TW200846607A - Energy correlation module - Google Patents

Energy correlation module Download PDF

Info

Publication number
TW200846607A
TW200846607A TW96119479A TW96119479A TW200846607A TW 200846607 A TW200846607 A TW 200846607A TW 96119479 A TW96119479 A TW 96119479A TW 96119479 A TW96119479 A TW 96119479A TW 200846607 A TW200846607 A TW 200846607A
Authority
TW
Taiwan
Prior art keywords
heat
circuit
energy
medium
disposed
Prior art date
Application number
TW96119479A
Other languages
Chinese (zh)
Inventor
Hsien-Sou Han
Way-Jone Hsiao
Yu-Hung Huang
Wun-Jheng Yu
Sheng-Jung Tien
Original Assignee
Kaori Heat Treat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaori Heat Treat Co Ltd filed Critical Kaori Heat Treat Co Ltd
Priority to TW96119479A priority Critical patent/TW200846607A/en
Publication of TW200846607A publication Critical patent/TW200846607A/en

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

The present invention discloses an energy correlation module applied in a heat pump device. The energy correlation module comprises: a common channel, a water tank, a heat-exchanger device, plural valves, plural fluid pumps and plural pipes. According to cold or hot requirement conditions, the paths of the heat dissipating circuit and the cooling circuit are properly varied by means of the valves and fluid pumps so that the heat-exchanger device of the energy correlation module can serve to dissipate heat or absorb heat selectively. Thus, the over-low temperature of cooling circuit or the over-high temperature of the heat dissipating circuit can be prevented, so that the heat pump device can operate efficiently.

Description

200846607 九、發明說明: 【發明所屬之技術領域】 本發明係關於能源關聯模組,尤其是用於熱泵裝置之 能源關聯模組。 【先前技術】 一種習知的熱泵裝置及其迴路配置顯示於第1圖,其 中熱泵裝置400包含壓縮機410、第1級冷凝器420、第2 級冷凝器4 30及蒸發器44 0。第1級冷凝器420與儲存桶 5 1 〇形成供熱迴路5 2 0,第2級冷凝器4 3 0與冷卻水塔5 3 0 形成冷卻迴路540,而蒸發器440與儲存桶550形成供冷 迴路560。 此類的迴路配置,在冷熱需求程度差異甚大的情況 下,會有問題。在冷需求程度大於熱需求程度的情況下, 爲了儘可能滿足冷需求,即使儲存桶510已經儲熱飽和, 熱泵裝置400仍必須不停運轉。在熱負載端來不及使用或 排放的熱會使冷凝器溫度升高。這會使冷凝器冷卻不足, 阻礙冷媒在冷凝器的凝結,進而不利地影響在蒸發器的製 冷(chilling)。另一方面,通常冷需求大於熱需求的情況都 是發生在炎熱的天氣。隨著外界溫度升高溫,冷卻水與外 界之間的溫度梯度隨之變小,冷卻水塔的散熱能力亦會下 降,容易使冷凝器冷卻不足。 相反地,在熱需求程度大於冷需求程度的情況下,例 如在寒冷的天氣,爲了儘可能滿足熱需求,即使儲存桶5 6 0 已經儲冷飽和,熱泵裝置400仍必須不停運轉。若從冷負 200846607 • 載端吸熱不足,連帶使蒸發器吸熱不足。這會阻礙冷媒的 蒸發,不利地影響熱泵裝置之效率。此外,如果未蒸發的 液態冷媒被送入壓縮機,由於液態冷媒的不可壓縮性,亦 將導致壓縮機損壞。 此外,當安裝熱泵裝置時,通常會根據熱泵裝置安裝 場合進行迴路的設置。在不同的安裝場合,迴路之設置便 要再次重新規劃施工。對於購置熱泵裝置的消費者來說, 將耗費更多的設備空間以及施工時間與金錢。 • 上述的先前技術,尙無法根據冷熱需求條件,適應地 調配迴路配置,以使熱泵裝置維持在有利的運轉條件。不 僅如此,根據上述的先前技術,將耗費更多成本。 【發明內容】 鑒於上述問題,本發明之目的在於提供一種能源關聯 模組,其可根據冷熱需求適應性地調配迴路配置,使得熱 泵裝置維持在有利的運轉條件。 本發明之另一目的在於提供一種能源關聯模組,其係 ® 經由將用於熱泵裝置之迴路配置加以模組化而得。如此, 只需將能源關聯模組之接口與熱泵裝置對應的接口接通, 無須額外佈置管線的工程,即可完成熱泵裝置及其迴路配 置之安裝。可進一步簡化安裝過程並節省成本。 本發明之再一目的在於提供一種能源關聯模組,其係 用於熱泵裝置,特別是具有第1級冷凝器、第2級冷凝器、 蒸發器及壓縮機等構件之熱泵裝置。 因此,本發明所揭示之能源關聯模組包含共通通道、 200846607 • 儲存桶、熱交換裝置。共通通道具有第1端及第2端,於 第1端及第2端之間設置第1閥體。藉由第1閥體可使共 通通道之第1端與第2端連通或不連通。共通通道之第1 端經由管件與第2級冷凝器連通,以形成散熱迴路。儲存 桶經由管件與蒸發器連通,以形成供冷迴路。共通通道之 第2端經由管件與供冷迴路連通且與熱交換裝置連通,以 分別形成吸熱迴路及熱移轉迴路。複數個流體泵可設置於 各迴路上,以使各迴路之介質循環流動。 # 另一方面,共通通道之第1端可經由第1引入管(inlet pipe)及第1引出管(outlet pipe)與第2級冷凝器連通。儲存 桶經由第2引入管及第2引出管與蒸發器連通。共通通道 之第2端經由第3引入管及第3引出管與儲存桶連通。共 通通道之第2端經由第4引入管及第4引出管與熱交換裝 置連通。 第1引入管、共通通道之第1端、第2引出管及第2 級冷凝器形成散熱迴路。第2引入管、儲存桶、第2引出 • 管及蒸發器形成供冷迴路,用以使供冷介質循環。第3引 入管、共通通道之第2端、第3引出管及儲存桶形成一吸 熱迴路,用以使供冷介質循環。第4引入管、共通通道之 第2端、第4引出管及交換裝置形成一熱移轉迴路’用以 使散熱介質循環或使供冷介質循環。 較佳地,於散熱迴路、供冷迴路、吸熱迴路及熱移轉 迴路上分別設置第1流體泵、第2流體泵、第3流體泵及 第4流體泵,藉由可選擇地致動該等流體栗’可選擇地使 200846607 在該等迴路之介質循環。 較佳地,於散熱迴路上設置具有盤管段之旁通管。盤 管段係設置成於盤管段流動的散熱介質可與於供冷迴路流 動之供冷介質作熱交換。 較佳地,熱交換器裝置可包含由複數個風扇所構成的 風扇陣列、冷卻水塔'液對液熱交換器、熱管、氣體對液 熱交換器或土壤對液熱交換器。 此外,可於旁通管上設置第5流體泵,且可於散熱迴 路上與該旁通管並行的區段上,設置第2閥體。 另一種方式,第3引入管可不與儲存桶連通,而是與 第2引入管連通,並在第3引入管與第2引入管之交接處 設置第3閥體。此種方式的好處在於可省略第3流體泵, 可進一節省成本以及減少耗電量。 如此,藉由開啓第1閥體,散熱迴路之散熱介質可流 入共通通道之第2端,進而流入熱移轉迴路,藉熱交換器 裝置將散熱介質之熱排出。此時,可視情況啓動第5流體 泵,部分散熱介質流經旁通管,且於旁通管之盤管段列冷 卻。 或者,可於旁通管與散熱迴路交接處設置第4閥體。 如此,將可省略第2閥體及第5流體泵。 如果供冷介質從冷負載端吸熱不足,則可調配迴路配 置,使得供冷介質流入共通通道之第2端,進而流入熱移 轉迴路,經由熱交換器裝置從外界吸熱。此時,較佳使第 1閥體關閉,並啓動第5流體泵。供冷介質不止從外界吸 200846607 熱,而且可由旁通管的盤管段吸熱,同時散熱介質亦 旁通管的盤管段散熱。 如果冷熱需求程度大致上相當的話,那麼將不需 外界吸熱或將熱排至外界。此時,可使熱移轉迴路閒 散熱迴路之散熱介質可經由旁通管而獲得冷卻。由於 轉迴路閒置,第3及第4流體泵以及熱交換裝置將不這 因此,與習知技術相比可節省更多的電力。 藉由本發明之能源關聯模組,熱泵裝置可適應性 界吸熱或將熱排至外界,以達成能量的最佳平衡運用 在本發明所屬技術領域中具有通常知識者閱讀說 後,將可瞭解本發明的其他優點及其他目的。 【實施方式】 以下將參照第2圖、第3圖及第4圖,描述根據 明之較佳實施例,其中相同的元件符號表示本發明中 的元件。 請先參照第2圖,第2圖顯示根據本發明之第1 例,其中源關聯模組整體以兀件符號1 〇標示。 能源關聯模組1 0係用於熱泵裝置20。熱泵裝置 含壓縮機210、第1級冷凝器220、第2級冷凝器230 發器240。 於熱泵裝置20,來自壓縮機210之高溫高壓的過 態冷媒,在第1級冷凝器220與供熱介質作熱交換。 熱之供熱介質藉由管件31 1流經熱交換器320並流入 桶310。供熱介質之熱會經由熱交換器3 20轉移至熱 可由 再從 置。 熱移 墜作。 從外 〇 明書 本發 相同 實施 20包 及蒸 熱氣 被加 .儲存 ;負載 -10- 200846607 端。儲存桶310中之供熱介質經由管件312返回至第1級 冷凝器220。如此,形成供熱迴路。流體泵313係設置於 管件3 12上,以使供熱迴路之供熱介質循環。 由於本發明之技術特點並不在於供熱迴路及熱泵裝 置,故關於此部分僅槪要地提起。 同樣參照第2圖,能源關聯模組1 0包含共通通道1 1 0、 儲存桶130及熱交換裝置140。 共通通道110具有第1端111及第2端112。第1閥 體113係設置於第1端111及第2端112之間。藉由第1 閥體113可使共通通道110之第1端111與第2端112連 通或不連通。第1閥體113可爲蝶閥(butterfly valve)。 共通通道110之第1端111經由第1引入管121及第 1引出管122分別與第2級冷凝器23 0之出口端231及入 口端232連通。在說明書中所稱的「引出」及「引入」係 相對共通通道而定義。 儲存桶130經由第2引入管131及第2引出管132分 別與蒸發器240之出口端241及入口端24 2連通。共通通 道110之第2端112經由第3引入管133及第3引出管134 與儲存桶130連通。 熱交換裝置140包含出口端及入口端,而共通通道110 之第2端1 12經由第4引入管141及第4引出管142分別 與熱交換裝置140之出口端及入口端連通。雖然未圖示, 較佳地,熱交換裝置140可包含由複數個風扇所構成之風 -扇陣列、冷卻水塔、液對液熱交換器、熱管、氣體對液熱 200846607 - 交換器或土壤對液熱交換器。 第1引入管121、共通通道110之第1端ln、第1引 出管122及第2級冷凝器230形成散熱迴路,用於散熱介 質之循環。第2引入管131、儲存桶130、第2引出管132 及蒸發器240形成供冷迴路,用於供冷介質之循環。第3 引入管133、共通通道之第2端112、第3引出管134及儲 存桶130形成吸熱迴路,用於供冷介質之循環。第4引入 管141、共通通道之第2端112、第4引出管142及熱交換 • 裝置形成熱移轉迴路,用於散熱介質或供冷介質之循環。 在第1引出管上設置第1流體泵125,在第2引出管 上設置第2流體泵1 3 5,在第3引入管上設置第3流體泵 136,並在第4引出管上設置第4流體泵143。這些流體泵 係用於使各迴路上之介質循環。藉由選擇性使流體泵致 動,可選擇地使各迴路上之介質循環。 此外,在第1引入管設置旁通管123,旁通管123具 有盤管段124。盤管段124係設置於儲存槽130中,使得 ® 流經盤管段124的散熱介質可與儲存槽130中之供冷介質 作熱交換。 在旁通管123上設置第5流體泵126,且在第1引入 管121上與旁通管123並行的區段上,設置第2閥體127。 較佳地,第2閥體127爲止回閥(check valve)。因第5流 體泵126之啓動會導致第1引入管121上游端壓力下降, 藉由第2閥體127之設置,可避免第1引入管121上與旁 通管123並行的區段上之介質逆流。 -12- 200846607 較佳地,可於第1引出管上設置膨脹箱〗2 8,用於吸 收散熱介質因壓力及/或溫度變化所造成的體積變化。 當熱流裝置20運轉時,第〗流體泵12 5、第2流體泵 1 3 5及流體泵3 1 3大致上都會啓動。其他流體泵及閥體則 視情況啓動或不啓動。 舉例而言,在炎熱的天氣時,藉由開啓第1閥體113, 散熱迴路之散熱介質可流入共通通道110之第2端112。 藉由啓動第4流體泵1 4 3,可使流入共通通道1 1 〇之第2 端112之散熱介質進一步流入熱移轉迴路。藉由熱交換器 裝置140將散熱介質之熱排出,避免散熱介質冷卻不足。 此時,不啓動第3流體泵,避免散熱介質及供冷介質在共 通通道混合,並可視情況啓動第5流體泵1 26。當第5流 體泵126啓動時,部分散熱介質可流經旁通管123,且於 旁通管134之盤管段列124冷卻。整體來說,藉由第5流 體泵126之啓動,可散熱介質進一步獲得冷卻。 舉例而言,在寒冷的天氣時’通常熱負載端對熱需求 程度較高,相較之下冷負載端對冷需求程度較低。如果供 冷介質從冷負載端吸熱不足,則可關閉第1閥體113並啓 動第3流體泵13 3。藉由第3流體栗1 3 3之啓動,供冷介 質可透過吸熱迴路由儲存桶13〇流入共通通道110之第2 端112。藉由第4流體泵之啓動’供冷介質可進一步流入 熱移轉迴路,並經由熱交換器裝置1 4 0從外界吸熱。此時, 可啓動第5流體泵126,使得散熱介質可經由旁通管123 的盤管段124獲得冷卻。另一方面’供冷介質不止透過熱200846607 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to an energy-related module, particularly an energy-related module for a heat pump device. [Prior Art] A conventional heat pump apparatus and its circuit arrangement are shown in Fig. 1, in which a heat pump apparatus 400 includes a compressor 410, a first stage condenser 420, a second stage condenser 430, and an evaporator 440. The first stage condenser 420 forms a heating circuit 520 with the storage tank 5 1 ,, the second stage condenser 430 forms a cooling circuit 540 with the cooling water tower 530, and the evaporator 440 forms a cooling chamber with the storage tank 550. Loop 560. This type of loop configuration can be problematic if the degree of cold and heat demand varies widely. In the case where the degree of cold demand is greater than the degree of heat demand, in order to satisfy the cold demand as much as possible, even if the storage tank 510 has been saturated with heat storage, the heat pump device 400 must be kept running. Heat that is too late to be used or discharged at the heat load end causes the condenser temperature to rise. This causes insufficient cooling of the condenser, hinders condensation of the refrigerant in the condenser, and adversely affects chilling in the evaporator. On the other hand, the case where the cold demand is usually greater than the heat demand occurs in hot weather. As the outside temperature rises, the temperature gradient between the cooling water and the outside becomes smaller, and the cooling capacity of the cooling tower also decreases, which tends to cause insufficient cooling of the condenser. Conversely, in the case where the degree of heat demand is greater than the degree of cold demand, such as in cold weather, in order to satisfy the heat demand as much as possible, even if the storage tank 506 has been cold-saturated, the heat pump device 400 must be kept running. If the heat is not enough from the cold negative 200846607 • The heat absorption of the evaporator is insufficient. This hinders the evaporation of the refrigerant and adversely affects the efficiency of the heat pump unit. In addition, if the non-evaporated liquid refrigerant is sent to the compressor, the compressor may be damaged due to the incompressibility of the liquid refrigerant. In addition, when the heat pump unit is installed, the circuit is usually set according to the heat pump unit installation. In different installations, the circuit settings will be re-planned again. For consumers who purchase heat pump devices, more equipment space and construction time and money will be spent. • The above prior art, 尙 can not be adapted to the cold and heat demand conditions, to properly configure the circuit configuration to maintain the heat pump unit in favorable operating conditions. Not only that, but according to the prior art described above, more cost will be incurred. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an energy-related module that can adaptively configure a loop configuration according to cold and heat demand, so that the heat pump device is maintained under favorable operating conditions. Another object of the present invention is to provide an energy-related module that is modularized by a circuit configuration for a heat pump device. In this way, it is only necessary to connect the interface of the energy-related module with the corresponding interface of the heat pump device, and the installation of the heat pump device and its circuit configuration can be completed without additional engineering of the pipeline. It further simplifies the installation process and saves costs. It is still another object of the present invention to provide an energy related module for use in a heat pump apparatus, particularly a heat pump apparatus having a first stage condenser, a second stage condenser, an evaporator, and a compressor. Therefore, the energy association module disclosed by the present invention includes a common channel, 200846607 • a storage bucket and a heat exchange device. The common passage has a first end and a second end, and a first valve body is provided between the first end and the second end. The first valve body can communicate with or not communicate with the first end and the second end of the common passage. The first end of the common passage communicates with the second stage condenser via a tube to form a heat dissipation loop. The storage tub communicates with the evaporator via a tube to form a cooling circuit. The second end of the common passage communicates with the cooling circuit via the pipe member and communicates with the heat exchange device to form a heat absorption circuit and a heat transfer circuit, respectively. A plurality of fluid pumps can be placed on each circuit to circulate the medium of each circuit. # On the other hand, the first end of the common passage can communicate with the second-stage condenser via the first inlet pipe and the first outlet pipe. The storage tub communicates with the evaporator via the second introduction tube and the second extraction tube. The second end of the common passage communicates with the storage tub via the third introduction tube and the third extraction tube. The second end of the common passage communicates with the heat exchange device via the fourth introduction tube and the fourth extraction tube. The first introduction tube, the first end of the common passage, the second extraction tube, and the second stage condenser form a heat dissipation circuit. The second introduction pipe, the storage tank, and the second extraction pipe and the evaporator form a cooling circuit for circulating the refrigerant. The third inlet pipe, the second end of the common passage, the third outlet pipe, and the storage tub form an heat absorption circuit for circulating the refrigerant supply medium. The fourth introduction tube, the second end of the common passage, the fourth extraction tube, and the exchange device form a heat transfer circuit 'for circulating the heat dissipation medium or circulating the supply medium. Preferably, the first fluid pump, the second fluid pump, the third fluid pump, and the fourth fluid pump are respectively disposed on the heat dissipation circuit, the cooling circuit, the heat absorption circuit, and the heat transfer circuit, and are selectively actuated by the first fluid pump, the second fluid pump, and the fourth fluid pump The equal fluid pump 'optionally circulates 200846607 in the medium of the circuits. Preferably, a bypass pipe having a coil section is disposed on the heat dissipation circuit. The coil section is arranged such that the heat dissipating medium flowing in the coil section can exchange heat with the cooling medium flowing in the cooling circuit. Preferably, the heat exchanger means may comprise a fan array consisting of a plurality of fans, a cooling tower 'liquid-to-liquid heat exchanger, a heat pipe, a gas-to-liquid heat exchanger or a soil-to-liquid heat exchanger. Further, a fifth fluid pump may be disposed on the bypass pipe, and the second valve body may be disposed in a section parallel to the bypass pipe on the heat radiation return path. Alternatively, the third introduction pipe may be in communication with the storage tub, but in communication with the second introduction pipe, and the third valve body may be provided at the intersection of the third introduction pipe and the second introduction pipe. The advantage of this approach is that the third fluid pump can be omitted, which can save costs and reduce power consumption. Thus, by opening the first valve body, the heat dissipation medium of the heat dissipation circuit can flow into the second end of the common passage, and then flows into the heat transfer circuit, and the heat of the heat dissipation medium is discharged by the heat exchanger device. At this point, the fifth fluid pump can be activated as appropriate, and some of the heat dissipating medium flows through the bypass pipe and cools in the coil section of the bypass pipe. Alternatively, the fourth valve body may be provided at the intersection of the bypass pipe and the heat dissipation circuit. Thus, the second valve body and the fifth fluid pump can be omitted. If the cooling medium absorbs less heat from the cold load end, the adjustable circuit is configured such that the cooling medium flows into the second end of the common passage, and then flows into the heat transfer circuit to absorb heat from the outside via the heat exchanger device. At this time, it is preferable to close the first valve body and activate the fifth fluid pump. The cooling medium not only absorbs heat from the outside, but also absorbs heat from the coil section of the bypass pipe, and the heat dissipating medium also dissipates heat from the coil section of the bypass pipe. If the degree of hot and cold demand is roughly equal, then there will be no external heat absorption or heat removal to the outside world. At this time, the heat dissipating medium of the heat transfer circuit of the heat transfer circuit can be cooled by the bypass pipe. Since the rotary circuit is idle, the third and fourth fluid pumps and the heat exchange device will not be able to save more power than the prior art. With the energy-related module of the present invention, the heat pump device can absorb heat from the adaptive boundary or discharge heat to the outside to achieve an optimal balance of energy. After reading the knowledge in the technical field to which the present invention pertains, the present invention will be understood. Other advantages of the invention and other objects. [Embodiment] Hereinafter, preferred embodiments of the present invention will be described with reference to Figs. 2, 3, and 4, wherein the same reference numerals denote elements in the present invention. Please refer to FIG. 2 first. FIG. 2 shows a first example according to the present invention, in which the source associated module is generally indicated by the symbol 1 〇. The energy correlation module 10 is used for the heat pump device 20. The heat pump device includes a compressor 210, a first stage condenser 220, and a second stage condenser 230. In the heat pump device 20, the high temperature and high pressure excess refrigerant from the compressor 210 is heat exchanged with the heating medium in the first stage condenser 220. The hot heating medium flows through the heat exchanger 320 through the tube 31 1 and flows into the barrel 310. The heat of the heating medium is transferred to the heat via the heat exchanger 3 20 and can be relocated. Heat transfer. From the outside of the book, the same implementation of 20 bags and steamed hot gas was added. Storage; load -10- 200846607 end. The heat supply medium in the storage tank 310 is returned to the first stage condenser 220 via the pipe 312. In this way, a heating circuit is formed. A fluid pump 313 is disposed on the tubular member 312 to circulate the heating medium of the heating circuit. Since the technical features of the present invention are not in the heating circuit and the heat pump device, only a brief mention is made regarding this portion. Referring also to FIG. 2, the energy association module 10 includes a common channel 110, a storage tank 130, and a heat exchange device 140. The common passage 110 has a first end 111 and a second end 112. The first valve body 113 is provided between the first end 111 and the second end 112. The first end 111 of the common passage 110 can be connected to or disconnected from the second end 112 by the first valve body 113. The first valve body 113 may be a butterfly valve. The first end 111 of the common passage 110 communicates with the outlet end 231 and the inlet end 232 of the second stage condenser 23 through the first introduction pipe 121 and the first extraction pipe 122, respectively. The term "extraction" and "introduction" as used in the specification are defined relative to common channels. The storage tub 130 communicates with the outlet end 241 and the inlet end 24 2 of the evaporator 240 via the second introduction pipe 131 and the second extraction pipe 132, respectively. The second end 112 of the common passage 110 communicates with the storage tub 130 via the third introduction pipe 133 and the third extraction pipe 134. The heat exchange unit 140 includes an outlet end and an inlet end, and the second end 126 of the common passage 110 communicates with the outlet end and the inlet end of the heat exchange unit 140 via the fourth introduction tube 141 and the fourth extraction tube 142, respectively. Although not shown, preferably, the heat exchange device 140 may include a wind-fan array composed of a plurality of fans, a cooling water tower, a liquid-to-liquid heat exchanger, a heat pipe, a gas-to-liquid heat 200846607 - an exchanger or a soil pair Liquid heat exchanger. The first introduction pipe 121, the first end ln of the common passage 110, the first extraction pipe 122, and the second stage condenser 230 form a heat dissipation circuit for circulation of the heat dissipation medium. The second introduction pipe 131, the storage tub 130, the second extraction pipe 132, and the evaporator 240 form a cooling circuit for circulating the cooling medium. The third introduction pipe 133, the second end 112 of the common passage, the third extraction pipe 134, and the storage tub 130 form a heat absorption circuit for circulating the refrigerant. The fourth introduction tube 141, the second end 112 of the common passage, the fourth extraction tube 142, and the heat exchange device form a heat transfer circuit for circulation of the heat dissipation medium or the cooling medium. The first fluid pump 125 is provided in the first lead pipe, the second fluid pump 135 is provided in the second lead pipe, the third fluid pump 136 is provided in the third inlet pipe, and the third fluid pump 136 is provided on the fourth lead pipe. 4 fluid pump 143. These fluid pumps are used to circulate the media on each circuit. The medium on each circuit is selectively circulated by selectively actuating the fluid pump. Further, a bypass pipe 123 is provided in the first introduction pipe, and the bypass pipe 123 has a coil section 124. The coil section 124 is disposed in the storage tank 130 such that the heat dissipating medium flowing through the coil section 124 can exchange heat with the cooling medium in the storage tank 130. The fifth fluid pump 126 is provided in the bypass pipe 123, and the second valve body 127 is provided in a section of the first introduction pipe 121 that is parallel to the bypass pipe 123. Preferably, the second valve body 127 is a check valve. The pressure of the upstream end of the first introduction tube 121 is lowered due to the activation of the fifth fluid pump 126. By the arrangement of the second valve body 127, the medium on the section of the first introduction tube 121 parallel to the bypass tube 123 can be avoided. countercurrent. -12- 200846607 Preferably, an expansion tank 〖2 8 is provided on the first lead-out pipe for absorbing the volume change caused by the pressure and/or temperature change of the heat-dissipating medium. When the heat flow device 20 is in operation, the first fluid pump 12 5 , the second fluid pump 135 and the fluid pump 3 1 3 are substantially activated. Other fluid pumps and valve bodies may or may not be activated as appropriate. For example, in the hot weather, by opening the first valve body 113, the heat dissipation medium of the heat dissipation circuit can flow into the second end 112 of the common passage 110. By activating the fourth fluid pump 1 4 3, the heat transfer medium flowing into the second end 112 of the common passage 1 1 进一步 can be further flowed into the heat transfer circuit. The heat of the heat dissipating medium is discharged by the heat exchanger device 140 to prevent insufficient cooling of the heat dissipating medium. At this time, the third fluid pump is not activated, and the heat dissipating medium and the cooling medium are prevented from being mixed in the common passage, and the fifth fluid pump 126 can be activated as the case may be. When the fifth fluid pump 126 is activated, a portion of the heat dissipating medium can flow through the bypass tube 123 and cool in the coil section 124 of the bypass line 134. Overall, the heat dissipating medium is further cooled by the activation of the fifth fluid pump 126. For example, in cold weather, the hot load end usually has a higher heat demand, and the cold load end has a lower cold demand. If the cooling medium absorbs insufficient heat from the cold load end, the first valve body 113 can be closed and the third fluid pump 13 3 can be started. By the activation of the third fluid pump 13 3 , the cooling medium can flow from the storage tub 13 into the second end 112 of the common passage 110 through the heat absorption circuit. The refrigerant supply can be further flowed into the heat transfer circuit by the activation of the fourth fluid pump, and absorbs heat from the outside via the heat exchanger device 104. At this time, the fifth fluid pump 126 can be activated so that the heat dissipating medium can be cooled via the coil section 124 of the bypass pipe 123. On the other hand, the cooling medium is not only transmitted through heat.

200846607 交換裝置140從外界吸熱,而且可由旁通管123的盤 124吸熱。 如果冷熱需求程度大致上相當的話,那麼將不需 從外界吸熱或將熱排至外界。此時,可使熱移轉迴路Pi 散熱迴路之散熱介質可經由旁通管123而獲得冷卻。 熱移轉迴路閒置,第3及第4流體泵136及143以及 換裝置140將不運作。 第2實施例顯示於第3圖,與第1實施例不同之 於,第2實施例中第3引入管133不與儲存桶130連 而是與上游的第2引入管131連通。換言之,第3引 133從第2引入管131分歧出來。 較佳地,在第3引入管13 3與第2引入管131的 處設置第3閥體137。如此,可省略第1實施例中5 流體泵1 3 6。 第3閥體1 3 7可控制地使供冷介質僅流入儲存桶 使供冷介質僅流入第3引入管1 3 3或使供冷介質同時 儲存桶130及第3引入管133。第3閥體137可爲三2 舉例而言,在炎熱的天氣時,藉由開啓第1閥體 散熱迴路之散熱介質可流入共通通道110之第2端 藉由啓動第4流體泵143,可使流入共通通道110〈 端112之散熱介質進一步流入熱移轉迴路。藉由熱5 裝置140將散熱介質之熱排出,以冷卻散熱介質。出 控制第3閥體1 37,使得供冷介質僅流入儲存桶1 30, 散熱介質及供冷介質在共通通道混合,並可視情況卷 管段 另外 1置。 由於 熱交 處在 通, 入管 交接 :第3 130、 :流入 i閥。 113, 1 12 〇 :第2 〔換器 :時, 避免 f動第 -14- 200846607 一 5流體泵126。當第5流體泵126啓動時,部分散熱介質可 流經旁通管123,且於旁通管134之盤管段列124冷卻。 整體來說,藉由第5流體泵126之啓動,可散熱介質進一 步獲得冷卻。 舉例而言,在寒冷的天氣時,通常熱負載端對熱需求 程度較高,相較之下冷負載端對冷需求程度較低。如果供 冷介質從冷負載端吸熱不足,則可關閉第1閥體113並控 制第3閥體137,使得供冷介質同時流入儲存桶130及第3 Φ 引入管133。如此,部分的供冷介質可經由第3引入管133 流入共通通道110之第2端112。亦可控制第3閥體137, 使得供冷介質不經由第3閥體1 3 7流入儲存桶1 3 0而流入 第3引入管133。藉由第4流體泵143之啓動,供冷介質 可進一步流入熱移轉迴路,並經由熱交換器裝置140從外 界吸熱。此時,可啓動第5流體泵126,使得散熱介質可 經由旁通管123的盤管段124獲得冷卻。另一方面,供冷 介質不止透過熱交換裝置140從外界吸熱,而且可由旁通 ^ 管123的盤管段124吸熱。 如果冷熱需求程度大致上相當的話,那麼將不需另外 從外界吸熱或將熱排至外界。此時,可使熱移轉迴路閒置。 散熱迴路之散熱介質可經由旁通管123而獲得冷卻。由於 熱移轉迴路閒置,第3及第4流體泵1 3 6及1 4 3以及熱交 換裝置140將不運作。 第4圖顯示根據本發明之第3實施例,與第2實施例 不同之處在於,在第3實施例中,於第1引入管121與旁 -15· 200846607 - 通管123的上游交接處設置第4閥體129。如此,可省略 第2閥體127及第5流體泵126,可進一步降低成本,並 節省用電。 第4閥體1 29可控制地使散熱介質僅流入第〗引入管 12卜使散熱介質僅流入旁通管123或使散熱介質同時流入 第1引入管121及旁通管123。第4閥體129可爲三通閥。 關於供熱介質、散熱介質及供冷介質,可選自水、乙二醇 水溶液或可以作爲熱傳工作介質之其他流體等。較佳的, # 散熱介質及供冷介質係選自具有相同成分的工作介質。 應了解的是,在前述的習知技術中,只要熱泵裝置400 開機運轉,冷卻水塔5 3 0 —定要隨之運轉。相較於習知技 術,根據本發明之能源關聯模組可依熱泵裝置之工作條件 選擇性地使熱交換裝置及熱移轉迴路閒置,可進一步減少 耗電量。 雖然上述實施例是以包含二級式冷凝器之熱泵裝置進 行說明,但本發明領域中具有通常知識者都可理解,根據 ® 本發明之能源關聯模組亦可應用於包含多級式冷凝器之熱 泵裝置。因此,在本說明書所稱的第1級冷凝器即是意指 初級冷凝器,而所稱的第2級冷凝器即是意指末級冷凝器 或意指初級冷凝器以外的任一冷凝器。 雖然本發明參照較佳實施例而敘述’應了解的是在本 發明所述槪念的精神及範疇內,對於本發明領域中具有通 常知識者而言,可有許多的變化及修飾。因此,本發明所 欲意保護的範圍並不侷限於所揭露的實施。 -1 6 - 200846607 【圖式簡單說明】 第1圖顯示習知技術之熱泵裝置及其迴路配置; 第2圖顯示根據本發明之能源關聯模組之第1實施 例;及 第3圖顯示根據本發明之能源關聯模組之第2實施例。 第4圖顯示根據本發明之能源關聯模組之第3實施例。 【主要元件符號說明】The exchange device 140 absorbs heat from the outside and can absorb heat from the disk 124 of the bypass pipe 123. If the degree of hot and cold demand is roughly equal, then there is no need to absorb heat from the outside or to discharge heat to the outside world. At this time, the heat dissipation medium of the heat transfer circuit Pi heat dissipation circuit can be cooled by the bypass pipe 123. The heat transfer circuit is idle, and the third and fourth fluid pumps 136 and 143 and the change device 140 will not operate. The second embodiment is shown in Fig. 3. Unlike the first embodiment, the third introduction pipe 133 is not connected to the storage tub 130 but to the upstream second introduction pipe 131 in the second embodiment. In other words, the third lead 133 is branched from the second introduction tube 131. Preferably, the third valve body 137 is provided at the third introduction pipe 13 3 and the second introduction pipe 131. Thus, the 5 fluid pump 1 36 in the first embodiment can be omitted. The third valve body 1 3 7 controllably causes the cooling medium to flow only into the storage tub, so that the cooling medium flows only into the third introduction pipe 13 3 or the cooling medium simultaneously stores the bucket 130 and the third introduction pipe 133. For example, in the hot weather, the heat dissipation medium of the first valve body heat dissipation circuit can be turned into the second end of the common passage 110 by actuating the fourth fluid pump 143. The heat dissipating medium flowing into the common channel 110 (end 112) is further flowed into the heat transfer circuit. The heat of the heat dissipating medium is discharged by the heat 5 device 140 to cool the heat dissipating medium. The third valve body 1 37 is controlled so that the cooling medium flows only into the storage tub 1 30, and the heat dissipating medium and the cooling medium are mixed in the common passage, and the coil section can be additionally disposed as the case may be. Since the heat is in the pass, the pipe is handed over: No. 3, 130: into the i valve. 113, 1 12 〇 : 2nd [Changer: When avoiding f-movement -14- 200846607 A 5 fluid pump 126. When the fifth fluid pump 126 is activated, a portion of the heat dissipating medium can flow through the bypass tube 123 and cool in the coil section 124 of the bypass line 134. Overall, the heat dissipating medium is further cooled by the activation of the fifth fluid pump 126. For example, in cold weather, the hot load end usually has a higher heat demand, and the cold load end has a lower cold demand. If the cooling medium absorbs insufficient heat from the cold load end, the first valve body 113 can be closed and the third valve body 137 can be controlled so that the cooling medium flows into the storage tub 130 and the third Φ introduction tube 133 at the same time. As such, a portion of the cooling medium can flow into the second end 112 of the common passage 110 via the third introduction tube 133. The third valve body 137 can also be controlled so that the cooling medium flows into the third introduction pipe 133 without flowing into the storage tub 130 through the third valve body 1 3 7 . By the activation of the fourth fluid pump 143, the refrigerant supply medium can further flow into the heat transfer circuit and absorb heat from the outside via the heat exchanger device 140. At this time, the fifth fluid pump 126 can be activated so that the heat dissipating medium can be cooled via the coil section 124 of the bypass pipe 123. On the other hand, the cooling medium absorbs heat from the outside through the heat exchange unit 140, and can be absorbed by the coil section 124 of the bypass pipe 123. If the degree of hot and cold demand is roughly equal, then there is no need to absorb heat from the outside or discharge heat to the outside world. At this point, the thermal transfer circuit can be left idle. The heat dissipation medium of the heat dissipation circuit can be cooled via the bypass pipe 123. Since the thermal transfer circuit is idle, the third and fourth fluid pumps 1 3 6 and 1 4 3 and the heat exchange device 140 will not operate. Fig. 4 is a view showing a third embodiment of the present invention, which differs from the second embodiment in that, in the third embodiment, at the intersection of the first inlet pipe 121 and the side -15·200846607 - the pipe 123 The fourth valve body 129 is provided. Thus, the second valve body 127 and the fifth fluid pump 126 can be omitted, and the cost can be further reduced, and power consumption can be saved. The fourth valve body 1 29 controllably causes the heat radiating medium to flow only into the first introduction pipe 12 so that the heat radiating medium flows only into the bypass pipe 123 or causes the heat radiating medium to flow into the first introduction pipe 121 and the bypass pipe 123 at the same time. The fourth valve body 129 may be a three-way valve. The heating medium, the heat dissipating medium, and the cooling medium may be selected from water, an aqueous solution of ethylene glycol, or other fluids that can serve as a heat transfer working medium. Preferably, the heat dissipating medium and the cooling medium are selected from the group consisting of working mediums having the same composition. It should be understood that in the prior art described above, as long as the heat pump device 400 is turned on, the cooling water tower 530 will be operated accordingly. Compared with the prior art, the energy-related module according to the present invention can selectively idle the heat exchange device and the heat transfer circuit according to the operating conditions of the heat pump device, thereby further reducing power consumption. Although the above embodiment has been described with a heat pump apparatus including a two-stage condenser, it will be understood by those of ordinary skill in the art that the energy-related module according to the present invention can also be applied to a multi-stage condenser. Heat pump unit. Therefore, the first stage condenser referred to in this specification means the primary condenser, and the so-called second stage condenser means any final condenser or any condenser other than the primary condenser. . While the present invention has been described with respect to the preferred embodiments, it is understood that many modifications and changes may be made to those of ordinary skill in the field of the invention. Therefore, the scope of the invention as claimed is not limited to the disclosed embodiments. -1 6 - 200846607 [Simplified description of the drawings] Fig. 1 shows a heat pump device of the prior art and its circuit configuration; Fig. 2 shows a first embodiment of the energy related module according to the present invention; and Fig. 3 shows A second embodiment of the energy related module of the present invention. Figure 4 shows a third embodiment of an energy association module in accordance with the present invention. [Main component symbol description]

10 能源關聯模組 20 熱泵裝置 110 共通通道 111 第1端 112 第2端 113 第1閥體 121 第1引入管 122 第1引出管 123 旁通管 1 2 4 盤管段 125 第1流體泵 126 第5流體泵 127 第2閥體 128 膨脹水箱 129 第4閥體 130 儲存桶 13 1 第2引入管 132 第2引出管 -17- 20084660710 Energy-related module 20 Heat pump device 110 Common channel 111 First end 112 Second end 113 First valve body 121 First inlet pipe 122 First outlet pipe 123 Bypass pipe 1 2 4 Coil section 125 First fluid pump 126 5 fluid pump 127 second valve body 128 expansion water tank 129 fourth valve body 130 storage tank 13 1 second introduction tube 132 second outlet tube -17- 200846607

1 33 第 3 引 入 管 134 第 3 引 出 管 135 第 2 流 體 泵 136 第 3 流 體 泵 137 第 3 閥 體 140 熱 交 換 裝 置 141 第 4 引 入 管 142 第 4 引 出 管 143 第 4 流 mm 體 泵 210 壓 縮 機 220 第 1 級 冷 凝 器 23 0 第 2 級 冷 凝 器 23 1 出 □ 丄山 m 232 入 □ 端 240 菡 / V \ \ 發 器 241 出 □ 端 242 入 □ 端 3 10 儲 存 桶 3 11 管 件 3 12 管 件 3 13 流 體 泵 320 熱 交 換 器 400 熱 流 裝 置 410 壓 縮 機 -18 2008466071 33 3rd introduction pipe 134 3rd extraction pipe 135 2nd fluid pump 136 3rd fluid pump 137 3rd valve body 140 Heat exchange device 141 4th introduction pipe 142 4th extraction pipe 143 4th flow mm body pump 210 compressor 220 1st stage condenser 23 0 2nd stage condenser 23 1 out □ 丄山 m 232 □ end 240 菡 / V \ \ 241 out □ end 242 □ end 3 10 storage tank 3 11 pipe fittings 3 12 pipe fittings 3 13 Fluid Pump 320 Heat Exchanger 400 Heat Flow Device 410 Compressor-18 200846607

42 0 第 1 級 冷 凝 器 430 第 2 級 冷 凝 器 440 蒸 發 器 5 10 儲 存 桶 52 0 供 熱 迴 路 530 冷 卻 水 塔 540 散 熱 迴 路 550 儲 存 桶 560 供 冷 迴 路42 0 1st stage condenser 430 2nd stage condenser 440 evaporator 5 10 storage barrel 52 0 heating circuit 530 cooling water tower 540 heat transfer circuit 550 storage barrel 560 cooling circuit

Claims (1)

200846607 十、申請專利範圍: 1 .一 ®能源關聯模組,其係使用於熱泵裝置,該熱泵裝置 包含—第1級冷凝器、一第2級冷凝器及一蒸發器,該 能源關聯模組包含: 一共通通道,其具有一第1端及一第2端,於該第1 端及第2端之間設置一第1閥體,藉由該第1閥體可使 該共通通道之第1端與第2端連通或不連通,該第1端 經由一第1引入管及一第1引出管分別與該第2級冷凝 ^ 器之出口端及入口端連通; 一儲存桶,其經由一第2引入管及第2引出管分別與 該蒸發器之出口端及入口端連通,該共通通道之第2端 經由一第3引入管及第3引出管與該儲存桶連通;及 一熱交換裝置,其包含一出口端及一入口端,該共通 通道之第2端經由一第4引入管及第4引出管分別與該 熱交換裝置之出口端及入口端連通。 2·如申請專利範圍第〗項所述之能源關聯模組,其中 > 該第1引入管、該共通通道之第1端、該第1引出管 及該第2級冷凝器形成一散熱迴路,用於散熱介質之循 環, 該第2引入管、該儲存桶、第2引出管及該蒸發器形 成一供冷迴路,用於供冷介質之循環, 該第3引入管、該共通通道之第2端、該第3引出管 及該儲存桶形成一吸熱迴路,用於供冷介質之循環, 該第4引入管、該共通通道之第2端、該第4引出管 -20- 200846607 - 及該熱交換裝置形成一熱移轉迴路,用於散熱介質或供 冷介質之循環, 於該散熱迴路、該供冷迴路、該吸熱迴路及該熱移轉 迴路分別設置一第1流體泵、一第2流體泵、一第3流 體泵及一第4流體泵,藉由可選擇地致動該等流體泵, 可選擇地使在該等迴路之介質循環。 3 ·如申請專利範圍第2項所述之能源關聯模組,其中於該 散熱迴路上設置一旁通管,該旁通管具有一盤管段,該 • 盤管段係設置成流經該盤管段的散熱介質可與於該供冷 迴路之供冷介質作熱交換。 4·如申請專利範圍第3項所述之能源關聯模組,其中該盤 管係設置於該儲存桶內。 5 .如申請專利範圍第3項所述之能源關聯模組,其中於該 旁通管上設置一第5流體泵, 於該散熱迴路上與該旁通管並行的區段上,設置一第2 閥體。 ® 6.如申請專利範圍第3項所述之能源關聯模組,其中於該 旁通管與該散熱迴路交接處設置一第4閥體。 7. 如申請專利範圍第1項所述之能源關聯模組,其中該第1 閥體爲蝶閥(butterfly valve)。 8. 如申請專利範圍第5項所述之能源關聯模組,其中該第2 閥體爲止回閥(check valve)。 9. 如申請專利範圍第2項所述之能源關聯模組,其中該熱 交換裝置包含由複數個風扇所構成之風扇陣列、冷卻水 -21 - 200846607 - 塔、液對液熱交換器、熱管、氣體對液熱交換器或土壤 對液熱交換器。 1 0·如申請專利範圍第2項所述之能源關聯模組,其中於該 散熱迴路上設置一膨脹箱,用以吸該收散熱迴路之散熱 介質因壓力變化及/或溫度變化所造成的體積變化。 1 1 ·如申請專利範圍第2項所述之能源關聯模組,其中該散 熱介質及該供冷介質爲水、乙二醇水溶液或可以作爲熱 傳工作介質之其他流體。 # 12·—種能源關聯模組,其係使用於熱泵裝置,該熱泵裝置 包含一第1級冷凝器、一第2級冷凝器及一蒸發器,該 能源關聯模組包含: 一共通通道,其具有一第1端及一第2端,於該第1 端及第2端之間設置一第1閥體,藉由該第1閥體可使 該共通通道之第1端與第2端連通或不連通,該第1端 經由一第1引入管及一第1引出管分別與該第2級冷凝 器之出口端及入口端連通; • 一儲存桶,其經由一第2引入管及第2引出管分別與 該蒸發器之出口端及入口端連通,該共.通通道之第2端 經由一第3引入管及第3引出管分別與該第2引入管及 該儲存桶連通;及 一熱交換裝置,其包含一出口端及一入口端,該共通 通道之第2端又經由一第4引入管及第4引出管分別與 該熱交換裝置之出口端及入口端連通。 1 3 ·如申請專利範圍第1 2項所述之能源關聯模組,其中該第 -22- 200846607 • 1引入管、該共通通道之第1端、該第2引出管及該第2 級冷凝器形成一散熱迴路,用於散熱介質之循環, 該第2引入管、該儲存桶、第2引出管及該蒸發器形 成一供冷迴路,用於供冷介質之循環, 該第4引入管、該共通通道之第2端、該第4引出管 及該熱交換裝置形成一熱移轉迴路,用於散熱介質或供 冷介質之循環, 於該散熱迴路、該供冷迴路及該熱移轉迴路分別設置 • 一第1流體泵、一第2流體泵及一第4流體泵,藉由可 選擇地致動該等流體泵,可選擇地使在該等迴路之介質 循環, 於該第2引入管及該第3引入管之交接處,設置一第3 閥體。 1 4·如申請專利範圍第1 3項所述之能源關聯模組,其中於該 散熱迴路上設置一旁通管,該旁通管具有一盤管段,該 盤管段係設置成流經該盤管段的散熱介質可與於該供冷 ® 迴路之供冷介質作熱交換。 1 5 .如申請專利範圍第1 4項所述之能源關聯模組,其中該盤 管係設置於該儲存桶內。 1 6.如申請專利範圍第1 4項所述之能源關聯模組,其中於該 旁通管上設置一第5流體泵, 於該散熱迴路上與該旁通管並行、的區段上,設置一第2 閥體。 1 7.如申請專利範圍第1 4項所述之能源關聯模組,其中於該 -23- 200846607 • 旁通管與該散熱迴路交接處設置一第4閥體。 18·如申請專利範圍第12項所述之能源關聯模組,其中該第 1 閥體爲蝶閥(butterfly valve)。 1 9·如申請專利範圍第1 6項所述之能源關聯模組,其中該第 2閥體爲止回閥(check valve)。 20·如申請專利範圍第1 3項所述之能源關聯模組,其中該熱 交換裝置包含由複數個風扇所構成之風扇陣列、冷卻水 塔、液對液熱交換器、熱管、氣體對液熱交換器或土壤 # 對液熱交換器。 2 1 ·如申請專利範圍第1 3項所述之能源關聯模組,其中於該 散熱迴路上設置一膨脹箱,用以吸該收散熱迴路之散熱 介質因壓力變化及/或溫度變化所造成的體積變化。 22·如申請專利範圍第1 3項所述之能源關聯模組,其中該散 熱介質及該供冷介質爲水、乙二醇水溶液或可以作爲熱 傳工作介質之其他流體。 23 · —種能源關聯模組,其係使用於熱泵裝置,該能源關聯 ^ 模組包含一共通通道、一儲存桶及一熱交換裝置,其中, 該共通通道具有一第1端及一第2端,於該第i端及 第2端之間設置一第1閥體,藉由該第1閥體可使該共 通通道之第1端與第2端連通或不連通, 該共通通道之第1端藉由管件與該熱泵裝置之冷凝器 連通,以形成一散熱迴路,該儲存桶藉由管件與該熱泵 裝置之蒸發器連通,以形成一供冷迴路,該共通通道之 第2端藉由管件與該熱交換裝置連通,以形成一熱移轉 -24- 200846607 • 迴路,該共通通道之第2端又藉由管件與該供冷迴路連 通,以形成一吸熱迴路。 24.如申請專利範圍第23項所述之能源關聯模組,其中於該 散熱迴路上設置一旁通管,使得該散熱迴路之介質可經 由該旁通管與該供冷介質作熱交換。 2 5.如申請專利範圍第24項所述之能源關聯模組,其中於該 散熱迴路上與該旁通管並行的區段上,設置一第2閥體。 2 6.如申請專利範圍第24項所述之能源關聯模組,其中於該 # 散熱迴路上與該旁通管交接處設置一第4閥體。 27·如申請專利範圍第25項所述之能源關聯模組,其中在該 等迴路每一者及該旁通管上各自設置一流體泵。 28·如申請專利範圍第25項所述之能源關聯模組,其中在該 散熱迴路、該供冷迴路、該熱移轉迴路及該旁通管上各 自設置一流體泵,且在該吸熱迴路上設置一第3閥體。 29·如申請專利範圍第23項所述之能源關聯模組,其中其中 於該散熱迴路上設置一膨脹箱,用以吸該收散熱迴路之 ^ 散熱介質因壓力差及/或溫度差所造成的體積變化。 3〇·如申請專利範圍第23項所述之能源關聯模組,其中該第 1 閥體爲蝶閥(butterfly valve)。 3 1 ·如申請專利範圍第25項所述之能源關聯模組,其中該第 2閥體爲止回閥(check valve)。 3 2·如申請專利範圍第23項所述之能源關聯模組,其中該熱 交換裝置包含由複數個風扇所構成之風扇陣列、冷卻水 塔、液對液熱交換器、熱管、氣體對液熱交換器或土壤 -25- 200846607 • 對液熱交換器。 3 3.如申請專利範圍第23項所述之能源關聯模組,其中於各 迴路上之介質爲水、乙二醇水溶液或可以作爲熱傳工作 介質之其他流體。200846607 X. Patent application scope: 1. A ® energy related module, which is used in a heat pump device, which comprises a first stage condenser, a second stage condenser and an evaporator, the energy correlation module The method includes: a common passage having a first end and a second end, wherein a first valve body is disposed between the first end and the second end, and the first valve body can make the common passage The first end is connected to or disconnected from the second end, and the first end is connected to the outlet end and the inlet end of the second stage condensing device via a first introduction tube and a first extraction tube respectively; a second introduction tube and a second extraction tube are respectively connected to the outlet end and the inlet end of the evaporator, and the second end of the common passage is connected to the storage tank via a third introduction tube and a third extraction tube; and a heat The switching device includes an outlet end and an inlet end, and the second end of the common passage communicates with the outlet end and the inlet end of the heat exchange device via a fourth introduction tube and a fourth extraction tube. 2. The energy-related module of claim 1, wherein the first introduction tube, the first end of the common channel, the first extraction tube, and the second-stage condenser form a heat dissipation circuit For the circulation of the heat dissipation medium, the second introduction tube, the storage barrel, the second extraction tube and the evaporator form a cooling circuit for circulating the cooling medium, the third introduction tube and the common passage The second end, the third lead-out tube and the storage tub form a heat absorption circuit for circulating the cooling medium, the fourth introduction tube, the second end of the common passage, and the fourth outlet tube -20-200846607 - And the heat exchange device forms a heat transfer circuit for circulating the heat dissipation medium or the cooling medium, and the first fluid pump is respectively disposed in the heat dissipation circuit, the cooling circuit, the heat absorption circuit and the heat transfer circuit. A second fluid pump, a third fluid pump, and a fourth fluid pump selectively circulate the media in the circuits by selectively actuating the fluid pumps. 3. The energy associating module of claim 2, wherein a bypass pipe is disposed on the heat dissipation circuit, the bypass pipe has a coil section, and the coil section is disposed to flow through the coil section The heat dissipating medium can exchange heat with the cooling medium of the cooling circuit. 4. The energy associating module of claim 3, wherein the coil system is disposed in the storage tub. 5. The energy-related module of claim 3, wherein a fifth fluid pump is disposed on the bypass pipe, and a section is disposed on the heat-dissipating circuit in a section parallel to the bypass pipe. 2 valve body. The energy-related module of claim 3, wherein a fourth valve body is disposed at a junction of the bypass pipe and the heat dissipation circuit. 7. The energy-related module of claim 1, wherein the first valve body is a butterfly valve. 8. The energy-related module of claim 5, wherein the second valve body is a check valve. 9. The energy-related module of claim 2, wherein the heat exchange device comprises a fan array composed of a plurality of fans, cooling water-21 - 200846607 - tower, liquid-to-liquid heat exchanger, heat pipe , gas to liquid heat exchanger or soil to liquid heat exchanger. 1 0. The energy-related module of claim 2, wherein an expansion tank is disposed on the heat dissipation circuit for absorbing the heat transfer medium of the heat dissipation circuit due to pressure change and/or temperature change. Volume change. The energy-related module of claim 2, wherein the heat-dissipating medium and the cooling medium are water, an aqueous solution of ethylene glycol or other fluid that can serve as a heat transfer working medium. #12·—Energy-related module, which is used in a heat pump device, the heat pump device includes a first-stage condenser, a second-stage condenser, and an evaporator, and the energy-related module includes: a common channel, The first end and the second end are provided with a first valve body between the first end and the second end, and the first end and the second end of the common passage are provided by the first valve body Connected or not, the first end is connected to the outlet end and the inlet end of the second stage condenser via a first introduction pipe and a first outlet pipe respectively; • a storage tank passing through a second introduction pipe and The second outlet tube is respectively connected to the outlet end and the inlet end of the evaporator, and the second end of the common passage is connected to the second introduction tube and the storage barrel via a third introduction tube and a third extraction tube; And a heat exchange device comprising an outlet end and an inlet end, wherein the second end of the common passage is in communication with the outlet end and the inlet end of the heat exchange device via a fourth introduction tube and a fourth extraction tube, respectively. 1 3 - The energy-related module of claim 12, wherein the -22-200846607 • 1 introduction tube, the first end of the common passage, the second extraction tube, and the second stage condensation Forming a heat dissipation circuit for circulating the heat dissipation medium, the second introduction tube, the storage barrel, the second extraction tube and the evaporator form a cooling circuit for circulating the cooling medium, the fourth introduction tube The second end of the common passage, the fourth outlet pipe and the heat exchange device form a heat transfer circuit for circulating heat dissipation medium or cooling medium, the heat dissipation circuit, the cooling circuit and the heat transfer The rotary circuit is separately provided. • a first fluid pump, a second fluid pump, and a fourth fluid pump, wherein the fluids in the circuits are selectively circulated by selectively actuating the fluid pumps. 2 At the junction of the introduction tube and the third introduction tube, a third valve body is disposed. The energy-related module of claim 13, wherein a bypass pipe is disposed on the heat-dissipating circuit, the bypass pipe has a coil section, and the coil section is disposed to flow through the coil section The heat dissipating medium exchanges heat with the cooling medium of the cooling circuit. The energy-related module of claim 14, wherein the coil system is disposed in the storage tank. The energy-related module of claim 14, wherein a fifth fluid pump is disposed on the bypass pipe, and the heat-dissipating circuit is parallel to the bypass pipe. Set a 2nd valve body. 1 7. The energy-related module of claim 14, wherein the -23-200846607 • a fourth valve body is disposed at a junction of the bypass pipe and the heat dissipation circuit. 18. The energy associating module of claim 12, wherein the first valve body is a butterfly valve. 1 9. The energy-related module of claim 16, wherein the second valve body is a check valve. 20. The energy-related module of claim 13, wherein the heat exchange device comprises a fan array composed of a plurality of fans, a cooling water tower, a liquid-to-liquid heat exchanger, a heat pipe, and a gas-to-liquid heat Exchanger or soil # to liquid heat exchanger. 2 1 . The energy-related module of claim 13 , wherein an expansion box is disposed on the heat dissipation circuit for absorbing the heat dissipation medium of the heat dissipation circuit due to pressure change and/or temperature change. The volume changes. 22. The energy-related module of claim 13, wherein the heat-dissipating medium and the cooling medium are water, an aqueous solution of ethylene glycol or other fluid that can act as a heat transfer working medium. An energy-related module is used in a heat pump device, the energy-related module includes a common channel, a storage bucket, and a heat exchange device, wherein the common channel has a first end and a second a first valve body is disposed between the first end and the second end, and the first valve body can communicate or not communicate with the first end and the second end of the common passage, and the common passage is The first end is connected to the condenser of the heat pump device by a tube to form a heat dissipation circuit, and the storage barrel is connected to the evaporator of the heat pump device by a tube to form a cooling circuit, and the second end of the common channel is borrowed The tube is in communication with the heat exchange device to form a heat transfer-24-200846607. The circuit, the second end of the common passage is in communication with the refrigeration circuit to form a heat absorption circuit. 24. The energy associating module of claim 23, wherein a bypass pipe is disposed on the heat dissipation circuit such that the medium of the heat dissipation circuit can exchange heat with the cooling medium via the bypass pipe. The energy-related module of claim 24, wherein a second valve body is disposed on a section of the heat dissipation circuit that is parallel to the bypass pipe. 2. The energy-related module of claim 24, wherein a fourth valve body is disposed at the junction of the #heat-dissipation circuit and the bypass pipe. 27. The energy associating module of claim 25, wherein a fluid pump is disposed on each of the circuits and the bypass. The energy-related module of claim 25, wherein a fluid pump is disposed on the heat-dissipating circuit, the cooling circuit, the heat transfer circuit, and the bypass pipe, and the heat-absorbing circuit is disposed in the heat-absorbing circuit A third valve body is disposed on the upper body. The energy-related module of claim 23, wherein an expansion box is disposed on the heat dissipation circuit for sucking the heat dissipation medium of the heat dissipation circuit due to a pressure difference and/or a temperature difference. The volume changes. 3. The energy-related module of claim 23, wherein the first valve body is a butterfly valve. The energy-related module of claim 25, wherein the second valve body is a check valve. The energy-related module of claim 23, wherein the heat exchange device comprises a fan array composed of a plurality of fans, a cooling water tower, a liquid-to-liquid heat exchanger, a heat pipe, and a gas-to-liquid heat Exchanger or soil - 25 - 200846607 • For liquid heat exchangers. 3. The energy-associated module of claim 23, wherein the medium on each circuit is water, an aqueous solution of ethylene glycol or other fluid that can act as a heat transfer medium. -26--26-
TW96119479A 2007-05-31 2007-05-31 Energy correlation module TW200846607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96119479A TW200846607A (en) 2007-05-31 2007-05-31 Energy correlation module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96119479A TW200846607A (en) 2007-05-31 2007-05-31 Energy correlation module

Publications (1)

Publication Number Publication Date
TW200846607A true TW200846607A (en) 2008-12-01

Family

ID=44823239

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96119479A TW200846607A (en) 2007-05-31 2007-05-31 Energy correlation module

Country Status (1)

Country Link
TW (1) TW200846607A (en)

Similar Documents

Publication Publication Date Title
TWI669475B (en) Chilled water cooling system
AU2005258416B2 (en) Hot water supply system
US10356949B2 (en) Server rack heat sink system with combination of liquid cooling device and auxiliary heat sink device
RU2660812C2 (en) Heat exchanger for cooling switch cabinet and corresponding cooling arrangement
JP4902656B2 (en) Media cooling system
US20080302113A1 (en) Refrigeration system having heat pump and multiple modes of operation
JP6344385B2 (en) Cooling system and cooling method
CN106686953B (en) Liquid cooling heat pipe heat dissipation system for cabinet server and control method thereof
JP2009512190A5 (en)
KR100953120B1 (en) Cooling/heating system using geothermal providing multipurpose system for storing the heat available recovery waste heat
JP2010223537A (en) Heat pump hot water supply system
TWI445493B (en) Heat dissipation system
CN111988973A (en) Air-cooled heat dissipation equipment and cooling system
JP5246891B2 (en) Heat pump system
KR100900441B1 (en) Heat pump airconditioning and heating equipement using geothermy
CN210892235U (en) Natural cooling multi-connected refrigerating system with built-in gravity heat pipe
JP2006038306A (en) Freezer
JP5563521B2 (en) Geothermal heat pump device
CN212362257U (en) Multi-zone air conditioning system
TW200846607A (en) Energy correlation module
JP5333557B2 (en) Hot water supply air conditioning system
JP2004150664A (en) Cooling device
KR20150133966A (en) Cooling system
KR101175635B1 (en) An air conditioning system with non-defrost
CN216761383U (en) Heat pump system