TW200846505A - Electrochemical induced surface processing for metal substrate - Google Patents

Electrochemical induced surface processing for metal substrate Download PDF

Info

Publication number
TW200846505A
TW200846505A TW96119349A TW96119349A TW200846505A TW 200846505 A TW200846505 A TW 200846505A TW 96119349 A TW96119349 A TW 96119349A TW 96119349 A TW96119349 A TW 96119349A TW 200846505 A TW200846505 A TW 200846505A
Authority
TW
Taiwan
Prior art keywords
metal substrate
surface treatment
electrochemically
substrate according
substrate
Prior art date
Application number
TW96119349A
Other languages
Chinese (zh)
Other versions
TWI342901B (en
Inventor
Xu-Tan Huang
zhong-lin Zhou
Original Assignee
Cosmos Vacuum Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmos Vacuum Technology Corp filed Critical Cosmos Vacuum Technology Corp
Priority to TW96119349A priority Critical patent/TW200846505A/en
Publication of TW200846505A publication Critical patent/TW200846505A/en
Application granted granted Critical
Publication of TWI342901B publication Critical patent/TWI342901B/zh

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

An electrochemical induced surface processing for metal substrate includes the following steps: (a) providing a substrate selected from one of the groups consisting of aluminum (Al), magnesium (Mg), titanium (Ti), and an alloy thereof; and (b) providing an acid solution, an anode and a cathode, the anode being electrically connected to the substrate, the cathode being electrically connected to the acid solution, and selecting a proper current density and voltage. The voltage range is between 200 voltage and 400 voltage, the acid solution reacting with the substrate at an operating temperature and a predetermined time for film forming, thereby forming an insulation layer on the substrate surface gradually.

Description

200846505 九、發明說明: 【發明所屬之技術領域】 本發明係與表面處理技術有關,特別是關於一種金屬 基材之電化學激化表面處理(electric-chemical c〇mde • oxidation anodizing ; ECCO anodizing)技術。 li 5 【先前技術】 按,一般金屬基材係容易與空氣的氧結合產生氧化 • 物,當基材生鏽氧化時會對金屬基材造成損壞,例如·· 鏽蝕導致結構強度降低。為了解決上述問題,業者以陽 ίο極處理法(anodizing)對一金屬基材表面形成一氧化物絕 緣層’猎以達到保達该金屬基材的目的。其中,以銘基 材舉例來說,其表面經過陽極處理後所生成之氧化物絕 緣層係為氧化鋁(A!2〇3),鋁基材經由該絕緣層與氧隔 絕,不但能夠達到防姓以及絕緣之目的;此外,該絕緣 I5層更具有抗腐蝕以及高硬度的特性,可以進一步保護該 _ 金屬基材。 然而,由於一般陽極處理法係屬於低電壓處理程 序,其電壓約在250伏特(Voltage)以下,其氧化物絕緣層 • 具有緻密性高的特色;惟,此種方式形成之氧化物絕緣 層的成膜速度相當緩慢,需要耗費相當長的工時,且所 能形成之結晶狀態的成分極低,在硬度上較為脆弱,在 熱傳效率上的效果也不理想。 為解決上述問題,業界使用一種微弧氧化陽極處理 法(micro arc oxidation anodizing; MAO anodizing)的處理 4 200846505 方式’其係屬於南電壓處理程序,其電壓約在300伏特 (Voltage)〜480伏特〇如§幻之間,其能夠提供較高之能量 以進行電化學反應,能夠提升氧化物絕緣層的成膜逮 • 度,並提高結晶狀態的比例,使氧化物絕緣層具有較高 ‘ 5的硬度;惟,此種方式所形成之氧化物絕緣層的空隙較 大,具有緻密性低的缺點,使氧化物絕緣層無法完全地 覆設於金屬基材表面,不能對金屬基材提供確實的保 ❿ 護;再者,此種利用微弧氧化陽極處理(MAO)形成之氧 化物絕緣層在結構上呈現不規則的重疊狀結晶,其熱傳 1〇導係數(thermal conductivity)並不理想,具有散熱效果不佳 的缺點。換言之,微弧氧化陽極處理法(MA〇)雖然能夠 降低加工工時,且提高結晶的比例,但是,其氧化物絕 緣層在結構上以及物理特性上並未提升,並不能有效達 到保護該金屬基材之目的。 15 綜上所陳,習用表面處理技術具有上述之缺失而有 _ 待改進。 【發明内容】 本电明之主要目的在於提供一種金屬基材之電化學 2〇激化表面處理技術,能夠改善絕緣層的結晶結構且提高 熱傳導係數’具有提南硬度以及散熱效果之特色。° 本發明之次一目的在於提供一種金屬基材之電化學 激化表面處理技術,能夠提高絕緣層的生成速度,具= 降低工時之特色。 5 200846505 為達成上述目的’本發明所提供之—種金屬基材之電 化學激化表面處理技術,其包含下列各步驟: a)提供一基材,該基材之材質係選自鋁(A〗)、鎂 -(Mg)、鈦(Tl)以及其合金所構成族群中之其中一種;以及 5 b)提供-酸性溶液一陽極以及-陰極,該陽極電性 連接該基材,該陰極電性連接該酸性溶液,選擇適當之一 電流密度以及-電壓,該電壓的範圍係介於200伏特 _ (Voltage)〜400伏特(Voltage)之間,該酸性溶液在一操作溫 度以及一預定時間内與該基材產生反應並進行成膜處 10理,該基材表面逐漸形成一絕緣層。 藉此,本發明經由上述步驟,其運用發明人所研發之 電化學激化陽極處理(electric-chemicai c_de 〇xidati〇n anodizing ; ECCO anodizing)技術,能夠改善絕緣層的結 晶結構且提高熱傳導係數,具有提高硬度以及散熱效果 I5之特色。另外,本發明所使用之電壓操作區間係介於一般 ⑩ 陽極處理法(anodizing)以及微弧氧化陽極處理(mao)之 間,能夠避免電化學反應過快,使結晶結構在長晶時可以 較規則的方式進行排列而呈柱狀結構,能夠提高絕緣層的 ^ 生成速度,具有降低工時之特色。換言之;本發明相較 • 2〇於習用者,本發明能夠克服習用絕緣層致密性以及成膜速 度播法兼顧的問題,其具有提高硬度以及散熱效果之優 點’並兼具有降低工時之特色。 【實施方式】 6 200846505 為了詳細說明本發明之結構、特徵及功效所在,茲舉 以下較佳貫施例並配合圖式說明如後,其中·· 第圖為本發明第一較佳實施例之處理流程圖。 ,二圖為本發明第一較佳實施例之加工示意圖。 5 第三圖為本發明第一較佳實施例之基材之結構示意 圖,其主要揭示基材於成膜處理前之情形。 第四圖為本發明第一較佳實施例之基材之結構示意 圖,其主要揭示基材於成膜處理後之情形。 第五圖為第四圖A之放大圖,其主要揭示絕緣層之結 10 構。 第六圖為本發明第一較佳實施例與習用者之電壓比較 圖。 請參閱第-圖至第六圖,本發明—種金屬基材之電化 學激化表面處理技術之第一較佳實施例,其成膜步驟如下: 15 a)提供一基材(10),該基材(10)之材質係選自鋁 (A1)、鎂(Mg)、鈦(Ti)以及其合金所構成族群中之其中一 種;其中,本發明之該基材(10)係選自以鋁為例;該基材 (10)係事先進行熱處理以及平整化處理,再將該基材(1〇) 以超音波方式去除该基材(10)表面的氧化物、油汙以及汙 •2〇潰,再進行純水清洗以及低溫乾燥的手續,純水的電阻 值在10ΚΩ(歐姆)以上; b)提供一酸性溶液(20)、一陽極(3〇)以及一陰極 (40),該陽極(30)電性連接該基材(1〇),該陰極(4〇)電性連 接該酸性溶液(20),選擇適當之一電流密度以及一電壓, 7 200846505 該酸性溶液(20)在一操作溫度以及一預定時間内與該基 材(10)產生反應並進行成膜處理,該基材(10)表面逐漸形 成一絕緣層(12)。其中,步驟b)的操作條件設定如下: 該酸性溶液(20)係選自檸檬酸(Citric acid ; C6H807)、石黃 5 基水揚酸(Sulfosalicylic acid ; H03SC6H3(0H)C02H)、草 酸(Oxalic acid ; H2C204)以及順丁烯二酸(Maleic acid ; C4H4〇4)其中一種,該酸性溶液濃度為5g/L〜150g/L •,本 實施例中,該酸性溶液(20)係為濃度在5(g/L)〜I50(g/L)之間 的草酸(H2C2〇4);該酸性溶液(20)更包含有一水溶性鹽類, 10該水溶性鹽類係選自包含有硫酸根離子(s〇42·)、碳酸根離 子(CO32-)以及石夕酸根離子(SiOs2—)其中一種者,該水溶性鹽 類濃度為0.1(g/L)〜20(g/L)之間;本實施例中,該酸性溶液 (20)係為濃度在〇.l(g/L)〜20(g/L)之間的硫酸鈉(Na2S04);該 酸性溶液(20)的酸驗值(pH值)範圍係在6以下;該陽極(3〇) 15電性連接該基材(10)且該陽極(3〇)的移動速率為20m/min ; 該陰極(40)電性連接一白金電極(42),該白金電極(42)部份 伸入於該酸性溶液(20),使該陰極(40)間接電性連接該酸性 溶液(20);該電流密度的範圍係介於 lASD(A/dm2)〜6ASD(A/dm2)之間;該電壓的範圍係於2〇〇 2〇伏特(Voltage)〜400伏特(Voltage)之間;該操作溫度的範圍係 於攝氏-4度〜40度之間,該操作溫度較佳的範圍係控制在 攝氏6度〜15度之間;使用低溫製程的目的在於··當氧化鋁 在超過攝氏40度之後,將使該酸性溶液(2〇)内的化學反應 的速度加快且進而大於電化學反應的速度,將促使該絕緣 8 200846505 層(12)的生成速度會降低甚至停止生成該絕緣層(12),故該 操作溫度要維持在攝氏40度以下,以確保該絕緣層(12)能 夠繼續生成並增加膜厚;該預定時間的範圍係於5分鐘〜120 分鐘之間,該預定時間的長短則視該絕緣層(12)所要求的成 5膜厚度決定。 經由上述步驟’即可得到該絕緣層(12)。本發明之技術 特徵在於:本發明運用中段之電壓,該電壓的範圍係介於 200伏特(Voltage)〜400伏特(v〇itage)之間,其相較於一般陽 極處理法(anodizing)以及微弧氧化陽極處理(MA〇)屬於 10中段電壓,本發明使用此段電壓區間能夠避免電化學反應 過快,使結晶結構在長晶時可以較規則的方式進行排列而 呈柱狀結構,一方面可以克服一般陽極處理法(an〇dizing) 因電壓過低使得結晶成分不足的問題;另一方面可以克服 微弧氧化陽極處理(MA0)因能量過高,防止結晶速度過快 15而來不及進行排列,使該絕緣層(12)的結晶結構得以呈柱狀 結構,而非重疊狀結晶狀結構。藉此,該絕緣層(12)能夠具 有較佳之硬度並進一步提高熱傳導係數;經發明人測試結 果’該基材(10)之熱傳導係數可提高到12〇(W/m.K)以上, 具有散熱效率較佳之特色。 20 再者’該絕緣層(12)的成膜速度係與電壓成正比,本發 明之该電壓相較於一般陽極處理法(an〇cjizing)的低電壓製 程本舍明之成膜速度能夠相對提南’具有縮短工時的特 色。另外’就該絕緣層(12)的結構而言,該絕緣層(12)係為 氧化銘且為多孔結構(porous structure),該絕緣層(12)膜厚 9 200846505 的範圍在20μπι〜300μπι之間,由内往外並可區分為一阻障 層(barrier layer)(121)以及一多孔層(p〇T〇us layer)( 122);該阻 障層(121)以及該多孔層(122)係完全覆蓋該基材(10)的表 面,能夠防止該基材(10)的表面與外界的氧接觸,具有防蝕 5以及絕緣的效果;再者,該多孔層(122)能夠相對增加該基 材(10)的散熱面積’能夠提高該基材(1〇)的散熱效果。 綜上所陳,本案經由以上所提供的實施例可知,本發 明經由上述步驟,其運用發明人所研發之電化學激化陽極200846505 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to surface treatment technology, and in particular to an electric-chemical c〇mde • oxidation anodizing (ECCO anodizing) technique for a metal substrate. . Li 5 [Prior Art] According to the general metal substrate, it is easy to combine with the oxygen of the air to produce an oxide. When the substrate is rusted and oxidized, it will cause damage to the metal substrate. For example, rust causes structural strength to decrease. In order to solve the above problems, the industry has formed an oxide insulating layer on the surface of a metal substrate by anodizing to achieve the purpose of securing the metal substrate. For example, in the case of the Ming substrate, the oxide insulating layer formed on the surface after the anode treatment is alumina (A! 2〇3), and the aluminum substrate is isolated from oxygen through the insulating layer, thereby not only preventing The last name and the purpose of the insulation; in addition, the insulating I5 layer is more resistant to corrosion and high hardness, and can further protect the metal substrate. However, since the general anodizing process is a low voltage processing procedure, the voltage is about 250 volts or less, and the oxide insulating layer has a high density; however, the oxide insulating layer formed in this manner The film formation rate is relatively slow, requires a relatively long man-hour, and the composition of the crystalline state which can be formed is extremely low, and is weak in hardness, and the effect on heat transfer efficiency is also unsatisfactory. In order to solve the above problems, the industry uses a micro arc oxidation anodizing (MAO anodizing) process 4 200846505 mode 'which belongs to the south voltage processing program, and its voltage is about 300 volts (Voltage) ~ 480 volts 〇 Between the illusion, it can provide higher energy for electrochemical reaction, can improve the filming degree of the oxide insulating layer, and increase the proportion of the crystalline state, so that the oxide insulating layer has a higher '5' Hardness; however, the oxide insulating layer formed by such a method has a large void and has a low density, so that the oxide insulating layer cannot be completely covered on the surface of the metal substrate, and the metal substrate cannot be provided with a true In addition, the oxide insulating layer formed by micro-arc oxidation anodization (MAO) has irregular overlapping crystals in structure, and its thermal conductivity is not ideal. Has the disadvantage of poor heat dissipation. In other words, although the micro-arc oxidation anode treatment (MA〇) can reduce the processing time and increase the proportion of crystallization, the oxide insulating layer does not improve in structure and physical properties, and cannot effectively protect the metal. The purpose of the substrate. 15 In summary, the conventional surface treatment technology has the above-mentioned shortcomings and has to be improved. SUMMARY OF THE INVENTION The main purpose of the present invention is to provide an electrochemical 2 〇 intensified surface treatment technology for a metal substrate, which can improve the crystal structure of the insulating layer and improve the heat transfer coefficient, which has the characteristics of the southern hardness and the heat dissipation effect. The second object of the present invention is to provide an electrochemically induced surface treatment technique for a metal substrate, which can increase the rate of formation of the insulating layer, and has the feature of reducing man-hours. 5 200846505 The electrochemically induced surface treatment technique for a metal substrate provided by the present invention for achieving the above object comprises the following steps: a) providing a substrate, the material of which is selected from aluminum (A) And one of a group consisting of magnesium-(Mg), titanium (Tl) and alloys thereof; and 5 b) providing an acidic solution-anode and a cathode electrically connected to the substrate, the cathode electrical Connecting the acidic solution, selecting a suitable current density and a voltage ranging from 200 volts to 400 volts, the acidic solution being at an operating temperature and for a predetermined time The substrate is reacted and subjected to film formation, and an insulating layer is gradually formed on the surface of the substrate. Thereby, the present invention can improve the crystal structure of the insulating layer and improve the heat transfer coefficient by using the above-mentioned steps, using the electro-chemicai c_de 〇xidati〇n anodizing (ECCO anodizing) technology developed by the inventors. Improve the hardness and heat dissipation effect of the I5. In addition, the voltage operation interval used in the present invention is between the general 10 anodizing method and the micro-arc oxidation anode treatment (mao), which can avoid the electrochemical reaction being too fast, so that the crystal structure can be compared in the case of crystal growth. The regular arrangement is a columnar structure, which can increase the speed of formation of the insulating layer and has the feature of reducing man-hours. In other words, the present invention can overcome the problems of the conventional insulation layer compactness and the film formation speed sowing method, and has the advantages of improving hardness and heat dissipation effect, and has a reduced working time. Features. [Embodiment] 6 200846505 In order to explain the structure, features and effects of the present invention in detail, the following preferred embodiments are described below with reference to the drawings, wherein the first embodiment is the first preferred embodiment of the present invention. Process flow chart. The second drawing is a schematic view of the processing of the first preferred embodiment of the present invention. 5 is a schematic view showing the structure of a substrate according to a first preferred embodiment of the present invention, which mainly discloses the case of the substrate before the film formation process. Fig. 4 is a schematic view showing the structure of a substrate according to a first preferred embodiment of the present invention, which mainly discloses the case of the substrate after the film formation treatment. The fifth figure is an enlarged view of the fourth figure A, which mainly discloses the structure of the insulating layer. Figure 6 is a graph comparing voltages of the first preferred embodiment of the present invention with a conventional one. Referring to the first to sixth figures, the first preferred embodiment of the electrochemically excited surface treatment technology of the metal substrate of the present invention has the following film forming steps: 15 a) providing a substrate (10), The material of the substrate (10) is one selected from the group consisting of aluminum (A1), magnesium (Mg), titanium (Ti), and alloys thereof; wherein the substrate (10) of the present invention is selected from Aluminum is taken as an example; the substrate (10) is subjected to heat treatment and planarization treatment in advance, and the substrate (1 〇) is ultrasonically removed to remove oxides, oil, and dirt on the surface of the substrate (10). The process of pure water washing and low-temperature drying, the resistance value of pure water is above 10 Κ Ω (ohm); b) providing an acidic solution (20), an anode (3 〇) and a cathode (40), the anode (30) electrically connecting the substrate (1〇), the cathode (4〇) is electrically connected to the acidic solution (20), selecting a suitable current density and a voltage, 7 200846505 the acidic solution (20) in one The surface of the substrate (10) is gradually formed by reacting with the substrate (10) and performing a film forming process for a predetermined period of time. An insulating layer (12). Wherein, the operating conditions of step b) are set as follows: The acidic solution (20) is selected from the group consisting of citric acid (Citric acid; C6H807), sulphate 5-based salicylic acid (Sulfosalicylic acid; H03SC6H3(0H)C02H), oxalic acid (Oxalic) Acid; H2C204) and one of maleic acid (C4H4〇4), the concentration of the acidic solution is 5g/L~150g/L • In the present embodiment, the acidic solution (20) is at a concentration of Oxalic acid (H2C2〇4) between 5 (g/L) and I50 (g/L); the acidic solution (20) further comprises a water-soluble salt, and 10 the water-soluble salt is selected from the group consisting of sulfate One of ion (s〇42·), carbonate ion (CO32-), and alkaloid ion (SiOs2—), the water-soluble salt concentration is between 0.1 (g/L) and 20 (g/L) In the present embodiment, the acidic solution (20) is sodium sulfate (Na2S04) having a concentration between 0.1 (g/L) and 20 (g/L); the acid value of the acidic solution (20) (pH) is in the range of 6 or less; the anode (3〇) 15 is electrically connected to the substrate (10) and the anode (3〇) has a moving rate of 20 m/min; the cathode (40) is electrically connected a platinum electrode (42), the platinum electrode (42) partially extending into the acidic solution (20), the cathode (40) is indirectly electrically connected to the acidic solution (20); the current density ranges from 1 ASD (A / dm2) to 6 ASD (A / dm2); the range of the voltage is Between 2 〇〇 2 volts (Voltage) ~ 400 volts (Voltage); the operating temperature range is between -4 degrees and 40 degrees Celsius, the preferred range of operating temperature is controlled at 6 degrees Celsius ~ Between 15 degrees; the purpose of using a low temperature process is that when the alumina exceeds 40 degrees Celsius, the rate of chemical reaction in the acidic solution (2〇) is increased and, in turn, greater than the rate of electrochemical reaction, The insulation 8 200846505 layer (12) will reduce the formation speed or even stop the formation of the insulation layer (12), so the operating temperature should be maintained below 40 degrees Celsius to ensure that the insulation layer (12) can continue to generate and increase the film thickness The predetermined time range is between 5 minutes and 120 minutes, and the length of the predetermined time is determined by the thickness of the film 5 required for the insulating layer (12). The insulating layer (12) can be obtained through the above steps. The technical feature of the present invention is that the present invention utilizes the voltage of the middle section, which ranges from 200 volts to 400 volts, which is compared with the general anodizing method and micro The arc oxidation anode treatment (MA〇) belongs to the mid-segment voltage. The voltage interval of the present invention can avoid the electrochemical reaction being too fast, so that the crystal structure can be arranged in a regular manner in a regular manner in the form of a columnar structure. It can overcome the problem that the general anode treatment (an〇dizing) causes insufficient crystal component due to low voltage; on the other hand, it can overcome the micro-arc oxidation anode treatment (MA0) because the energy is too high, and the crystallization speed is prevented from being too fast, and it is too late to arrange. The crystal structure of the insulating layer (12) is made into a columnar structure instead of an overlapping crystalline structure. Thereby, the insulating layer (12) can have better hardness and further improve the heat transfer coefficient; according to the inventor's test result, the heat transfer coefficient of the substrate (10) can be increased to 12 〇 (W/mK) or more, and has heat dissipation efficiency. Better features. 20 Further, the film formation speed of the insulating layer (12) is proportional to the voltage, and the voltage of the present invention can be relatively higher than that of the low-voltage process of the general anodizing process. South' has the characteristics of shortening working hours. In addition, in terms of the structure of the insulating layer (12), the insulating layer (12) is oxidized and has a porous structure, and the thickness of the insulating layer (12) 9 200846505 ranges from 20 μm to 300 μm. From the inside to the outside, it can be divided into a barrier layer (121) and a porous layer (122); the barrier layer (121) and the porous layer (122) Covering the surface of the substrate (10) completely, preventing the surface of the substrate (10) from coming into contact with external oxygen, having the effect of corrosion prevention 5 and insulation; further, the porous layer (122) can relatively increase the The heat dissipation area of the substrate (10) can improve the heat dissipation effect of the substrate (1 〇). In summary, the present invention shows through the above embodiments that the present invention utilizes the electrochemically activated anode developed by the inventor through the above steps.

處理(electric-chemical collide oxidation anodizing ; ECCO 10 anodizing)技術,能夠改善絕緣層的結晶結構且提高熱傳 導係數,具有提高硬度以及散熱效果之特色。另外,本 發明所使用之電壓操作區間係介於一般陽極處理法 (anodizing)以及微弧氧化陽極處理(MAO)之間,能夠避免 電化學反應過快,使結晶結構在長晶時可以較規則的方式 15進行排列而呈柱狀結構,能夠提高絕緣層的生成速度,具 有降低工Η守之特色。換§之;本發明相較於習用者,本 發明能夠克服習用絕緣層致密性以及成膜速度無法兼顧的 問題’其具有提焉硬度以及散熱效果之優點,並兼具有 降低工時之特色。 20 本發明於前揭諸實施例中所揭露的構成元件及方法步 驟,僅係為舉例說明,並非用來限制本案之範圍,本案之 範圍仍應以申請專利範圍為準,其他等效元件或步驟的替 代或變化,亦應為本案之申請專利範圍所涵蓋。 10 200846505 【圖式簡單說明】 第一圖為本發明第一較佳實施例之處理流程圖。 第二圖為本發明第一較佳實施例之加工示意圖。 第二圖為本發明第一較佳實施例之基材之結構示意 5圖,其主要揭示基材於成膜處理前之情形。 第四圖為本發明第一較佳實施例之基材之結構示意 圖,其主要揭示基材於成膜處理後之情形。 第五圖為第四圖A之放大圖,其主要揭示絕緣層之結 1〇 第六圖為本發明第一較佳實施例與習用者之電壓比較 圖。 【主要元件符號說明】 基材(10) 絕緣層(12) 15 阻障層(121) 多孔層(122) • 酸性溶液(20) 陽極(30) 陰極(40) 白金電極(42)The electric-chemical collide oxidation anodizing (ECCO 10 anodizing) technology can improve the crystal structure of the insulating layer and improve the heat transfer coefficient, and has the characteristics of improving hardness and heat dissipation. In addition, the voltage operation interval used in the present invention is between the general anodizing method and the micro-arc oxidation anode treatment (MAO), which can avoid the electrochemical reaction being too fast, and the crystal structure can be more regular in the growth of the crystal. The mode 15 is arranged in a columnar structure, which can increase the speed of formation of the insulating layer and has the characteristics of reducing workmanship. In addition, the present invention can overcome the problem that the conventional insulating layer compactness and the film forming speed cannot be taken into consideration compared with the conventional ones, which have the advantages of improving the hardness and the heat dissipating effect, and have the characteristics of reducing the working hours. . The components of the present invention and the method steps disclosed in the foregoing embodiments are merely illustrative and are not intended to limit the scope of the present invention. The scope of the present application should be based on the scope of the patent application, and other equivalent components or Alternatives or changes to the steps should also be covered by the scope of the patent application in this case. 10 200846505 [Simple Description of the Drawings] The first figure is a processing flow chart of the first preferred embodiment of the present invention. The second figure is a schematic view of the processing of the first preferred embodiment of the present invention. The second drawing is a schematic view of the structure of the substrate of the first preferred embodiment of the present invention, which mainly discloses the case of the substrate before the film formation process. Fig. 4 is a schematic view showing the structure of a substrate according to a first preferred embodiment of the present invention, which mainly discloses the case of the substrate after the film formation treatment. The fifth drawing is an enlarged view of the fourth drawing A, which mainly discloses the junction of the insulating layer. Fig. 6 is a comparison diagram of the voltage between the first preferred embodiment of the present invention and the conventional one. [Main component symbol description] Substrate (10) Insulation layer (12) 15 Barrier layer (121) Porous layer (122) • Acid solution (20) Anode (30) Cathode (40) Platinum electrode (42)

Claims (1)

200846505 十、申請專利範圍: 面處理技術,其包含 1· 一種金屬基材之電化學激化♦ 下列各步驟: ^ a) 提供-基材,該基材之材質, (Mg)、鈦(Ti)以及其合金所構成族蛘中之盆中一)、、鎂 b) 提供一酸性溶液、一陽極 —^、 ,以及 連接該基材,該陰極電性該酸性崎陰極選該陽2性200846505 X. Patent application scope: Surface treatment technology, which includes 1. Electrochemical activation of a metal substrate ♦ The following steps: ^ a) Provide - substrate, material of the substrate, (Mg), titanium (Ti) And in the basin of the alloy formed by the alloy, a), magnesium b) providing an acidic solution, an anode, and connecting the substrate, the cathode is electrically selected from the acid cathode 電:密f:及一電墨’該電壓的範圍係介於2二; _age)〜彻伏特(V〇ltage)之間,該酸性溶液在一操作^ 度以及-預定時_與該基材產生反應並進行成^ 理,該基材表面逐漸形成一絕緣層。 、 2.依據t請專魏圍第〗項所述金屬基材之電化學激 化表面處理技術,其中步驟幻之該基材,係事先去除該^ 材表面的氧化物、油汙以及汙潰,再進行純水清洗^ 低溫乾燥的手續。 15 3·依據申請專利範圍第2項所述金屬基材之電化學激 化表面處理技術,其中步驟a)之該基材,係以超音波方式 去除該基材表面的氧化物、油汙以及汙潰。 4·依據申請專利範圍第2項所述金屬基材之電化學激 化表面處理技術,其中步驟a)所述之純水的電阻值在 2〇 10ΚΩ(歐姆)以上。 5.依據申請專利範圍第1項所述金屬基材之電化學激 化表面處理技術,其中步驟b)之該電流密度的範圍係於 lASD(A/dm2)〜6ASD(A/dm2)之間。 6·依據申請專利範圍第1項所述金屬基材之電化學激 12 200846505 化表面處理技術’其中步驟b)之該操作溫度的範圍係於攝 氏-4度〜40度之間。 7·依據申请專利範圍第6項所述金屬基材之電化學激 化表面處理技術,其中步驟b)之該操作溫度的範圍係控制 5在攝氏6度〜15度之間。 8·依據申请專利範圍第1項所述金屬基材之電化學激 化表面處理技術’其中步驟b)之該酸性溶液係選自檸檬酸 (Citric acid ; C6H8〇7)、石黃基水揚酸(Sulfosalicylic acid ; H03SC6H3(0H)C02H)、草酸(Oxalic acid; H2C204)以及順 10 丁烯二酸(Maleic acid; C4H404)其中一種,該酸性溶液濃 度為 5g/L〜150g/L。 9.依據申請專利範圍第1項所述金屬基材之電化學激 化表面處理技術,其中步驟b)之該酸性溶液更包含有一水 溶性鹽類,該水溶性鹽類係選自包含有硫酸根離子 15 (SO/O、碳酸根離子(C032〇以及矽酸根離子(Si032·)其中一 種者,該水溶性鹽類濃度為0.1(g/L)〜20(g/L)之間。 10·依據申請專利範圍第9項所述金屬基材之電化學 激化表面處理技術,其中步驟b)之該水溶性鹽類係為硫酸 鈉(Na2S04)。 20 11·依據申請專利範圍第1項所述金屬基材之電化學 激化表面處理技術,其中步驟b)之該酸性溶液的酸驗值(pH 值)範圍係在6以下。 12·依據申請專利範圍第1項所述金屬基材之電化學 激化表面處理技術,其中步驟b)之該預定時間的範圍係於5 13 200846505 分鐘〜120分鐘之間。 13.依據申請專利範圍第1項所述金屬基材之電化學 激化表面處理技術,其中步驟b)之該絕緣層係為氧化銘, - 該絕緣層由内往外並可區分為一阻障層以及一多孔層。 • 5 14.依據申請專利範圍第1項所述金屬基材之電化學 激化表面處理技術,其中步驟b)之該陽極的移動速率為 20m/min 〇 14Electricity: dense f: and an electric ink 'the voltage range is between 2 2; _age) ~ voft (V 〇 ltage), the acidic solution at a certain degree and - predetermined time _ with the substrate A reaction is formed and processed, and an insulating layer is gradually formed on the surface of the substrate. 2. According to t, please use the electrochemical intensification surface treatment technology of the metal substrate described in Wei Wei, in which the step is to remove the oxide, oil and stain on the surface of the material beforehand. Purify with pure water ^ Low temperature drying. 15 3. The electrochemically induced surface treatment technology of the metal substrate according to claim 2, wherein the substrate of step a) ultrasonically removes oxides, oil stains and stains on the surface of the substrate. . 4. The electrochemically aggravated surface treatment technique for a metal substrate according to claim 2, wherein the pure water of the step a) has a resistance value of 2 〇 10 Κ Ω or more. 5. The electrochemically aggravated surface treatment technique for a metal substrate according to claim 1, wherein the current density of step b) ranges from 1 ASD (A/dm2) to 6 ASD (A/dm2). 6. Electrochemical excitation of a metal substrate according to claim 1 of the patent application. 12 200846505 Chemical surface treatment technology The operation temperature of step b) is in the range of -4 to 40 degrees Celsius. 7. The electrochemically augmented surface treatment technique for a metal substrate according to claim 6 wherein the operating temperature of step b) is controlled to be between 6 and 15 degrees Celsius. 8. The electrochemically activated surface treatment technique of the metal substrate according to claim 1 of the patent application, wherein the acidic solution is selected from the group consisting of citric acid (Citric acid; C6H8〇7) and sulphate-based salicylic acid (Sulfosalicylic). Acid; H03SC6H3(0H)C02H), oxalic acid (Oxalic acid; H2C204) and one of maleic acid (C4H404) having a concentration of 5 g/L to 150 g/L. 9. The electrochemically activated surface treatment technique for a metal substrate according to claim 1, wherein the acidic solution of step b) further comprises a water-soluble salt selected from the group consisting of sulfates. Ion 15 (SO/O, carbonate ion (C032〇 and citrate ion (Si032·)), the water-soluble salt concentration is between 0.1 (g / L) ~ 20 (g / L). The electrochemically activated surface treatment technique for a metal substrate according to claim 9, wherein the water-soluble salt of the step b) is sodium sulfate (Na 2 SO 4 ). 20 11 · According to the scope of claim 1 An electrochemically induced surface treatment technique for a metal substrate, wherein the acid solution of the step b) has an acid value (pH) in the range of 6 or less. 12. The electrochemically aggravated surface treatment technique for a metal substrate according to claim 1, wherein the predetermined time of step b) ranges from 5 13 200846505 minutes to 120 minutes. 13. The electrochemically induced surface treatment technique for a metal substrate according to claim 1, wherein the insulating layer of step b) is oxidized, - the insulating layer is separated from the inside to the outside and can be separated into a barrier layer And a porous layer. • 5 14. The electrochemically induced surface treatment technique of the metal substrate according to claim 1 wherein the anode has a moving rate of 20 m/min in step b).
TW96119349A 2007-05-30 2007-05-30 Electrochemical induced surface processing for metal substrate TW200846505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96119349A TW200846505A (en) 2007-05-30 2007-05-30 Electrochemical induced surface processing for metal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96119349A TW200846505A (en) 2007-05-30 2007-05-30 Electrochemical induced surface processing for metal substrate

Publications (2)

Publication Number Publication Date
TW200846505A true TW200846505A (en) 2008-12-01
TWI342901B TWI342901B (en) 2011-06-01

Family

ID=44823178

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96119349A TW200846505A (en) 2007-05-30 2007-05-30 Electrochemical induced surface processing for metal substrate

Country Status (1)

Country Link
TW (1) TW200846505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103687419A (en) * 2012-09-04 2014-03-26 富瑞精密组件(昆山)有限公司 Radiator and manufacturing method thereof
TWI491346B (en) * 2012-09-03 2015-07-01 鴻準精密工業股份有限公司 Heat sink and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491346B (en) * 2012-09-03 2015-07-01 鴻準精密工業股份有限公司 Heat sink and manufacturing method thereof
CN103687419A (en) * 2012-09-04 2014-03-26 富瑞精密组件(昆山)有限公司 Radiator and manufacturing method thereof

Also Published As

Publication number Publication date
TWI342901B (en) 2011-06-01

Similar Documents

Publication Publication Date Title
CN102428213B (en) Method for treating the surface of a metal
JP6029764B2 (en) Method for producing metal-filled microstructure
CN103620839B (en) Collector foil that is chemically treated, being made up of aluminum or aluminum alloy
WO2006123736A1 (en) Corrosion resistance treatment method for aluminum or aluminum alloy
CN103088384A (en) valve metal plasma electrolytic oxidation surface treatment method
Abd-Elnaiem et al. Effect of the anodization parameters on the volume expansion of anodized aluminum films
CN110016708A (en) Suitable for copper and its micro-arc oxidization surface processing method and product of alloy
TW200846505A (en) Electrochemical induced surface processing for metal substrate
WO2015111273A1 (en) Aluminum base material coated with multiple layers
JP6794463B2 (en) Manufacturing method of aluminum member for electrode
JP3959044B2 (en) Pretreatment method for plating aluminum and aluminum alloy
TW200816378A (en) Metal line in semiconductor device and method for forming the same
CN107460453A (en) A kind of preparation method of magnesium alloy differential arc oxidation-collosol and gel composite coating
CN108580886A (en) A kind of method of surface of metal particles coated aluminum oxide
TW201441427A (en) Micro-arc oxidation surface treatment technique for metal substrate
CN101435081B (en) No-voltage chemical membrane preparing and low voltage electrochemical membrane preparing combined process for magnesium alloy surface
CN101314864A (en) Galvano-chemistry activating surface treatment technique for metal backing material
JPS63195294A (en) Formation of insulating film on aluminum alloy
JP2004360067A (en) Electrode for electrolysis, and its production method
JP3976534B2 (en) Anode foil for aluminum electrolytic capacitor and chemical conversion method thereof
WO2023188499A1 (en) Outer casing member and method for producing same
TWI844761B (en) Twinned copper layer, substrate having the same and method for preparing the same
WO2020203085A1 (en) Aluminum foil, method for manufacturing aluminum foil, current collector, lithium ion capacitor, and lithium ion battery
WO2015111272A1 (en) Aluminum base material coated with multiple layers
TW593779B (en) Anodization of Ti-rich titanium aluminide for use in high-temperature environments

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees