一氧化物47 的厚度介於1500A至5000A之間。如第4c圖所示,進行Clienfs Docket No.: 95146TW TT^ Docket No:0593-A41201-TW/Final/ianchen/070605 10 200849563 On the single block. The above composition is repeatedly formed on the wafer, and the layout "CB" and the layout "CS" are located between the two blocks. Referring to Fig. 4a, a plurality of unit cells 32 arranged in a row are formed on the substrate 30. First, an active area structure is formed using an SA_STI or SAP process. After the silver engraving process of floating polysilicon gates (not shown), a gate stack is formed on the substrate 30. Then, after forming a plurality of access polysilicon gates 36 on the substrate 30 by using a lithography and dry etching process, an ion implantation process is performed to adjust the cell 32 and the selective transistor (select transistor Source/dip characteristics. In addition, an oxide layer 42 and a first barrier layer 43 are disposed on the substrate 30 and the access polysilicon gate 36. Oxide layer 42 is typically a thin oxide layer. The first barrier layer 43 is usually formed on the oxide layer 42 by remote plasma chemical vapor deposition (RPCVD) or plasma enhanced chemical vapor deposition (PECVD). A thin nitride layer or a thin layer of oxynitride, and having a thickness between 5 Å and 150 Å. The etching selectivity of the first barrier layer 43 to the oxide layer 42 must be high enough for subsequent etchback processes to be performed. Referring to FIG. 4b, a first oxide 47 is filled in the gap between the unit cells 32 by using a high density plasma chemical vapor deposition (HDP-CVD) or the like. The thickness of the first oxide 47 is between 1500 A and 5000 A on the active regions surrounding the respective ends of the above columns. As shown in Figure 4c, proceed

Client’s Docket No·: 95146TW TT’s Docket No:0593-A41201-TW/Final/ianchen/070605 11 200849563 一回蝕刻製程,以於上述列之各末端的晶胞側壁上形成氧 化物間隙壁49。第一氧化物47仍填充晶胞32之間的間 隙。在回蝕刻製程期間,第一阻障層43可視為一蝕刻停止 層。本發明較佳實施例的第一氧化物47係具有優異的階梯 覆盍能力’可在填充晶胞32之間的間隙時不會有孔洞的形 成。如果只密封晶胞之間的間隙,可使用較低階梯覆蓋能 力的材料而不必使用能完全填充間隙的第一氧化物47。 在本發明較佳實施例中,晶胞32之間的間隙的深寬比 (aspect ratio)係介於ι·8至3.2之間。控制上述深寬比係特 別有助於增加晶片的元件密度。 如第4d圖所示,可進行溼蝕刻或乾蝕刻製程以去除露 出的第一阻障層43。接著,進行一離子植入製程,以調整 後績形成的選擇電晶體(selection transistor)的起始電壓 (threshold voltage)。於上述列之各末端形成一離子植入區 52 〇 接著’進行一預清潔(pre-clean)製程。然後,進行一穿 隧氧化層(tunnel oxide)氧化製程之後,形成一多晶矽間隙 壁以做為選擇電晶體的閘極。如第4e圖至4f圖所示,首 先,沉積一厚度介於1200A至3200A之間的多晶矽層54, 然後,進行一回蝕刻製程,非等向性地蝕刻多晶矽層54, 於上述列之各末端的晶胞32的側壁上形成多晶矽間隙壁 56。 & 接著,如第4g圖所示,於基板30上方沉積一層氧化 層60,通常為薄氧化層。然後,於氧化層60上沉積一氮Client's Docket No.: 95146TW TT's Docket No:0593-A41201-TW/Final/ianchen/070605 11 200849563 An etching process is performed to form oxide spacers 49 on the cell sidewalls at the respective ends of the above columns. The first oxide 47 still fills the gap between the unit cells 32. During the etch back process, the first barrier layer 43 can be considered an etch stop layer. The first oxide 47 of the preferred embodiment of the present invention has excellent step coverage ability. The pores can be formed without filling the gap between the unit cells 32. If only the gap between the unit cells is sealed, a material having a lower step coverage can be used without using the first oxide 47 which can completely fill the gap. In a preferred embodiment of the invention, the aspect ratio of the gap between the unit cells 32 is between ι·8 and 3.2. Controlling the aspect ratio described above in particular helps to increase the component density of the wafer. As shown in Fig. 4d, a wet etching or dry etching process may be performed to remove the exposed first barrier layer 43. Next, an ion implantation process is performed to adjust the threshold voltage of the selection transistor formed by the subsequent performance. An ion implantation region 52 is formed at each end of the above column, and then a pre-clean process is performed. Then, after performing a tunnel oxide oxidation process, a polysilicon spacer is formed to serve as a gate for selecting a transistor. As shown in FIGS. 4e to 4f, first, a polysilicon layer 54 having a thickness of between 1200 A and 3200 A is deposited, and then an etching process is performed to etch the polysilicon layer 54 anisotropically, in each of the above columns. A polysilicon spacer 56 is formed on the sidewall of the unit cell 32 at the end. & Next, as shown in Fig. 4g, an oxide layer 60, typically a thin oxide layer, is deposited over the substrate 30. Then, a nitrogen is deposited on the oxide layer 60.

Client’s Docket No.: 95146TW TT’s Docket No:0593-A41201-TW/Final/ianchen/070605 12 200849563 化層62,氮化層62可視為一阻障層,即為第二阻障層。 利用低壓化學氣相沉積(LPCVD)、電漿增強型化學氣 相沉積(PECVD)或其他類似的製程,沉積一層間介電層 64 °之後’進行一化學機械研磨(chemicai polishing,CMP)製程以平坦化層間介電層64。然後,進行 微影和非等向性蝕刻製程,以形成位元線(bit_line)接觸孔 和源/沒極接解孔。 , 請參考第4h圖,進行一離子植入製程以形成歐姆接觸 (ohmic contact)76。於位元線(bit_line)接觸孔和源/汲極接觸 孔填入接觸孔插塞66。首先,利用沉積例如多晶矽或鎢的 插基材料。然後’利用化學機械研磨(chemicai mechanicai polishing,CMP)製程平坦化上述插塞材料,以形成接觸孔 插塞66。 接著,利用物理氣相沉積或其他類似的製程,於接觸 孔插基66和層間介電層64上沉積一導電層,上述導電層 I 係鋁銅合金或其類似的材料。之後,利用微影和蝕刻製程, V 於接觸孔插塞66上形成一金屬線72。 在一實施例中,於形成金屬線72之後,沉積一金屬層 間介電層(圖未顯示)以防止晶胞陣列中的導電物彼此電性 連接。 根據上述製程,金屬線72係位於兩個反及閘型快閃記 憶體晶胞陣列區塊之間。 如第1 a和lb圖所示之習知的反及閘型快閃記憶體晶 胞陣列’例如兩條選擇線圖案1 s和1 g的佈局,係分別定Client's Docket No.: 95146TW TT’s Docket No:0593-A41201-TW/Final/ianchen/070605 12 200849563 The layer 62, the nitride layer 62 can be regarded as a barrier layer, which is the second barrier layer. Using a low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD) or other similar process to deposit an interlevel dielectric layer after 64 ° 'to perform a chemical mechanical polishing (chemicai polishing, CMP) process The interlayer dielectric layer 64 is planarized. Then, a lithography and anisotropic etching process is performed to form a bit line contact hole and a source/bump contact hole. Please refer to FIG. 4h for an ion implantation process to form an ohmic contact 76. The contact hole plug 66 is filled in the bit line and the source/drain contact hole. First, an intercalation material such as polycrystalline germanium or tungsten is deposited. The plug material is then planarized by a chemicai mechanical ai polishing (CMP) process to form contact hole plugs 66. Next, a conductive layer is deposited on the contact hole interposer 66 and the interlayer dielectric layer 64 by physical vapor deposition or the like, and the conductive layer I is an aluminum-copper alloy or the like. Thereafter, a metal line 72 is formed on the contact hole plug 66 by a lithography and etching process. In one embodiment, after the metal lines 72 are formed, a metal interlayer dielectric layer (not shown) is deposited to prevent electrical connections in the cell array from electrically connecting to each other. According to the above process, the metal line 72 is located between the two inverted gate type flash memory cell array blocks. The layout of the conventional inverted gate type flash memory cell array as shown in Figs. 1a and 1b, for example, the two select line patterns 1 s and 1 g are determined separately.

Client’s Docket No.: 95146TW TT5s Docket No:0593-A41201-TW/Final/ianchen/070605 13 200849563 義為兩個選擇電晶體13和19。由於本發明較彳每 自對準製程(Self_aligned process)形成的多晶矽間二=係用 來代替選擇電晶體。表示至少兩條選擇線圖案可於上述製 程中私除。此外,由於多晶石夕間隙壁係利用自對準製程形 成,可以降低例如步進機台(steppe〇等需要精確度的製程 機台的等級。因此,本發明實施例的製程的製造成本係大 幅低於習知技術的製造成本。 f 另外,對於具有反及閘型快閃記憶體晶胞陣列的晶片 ^ 而言,本發明提供晶胞間之間隙較高的深寬比(aspect ratio) ’其係特別有助於增加晶片的元件密度。 由於反及閘型快閃記憶體晶胞陣列和自對準製程,微 影製程中的關鍵尺寸(critical dimension,CD)和疊對損失較 少,因此增加了製程的穩定性。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟悉此項技藝者,在不脫離本發明之精 ,, 神和範圍内,當可做些許更動與潤飾,因此本發明之保護 V 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 弟1 a圖為一上視圖,其顯示習知的反及閘型快閃記憶 體元件的部分晶胞陣列區。 第lb圖係沿第la圖的I-Ι切線的剖面圖,其顯示習知 的反及閘型快閃記憶體結構。 第2a圖顯示本發明一較佳實施例之利用自對準淺溝槽 隔離製程形成的佈局。Client's Docket No.: 95146TW TT5s Docket No:0593-A41201-TW/Final/ianchen/070605 13 200849563 Two types of transistors 13 and 19 are selected. Since the present invention replaces the selective transistor with a polycrystalline turn 2 formed in each of the Self_aligned processes. Indicates that at least two selection line patterns can be privately removed in the above process. In addition, since the polycrystalline galvanic spacer is formed by a self-aligned process, it is possible to reduce the level of a process machine such as a stepping machine (steppe〇, etc.). Therefore, the manufacturing cost of the process of the embodiment of the present invention is Substantially lower than the manufacturing cost of the prior art. f In addition, for a wafer having an inverted gate type flash memory cell array, the present invention provides a higher aspect ratio of the gap between the cells. 'It is particularly helpful to increase the component density of the wafer. Due to the inverse gate type flash memory cell array and self-aligned process, the critical dimension (CD) and stacking loss in the lithography process is less. Therefore, the stability of the process has been increased. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and any one skilled in the art, without departing from the spirit of the invention, The scope of protection V of the present invention is subject to the definition of the scope of the appended patent application. [Simple description of the schema] The brother 1 a diagram is a top view, which shows the habit A portion of the cell array region of the gate-type flash memory device is known. Figure lb is a cross-sectional view taken along line I-Ι of the first panel showing a conventional inverse gate-type flash memory structure. Figure 2a shows a layout formed using a self-aligned shallow trench isolation process in accordance with a preferred embodiment of the present invention.

Client’s Docket No·: 95146TW TT5s Docket No:0593-A41201-TW/Final/ianchen/070605 14 200849563 第2b圖顯示本發明另一實施例之利用自對準淺溝槽 隔離製程形成的佈局。 第3a圖顯示本發明較佳實施例之自對準多晶矽製程形 成的佈局。 第3b圖顯示本發明另一實施例之自對準多晶矽製程 形成的佈局。 第4a至4h圖分別為沿第2a、2b、3a和3b圖的A-A’ 切線的剖面圖,其顯示本發明實施例之反及閘型快閃記憶 體晶胞陣列的製程剖面圖。 【主要元件符號說明】 lg〜圖案;Is〜圖案;2〜主動區;13〜字串選擇電晶體; 15、17〜晶胞電晶體;19〜接地選擇電晶體;WP1〜WPn〜字 元線;Wi〜Wn〜字元線;AA〜主動區;CB〜接觸孔;CS〜源 極線接觸孔;FP〜漂浮多晶矽層;30〜基板;32〜晶胞;36〜 存取多晶秒閘極;42〜氧化層;43〜第一阻障層;47〜第一 、 氧化物;49〜氧化物間隙壁;52〜離子植入區;54〜多晶矽 層;56〜多晶矽間隙壁;60〜氧化層;62〜氮化層;64〜層間 介電層;66〜接觸孔插塞;72〜金屬線;76〜歐姆接觸。Client's Docket No: 95146TW TT5s Docket No:0593-A41201-TW/Final/ianchen/070605 14 200849563 Figure 2b shows a layout formed by a self-aligned shallow trench isolation process in accordance with another embodiment of the present invention. Figure 3a shows the layout of the self-aligned polysilicon process of the preferred embodiment of the present invention. Figure 3b shows a layout of a self-aligned polysilicon process in accordance with another embodiment of the present invention. 4a through 4h are cross-sectional views taken along line A-A' of the 2a, 2b, 3a, and 3b, respectively, showing a process cross-sectional view of the inverted gate type flash memory cell array of the embodiment of the present invention. [Main component symbol description] lg ~ pattern; Is ~ pattern; 2 ~ active area; 13 ~ string selection transistor; 15, 17 ~ cell transistor; 19 ~ ground selection transistor; WP1 ~ WPn ~ word line ; Wi ~ Wn ~ word line; AA ~ active area; CB ~ contact hole; CS ~ source line contact hole; FP ~ floating polysilicon layer; 30 ~ substrate; 32 ~ unit cell; 36 ~ access polycrystalline seconds gate Extremely; 42~ oxide layer; 43~ first barrier layer; 47~ first, oxide; 49~ oxide spacer; 52~ ion implantation region; 54~ polysilicon layer; 56~ polysilicon spacer; Oxide layer; 62~ nitride layer; 64~ interlayer dielectric layer; 66~ contact hole plug; 72~ metal line; 76~ ohmic contact.

Client’s Docket No.: 95146TW TT9s Docket No:0593-A41201-TW/Final/ianchen/070605 15Client’s Docket No.: 95146TW TT9s Docket No:0593-A41201-TW/Final/ianchen/070605 15

Claims (1)

200849563 十、申請專利範圍: 1. 一種反及閘型快閃記憶體晶胞陣列,包括: 一基板’其包括一主動區; 複數個排成一列的晶胞,位於該主動區上; 一第一阻障層,覆蓋該複數個晶胞和圍繞該列之各末 端的該主動區, 一第一氧化物,沉積於該複數個晶胞之間的一間隙 中,且填充該間隙; ^ 一氧化物間隙壁,形成於沿著該列之各末端之該晶胞 的側壁上;以及 一多晶矽間隙壁,形成於該氧化物間隙壁上,該多晶 矽間隙壁係做為驅動該列晶胞的一選擇閘極。 2. 如申請專利範圍第1項所述之反及閘型快閃記憶體 晶胞陣列,更包括一植入區,其係利用植入預定離子方式 形成於圍繞該列之各末端的該主動區中。 3. 如申請專利範圍第1項所述之反及閘型快閃記憶體 I 晶胞陣列,更包括一氧化層,其係沉積於該多晶矽間隙壁、 該氧化物間隙壁、部分該第一阻障層和該第一氧化物上。 4. 如申請專利範圍第3項所述之反及閘型快閃記憶體 晶胞陣列,更包括一第二阻障層,其係沉積於該氧化層上。 5. 如申請專利範圍第4項所述之反及閘型快閃記憶體 晶胞陣列,更包括一層間介電層,其係沉積於該第二阻障 層上及圍繞該列之各末端的該主動區上。 6. 如申請專利範圍第4項所述之反及閘型快閃記憶體 Client’s Docket No.: 95146TW TT5s Docket No:0593-A41201-TW/Final/ianchen/070605 16 200849563 晶胞陣列,更包括一接觸孔插寨,其係利用沉積一插塞材 料於位於該列各末端的一開口中,再利用一化學機械研磨 製程平坦化該插塞材料的方式形成。 7·如申請專利範圍第6項所述之反及閘型快閃記憶體 晶胞陣列,更包括一金屬線,其係形成於該接觸孔插塞上。 8·如申請專利範圍第1項戶斤述之反及閘型快閃記憶體 晶胞陣列,其中該複數個晶胞之間的該間隙的深寬比介於 1.8至3·2之間。 9·如申請專利範圍第1項所述之反及閘型快閃記憶體 晶胞陣列’其中該第一阻障層係為氮化層或薄氮氧化物層 製成。 10·如申請專利範圍第4項所述之反及閘型快閃記憶 體晶胞陣列,其中該第一阻障層和該第二阻障層係為氮化 層或薄氮氧化物層製成。 11· 一種反及閘型快閃記憶體晶胞陣列的製造方法, 包括下列步驟: 形成複數個排成一列的晶胞於一基板的一主動區上; 沉積一第一阻障層,其覆蓋該複數個晶胞和圍繞該列 之各末端的该主動區; 沉積一第一氧化物於該複數個晶胞之間的一間隙中, 以填充該間隙; 形成一氧化物間隙壁於沿著位於該列之各末端之該晶 胞的側壁上;以及 形成一多晶矽間隙壁於該氧化物間隙壁上。 Client’s Docket No·: 95146TW TT^ Docket No:0593-A41201-TW/Final/ianclien/070605 17 200849563 12. 如申請專利範圍第11項所述之反及閘型快閃記憶 體晶胞陣列的製造方法,其中該形成該氧化物間隙壁於沿 著位於該列之各末端之該晶胞的侧壁上之步驟後,更包括 一去除部分該第一阻障層,以及植入預定離子於圍繞該列 之各末端的該主動區中之步驟。 13. 如申請專利範圍第11項所述之反及閘型快閃記憶 體晶胞陣列的製造方法,其中該形成該多晶矽間隙壁於該 氧化物間隙壁上之步驟後,更包括一沉積一氧化層於該基 板上方之步驟。 14. 如申請專利範圍第13項所述之反及閘型快閃記憶 體晶胞陣列的製造方法,其中該沉積該氧化層於該基板上 方之步驟後,更包括一形成一第二阻障層於該氧化層上之 步驟。 15. 如申請專利範圍第14項所述之反及閘型快閃記憶 體晶胞陣列的製造方法,其中該形成該第二阻障層於該氧 化層上之步驟後,更包括一形成一層間介電層於該基板上 i 方之步驟。 16. 申請專利範圍第15項所述之反及閘型快閃記憶體 晶胞陣列的製造方法,其中該形成該層間介電層於該基板 上方之步驟後,更包括一形成一接觸孔插塞於該列的各末 端之步驟。 17. 申請專利範圍第16項所述之反及閘型快閃記憶體 晶胞陣列的製造方法,其中該形成該接觸孔插塞於該列的 各末端之步驟後,更包括一形成一金屬線於該接觸孔插塞 Client’s Docket No.: 95146TW TT^s Docket No:0593-A41201-TW/Final/ianchen/070605 200849563 上之步驟。 Clienfs Docket No.: 95146TW TT5s Docket No:0593-A41201-TW/Final/ianchen/070605200849563 X. Patent application scope: 1. An anti-gate type flash memory cell array, comprising: a substrate comprising an active region; a plurality of unit cells arranged in a row, located on the active region; a barrier layer covering the plurality of unit cells and the active region surrounding each end of the column, a first oxide deposited in a gap between the plurality of unit cells and filling the gap; An oxide spacer formed on a sidewall of the unit cell along each end of the column; and a polysilicon spacer formed on the oxide spacer, the polysilicon spacer being used to drive the column cell A choice of gates. 2. The anti-gate type flash memory cell array according to claim 1, further comprising an implant region formed by implanting a predetermined ion pattern around each end of the column In the district. 3. The anti-gate type flash memory I cell array according to claim 1, further comprising an oxide layer deposited on the polysilicon spacer, the oxide spacer, and the first portion a barrier layer and the first oxide. 4. The anti-gate type flash memory cell array according to claim 3, further comprising a second barrier layer deposited on the oxide layer. 5. The anti-gate type flash memory cell array according to claim 4, further comprising an interlayer dielectric layer deposited on the second barrier layer and surrounding each end of the column On the active area. 6. The anti-gate type flash memory client's Docket No. as described in item 4 of the patent application scope: 95146TW TT5s Docket No:0593-A41201-TW/Final/ianchen/070605 16 200849563 The cell array, including one The contact hole is formed by depositing a plug material in an opening at each end of the column and planarizing the plug material by a chemical mechanical polishing process. 7. The anti-gate type flash memory cell array according to claim 6, further comprising a metal line formed on the contact hole plug. 8. The scope of the gap between the plurality of unit cells is between 1.8 and 3.2, as described in the first paragraph of the patent application scope and the gate type flash memory cell array. 9. The anti-gate type flash memory cell array as described in claim 1 wherein the first barrier layer is made of a nitride layer or a thin oxynitride layer. 10. The anti-gate type flash memory cell array according to claim 4, wherein the first barrier layer and the second barrier layer are nitrided or thin oxynitride layers. to make. 11. A method of fabricating a gate-type flash memory cell array, comprising the steps of: forming a plurality of cells arranged in a row on an active region of a substrate; depositing a first barrier layer, covering The plurality of unit cells and the active region surrounding each end of the column; depositing a first oxide in a gap between the plurality of unit cells to fill the gap; forming an oxide spacer along the Located on the sidewalls of the unit cell at each end of the column; and forming a polysilicon spacer on the oxide spacer. Client's Docket No.: 95146TW TT^ Docket No:0593-A41201-TW/Final/ianclien/070605 17 200849563 12. Method for manufacturing reverse-gate type flash memory cell array according to claim 11 After the step of forming the oxide spacers along the sidewalls of the unit cell at each end of the column, further comprising removing a portion of the first barrier layer and implanting predetermined ions around the The steps in the active zone at each end of the column. 13. The method of fabricating an anti-gate type flash memory cell array according to claim 11, wherein the step of forming the polysilicon spacer on the oxide spacer further comprises depositing a layer The step of oxidizing the layer over the substrate. 14. The method of fabricating an anti-gate type flash memory cell array according to claim 13, wherein the step of depositing the oxide layer over the substrate further comprises forming a second barrier. The step of layering on the oxide layer. 15. The method of fabricating an anti-gate type flash memory cell array according to claim 14, wherein the step of forming the second barrier layer on the oxide layer further comprises forming a layer. The step of inter-dielectric layer on the substrate. 16. The method for manufacturing a reverse-gate type flash memory cell array according to claim 15, wherein the step of forming the interlayer dielectric layer over the substrate further comprises forming a contact hole. The step of plugging at each end of the column. 17. The method of manufacturing the anti-gate type flash memory cell array according to claim 16, wherein the step of forming the contact hole at each end of the column further comprises forming a metal. Line the steps in the contact hole plug Client's Docket No.: 95146TW TT^s Docket No:0593-A41201-TW/Final/ianchen/070605 200849563. Clienfs Docket No.: 95146TW TT5s Docket No:0593-A41201-TW/Final/ianchen/070605
TW96120287A 2007-06-06 2007-06-06 Nand flash memory cell array and method of fabrica TWI357150B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96120287A TWI357150B (en) 2007-06-06 2007-06-06 Nand flash memory cell array and method of fabrica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96120287A TWI357150B (en) 2007-06-06 2007-06-06 Nand flash memory cell array and method of fabrica

Publications (2)

Publication Number Publication Date
TW200849563A true TW200849563A (en) 2008-12-16
TWI357150B TWI357150B (en) 2012-01-21

Family

ID=44824182

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96120287A TWI357150B (en) 2007-06-06 2007-06-06 Nand flash memory cell array and method of fabrica

Country Status (1)

Country Link
TW (1) TWI357150B (en)

Also Published As

Publication number Publication date
TWI357150B (en) 2012-01-21

Similar Documents

Publication Publication Date Title
KR100391985B1 (en) Method of making a scalable two transistor memory device
US10910020B1 (en) Three-dimensional memory device containing compact bit line switch circuit and method of making the same
US7186607B2 (en) Charge-trapping memory device and method for production
US8355281B2 (en) Flash memory having multi-level architecture
US7768061B2 (en) Self aligned 1 bit local SONOS memory cell
JP2010093269A (en) Vertical semiconductor device and method of forming the same
US20040077147A1 (en) Stacked gate flash memory device and method of fabricating the same
KR100760926B1 (en) Nonvolatile semiconductor device to preparing multi bit cell and fabricating method thereof
US20120032246A1 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
US7049189B2 (en) Method of fabricating non-volatile memory cell adapted for integration of devices and for multiple read/write operations
US9640432B2 (en) Memory device structure and fabricating method thereof
US8952536B2 (en) Semiconductor device and method of fabrication
US20220328519A1 (en) Memory Arrays Comprising Strings Of Memory Cells And Methods Used In Forming A Memory Array Comprising Strings Of Memory Cells
US20110032763A1 (en) Semiconductor devices including first and second bit lines
US7176088B2 (en) Bitline structure and method for production thereof
US12096633B2 (en) Memory arrays and methods used in forming a memory array comprising strings of memory cells
JP4502801B2 (en) Method for manufacturing nonvolatile memory element
KR20140086640A (en) Nonvolatile memory device and method for fabricating the same
TWI357150B (en) Nand flash memory cell array and method of fabrica
CN118368902B (en) Manufacturing method of three-dimensional memory
US20230055230A1 (en) Three-dimensional memory device with doped semiconductor bridge structures and methods for forming the same
KR100602937B1 (en) Method for fabricating of non-volatile memory device
US20110079840A1 (en) Memory cell and manufacturing method thereof and memory structure
KR20240021933A (en) Three-dimensional memory device including dummy word lines and P-N junction in joint area and method of manufacturing same
JP2012064754A (en) Nonvolatile semiconductor storage device manufacturing method and nonvolatile semiconductor storage device