TW200846403A - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
TW200846403A
TW200846403A TW96118840A TW96118840A TW200846403A TW 200846403 A TW200846403 A TW 200846403A TW 96118840 A TW96118840 A TW 96118840A TW 96118840 A TW96118840 A TW 96118840A TW 200846403 A TW200846403 A TW 200846403A
Authority
TW
Taiwan
Prior art keywords
group
resin composition
boron nitride
weight
carbon atoms
Prior art date
Application number
TW96118840A
Other languages
Chinese (zh)
Other versions
TWI400288B (en
Inventor
Hiroaki Kuwahara
Susumu Honda
Yoshio Bando
Chun-Yi Zhi
Cheng-Chun Tang
Dmitri Golberg
Original Assignee
Teijin Ltd
Nat Inst For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd, Nat Inst For Materials Science filed Critical Teijin Ltd
Priority to TW96118840A priority Critical patent/TWI400288B/en
Publication of TW200846403A publication Critical patent/TW200846403A/en
Application granted granted Critical
Publication of TWI400288B publication Critical patent/TWI400288B/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a resin composition that may form a shaped object having excellent mechanical physical property, size stability and thermal conductivity. The present invention provides the resin composition, that contains a thermoplastic resin having solubility parameter (δ) 9 to 12 in amount of 100 part by weight, and boron nitride nanotube in amount of 0.01 to 100 part by weight. This invention also provides a manufacturing method of this resin composition and the shaped object thereof.

Description

200846403 九、發明說明 【發明所屬之技術領域】 本發明係有關熱塑性樹脂中分散著氮化硼奈米管之樹 脂組成物、其製造方法及其成形體。 【先前技術】 碳奈米管因具有先前所沒有之機械物性、電特性、熱 特性等而成爲受人注目之奈米科技,故檢討其應用於廣泛 領域之可能性,且已部分實用化。 又曾嘗試樹脂中添加塡料用之碳奈米管,以改良樹脂 之機械物性、導電性、耐熱性等。 例如,使用以化學鍵進行表面修飾後之碳奈米管提升 聚碳酸酯之力學特性的報告(專利文獻1 )。又如,以共軛 系高分子被覆碳奈米管可極度提高碳奈米管之分散性,故 可以少量之碳奈米管賦予基體樹脂之高導電性的報告(專 利文獻2)。 又有關具有聚甲基甲基丙烯酸酯或聚苯乙烯酸支鏈構 造之聚合物及碳奈米管所形成的聚合物複合材料,曾有以 共軛系高分子被覆單層碳奈米管時’既使僅爲單層碳奈米 管添加量也可飛躍式提升彈性率之報告(專利文獻3、4)。 另外構造上與碳奈米管具有類似性之氮化硼碳奈米管 ,也成爲受人注目的具有先前所沒有特性之材料(專利文 獻5)。已知氮化硼奈米管不僅具有可與碳奈米管匹敵之 優良機械物性及熱傳導性外,其化學安定性優於碳奈米管 -5 - 200846403 。又具有絕緣性,因此也成爲受入期待之絕緣放熱材料。 專利文獻1 ··特開2004-32373 8號公報 專利文獻2 :特開2004-2621號公報 專利文獻3:特開20 04-24 4490號公報 專利文獻4 :特開2003-268246號公報 專利文獻5 :特開2000- 1 09306號公報 【發明內容】 發明之揭-示 本發明之目的爲,提供可形成熱傳導性優良的成形體 的樹脂組成物。本發明之目的爲,提供熱傳導性優良之成 形體。本發明之目的爲,提供該樹脂組成物之製造方法。 近年來電子機器盛行使用樹脂成形體零件。電子機器 會放熱,因此要求其零件具有放熱性,即熱傳導性。爲了 賦予樹脂之熱傳導性多半爲,樹脂中添加二氧化矽、氧化 鋁等無機氧化物粒子。但此等無機粒子之粒徑較大,故提 升熱傳導性用量較多,而較多用量會損害樹脂原本之機械 強度。 因此本發明者針對維持樹脂原本之機械強度下可提升 熱傳導性之方法中,樹脂中氮化硼奈米管之分散性進行檢 討。結果發現,聚醯胺雖可有效分散氮化硼奈米管,得到 具有優良機械強度及耐熱性之樹脂組成物,但提升熱傳導 性方面尙無期待之效果。 又就聚碳酸酯、聚酯、丙烯酸樹脂等具有一定溶解度 -6 - 200846403 參數(δ )之熱塑性樹脂而言,氮化硼奈米管之分散性雖比 聚醯胺差,但可明顯提升熱傳導性,而完成本發明。又此 等熱塑性樹脂中分散著氮化硼奈米管之樹脂組成物可具有 優良機械強度及尺寸安定性。 。 即,本發明爲,含有溶解度參數(δ )爲9至12之熱 塑性樹脂100重量份及氮化硼奈米管0.01至100重量份 的樹脂組成物。又本發明爲,混合氮化硼奈米管及溶解度 參數(3 )爲9至1 2之熱塑性樹脂的樹脂組成物之製造方 法。另外本發明爲,上述樹脂組成物所形成之成形體。 實施發明之最佳形態 下面將詳細說明本發明。 <樹脂組成物> (氮化硼奈米管) 本發明之氮化硼奈米管係指,由氮化硼所形成之管.狀 材料,其爲,形成理想構造之6角網目面平行於管軸的一 重管或多重管之物。氮化硼奈米管之平均直徑較佳爲 〇.4nm至 Ιμιη,更佳爲 0.6至 500nm,特佳爲 0.8至 2 0 Onm。該平均直徑係指,一重管時之平均外徑,多重管 時之最外側管的平均外徑。平均長度較佳爲ΙΟμπι以下, 更佳爲5 μπι以下。長寬比爲平均長度/平均直徑。平均-長 寬比較佳爲5以上,更佳爲1 0以上。寬長比之上限爲平 均長度ΙΟμπι以下之物並參限制,實質上上限爲25,00 0。 -7- 200846403 因此氮化硼奈米管又以平均直徑爲〇.4nm至Ιμιη、平均長 寬比爲5以上爲佳。 氮化硼奈米管之平均直徑及平均長寬比可由電子顯微 鏡觀察而求取。例如進行ΤΕΜ(透光型電子顯微鏡)測定時 ,可由畫面直接測定氮化硼奈米管之直徑及長度方向之長 度。又組成物中氮化硼奈米管之形態例如可由,平行於纖 維軸切斷之纖維剖面的ΤΕΜ(透光型電子顯微鏡)測定而得. • 知。 本發明之平均直徑及平均長度係由電子顯微鏡之畫面 中的任意5 0個之算術平均求取。 已知氮化硼奈米管可使用電弧放電法、雷射加熱法、 化學氣相成長法合成。又可由已知的使用硼化鎳觸媒,以 硼嗪爲原料之方法合成。另外可由已提案之以碳奈米管爲 鑄模,使氧化硼與氮反應之方法合成。本發明所使用之氮 化硼奈米管的製造方法非限於此。 # 所使用之氮化硼奈米管可爲,經強酸處理或化學修飾 之氮化硼奈米管。 . 又本發明之氮化硼奈米管較佳爲,被覆共軛系高分子 。被覆氮化硼奈米管之共軛系高分子較佳爲,對氮化硼奈 米管之相互作用較強,且對基體樹脂用之熱塑性樹脂的相 互作用也較強之物。 此等共軛系高分子如,聚伸苯基伸乙烯酯系高分子、 聚噻吩系高分子、聚伸苯酯系高分子、聚吡咯系高分子、 聚苯胺系高分子、聚乙炔系高分子等。其中較佳爲聚伸苯 -8- 200846403 基伸乙烯酯系高分子、聚噻吩系高分子。 本發明之樹脂組成物爲,對熱塑性樹脂1 〇〇重量份含 有氮化硼奈米管0.01至100重量份。該範圍內可使氮化 硼奈米管均句分散於熱塑性樹脂中。又氮化硼奈米管過多 時將難得到均勻之樹脂組成物。氮化硼奈米管含量之下限 對熱塑性樹脂100重量份較佳爲0.05重量份,更佳爲0.1 重量份,特佳爲5重量份。因此本發明之樹脂組成物較佳 爲,對熱塑性樹脂100重量份含有氮化硼奈米管5至100 重量份。又氮化硼奈米管含量之上限對熱塑性樹脂1 00重 量份較佳爲20重量份,更佳爲1 5重量份。另外本發明之 樹脂組成物可含有來自氮化硼奈米管之氮化硼片、觸媒金 屬等。 (熱塑性樹脂) 本發明所使用之熱塑性樹脂的溶解度參數(5 )爲9至 12,較佳爲9.5至11.5。溶解度參數δ可依據「聚合物摻 合」秋山三郎、井上隆、西敏夫共著、西耶姆西股份公司 ,以下列式算出。 δ = ρ · Σ F i/Μ (式中’ P爲聚合物密度,Μ爲聚合物之重覆單位構造的 分子量,EFi爲莫耳吸引力定數下各部分構造之固有値) -9- 200846403 熱塑性樹脂較佳爲,聚碳酸酯、聚酯及丙烯酸樹脂群 中所選出至少一種之樹脂。 (聚碳酸酯) 本發明所使用之聚碳酸酯較佳爲,芳香族聚碳酸酯或 脂環族聚碳酸酯。聚碳酸酯可爲2種以上之聚碳酸酯的混 合物。 j 芳香族聚碳酸酯較佳爲,主要含有下列式(A)所示之 重覆單位。下列式(A)所示重覆單位之含量較隹爲80至 100莫耳%,更佳爲90至100莫耳%。又其他單位爲來自 脂環族二羥基化合物、脂肪族二羥基化合物之重覆單位。[Technical Field] The present invention relates to a resin composition in which a boron nitride nanotube is dispersed in a thermoplastic resin, a method for producing the same, and a molded article thereof. [Prior Art] Carbon nanotubes have become an eye-catching nanotechnology because they have mechanical properties, electrical properties, and thermal properties that were not previously available. Therefore, they have been reviewed for their application in a wide range of fields and have been partially put into practical use. Further, attempts have been made to add a carbon nanotube for use in a resin to improve the mechanical properties, electrical conductivity, heat resistance and the like of the resin. For example, a carbon nanotube obtained by surface modification with a chemical bond is used to enhance the mechanical properties of polycarbonate (Patent Document 1). In addition, the carbon nanotubes coated with the conjugated polymer can extremely improve the dispersibility of the carbon nanotubes, so that a small amount of carbon nanotubes can be used to impart high conductivity to the matrix resin (Patent Document 2). Further, in the case of a polymer composite material having a polymethyl methacrylate or polystyrene acid branched structure polymer and a carbon nanotube, when a single layer carbon nanotube is coated with a conjugated polymer 'A report that the elastic modulus can be increased by a factor of a single layer of carbon nanotubes (Patent Documents 3 and 4). Further, a boron nitride carbon nanotube having a similar structure to that of a carbon nanotube has also become a material having a previously unknown property (Patent Document 5). It is known that boron nitride nanotubes not only have excellent mechanical properties and thermal conductivity comparable to those of carbon nanotubes, but also have better chemical stability than carbon nanotubes -5 - 200846403. In addition, it is also an insulating heat-releasing material that is expected to be insulative. [Patent Document 1] Japanese Laid-Open Patent Publication No. JP-A No. 2004-2621 [Explanation] [Explanation of the Invention] It is an object of the invention to provide a resin composition which can form a molded body excellent in thermal conductivity. SUMMARY OF THE INVENTION An object of the present invention is to provide a molded body excellent in thermal conductivity. An object of the present invention is to provide a method for producing the resin composition. In recent years, electronic molded parts have been widely used in electronic devices. Electronic machines emit heat, so their parts are required to be exothermic, ie thermally conductive. In order to impart thermal conductivity to the resin, inorganic oxide particles such as cerium oxide or aluminum oxide are added to the resin. However, the inorganic particles have a large particle size, so that the amount of heat conductivity is increased, and a large amount of the alloy may impair the original mechanical strength of the resin. Therefore, the inventors of the present invention examined the dispersibility of a boron nitride nanotube in a resin in a method of maintaining thermal conductivity under the original mechanical strength of the resin. As a result, it has been found that polyimine can effectively disperse the boron nitride nanotubes to obtain a resin composition having excellent mechanical strength and heat resistance, but there is no expectation in improving thermal conductivity. In the case of polycarbonate, polyester, acrylic resin and other thermoplastic resins having a solubility of -6 - 200846403 (δ), the dispersion of boron nitride nanotubes is inferior to that of polyamine, but it can significantly improve heat conduction. The present invention was completed. Further, the resin composition in which the boron nitride nanotube is dispersed in the thermoplastic resin can have excellent mechanical strength and dimensional stability. . That is, the present invention is a resin composition containing 100 parts by weight of a thermoplastic resin having a solubility parameter (δ) of 9 to 12 and 0.01 to 100 parts by weight of a boron nitride nanotube. Further, the present invention is a method for producing a resin composition of a boron nitride nanotube and a thermoplastic resin having a solubility parameter (3) of 9 to 12. Further, the present invention is a molded body formed by the above resin composition. BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. <Resin composition> (boron nitride nanotube) The boron nitride nanotube of the present invention is a tube-like material formed of boron nitride, which is a 6-corner mesh surface having an ideal structure. A heavy or multiple tube parallel to the tube axis. The average diameter of the boron nitride nanotubes is preferably from 4.4 nm to Ιμηη, more preferably from 0.6 to 500 nm, particularly preferably from 0.8 to 20% onm. The average diameter refers to the average outer diameter of a single tube and the average outer diameter of the outermost tube at the time of multiple tubes. The average length is preferably ΙΟμπι or less, more preferably 5 μπι or less. The aspect ratio is the average length / average diameter. The average-length-width is preferably 5 or more, more preferably 10 or more. The upper limit of the aspect ratio is an average length ΙΟμπι or less and is limited, and the upper limit is substantially 25,00 0. -7- 200846403 Therefore, the boron nitride nanotubes preferably have an average diameter of 〇.4 nm to Ιμιη and an average aspect ratio of 5 or more. The average diameter and average aspect ratio of the boron nitride nanotubes can be determined by electron microscopy. For example, when measuring by a 透光 (transmission electron microscope), the diameter of the boron nitride nanotube and the length in the longitudinal direction can be directly measured from the screen. Further, the form of the boron nitride nanotube in the composition can be obtained, for example, by measuring the cross section of the fiber parallel to the fiber axis (transmission electron microscope). The average diameter and the average length of the present invention are determined by arithmetical averaging of any of the 50 images on the electron microscope. It is known that a boron nitride nanotube can be synthesized by an arc discharge method, a laser heating method, or a chemical vapor phase growth method. Further, it can be synthesized by a known method using a nickel boride catalyst and a borazine as a raw material. Alternatively, it can be synthesized by a method in which a carbon nanotube is proposed as a mold to react boron oxide with nitrogen. The method for producing the boron nitride nanotube used in the present invention is not limited thereto. # The boron nitride nanotube used may be a boron nitride nanotube that has been treated with strong acid or chemical modification. Further, the boron nitride nanotube of the present invention is preferably coated with a conjugated polymer. The conjugated polymer coated with the boron nitride nanotube is preferably a strong interaction with the boron nitride nanotube and has a strong interaction with the thermoplastic resin for the matrix resin. These conjugated polymers are, for example, a polyphenylene vinylene polymer, a polythiophene polymer, a polyphenylene ester polymer, a polypyrrole polymer, a polyaniline polymer, or a polyacetylene polymer. Wait. Among them, a polyphenylene-based polymer and a polythiophene-based polymer are preferred. The resin composition of the present invention contains 0.01 to 100 parts by weight of a boron nitride nanotube for 1 part by weight of the thermoplastic resin. Within this range, the boron nitride nanotubes can be uniformly dispersed in the thermoplastic resin. When the boron nitride nanotube is too large, it is difficult to obtain a uniform resin composition. The lower limit of the content of the boron nitride nanotube is preferably 0.05 parts by weight, more preferably 0.1 parts by weight, particularly preferably 5 parts by weight, per 100 parts by weight of the thermoplastic resin. Therefore, the resin composition of the present invention preferably contains 5 to 100 parts by weight of a boron nitride nanotube for 100 parts by weight of the thermoplastic resin. Further, the upper limit of the content of the boron nitride nanotube is preferably 20 parts by weight, more preferably 15 parts by weight, per 100 parts by weight of the thermoplastic resin. Further, the resin composition of the present invention may contain a boron nitride sheet derived from a boron nitride nanotube, a catalyst metal or the like. (Thermoplastic Resin) The thermoplastic resin used in the present invention has a solubility parameter (5) of 9 to 12, preferably 9.5 to 11.5. The solubility parameter δ can be calculated by the following formula based on "polymer blending" Akiyama Saburo, Inoue Takashi, Westminster, and West Yemsey AG. δ = ρ · Σ F i/Μ (wherein P is the polymer density, Μ is the molecular weight of the repeating unit structure of the polymer, and EFi is the intrinsic enthalpy of the structure of each part of the molar attraction number) -9- 200846403 The thermoplastic resin is preferably a resin selected from at least one of a polycarbonate, a polyester, and an acrylic resin group. (Polycarbonate) The polycarbonate used in the present invention is preferably an aromatic polycarbonate or an alicyclic polycarbonate. The polycarbonate may be a mixture of two or more kinds of polycarbonates. Preferably, the aromatic polycarbonate is mainly composed of the repeating unit represented by the following formula (A). The content of the repeating unit represented by the following formula (A) is from 80 to 100 mol%, more preferably from 90 to 100 mol%. Further, the other unit is a repeating unit derived from an alicyclic dihydroxy compound or an aliphatic dihydroxy compound.

式(A)中,R1及R2各自獨立爲氫原子、鹵原子、碳數 1至10之烷基、碳數1至10之烷氧基、碳數6至20之 環烷基、碳數6至20之環烷氧基、碳數6至10之芳基、 碳數7至20之芳院基、碳數6至10之芳氧基及碳數7至 2〇之芳烷氧基群中所選出之基,R1及R2爲複數時可各自 相同或相異。 R1及R2之鹵原子如,氟原子、氯原子、溴原子等。 碳數1至10之烷基如,甲基、乙基、丙基、丁基、戊基、 -10- 200846403 己基、庚基、辛基、壬基、癸基等。碳數1至1 0之烷氧基 如,甲氧基、乙氧基、丙氧基、丁氧基等。碳數6至20之 環烷基如,環己基、環辛基等。碳數6至20之環烷氧基如 ,環己氧基、環辛氧基等。碳數6至10之芳基如,苯基、 萘基等。碳數7至20之芳烷基如,苄基、苯乙基等。碳數6 至10之芳氧基如,苯氧基等。碳數7至20之芳烷氧基如, 苄氧基等。 πι及η各自獨立爲1至4之整數。 W爲下列式(Α-1)所示構造單位中任何一種。In the formula (A), R1 and R2 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, and a carbon number of 6 a cycloalkoxy group to 20, an aryl group having 6 to 10 carbon atoms, an aromatic group having 7 to 20 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, and an aralkyloxy group having 7 to 2 carbon atoms. The selected base, R1 and R2 may be the same or different when they are plural. The halogen atom of R1 and R2 is, for example, a fluorine atom, a chlorine atom or a bromine atom. The alkyl group having 1 to 10 carbon atoms is, for example, methyl, ethyl, propyl, butyl, pentyl, -10- 200846403 hexyl, heptyl, octyl, decyl, decyl and the like. The alkoxy group having 1 to 10 carbon atoms is, for example, a methoxy group, an ethoxy group, a propoxy group, a butoxy group or the like. A cycloalkyl group having 6 to 20 carbon atoms is, for example, a cyclohexyl group, a cyclooctyl group or the like. The cycloalkoxy group having 6 to 20 carbon atoms is, for example, a cyclohexyloxy group, a cyclooctyloxy group or the like. The aryl group having 6 to 10 carbon atoms is, for example, a phenyl group, a naphthyl group or the like. The aralkyl group having 7 to 20 carbon atoms is, for example, a benzyl group, a phenethyl group or the like. An aryloxy group having 6 to 10 carbon atoms such as a phenoxy group. An aralkoxy group having 7 to 20 carbon atoms such as a benzyloxy group or the like. Πι and η are each independently an integer from 1 to 4. W is any one of the structural units shown by the following formula (Α-1).

式(Α-1)中,R3及R4各獨立爲氫原子、碳數1至10之烷 基或碳數1至10之烷氧基。碳數1至10之烷基如,甲基、乙 基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基 等。碳數1至10之烷氧基如,甲氧基、乙氧基、丙氧基、 丁氧基。 R5及R6各自獨立爲氫原子或碳數1至3之烷基,R5及 R6爲複數時可各自相同或相異。碳數1至3之烷基如,甲基 -11 - 200846403 、乙基、丙基等。 p爲4至12之整數。 R7及R8各自獨立爲氫原子、鹵原子或碳數1至3之烷 基。鹵原子如,氟原子、氯原子、溴原子等。碳數1至3之 烷基如,甲基、乙基、丙基等。 式(A)所示重覆單位較佳爲,由2,2-雙(4-羥基苯基)丙 烷(雙酚A)、1,1-雙(4-羥基苯基)-3,3,5_三甲基環己烷、 4,4’-(m-苯基二異丙亞基)二苯酚及9,9-雙(4-羥基-3-甲基 苯基)芴所選出至少一種衍生的重覆單位。 式(A)所示重覆單位又以下列式(A_2)所示重覆單位爲 佳。In the formula (?-1), R3 and R4 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. The alkyl group having 1 to 10 carbon atoms is, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a decyl group or the like. The alkoxy group having 1 to 10 carbon atoms is, for example, a methoxy group, an ethoxy group, a propoxy group or a butoxy group. R5 and R6 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and when R5 and R6 are plural, they may be the same or different. The alkyl group having 1 to 3 carbon atoms is, for example, methyl-11 - 200846403, ethyl, propyl or the like. p is an integer from 4 to 12. R7 and R8 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 3 carbon atoms. A halogen atom such as a fluorine atom, a chlorine atom or a bromine atom. The alkyl group having 1 to 3 carbon atoms is, for example, a methyl group, an ethyl group, a propyl group or the like. The repeating unit represented by the formula (A) is preferably 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 1,1-bis(4-hydroxyphenyl)-3,3, 5_trimethylcyclohexane, 4,4'-(m-phenyldiisopropylidene)diphenol and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene are selected at least one kind Derived repeat unit. The repeating unit shown by the formula (A) is preferably a repeating unit represented by the following formula (A_2).

芳香族聚碳酸酯可由,二羥基化合物與碳酸酯先驅物 反應而得。二羥基化合物如,2,2-雙(4-羥基苯基)丙烷、 1,1-雙(4-羥基苯基)環己烷、1,1_雙(4-羥基苯基)-3,3,5-三 甲基環己院、雙(4-羥基苯基)甲院、1,1 _雙(4-經基苯基)乙 烷、2,2-雙(4-羥基苯基)丁烷、ij-雙(4_羥基苯基苯基 乙垸、雙(4 -羥基苯基)二苯基甲院、2,2 -雙(4 -羥基-3-甲基 苯基)丙烷、2,2-雙(3-苯基-4-羥基苯基)丙烷、2,2-雙(4-羥 基丁基苯基)丙烷、9,9-雙(4·羥基苯基)芴、9,9-雙(4-羥基-3-甲基苯基)芴、雙(4-羥基苯基)硫化物、雙(4-羥基 -12- 200846403 苯基)礪、1,3-雙{2-(4-羥基苯基)丙基}苯、1,4_雙{2-(4-羥 基苯基)丙基}苯、2,2-雙(4-羥基苯基)-1,1,1-3,3,3_六氟丙 烷等芳香族雙酚、2,2-二甲基-1,3-丙二醇、螺甘醇、1,4_ 環己二醇、1,4-環己烷二甲醇等脂肪族二羥基化合物。 其中較佳爲,以稱爲雙酚A之2,2-雙(4-羥基苯基)丙 烷爲二羥基化合物的芳香族聚碳酸酯。又可爲此等二羥基 化合物單獨使用或2種以上組合使用之共聚合聚碳酸酯。 另外可使用部分含有對苯二甲酸及/或間苯二甲酸成份之 聚碳酸酯。 所使用之碳酸酯先驅物爲羰基鹵化物、碳酸二酯或鹵 甲酸酯等,具體例如,光氣、二苯基碳酸酯或二羥基化合 物之二鹵甲酸酯等。 (月旨環族聚碳酸酯) 脂環族聚碳酸酯較佳爲,主要含有下列式(B)所示之 重覆單位。下列式(B)所示重覆單位之含量較佳爲40至1〇〇 莫耳%,更佳爲60至100莫耳%,特佳爲80至100莫耳%。The aromatic polycarbonate can be obtained by reacting a dihydroxy compound with a carbonate precursor. Dihydroxy compounds such as 2,2-bis(4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)-3, 3,5-trimethylcyclohexan, bis(4-hydroxyphenyl)methine, 1,1 bis(4-phenylphenyl)ethane, 2,2-bis(4-hydroxyphenyl) Butane, ij-bis(4-hydroxyphenylphenylacetamidine, bis(4-hydroxyphenyl)diphenylmethyl, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 2,2-bis(3-phenyl-4-hydroxyphenyl)propane, 2,2-bis(4-hydroxybutylphenyl)propane, 9,9-bis(4.hydroxyphenyl)anthracene, 9 , 9-bis(4-hydroxy-3-methylphenyl)fluorene, bis(4-hydroxyphenyl) sulfide, bis(4-hydroxy-12-200846403 phenyl)anthracene, 1,3-double {2 -(4-hydroxyphenyl)propyl}benzene, 1,4-bis{2-(4-hydroxyphenyl)propyl}benzene, 2,2-bis(4-hydroxyphenyl)-1,1, Aromatic bisphenol such as 1-3,3,3_hexafluoropropane, 2,2-dimethyl-1,3-propanediol, spiroglycol, 1,4-cyclohexanediol, 1,4-cyclohexane An aliphatic dihydroxy compound such as dimethanol; preferably, 2,2-bis(4-hydroxyphenyl)propane known as bisphenol A An aromatic polycarbonate of a dihydroxy compound, or a copolymerized polycarbonate which is used alone or in combination of two or more kinds of dihydroxy compounds. Further, a partially contained terephthalic acid and/or isophthalic acid component may be used. The carbonate precursor used is a carbonyl halide, a carbonic acid diester or a haloformate, and the like, for example, phosgene, diphenyl carbonate or a dihydroxy compound dihaloformate. The alicyclic polycarbonate is preferably a heavy-duty unit represented by the following formula (B). The content of the repeating unit represented by the following formula (B) is preferably 40 to 1〇〇% by mole, more preferably 60 to 100% by mole, and particularly preferably 80 to 100% by mole.

0 (B) -13- 200846403 式(B)中,R9及R12各自獨立爲氫原子、碳數1至10之 烷基、碳數6至20之環烷基或碳數6至10之芳基。 碳數1至1 〇之烷基如,甲基、乙基、丙基、丁基、戊 基、己基、庚基、辛基、壬基、癸基等。碳數6至20之環 烷基如,環己基、環辛基等。碳數6至10之芳基如,苯基 、萘基等。 脂環族聚碳酸酯可由,二羥基化合物與碳酸酯先驅物 反應而得。脂環族聚碳酸酯可使用下列式(B-1)所示二羥 基化合物製造。0 (B) -13- 200846403 In the formula (B), R9 and R12 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms. . The alkyl group having 1 to 1 carbon atom is, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group or a fluorenyl group. A cycloalkyl group having 6 to 20 carbon atoms is, for example, a cyclohexyl group, a cyclooctyl group or the like. The aryl group having 6 to 10 carbon atoms is, for example, a phenyl group, a naphthyl group or the like. The alicyclic polycarbonate can be obtained by reacting a dihydroxy compound with a carbonate precursor. The alicyclic polycarbonate can be produced using the dihydroxy compound represented by the following formula (B-1).

式(B-1)中,R9及R12各自獨立爲氫原子、碳數1至 10之烷基、碳數6至20之環烷基或碳數6至10之芳基 碳數1至10之烷基如,甲基、乙基、丙基、丁基、 戊基、己基、庚基、辛基、壬基、癸基等。碳數6至20 之環烷基如,環己基、環辛基等。碳數6至1 〇之芳基如 ,苯基、萘基等。 式(B-1)所示化合物之具體例如,下列式(B-2)之異山 黎糖醇(isosorbide)、下列式(B-3)之異甘露糖醇 -14- 200846403 (isomannide)及下列式(b-4)之異依地醇(is〇idide)。In the formula (B-1), R9 and R12 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms or an aryl group having 1 to 10 carbon atoms having a carbon number of 6 to 10. Alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, decyl, decyl and the like. A cycloalkyl group having 6 to 20 carbon atoms is, for example, a cyclohexyl group, a cyclooctyl group or the like. An aryl group having 6 to 1 carbon atoms such as a phenyl group or a naphthyl group. Specific examples of the compound of the formula (B-1), for example, isosorbide of the following formula (B-2), isomannitol of the following formula (B-3)-14-200846403 (isomannide) and Isoidide of the following formula (b-4).

此等醚二醇可爲來自自然界之生物量的物質,可稱爲 再生能源之物之i。異依地醇(B-4)係由,將來自澱粉之 D-葡萄糖氫化及進行脫水而得。其他之醚二醇除了開始物 質不同外,可由相同反應而得。醚二醇特佳爲,含有異雙 脫水山梨糖醇殘基之聚碳酸酯、異雙脫水山梨糖醇資源可 由澱粉等簡單製造之醚二醇豐富取得,因其易製造故比異 山黎糖醇(B-2)及異甘露糖醇(B-3)更優良。 本發明所使用之醚二醇的精製方法並無特別限制。較 佳爲使用單蒸餾 '精餾或再結晶中任何一種,或組合此等 方法精製。 -15- 200846403 所使用之碳酸酯先驅物如,羰基鹵化物、碳酸二酯或 鹵甲酸酯等,具體例如,光氣、二苯基碳酸酯或二羥基化 合物之二鹵甲酸酯等。 脂環族聚碳酸酯可含有下列式(B-5)These ether diols may be substances derived from biomass in nature and may be referred to as i of renewable energy sources. Isoindyl alcohol (B-4) is obtained by hydrogenating and dehydrating D-glucose from starch. Other ether diols can be obtained by the same reaction except that the starting materials are different. The ether diol is particularly preferred, and the polycarbonate containing the iso-dian sorbitan residue and the iso-dian sorbitan resource can be obtained by the simple production of an ether diol such as starch, which is easy to manufacture and is more than isosorbate. The alcohol (B-2) and the isomannitol (B-3) are more excellent. The method for purifying the ether diol used in the present invention is not particularly limited. It is preferred to use a single distillation of either rectification or recrystallization, or a combination of these methods. -15- 200846403 The carbonate precursor used is, for example, a carbonyl halide, a carbonic acid diester or a haloformate, and the like, for example, a phosgene, a diphenyl carbonate or a dihaloformate of a dihydroxy compound. The alicyclic polycarbonate may have the following formula (B-5)

-Ο-R13一Ο-C-Ο-R13一Ο-C

I (B — 5) 0 所示重覆單位。 式(B-5)中,R13爲碳數2至12之脂肪族基。碳數2 至12之脂肪族基較佳爲,碳數1至10之烷基、碳數6至 20之環烷基。碳數1至10之烷基如,甲基、乙基、丙基 、丁基、戊基、己基、庚基、辛基、壬基、癸基等。碳數 6至20之環烷基如,環己基、環辛基等。 式(B-5)所示重覆單位之含量較佳爲0至60莫耳%’ ® 更佳爲0至40莫耳%,特佳爲0至20莫耳%。 式(B-5)所示重覆單位可由,使用下列式(B-6)所示二 - 羥基化合物而導入。 Η—〇—R13-0—Η (B-6) 式(B-6)中,R13之定義同上述式(B-5)。 式(B-6)所示二羥基化合物如,乙二醇、1,3-丙二醇、 1,4-丁 二醇、1,5-戊二醇、1,6-己二醇、1,4-環己二醇、 -16- 200846403 1,4-環己烷二甲醇等。其中就合成聚合物時易提升聚合度 及可提高聚合物物性中之玻璃化點,又以1,3-丙二醇、 1,4-丁二醇、1,6-己二醇爲佳。又可組合至少2種此等二 元醇成份。 又,二元醇成份可含有其他二元醇成份。其他二元醇 成份如,環己二醇、環己烷二甲醇等脂環式烷二醇類、二 甲醇苯、二乙醇苯等芳香族二醇、雙酚類等。 聚碳酸酯可由二羥基化合物與碳酸酯先驅物反應而得 。反應方法如,表面聚合法、熔融酯交換法、碳酸酯預聚 物之固相酯交換法及環狀碳酸酯化合物之開環聚合法等。 以各種聚合法由二羥基化合物與碳酸酯先驅物製造聚 碳酸酯時,必要時可使用觸媒、末端停止劑、防止二羥基 化合物氧化用之防氧化劑等。又該聚碳酸酯包含,與三官 能以上之多官能性芳香族化合物共聚合而得的支化聚碳酸 酯、與芳香族或脂肪族(包含脂環族)之二官能性羧酸共聚 合而得的聚酯碳酸酯、與二官能性乙醇(包含脂環族)共聚 合而得的聚碳酸酯,以及同時與二官能性羧酸及二官能性 乙醇共聚合而得的聚酯碳酸酯。又可爲混合2種以上所得 聚碳酸酯之混合物。 所使用三官能以上之多官能性芳香族化合物可爲 三(4-羥基苯基)乙烷、1,1,1-三(3,5-二甲基-4-羥基苯 基)乙院等 ° 含有生成支化聚碳酸酯用之多官能性化合物時,其對 芳香族聚碳酸酯全量之比率爲0.001至1莫耳%,較佳爲 •17- 200846403 0.0 0 5至0 · 9莫耳%,特佳爲ο . ο 1至ο · 8莫耳%。又特別是 熔融酯交換法時副反應會生成支化構造,但此時支化構造 量對芳香族聚碳酸酯全量較佳爲0.001至1莫耳%,更佳 爲0·005至0.9莫耳%,特佳爲0.01至〇·8莫耳%。該比 率可由1H-NMR測定算出。 脂肪族之二官能性羧酸較佳爲α,ω -二羧酸。脂肪族 之二官能性羧酸較佳如,癸二酸、十二烷二酸、十四烷二 醇、十八烷二酸、廿烷二酸等直鏈飽和脂肪族二羧酸,以 及環己烷二殘等脂環族二羧酸。二官能性乙醇更佳爲脂 環族二醇,例如環己烷二甲醇、環己二醇及三環癸烷二甲 醇等。 另外可使用與聚有機矽氧烷單位共聚合而得的聚碳酸 酯-聚有機矽氧烷共聚物。 以表面聚合法進行之反應一般爲二羥基化合物與光氣 之反應,又係於存在酸結合劑及有機溶劑下進行。所使用 之酸結合劑如,氫氧化鈉、氫氧化鉀等鹼金屬氫氧化物、 吡啶等。所使用之有機溶劑如,二氯甲烷、氯苯等鹵化烴 〇 又,爲了促進反應可使用例如第三級、第四級銨鹽等 觸媒,所使用之分子量調節劑較佳如苯酚、p-tert-丁基苯 酚、P-枯基苯酚等單官能苯酚類。又單官能苯酚類如,癸 基苯酚、十二烷基苯酚、十四烷基苯酚、十六烷基苯酚、 十八烷基苯酚、廿烷基苯酚、廿二烷基苯酚及三十烷基苯 酚等。此等具有較長烷基之單官能苯酚類可有效提升流動 -18- 200846403 性及耐加水分解性。此時又以反應溫度一般爲〇至40 °C ,反應時間爲數分鐘至5小時,反應中pH —般保持於1 〇 以上爲佳。 以熔融法進行之反應一般爲二羥基化合物與碳酸二酯 之酯交換反應,又係於存在不活性氣體下混合二羥基化合 物及碳酸二酯後,減壓下一般以120至3 50 °C進行反應。 減壓度可階段式改變,最後於13 3Pa以下將所生成之苯酚 類除去系外。反應時間一般爲1至4小時。 碳酸二酯如,二苯基碳酸酯、二萘基碳酸酯、雙(二 苯基)碳酸酯、二甲基碳酸酯、二乙基碳酸酯及二丁基碳 酸酯等,其中較佳爲二苯基碳酸酯。 爲了加速聚合速度可使用聚合觸媒,聚合觸媒如,氫 氧化鈉或氫氧化鉀等鹼金屬或鹼土類金屬之氫氧化物、硼 或鋁之氫氧化物、鹼金屬鹽、鹼土類金屬鹽、第4級銨鹽 、鹼金屬或鹼土類金屬之烷氧化物、鹼金屬或鹼土類金屬 之有機酸鹽、鋅化合物、硼化合物、矽化合物、鍺化合物 、有機錫化合物、鉛化合物、銻化合物、錳化合物、鈦化 合物、锆化合物等一般酯化反應或酯交換反應所使用的觸 媒。觸媒可單獨使用或二種以上倂用。此等觸媒之使用量 對原料二羥基化合物1莫耳較佳爲lxl(T8至lxl(T3當量 ,更佳由1χ10_7至5xl(T4當量選擇。 又,聚合反應時爲了減少苯酚性末端基,可於聚合反 應後期或結束後加入例如2 -氯苯基苯基碳酸酯、2 -甲氧基 羰基苯基苯基酸酯及2-乙氧基羰基苯基苯基碳酸酯等化 -19- 200846403 合物。 熔融酯交換法中又以使用將觸媒活性中和之失活劑爲 佳。該失活劑量對殘存之觸媒1莫耳較佳爲0.5至5 0莫 耳。又對聚合後之芳香族聚碳酸酯的使用量較佳爲0.01 至 500ppm,更佳爲 〇·〇1至 30〇ppm,特佳爲 0.01至 lOOppm。失活劑較佳如,十二烷基苯磺酸四丁基鐃鹽等 鱗鹽、四乙基銨十二烷基苄基硫酸鹽等銨鹽等。 聚碳酸酯之黏度平均分子量較佳爲8,000至1 00,000 。黏度平均分子量小於8,000時會使樹脂組成物所形成之 成形體極脆而不宜。又超過1 0 0,0 0 0時會使熔融流動性變 差,而難得到良好成形體。更佳爲1 0,〇 〇〇至5 0,0 0 0。該 黏度平均分子量係由,將聚碳酸酯之二氯甲烷溶液中所求 取之固有黏度代入麥克-赫恩-櫻田式計算而得。此時之各 種係數如聚合物手冊第3改裝版、衛星公司(1 989年 )(Polymer Handbook 3rd Ed. Willey » 1 989)之 7 至 23 頁所 記載。 聚碳酸酯含有氮化硼奈米管時,既使少量也可得具有 優良熱傳導性及機械強度之成形體。 (聚酯) 聚酯爲,以芳香族二羧酸爲主要之二羧酸成份,及以 碳酸2至10之脂肪族二酯、碳酸6至1〇之脂環族二醇或 碳酸6至12之芳香族二醇爲主要之二醇成份的聚酯。芳 香族二錢酸成份之含量較佳爲80莫耳%以上,更佳爲90 -20- 200846403 莫耳%以上。主要含有脂肪族二醇時,碳酸2至1〇之脂 肪族二醇成份的含量較佳爲80莫耳%以上,更佳爲9()莫 耳%以上。 適用之芳香族二羧酸如,對苯二甲酸、間苯二甲酸、 鄰苯二甲酸、1,5-萘二羧酸、2,6-萘二羧酸、4,4,-聯苯基 二羧酸、4,4’-聯苯基醚二羧酸、4,4,_聯苯基甲烷二羧酸 、4,4’-聯苯基磺二羧酸、4,4,-聯苯基異亞丙基二羧酸、 1,2-雙(苯氧基)乙烷-4,4’-二羧酸、2,5-蒽二羧酸、2,6-蒽 一竣酸、4,4’-p-聯三伸苯基二殘酸、2,5-吡U定二殘酸等芳 香族系二羧酸,特佳爲使用對苯二甲酸、2,6-萘二羧酸。 芳香族二羧酸可二種以上混合使用。又少量使用時, 該二羧酸可混合使用一種以上己二醇、壬二酸、癸二酸、 十二烷二酸等脂肪族二羧酸,及環己烷二羧酸等脂環族二 羧酸等。 二元醇如,乙二醇、丙二醇、丁二醇、己二醇、新戊 二醇、五甲二醇、六甲二醇、十甲二醇、2-甲基-1,3-丙二 醇、二乙二醇、三乙二醇等脂肪族二醇、1,4-環己烷二甲 醇等脂環族二醇等,或2,2-雙(0 -羥基乙氧基苯基)丙烷等 含芳香環之二醇等及其混合物等。 又少量使用時可與1種以上分子量400至6,000之長 鏈二醇,即聚乙二醇、聚-1,3-丙二醇、聚四甲二醇等共聚 合。又本發明之芳香族聚酯可導入少量支化劑而支化。支 化劑之種類並無限制,可爲均苯三甲酸、偏苯三甲酸、三 羥甲基乙烷、三羥甲基丙烷、季戊四醇等。 -21 - 200846403 聚酯如,聚對苯二甲酸乙二醇酯(PET)、聚對苯二甲 酸丙二醇酯、聚對苯二甲酸丁二醇酯(PBT)、聚對苯二甲 酸己二醇酯、聚萘二甲酸乙二醇酯(PEN)、聚萘二甲酸丁 二醇酯(PBN)、聚伸乙基-1,2-雙(苯氧基)乙烷·4,4’-二羧酸 酯等。 又可爲聚間苯二甲酸乙二醇酯/對苯二甲酸酯、聚對 苯二甲酸丁二醇酯/間苯二甲酸酯等共聚合聚酯。 其中就取得機械物質均衡性又以使用聚對苯二甲酸乙 二醇酯、聚對苯二甲酸丁二醇酯及其混合物爲佳。又所得 芳香族聚酯之末端基構造並無特別限制,末端基中羥基與 羧基之比率可幾乎同量,又可一方較多。另外可使用對該 末端基使具有反應性之化合物反應等而封止該末端基之物 〇 上述芳香族聚酯可依常法,於存在含有鈦、鍺、銻等 之聚合觸媒下加熱,同時使二羧酸成份與二元醇成份聚合 ,再將副產之水及低級醇排出系外而製得。其中鍺系聚合 觸媒如,鍺之氧化物、氫氧化物、鹵化物、醇鹽、酚鹽等 ,更具體如,氧化鍺、氫氧化鍺、四氯化鍺、四甲氧基鍺 有機鈦化合物之聚合觸媒具體例較佳如’鈦四丁氧化 物、鈦異丙氧化物、草酸鈦、乙酸鈦、安息香酸鈦、偏苯 三甲酸鈦、四丁基鈦酸鹽與偏苯三甲酸之反應物等。有機 鈦化合物之使用量較佳爲,鈦原子對構成聚對苯二甲酸丁 二醇酯之酸成份爲3至12mg原子%的比率。又本發明可 -22- 200846403 倂用先前已知之聚縮合前段的酯交換反應中所使用之錳、 鈣、鎂等之化合物’又酯交換反應結束後利用磷酸或亞磷 酸之化合物等使該觸媒失活而聚縮合。 芳香族聚酯之製造方法可爲分批式或連續式之任何方 法。又芳香族聚酯之分子量並無特別限制。以〇 -氯苯酚 爲溶劑以3 5 C測定之遠原黏度爲〇 · 6至3 · 0,較佳爲0 · 6 5 至2.5,更佳爲0.7至2.0。 (丙烯酸樹脂) 丙烯酸樹脂之具體例如,甲基丙烯酸、丙烯酸、甲基 甲基丙嫌酸酯、甲基丙烯酸酯、乙基甲基丙烯酸酯、乙基 丙烯酸酯、η-丙基甲基丙烯酸酯、n-丙基丙烯酸酯、n-丁 基甲基丙烯酸酯、η-丁基丙烯酸酯、丁基甲基丙烯酸酯 、t-丁基丙烯酸酯、η-己基甲基丙烯酸酯、n_己基丙烯酸 酯、環己基甲基丙烯酸酯、環己基丙烯酸酯、氯甲基甲基 Φ 丙烯酸酯、氯甲基丙烯酸酯、2-氯乙基甲基丙烯酸酯、2-氯乙基丙烯酸酯、2-羥基乙基甲基丙烯酸酯、2-羥基乙基 丙烯酸酯、3-羥基丙基甲基丙烯酸酯、3-羥基丙基丙烯酸 酯、2,3,4,5,6-五羥基己基甲基丙烯酸酯、2,3,4,5,6-五羥 基己基丙烯酸酯、2,3,4,5 -四羥基戊基甲基丙烯酸酯或 2,3,4,5-四羥基戊基丙烯酸酯等單體之聚合物,或上述單 體之共聚物。 其中本發明所使用之丙烯酸樹脂較佳爲,甲基甲基丙 烯酸酯5 1至1 〇〇重量%,與1種以上含有能與甲基甲基 -23 - 200846403 丙烯酸酯共聚合之不飽和鍵的共聚用單體〇至49重量% 共聚合而得的甲基丙烯酸共聚物。 上述具體例如,聚甲基甲基丙烯酸酯、聚(甲基甲基 丙烯酸酯/甲基丙烯酸)、聚(甲基甲基丙烯酸酯/丙烯酸)、 聚(甲基甲基丙烯酸酯/乙基甲基丙烯酸酯)、聚(甲基甲基 丙烯酸酯/乙基丙烯酸酯)、聚(甲基甲基丙烯酸酯/η-丙基 甲基丙烯酸酯)、聚(甲基甲基丙烯酸酯/η-丙基丙烯酸酯) 、聚(甲基甲基丙烯酸酯/t-丁基甲基丙烯酸酯)、聚(甲基 甲基丙烯酸酯/t-丁基丙烯酸酯)、聚(甲基甲基丙烯酸酯/n-己基甲基丙烯酸酯)、聚(甲基甲基丙烯酸酯/η-己基丙烯酸 酯)、聚(甲基甲基丙烯酸酯/環己基甲基丙烯酸酯)、聚(甲 基甲基丙烯酸酯/環己基丙烯酸酯)、聚(甲基甲基丙烯酸酯 /氯甲基甲基丙烯酸酯)、聚(甲基甲基丙烯酸酯/氯甲基丙 烯酸酯、聚(甲基甲基丙烯酸酯/2-氯乙基甲基丙烯酸酯)、 聚(甲基甲基丙烯酸酯/2-氯乙基丙烯酸酯)、聚(甲基甲基 丙烯酸酯/2-羥基乙基甲基丙烯酸酯)、聚(甲基甲基丙烯酸 酯/2-羥基乙基丙烯酸酯)、聚(甲基甲基丙烯酸酯/聚3-羥 基丙基甲基丙烯酸酯)、聚(甲基甲基丙烯酸酯/聚3-羥基 丙基丙烯酸酯)、聚(甲基甲基丙烯酸酯/2,3,4,5,6 -五經基 己基甲基丙烯酸酯)、聚(甲基甲基丙烯酸酯/2,3,4,5,6-五 經基己基丙烯酸酯)、聚(甲基甲基丙烯酸酯/2,3,4,5 -四經 基戊基甲基丙烯酸酯)、聚(甲基甲基丙烯酸酯/2,3,4,5 -四 羥基戊基丙烯酸酯)、聚(甲基甲基丙烯酸酯/甲基丙烯醯胺 )、聚(甲基甲基丙烯酸酯/丙烯醯胺)、聚(甲基甲基丙烯酸 -24- 200846403 酯/甲基丙烯腈)、聚(甲基甲基丙烯酸酯/丙烯腈)、聚(甲 基甲基丙烯酸酯/苯乙烯)、聚(甲基甲基丙烯酸酯/ α-甲基 苯乙烯)、聚(甲基甲基丙烯酸酯/一氯苯乙烯)等。其中較 佳爲,甲基甲基丙烯酸酯之聚合物的聚甲基甲基丙烯酸酯 、主鏈中含有環構造之共聚物的聚(甲基甲基丙烯酸酯/馬 來酸酐)、聚(甲基甲基丙烯酸酯/馬來醯亞胺)、含有戊二 酸酐單位之丙烯酸樹脂(聚(甲基甲基丙烯酸酯/甲基丙烯酸 )之分子內環化反應物),更佳爲聚甲基甲基丙烯酸酯。此 等丙烯酸樹脂可單獨或2種以上使用。 丙烯酸樹脂之重量平均分子量較佳爲 5,000至 2,000,000。重量平均分子量小於5,000時會使樹脂組成物 所形成之成形體極脆而不宜。又超過2,000,000時會使熔 融流動性變差,而難得到良好成形物。更佳爲1 0,000至 1,500,000 ° <樹脂組成物之製造方法> 本發明之樹脂組成物可由,混合氮化硼奈米管及熱塑 性樹脂而得。混合時可以熔融混合或溶液混合進行。 即,本發明之樹脂組成物可由,熱塑性樹脂中熔融混 合氮化硼奈米管而得(方法a)。熔融混合之方法並無特別 限制,可使用單軸或雙軸擠壓機、捏和機、實驗塑料混合 機等混合。 又本發明之樹脂組成物可由,混合含有氮化硼奈米管 及溶劑之溶液,與熱塑性樹脂後,去除溶劑而得(方法b) -25- 200846403 該溶劑較佳爲能溶解熱塑性樹脂之溶劑。具體例如’ 二氯甲烷、氯仿、四氫呋喃、甲醇、乙醇、丁醇、甲苯、 二甲苯、丙酮、乙酸乙酯、二甲基甲醯胺、N-甲基-2-吡 咯烷酮、二甲基乙醯胺等。 混合時對溶劑中之氮化硼奈米管實施管狀製粉處理’ 超音波處理及強力剪斷處理,可提升氮化硼奈米管之分散 性。 爲了更進一步提升上述調製之樹脂組成物的分散性, 可進行熔融混煉。混煉方法並無特別限制,可使用單軸混 煉機、雙軸濕練機及捏和機進行。熔融混煉之溫度爲,比 樹脂成份熔融之溫度高5至100 °C的溫度。溫度太高時會 產生樹脂分解及異常反應而不宜。又混煉處理時間至少爲 0.5至15分鐘,較佳爲1至10分鐘。 又所使用之氮化硼奈米管可爲,被覆共軛系高分子之 氮化硼奈米管。被覆方法可爲,不使用溶劑下將熔融後之 氮化硼奈米管加入共軛系高分子中混合(方法1)。又可爲 ,將氮化硼奈米管及共軛高分子分散混合於溶解共軛系高 分子之溶劑中(方法2)。 方法2中分散氮化硼奈米管之方法可爲,使用超音波 或各種攪拌方法。攪拌方法可爲,使用均混機等之高速M 拌或使用磨碎機、球磨機等之攪拌方法。 溶劑較佳爲可溶解共軛系高分子之溶劑。具體例如, 二氯甲烷、氯仿、四氫呋喃、甲醇、乙醇、丁醇、甲苯、 -26- 200846403 二甲苯、丙酮、乙酸乙酯、二甲基甲醯胺、N -甲基-2-吡 咯烷酮、二甲基乙醯胺等。 本發明之樹脂組成物較佳爲顆粒狀。一般取得之顆粒 爲圓柱、角柱及球狀等形狀,但以圓柱狀爲佳。該圓柱之 直徑較佳爲1至5mm,更佳爲1.5至4mm,特佳爲2至 3.3mm。又圓柱之長度較佳爲1至30mm,更佳爲2至 5mm,特佳爲 2.5 至 3.5mm。 又本發明之樹脂組成物可含有其他樹脂、彈性體、無 機塡充物、難燃劑、安定劑、防氧化劑、防紫外線劑、光 安定劑 '上藍劑、染料、顏料等。 (其他樹脂、彈性體) 本發明之樹脂組成物可含有其他樹脂及彈性體。該其 他樹脂如,聚醯胺、聚醯亞胺、聚醚醯亞胺、聚胺基甲酸 乙酯、聚矽氧烷、聚伸苯基醚、聚伸苯基硫化物、聚楓、 聚乙烯、聚丙烯與聚烯烴、聚苯乙烯、丙烯腈/苯乙烯共 聚物(AS樹脂)、丙烯腈/丁二烯/苯乙烯共聚物(ABS樹脂) 、苯酚、環氧等樹脂。 又彈性體如,異丁烯/異戊二烯橡膠、苯乙烯/丁二烯 橡膠、乙烯/丙烯橡膠、丙烯酸系彈性體、聚酯系彈性體 、聚醯胺系彈性體、芯殼型彈性體之MB S (甲基丙烯酸甲 酯/苯乙烯/丁二烯)橡膠、MAS(甲基丙烯酸甲酯/丙烯腈/苯 乙矯)橡膠等。 其他樹脂或彈性體對熱塑性樹脂1 00重量份之使用量 -27- 200846403 較佳爲50重量份以下,更佳爲40重量份以下,特佳爲 30重量份以下。又添加其他樹脂或彈性體時,其下限較 佳爲1重量份。 (無機塡充物) 本發明之樹脂組成物可含有無機塡充物。無機塡充物 如,玻璃纖維、玻璃鹼纖維、玻璃珠、玻璃片、玻璃粉等 玻璃塡充劑。 該玻璃可爲A玻璃、C玻璃、E玻璃%:玻璃組成,並 無特別限制,又必要時可含有Ti02、Zr20、BeO、Ce02、 S〇3、P205等成份。但以對熱塑性樹脂無不良影響之E玻 璃(無鹼玻璃)爲佳。 玻璃纖維爲,以各種方法將熔融玻璃延伸、急冷而得 的一定纖維狀之物。此時之急冷及延伸條件並無特別限制 。又剖面形狀可爲一般真圓狀,或平行重疊直圓狀纖維而 得之各種異形剖面形狀。又可爲混合真圓狀及異形剖面形 狀之玻璃纖維。 玻璃纖維之平均纖維徑爲1至25μηι,較佳爲5至 17μιη。使用平均纖維徑未達Ιμιη之玻璃纖維時會損害成 形加工性,又使用平均纖維徑大於2 5 μιη之玻璃纖維時會 損傷外觀,且補強效果將不足。 又無機塡充物如,六方晶氮化硼粒子、鈦酸鉀晶鬚、 硼酸鋁晶鬚、碳化矽晶鬚、氮化矽晶鬚等晶鬚、碳·酸鈣、 碳酸鎂、白雲石、二氧化矽、矽藻土、氧化鋁、氧化鐵、 -28- 200846403 氧化鋅、氧化鎂、硫酸鈣、硫酸鎂、亞硫酸鈣、滑石、黏 土、雲母、高嶺土、石棉、矽酸鈣、蒙脫石、皂土、矽灰 石、石墨、鐵粉、鉛粉、鋁粉等。本發明之樹脂組成物可 同時含有氮化硼奈米管及六方晶氮化硼粒子。六方晶氮化 硼粒子之含量對熱塑性樹脂100重量份較佳爲0.01至20 重量份。 該無機塡充物較佳爲,經矽烷偶合劑、鈦酸鹽偶合劑 '鋁酸鹽偶合劑等表面處理之物。特佳爲使用矽烷偶合劑 。該表面處理可抑制熱塑性樹脂分解,及更進一步提升密 合性,故更適合本發明目的之機械特性。 (難燃劑) 本發明之樹脂組成物可含有難燃劑。難燃劑如,鹵化 雙酚A之聚碳酸酯型難燃劑、有機鹽系難燃劑、鹵化芳 香族磷酸酯型難燃劑、芳香族磷酸酯系難燃劑等。其可使 用一種以上。 鹵化雙酚A之聚碳酸酯型難燃劑如,四溴雙酚a之 聚碳酸酯型難燃劑、四溴雙酚A及雙酚A之共聚合聚碳 酸酯型難燃劑。 有機鹽系難燃劑如,二苯基礪-3,3’-二磺酸二狎、二 苯基颯-3-磺酸鉀、2,4,5-三氯苯磺酸鈉、2,4,5·三氯苯磺 酸鉀、雙(2,6-二溴-4-枯基苯基)磷酸鉀、雙(4-枯基苯基> 憐酸鈉、雙(p-甲苯颯)醯亞胺鉀、雙(二苯基磷酸)醯亞胺 紳、雙(2,4,6-三溴苯基)磷酸鉀、雙(2,4-二溴苯基)磷酸鉀 -29 - 200846403 、雙(4-溴苯基)磷酸鉀、二苯基磷酸鉀、二苯基磷酸鈉、 全氟丁烷磺酸鉀、月桂基硫酸鈉或鉀、十六烷基硫酸鈉或 鉀等。有機鹽系難燃劑之含量對熱塑性樹脂1 00重量份較 佳爲0.0 001至0.5重量份,更佳爲0.001至0.2重量份, 特佳爲0.003至0.15重量份。 鹵化芳香族磷酸酯型難燃劑如,三(2,4,6-三溴苯基) 磷酸酯、三(2,4-二溴苯基)磷酸酯、三(4-溴苯基)磷酸酯 等。 芳香族磷酸酯系難燃劑如,三苯基磷酸酯、三(2,6-伸 二甲苯基)磷酸酯、四(2,6-伸二甲苯基)間苯二酚二磷酸酯 、四(2,6 -伸二甲苯基)氫醌二磷酸酯、四(2,6-伸二甲笨基 )-4,4’·雙酚二磷酸酯、四苯基間苯二酚二磷酸酯、四苯基 氫醌二磷酸酯、四苯基-4,4’-雙酚二磷酸酯等。鹵化芳香 族磷酸酯型難燃劑及芳香族磷酸酯系難燃劑之含量對熱.塑 性樹脂100重量份較佳爲0.1至25重量份,更佳爲1至 20重量份,特佳爲2至18重量份。 (安定劑) 本發明之樹脂組成物可含有安定劑。安定劑如,已知 之亞磷酸、磷酸、亞膦酸、膦酸及其酯等熱塑性樹脂之熱 安定劑。 亞磷酸酯化合物如,三苯基亞磷酸酯、三(壬基苯基) 亞磷酸酯、三癸基亞磷酸酯、三辛基亞磷酸酯、三十八烷 基亞磷酸酯、二癸基-苯基亞磷酸酯、一丁基二苯基亞磷 -30 - 200846403 酸酯、一癸基二苯基亞磷酸酯、一辛基二苯基亞磷酸酯、 2,2-伸甲基雙(4,6-二-tert-丁基苯基)辛基亞磷酸酯、三(二 乙基苯基)亞磷酸酯、三(二-iso-丙基苯基)亞磷酸酯、三( 二-η-丁基苯基)亞磷酸酯、三(2,4-二-tert-丁基苯基)亞磷 酸酯、三(2,6-二-tert-丁基苯基)亞磷酸酯、二硬脂醯季戊 四醇二亞磷酸酯、雙(2,4-二-teirt-丁基苯基)季戊四醇二亞 磷酸酯、雙(2,6-二-tert-丁基-4-甲基苯基)季戊四醇二亞磷 酸酯、雙(2,6-二-tert-丁基-4-乙基苯基)季戊四醇二亞磷酸 酯、苯基雙酚A季戊四醇二亞磷酸酯、雙(壬基苯基)季戊 四醇二亞磷酸酯、二環己基季戊四醇二亞磷酸酯等。 又可使甩與二羥基化合物類反應而具有環狀構造之其 他亞磷酸酯化合物。例如,2,2’-伸甲基雙(4,6-二-tert-丁 基苯基)(2,4·二-tert-丁基苯基)亞磷酸酯、2,2’-伸甲基雙 (4,6-二-tert-丁基苯基)(2-tert-丁基-4-甲基苯基)亞磷酸酯 、2,2’-伸甲基雙(4-甲基-6-tert-丁 基苯基)(2-tert-丁基- 4-甲基苯基)亞磷酸酯、2,2’-亞乙基雙(4-甲基-6-tert-丁基苯 基)(2-tert-丁基-4-甲基苯基)亞磷酸酯等。 磷酸酯化合物如,三丁基磷酸酯、三甲基磷酸酯、三 甲酚磷酸酯、三苯基磷酸酯、三氯苯基磷酸酯、三乙基磷 酸酯、二苯基甲酚磷酸酯、二苯基一正聯苯基磷酸酯、三 丁氧基乙基磷酸酯、二丁基磷酸酯、二辛基磷酸酯、二異 丙基磷酸酯等,較佳爲三苯基磷酸酯、三甲基磷酸酯。 亞膦酸酯化合物如,四(2,4-二-tert-丁基苯基)-4,4’-伸聯苯基二亞膦酸酯、四(2,4-二-tert-丁基苯基)-4,3,-伸 -31 - 200846403 聯苯基二亞膦酸酯、四(2,4-二-tert-丁基苯基)-3,3’-伸聯 苯基二亞膦酸酯、四(2,6-二-tert-丁基苯基)_4,4’_伸聯苯 基二亞膦酸酯、四(2,6-二-teirt-丁基苯基)_4,3’_伸聯苯基 二亞膦酸酯、四(2,6-二-tert_丁基苯基)-3,35-伸聯苯基二 亞膦酸酯、雙(2,4-二-tert-丁基苯基)-4-苯基-苯基亞膦酸 酯、雙(2,4-二-tert-丁基苯基)-3-苯基-苯基亞膦酸酯、雙 (2,6-二-η-丁基苯基)-3-苯基-苯基亞膦酸酯、雙(2,6-二-tert-丁基苯基)-4-苯基-苯基亞膦酸酯、雙(2,6-二-tert-丁 基苯基)-3 -苯基-苯基亞膦酸酯等,較佳爲四(二-tert -丁基 苯基)-伸聯苯基二亞膦酸酯、雙(二-tert-丁基苯基)-苯基-苯基亞膦酸酯,更佳爲四(2,4-二-tert-丁基苯基)伸聯苯基 二亞膦酸酯、雙(2,4-二-tert-丁基苯基)-苯基-苯基亞膦酸 酯。該亞膦酸酯又以倂用具有2個以上取代上述烷基之芳 基的亞磷酸酯化合物爲佳。 膦酸酯化合物如,苯膦酸二甲酯、苯膦酸二乙酯及苯 膦酸二丙酯等。 上述磷系安定劑可1種單獨或2種以上混合使用。上 述磷系安定劑中又以亞磷酸酯化合物或亞膦酸酯化合物爲 佳。特佳爲三(2,4-二-tert-丁基苯基)亞磷酸酯、四(2,4-二-teirt-丁基苯基)4,4’-伸聯苯基二亞磷酸酯及雙(2,4-二-ten-丁基苯基苯基-苯基-亞膦酸酯。又較佳爲其倂用亞 磷酸酯化合之態樣。 (防氧化劑) -32- 200846403 本發明之樹脂組成物可含有防氧化劑。防氧化劑如阻 胺苯酚系防氧化劑。阻胺苯酚系氧化劑如,α-生育酚、 丁基羥基甲苯、芥子醇、維生素Ε、η-十八烷基_(4,_ 羥基-3\5’-二-tert-丁基苯基)丙酸酯、2-tert-丁基-6-(35-tert -丁基- 5’ -甲基-2’-經基节基)-4 -甲基苯基丙燦酸酯、· 2,6-二-tert-丁基-4-(N,N-二甲基胺基苯基)苯酚、3,5·二_ tert-丁基-4-羥基苄基膦酸酯二乙基酯、2,2’-伸甲基雙(4-甲基-6-tert-丁基苯酚)、2,2’-伸甲基雙(4-乙基-6-tert-丁 基苯酚)、4,4’-伸甲基雙(2^6-二-tert-丁基苯酚)、2,2,-伸 甲基雙(4-甲基-6-環己基苯酚)、2,2’-二伸甲基-雙(6-α-甲 基-苄基-ρ·甲酹)、2,2’-亞乙基-雙(4,6-二-tert-丁基苯酚) 、2,2’-亞丁基-雙(4-甲基-6-tert-丁基苯酚)、4,4’-亞丁基 雙(3-甲基- 6-tert-丁基苯酚)、三乙二醇-N-雙-3-(3-tert-丁 基-4-羥基-5-甲基苯基)丙酸酯、1,6-己二醇雙[3-(3,5-二-tert-丁基-4-羥基苯基)丙酸酯]、雙[2-tert-丁基-4-甲基6-(3 _tert-丁基-5-甲基-2-羥基苄基)苯基]對苯二甲酸酯、 3,9-雙{2-[3-(3-tert-丁基-4-羥基-5-甲基苯基)丙醯氧基]-1,1-二甲基乙基}-2,4,8,10-四螺[5,5]十一烷、4,4’-硫雙(6-tert-丁基-m-甲酸)、4,4’-硫雙(3-甲基-6-tert-丁基苯酚)、 2,2’-硫雙(4-甲基- 6-tert-丁 基苯酚)、雙(3,5-二-tert-丁基-4-羥基苄基)硫化物、4,4,-二-硫雙(2,6-二-tert-丁基苯酚) 、4,4’-三-硫雙(2,6-二-tert-丁基苯酚)、2,2-硫二伸乙基 雙-[3-(3,5-二-tert-丁基-4-羥基苯基)丙酸酯]、2,4-雙(η-辛 基硫基)-6-(4-羥基-3,,5,-二-ter卜丁基苯胺基)-1,3,5-三嗪 -33- 200846403 、N,N’-六伸甲基雙-(3,5-二-tert-丁基·4-羥基氫化肉桂醯 胺)、Ν,Ν’-雙[3-(3,5-二-tert-丁基-4-羥基苯基)丙醯基]胼 、:l,l,3-三(2-甲基-4-羥基-5-tert-丁基苯基)丁烷、1,3,5-三甲基-2,4,6-三(3,5-二-tert-丁基-4-羥基苄基)苯、三(3,5-二-tert-丁基-4-羥基苯基)三聚異氰酸酯、三(3,5·二-ten· 丁基-4-羥基苄基)三聚異氰酸酯、H5·三(4-tert-丁基-3-經基-2,6-二甲基苄基)三聚異氰酸酯、^5-三2[3-(3,5-二-teirt-丁基-4-羥基苯基)丙醯氧基]乙基三聚異氰酸酯及 四[伸甲基-3-(3’,5’-二-tert_ 丁基-4-羥基苯基)丙酸酯]甲烷 等。防氧化劑可單獨或2種以上組合使用。 防氧化劑之含量對熱塑性樹脂1 〇 〇重量份較佳爲 0.00 1至0·5重量份,更佳爲0.005至0.3重量份,特佳爲 0.01至0.2重量份。 (紫外線吸收劑) 本發明之樹脂組成物可含有紫外線吸收劑。紫外線吸 收劑如,二苯甲酮系、苯并三唑等、羥基苯基三嗪系、環 狀亞胺基酯系之紫外線吸收劑。 二苯甲酮系之紫外線吸收劑如,2,4-二經基二苯甲酮 、2-經基-4 -甲氧基二苯甲酮、2_羥基辛氧基二苯甲酮 、2-羥基-4-苄氧基二苯甲酮、羥基_4 -甲氧基次硫基 二苯甲酮、2 -經基-4 -甲氧基-5 -次硫基三水合物一苯甲酮 、2,2,-二經基-4 -甲氧基二苯甲酮、2,2’,4,4’ -四經基一苯 甲酮、2,2,-二羥基-4,4,-二甲氧基二苯甲酮、2,2’-二羥基_ -34- 200846403 4,4’-二甲氧基-5-鈉次硫基二苯甲酮、雙(5-苯醯-4-羥基-2-甲氧基苯基)甲烷、2-羥基-4-n-十二烷氧基二苯甲酮及 2·羥基-4_甲氧基-2’-羧基二苯甲酮等。 苯并三唑系之紫外線吸收劑如,2-(2-羥基-5-甲基苯 基)苯并三唑、2-(2-羥基-5-tert-辛基苯基)苯并三唑、2-(2-羥基-3,5-二枯基苯基)苯基苯并三唑、2-(2-羥基 丁基-5_甲基苯基)_5-氯苯并三唑、2,2’·伸甲基雙[4_ (1,1,3,3-四甲基丁基)-6-(2H-苯并三唑-2-基)苯酚]、2-(2-羥基-3,5-二-tert-丁基苯基)苯并三唑、2-(2-羥基-3,5-二-tert-丁基苯基)-5-氯苯并三唑、2-(2-羥基-3,5-二-tert-戊 基苯基)苯并三唑、2-(2-羥基-5-tert-辛基苯基)苯并三嗖 、2·(2-羥基-5-tert-丁基苯基)苯并三唑、2-(2-羥基-4-辛 氧基苯基)苯并三唑、2,2’-伸甲基雙(4-枯基-6苯并三唑苯 基)、2,2’-p-伸苯基雙(1,3-苯并噁嗪-4-酮)、2-[2-羥基-3-(3,4,5,6-四氫酞醯亞胺甲基)-5-甲基苯基]苯并三唑,以及 2-(2’-羥基-5-甲基丙烯氧基乙基苯基)-2H-苯并三唑及可 與該單體共聚合之乙烯系單體的共聚物、2-(25-羥基-5-丙 烯氧基乙基苯基)-2H-苯并三唑及可與該單體共聚合之乙 烯系單體的共聚物等具有2-羥基苯基-2H-苯并三唑骨架之 共聚物等。 羥基苯基三嗪系之紫外線吸收劑如,2-(4,6-二苯基-1,3,5-三嗪-2-基)-5-己氧基苯酚、2-(4,6-二苯基-1,3,5-三 嗪-2-基)-5-甲氧基苯酚、2-(4,6-二苯基-1,3,5-三嗪-2-基)-5-乙氧基苯酚、2-(4,6-二苯基-1,3,5-三嗪-2-基)-5-丙氧基 -35- 200846403 苯酚及2-(4,6-二苯基-1,3,5-三嗪-2-基)-5-丁氧基苯酚等。 又如,2-(4,6-雙(2,4-二甲基苯基)-1,3,5-三嗪-2-基)-5-己 氧基苯酚等上述化合物例中之苯基改爲2,4 -二甲基苯基之 化合物。 環狀亞胺基酯系之紫外線吸收劑如,2,2’ -P-伸苯基 雙(3,1-苯并噁嗪-4-酮)、2,2’ -m-伸苯基雙(3,1-苯并噁嗪-4-酮)及2,2’ -p,p’ -二伸苯基雙(3,1-苯并卩惡嗪-4-酮)等。 紫外線吸收劑可單獨或2種以上混合使用。紫外線吸 收劑之含量對熱塑性樹脂1 0 0重量份較佳爲〇 . 〇 〇 〇 5至3 重量份,更佳爲0.01至2重量份,特佳爲0.02至1重量 份。 (光安定劑) 又本發明之樹脂組成物可含有光安定劑。光安定劑爲 阻胺胺系之光安定劑。阻胺胺系之光安定劑如,雙 (2,2,6,6-四甲基-4-哌啶基)癸二酸酯、雙(ι,2,2,6,6-五甲 基-4-哌啶基)癸二酸酯、四(2,2,6,6 -四甲基-4-哌啶基)-1,2,3,4-丁烷四羧酸酯、四(1,2,2,6,6-五甲基-4-哌啶基)-l,2,3,4-丁烷四 羧酸酯 、聚 四甲基 丁基) 胺基- 1,3,5-三嗪-2,4-二基][(2,2,6,6-四甲基哌啶基)亞胺基]六伸 甲基[(2,2,6,6-四甲基哌啶基)亞胺基]},及聚甲基丙基3 — 氧基-[4-(2,2,6,6 -四甲基)贩π定基]5夕氧院等。 光安定劑可單獨或2種以上混合使用。光安定劑之使 用量對熱塑性樹脂1 〇 〇重量份較佳爲〇 · 〇 〇 0 5至3重量份 -36- 200846403 ,又以0.01至2重量份爲佳,更佳爲0.02至1重量份 特佳爲005侄〇·5重量份。 (上藍劑) 本發明之樹脂組成物可含有上藍劑。上藍劑對樹脂組 成物之使用量較佳爲〇.〇5至3 ppm(重量比率)。上藍劑可 有效去除成形體之黃色調。特別是賦予耐候性之成形體需 使用一定量紫外線吸收劑時,會因紫外線吸收劑之作用及 色調而易使成形體帶黃色調,因此使用上藍側可有效賦予 成形體之自然透明感。 該上藍劑係指,吸收橙色至黃色光線時會呈現藍色至 紫色的著色劑,特佳爲染料、上藍劑之含量對樹脂組成物 較佳爲0·5至2·5ρριη,更佳爲0.5至2ppm。 上藍劑如,拜耳公司之曼庫洛紫B及曼庫洛藍RR、 山得公司提拉索藍RLS、有本化學工業公司之普拉斯藍 85 80 等。 (染料、顏料) 本發明之樹脂組成物於無損本發明目的之範圍內可含 有染料及顏料。染料較佳如,茈系染料、香豆素系染料、 硫靛系染料、蒽醌系染料、噻噸酮系染料、靛藍等亞鐵气 化合物、苯倂吡啶(quin〇line)系染料、喹啉系染料、喹吖 酮系染料、二噁嗪系染料、異吲哚滿酮系染料及酞菁系染 料等。該染料之使用量對熱塑性樹脂100重量份較佳爲 -37- 200846403 0.0001至1重量份,更佳爲0.0005至0.5重量份。 (其他添加劑) 本發明之樹脂組成物可因應適當目的含有滑劑、離模 劑、發泡劑、交聯劑、著色劑、流動改質劑、抗菌劑、光 觸媒系防污劑、光變色劑等。 φ <成形體> 本發明係包含上述樹脂組成物所形成之成形-體。成形 體如薄膜、片物等。成形體可由上述樹脂組成物成形製造 〇 成形方法如,擠壓成形法、射出成形法、吹塑成形法 等。擠壓成形可由利用模頭擠壓熔融狀態之樹脂組成物進 行。又可將含有樹脂組成物及溶劑之膠漿流延於支持物上 ,鑄造一定厚度後去除溶液製造薄膜或片物。 【實施方式】 下面將以實施例更具體說明本發明,但本發明非限於 該實施例。 1.測定物性 (1)測定熱傳導度 熱傳導度係使用探針法(非定常熱線法),以迅速熱傳 導率測定計(KEMTHERM QTM-D3型、京都電子工業(股) -38- 200846403 製)測定。具體上係將試料置於已知熱傳導率之基準試料 上,以下列式繪出外觀熱傳導率對基準試料之熱傳導率( 對數)的曲線,再以內插法求取偏差爲〇時之熱傳導率, 以導出試料之熱傳導率。 偏差={(放入未知試料之外觀熱傳導率)-(基準試料之熱傳 導率)}/(基準試料之熱傳導率) (2)溶解度參數(5 ) 溶解度參數5係由已知方法(「聚合物摻合」,秋山 . 三郎、井上隆、西敏夫共著,西耶姆股份公司)以下列式 算出。 δ = ρ · Σ F i/ΜI (B — 5) 0 indicates the repeat unit. In the formula (B-5), R13 is an aliphatic group having 2 to 12 carbon atoms. The aliphatic group having 2 to 12 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 6 to 20 carbon atoms. The alkyl group having 1 to 10 carbon atoms is, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group, a decyl group or the like. A cycloalkyl group having 6 to 20 carbon atoms such as a cyclohexyl group or a cyclooctyl group. The content of the repeating unit represented by the formula (B-5) is preferably 0 to 60 mol%' ® more preferably 0 to 40 mol%, particularly preferably 0 to 20 mol%. The repeating unit represented by the formula (B-5) can be introduced by using the di-hydroxy compound represented by the following formula (B-6). Η—〇—R13-0—Η (B-6) In the formula (B-6), R13 has the same meaning as the above formula (B-5). a dihydroxy compound represented by the formula (B-6) such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,4 - cyclohexanediol, -16-200846403 1,4-cyclohexanedimethanol, and the like. Among them, in order to increase the degree of polymerization and to increase the glass transition point in the physical properties of the polymer, it is preferred to use 1,3-propanediol, 1,4-butanediol or 1,6-hexanediol. Further, at least two of these dihydric alcohol components may be combined. Also, the glycol component may contain other glycol components. Other diol components include alicyclic alkanediols such as cyclohexanediol and cyclohexanedimethanol, aromatic diols such as dimethanolbenzene and diethanolbenzene, and bisphenols. Polycarbonates can be obtained by reacting a dihydroxy compound with a carbonate precursor. The reaction method is, for example, a surface polymerization method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound. When a polycarbonate is produced from a dihydroxy compound and a carbonate precursor by various polymerization methods, a catalyst, a terminal stopper, an antioxidant for preventing oxidation of a dihydroxy compound, and the like may be used as necessary. Further, the polycarbonate includes a branched polycarbonate obtained by copolymerization with a trifunctional or higher polyfunctional aromatic compound, and a copolymerized with an aromatic or aliphatic (alicyclic)-containing difunctional carboxylic acid. The obtained polyester carbonate, a polycarbonate obtained by copolymerization with a difunctional alcohol (including an alicyclic group), and a polyester carbonate obtained by copolymerizing a difunctional carboxylic acid and a difunctional ethanol at the same time. Further, a mixture of two or more kinds of polycarbonates obtained may be used. The trifunctional or higher polyfunctional aromatic compound used may be tris(4-hydroxyphenyl)ethane or 1,1,1-tris(3,5-dimethyl-4-hydroxyphenyl) et al. ° When the polyfunctional compound for forming a branched polycarbonate is contained, the ratio to the total amount of the aromatic polycarbonate is 0.001 to 1 mol%, preferably 17-200846403 0.0 0 5 to 0 · 9 m %, especially good for ο . ο 1 to ο · 8 mol%. In particular, in the melt transesterification method, the side reaction generates a branched structure, but in this case, the amount of the branched structure is preferably from 0.001 to 1 mol%, more preferably from 0.005 to 0.9 mol, to the total amount of the aromatic polycarbonate. %, particularly preferably from 0.01 to 〇·8 mol%. This ratio can be calculated by 1H-NMR measurement. The aliphatic difunctional carboxylic acid is preferably an α,ω-dicarboxylic acid. The aliphatic difunctional carboxylic acid is preferably a linear saturated aliphatic dicarboxylic acid such as azelaic acid, dodecanedioic acid, tetradecanediol, octadecanedioic acid or decanedioic acid, and a ring. An alicyclic dicarboxylic acid such as a hexane residue. The difunctional alcohol is more preferably an alicyclic diol such as cyclohexane dimethanol, cyclohexane diol or tricyclodecane dimethyl alcohol. Further, a polycarbonate-polyorganosiloxane copolymer copolymerized with a polyorganosiloxane unit can be used. The reaction by the surface polymerization method is generally carried out by reacting a dihydroxy compound with phosgene in the presence of an acid binder and an organic solvent. The acid binder to be used is, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, or pyridine. The organic solvent to be used, for example, a halogenated hydrocarbon oxime such as dichloromethane or chlorobenzene, and a catalyst such as a third-stage or fourth-order ammonium salt can be used for the purpose of promoting the reaction, and the molecular weight modifier used is preferably phenol, p. a monofunctional phenol such as -tert-butylphenol or P-cumylphenol. Further monofunctional phenols such as nonylphenol, dodecylphenol, tetradecylphenol, cetylphenol, octadecylphenol, nonylalkylphenol, nonyldialkylphenol and triacontanyl Phenol and the like. These monofunctional phenols with longer alkyl groups are effective in improving flow and hydrolysis resistance. At this time, the reaction temperature is generally 〇 to 40 ° C, and the reaction time is from several minutes to 5 hours, and the pH in the reaction is generally maintained at 1 〇 or more. The reaction by the melt method is generally a transesterification reaction of a dihydroxy compound with a carbonic acid diester, and is carried out by mixing a dihydroxy compound and a carbonic acid diester in the presence of an inert gas, and generally at 120 to 350 ° C under reduced pressure. reaction. The degree of pressure reduction can be changed stepwise, and finally the generated phenols are removed outside of 13 3Pa. The reaction time is usually from 1 to 4 hours. Carbonic acid diesters such as diphenyl carbonate, dinaphthyl carbonate, bis(diphenyl) carbonate, dimethyl carbonate, diethyl carbonate and dibutyl carbonate, among which, preferably two Phenyl carbonate. In order to accelerate the polymerization rate, a polymerization catalyst such as a hydroxide of an alkali metal or an alkaline earth metal such as sodium hydroxide or potassium hydroxide, a hydroxide of boron or aluminum, an alkali metal salt or an alkaline earth metal salt may be used. , a 4th grade ammonium salt, an alkali metal or alkaline earth metal alkoxide, an alkali metal or alkaline earth metal organic acid salt, a zinc compound, a boron compound, a cerium compound, a cerium compound, an organotin compound, a lead compound, a cerium compound A catalyst used in a general esterification reaction or a transesterification reaction such as a manganese compound, a titanium compound or a zirconium compound. The catalyst can be used alone or in combination of two or more. The amount of the catalyst used is preferably 1 x 1 (T8 to 1 x 1 (T3 equivalents, more preferably 1 χ 10-7 to 5 x 1 (T4 equivalents) of the raw material dihydroxy compound 1 molar. Further, in order to reduce the phenolic terminal group during polymerization, For example, 2-chlorophenylphenyl carbonate, 2-methoxycarbonylphenyl phenyl ester, 2-ethoxycarbonylphenyl phenyl carbonate, and the like may be added at the end or after the polymerization. 200846403. In the melt transesterification method, it is preferred to use an inactivating agent which neutralizes the activity of the catalyst. The deactivated dose is preferably 0.5 to 50 moles to the residual catalyst 1 mole. The amount of the aromatic polycarbonate to be used is preferably from 0.01 to 500 ppm, more preferably from 1 to 30 ppm, particularly preferably from 0.01 to 100 ppm. The deactivating agent is preferably, for example, dodecylbenzenesulfonic acid An ammonium salt such as a tetrabutyl phosphonium salt or an ammonium salt such as tetraethylammonium dodecylbenzyl sulfate. The viscosity average molecular weight of the polycarbonate is preferably 8,000 to 100,000. When the viscosity average molecular weight is less than 8,000, the resin is obtained. The formed body formed by the composition is extremely brittle and unsuitable. When it exceeds 100,000, the melt fluidity is deteriorated. It is difficult to obtain a good shaped body, more preferably 10, 〇〇〇 to 5 0,0 0 0. The viscosity average molecular weight is obtained by substituting the intrinsic viscosity determined in the dichloromethane solution of the polycarbonate into the microphone - The Hern-Sakurada formula is calculated. The various coefficients at this time are described in pages 7 to 23 of the Polymer Handbook, Rev. 3, 1989 (Polymer Handbook 3rd Ed. Willey » 1 989). When the carbonate contains a boron nitride nanotube, a molded body having excellent thermal conductivity and mechanical strength can be obtained in a small amount. (Polyester) The polyester is a dicarboxylic acid component mainly composed of an aromatic dicarboxylic acid. And a polyester having a diol component mainly composed of an aliphatic diester of 2 to 10 carbonic acid, an alicyclic diol having 6 to 1 fluorene carbonate or an aromatic diol having 6 to 12 carbonic acid. The content is preferably 80 mol% or more, more preferably 90 -20 to 200846403 mol% or more. When the aliphatic diol is mainly contained, the content of the aliphatic diol component of 2 to 1 hydric carbonate is preferably 80 mol. More than %, more preferably 9% by mole or more. Suitable aromatic dicarboxylic acid such as p-xylene , isophthalic acid, phthalic acid, 1,5-naphthalene dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4,-biphenyldicarboxylic acid, 4,4'-biphenyl ether Dicarboxylic acid, 4,4,-biphenylmethane dicarboxylic acid, 4,4'-biphenylsulfonic acid, 4,4,-biphenylisopropylene dicarboxylic acid, 1,2- Bis(phenoxy)ethane-4,4'-dicarboxylic acid, 2,5-nonanedicarboxylic acid, 2,6-nonanoic acid, 4,4'-p-linked triphenylene An aromatic dicarboxylic acid such as an acid or a 2,5-pyridinium di-resin is particularly preferably terephthalic acid or 2,6-naphthalene dicarboxylic acid. The aromatic dicarboxylic acid may be used in combination of two or more kinds. When used in a small amount, the dicarboxylic acid may be used in combination with one or more aliphatic dicarboxylic acids such as hexanediol, sebacic acid, sebacic acid, and dodecanedioic acid, and an alicyclic two such as cyclohexanedicarboxylic acid. Carboxylic acid, etc. Diols such as ethylene glycol, propylene glycol, butanediol, hexanediol, neopentyl glycol, pentaethylene glycol, hexamethyl glycol, decamethyl glycol, 2-methyl-1,3-propanediol, two An aliphatic diol such as ethylene glycol or triethylene glycol, an alicyclic diol such as 1,4-cyclohexanedimethanol, or the like, or 2,2-bis(0-hydroxyethoxyphenyl)propane or the like An aromatic ring diol, etc., a mixture thereof, and the like. When it is used in a small amount, it can be copolymerized with one or more long-chain diols having a molecular weight of from 400 to 6,000, i.e., polyethylene glycol, poly-1,3-propanediol, polytetramethylene glycol or the like. Further, the aromatic polyester of the present invention can be branched by introducing a small amount of a branching agent. The type of the branching agent is not limited, and may be trimesic acid, trimellitic acid, trimethylolethane, trimethylolpropane or pentaerythritol. -21 - 200846403 Polyester, such as polyethylene terephthalate (PET), polytrimethylene terephthalate, polybutylene terephthalate (PBT), polybutylene terephthalate Ester, polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyethylidene-1,2-bis(phenoxy)ethane·4,4'-two Carboxylic esters and the like. Further, it may be a copolymerized polyester such as polyethylene isophthalate/terephthalate or polybutylene terephthalate/isophthalate. Among them, the balance of mechanical substances is obtained, and polyethylene terephthalate, polybutylene terephthalate and mixtures thereof are preferably used. Further, the terminal group structure of the obtained aromatic polyester is not particularly limited, and the ratio of the hydroxyl group to the carboxyl group in the terminal group may be almost the same amount, or may be more than one. Further, the aromatic polyester can be blocked by reacting a reactive compound or the like with the terminal group, and the aromatic polyester can be heated in the presence of a polymerization catalyst containing titanium, ruthenium, osmium or the like according to a usual method. At the same time, the dicarboxylic acid component and the glycol component are polymerized, and the by-produced water and the lower alcohol are discharged outside the system. Among them, lanthanide polymerization catalysts such as cerium oxides, hydroxides, halides, alkoxides, phenates, etc., more specifically, cerium oxide, cerium hydroxide, cerium tetrachloride, tetramethoxy cerium organotitanium Specific examples of the polymerization catalyst of the compound are preferably 'titanium tetrabutoxide, titanium isopropoxide, titanium oxalate, titanium acetate, titanium benzoate, titanium trimellitate, tetrabutyl titanate and trimellitic acid. The reactants and the like. The organic titanium compound is preferably used in a ratio of the atomic ratio of titanium atoms to the acid component constituting the polybutylene terephthalate of 3 to 12 mg atom%. Further, the present invention can be used as a compound of manganese, calcium, magnesium or the like used in the transesterification reaction of the previously known polycondensation stage, and the compound is made of a compound of phosphoric acid or phosphorous acid after completion of the transesterification reaction. The medium is inactivated and condensed. The method of producing the aromatic polyester may be either batchwise or continuous. Further, the molecular weight of the aromatic polyester is not particularly limited. The far-end viscosity measured by 3 5 C using 〇-chlorophenol as a solvent is 〇 · 6 to 3 · 0, preferably 0 · 6 5 to 2.5, more preferably 0.7 to 2.0. (Acrylic resin) Specific examples of the acrylic resin, for example, methacrylic acid, acrylic acid, methyl methyl propyl acrylate, methacrylate, ethyl methacrylate, ethyl acrylate, η-propyl methacrylate , n-propyl acrylate, n-butyl methacrylate, η-butyl acrylate, butyl methacrylate, t-butyl acrylate, η-hexyl methacrylate, n-hexyl acrylate, cyclohexyl Methacrylate, cyclohexyl acrylate, chloromethylmethyl Φ acrylate, chloromethacrylate, 2-chloroethyl methacrylate, 2-chloroethyl acrylate, 2-hydroxyethyl methyl Acrylate, 2-hydroxyethyl acrylate, 3-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, 2,3,4,5,6-pentahydroxyhexyl methacrylate, 2,3 a polymer of a monomer such as 4,5,6-pentahydroxyhexyl acrylate, 2,3,4,5-tetrahydroxypentyl methacrylate or 2,3,4,5-tetrahydroxypentyl acrylate Or a copolymer of the above monomers. The acrylic resin used in the present invention preferably has a methyl methacrylate of 5 1 to 1% by weight, and one or more kinds of unsaturated bonds copolymerizable with methylmethyl-23 - 200846403 acrylate. The methacrylic acid copolymer obtained by copolymerization of the comonomer to 49% by weight. Specifically, for example, polymethyl methacrylate, poly(methyl methacrylate/methacrylic acid), poly(methyl methacrylate/acrylic acid), poly(methyl methacrylate/ethyl ketone) Acrylate), poly(methyl methacrylate/ethyl acrylate), poly(methyl methacrylate/η-propyl methacrylate), poly(methyl methacrylate/η- Propyl acrylate), poly(methyl methacrylate/t-butyl methacrylate), poly(methyl methacrylate/t-butyl acrylate), poly(methyl methacrylate/n -hexyl methacrylate), poly(methyl methacrylate / η-hexyl acrylate), poly (methyl methacrylate / cyclohexyl methacrylate), poly (methyl methacrylate / Cyclohexyl acrylate), poly(methyl methacrylate/chloromethyl methacrylate), poly(methyl methacrylate/chloromethacrylate, poly(methyl methacrylate/2-) Chloroethyl methacrylate), poly(methyl methacrylate/2-chloroethyl acrylate) ), poly(methyl methacrylate/2-hydroxyethyl methacrylate), poly(methyl methacrylate/2-hydroxyethyl acrylate), poly (methyl methacrylate / poly 3-hydroxypropyl methacrylate), poly(methyl methacrylate/poly-3-hydroxypropyl acrylate), poly(methyl methacrylate/2,3,4,5,6-five Hexyl methacrylate), poly(methyl methacrylate/2,3,4,5,6-pentafluorohexyl acrylate), poly(methyl methacrylate/2,3,4,5 -tetrakisylpentyl methacrylate), poly(methyl methacrylate/2,3,4,5-tetrahydroxypentyl acrylate), poly(methyl methacrylate/methacryl oxime) Amine), poly(methyl methacrylate/acrylamide), poly(methyl methacrylate-24-200846403 ester/methacrylonitrile), poly(methyl methacrylate/acrylonitrile), poly (methyl methacrylate / styrene), poly (methyl methacrylate / α-methyl styrene), poly (methyl methacrylate / monochlorostyrene), etc. Among them, preferably, methyl Polymethyl methacrylate of a acrylate-based polymer, poly(methyl methacrylate/maleic anhydride) containing a copolymer of a ring structure in a main chain, poly(methyl methacrylate/malay)醯imine), an acrylic resin containing glutaric anhydride units (intramolecular cyclization reactant of poly(methyl methacrylate/methacrylic acid)), more preferably polymethyl methacrylate. The resin may be used alone or in combination of two or more. The weight average molecular weight of the acrylic resin is preferably from 5,000 to 2,000,000. When the weight average molecular weight is less than 5,000, the formed body formed of the resin composition is extremely brittle and unsuitable. The fluidity is deteriorated, and it is difficult to obtain a good molded product. More preferably from 10,000 to 1,500,000 ° <Method for Producing Resin Composition> The resin composition of the present invention can be obtained by mixing a boron nitride nanotube and a thermoplastic resin. Mixing can be carried out by melt mixing or solution mixing. Namely, the resin composition of the present invention can be obtained by melt-mixing a boron nitride nanotube in a thermoplastic resin (method a). The method of melt mixing is not particularly limited, and it can be mixed using a uniaxial or biaxial extruder, a kneader, an experimental plastic mixer, or the like. Further, the resin composition of the present invention may be obtained by mixing a solution containing a boron nitride nanotube and a solvent with a thermoplastic resin and then removing the solvent (Method b) -25-200846403. The solvent is preferably a solvent capable of dissolving the thermoplastic resin. . Specifically, for example, 'dichloromethane, chloroform, tetrahydrofuran, methanol, ethanol, butanol, toluene, xylene, acetone, ethyl acetate, dimethylformamide, N-methyl-2-pyrrolidone, dimethylacetone Amines, etc. When mixing, the boron nitride nanotubes in the solvent are subjected to tubular powder processing 'ultrasonic treatment and strong shear treatment to improve the dispersibility of the boron nitride nanotubes. In order to further improve the dispersibility of the above-prepared resin composition, melt kneading can be performed. The kneading method is not particularly limited and can be carried out using a uniaxial kneader, a twin-shaft wet press, and a kneader. The temperature of the melt kneading is a temperature 5 to 100 ° C higher than the temperature at which the resin component is melted. When the temperature is too high, resin decomposition and abnormal reaction may occur. Further, the mixing treatment time is at least 0.5 to 15 minutes, preferably 1 to 10 minutes. Further, the boron nitride nanotube used may be a boron nitride nanotube coated with a conjugated polymer. The coating method may be carried out by adding a boron nitride nanotube after melting to a conjugated polymer without using a solvent (Method 1). Further, the boron nitride nanotube and the conjugated polymer may be dispersed and mixed in a solvent for dissolving the conjugated high molecular compound (Method 2). The method of dispersing the boron nitride nanotubes in the method 2 may be by using ultrasonic waves or various stirring methods. The stirring method may be a high-speed M-mixing using a homomixer or the like, or a stirring method using a grinder or a ball mill. The solvent is preferably a solvent which can dissolve the conjugated polymer. Specifically, for example, dichloromethane, chloroform, tetrahydrofuran, methanol, ethanol, butanol, toluene, -26-200846403 xylene, acetone, ethyl acetate, dimethylformamide, N-methyl-2-pyrrolidone, two Methylacetamide and the like. The resin composition of the present invention is preferably in the form of particles. Generally, the particles obtained are in the shape of a cylinder, a corner column, and a spherical shape, but are preferably cylindrical. The diameter of the cylinder is preferably from 1 to 5 mm, more preferably from 1.5 to 4 mm, particularly preferably from 2 to 3.3 mm. Further, the length of the cylinder is preferably from 1 to 30 mm, more preferably from 2 to 5 mm, particularly preferably from 2.5 to 3.5 mm. Further, the resin composition of the present invention may contain other resins, elastomers, inorganic enamels, flame retardants, stabilizers, antioxidants, ultraviolet rays, photosensitizers, bluing agents, dyes, pigments and the like. (Other Resins, Elastomers) The resin composition of the present invention may contain other resins and elastomers. The other resin is, for example, polyamine, polyimine, polyetherimide, polyurethane, polyoxyalkylene, polyphenylene ether, polyphenylene sulfide, poly maple, polyethylene , polypropylene and polyolefin, polystyrene, acrylonitrile / styrene copolymer (AS resin), acrylonitrile / butadiene / styrene copolymer (ABS resin), phenol, epoxy and other resins. Further, an elastomer such as isobutylene/isoprene rubber, styrene/butadiene rubber, ethylene/propylene rubber, acrylic elastomer, polyester elastomer, polyamine elastomer, or core-shell elastomer MB S (methyl methacrylate / styrene / butadiene) rubber, MAS (methyl methacrylate / acrylonitrile / styrene) rubber. The amount of the other resin or elastomer to be used for 100 parts by weight of the thermoplastic resin is preferably 270 to 200846403, more preferably 50 parts by weight or less, still more preferably 40 parts by weight or less, and particularly preferably 30 parts by weight or less. When another resin or elastomer is further added, the lower limit is preferably 1 part by weight. (Inorganic Filler) The resin composition of the present invention may contain an inorganic filler. Inorganic ruthenium Filler such as glass fiber, glass alkali fiber, glass beads, glass flakes, glass powder, etc. The glass may be composed of A glass, C glass, and E glass %: glass, and is not particularly limited, and may contain components such as Ti02, Zr20, BeO, Ce02, S〇3, and P205 as necessary. However, E glass (alkali-free glass) which does not adversely affect the thermoplastic resin is preferred. The glass fiber is a certain fibrous material obtained by stretching and quenching the molten glass by various methods. There are no special restrictions on the quenching and extension conditions at this time. Further, the cross-sectional shape may be generally rounded, or various irregular cross-sectional shapes obtained by overlapping straight circular fibers in parallel. It is also possible to mix glass fibers of a true round shape and a profiled shape. The glass fibers have an average fiber diameter of from 1 to 25 μm, preferably from 5 to 17 μm. When the glass fiber having an average fiber diameter of less than Ιμηη is used, the formability is impaired, and when the glass fiber having an average fiber diameter of more than 25 μm is used, the appearance is impaired, and the reinforcing effect is insufficient. Inorganic ruthenium, such as hexagonal boron nitride particles, potassium titanate whiskers, aluminum borate whiskers, strontium carbide whiskers, tantalum nitride whiskers, etc., carbonic acid calcium, magnesium carbonate, dolomite, Cerium oxide, diatomaceous earth, alumina, iron oxide, -28- 200846403 zinc oxide, magnesium oxide, calcium sulfate, magnesium sulfate, calcium sulfite, talc, clay, mica, kaolin, asbestos, calcium citrate, montmorillon Stone, bentonite, ash stone, graphite, iron powder, lead powder, aluminum powder, etc. The resin composition of the present invention may contain both a boron nitride nanotube and a hexagonal boron nitride particle. The content of the hexagonal nitride boron nitride particles is preferably 0.01 to 20 parts by weight based on 100 parts by weight of the thermoplastic resin. The inorganic ruthenium is preferably a surface-treated material such as a decane coupling agent or a titanate coupling agent 'aluminate coupling agent. It is especially preferred to use a decane coupling agent. This surface treatment can suppress the decomposition of the thermoplastic resin and further improve the adhesion, so that it is more suitable for the mechanical properties of the object of the present invention. (Flame Retardant) The resin composition of the present invention may contain a flame retardant. A flame retardant such as a polycarbonate type flame retardant of a halogenated bisphenol A, an organic salt type flame retardant, a halogenated aromatic phosphate type flame retardant, an aromatic phosphate type flame retardant, and the like. It can be used in more than one type. A polycarbonate type flame retardant of a halogenated bisphenol A, for example, a polycarbonate type flame retardant of tetrabromobisphenol a, a copolymerized polycarbonate type flame retardant of tetrabromobisphenol A and bisphenol A. An organic salt-based flame retardant such as diphenyl hydrazine-3,3'-disulfonic acid diterpene, diphenyl sulfonium-3-sulfonate potassium, sodium 2,4,5-trichlorobenzenesulfonate, 2, Potassium tetrachlorobenzenesulfonate, potassium bis(2,6-dibromo-4-cumylphenyl)phosphate, bis(4-cumylphenyl) sodium dibenzoate, bis(p-toluene) Potassium imide, bis(diphenylphosphoric acid) quinone imine, potassium bis(2,4,6-tribromophenyl)phosphate, potassium bis(2,4-dibromophenyl)phosphate-29 200846403, potassium bis(4-bromophenyl)phosphate, potassium diphenylphosphate, sodium diphenylphosphate, potassium perfluorobutanesulfonate, sodium lauryl or potassium lauryl sulfate, sodium hexadecyl sulfate or potassium. The content of the organic salt-based flame retardant is preferably from 0.001 to 0.5 parts by weight, more preferably from 0.001 to 0.2 parts by weight, particularly preferably from 0.003 to 0.15 parts by weight, based on 100 parts by weight of the thermoplastic resin. A fuel such as tris(2,4,6-tribromophenyl)phosphate, tris(2,4-dibromophenyl)phosphate, tris(4-bromophenyl)phosphate, etc. Aromatic phosphate A flame retardant such as triphenyl phosphate, tris(2,6-extenylene) phosphate, tetrakis(2,6-extension) Resorcinol diphosphate, tetrakis(2,6-extended xylylene)hydroquinone diphosphate, tetrakis(2,6-extended dimethylphenyl)-4,4'.bisphenol diphosphate, four Phenylresorcinol diphosphate, tetraphenylhydroquinone diphosphate, tetraphenyl-4,4'-bisphenol diphosphate, etc. Halogenated aromatic phosphate type flame retardant and aromatic phosphate ester system The content of the flame retardant is preferably from 0.1 to 25 parts by weight, more preferably from 1 to 20 parts by weight, particularly preferably from 2 to 18 parts by weight, based on 100 parts by weight of the heat plastic resin. (Stabilizer) The resin composition of the present invention It may contain a stabilizer. For example, a thermal stabilizer for a thermoplastic resin such as phosphorous acid, phosphoric acid, phosphorous acid, phosphonic acid or its ester, etc. Phosphite compounds such as triphenylphosphite and tris(sulfonate) Phenyl) phosphite, tridecyl phosphite, trioctyl phosphite, octadecyl phosphite, dimercapto-phenyl phosphite, monobutyl diphenyl phosphite-30 - 200846403 acid ester, monodecyl diphenyl phosphite, monooctyl diphenyl phosphite, 2,2-extended methyl bis(4,6-di-tert-butylphenyl)octyl Phosphate Ester, tris(diethylphenyl)phosphite, tris(di-iso-propylphenyl)phosphite, tris(di-n-butylphenyl)phosphite, tris(2,4- Di-tert-butylphenyl)phosphite, tris(2,6-di-tert-butylphenyl)phosphite, distequine pentaerythritol diphosphite, bis(2,4-di- Teirt-butylphenyl) pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl Alkyl-4-ethylphenyl)pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, bis(nonylphenyl)pentaerythritol diphosphite, dicyclohexyl pentaerythritol diphosphite, and the like. Further, a phosphite compound having a cyclic structure can be obtained by reacting hydrazine with a dihydroxy compound. For example, 2,2'-extended methylbis(4,6-di-tert-butylphenyl)(2,4·di-tert-butylphenyl)phosphite, 2,2'-extension Bis(4,6-di-tert-butylphenyl)(2-tert-butyl-4-methylphenyl)phosphite, 2,2'-methyl-bis(4-methyl-) 6-tert-butylphenyl)(2-tert-butyl-4-methylphenyl)phosphite, 2,2'-ethylenebis(4-methyl-6-tert-butylbenzene () 2-tert-butyl-4-methylphenyl) phosphite, and the like. Phosphate compounds such as tributyl phosphate, trimethyl phosphate, tricresol phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, two Phenyl-n-phenylene phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, diisopropyl phosphate, etc., preferably triphenyl phosphate, trimethyl Phosphate. Phosphonate compounds such as tetrakis(2,4-di-tert-butylphenyl)-4,4'-extended biphenyl diphosphinate, tetrakis(2,4-di-tert-butyl Phenyl)-4,3,-extension-31 - 200846403 Biphenyldiphosphinate, tetrakis(2,4-di-tert-butylphenyl)-3,3'-extended biphenyl Phosphonate, tetrakis(2,6-di-tert-butylphenyl)-4,4'-extended biphenyl diphosphinate, tetrakis(2,6-di-teirt-butylphenyl)_4 , 3'_Exbiphenyl bisphosphonate, tetrakis(2,6-di-tert-butylphenyl)-3,35-extended biphenyl diphosphinate, bis (2,4- Di-tert-butylphenyl)-4-phenyl-phenylphosphinate, bis(2,4-di-tert-butylphenyl)-3-phenyl-phenylphosphinate, Bis(2,6-di-η-butylphenyl)-3-phenyl-phenylphosphinate, bis(2,6-di-tert-butylphenyl)-4-phenyl-benzene a phosphinic acid ester, bis(2,6-di-tert-butylphenyl)-3-phenyl-phenylphosphinate, etc., preferably tetrakis(di-tert-butylphenyl)- Stretched biphenyl diphosphinate, bis(di-tert-butylphenyl)-phenyl-phenylphosphinate, more preferably tetrakis(2,4-di-tert-butylphenyl) Phenyl diphenyl Phosphonate, bis(2,4-di-tert-butylphenyl)-phenyl-phenylphosphinic acid ester. Further, the phosphonite is preferably a phosphite compound having two or more aryl groups substituted for the above alkyl group. Phosphonate compounds such as dimethyl phenylphosphonate, diethyl phenylphosphonate and dipropyl phenylphosphonate. The above-mentioned phosphorus-based stabilizers may be used singly or in combination of two or more kinds. Among the above phosphorus stabilizers, a phosphite compound or a phosphonite compound is preferred. Particularly preferred is tris(2,4-di-tert-butylphenyl)phosphite, tetrakis(2,4-di-teirt-butylphenyl)4,4'-extended biphenyl diphosphite And bis(2,4-di-ten-butylphenylphenyl-phenyl-phosphonite. It is also preferred to be a combination of phosphite and phosphite. (Antioxidant) -32- 200846403 The resin composition of the invention may contain an antioxidant, an antioxidant such as a hindered phenol-based antioxidant, an amine-blocking phenol-based oxidizing agent such as α-tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin hydrazine, η-octadecyl _ (4,_hydroxy-3\5'-di-tert-butylphenyl)propionate, 2-tert-butyl-6-(35-tert-butyl-5'-methyl-2'-基-methylphenylpropanoate, 2,6-di-tert-butyl-4-(N,N-dimethylaminophenyl)phenol, 3,5· Di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 2,2'-extended methyl bis(4-methyl-6-tert-butylphenol), 2,2'-stretch Methyl bis(4-ethyl-6-tert-butylphenol), 4,4'-extended methyl bis(2^6-di-tert-butylphenol), 2,2,-extension methyl double (4-methyl-6-cyclohexylphenol), 2,2'-di-extension - bis(6-α-methyl-benzyl-ρ·carbamidine), 2,2'-ethylidene-bis(4,6-di-tert-butylphenol), 2,2'-butylene - bis(4-methyl-6-tert-butylphenol), 4,4'-butylene bis(3-methyl-6-tert-butylphenol), triethylene glycol-N-bis-3 -(3-tert-butyl-4-hydroxy-5-methylphenyl)propionate, 1,6-hexanediol bis[3-(3,5-di-tert-butyl-4-hydroxyl) Phenyl)propionate], bis[2-tert-butyl-4-methyl 6-(3 _tert-butyl-5-methyl-2-hydroxybenzyl)phenyl]terephthalate , 3,9-bis{2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoxy]-1,1-dimethylethyl}-2, 4,8,10-tetraspiro[5,5]undecane, 4,4'-thiobis(6-tert-butyl-m-formic acid), 4,4'-thiobis(3-methyl- 6-tert-butylphenol), 2,2'-thiobis(4-methyl-6-tert-butylphenol), bis(3,5-di-tert-butyl-4-hydroxybenzyl) Sulfide, 4,4,-di-thiobis(2,6-di-tert-butylphenol), 4,4'-tris-thiobis(2,6-di-tert-butylphenol), 2 , 2-thiodiethylidene-bis-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 2,4-bis(η-octylthio)- 6-( 4-hydroxy-3,,5,-di-tert-butylanilino)-1,3,5-triazine-33- 200846403, N,N'-hexamethyl-bis-(3,5-di-tert -butyl 4-hydroxyhydrocinnamonium amide, hydrazine, Ν'-bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanyl] hydrazine, :l,l ,3-tris(2-methyl-4-hydroxy-5-tert-butylphenyl)butane, 1,3,5-trimethyl-2,4,6-tris(3,5-di- Tert-butyl-4-hydroxybenzyl)benzene, tris(3,5-di-tert-butyl-4-hydroxyphenyl)trimeric isocyanate, tris(3,5·di-ten.butyl-4 -hydroxybenzyl)trimeric isocyanate, H5.tris(4-tert-butyl-3-transyl-2,6-dimethylbenzyl)trimeric isocyanate, ^5-tris[3-(3, 5-di-tirt-butyl-4-hydroxyphenyl)propenyloxy]ethyltrimeric isocyanate and tetra-[methyl-(3',5'-di-tert-butyl-4-hydroxyl) Phenyl) propionate] methane and the like. The antioxidants may be used singly or in combination of two or more kinds. The content of the antioxidant is preferably from 0.001 to 0.5 parts by weight, more preferably from 0.005 to 0.3 parts by weight, even more preferably from 0.01 to 0.2 parts by weight, per 1 part by weight of the thermoplastic resin. (Ultraviolet absorber) The resin composition of the present invention may contain an ultraviolet absorber. The ultraviolet absorbers are, for example, benzophenone-based, benzotriazole, etc., hydroxyphenyltriazine-based, cyclic imido ester-based ultraviolet absorbers. A benzophenone-based ultraviolet absorber such as 2,4-di-based benzophenone, 2-alkyl-4-methoxybenzophenone, 2-hydroxyoctyloxybenzophenone, 2 -hydroxy-4-benzyloxybenzophenone, hydroxy-4-methylthiosulfenyl benzophenone, 2-carbyl-4-methoxy-5-thiosuccinate monobenzophenone Ketone, 2,2,-di-butyl-4-methoxybenzophenone, 2,2',4,4'-tetra-tetrabenzophenone, 2,2,-dihydroxy-4,4 ,-dimethoxybenzophenone, 2,2'-dihydroxy--34- 200846403 4,4'-dimethoxy-5-sodium hypothiobenzophenone, bis(5-phenylhydrazine) 4-hydroxy-2-methoxyphenyl)methane, 2-hydroxy-4-n-dodecyloxybenzophenone and 2·hydroxy-4-methoxy-2'-carboxydiphenyl Ketones, etc. Benzotriazole-based UV absorbers such as 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole , 2-(2-hydroxy-3,5-dicumylphenyl)phenylbenzotriazole, 2-(2-hydroxybutyl-5-methylphenyl)-5-chlorobenzotriazole, 2 , 2'·Methyl bis[4_(1,1,3,3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol], 2-(2-hydroxy- 3,5-di-tert-butylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-tert-butylphenyl)-5-chlorobenzotriazole, 2-( 2-hydroxy-3,5-di-tert-pentylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)benzotriazine, 2·(2-hydroxy- 5-tert-butylphenyl)benzotriazole, 2-(2-hydroxy-4-octyloxyphenyl)benzotriazole, 2,2'-extended methyl bis(4-cumyl-6 Benzotriazole phenyl), 2,2'-p-phenylene bis(1,3-benzoxazin-4-one), 2-[2-hydroxy-3-(3,4,5, 6-tetrahydroindenine methyl)-5-methylphenyl]benzotriazole, and 2-(2'-hydroxy-5-methylpropenyloxyethylphenyl)-2H-benzo a triazole and a copolymer of a vinyl monomer copolymerizable with the monomer, 2-(25-hydroxy- Copolymerization of 5-hydroxyphenyl-2H-benzotriazole skeleton, such as 5-propenyloxyethylphenyl)-2H-benzotriazole and a copolymer of a vinyl monomer copolymerizable with the monomer Things and so on. A hydroxyphenyltriazine-based ultraviolet absorber such as 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexyloxyphenol, 2-(4,6 -diphenyl-1,3,5-triazin-2-yl)-5-methoxyphenol, 2-(4,6-diphenyl-1,3,5-triazin-2-yl) -5-ethoxyphenol, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-propoxy-35- 200846403 phenol and 2-(4,6 - Diphenyl-1,3,5-triazin-2-yl)-5-butoxyphenol and the like. For example, 2-(4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl)-5-hexyloxyphenol, etc. The base is changed to a compound of 2,4-dimethylphenyl. A cyclic imido ester-based ultraviolet absorber such as 2,2'-P-phenylene bis(3,1-benzoxazin-4-one), 2,2'-m-phenylene (3,1-Benzoxazine-4-one) and 2,2'-p,p'-diphenylenebis(3,1-benzoxazin-4-one) and the like. The ultraviolet absorbers may be used singly or in combination of two or more kinds. The content of the ultraviolet absorber is preferably 〇 〇 〇 5 to 3 parts by weight, more preferably 0.01 to 2 parts by weight, particularly preferably 0.02 to 1 part by weight, based on 100 parts by weight of the thermoplastic resin. (Photoabilizer) The resin composition of the present invention may contain a photostabilizer. The light stabilizer is a light stabilizer of the amine-resistant amine. Aminoamine-based light stabilizers such as bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(ι,2,2,6,6-pentamethyl 4-piperidinyl) sebacate, tetrakis(2,2,6,6-tetramethyl-4-piperidinyl)-1,2,3,4-butane tetracarboxylate, tetra ( 1,2,2,6,6-pentamethyl-4-piperidinyl)-l,2,3,4-butane tetracarboxylate, polytetramethylbutyl)amino-1,3, 5-triazin-2,4-diyl][(2,2,6,6-tetramethylpiperidinyl)imido]hexa-methyl[(2,2,6,6-tetramethyl) Piperidinyl)imine]}, and polymethylpropyl 3-oxo-[4-(2,2,6,6-tetramethyl)-sn. The light stabilizers may be used alone or in combination of two or more. The amount of the photosensitizer to be used is preferably 〇· 〇〇0 5 to 3 parts by weight to 36 to 200846403, more preferably 0.01 to 2 parts by weight, still more preferably 0.02 to 1 part by weight. Particularly preferred is 005 侄〇·5 parts by weight. (Bluing agent) The resin composition of the present invention may contain a bluing agent. The amount of the bluing agent used in the resin composition is preferably 〇. 5 to 3 ppm (weight ratio). The bluing agent effectively removes the yellow tint of the formed body. In particular, when a certain amount of the ultraviolet absorber is used for the molded article to which the weather resistance is applied, the molded article is easily yellowed by the action of the ultraviolet absorber and the color tone. Therefore, the use of the upper blue side can effectively impart a natural transparency to the molded article. The bluing agent refers to a blue to purple coloring agent which absorbs orange to yellow light. The content of the dye and the bluing agent is preferably from 0.5 to 2·5ρριη. It is from 0.5 to 2 ppm. The blue agent is, for example, Bayer's Mankuro Violet B and Mankolo Blue RR, Shande's Tirasol Blue RLS, and the Chemical Industry Corporation's Plass Blue 85 80. (Dye, Pigment) The resin composition of the present invention may contain a dye and a pigment within the range not detracting from the object of the present invention. The dye is preferably, for example, an anthraquinone dye, a coumarin dye, a thioindole dye, an anthraquinone dye, a thioxanthone dye, a ferrous gas compound such as indigo, a quinacridine dye, and a quinine. A phthalocyanine dye, a quinophthalone dye, a dioxazine dye, an isoindolinone dye, a phthalocyanine dye, or the like. The amount of the dye used is preferably -37 to 200846403 0.0001 to 1 part by weight, more preferably 0.0005 to 0.5 part by weight, per 100 parts by weight of the thermoplastic resin. (Other Additives) The resin composition of the present invention may contain a slip agent, a release agent, a foaming agent, a crosslinking agent, a colorant, a flow modifier, an antibacterial agent, a photocatalyst antifouling agent, and a photochromic agent according to an appropriate purpose. Wait. Φ <Molded body> The present invention contains a formed body formed of the above resin composition. The formed body is a film, a sheet, or the like. The formed body can be formed by molding the above resin composition. The forming method is, for example, an extrusion molding method, an injection molding method, a blow molding method, or the like. The extrusion molding can be carried out by using a resin composition which is extruded in a molten state by a die. Further, the paste containing the resin composition and the solvent may be cast on the support, and after casting a certain thickness, the solution may be removed to produce a film or a sheet. [Embodiment] Hereinafter, the present invention will be more specifically described by way of examples, but the invention is not limited to the examples. 1. Measurement of physical properties (1) Measurement of thermal conductivity The thermal conductivity is measured by a rapid thermal conductivity meter (KEMTHERM QTM-D3, Kyoto Electronics Industry Co., Ltd. -38-200846403) using a probe method (unsteady hot line method). . Specifically, the sample is placed on a reference sample of known thermal conductivity, and the thermal conductivity (logarithm) of the reference sample is plotted by the following formula, and the thermal conductivity of the deviation is determined by interpolation. To derive the thermal conductivity of the sample. Deviation = {(the thermal conductivity of the appearance of the unknown sample) - (the thermal conductivity of the reference sample)} / (the thermal conductivity of the reference sample) (2) Solubility parameter (5) The solubility parameter 5 is a known method ("polymer "Mixed", Akiyama. Saburo, Inoue Takashi, and Westminster, and Seyem Co., Ltd.) are calculated by the following formula. δ = ρ · Σ F i/Μ

(式中,P爲聚合物密度,Μ爲聚合物之重覆單位構造的 分子量,ZFi爲莫耳吸引力定數下各部分構造之固有値) 2.材料 實施例、比較例所使用氮化硼奈米管、樹脂等如下所 示。 (1)氮化硼奈米管(BNNT) 氮化硼奈米管爲參考例1調製之物。 -39- 200846403 (2) 六方晶氮化硼粒子 六方晶氮化硼粒子爲艾得里製,粒徑1 μιη之物。 (3) 聚甲基甲基丙烯酸酯(ΡΜΜΑ) 聚甲基甲基丙烯酸酯爲三菱人造絲(股)製之聚甲基甲 基丙烯酸酯(ACRYPET VH001、熔融指數2.0g/10分、重 量平均分子量約1,000,000、5=9.5)。 (4) 聚碳酸酯(PC) φ 聚碳酸酯爲帝人化成(股)製之聚碳酸酯樹脂(AD5 503 、熔融指數54g/10分、黏度平均分子量約1 5,000、δ =10.6)。 (5) 脂環式聚碳酸酯(Ac-PC) 使用參考例3所得之脂環式聚碳酸酯=11· 5)。 (6) 聚對苯二甲酸乙二醇酯(PET) 使用參考例4所得之聚對苯二甲酸乙二醇酯(5 =10.7)° • (7)聚乙烯 聚乙烯爲三井化學(股)製之聚乙烯(Hizex5000S、熔融 指數〇.8 2g/10分、重量平均分子量約!〇〇,〇〇〇、6 =8.4)。 (8)聚醯胺6,6 使用參考例2所得之聚醯胺6,6( (5 =13.5)。 參考例1製造氮化硼奈米管 將莫耳比1 : 1之硼及氧化鎂放入氮化硼製祖堝中’ 以高周波誘導加熱爐將坩堝加熱至1,3 0 0 °C,使硼與氧化 -40- 200846403 鎂反應,生成氣體狀氧化硼(B2〇2)及鎂之蒸氣。以氬氣將 該生成物送入反應室內,維持1,1 00°c溫度下導入氨氣, 使氧化硼與氨反應,生成氮化硼。將1.55g之混合物充分 加熱以蒸發副產物後,由反應室壁得310mg之白色固體 。其次以濃鹽酸洗淨所得白色固體,再以離子交換水洗淨 至中性,其後以60 °C進行減壓乾燥,得氮化硼奈米管 (BNNT)。所得 BNNT爲平均直徑 2 7· 6nm、平均長度 2,460nm之管狀物。 參考例2製造聚醯胺6,6 於設置氮導入管之三口燒瓶中混合己二酸43 8重量份 及六伸甲基二胺3 54重量份後,將內部脫氣以氮取代。其 次常壓下以220 °C攪拌1小時,再以280 °C攪拌4小時, 於餾出水的同時進行聚合反應。結束聚合後冷卻至室溫再 採取內容物。以苯酚/1,1,2,2-四氯乙烷混合溶劑(重量比 6/4)爲溶劑,溫度35°C、濃度1.2g/dl下測得的還原黏度 爲 2.05。 δ 爲 13.5。 參考例3製造脂環式聚碳酸酯 將預先單蒸餾精製之異脫雙水山梨糖醇(洛肯特公司 製,Na、Fe、Ca 含量:〇.6ppm)25.0kg(171mol)及二苯基 碳酸酯(Na、Fe、Ca 含量:〇.4ppm)36.7kg(171mol)放入附 攪拌裝置之SUS3 16製原料溶解槽中,氮氣下以套溫度 1 50 °C溶解後送液至備有蒸餾塔,攪拌裝置及冷凝管之 -41 - 200846403 SUS316製第一反應槽內,再加入聚合觸媒用2,2-雙(4-羥 基苯基)丙烷二鈉鹽11.6mg(4.28xl(T5莫耳)及四甲基銨羥 化物6.24g(1.71 X 1(Γ2莫耳),其後將反應槽內減壓至 30mmHg及升溫至2 0 0 °C,餾去所生成之苯酚的同時進行 反應。當苯酚餾出量達一定値時,將反應液送至備有無回 流機能之餾出管、攪拌裝置、聚合物吐出口的SUS3 16製 第二反應槽內,將反應槽內緩緩減壓至3 OmmHg後,將釜 內溫升至245 °C。接著將反應槽內減壓,當攪拌反應液所 需電力値達到一定値時停止反應,再由吐出口回收所生成 之聚合物。所得脂環式聚碳酸酯(Ac-PC)於二氯甲烷溶劑 中,以溫度2〇°C、濃度〇.7g/dl測定之還原黏度爲0.61。 5 爲 1 1 .5。 參考例4製造聚對苯二甲酸乙二醇酯 將雙羥基乙基對苯二甲酸酯400重量份及三氧化銻 〇·14重量份加入三口燒瓶中,200°C下開始反應。以30分 鐘升溫至250 °C後,以1小時將系內之壓力由常壓減壓至 30mmHg,最後以10分鐘升溫減壓爲280°C、〇. 3 mmHg。 該條件下聚合反應3小時得聚對苯二甲酸乙二醇酯(PET) 。以苯酚/1,1,2,2-四氯乙烷混合溶劑(重量比6/4)爲溶劑, 於溫度35°C,濃度1.2g/dl測定之還原黏度爲1.05。5爲 10.7 〇 實施例1聚甲基甲基丙烯酸酯(6 =9.5) -42- 200846403 將參考例1所得之氮化硼奈米管2重量份加入四氫呋 喃1 0 0重量份中,以超音波浴處理4小時調製分散液。 將聚甲基甲基丙烯酸酯2重量份加入所得分散液中’ 以超音波浴處理3 0分鐘後可飛躍式提升氮化硼奈米管之 分散性。其次持續加入相同之聚甲基甲基丙烯酸酯6重量 份,40 °C下攪拌至聚甲基甲基丙烯酸酯溶解。 使用800μιη刮漿刀將所得膠漿鑄造於玻璃基板上, φ 5 0°C下乾燥1小時後,80°(:下再乾燥1小時。將乾燥後片 物投入離子交換水中,由玻璃基板剝離後洗淨1小時。以 模框固定所得片物後,30mmHg下實施80°c下1小時及 100°C下1小時之減壓乾燥,再以150°C、50kgf條件加壓 成形5分鐘,得厚1 2 1 μηι之試驗片。測定試驗片之熱傳 導度,結果爲2.5W/mK。 實施例2聚碳酸酯(5 =10.6) • 將參考例1所得之氮化硼奈米管2重量份加入氯仿 1 〇〇重量份中,以超音波浴處理4小時調製分散液。 將聚碳酸酯2重量份加入所得分散液中,以超音波浴 處理30分鐘後可飛躍式提升氮化硼奈米管之分散性。其 次持續加入相同之聚碳酸酯6重量份,3 0 °C下攪拌至聚碳 酸酯溶解。 使用800μιη刮漿刀將所得膠漿鑄造於玻璃基板上, 5 0°C下乾燥1小時,80。(:下再乾燥1小時。將乾燥後之片 物投入離子交換水中,由玻璃基板剝離後洗淨1小時。以 -43- 200846403 模框固定所得片物後,30mmHg下實施80T:下1小時及 100°C下1小時之減壓乾燥,再以200°c、50kgf條件加壓 成形5分鐘,得厚125 μιη之試驗片。測定試驗片之熱傳 導度,結果爲2.9W/mK。 實施例3脂環式聚碳酸酯(δ=11·5) 將參考例1所得之氮化硼奈米管2重量份加入氯仿 1 〇〇重量份中,以超音波浴處理4小時調製分散液。 將脂環式聚碳酸酯2重量份加入所得分散液中,以-超 音波浴處理30分鐘後可飛躍式提升氮化硼奈米管之分散 性。其次持續加入相同之脂環式聚碳酸酯6重量份,30°C 下攪拌至脂環式聚碳酸酯溶解。 使用80 0 μιη刮漿刀將所得膠漿鑄造於玻璃基板上, 5 〇°C下乾燥1小時,80 °C下再乾燥1小時。將乾燥後之片 物投入離子交換水中,由玻璃基板剝離後洗淨1小時。以 模框固定所得片物後,30mmHg下實施80°C下1小時及 lOOt:下1小時之減壓乾燥,再以200°C、5 0kgf條件加壓 成形5分鐘,得厚122 μιη之試驗片。測定試驗片之熱傳 導度,結果爲2.8W/mK。 實施例4聚甲基甲基丙烯酸酯(5 =9· 5) 將參考例1所得之氮化硼奈米管1重量份及市售六方 晶氮化硼粒子(艾得里製’平均粒徑1 ^m)1重量份加入四 氫呋喃1 00重量份中,以超音波浴處理4小時調製分散液 -44 - 200846403 將聚甲基甲基丙烯酸酯2重量份加入所得分散液中, 以超音波浴處理30分鐘後可飛躍式提升氮化硼奈米管及 六方晶氮化硼粒子之分散性。其次持續加入相同之聚甲基 甲基丙烯酸酯6重量份,40T:下攪拌至聚甲基甲基丙烯酸 酯溶解。 使用800μπι刮漿刀將所得膠漿鑄造於玻璃基板上, φ 5 0°C下乾燥1小時後,80 °C下再乾燥1小時。將乾燥後之 片物投入離子交換水中,由胺璃基-板剝離後洗淨1小時。 以模框固定所得片物後,30mmHg下實施80°C下1小時及 100°C下1小時之減壓乾燥,再以150°C、50kgf條件加壓 成形5分鐘,得厚1 19μπι之試驗片。測定試驗片之熱傳 導度,結果爲2.3W/mK。 實施例5聚碳酸酯(5 =10.6) • 將參考例1所得之氮化硼奈米管1重量份及市售六方 晶氮化硼粒子(艾得里製,平均粒徑1μπι)1重量份加入氯 仿1 〇〇重量份中,以超音波浴處理4小時調製分散液。 將聚碳酸酯2重量份加入所得分散液中,以超音波浴 '處理3 0分鐘後可飛躍式提升氮化硼奈米管及六方晶氮化 硼粒子之分散性。其次持續加入相同之聚碳酸酯(5 = 10.6)6重量份,40 °C下攪拌至聚碳酸酯溶解。 使用800μιη刮漿刀將所得膠漿鑄造於玻璃基板上, 5 〇 °C下乾燥1小時,8 0 °C下再乾燥1小時。將乾燥後之片 -45- 200846403 物投入離子交換水中,由玻璃基板剝離後洗淨1小時。以 模框固定所得片物後,30mmHg下實施80°C下1小時及 100°C下1小時之減壓乾燥,再以200°C、50kgf條件加壓 成形5分鐘,得厚121 μιη之試驗片。測定試驗片之熱傳 導度,結果爲2.6W/mK。 實施例6脂環式聚碳酸酯(<5=11 .5) 將參考例1所得之氮化硼奈米管1重量份及市售六方 晶氮化硼粒子(艾得里製,平均粒徑1 μπι) 1重量份加入氯 仿1 〇〇重量份中,以超音波浴處理4小時調製分散液。‘ 將脂環式聚碳酸酯2重量份加入所得分散液中,以超 音波浴處理3 〇分鐘後可飛躍式提升氮化硼奈米管及六方 晶氮化硼粒子之分散性。其次持續加入相同之脂環式聚碳 酸酯6重量份,40°C下攪拌至脂環式聚碳酸酯溶解。 使用800μιη刮漿刀將所得膠漿鑄造於玻璃基板上, 5 0°C下乾燥1小時,80°C下再乾燥1小時。將乾燥後之片 物投入離子交換水中,由玻璃基板剝離後洗淨1小時。以 模框固定所得片物後,30mmHg下實施80T:下1小時及 100°C下1小時之減壓乾燥,再以200°C、50kgf條件加壓 成形5分鐘’得厚120 μιη之試驗片。測定試驗片之熱傳 導度,結果爲2.7W/mK。 實施例7聚對苯二甲酸乙二醇酯(5=10· 7) 使用30 mm Φ同方向回轉雙軸擠壓機(池貝鐵工(股)製 -46 - 200846403 PCM3 0),以聚合物溫度2 80°C、平均滯留時間約5 條件熔融混煉參考例1所得之氮化硼奈米管1 0 0重 參考例4調製之聚對苯二甲酸乙二醇酯900重量份 化。其次使用射出成形機(名機製作所(股)M-50B) 缸溫度280 °C、模具溫度50 °C之條件射出成形 2mm之試驗片。測定試驗片之熱傳導度,各 2·85 W/mK。 比較例1 除了不使用氮化硼奈米管,及使用聚甲基甲基 酯(δ =9.5)10重量份外,其他同實施例1製作聚甲 丙烯酸酯之試驗片,試驗片之厚度爲125 μιη。測定 之熱傳導度,結果爲0.18W/mK。 比較例2 除了不使用氮化硼奈米管,及使用聚碳酸 = 10.6)10重量份外,其他同實施例2製作聚碳酸酯 ,試驗片之厚度爲121 μιη。測定試驗片之熱傳導度 爲 0.1 9W/mK。 比較例3 除了不使用氮化硼奈米管,及使用脂環式聚Ϊ 5 = 1 1 . 5) 1 0重量份外,其他同實施例3製作脂環式 酯之試驗片,試驗片之厚度爲1 1 8 μπι。測定試驗片 分鐘之 量份及 而顆粒 ,以汽 ,得厚 吉果爲 丙烯酸 基甲基 試驗片 酯((5 試驗片 ’結果 ^酸酯( 聚碳酸 之熱傳 -47- 200846403 導度,結果爲〇.22W/mK。 比較例4 除了以市售六方晶氮化硼粒子(艾得里製,粒徑 1μπι)2重量份取代氮化硼奈米管2重量份外,其他同實施 例1製作含有六方晶氮化硼粒子之聚甲基甲基丙烯酸酯( 5 =9.5)試驗片,試驗片之厚度爲125 μπι。測定試驗片之 熱傳導度,結果爲〇.88W/mK。 比較例5 除了以市售六方晶氮化硼粒子(艾得里製,粒徑 1μιη)2重量份取代氮化硼奈米管2重量份外,其他同實施 例2製作含有六方晶氮化硼粒子之聚碳酸酯(δ = 1 〇 . 6 )試 驗片,試驗片之厚度爲121 μπι。測定試驗片之熱傳導度’ 結果爲0.9W/mK。 比較例6 除了以市售六方晶氮化硼粒子(艾得里製,粒徑 1μπι)2重量份取代氮化硼奈米管2重量份外,其他同實施 例3製作含有六方晶氮化硼粒子之脂環式碳酸酯(5 =1 1 .5)試驗片,試驗片之厚度爲1 18μπι。測定試驗片之熱 傳導度,結果爲〇.85W/mK。 比較例7 -48- 200846403 使用30mm φ同方向回轉雙軸擠壓機(池貝鐵工(股)製 PCM3 0),以聚合物溫度20(Kc、平均滯留時間約5分鐘之 條件熔融混煉參考例1所得之氮化硼奈米管1 00重量份及 聚乙烯(5 =8.4)900重量份而顆粒化。其次使用射出成形 機(名機製作所(股)M-5 0B),以汽缸溫度200 °C、模具溫度 3 0°C射出成形,得厚2mm之成形試驗片。測定試驗片之 熱傳導度’結果爲1.5W/mK。 比較例8 使用30mm φ同方向回轉雙軸擠壓機(池貝鐵工(股)製 PCM3 0),以聚合物溫度270〇C、平均滯留時間約5分鐘之 條件熔融混煉參考例1所得之氮化硼奈米管1 00重量份及 參考例2合成之聚醯胺6,6(5= 1 3.5)9 00重量份而顆粒化 。其次使用射出成形機(名機製作所(股)M-50B),以汽缸 溫度270°C、模具溫度30°C射出成形,得厚2mm之成形 φ 試驗片。測定試驗片之熱傳導度,結果爲1.4W/mK。 上述結果如表1及表2所示。 -49- 200846403 i 實施例7 100 1 PET 900 10.7 2.85 實施例6 1—4 Ac-PC 00 Γ Η 實施例5 r-H T—H 00 1 10.6 v〇 r4 實施例4 r-H r-H PMMA 00 〇{ m oi 實施例3 CM 1 Ac-PC oo « oo CN 實施例2 CN 1 oo 10.6 Q\ (N 實施例1 (N 1 PMMA 00 »r% 〇< CN 重量份 重量份 • 種類 重量份 W/mK BNNT 六方晶氮化硼粒子 樹脂 熱傳導度 班随Μ«Ε:«Β-權Η-鏃:VPMlAtd 鑼德侧毖麴 班 MSHK]瀣 frnlf®?^:13d 0000^0^ -00 0 0 -50- 200846403(In the formula, P is the polymer density, Μ is the molecular weight of the repeating unit structure of the polymer, and ZFi is the intrinsic enthalpy of the structure of each part under the molar attraction constant) 2. Boron nitride used in the material examples and comparative examples The nanotubes, resins, and the like are as follows. (1) Boron nitride nanotube (BNNT) The boron nitride nanotube was prepared in Reference Example 1. -39- 200846403 (2) Hexagonal boron nitride particles The hexagonal boron nitride particles are made of Adri, and have a particle size of 1 μm. (3) Polymethyl methacrylate (ΡΜΜΑ) Polymethyl methacrylate is a polymethyl methacrylate made by Mitsubishi Rayon (ACRYPET VH001, melt index 2.0 g/10 min, weight average) The molecular weight is about 1,000,000, 5 = 9.5). (4) Polycarbonate (PC) φ Polycarbonate is a polycarbonate resin (AD5 503, melt index 54 g/10 min, viscosity average molecular weight of about 15,000, δ = 10.6) manufactured by Teijin Chemicals Co., Ltd. (5) Alicyclic polycarbonate (Ac-PC) The alicyclic polycarbonate obtained in Reference Example 3 was used = 11·5). (6) Polyethylene terephthalate (PET) The polyethylene terephthalate obtained in Reference Example 4 (5 = 10.7) ° • (7) Polyethylene polyethylene is Mitsui Chemicals Co., Ltd. Polyethylene (Hizex 5000S, melt index 〇. 8 2g/10 minutes, weight average molecular weight about! 〇〇, 〇〇〇, 6 = 8.4). (8) Polyamine 6,6 The polyamine 6,6 (5 = 13.5) obtained in Reference Example 2 was used. Reference Example 1 was made to produce boron nitride nanotubes with a molar ratio of 1:1 boron and magnesium oxide. Put into boron nitride ancestors' to heat the ruthenium to 1,300 °C in a high-frequency induction heating furnace to react boron with oxidized-40-200846403 magnesium to form gaseous boron oxide (B2〇2) and magnesium. The vapor is introduced into the reaction chamber by argon gas, ammonia gas is introduced at a temperature of 1,100 ° C, and boron oxide is reacted with ammonia to form boron nitride. 1.55 g of the mixture is sufficiently heated to evaporate the pair. After the product, 310 mg of a white solid was obtained from the wall of the reaction chamber. The white solid obtained was washed with concentrated hydrochloric acid, washed with ion-exchanged water to neutrality, and then dried under reduced pressure at 60 ° C to obtain boron nitride. Rice tube (BNNT). The obtained BNNT is a tube having an average diameter of 27.6 nm and an average length of 2,460 nm. Reference Example 2 Production of Polyamine 6,6 Mixing adipic acid with a weight of 43 8 in a three-necked flask equipped with a nitrogen introduction tube After part and 64 parts by weight of methyldiamine, the internal degassing was replaced by nitrogen, followed by stirring at 220 ° C for 1 hour under normal pressure, and then 2 After stirring at 80 ° C for 4 hours, the polymerization was carried out while distilling off the water. After the polymerization was completed, the mixture was cooled to room temperature and the contents were taken. The solvent was mixed with phenol/1,1,2,2-tetrachloroethane (weight ratio 6/). 4) The reducing viscosity measured for the solvent at a temperature of 35 ° C and a concentration of 1.2 g / dl was 2.05. δ was 13.5. Reference Example 3 was prepared for the preparation of an alicyclic polycarbonate by pre-single-distilled purified disodium sorbate. Alcohol (manufactured by Lokent, Na, Fe, Ca content: 6.6ppm) 25.0kg (171mol) and diphenyl carbonate (Na, Fe, Ca content: 〇.4ppm) 36.7kg (171mol) The SUS3 16 raw material dissolution tank of the apparatus is dissolved in a jacket at a temperature of 150 ° C under nitrogen, and then sent to a first reaction tank equipped with a distillation column, a stirring device and a condensing tube -41 - 200846403 SUS316, and then added to the polymerization. The catalyst used 11.6 mg of 2,2-bis(4-hydroxyphenyl)propane disodium salt (4.28 x 1 (T5 mole) and tetramethylammonium hydroxide 6.24 g (1.71 X 1 (Γ 2 mole), followed by The pressure in the reaction vessel is reduced to 30 mmHg and the temperature is raised to 200 ° C, and the generated phenol is distilled off while the reaction is carried out. When the phenol is distilled off to a certain level, the reaction solution is taken. In the second reaction tank made of SUS3 16 with a reflux tube, a stirring device, and a polymer discharge port, the inside of the reaction vessel was gradually depressurized to 3 OmmHg, and the temperature in the autoclave was raised to 245 °C. Next, the inside of the reaction vessel was decompressed, and when the power required to stir the reaction liquid reached a certain level, the reaction was stopped, and the resulting polymer was recovered from the discharge port. The resulting alicyclic polycarbonate (Ac-PC) had a reducing viscosity of 0.61 as measured in a solvent of dichloromethane at a temperature of 2 ° C and a concentration of 7 7 g / dl. 5 is 1 1.5. Reference Example 4 Production of polyethylene terephthalate 400 parts by weight of bishydroxyethyl terephthalate and 14 parts by weight of antimony trioxide were placed in a three-necked flask, and the reaction was started at 200 °C. After raising the temperature to 250 ° C for 30 minutes, the pressure in the system was reduced from normal pressure to 30 mmHg in 1 hour, and finally the temperature was reduced to 280 ° C and mm 3 mmHg in 10 minutes. Polymerization under these conditions for 3 hours gave polyethylene terephthalate (PET). The reducing viscosity of the phenol/1,1,2,2-tetrachloroethane mixed solvent (weight ratio 6/4) was measured at a temperature of 35 ° C and a concentration of 1.2 g/dl of 1.05. 5 was 10.7 〇. Example 1 Polymethyl methacrylate (6 = 9.5) -42 - 200846403 2 parts by weight of the boron nitride nanotube obtained in Reference Example 1 was added to 10 parts by weight of tetrahydrofuran, and treated by ultrasonic bath for 4 hours. Dispersions. 2 parts by weight of polymethyl methacrylate was added to the resulting dispersion. After treatment in an ultrasonic bath for 30 minutes, the dispersibility of the boron nitride nanotubes was dramatically increased. Next, 6 parts by weight of the same polymethyl methacrylate was continuously added, and the mixture was stirred at 40 ° C until the polymethyl methacrylate was dissolved. The obtained paste was cast on a glass substrate using a 800 μm squeegee, dried at φ 50 ° C for 1 hour, and then dried at 80 ° (: for another hour). The dried sheet was poured into ion-exchanged water and peeled off from the glass substrate. After washing for 1 hour, the obtained sheet was fixed by a mold frame, and then dried under reduced pressure at 80 ° C for 1 hour and 100 ° C for 1 hour at 30 mmHg, and then pressure-formed at 150 ° C and 50 kgf for 5 minutes. A test piece having a thickness of 1 2 1 μηι was obtained. The thermal conductivity of the test piece was measured and found to be 2.5 W/mK. Example 2 Polycarbonate (5 = 10.6) • The weight of the boron nitride nanotube obtained in Reference Example 1 was 2 Adding chloroform to 1 part by weight of chloroform, and treating it in an ultrasonic bath for 4 hours to prepare a dispersion. 2 parts by weight of polycarbonate is added to the obtained dispersion, and after treatment in an ultrasonic bath for 30 minutes, the boron nitride can be lifted and lifted. The dispersibility of the rice tube. Secondly, 6 parts by weight of the same polycarbonate was continuously added, and the mixture was stirred at 30 ° C until the polycarbonate was dissolved. The obtained cement was cast on a glass substrate using a 800 μm squeegee, at 50 ° C. Dry for 1 hour, 80. (: then dry for another hour. The dried tablets After being separated from the glass substrate, the glass substrate was peeled off and washed for 1 hour. After the obtained sheet was fixed with a mold frame of -43-200846403, 80T was applied at 30 mmHg for 1 hour and at 100 ° C for 1 hour under reduced pressure, and then dried. The test piece was pressed under conditions of 200 ° C and 50 kgf for 5 minutes to obtain a test piece having a thickness of 125 μm. The thermal conductivity of the test piece was measured and found to be 2.9 W/mK. Example 3 alicyclic polycarbonate (δ = 11.5) 2 parts by weight of the boron nitride nanotube obtained in Reference Example 1 was added to 1 part by weight of chloroform, and the dispersion was prepared by ultrasonic bath for 4 hours. 2 parts by weight of the alicyclic polycarbonate was added to the resulting dispersion. After the treatment with the ultrasonic bath for 30 minutes, the dispersibility of the boron nitride nanotube can be upgraded by flying. Secondly, 6 parts by weight of the same alicyclic polycarbonate is continuously added, and the mixture is stirred at 30 ° C to the alicyclic polycarbonate. The ester was dissolved. The obtained cement was cast on a glass substrate using a 80 0 μm squeegee, dried at 5 ° C for 1 hour, and dried at 80 ° C for 1 hour. The dried tablets were placed in ion-exchanged water. After the glass substrate was peeled off, it was washed for 1 hour. After the obtained sheet was fixed by a mold frame, 3 The test piece was dried at 80 ° C for 1 hour and 100 ° C for 1 hour under reduced pressure, and then press-formed at 200 ° C and 50 kgf for 5 minutes to obtain a test piece having a thickness of 122 μm. The thermal conductivity of the test piece was measured. The result was 2.8 W/mK. Example 4 Polymethylmethacrylate (5 = 9·5) 1 part by weight of the boron nitride nanotube obtained in Reference Example 1 and commercially available hexagonal boron nitride particles (Ai 1 part by weight of 'average particle size 1 ^m" was added to 100 parts by weight of tetrahydrofuran, and treated by ultrasonic bath for 4 hours to prepare a dispersion-44 - 200846403 2 parts by weight of polymethyl methacrylate was added to the dispersion In the liquid, after dispersing for 30 minutes in the ultrasonic bath, the dispersibility of the boron nitride nanotubes and the hexagonal boron nitride particles can be lifted. Next, 6 parts by weight of the same polymethyl methacrylate was continuously added, and 40T: was stirred until the polymethyl methacrylate was dissolved. The obtained dope was cast on a glass substrate using an 800 μm squeegee, dried at φ 50 ° C for 1 hour, and further dried at 80 ° C for 1 hour. The dried tablet was placed in ion-exchanged water, and after being peeled off from the amine glass-plate, it was washed for 1 hour. After the obtained sheet was fixed by a mold frame, it was subjected to vacuum drying at 80 ° C for 1 hour and 100 ° C for 1 hour at 30 mmHg, and then pressure-molded at 150 ° C and 50 kgf for 5 minutes to obtain a thickness of 1 19 μm. sheet. The heat conductivity of the test piece was measured and found to be 2.3 W/mK. Example 5 Polycarbonate (5 = 10.6) • 1 part by weight of the boron nitride nanotube obtained in Reference Example 1 and 1 part by weight of commercially available hexagonal boron nitride particles (manufactured by Adrien, average particle diameter 1 μm) The mixture was added to 1 part by weight of chloroform, and the dispersion was prepared by treatment in an ultrasonic bath for 4 hours. 2 parts by weight of the polycarbonate was added to the obtained dispersion, and the dispersibility of the boron nitride nanotubes and the hexagonal boron nitride particles was lifted by the ultrasonic bath treatment for 30 minutes. Next, 6 parts by weight of the same polycarbonate (5 = 10.6) was continuously added, and the mixture was stirred at 40 ° C until the polycarbonate was dissolved. The obtained paste was cast on a glass substrate using a 800 μm squeegee, dried at 5 ° C for 1 hour, and further dried at 80 ° C for 1 hour. The dried sheet -45-200846403 was placed in ion-exchanged water, peeled off from the glass substrate, and washed for 1 hour. After the obtained sheet was fixed by a mold frame, it was subjected to vacuum drying at 80 ° C for 1 hour and 100 ° C for 1 hour at 30 mmHg, and then pressure-molded at 200 ° C and 50 kgf for 5 minutes to obtain a thickness of 121 μm. sheet. The heat transfer rate of the test piece was measured and found to be 2.6 W/mK. Example 6 alicyclic polycarbonate (<5=11.5) 1 part by weight of a boron nitride nanotube obtained in Reference Example 1 and commercially available hexagonal boron nitride particles (made by Adri, average grain) 1 μm of the diameter 1 μ part by weight was added to 1 part by weight of chloroform, and the dispersion was prepared by treatment in an ultrasonic bath for 4 hours. ‘ 2 parts by weight of the alicyclic polycarbonate was added to the resulting dispersion, and after treatment for 3 minutes in an ultrasonic bath, the dispersibility of the boron nitride nanotubes and the hexagonal boron nitride particles was dramatically increased. Next, 6 parts by weight of the same alicyclic polycarbonate was continuously added, and the mixture was stirred at 40 ° C until the alicyclic polycarbonate was dissolved. The obtained dope was cast on a glass substrate using a 800 μm squeegee, dried at 50 ° C for 1 hour, and further dried at 80 ° C for 1 hour. The dried tablet was placed in ion-exchanged water, peeled off from the glass substrate, and washed for 1 hour. After the obtained sheet was fixed by a mold frame, 80T was applied at 30 mmHg for 1 hour and 100 ° C for 1 hour under reduced pressure, and then subjected to pressure molding at 200 ° C and 50 kgf for 5 minutes to obtain a test piece having a thickness of 120 μm. . The heat conductivity of the test piece was measured and found to be 2.7 W/mK. Example 7 Polyethylene terephthalate (5=10·7) Using a 30 mm Φ co-rotating twin-screw extruder (Chibei Iron Works Co., Ltd. -46 - 200846403 PCM3 0), with polymer The temperature was 2 80 ° C, and the average residence time was about 5. The melt-kneading of the boron nitride nanotube obtained in Reference Example 1 was repeated in 900 parts by weight of polyethylene terephthalate prepared in Reference Example 4. Next, a test piece of 2 mm was formed by using an injection molding machine (Mitsubishi Manufacturing Co., Ltd. M-50B) under the conditions of a cylinder temperature of 280 ° C and a mold temperature of 50 ° C. The thermal conductivity of the test piece was measured, and each was 2.85 W/mK. Comparative Example 1 A test piece of polymethacrylate was prepared in the same manner as in Example 1 except that a boron nitride nanotube was not used and 10 parts by weight of polymethyl methyl ester (δ = 9.5) was used. 125 μηη. The thermal conductivity of the measurement was measured and found to be 0.18 W/mK. Comparative Example 2 A polycarbonate was produced in the same manner as in Example 2 except that a boron nitride nanotube was not used, and 10 parts by weight of polycarbonate = 10.6) was used, and the thickness of the test piece was 121 μm. The thermal conductivity of the test piece was measured to be 0.19 W/mK. Comparative Example 3 A test piece of the alicyclic ester was prepared in the same manner as in Example 3 except that the boron nitride nanotube was not used, and the alicyclic polyfluorene 5 = 1 1.5. 10 parts by weight was used. The thickness is 1 1 8 μπι. Measure the amount of the test piece in minutes and the particles, and take the qi, the kiwi fruit is the acrylate-based methyl test piece ester ((5 test piece 'Results acid ester (polycarbonate heat transfer -47-200846403 conductivity, the result is 22.22W/mK. Comparative Example 4 The same procedure as in Example 1 was carried out except that 2 parts by weight of a commercially available hexagonal boron nitride particle (manufactured by Adrien, particle size 1 μm) was used in place of 2 parts by weight of a boron nitride nanotube. A test piece of polymethyl methacrylate (5 = 9.5) containing hexagonal boron nitride particles, and the thickness of the test piece was 125 μm. The thermal conductivity of the test piece was measured and found to be 〇.88 W/mK. Polycarbonate containing hexagonal boron nitride particles was prepared in the same manner as in Example 2, except that 2 parts by weight of commercially available hexagonal boron nitride particles (made by Adriatic, particle size 1 μm) was used in place of 2 parts by weight of boron nitride nanotubes. The test piece of the ester (δ = 1 〇. 6 ), the thickness of the test piece was 121 μm. The thermal conductivity of the test piece was measured and the result was 0.9 W/mK. Comparative Example 6 In addition to the commercially available hexagonal boron nitride particles (Aide) Manufactured in a volume of 1 μm) 2 parts by weight of a substituted boron nitride nanotube 2 parts by weight In the same manner as in Example 3, an alicyclic carbonate (5=11.5) test piece containing hexagonal boron nitride particles was prepared, and the thickness of the test piece was 1 18 μm. The thermal conductivity of the test piece was measured, and the result was 〇. 85W/mK. Comparative Example 7 -48- 200846403 Using a 30mm φ co-rotating twin-shaft extruder (PCM3 0 made by Ikei Iron Works), with a polymer temperature of 20 (Kc, average residence time of about 5 minutes) Melt-kneading 100 parts by weight of boron nitride nanotubes obtained in Reference Example 1 and 900 parts by weight of polyethylene (5 = 8.4) were pelletized. Secondly, an injection molding machine (Meritronics Co., Ltd. M-5 0B) was used. The molded test piece was formed by a cylinder temperature of 200 ° C and a mold temperature of 30 ° C to obtain a molded test piece having a thickness of 2 mm. The thermal conductivity of the test piece was measured to be 1.5 W/mK. Comparative Example 8 Using a 30 mm φ coaxial rotating shaft in the same direction An extruder (PCM3 0 manufactured by Chibei Iron Works Co., Ltd.) melt-kneaded 100 parts by weight of the boron nitride nanotube obtained in Reference Example 1 at a polymer temperature of 270 ° C and an average residence time of about 5 minutes. Refer to Example 2 for the synthesis of polyamine 6,6 (5 = 1 3.5) and 00 parts by weight for granulation. The machine (MbM M-50B) was injection-molded at a cylinder temperature of 270 ° C and a mold temperature of 30 ° C to obtain a molded φ test piece having a thickness of 2 mm. The thermal conductivity of the test piece was measured and found to be 1.4 W / mK. The above results are shown in Tables 1 and 2. -49- 200846403 i Example 7 100 1 PET 900 10.7 2.85 Example 6 1 - 4 Ac-PC 00 Γ 实施 Example 5 rH T-H 00 1 10.6 v 〇r4 Example 4 rH rH PMMA 00 〇 { m oi Example 3 CM 1 Ac-PC oo « oo CN Example 2 CN 1 oo 10.6 Q\ (N Example 1 (N 1 PMMA 00 »r% 〇< CN Parts by weight • Types by weight W/mK BNNT Hexagonal boron nitride particle resin Thermal conductivity class with Μ«Ε:«Β-ΗΗ-镞:VPMlAtd 锣德毖麴毖麴班 MSHK]瀣frnlf®?^ :13d 0000^0^ -00 0 0 -50- 200846403

比較例8 〇 1 聚醯胺6, 6 900 13.5 比較例7 100 _________________1 1 聚乙烯 900 寸 00 in 比較例6 1 Ac-PC 〇〇 11.5 0.85 比較例5 1 CN 〇〇 Os Ο 比較例4 t PMMA 〇〇 On 0.88 比較例3 麵 1 Ac-PC 〇 τ—Η r-H 0.22 比較例2 1 1 〇 1 10.6 0.19 比較例1 I 1 PMMA 〇 On 0.18 重量份 重量份I 種類 重量份 W/mK BNNT 六方晶氮化硼粒子ί 樹脂 熱傳導度 -51 - 200846403 發明效果 將氮化硼奈米管(BNNT)分散於聚醯胺時,可以奈米 級將BNNT分散於聚醯胺中,而減少BNNT同士凝聚。又 將BNNT分散於溶解度參數(5 )爲9至12之熱塑性樹脂 時,可以中型結構領域凝聚BNNT,故使用可適當凝聚 BNNT之具有一定溶解度參數(5)的熱塑性樹脂時,推斷 可得熱傳導性優良之樹脂組成物。相對於一般熱塑性樹脂 之熱傳導度爲0.2W/mK以下,本發明之樹脂組成物的熱 傳導度可超過2W/m-K。由此得知本發明之樹脂組成物具 有特殊熱傳導性。 因此本發明之樹脂組成物及其成形體具有優良熱傳導 性。本發明之成形體具有優良機械物性及尺寸安定性,又 本發明之製造方法可製造具有優良機械物性、尺寸安定性 及熱傳導性之樹脂組成物。 產業上利用可能性 本發明之樹脂組成物可以任意之成形方法形成所希望 之形狀,故適用於機械零件、產業資材、電器電子用途等 -52-Comparative Example 8 〇1 Polyamine 6, 6 900 13.5 Comparative Example 7 100 _________________1 1 Polyethylene 900 inch 00 in Comparative Example 6 1 Ac-PC 〇〇 11.5 0.85 Comparative Example 5 1 CN 〇〇Os Ο Comparative Example 4 t PMMA 〇〇On 0.88 Comparative Example 3 Surface 1 Ac-PC 〇τ—Η rH 0.22 Comparative Example 2 1 1 〇1 10.6 0.19 Comparative Example 1 I 1 PMMA 〇 On 0.18 parts by weight by weight I part by weight W/mK BNNT hexagonal crystal Boron Nitride Particles ί Resin Thermal Conductivity-51 - 200846403 Effect of the Invention When a boron nitride nanotube (BNNT) is dispersed in polyamine, the BNNT can be dispersed in the polyamide at a nanometer level to reduce the aggregation of BNNT. When BNNT is dispersed in a thermoplastic resin having a solubility parameter (5) of 9 to 12, BNNT can be agglomerated in a medium-sized structure, and therefore, when a thermoplastic resin having a certain solubility parameter (5) which can appropriately agglomerate BNNT is used, thermal conductivity can be estimated. Excellent resin composition. The thermal conductivity of the resin composition of the present invention may exceed 2 W/m-K with respect to the thermal conductivity of the general thermoplastic resin of 0.2 W/mK or less. From this, it was found that the resin composition of the present invention has a special thermal conductivity. Therefore, the resin composition of the present invention and the molded body thereof have excellent thermal conductivity. The molded article of the present invention has excellent mechanical properties and dimensional stability, and the production method of the present invention can produce a resin composition having excellent mechanical properties, dimensional stability and thermal conductivity. INDUSTRIAL APPLICABILITY The resin composition of the present invention can be formed into a desired shape by any molding method, and is therefore suitable for use in mechanical parts, industrial materials, electrical and electronic applications, etc. -52-

Claims (1)

200846403 十、申請專利範圍 I一種樹脂組成物,其爲,含有溶解度參數(5)爲9 至12之熱塑性樹脂1〇〇重量份及氮化硼奈米管〇.01至 1 0 0重量份。 2.如申請專利範圍第i項之樹脂組成物,其中氮化硼 奈米管之含量爲5至100重量份。 3 ·如申請專利範圍第1項之樹脂組成物,其中氮化硼 奈米管之平均直徑爲〇.4nm至1 μπι、平均長寬比爲5以上 爲佳。 4·如申請專利範圍第1項之樹脂組成物,其中氮化硼 奈米管被覆共軛系高分子。 5 ·如申請專利範圍第丨項之樹脂組成物,其中熱塑性 樹脂爲聚碳酸酯、聚酯及丙烯酸樹脂群中所選出至少一種 之樹脂。 6 ·如申請專利範圍第5項之樹脂組成物,其中聚碳酸 酯爲芳香族聚碳酸酯或脂環族聚碳酸酯。 7 ·如申請專利範圍第6項之樹脂組成物,其中芳香族 聚碳酸酯主要含有下列式(A)所示之重覆單位,200846403 X. Patent Application Area I A resin composition comprising 1 part by weight of a thermoplastic resin having a solubility parameter (5) of 9 to 12 and a boron nitride nanotube of 0.01 to 100 parts by weight. 2. The resin composition of claim i, wherein the boron nitride nanotubes are contained in an amount of from 5 to 100 parts by weight. 3. The resin composition of claim 1, wherein the boron nitride nanotubes have an average diameter of from 4 nm to 1 μm and an average aspect ratio of 5 or more. 4. The resin composition of claim 1, wherein the boron nitride nanotube is coated with a conjugated polymer. 5. The resin composition according to the ninth aspect of the invention, wherein the thermoplastic resin is at least one selected from the group consisting of polycarbonate, polyester and acrylic resin. 6. The resin composition of claim 5, wherein the polycarbonate is an aromatic polycarbonate or an alicyclic polycarbonate. 7. The resin composition of claim 6, wherein the aromatic polycarbonate mainly contains the repeating unit represented by the following formula (A). 式(A)中,R1及R2各自獨立爲氫原子、_原子、碳數1至 -53- 200846403 10之烷基、碳數1至10之烷氧基、碳數6至20之環烷 基、碳數6至20之環焼氧基、碳數6至10之芳基、碳數 7至20之芳烷基、碳數6至10之芳氧基及碳數7至20 之芳烷氧基群中所選出之基,R1及R2爲複數時可各自相 同或相異; m及η各自獨立爲1至4之整數, W爲下列式(Α-1)所示構造單位中任何一種,In the formula (A), R1 and R2 each independently represent a hydrogen atom, a _ atom, an alkyl group having 1 to -53 to 200846403 10, an alkoxy group having 1 to 10 carbon atoms, and a cycloalkyl group having 6 to 20 carbon atoms. a cyclodecyloxy group having 6 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, and an aralkyloxy group having 7 to 20 carbon atoms. The group selected in the group, R1 and R2 may be the same or different when they are plural; m and η are each independently an integer of 1 to 4, and W is any one of the structural units represented by the following formula (Α-1), i? ? ?H3 s—, —s—, —r*,— ο CH3 (A— 1)i? ? H3 s —, —s —, —r*, — ο CH3 (A-1) 式(A-l)中,R3及R4各自獨立爲氫原子、碳數i至i〇之烷基 或碳數1至10之烷氧基;R5及R6各自獨立爲氫原子或碳數 1至3之烷基,R5及R6爲複數時可各自相同或相異; P爲4至12之整數, R7及R8各自獨立爲氫原子、鹵原子或碳數}至3之烷基。 8 ·如申請專利範圍第6項之樹脂組成物,其中芳香族 聚碳酸酯主要含有下列式(A-2)所示之重覆單位,In the formula (Al), R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having a carbon number i to i 或 or an alkoxy group having a carbon number of 1 to 10; and R 5 and R 6 are each independently a hydrogen atom or a carbon number of 1 to 3. The alkyl group, R5 and R6 may each be the same or different in the plural; P is an integer of 4 to 12, and each of R7 and R8 is independently a hydrogen atom, a halogen atom or an alkyl group having a carbon number of ~3. 8. The resin composition of claim 6, wherein the aromatic polycarbonate mainly contains a repeating unit represented by the following formula (A-2). -54- 200846403 9·如申請專利範圍第6項之樹脂組成物,其中脂環族 聚碳酸酯主要含有下列式(B)所示之重覆單位,-54- 200846403. The resin composition of claim 6, wherein the alicyclic polycarbonate mainly comprises a repeating unit represented by the following formula (B). 式(B)中’ R9及各自獨立爲氫原子、碳數1至1〇之烷 基、碳數6至20之環烷基或碳數6至10之芳基。 1〇·如申請專利範圍第5項之樹脂組成物,其中聚酯 爲聚對苯二甲酸乙二醇酯、聚對苯二甲酸丁二醇酯及其混 合物。 φ 1 1 ·如申請專利範圍第5項之樹脂組成物,其中丙烯 酸樹脂爲聚甲基甲基丙烯酸酯。 1 2 · —種樹脂組成物之製造方法,其爲包含,將氮化 t 硼奈米管及溶解度參數(6)爲9至12之熱塑性樹脂混合 〇 13·如申請專利範圍第12項之製造方法,其中係以共 轭系高分子被覆氮化硼奈米管。 14.一種成形體,其爲由如申請專利範圍第1項之樹 脂組成物形成。 -55- 200846403 明 說 單 無簡 :號 為符 圖件 表元 代之 定圖 ••指表 圖案代 表本本 無 代} } 定一二 指c C 八、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無In the formula (B), R9 and each independently represent a hydrogen atom, an alkyl group having 1 to 1 carbon atom, a cycloalkyl group having 6 to 20 carbon atoms or an aryl group having 6 to 10 carbon atoms. The resin composition of claim 5, wherein the polyester is polyethylene terephthalate, polybutylene terephthalate, and a mixture thereof. Φ 1 1 The resin composition of claim 5, wherein the acrylic resin is polymethyl methacrylate. And a method for producing a resin composition comprising: a boron nitride nitride tube and a thermoplastic resin having a solubility parameter (6) of 9 to 12; 13 manufactured according to claim 12 The method comprises coating a boron nitride nanotube with a conjugated polymer. A shaped body formed from the resin composition of the first aspect of the patent application. -55- 200846403 succinctly, there is no simple: the number is the map of the map and the map is represented by the map. • The pattern of the table represents the original without a generation} } The first and second fingers c C VIII. If there is a chemical formula in this case, please reveal the best display. Chemical formula of the inventive feature: none
TW96118840A 2007-05-25 2007-05-25 Resin composition TWI400288B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96118840A TWI400288B (en) 2007-05-25 2007-05-25 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96118840A TWI400288B (en) 2007-05-25 2007-05-25 Resin composition

Publications (2)

Publication Number Publication Date
TW200846403A true TW200846403A (en) 2008-12-01
TWI400288B TWI400288B (en) 2013-07-01

Family

ID=44823150

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96118840A TWI400288B (en) 2007-05-25 2007-05-25 Resin composition

Country Status (1)

Country Link
TW (1) TWI400288B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101010550B1 (en) * 2003-01-20 2011-01-24 데이진 가부시키가이샤 Carbon nanotube coated with aromatic condensation polymer

Also Published As

Publication number Publication date
TWI400288B (en) 2013-07-01

Similar Documents

Publication Publication Date Title
KR101422315B1 (en) Resin composition
KR100849867B1 (en) Thermoplastic resin composition, molded article, and process for producing the same
US7648748B2 (en) Liquid crystalline resin composition for blow molding
TWI429711B (en) Aromatic polycarbonate resin composition
CN102304278B (en) Low gloss thermoplastic composition, method of making, and articles formed therefrom
US20120264869A1 (en) Thermoplastic Resin Composition and Molded Product Using the Same
JP4755978B2 (en) Aromatic polycarbonate resin composition and method for producing the same
JP2009197057A (en) Resin molding material
KR20070072372A (en) Polymer alloy composition
TW200948893A (en) Composition of aromatic polycarbonate resin and mold goods thereof
JP2012057152A (en) Base material for resin light reflector
WO2018163799A1 (en) Laminate and fiber-reinforced resin composite obtained therefrom
JP2008214558A (en) Inorganic-reinforced polyester-based resin composition and method for improving surface appearance of molded product using the same
JP6807634B2 (en) Fiber reinforced polypropylene resin composition
JP2004155984A (en) Light-diffusing polycarbonate resin composition and light diffusing plate
JP5857263B2 (en) Polylactic acid resin composition, method for producing injection molded product, injection molded product, and holder for electronic device
JP5634980B2 (en) Polycarbonate resin composition and polycarbonate resin molded product
JP6975651B2 (en) Laminated body and fiber reinforced resin composite composed of it
JP5634981B2 (en) Method for producing polycarbonate resin composition
TW200846403A (en) Resin composition
JP2020147675A (en) Fiber-reinforced polypropylene resin composition
KR20130074365A (en) Thermoplastic resin composition and molded product using the same
JP2012071481A (en) Method for manufacturing mold, and mold
JP7116198B2 (en) Molding material made of carbon fiber reinforced polycarbonate resin composition
JP4354690B2 (en) Thermoplastic resin composition and thin molded product comprising the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees