TW200846406A - Nano-composite material having biodegradability and preparation method thereof - Google Patents

Nano-composite material having biodegradability and preparation method thereof Download PDF

Info

Publication number
TW200846406A
TW200846406A TW96119208A TW96119208A TW200846406A TW 200846406 A TW200846406 A TW 200846406A TW 96119208 A TW96119208 A TW 96119208A TW 96119208 A TW96119208 A TW 96119208A TW 200846406 A TW200846406 A TW 200846406A
Authority
TW
Taiwan
Prior art keywords
nano
biodegradable
fiber
powder
composite material
Prior art date
Application number
TW96119208A
Other languages
Chinese (zh)
Other versions
TWI354685B (en
Inventor
Kun-Chang Lin
Chen-Feng Kuan
Hsu-Chiang Kuan
Chia-Hsun Chen
Min-Chi Chung
Hsin Chin Peng
Chin Lung Chiang
Original Assignee
Univ Far East
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Far East filed Critical Univ Far East
Priority to TW96119208A priority Critical patent/TW200846406A/en
Publication of TW200846406A publication Critical patent/TW200846406A/en
Application granted granted Critical
Publication of TWI354685B publication Critical patent/TWI354685B/zh

Links

Abstract

The present invention discloses a nano-composite material having biodegradability and its preparation method. Synthesize a biodegradable nano-composite material by utilizing a mixture of an amylum and aqueous polyurethane, and a nanograin. In this invention, especially add a modified nanograin to improve the aggregation of the nanograin so as to effectively improve its physical property and chemical property, and to produce the product that is completely biodegradable, may satisfy both environmental protection requirement and practice performance consideration.

Description

200846406 .七、指定代表圖: (一) 本案指定代表圖為:第(1)圖。 (二) 本代表圖之元件符號簡單說明: 10〜13:步驟流程。 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種具有生物分解性的奈米複合材 料及其製造方法。特別是在複材中加入奈米粉體來提升 其物性及化性之技術。 【先前技術】 塑膠具有價格低廉、質量輕、性質優異及加工容易 • 的優點,使得塑膠已經成為人類日常生活上不可或缺的 材料,主要的產品包括聚氯乙烯(PVC)、聚乙烯(PE)、 聚丙烯(PP)、聚苯乙烯(PS)、聚酯、尼龍和其他工程塑 膠等。 這些塑膠製品帶來人們生活上許多便利和舒適;但 是塑膠不像鐵、木材、紙張等材質在土壤中會腐蝕、分 解。大部分的塑膠都極為安定,經過相當長的時間也不 會分解,不管是在陸地上或海洋上,都已形成嚴重的環 保問題。要求有一個較清淨的環境就成為發展可分解性 高分子的最大原動力。 200846406 一般將生物可八 類型材料,前者刀解塑膠分成崩解型及全分解型兩大 的可生物分解材J —般泛用塑膠PE、PS等,添加大量 細微碎片,降你;斗’可在自然環境下一定時間内分裂成 觀念,且對低對環境的衝擊及大眾對塑膠產品的不良 解型材料則f業界在成本及技術上的衝擊最小。而全分 術上的成^是指所使用的成份皆是生物可分解的,在技 可幺卢扣t度較低’目前工業界的接受度亦較低,但較 了為%保圏體的接受。 〜^是自然界最豐富的天然生物可分解高分子之 妞# 食品、農業及生醫產業,由於價格低廉,已 ϊΞίίί分解塑膠的首要選擇,在許多新開發的合成 加二解向分子亦經常選擇澱粉當合膠或填充劑。因其 難及機械性質的不足,已有許多的應用及研究 接i二缺a點作改質,例如,將乙烯基單體藉自由基反應 性粉分子鏈上,以改善澱粉和塑膠之間的相容 矣,是對澱粉表面進行特殊處理,以降低親水性澱粉 权面張力’改善其與塑膠材料的相容性;或是酯化澱 松,以提升其加工性等等。 ^物分解性高分子在產品使用期間,必須提供足夠 消性能二而其廢棄後在適當的環境中會被微生物分解、 ^ ,敢後產生二氧化碳和水。雖然發展生物分解性塑 又k供了 一個有效解決環境污染問題的方法,但是生物 ^解性高分子目前所面臨的最大問題是價格過高(為泛 用型塑膠的2〜1〇倍)以及性能不足。因此如何有效地降 低成本和維持性能,已成為開發生物分解性高分子必須 面臨的重要課題。 有鑑於習知技藝之各項問題,為了能夠兼顧解決 j,本發明人基於多年研究開發與諸多實務經驗,'提出 —種具有生物分解性之奈米複合材料及其製造方法,以 200846406 作為改善上述缺點之實現方式與依據。 【發明内容】 有鑑於此,本發明之目的就是在提供一種具有生物 分解性之奈米複合材料及其製造方法,以提升生物可分 解奈米材料之物性及化性。 根據本發明之目的,提出一種具有生物分解性奈米 複合材料,其至少包含一水性聚氨酯及澱粉之混合物及 一奈米粉體。 再者,本發明再提出一種具有生物分解性奈米複合 材料之製備方法,先提供一水性聚酯胺及澱粉之混合 物,與一未改質或已改質之奈米粉體,予以秤取適當之 重量比例,置於捏合、摻合或混合用機器。使用的設備 如布斯混合器、萬馬力混合器、單螺桿押出機、雙螺桿 押出機、力拿混合器、加壓混合器、滾輪、反應槽等等 之混練器具加以混合。必要時可經製粒步驟,以押出成 型、射出成型、熱壓成型、中空成型、發泡成型等方法, 依據目的物而選用的成型加工手法,製成實用形式的複 合材料高濃度母粒或成型品。 此外,本發明之合成之複合材料可利用精密混練造 粒加工成型製程,其進一步添加纖維補強材料或無機填 料(filler) 〇 茲為使貴審查委員對本發明之技術特徵及所達到 之功效有更進一步之瞭解與認識,謹佐以較佳之實施例 及配合詳細之說明如後。 6 200846406 【實施方式】 以下將參照相關圖示,說明依本發明較佳實施例之 具有生物分解性之奈米複合材料及其製造方法,為使便 於理解,下述實施例中之相同元件係以相同之符號標示 來說明。 請參閱第1圖,其繪示本發明之具有生物分解性之奈 米複合材料之製備方法之步驟流程圖。圖中、,此方法包 含下列步驟: Φ 步驟10 ··提供一奈米粉體、一澱粉與水性聚酯胺之 混合物及一官能基改質劑; 其中,此水性聚S旨胺至少包含聚醋型、聚醚型及聚 碳酸醋型水性聚胺脂。 官能基改質劑至少包含3-胺基-1-丙醇 (3-amino-l-propanol)、間苯二甲胺(M-xylyenediamine)、3-胺 基-1,2-丙二醇(3-amino-l,2-propandiol)、三經曱基曱基 胺(tri(hydroxymethyl) aminomethane,THA),以及十六 烧基胺(hexadecvlaminc,HA) 〇 ® 而奈米粉體可為一已改質或未改質之奈米粉體。已 改質之奈米粉體至少包含此奈米粉體及偶合於此奈米粉 體表面上的有機基團,此奈米粉體可為聚倍半石夕氧烧 (POSS)、層狀矽酸鹽化合物(Clay)、奈米二氧化矽 (Silica)、奈米偏矽酸(PN)化合物。此層狀矽酸鹽化合物 至少包含Montmorillonite高嶺石、Saponite皂石、 Hectorite 水輝石、凹凸棒土(AttapUigiteMzirc〇nium phosphate鍅磷酸鹽等無機材。 而有機基團至少包含係矽烷類偶合劑、Trit〇n(氚核) 類界面活性劑或層狀矽酸鹽化合物插層改質劑。而層 7 200846406 、 狀砍酸鹽化合物插層改質劑係包括氨鹽(NH4+)、絶鹽 (Cs+)、铷鹽(Rb+)、鉀鹽(K+)、鋰鹽(Li+)、鎂鹽(Mg2+)、 鈣鹽(Ca2+)、鋁鹽(A13+)或鈦鹽(Ti4+)等有機化合物。 步驟11 :加入官能基改質劑於一澱粉與水性聚氨酯 之混合物中; 在一澱粉與水性聚氨酯之混合物中加入官能基改質 劑,此改質劑至少擁有一個以上之官能基能與澱粉與一 a 水性聚氨酯之混合物產生反應。 步驟12:將奈米粉體加入於澱粉混合物中使之聚合; 藉由改質劑之官能基可提高奈米粉體在聚合物中 之分散程度。若此奈米粉體為已改質之奈米粉體,則此 奈米粉體可利用其親油性提昇了其與聚合物之相容性, 而能達到更均勻的分散於聚合物中之目的。 步驟13 :以精密造練技術將步驟12所產生之聚合 物加以混合並造粒。將已添加奈米粉體之聚合物予以秤 取適當之重量比例,置於捏合、摻合或混合用機器。使 用的設備如布斯混合器、萬馬力混合器、單螺桿押出機、 雙螺桿押出機、力拿混合器·、加壓混合器、滾輪、反應 槽等等之混練器具加以混合。必要時可經製粒步驟,以 押出成型、射出成型、熱壓成型、中空成型、發泡成型 等方法,依據目的物而選用的成型加工手法,製成實用 形式的複合材料高濃度母粒或成型品。 8 200846406 請參閱第2A圖,其繪示以未改質襻潦^ 澱粉混合物之XRD光譜分析圖。圖中‘表的J术 有澱粉之XRD光譜分析圖,而,,sw‘ 麟被^ 性聚酯胺之聚合物之XRD光譜分析目,表,^0 ‘‘。 的是澱粉及水性聚酯胺之聚合物添加〇5wt如厶本^ 奈米粉體之XRD光譜分析圖,”swpi“代的是癬^ 水性聚酯胺之聚合物添加丨臂了%之未改質I米扮f XRD光譜分析圖,而” SWP2“代表的是殿粉及水揀 胺之聚合物添加2 WT%之未改質粘土奈来粉雜之Χγ 光譜分析圖,”SWP4“代表的是澱粉及水性聚酯胺之聚合 物添加4 WT%之未改質奈米粉體之又化卩光譜分析圖。 由第2A圖可以觀察出,在添加2 WT〇/〇及添加4 WT% 之未改質奈米粉體的曲線中,可以明顯觀察到有吸收峰 的出現,也就是說未改質奈米粉體在添加入2WT%就開 始出現聚集的現象,這是由於未改質之奈米錢體與聚合 物之間的分散度較低,相容性不夠,因此在swp2的地 方就開始出現吸收峰。 請續參閱第2B圖,其繪示為以已改質添加入混合物 Φ 之XRD光譜分析圖。圖中,,,s “代表的是僅有澱粉之 XRD光譜分析圖,”sw “代表的是殿粉及水性聚酯胺之 聚合物之XRD光譜分析圖,而”swp〇5 “代表的是澱粉 及水性聚酯胺之聚合物添加〇.5WT%之已改質奈米粉體 之XRD光譜分析圖,”swpi“代表的是澱粉及水性聚醋 胺之聚合物添加1 WT%之已改質奈米粉體之XRD光譜 分析圖,而”SWP2“代表的是澱粉'及5水性聚酯胺之聚合物 添加2 WT%之已改質奈米粉體之XRD光譜分析 圖,”SWP4“代表的是澱粉及水性聚酯胺之聚合物添加4 WT%之已改質奈米粉體之XRD光譜分析圖。 200846406 由第2B圖可觀察出,吸收峰在澱粉混合物添加 4WT%之已改質奈米粉體才開始出現,這是由於經過改 質之後的奈米粉體其具備了奈米級分散的特性同時也增 加了其親油端的表面積,因此有效的提昇了與聚合物之 間的結合力及相容性,因此吸收峰從添加了 4WT%的地 方才開始出現吸收峰。 綜合以上之結論,可以了解到經過改質之奈米粉體 因為增加了其親油端之表面積,也因為奈米粉體可以均 勻分散於聚合物中,因為有效的提昇了其相容性及結合 • 力,因此大大的提昇了該複合材料的機械性能與熱穩定 性,大為提升其應用上的附加價值,使得經由本發明之 製備方法之生物分解性奈米複合材料能有更接近於一般 傳統塑膠之性質,達到完全取代傳統不可分解塑膠的地 位。 在上述複合材料中,其中奈米粉體對澱粉混合物的 重量比最佳為0.1%至20%。 已上所述僅為舉例性,而非為限制性者。任何未脫離 本發明之精神與範疇,而對其進行之等效修改或變更, 鲁均應包含於後附之申請專利範圍中。 以下將參照相關圖示,說明依本發明較佳實施例之 具有生物分解性奈米複合材料及其製備方法,為使便於 理解,下述實施例中之相同元件係以相同之符號標示來 說明。 200846406 •【圖式簡單說明】 第1圖 係為本發明之具有生物分解性之奈米複合材料之 製備方法之步驟流程圖; 第2A圖係為本發明之複合材料添加未改質奈米粉體之 XRD光譜分析圖;以及 第2B圖係為本發明之複合材料添加已改質奈米粉體之 XRD光譜分析圖。200846406 . VII. Designation of representative representatives: (1) The representative representative of the case is: (1). (2) A brief description of the component symbols of this representative figure: 10~13: Step flow. 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: IX. Description of the invention: [Technical Field of the Invention] The present invention relates to a biodegradable nanocomposite material and a method for producing the same. In particular, a technique in which nano-powder is added to a composite material to enhance its physical properties and chemical properties. [Prior Art] Plastics have the advantages of low price, light weight, excellent properties and easy processing. Plastics have become an indispensable material in human daily life. The main products include polyvinyl chloride (PVC) and polyethylene (PE). ), polypropylene (PP), polystyrene (PS), polyester, nylon and other engineering plastics. These plastic products bring a lot of convenience and comfort to people's lives; however, plastics do not corrode and disintegrate in the soil like iron, wood, paper and other materials. Most of the plastics are extremely stable and will not decompose after a long period of time. Whether on land or in the ocean, serious environmental problems have arisen. Requiring a cleaner environment is the biggest driving force behind the development of decomposable polymers. 200846406 Generally, the bio-eight types of materials are used. The former is divided into two types of biodegradable materials: disintegrating type and fully decomposing type. The general use of plastic PE, PS, etc., adding a large number of fine fragments, lowering you; In the natural environment, the concept of splitting into a certain period of time, and the impact on the low environment and the public's poor solution to plastic products, the industry's cost and technology impact is minimal. And the full score of the ^ means that the ingredients used are biodegradable, and the technology can be reduced to a low degree. The current acceptance in the industry is also lower, but it is less than the % body. Accepted. ~^ is the most abundant natural biodegradable polymer girl in nature #Food, agriculture and biomedical industry, because of the low price, has been the primary choice for 分解ίίί decomposition of plastic, in many newly developed synthetic plus two solutions to the molecule also often choose Starch is a glue or filler. Due to its deficiencies in mechanical properties, there have been many applications and studies to improve the quality of the vinyl monomer. For example, the vinyl monomer is borrowed from the radical reactive powder molecular chain to improve the starch and plastic. The compatibility is based on the special treatment of the starch surface to reduce the hydrophilic starch cohesive tension 'improving its compatibility with plastic materials; or esterifying the pine to improve its processability. ^The decomposable polymer must provide sufficient performance during the use of the product. After it is discarded, it will be decomposed by microorganisms in an appropriate environment, and then carbon dioxide and water will be produced. Although the development of biodegradable plastics provides a way to effectively solve environmental pollution problems, the biggest problem facing biopolymers at present is that the price is too high (2 to 1 times that of general-purpose plastics) and Not enough performance. Therefore, how to effectively reduce the cost and maintain the performance has become an important issue that must be faced in the development of biodegradable polymers. In view of the problems of the prior art, in order to be able to solve the problem j, the inventors based on years of research and development and many practical experiences, 'proposed a biodegradable nano composite material and its manufacturing method, with 200846406 as an improvement The implementation and basis of the above shortcomings. SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a biodegradable nano composite material and a method for producing the same, which can improve the physical properties and chemical properties of the biodegradable nano material. According to the object of the present invention, there is provided a biodegradable nano composite material comprising at least a mixture of an aqueous polyurethane and a starch and a nanometer powder. Furthermore, the present invention further provides a method for preparing a biodegradable nano composite material, which first provides a mixture of an aqueous polyester amine and a starch, and an unmodified or modified nano powder, which is appropriately weighed The weight ratio is placed in a machine for kneading, blending or mixing. The equipment used is mixed with a mixing device such as a Buss mixer, a 10,000-mass mixer, a single-screw extruder, a twin-screw extruder, a force mixer, a pressure mixer, a roller, a reaction tank, and the like. If necessary, the granulation step may be carried out to form a high-concentration masterbatch of a composite material in a practical form by extrusion molding, injection molding, hot press molding, hollow molding, foam molding, and the like, and a molding processing method selected according to the object. Molded product. In addition, the composite material of the present invention can be processed by a precision kneading granulation process, which further adds a fiber reinforcing material or an inorganic filler, so that the reviewer has more technical features and effects achieved by the reviewing committee. For a better understanding and understanding, please refer to the preferred embodiment and the detailed description as follows. 6 200846406 [Embodiment] Hereinafter, a biodegradable nano composite material and a method for manufacturing the same according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings, in order to facilitate understanding, the same components in the following embodiments The same symbol is used to indicate. Referring to Figure 1, there is shown a flow chart of the steps of the method for preparing a biodegradable nanocomposite of the present invention. In the figure, the method comprises the following steps: Φ Step 10 · Providing a nanometer powder, a mixture of a starch and an aqueous polyesteramine, and a functional group modifier; wherein the aqueous polysulfide amine comprises at least a polyacetate Type, polyether and polycarbonate water-based polyurethane. The functional group modifier comprises at least 3-amino-l-propanol, M-xylyenediamine, 3-amino-1,2-propanediol (3- Amino-l, 2-propandiol), tri(hydroxymethyl) aminomethane (THA), and hexadecvlaminc (HA) 〇®, and the nano-powder can be modified or Unmodified nano-powder. The modified nano-powder comprises at least the nano-powder and an organic group coupled to the surface of the nano-powder, and the nano-powder can be a polysemicarbonate (POSS) or a layered phthalate compound (Clay). , nano cerium oxide (Silica), nano bismuth citrate (PN) compound. The layered niobate compound comprises at least an inorganic material such as Montmorillonite kaolinite, Saponite saponite, Hectorite hectorite, attapulgite (AttapUigite Mzirc〇nium phosphate 鍅 phosphate, etc.) and the organic group contains at least a decane coupling agent, Trit〇 n (氚 nucleus) type surfactant or layered phthalate compound intercalation modifier. Layer 7 200846406, cleavage compound intercalation modifier includes ammonium salt (NH4+), absolute salt (Cs+) Organic compounds such as barium salt (Rb+), potassium salt (K+), lithium salt (Li+), magnesium salt (Mg2+), calcium salt (Ca2+), aluminum salt (A13+) or titanium salt (Ti4+). Step 11: Add a functional group modifier in a mixture of a starch and an aqueous polyurethane; a functional group modifier added to a mixture of a starch and an aqueous polyurethane, the modifier having at least one functional group and starch and an a waterborne polyurethane The mixture is reacted. Step 12: adding the nano powder to the starch mixture to polymerize; the functional group of the modifier can increase the degree of dispersion of the nano powder in the polymer. If the nano powder is modified It In the case of nano-powder, the nano-powder can improve its compatibility with the polymer by using its lipophilic property, and can achieve a more uniform dispersion in the polymer. Step 13: Step 12 is performed by precision technique The produced polymer is mixed and granulated. The polymer to which the nano-powder has been added is weighed to an appropriate weight ratio and placed in a machine for kneading, blending or mixing. The equipment used is such as a Buss mixer, 10,000 horsepower blend. Mixing equipment, single-screw extruder, twin-screw extruder, force mixer, pressure mixer, roller, reaction tank, etc., if necessary, can be granulated to extrude, injection molding, Hot press forming, hollow forming, foam forming, etc., according to the molding method selected for the purpose, to produce a composite material high-concentration masterbatch or molded article in a practical form. 8 200846406 Please refer to FIG. 2A, which is illustrated by XRD spectrum analysis of the unmodified 襻潦^ starch mixture. In the figure, the J-ray analysis of the starch has an XRD spectrum of the starch, and the XRD spectrum analysis of the polymer of the sw-lin polyester目,表,^0 ''. is the polymer of starch and water-based polyesteramine added 〇5wt such as 厶 ^ ^ nano powder XRD spectrum analysis, "swpi" generation is 癣 ^ water-based polyester amine polymerization The addition of the 丨 arm to the % unmodified I meter is f XRD spectral analysis, and the "SWP2" represents the polymer of the temple powder and the water sulphate. 2 WT% of the unmodified clay Nai 粉 Χ Χ γ Spectral analysis chart, "SWP4" represents the chemical conversion spectrum of 4 WT% unmodified nano-powder added to the polymer of starch and aqueous polyesteramine. It can be observed from Figure 2A that 2 WT is added. In the curve of 〇/〇 and the addition of 4 WT% of unmodified nano-powder, it is obvious that there is an absorption peak, that is to say, the unmodified nano-powder starts to accumulate when added to 2WT%. This is because the dispersion between the unmodified nano-body and the polymer is low and the compatibility is not sufficient, so the absorption peak begins to appear in the swp2. Please continue to see Figure 2B, which is shown as an XRD spectral analysis of the addition of the mixture Φ to the mixture. In the figure, s "represents the XRD spectrum analysis of only starch, "sw" represents the XRD spectrum of the polymer of the temple powder and the aqueous polyesteramine, and "swp〇5" represents The polymer of starch and water-based polyesteramine was added with X.5WT% of the modified nano-powder XRD spectrum analysis, "swpi" represents the polymer of starch and aqueous polyacetate added 1 WT% of the modified XRD spectrum analysis of nano-powder, and "SWP2" represents XRD spectrum analysis of 2 WT% modified nano-powder of starch and 5 aqueous polyester amine polymer, "SWP4" stands for Addition of 4 WT% of the modified nano-powder to the XRD spectrum of the polymer of starch and aqueous polyesteramine. 200846406 It can be observed from Figure 2B that the absorption peak adds 4 WT% of the modified nano-powder to the starch mixture. It began to appear because the modified nano-powder has nano-dispersed properties and also increases the surface area of its oleophilic end, thus effectively enhancing the bonding strength and compatibility with the polymer. Sex, so the absorption peak is only 4WT% added. The absorption peak begins to appear. Based on the above conclusions, it can be understood that the modified nano-powder has increased the surface area of its oleophilic end, and because the nano-powder can be uniformly dispersed in the polymer because it effectively enhances its phase. Capacitance and combination force, thus greatly improving the mechanical properties and thermal stability of the composite material, greatly increasing the added value of its application, so that the biodegradable nano composite material through the preparation method of the invention can have Closer to the nature of conventional plastics, to completely replace the traditional non-decomposable plastics. Among the above composite materials, the weight ratio of nano-powder to starch mixture is preferably 0.1% to 20%. The invention is intended to be illustrative, and not restrictive, and any equivalents and modifications may be included in the scope of the appended claims. The biodegradable nano composite material according to the preferred embodiment of the present invention and a preparation method thereof are described. For ease of understanding, the following examples are provided. The same components are denoted by the same reference numerals. 200846406 • [Simplified description of the drawings] Fig. 1 is a flow chart showing the steps of the preparation method of the biodegradable nano composite material of the present invention; The XRD spectrum analysis chart of the unmodified nano-powder of the composite material of the present invention; and the 2B figure are XRD spectrum analysis diagrams of the modified nano-powder added to the composite material of the present invention.

1111

Claims (1)

200846406 十、申請專利範圍: 1、 一種具有生物分解性之奈米複合材料,其包含有: (a) —澱粉(starch)與水性聚酯胺之混合物; (b) —官能基改質劑;以及 (c) 一未改質或經改質的奈米粉體。 2、 如申請專利範圍第1項所述之具有生物分解性之奈 米複合材料,其中該澱粉至少包括一熱塑性澱粉及一 熱固性澱粉等。 3、 如申請專利範圍第1項所述之具有生物分解性之奈 φ 米複合材料,其中該官能基改質劑至少包含3-胺基-1- 丙 醇(3-amino· 1-propanol)、間苯二曱胺 (M-xylyenediamine) 、 3-胺基-1,2-丙 二醇 (3-amino-l,2-propandiol)、 三經甲基甲基胺 (tri(hydroxymethyl) aminomethane, THA),以及十六 烧基胺(hexadecvlaminc,HA)。 4、 如申請專利範圍第1項所述之具有生物分解性之奈 米複合材料,其中,水性聚胺脂至少包含聚酯型、聚 醚型及聚碳酸i旨型水性聚胺脂等。 5、 如申請專利範圍第1項所述之具有生物分解性之奈 ® 米複合材料,其中該經改質的奈米粉體係包含一奈米 粉體及偶合於該奈米粉體表面上之一有機基團。 6、 如申請專利範圍第1項所述之具有生物分解性之奈 米複合材料,其中該奈米粉體至少包含聚倍半矽氧烷 (POSS)、層狀矽酸鹽化合物(Clay)、奈米二氧化矽 (Silica)、奈米偏矽酸(PN)化合物等。 7、 如申請專利範圍第5項所述之具有生物分解性之奈 米複合材料,其中該奈米粉體至少包含聚倍半矽氧烷 (POSS)、層狀矽酸鹽化合物(€:1#)、奈米二氧化矽 (Silica)、奈米偏矽酸(PN)化合物等。 12 200846406 8、 如申請專利範圍第6項所述之具有生物分解性之奈 米複合材料,其中該層狀矽酸鹽化合物至少包含高^ 石(Montmorillonite)、皂石(Saponite)、水輝石 (Hectorite)、凹凸棒土(Attapulgite)、錯碟酸 _ (zirconium phosphate)等無機材。 9、 如申請專利範圍第7項所述之具有生物分解性之奈200846406 X. Patent application scope: 1. A biodegradable nano composite material comprising: (a) a mixture of starch and aqueous polyesteramine; (b) a functional group modifier; And (c) an unmodified or modified nanopowder. 2. The biodegradable nanocomposite according to claim 1, wherein the starch comprises at least a thermoplastic starch and a thermosetting starch. 3. The biodegradable nanometer-meter composite material according to claim 1, wherein the functional group modifier comprises at least 3-amino-1-propanol. , M-xylyenediamine, 3-amino-l, 2-propandiol, tri(hydroxymethyl) aminomethane, THA And hexadecylamine (HA). 4. The biodegradable nanocomposite according to claim 1, wherein the aqueous polyurethane comprises at least a polyester type, a polyether type, and a polycarbonate type. 5. The biodegradable nano-m composite according to claim 1, wherein the modified nano-powder system comprises a nano-powder and an organic group coupled to the surface of the nano-powder. group. 6. The biodegradable nanocomposite according to claim 1, wherein the nanopowder comprises at least polysesquioxanes (POSS), layered tellurite compounds (Clay), nai. Rice cerium oxide (Silica), nano bismuth citrate (PN) compound, and the like. 7. The biodegradable nanocomposite according to claim 5, wherein the nanopowder comprises at least polysesquioxanes (POSS), layered bismuth compounds (€: 1#) ), nano cerium oxide (Silica), nano bismuth citrate (PN) compound, and the like. The biodegradable nanocomposite according to claim 6, wherein the layered niobate compound comprises at least Montmorillonite, Saponite, and hectorite ( Inorganic materials such as Hectorite), Attapulgite, and zirconium phosphate. 9. Biodegradable Nana as described in item 7 of the patent application scope 米複合材料,其中該層狀矽酸鹽化合物至少包含高^ 石(Montmorillonite)、皂石(Saponite)、水輝石' (Hectorite)、凹凸棒土(Attapulgite)、錯碌酸 _ (zirconium phosphate)等無機材。 氣 10、 如申請專利範圍第5項所述之具有生物分解性< 奈米複合材料,其中該有機基團係為一矽烷類%4 劑、一 Triton(氚核)類界面活性劑或一層狀矽酸鹽化 合物插層改質劑。 11 、如申請專利範圍第1項所述之具有生物分解性< 奈米複合材料,更包含一纖維補強材料或一無機^真 (filler)。 、、、 、料 12、如申請專利範圍第11項所述之具有生物分解性 奈米複合材料,其中該纖維補強材料係為一天然 f 物纖維或一無機纖維。 、 13、如申請專利範圍第12項所述之具有生物分解十生 奈米複合材料,其中該天然的植物纖維係為一亞 $ 維或一竹炭纖維。 ; 14、如申請專利範圍第12項所述之具有生物分解性之 奈米複合材料,其中該無機纖維係為一玻璃纖維及— 碳纖維。 15、如申請專利範圍第8項所述之具有生物分解性之 奈米複合材料,其中該層狀矽酸鹽化合物插層改質劑 係包含氨鹽(NH4+)、鉋鹽(Cs+)、铷鹽(Rb+)、鉀鹽 13 200846406 ’ (Κ+)、鐘鹽(U+)、錤鹽(Mg2+)、I弓鹽(Ca2+)、叙脇 。(做)、鈦_+)等有機^物KCa2+) 1呂鹽 16丄如申請專利範圍第丨項所述之具有生物分 至其2:,,質的奈米粉趙對魏合物的 I 一Λ具有生物分解性之奈米複合材料之製備方 法,包含下列步驟: 衣爾方 提供一澱粉與水性聚酯胺之混合物、一 改貝劑及一未改質或經改質之奈米粉體;犯土 Φ 將該官能基改質劑加入該混合物中; 將該奈米粉體加入該混合物中;以及 將該混合物置於一捏合用 '一掺 、曰 用之機器進行捏合,以焊釗兮且古4 用次一 ^合 米複合材料传到該具有生物分解性之奈 18、如申請專利範圍第17項所述之製備方 包含-布斯混合器、-萬馬力混合- 反應槽等等之混練器具。 ^滾輪、. • 19含/攄申請Λ利範圍第17項所述之製備方法,更包 ::據:目的物而使用一押出型、射出成型、^ 兮人舰中空成型、發泡成型等之加工程序,以製成 該4複合材料之—母粒或―成型品。 製成 含|供申_!#输專雜利範圍第17項所述之製備方法’更包 合ί纖維補強材料s—無機填料,以加入該混 2 μ如申請專利範圍第20項所述之製備太 =維補強材料係為一天然的植物纖=無其機中 14 200846406 22、 如申請專利範圍第2〇 該天然的植物纖維係A =所述之製備 23、 如申請專利範圍第為= 該無機纖維係為一玻璃纖維及二碳^ ξ 24、 如中請專利範圍第2〇項所述之 該經改質的奈米粉體對該混合物的重旦 至20%。 里 方法’其中 竹炭纖維。 方法’其中 〇 方法,其中 比為0.1% 15a rice composite material, wherein the layered niobate compound comprises at least Montmorillonite, Saponite, Hectorite, Attapulgite, zirconium phosphate, etc. Inorganic materials. The gas-decomposing < nanocomposite according to claim 5, wherein the organic group is a tropane%4 agent, a Triton surfactant or a surfactant Layered citrate compound intercalation modifier. 11. The biodegradable < nanocomposite material according to claim 1 of the patent application, further comprising a fiber reinforcing material or an inorganic filler. The biodegradable nano composite material according to claim 11, wherein the fiber reinforcing material is a natural f fiber or an inorganic fiber. 13. The biodegradable ten nano composite according to claim 12, wherein the natural plant fiber is a one-dimensional or one bamboo fiber. 14. The biodegradable nanocomposite according to claim 12, wherein the inorganic fiber is a glass fiber and a carbon fiber. 15. The biodegradable nanocomposite according to claim 8, wherein the layered phthalate compound intercalation modifier comprises an ammonium salt (NH4+), a planing salt (Cs+), and a bismuth. Salt (Rb+), potassium salt 13 200846406 '(Κ+), clock salt (U+), strontium salt (Mg2+), I bow salt (Ca2+), flank. (Do), Titanium _+), etc. KCa2+) 1 Lu salt 16 丄 as described in the scope of the patent application, having a biological component to its 2:, the quality of the nano-powder to the Wei compound I The method for preparing a biodegradable nano composite material comprises the following steps: a mixture of a starch and an aqueous polyesteramine, a modified shelling agent and an unmodified or modified nanometer powder; The soil Φ is added to the mixture; the nanopowder is added to the mixture; and the mixture is kneaded by a kneading machine for welding and soldering. The ancient 4 is transferred to the biodegradable na[beta] composite material, and the preparation method as described in claim 17 includes a Buss mixer, a 10,000 horsepower mixing-reaction tank, and the like. Mixing equipment. ^Roller,. 19 19 / / 摅 摅 摅 范围 范围 第 第 第 第 第 第 第 第 第 第 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备 制备The processing procedure is to make the masterbatch or the molded article of the 4 composite material. The preparation method described in Item 17 of the _ _ _ _ _ _ _ _ _ _ _ fiber reinforced material s - inorganic filler, to add the mixture 2 μ as described in claim 20 The preparation is too = the reinforced material is a natural plant fiber = no machine 14 200846406 22, as claimed in the second paragraph, the natural plant fiber system A = the preparation 23, as claimed in the scope of the patent The inorganic fiber is a glass fiber and a carbonaceous material. The modified nano-powder described in the second aspect of the patent application has a weight of the mixture of 20%. The method 'where bamboo charcoal fiber. Method 'where 〇 method, where the ratio is 0.1% 15
TW96119208A 2007-05-29 2007-05-29 Nano-composite material having biodegradability and preparation method thereof TW200846406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96119208A TW200846406A (en) 2007-05-29 2007-05-29 Nano-composite material having biodegradability and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96119208A TW200846406A (en) 2007-05-29 2007-05-29 Nano-composite material having biodegradability and preparation method thereof

Publications (2)

Publication Number Publication Date
TW200846406A true TW200846406A (en) 2008-12-01
TWI354685B TWI354685B (en) 2011-12-21

Family

ID=44823152

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96119208A TW200846406A (en) 2007-05-29 2007-05-29 Nano-composite material having biodegradability and preparation method thereof

Country Status (1)

Country Link
TW (1) TW200846406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127156B2 (en) 2012-06-27 2015-09-08 Industrial Technology Research Institute Flame-retardant thermoplastic starch material, flame-retardant thermoplastic starch-based bio-composite, and method for manufacturing the same
CN113441108A (en) * 2021-08-20 2021-09-28 兰州交通大学 Preparation method of modified attapulgite loaded nano zero-valent iron heavy metal adsorbent, product and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127156B2 (en) 2012-06-27 2015-09-08 Industrial Technology Research Institute Flame-retardant thermoplastic starch material, flame-retardant thermoplastic starch-based bio-composite, and method for manufacturing the same
CN113441108A (en) * 2021-08-20 2021-09-28 兰州交通大学 Preparation method of modified attapulgite loaded nano zero-valent iron heavy metal adsorbent, product and application thereof

Also Published As

Publication number Publication date
TWI354685B (en) 2011-12-21

Similar Documents

Publication Publication Date Title
Kumar et al. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications
CN105622132B (en) A kind of sponge urban environmental protection regeneration aggregate pervious concrete and preparation method thereof
CN102504345B (en) Disposable controlled completely-degradable plastic packing bag and preparation method thereof
CN102417702B (en) Production method of full-degradation nut shell particle/natural fibre synergy reinforcement lactyl composite material
KR20160063877A (en) Manufacturing Method of Filament for 3D Print and Filament
CN103030908A (en) Polyvinyl alcohol/ inorganic nanocomposite hydrogel and preparation method thereof
CN105585789A (en) Polystyrene-resin-based composite material and preparation method thereof
CN107189385A (en) A kind of graphene 3D printing material of high intensity
CN105038161B (en) A kind of modified galapectite/PLA composite foam material and its preparation and application
Verma A perspective on the potential material candidate for railway sector applications: PVA based functionalized graphene reinforced composite
CN113788991A (en) Biodegradable high-performance modified particle material and preparation method thereof
Lu et al. Controllable synthesis of hierarchical nanostructured anhydrous MgCO3 and its effect on mechanical and thermal properties of PVC composites
CN101659791A (en) Nano-modified wheat gluten protein compound material and preparation method thereof
CN113604018A (en) Polylactic acid-based nanocomposite material for 3D printing and preparation method thereof
CN107603058B (en) A kind of PVC/CPE composite pipes and preparation method thereof of graphene oxide enhancing
CN106479143A (en) A kind of attapulgite/poly lactic acid nano composite material and preparation method thereof
Mapossa et al. Thermal, Morphological and Mechanical Properties of Multifunctional Composites Based on Biodegradable Polymers/Bentonite Clay: A Review
CN108129767A (en) Graphene oxide reinforced PVC/ABS composite pipe and preparation method thereof
CN104448260A (en) Preparation method of biological glutinous rice flour/montmorillonite nanocomposite
CN101302329A (en) Modified Poly(trimethylene terephthalate) resin
TW200846406A (en) Nano-composite material having biodegradability and preparation method thereof
CN105541202B (en) A kind of Grouting Cement mortar of composite toughening and preparation method thereof
CN107880325B (en) 3D printing material based on modified chitosan
Bora et al. A review on modification of polypropylene carbonate (PPC) using different types of blends/composites and its advanced uses
CN1803928A (en) Plastic alloy composite material

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees