US20120264869A1 - Thermoplastic Resin Composition and Molded Product Using the Same - Google Patents
Thermoplastic Resin Composition and Molded Product Using the Same Download PDFInfo
- Publication number
- US20120264869A1 US20120264869A1 US13/535,939 US201213535939A US2012264869A1 US 20120264869 A1 US20120264869 A1 US 20120264869A1 US 201213535939 A US201213535939 A US 201213535939A US 2012264869 A1 US2012264869 A1 US 2012264869A1
- Authority
- US
- United States
- Prior art keywords
- thermoplastic resin
- resin composition
- punching
- metal
- particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L55/00—Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
- C08L55/02—ABS [Acrylonitrile-Butadiene-Styrene] polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/40—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
Definitions
- thermoplastic resin composition having excellent appearance and a molded product using the same.
- plastic exterior products with diverse colors are becoming increasingly popular for electronic parts, automobile parts and the like, and for plastic exterior products with a high quality sense of touch.
- Plastic exterior products usually include a plastic resin and a metal to give the appearance of a metal-like texture to the resin, such as discussed in Japanese Patent Laid-Open Publication Nos. 2001-262003 and 2007-137963.
- the metal-like texture did not appear in an actual experiment, and there is a problem in that a flow mark or a weld line is formed during an injection process.
- Japanese Patent Laid-Open Publication No. 1995-196901 gives a metal-like texture by adding a metal microplate to a plastic resin.
- the metal microplate is obtained by a punching process and has the luster of an average shape ratio (thickness/average particle diameter) of 1/100 to 1/8.
- This technology also has limitations such as formation of weld line.
- thermoplastic resin composition that can have excellent impact resistance, may not form a flow mark and/or a weld line, and can have the appearance of a metal-like texture.
- Another embodiment provides a molded product using the thermoplastic resin composition.
- the thermoplastic resin composition can include a thermoplastic resin; and a metal particle obtained by punching that has a ratio of a thickness relative to a long diameter of about 1:7 to about 1:1.
- thermoplastic resin composition may further include an inorganic particle.
- thermoplastic resin examples include without limitation polycarbonate resins, rubber modified vinyl-based copolymer resins, polyester resins, polyalkyl(meth)acrylate resins, and the like, and combinations thereof.
- the metal particle obtained by punching may be made of a material including aluminum, copper, gold, or a combination thereof.
- the metal particle obtained by punching may have a ratio of a thickness relative to a long diameter of about 1:5 to about 1:2.
- the thermoplastic resin composition may include the metal particle obtained by punching in an amount of about 0.01 to about 10 parts by weight based on about 100 parts by weight of the thermoplastic resin.
- the inorganic particle may include a glass particle, mica, graphite, a pearl particle, or a combination thereof.
- the inorganic particle may have a long diameter of about 10 to about 200 ⁇ m, and a thickness of about 0.5 to about 10 ⁇ m.
- the thermoplastic resin composition may include the inorganic particle in an amount of about 0.01 to about 10 parts by weight based on about 100 parts by weight of the thermoplastic resin.
- the metal particle obtained by punching and the inorganic particle may be mixed in a weight ratio of about 1:5 to about 5:1.
- thermoplastic resin composition a molded product fabricated using the thermoplastic resin composition.
- thermoplastic resin composition can have excellent impact resistance, may form minimal or no flow marks and/or weld lines, and can have an excellent appearance with a metal-like texture. Accordingly, the thermoplastic resin composition may be used in molded products that can have an excellent appearance, such as plastic exterior products including electronic parts, automobile parts, and the like, even without a painting process.
- (meth)acrylate refers to “acrylate” and “methacrylate”.
- (Meth)acrylic acid alkyl ester refers to both “acrylic acid alkyl ester” and “methacrylic acid alkyl ester”
- (meth)acrylic acid ester refers to both “acrylic acid ester” and “methacrylic acid ester”.
- a “long diameter” denotes the length of a line connecting two points in a closed curved
- the “closed curve” is a curved line where a point moves in one direction and returns to the departure point.
- thermoplastic resin composition includes a thermoplastic resin and a metal particle obtained by punching and having a ratio of thickness relative to long diameter of about 1:7 to about 1:1, and may further include an inorganic particle.
- thermoplastic resin composition According to embodiments of the present invention will hereinafter be described in detail.
- thermoplastic resin may include without limitation polycarbonate resins, rubber modified vinyl-based copolymer resins, polyester resins, polyalkyl(meth)acrylate resins, and the like, and combinations thereof.
- the thermoplastic resin may provide basic properties such as impact resistance, heat resistance, flexural characteristics, tensile characteristics, and the like.
- the polycarbonate resin may be prepared by reacting one or more diphenols with a compound such as a phosgene, halogen formate, carbonate ester, or a combination thereof.
- diphenols examples include without limitation hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl, 2,2-bis(4-hydroxyphenyl)propane (referred to as “bisphenol-A”), 2,4-bis(4-hydroxyphenyl)-2-methylbutane, bis (4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 2,2-bis (3-chloro-4-hydroxyphenyl)propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl)propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl)propane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl)propane, bis(4-hydroxyphenyl)sulfoxide, bis (4-hydroxyphenyl)ketone, bis(4-hydroxyphenyl)ether, and the like, and combinations thereof.
- bisphenol-A 2,4-bis(4-hydroxyphenyl)prop
- 2,2-bis(4-hydroxyphenyl)propane 2,2-bis (3,5-dichloro-4-hydroxyphenyl)propane, or 1,1-bis (4-hydroxyphenyl)cyclohexane may be used, for example 2,2-bis (4-hydroxyphenyl)propane may be used.
- the polycarbonate resin may have a weight average molecular weight of about 10,000 to about 200,000 g/mol, for example about 15,000 to about 80,000 g/mol, but is not limited thereto.
- the polycarbonate resin may be a mixture of copolymers obtained using two or more dipenols that differ from each other.
- the polycarbonate resin may include a linear polycarbonate resin, a branched polycarbonate resin, a polyestercarbonate copolymer resin, and the like, as well as combinations thereof.
- the linear polycarbonate resin may include a bisphenol-A-based polycarbonate resin.
- the branched polycarbonate resin may be produced by reacting a multi-functional aromatic compound such as trimellitic anhydride, trimellitic acid, and the like with one or more diphenols and a carbonate.
- the multi-functional aromatic compound may be included in an amount of about 0.05 to about 2 mol % based on the total weight of the branched polycarbonate resin.
- the polyester carbonate copolymer resin may be produced by reacting difunctional carboxylic acid with one or more diphenols and a carbonate.
- the carbonate may include a diaryl carbonate such as diphenyl carbonate, ethylene carbonate, and the like.
- the rubber modified vinyl-based copolymer resin is a copolymer wherein about 5 to about 95 wt % of a vinyl-based polymer is grafted on about 5 to about 95 wt % of a rubbery polymer.
- the rubber modified vinyl-based copolymer resin may include a rubbery polymer in an amount of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, or 95 wt %.
- the amount of the rubbery polymer can be in a range from about any of the foregoing amounts to
- the rubber modified vinyl-based copolymer resin may include a vinyl-based polymer in an amount of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, or 95 wt %.
- the amount of the vinyl-based polymer can be in a range from about any of the foregoing
- the vinyl-based polymer may be a polymer of about 50 to about 95 wt % of a first vinyl-based monomer including an aromatic vinyl monomer, an acrylic-based monomer, a heterocyclic monomer, or a combination thereof; and about 5 to about 50 wt % of a second vinyl-based monomer including an unsaturated nitrile monomer, an acrylic-based monomer, a hetero cyclic monomer, or a combination thereof.
- the vinyl-based polymer may include a first vinyl-based monomer in an amount of about 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, or 95 wt %.
- the amount of the first vinyl-based monomer can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.
- the vinyl-based polymer may include a second vinyl-based monomer in an amount of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 wt %.
- the amount of the second vinyl-based monomer can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.
- Examples of the aromatic vinyl monomer may include without limitation styrene, C1 to C10 alkyl-substituted styrene, halogen-substituted styrene, and the like, and combinations thereof.
- Examples of the alkyl-substituted styrene may include without limitation o-ethyl styrene, m-ethyl styrene, p-ethyl styrene, ⁇ -methyl styrene, and the like, and combinations thereof.
- the acrylic-based monomer may include without limitation (meth)acrylic acid alkyl esters, (meth)acrylic acid esters, and the like, and combinations thereof.
- the alkyl may be a C1 to C10 alkyl.
- the (meth)acrylic acid alkyl ester may include without limitation methyl(meth)acrylate, ethyl(meth)acrylate, propyl(meth)acrylate, butyl(meth)acrylate, and the like, and combinations thereof. In exemplary embodiments methyl(meth)acrylate may be used.
- the (meth)acrylic acid ester may include without limitation (meth)acrylate, and the like.
- heterocyclic monomer may include without limitation maleic anhydride, C1-C10 alkyl- or phenyl N-substituted maleimide, and the like, and combinations thereof.
- Examples of the unsaturated nitrile monomer may include without limitation acrylonitrile, methacrylonitrile, ethacrylonitrile, and the like, and combinations thereof.
- Examples of the rubbery polymer may include without limitation butadiene rubbers, acrylic rubbers, ethylene/propylene rubbers, styrene/butadiene rubbers, acrylonitrile/butadiene rubbers, isoprene rubbers, ethylene-propylene-diene terpolymer (EPDM) rubbers, polyorganosiloxane/polyalkyl(meth)acrylates, rubber composites, and the like, and combinations thereof.
- EPDM ethylene-propylene-diene terpolymer
- a rubber particle When the rubber modified vinyl-based copolymer is prepared, a rubber particle may have a particle diameter of about 0.05 to about 4 ⁇ m to improve the impact resistance and surface characteristics of a molded product, and when the particle diameter of the rubber particle ranges from about 0.05 to about 4 ⁇ m, excellent impact strength may be secured.
- the rubber modified vinyl-based copolymer may be used singularly or as a mixture of two or more.
- the rubber modified vinyl-based copolymer may include styrene, acrylonitrile, and optionally methyl(meth)acrylate graft-copolymerized on a butadiene rubber, an acrylic rubber, or a styrene/butadiene rubber as a mixture.
- the rubber modified vinyl-based copolymer may include methyl(meth)acrylate graft-copolymerized on a butadiene rubber, an acrylic rubber, or a styrene/butadiene rubber.
- the rubber modified vinyl-based copolymer may include an acrylonitrile-butadiene-styrene graft copolymer.
- the method of preparing the rubber modified vinyl-based copolymer is widely known to those skilled in the art, and any method among emulsion polymerization, suspension polymerization, solution polymerization and mass (bulk) polymerization may be used.
- Emulsion polymerization or mass polymerization can be conducted by adding the aforementioned aromatic vinyl monomer to a rubbery polymer and using a polymerization initiator.
- the polyester resin can be an aromatic polyester resin, and it may be a condensation-polymerized resin obtained from melt polymerization of terephthalic acid or alkyl ester terephthalate, and a C2 to C10 glycol component.
- the alkyl may be a C1 to C10 alkyl.
- aromatic polyester resin may include without limitation polyethylene terephthalate resins, polytrimethylene terephthalate resins, polybutylene terephthalate resins, polyhexamethylene terephthalate resins, polycyclohexane dimethylene terephthalate resins, one of the foregoing polyester resins modified into a non-crystalline resin by mixing the resin with another monomer, and the like, and combinations thereof.
- the aromatic polyester can be a polyethylene terephthalate resin, a polytrimethylene terephthalate resin, a polybutylene terephthalate resin, and/or a non-crystalline polyethylene terephthalate resin, for example a polybutylene terephthalate resin and/or a polyethylene terephthalate resin may be used.
- the polybutylene terephthalate resin is a condensation-polymerized polymer obtained through a direct ester reaction or an ester exchange reaction of 1,4-butanediol, and terephthalic acid or dimethyl terephthalate monomer.
- the polybutylene terephthalate resin may be copolymerized with polytetramethylene glycol (PTMG), polyethylene glycol (PEG), polypropylene glycol (PPG), a low molecular-weight aliphatic polyester, or aliphatic polyamide.
- PTMG polytetramethylene glycol
- PEG polyethylene glycol
- PPG polypropylene glycol
- a low molecular-weight aliphatic polyester or aliphatic polyamide.
- the polybutylene terephthalate resin it may be used in the form of a modified polybutylene terephthalate resin obtained by blending with a component improving impact strength.
- the polybutylene terephthalate resin may have an intrinsic viscosity [n] of about 0.35 to about 1.5 dl/g, for example about 0.5 to about 1.3 dl/g in o-chloro phenol at 25° C.
- the polybutylene terephthalate resin may have excellent mechanical strength and formability.
- the polyalkyl(meth)acrylate resin may be obtained by polymerizing a monomer material including an alkyl(meth)acrylate using a known polymerization method, such as a suspension polymerization method, a mass polymerization method, an emulsion method and the like.
- a known polymerization method such as a suspension polymerization method, a mass polymerization method, an emulsion method and the like.
- the alkyl(meth)acrylate may have a C1 to C10 alkyl group.
- Examples of the alkyl(meth)acrylate may include without limitation methyl(meth)acrylate, ethyl(meth)acrylate, butyl(meth)acrylate, glycidyl(meth)acrylate, hydroxyethyl(meth)acrylate, and the like, and combinations thereof.
- the alkyl(meth)acrylate may be included in an amount of greater than or equal to about 50 wt % based on the total amount (weight) of the polyalkyl(meth)acrylate.
- the polyalkyl(meth)acrylate resin may include an alkyl(meth)acrylate in an amount of about 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 wt %.
- the amount of the alkyl(meth)acrylate can be in a
- the polyalkyl(meth)acrylate may have a weight average molecular weight of about 10,000 to about 200,000 g/mol, for example about 15,000 to about 150,000 g/mol.
- a weight average molecular weight within the above range, hydrolysis resistance, scratch resistance, workability, and the like may be improved.
- the metal particle obtained by punching may provide the thermoplastic resin with a metal-like texture.
- the metal particle obtained by punching may be a kind of a sparkling particle having a flat surface reflecting light.
- the flat surface is a flat surface that the glittering of particles may be seen with the naked eye, for example, the flat surface refers to the surface of sheet glass or a polished metal surface.
- the metal particle obtained by punching refers to a metal particle cut in a uniform or regular shape, and it is distinguished from an inorganic particle which can have a relatively irregular shape.
- the metal particle obtained by punching may be made of a material including aluminum, copper, gold, or a combination thereof.
- the metal particle may include aluminum.
- the metal particle obtained by punching may have a ratio of a thickness relative to a long diameter of about 1:7 to about 1:1, for example about 1:5 to about 1:2.
- the term “thickness” refers to the height dimension of the metal particle obtained by punching
- the term “long diameter” refers to the length dimension (the longest dimension) of the metal particle obtained by punching.
- the metal particle obtained by punching has a ratio of thickness relative to long diameter range within the above range, a molded product having minimal or no flow marks and/or weld lines and excellent metal-like texture may be provided.
- the metal particle obtained by punching may have a long diameter of about 10 to about 150 ⁇ m, and may have a cross-sectional area of about 100 to about 22,500 ⁇ m 2 .
- a molded product having minimal or no flow marks and/or weld lines and excellent metal-like texture may be provided.
- the thermoplastic resin composition may include the metal particle obtained by punching in an amount of about 0.01 to about 10 parts by weight, for example about 0.05 to about 1 parts by weight, based on about 100 parts by weight of the thermoplastic resin.
- the thermoplastic resin composition may include the metal particle obtained by punching in an amount of about 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 parts by weight.
- the amount of the metal particle obtained by punching can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.
- thermoplastic resin composition may further include the inorganic particle.
- the inorganic particle may be another kind of sparkling particle having a flat surface reflecting light, which is different from the metal particle obtained by punching.
- the flat surface is the same as described above.
- the inorganic particle may include without limitation glass particles, mica, graphite, pearl particles, and the like, and combinations thereof.
- the inorganic particle may include a glass particle.
- the glass particle can have a sheet structure, and accordingly, the glass particle is different from a glass fiber which usually has a cylindrical shape.
- the glass fiber having a cylindrical shape does not reflect light and thus it does not significantly impart a metal-like texture.
- the glass particle may have circular, oval, and amorphous cross-sectional surfaces.
- the inorganic particle may have a long diameter of about 10 to about 200 ⁇ m, a thickness of about 0.5 to about 10 ⁇ m, and a cross-sectional area of about 80 to about 32,000 ⁇ m 2 .
- the term “thickness” refers to the height dimension of the inorganic particle
- the term “long diameter” refers to the length dimension (the longest dimension) of the inorganic particle.
- the inorganic particle has a long diameter, thickness, and cross-sectional area within the above ranges, a molded product having minimal or no flow marks and/or weld lines and having excellent metal-like texture may be provided.
- the thermoplastic resin composition may include the inorganic particle in an amount of about 0.01 to about 10 parts by weight, for example about 0.05 to about 10 parts by weight, based on about 100 parts by weight of the thermoplastic resin.
- the thermoplastic resin composition may include the inorganic particle in an amount of about 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 parts by weight.
- the amount of the inorganic particle can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.
- the inorganic particle When the inorganic particle is included in an amount within the above range, a molded product having excellent impact strength, minimal or no flow marks and/or welds line, and excellent metal-like texture may be obtained.
- the metal particle obtained by punching (B) and the inorganic particle (C) may be mixed in a weight ratio of about 1:5 to about 5:1, and for example about 1:2 to about 2:1 in the thermoplastic resin composition.
- the metal particle obtained by punching (B) and the inorganic particle (C) are mixed in a weight ratio within the above range, impact strength can be improved, and a molded product that can have excellent impact strength, minimal or no flow marks and/or weld lines, and excellent metal-like texture may be obtained.
- the thermoplastic resin composition according to one embodiment can include one or more additives.
- the additives include without limitation antibacterial agents, heat stabilizers, antioxidants, release agents, light stabilizers, surfactants, coupling agents, plasticizers, admixtures, colorants, stabilizers, lubricants, antistatic agents, coloring aids, flame proofing agents, weather-resistance agents, ultraviolet (UV) absorbers, ultraviolet (UV) blocking agents, nucleating agents, adhesion aids, adhesives, and the like, and combinations thereof.
- antioxidant may include without limitation phenol antioxidants, phosphite antioxidants, thioether antioxidants, amine antioxidants, and the like, and combinations thereof.
- release agent may include without limitation fluorine-included polymers, silicone oils, a stearic metal salts, montanic metal salts, montanic ester waxes, polyethylene waxes, and the like, and combinations thereof.
- weather-resistance agent may include without limitation benzophenone-type weather-resistance agents, amine-type weather-resistance agents, and the like, and combinations thereof.
- colorant may include without limitation dyes, pigments, and the like, and combinations thereof.
- UV blocking agent may include without limitation titanium dioxide (TiO 2 ), carbon black, and the like, and combinations thereof.
- nucleating agent may include without limitation talc, clay, and the like, and combinations thereof.
- the additive may be included in a predetermined amount as long as it does not deteriorate the properties of the thermoplastic resin composition.
- the thermoplastic resin composition may include the additive in an amount of less than or equal to about 40 parts by weight, for example about 0.1 to about 30 parts by weight, based on about 100 parts by weight of the thermoplastic resin composition.
- thermoplastic resin composition may be prepared using any well-known method of preparing a resin composition.
- each component according to one embodiment of the present invention can be simultaneously mixed, optionally with one or more additives.
- the mixture can be melt-extruded and prepared as pellets.
- thermoplastic resin composition can be used to manufacture a molded product using any various known processes such as injection molding, blow molding, extrusion molding, thermal molding, and the like.
- the thermoplastic resin composition may be used to make a molded product having minimal or no flow marks and/or weld lines and having a metal-like texture, such as but not limited to plastic outer parts such as electronic parts, automobile parts, and the like.
- thermoplastic resin composition includes each component as follows.
- SD-0150 produced by Cheil Industries INC., which is an ABS resin, is used.
- (B-1) Aluminum particles having a cross-sectional area of 2,500 ⁇ m 2 , a long diameter of 50 ⁇ m and a thickness of 10 ⁇ m are used.
- (B-2) Aluminum particles having a cross-sectional area of 2,500 ⁇ m 2 , a long diameter of 50 ⁇ m and a thickness of 6 ⁇ m are used.
- Amorphous sheet-shaped glass particles having a cross-sectional area of 2,000 ⁇ m 2 , a long diameter of 50 ⁇ m, and a thickness of 4 ⁇ m are used.
- thermoplastic resin compositions according to Examples 1 to 7 and Comparative Examples 1 to 4 are prepared using the components described above the following Table 1 according to the amounts described in Table 1.
- the components are mixed in the amounts shown in the following Table 1, and the mixture is extruded at a temperature range of 180 to 240° C. with a typical twin-screw extruder, and the extruded material is manufactured in pellets.
- the manufactured pellets are dried at 80° C. for 4 hours, and a material specimen is manufactured using an injection molding machine capable of 6 oz injection, setting a cylinder temperature at 210 to 230° C., a molding temperature at 100° C. and molding cycle time at 30 seconds, and performing injection-molding to form ASTM dumb-bell specimens.
- the properties of the manufactured material specimen are measured in accordance with the following methods and the results are shown in the following Table 1.
- IZOD impact strength measured according to ASTM D256 (specimen thickness 1/8′′).
- Injection appearance Injection is performed to form a weld line by using a mold having two gates, and the result of observing the appearance of an injected material is shown based on the standards shown in the following Table 2.
- thermoplastic resin compositions according to Examples 1 to 7 including the thermoplastic resin and a metal particle obtained by punching and having a ratio of a thickness relative to a long diameter of about 1:7 to about 1:1 in accordance with one embodiment have excellent impact strength, formed minimal or no flow marks and/or weld lines, and provide an excellent metal-like texture, compared with the thermoplastic resin compositions according to Comparative Examples 1 to 3 using a metal particle having a ratio of thickness relative to long diameter outside of the range of about 1:7 to about 1:1, and the thermoplastic resin compositions according to Comparative Example 4 which did not include the metal particle.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Provided are a thermoplastic resin composition including a thermoplastic resin and a metal particle obtained by punching that has a ratio of thickness relative to long diameter of about 1:7 to about 1:1, and a molded product using the same.
Description
- This application is a continuation-in-part of International Application No. PCT/KR2010/008596, filed Dec. 2, 2010, pending, which designates the U.S. published as WO 2011/081304, and is incorporated herein by reference in its entirety, and claims priority therefrom under 35 USC Section 120. This application also claims priority under 35 USC Section 119 from Korean Patent Application No. 10-2009-0135999, filed Dec. 31, 2009, and Korean Patent Application No. 10-2010-0054950, filed Jun. 10, 2010, in the Korean Intellectual Property Office, the entire disclosure of each of which is also incorporated herein by reference.
- This disclosure relates to a thermoplastic resin composition having excellent appearance and a molded product using the same.
- Recently, plastic exterior products with diverse colors are becoming increasingly popular for electronic parts, automobile parts and the like, and for plastic exterior products with a high quality sense of touch.
- Plastic exterior products usually include a plastic resin and a metal to give the appearance of a metal-like texture to the resin, such as discussed in Japanese Patent Laid-Open Publication Nos. 2001-262003 and 2007-137963. The metal-like texture, however, did not appear in an actual experiment, and there is a problem in that a flow mark or a weld line is formed during an injection process.
- Japanese Patent Laid-Open Publication No. 1995-196901 gives a metal-like texture by adding a metal microplate to a plastic resin. The metal microplate is obtained by a punching process and has the luster of an average shape ratio (thickness/average particle diameter) of 1/100 to 1/8. This technology, however, also has limitations such as formation of weld line.
- One embodiment provides a thermoplastic resin composition that can have excellent impact resistance, may not form a flow mark and/or a weld line, and can have the appearance of a metal-like texture.
- Another embodiment provides a molded product using the thermoplastic resin composition.
- The thermoplastic resin composition can include a thermoplastic resin; and a metal particle obtained by punching that has a ratio of a thickness relative to a long diameter of about 1:7 to about 1:1.
- The thermoplastic resin composition may further include an inorganic particle.
- Examples of the thermoplastic resin may include without limitation polycarbonate resins, rubber modified vinyl-based copolymer resins, polyester resins, polyalkyl(meth)acrylate resins, and the like, and combinations thereof.
- The metal particle obtained by punching may be made of a material including aluminum, copper, gold, or a combination thereof.
- The metal particle obtained by punching may have a ratio of a thickness relative to a long diameter of about 1:5 to about 1:2.
- The thermoplastic resin composition may include the metal particle obtained by punching in an amount of about 0.01 to about 10 parts by weight based on about 100 parts by weight of the thermoplastic resin.
- The inorganic particle may include a glass particle, mica, graphite, a pearl particle, or a combination thereof.
- The inorganic particle may have a long diameter of about 10 to about 200 μm, and a thickness of about 0.5 to about 10 μm.
- The thermoplastic resin composition may include the inorganic particle in an amount of about 0.01 to about 10 parts by weight based on about 100 parts by weight of the thermoplastic resin.
- The metal particle obtained by punching and the inorganic particle may be mixed in a weight ratio of about 1:5 to about 5:1.
- According to another embodiment, a molded product fabricated using the thermoplastic resin composition is provided.
- The thermoplastic resin composition can have excellent impact resistance, may form minimal or no flow marks and/or weld lines, and can have an excellent appearance with a metal-like texture. Accordingly, the thermoplastic resin composition may be used in molded products that can have an excellent appearance, such as plastic exterior products including electronic parts, automobile parts, and the like, even without a painting process.
- The present invention will be described more fully hereinafter in the following detailed description of the invention, in which some but not all embodiments of the invention are described. Indeed, this invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements.
- When a specific definition is not otherwise provided, the term “(meth)acrylate” refers to “acrylate” and “methacrylate”. “(Meth)acrylic acid alkyl ester” refers to both “acrylic acid alkyl ester” and “methacrylic acid alkyl ester”, and “(meth)acrylic acid ester” refers to both “acrylic acid ester” and “methacrylic acid ester”.
- Unless otherwise mentioned in the present specification, a “long diameter” denotes the length of a line connecting two points in a closed curved, and the “closed curve” is a curved line where a point moves in one direction and returns to the departure point.
- A thermoplastic resin composition according to one embodiment includes a thermoplastic resin and a metal particle obtained by punching and having a ratio of thickness relative to long diameter of about 1:7 to about 1:1, and may further include an inorganic particle.
- Each component included in the thermoplastic resin composition according to embodiments of the present invention will hereinafter be described in detail.
- (A) Thermoplastic Resin
- Examples of the thermoplastic resin may include without limitation polycarbonate resins, rubber modified vinyl-based copolymer resins, polyester resins, polyalkyl(meth)acrylate resins, and the like, and combinations thereof. The thermoplastic resin may provide basic properties such as impact resistance, heat resistance, flexural characteristics, tensile characteristics, and the like.
- The polycarbonate resin may be prepared by reacting one or more diphenols with a compound such as a phosgene, halogen formate, carbonate ester, or a combination thereof.
- Examples of the diphenols include without limitation hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl, 2,2-bis(4-hydroxyphenyl)propane (referred to as “bisphenol-A”), 2,4-bis(4-hydroxyphenyl)-2-methylbutane, bis (4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 2,2-bis (3-chloro-4-hydroxyphenyl)propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl)propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl)propane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl)propane, bis(4-hydroxyphenyl)sulfoxide, bis (4-hydroxyphenyl)ketone, bis(4-hydroxyphenyl)ether, and the like, and combinations thereof. In exemplary embodiments, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl)propane, or 1,1-bis (4-hydroxyphenyl)cyclohexane may be used, for example 2,2-bis (4-hydroxyphenyl)propane may be used.
- The polycarbonate resin may have a weight average molecular weight of about 10,000 to about 200,000 g/mol, for example about 15,000 to about 80,000 g/mol, but is not limited thereto.
- The polycarbonate resin may be a mixture of copolymers obtained using two or more dipenols that differ from each other. The polycarbonate resin may include a linear polycarbonate resin, a branched polycarbonate resin, a polyestercarbonate copolymer resin, and the like, as well as combinations thereof.
- The linear polycarbonate resin may include a bisphenol-A-based polycarbonate resin. The branched polycarbonate resin may be produced by reacting a multi-functional aromatic compound such as trimellitic anhydride, trimellitic acid, and the like with one or more diphenols and a carbonate. The multi-functional aromatic compound may be included in an amount of about 0.05 to about 2 mol % based on the total weight of the branched polycarbonate resin. The polyester carbonate copolymer resin may be produced by reacting difunctional carboxylic acid with one or more diphenols and a carbonate. The carbonate may include a diaryl carbonate such as diphenyl carbonate, ethylene carbonate, and the like.
- The rubber modified vinyl-based copolymer resin is a copolymer wherein about 5 to about 95 wt % of a vinyl-based polymer is grafted on about 5 to about 95 wt % of a rubbery polymer.
- In some embodiments, the rubber modified vinyl-based copolymer resin may include a rubbery polymer in an amount of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, or 95 wt %. Further, according to some embodiments of the present invention, the amount of the rubbery polymer can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.
- In some embodiments, the rubber modified vinyl-based copolymer resin may include a vinyl-based polymer in an amount of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, or 95 wt %. Further, according to some embodiments of the present invention, the amount of the vinyl-based polymer can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.
- The vinyl-based polymer may be a polymer of about 50 to about 95 wt % of a first vinyl-based monomer including an aromatic vinyl monomer, an acrylic-based monomer, a heterocyclic monomer, or a combination thereof; and about 5 to about 50 wt % of a second vinyl-based monomer including an unsaturated nitrile monomer, an acrylic-based monomer, a hetero cyclic monomer, or a combination thereof.
- In some embodiments, the vinyl-based polymer may include a first vinyl-based monomer in an amount of about 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, or 95 wt %. Further, according to some embodiments of the present invention, the amount of the first vinyl-based monomer can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.
- In some embodiments, the vinyl-based polymer may include a second vinyl-based monomer in an amount of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 wt %. Further, according to some embodiments of the present invention, the amount of the second vinyl-based monomer can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.
- Examples of the aromatic vinyl monomer may include without limitation styrene, C1 to C10 alkyl-substituted styrene, halogen-substituted styrene, and the like, and combinations thereof. Examples of the alkyl-substituted styrene may include without limitation o-ethyl styrene, m-ethyl styrene, p-ethyl styrene, α-methyl styrene, and the like, and combinations thereof.
- Examples of the acrylic-based monomer may include without limitation (meth)acrylic acid alkyl esters, (meth)acrylic acid esters, and the like, and combinations thereof. As used herein, the alkyl may be a C1 to C10 alkyl. Examples of the (meth)acrylic acid alkyl ester may include without limitation methyl(meth)acrylate, ethyl(meth)acrylate, propyl(meth)acrylate, butyl(meth)acrylate, and the like, and combinations thereof. In exemplary embodiments methyl(meth)acrylate may be used. Examples of the (meth)acrylic acid ester may include without limitation (meth)acrylate, and the like.
- Examples of the heterocyclic monomer may include without limitation maleic anhydride, C1-C10 alkyl- or phenyl N-substituted maleimide, and the like, and combinations thereof.
- Examples of the unsaturated nitrile monomer may include without limitation acrylonitrile, methacrylonitrile, ethacrylonitrile, and the like, and combinations thereof.
- Examples of the rubbery polymer may include without limitation butadiene rubbers, acrylic rubbers, ethylene/propylene rubbers, styrene/butadiene rubbers, acrylonitrile/butadiene rubbers, isoprene rubbers, ethylene-propylene-diene terpolymer (EPDM) rubbers, polyorganosiloxane/polyalkyl(meth)acrylates, rubber composites, and the like, and combinations thereof.
- When the rubber modified vinyl-based copolymer is prepared, a rubber particle may have a particle diameter of about 0.05 to about 4 μm to improve the impact resistance and surface characteristics of a molded product, and when the particle diameter of the rubber particle ranges from about 0.05 to about 4 μm, excellent impact strength may be secured.
- The rubber modified vinyl-based copolymer may be used singularly or as a mixture of two or more.
- The rubber modified vinyl-based copolymer may include styrene, acrylonitrile, and optionally methyl(meth)acrylate graft-copolymerized on a butadiene rubber, an acrylic rubber, or a styrene/butadiene rubber as a mixture.
- The rubber modified vinyl-based copolymer may include methyl(meth)acrylate graft-copolymerized on a butadiene rubber, an acrylic rubber, or a styrene/butadiene rubber.
- The rubber modified vinyl-based copolymer may include an acrylonitrile-butadiene-styrene graft copolymer.
- The method of preparing the rubber modified vinyl-based copolymer is widely known to those skilled in the art, and any method among emulsion polymerization, suspension polymerization, solution polymerization and mass (bulk) polymerization may be used. Emulsion polymerization or mass polymerization can be conducted by adding the aforementioned aromatic vinyl monomer to a rubbery polymer and using a polymerization initiator.
- The polyester resin can be an aromatic polyester resin, and it may be a condensation-polymerized resin obtained from melt polymerization of terephthalic acid or alkyl ester terephthalate, and a C2 to C10 glycol component. As used herein with reference to the alkyl ester terephthalate, the alkyl may be a C1 to C10 alkyl.
- Examples of the aromatic polyester resin may include without limitation polyethylene terephthalate resins, polytrimethylene terephthalate resins, polybutylene terephthalate resins, polyhexamethylene terephthalate resins, polycyclohexane dimethylene terephthalate resins, one of the foregoing polyester resins modified into a non-crystalline resin by mixing the resin with another monomer, and the like, and combinations thereof. In exemplary embodiments, the aromatic polyester can be a polyethylene terephthalate resin, a polytrimethylene terephthalate resin, a polybutylene terephthalate resin, and/or a non-crystalline polyethylene terephthalate resin, for example a polybutylene terephthalate resin and/or a polyethylene terephthalate resin may be used.
- The polybutylene terephthalate resin is a condensation-polymerized polymer obtained through a direct ester reaction or an ester exchange reaction of 1,4-butanediol, and terephthalic acid or dimethyl terephthalate monomer.
- To increase the impact strength of the polybutylene terephthalate resin, the polybutylene terephthalate resin may be copolymerized with polytetramethylene glycol (PTMG), polyethylene glycol (PEG), polypropylene glycol (PPG), a low molecular-weight aliphatic polyester, or aliphatic polyamide. Also the polybutylene terephthalate resin it may be used in the form of a modified polybutylene terephthalate resin obtained by blending with a component improving impact strength.
- The polybutylene terephthalate resin may have an intrinsic viscosity [n] of about 0.35 to about 1.5 dl/g, for example about 0.5 to about 1.3 dl/g in o-chloro phenol at 25° C. When the polybutylene terephthalate resin has an intrinsic viscosity [η] within the above range, the polybutylene terephthalate resin may have excellent mechanical strength and formability.
- The polyalkyl(meth)acrylate resin may be obtained by polymerizing a monomer material including an alkyl(meth)acrylate using a known polymerization method, such as a suspension polymerization method, a mass polymerization method, an emulsion method and the like.
- The alkyl(meth)acrylate may have a C1 to C10 alkyl group. Examples of the alkyl(meth)acrylate may include without limitation methyl(meth)acrylate, ethyl(meth)acrylate, butyl(meth)acrylate, glycidyl(meth)acrylate, hydroxyethyl(meth)acrylate, and the like, and combinations thereof.
- The alkyl(meth)acrylate may be included in an amount of greater than or equal to about 50 wt % based on the total amount (weight) of the polyalkyl(meth)acrylate. In some embodiments, the polyalkyl(meth)acrylate resin may include an alkyl(meth)acrylate in an amount of about 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 wt %. Further, according to some embodiments of the present invention, the amount of the alkyl(meth)acrylate can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.
- The polyalkyl(meth)acrylate may have a weight average molecular weight of about 10,000 to about 200,000 g/mol, for example about 15,000 to about 150,000 g/mol. When the polyalkyl(meth)acrylate has a weight average molecular weight within the above range, hydrolysis resistance, scratch resistance, workability, and the like may be improved.
- (B) Metal Particle Obtained by Punching
- The metal particle obtained by punching may provide the thermoplastic resin with a metal-like texture.
- The metal particle obtained by punching may be a kind of a sparkling particle having a flat surface reflecting light. As used herein, the flat surface is a flat surface that the glittering of particles may be seen with the naked eye, for example, the flat surface refers to the surface of sheet glass or a polished metal surface.
- The metal particle obtained by punching refers to a metal particle cut in a uniform or regular shape, and it is distinguished from an inorganic particle which can have a relatively irregular shape.
- The metal particle obtained by punching may be made of a material including aluminum, copper, gold, or a combination thereof. In exemplary embodiments, the metal particle may include aluminum.
- The metal particle obtained by punching may have a ratio of a thickness relative to a long diameter of about 1:7 to about 1:1, for example about 1:5 to about 1:2.
- As used herein, the term “thickness” refers to the height dimension of the metal particle obtained by punching, and the term “long diameter” refers to the length dimension (the longest dimension) of the metal particle obtained by punching. The skilled artisan will appreciate that the metal particle obtained by punching does not necessarily have precise or exact dimensions but that the metal particle obtained by punching can have variations or deviations in the shape thereof.
- When the metal particle obtained by punching has a ratio of thickness relative to long diameter range within the above range, a molded product having minimal or no flow marks and/or weld lines and excellent metal-like texture may be provided.
- The metal particle obtained by punching may have a long diameter of about 10 to about 150 μm, and may have a cross-sectional area of about 100 to about 22,500 μm2. When the metal particle obtained by punching has a long diameter and cross-sectional area within the above range, a molded product having minimal or no flow marks and/or weld lines and excellent metal-like texture may be provided.
- The thermoplastic resin composition may include the metal particle obtained by punching in an amount of about 0.01 to about 10 parts by weight, for example about 0.05 to about 1 parts by weight, based on about 100 parts by weight of the thermoplastic resin. In some embodiments, the thermoplastic resin composition may include the metal particle obtained by punching in an amount of about 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 parts by weight. Further, according to some embodiments of the present invention, the amount of the metal particle obtained by punching can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.
- When the metal particle obtained by punching is used in an amount within the above range, a molded product having excellent impact strength, having minimal or no flow marks and/or weld lines, and having excellent metal-like texture may be obtained.
- (C) Inorganic Particle
- The thermoplastic resin composition may further include the inorganic particle.
- The inorganic particle may be another kind of sparkling particle having a flat surface reflecting light, which is different from the metal particle obtained by punching. As used herein, the flat surface is the same as described above.
- Examples of the inorganic particle may include without limitation glass particles, mica, graphite, pearl particles, and the like, and combinations thereof. In exemplary embodiments, the inorganic particle may include a glass particle.
- The glass particle can have a sheet structure, and accordingly, the glass particle is different from a glass fiber which usually has a cylindrical shape. The glass fiber having a cylindrical shape does not reflect light and thus it does not significantly impart a metal-like texture. The glass particle may have circular, oval, and amorphous cross-sectional surfaces.
- The inorganic particle may have a long diameter of about 10 to about 200 μm, a thickness of about 0.5 to about 10 μm, and a cross-sectional area of about 80 to about 32,000 μm2.
- As used herein, the term “thickness” refers to the height dimension of the inorganic particle, and the term “long diameter” refers to the length dimension (the longest dimension) of the inorganic particle.
- When the inorganic particle has a long diameter, thickness, and cross-sectional area within the above ranges, a molded product having minimal or no flow marks and/or weld lines and having excellent metal-like texture may be provided.
- The thermoplastic resin composition may include the inorganic particle in an amount of about 0.01 to about 10 parts by weight, for example about 0.05 to about 10 parts by weight, based on about 100 parts by weight of the thermoplastic resin. In some embodiments, the thermoplastic resin composition may include the inorganic particle in an amount of about 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 parts by weight. Further, according to some embodiments of the present invention, the amount of the inorganic particle can be in a range from about any of the foregoing amounts to about any other of the foregoing amounts.
- When the inorganic particle is included in an amount within the above range, a molded product having excellent impact strength, minimal or no flow marks and/or welds line, and excellent metal-like texture may be obtained.
- The metal particle obtained by punching (B) and the inorganic particle (C) may be mixed in a weight ratio of about 1:5 to about 5:1, and for example about 1:2 to about 2:1 in the thermoplastic resin composition. When the metal particle obtained by punching (B) and the inorganic particle (C) are mixed in a weight ratio within the above range, impact strength can be improved, and a molded product that can have excellent impact strength, minimal or no flow marks and/or weld lines, and excellent metal-like texture may be obtained.
- (D) Other Additive(s)
- The thermoplastic resin composition according to one embodiment can include one or more additives. Examples of the additives include without limitation antibacterial agents, heat stabilizers, antioxidants, release agents, light stabilizers, surfactants, coupling agents, plasticizers, admixtures, colorants, stabilizers, lubricants, antistatic agents, coloring aids, flame proofing agents, weather-resistance agents, ultraviolet (UV) absorbers, ultraviolet (UV) blocking agents, nucleating agents, adhesion aids, adhesives, and the like, and combinations thereof.
- Examples of the antioxidant may include without limitation phenol antioxidants, phosphite antioxidants, thioether antioxidants, amine antioxidants, and the like, and combinations thereof. Examples of the release agent may include without limitation fluorine-included polymers, silicone oils, a stearic metal salts, montanic metal salts, montanic ester waxes, polyethylene waxes, and the like, and combinations thereof. Examples of the weather-resistance agent may include without limitation benzophenone-type weather-resistance agents, amine-type weather-resistance agents, and the like, and combinations thereof. Examples of the colorant may include without limitation dyes, pigments, and the like, and combinations thereof. Examples of the ultraviolet (UV) blocking agent may include without limitation titanium dioxide (TiO2), carbon black, and the like, and combinations thereof. Examples of the nucleating agent may include without limitation talc, clay, and the like, and combinations thereof.
- The additive may be included in a predetermined amount as long as it does not deteriorate the properties of the thermoplastic resin composition. In exemplary embodiments, the thermoplastic resin composition may include the additive in an amount of less than or equal to about 40 parts by weight, for example about 0.1 to about 30 parts by weight, based on about 100 parts by weight of the thermoplastic resin composition.
- The thermoplastic resin composition may be prepared using any well-known method of preparing a resin composition. For example, each component according to one embodiment of the present invention can be simultaneously mixed, optionally with one or more additives. The mixture can be melt-extruded and prepared as pellets.
- According to another embodiment of the present invention, a molded product fabricated using the thermoplastic resin composition is provided. The thermoplastic resin composition can be used to manufacture a molded product using any various known processes such as injection molding, blow molding, extrusion molding, thermal molding, and the like. The thermoplastic resin composition may be used to make a molded product having minimal or no flow marks and/or weld lines and having a metal-like texture, such as but not limited to plastic outer parts such as electronic parts, automobile parts, and the like.
- The following examples illustrate this invention in more detail. However, it is understood that this invention is not limited by these examples.
- A thermoplastic resin composition according to one embodiment includes each component as follows.
- (A) Thermoplastic Resin
- As a rubber modified vinyl-based copolymer resin, SD-0150 produced by Cheil Industries INC., which is an ABS resin, is used.
- (B) Metal Particle Obtained by Punching
- (B-1) Aluminum particles having a cross-sectional area of 2,500 μm2, a long diameter of 50 μm and a thickness of 10 μm are used.
- (B-2) Aluminum particles having a cross-sectional area of 2,500 μm2, a long diameter of 50 μm and a thickness of 6 μm are used.
- (C) Inorganic Particle
- Amorphous sheet-shaped glass particles having a cross-sectional area of 2,000 μm2, a long diameter of 50 μm, and a thickness of 4 μm are used.
- The thermoplastic resin compositions according to Examples 1 to 7 and Comparative Examples 1 to 4 are prepared using the components described above the following Table 1 according to the amounts described in Table 1.
- As for the manufacturing method, the components are mixed in the amounts shown in the following Table 1, and the mixture is extruded at a temperature range of 180 to 240° C. with a typical twin-screw extruder, and the extruded material is manufactured in pellets.
- The manufactured pellets are dried at 80° C. for 4 hours, and a material specimen is manufactured using an injection molding machine capable of 6 oz injection, setting a cylinder temperature at 210 to 230° C., a molding temperature at 100° C. and molding cycle time at 30 seconds, and performing injection-molding to form ASTM dumb-bell specimens. The properties of the manufactured material specimen are measured in accordance with the following methods and the results are shown in the following Table 1.
- 1) IZOD impact strength: measured according to ASTM D256 (specimen thickness 1/8″).
- 2) Injection appearance: Injection is performed to form a weld line by using a mold having two gates, and the result of observing the appearance of an injected material is shown based on the standards shown in the following Table 2.
-
TABLE 1 Comparative Examples Examples 1 2 3 4 5 6 7 1 2 3 4 (A) Thermoplastic 100 100 100 100 100 100 100 100 100 100 100 resin (parts by weight) (B) Metal (B-1, parts 0.3 0.3 0.3 1 0.5 0.5 1 — — — — particle by weight) obtained (B-2, parts — — — — — — — 0.5 1 10 — by by weight) punching (C) Inorganic particle — 0.3 0.5 — 0.3 0.5 0.5 — — — 1 (parts by weight) IZOD impact strength 17 15 14 13 13 12 10 13 11 3 8 (kgf · cm/cm) Injection Metal-like ◯ ⊚ ⊚ ⊚ ⊚ ⊚ ⊚ X ◯ ⊚ X appearance texture Flow mark ⊚ ⊚ ⊚ ◯ ⊚ ◯ ◯ Δ X X ⊚ Weld line ⊚ ⊚ ◯ ◯ ◯ ◯ ◯ X X X ⊚ -
TABLE 2 Flow mark Metal-like texture Weld line ⊚ None Excellent None ◯ A little Good A little Δ Occurrence A little Occurrence X Serious occurrence None Serious occurrence - The thermoplastic resin compositions according to Examples 1 to 7 including the thermoplastic resin and a metal particle obtained by punching and having a ratio of a thickness relative to a long diameter of about 1:7 to about 1:1 in accordance with one embodiment have excellent impact strength, formed minimal or no flow marks and/or weld lines, and provide an excellent metal-like texture, compared with the thermoplastic resin compositions according to Comparative Examples 1 to 3 using a metal particle having a ratio of thickness relative to long diameter outside of the range of about 1:7 to about 1:1, and the thermoplastic resin compositions according to Comparative Example 4 which did not include the metal particle.
- Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being defined in the claims.
Claims (11)
1. A thermoplastic resin composition, comprising
a thermoplastic resin; and
a metal particle obtained by punching that has a ratio of thickness relative to long diameter of about 1:7 to about 1:1.
2. The thermoplastic resin composition of claim 1 , wherein the thermoplastic resin composition further comprises an inorganic particle.
3. The thermoplastic resin composition of claim 1 , wherein the thermoplastic resin comprises a polycarbonate resin, a rubber modified vinyl-based copolymer resin, a polyester resin, a polyalkyl(meth)acrylate resin, or a combination thereof.
4. The thermoplastic resin composition of claim 1 , wherein the metal particle obtained by punching is made of a material including aluminum, copper, gold, or a combination thereof.
5. The thermoplastic resin composition of claim 1 , wherein the metal particle obtained by punching has a ratio of thickness relative to long diameter of about 1:5 to about 1:2.
6. The thermoplastic resin composition of claim 1 , comprising the metal particle obtained by punching in an amount of about 0.01 to about 10 parts by weight based on about 100 parts by weight of the thermoplastic resin.
7. The thermoplastic resin composition of claim 2 , wherein the inorganic particle comprises a glass particle, mica, graphite, a pearl particle, or a combination thereof.
8. The thermoplastic resin composition of claim 2 , wherein the inorganic particle has a long diameter of about 10 to about 200 μm, and a thickness of about 0.5 to about 10 μm.
9. The thermoplastic resin composition of claim 2 , comprising the inorganic particle in an amount of about 0.01 to about 10 parts by weight based on about 100 parts by weight of the thermoplastic resin.
10. The thermoplastic resin composition of claim 2 , wherein the metal particle obtained by punching and the inorganic particle are mixed in a weight ratio of about 1:5 to about 5:1.
11. A molded product fabricated using the thermoplastic resin composition of claim 1 .
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2009-0135999 | 2009-12-31 | ||
KR20090135999 | 2009-12-31 | ||
KR20100054950A KR20110079466A (en) | 2009-12-31 | 2010-06-10 | Thermoplastic resin composition and molded product using the same |
KR10-2010-0054950 | 2010-06-10 | ||
PCT/KR2010/008596 WO2011081304A2 (en) | 2009-12-31 | 2010-12-02 | Thermoplastic resin composition, and molded product using same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2010/008596 Continuation-In-Part WO2011081304A2 (en) | 2009-12-31 | 2010-12-02 | Thermoplastic resin composition, and molded product using same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120264869A1 true US20120264869A1 (en) | 2012-10-18 |
Family
ID=44918837
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/535,939 Abandoned US20120264869A1 (en) | 2009-12-31 | 2012-06-28 | Thermoplastic Resin Composition and Molded Product Using the Same |
US13/535,872 Expired - Fee Related US8946337B2 (en) | 2009-12-31 | 2012-06-28 | Thermoplastic resin composition and molded product using the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/535,872 Expired - Fee Related US8946337B2 (en) | 2009-12-31 | 2012-06-28 | Thermoplastic resin composition and molded product using the same |
Country Status (3)
Country | Link |
---|---|
US (2) | US20120264869A1 (en) |
KR (2) | KR101297159B1 (en) |
CN (2) | CN102686656A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2604647A1 (en) * | 2011-12-13 | 2013-06-19 | Cheil Industries Inc. | Thermoplastic resin composition |
US8946337B2 (en) | 2009-12-31 | 2015-02-03 | Cheil Industries Inc. | Thermoplastic resin composition and molded product using the same |
US9249330B2 (en) | 2012-09-06 | 2016-02-02 | Cheil Industries Inc. | Resin composition and article using the same |
JP2016505088A (en) * | 2013-02-06 | 2016-02-18 | エスケー ケミカルズ カンパニー リミテッド | Polymer resin composition excellent in impact resistance or heat resistance |
US9637630B2 (en) | 2013-02-21 | 2017-05-02 | Samsung Sdi Co., Ltd. | Resin composition and moulded article using same |
US9657167B2 (en) | 2011-12-30 | 2017-05-23 | Samsung Sdi Co., Ltd. | Thermoplastic resin composition |
US9732211B2 (en) | 2013-10-30 | 2017-08-15 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition having improved weather resistance |
US9790369B2 (en) | 2012-12-31 | 2017-10-17 | Lotte Advanced Materials Co., Ltd. | Composite material and method for preparing composite material |
US9944053B2 (en) | 2012-10-24 | 2018-04-17 | Lotte Advanced Materials Co., Ltd. | Laminate sheet, method of manufacturing the laminate sheet, and article using the laminate sheet |
US10118370B2 (en) | 2012-09-07 | 2018-11-06 | Lotte Advanced Materials Co., Ltd. | Article and manufacturing method of article |
US10626266B2 (en) | 2016-12-20 | 2020-04-21 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition and molded product using the same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101474799B1 (en) * | 2011-10-27 | 2014-12-19 | 제일모직 주식회사 | Thermoplastic resin composition and molded product using the same |
KR101583223B1 (en) * | 2012-12-31 | 2016-01-07 | 제일모직 주식회사 | Thermoplastic resin composition and molded product using the same |
KR20150001991A (en) * | 2013-06-28 | 2015-01-07 | 제일모직주식회사 | Thermoplastic resin composition and molded article using the same |
KR20180104053A (en) | 2016-01-21 | 2018-09-19 | 티코나 엘엘씨 | Polyamide composition containing metallic pigment |
KR102209795B1 (en) * | 2018-10-31 | 2021-02-01 | 주식회사 삼양사 | Thermoplastic resin composition comprising metal particles and molded article produced using the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61159453A (en) * | 1984-12-29 | 1986-07-19 | Canon Inc | Resin molding |
JPH07156299A (en) * | 1993-12-08 | 1995-06-20 | Kanegafuchi Chem Ind Co Ltd | Resin molded form and synthetic resin composition |
US5530051A (en) * | 1993-12-08 | 1996-06-25 | Kanegafuchi Kagaku Kabushiki Kaisha | Synthetic resin composition and metallic pigment for incorporation into synthetic resin |
US6270895B1 (en) * | 1999-03-12 | 2001-08-07 | E.I. Du Pont De Nemours And Company | Glitter containing filaments for use in brushes |
JP2003049082A (en) * | 2001-08-08 | 2003-02-21 | Ono Sangyo Kk | Thermoplastic resin composition and molded article of the same |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57126848A (en) | 1981-01-30 | 1982-08-06 | Asahi Chem Ind Co Ltd | Resin composition having metallic luster |
FR2510145B1 (en) | 1981-07-24 | 1986-02-07 | Rhone Poulenc Spec Chim | ADDITIVE FOR AN ACID ELECTROLYTIC COPPER BATH, ITS PREPARATION METHOD AND ITS APPLICATION TO COPPER PRINTED CIRCUITS |
JPS5869231A (en) | 1981-10-21 | 1983-04-25 | Yoshida Kogyo Kk <Ykk> | Coloration of thermoplastic synthetic resin molding |
JPS6069160A (en) * | 1983-09-26 | 1985-04-19 | Riken Corp | Synthetic resin article reinforced with amorphous metallic particle |
US4891068A (en) * | 1988-05-12 | 1990-01-02 | Teikoku Piston Ring Co., Ltd. | Additive powders for coating materials or plastics |
US5087657A (en) * | 1989-02-23 | 1992-02-11 | Amoco Corporation | Fiber-reinforced composites toughened with resin particles |
JPH083121B2 (en) * | 1990-11-16 | 1996-01-17 | 健 増本 | Aluminum alloy powder for paint |
JP2617377B2 (en) * | 1991-03-01 | 1997-06-04 | 帝国ピストンリング株式会社 | Pigment for underwater antifouling paint and underwater antifouling paint composition |
JP3312461B2 (en) * | 1993-12-28 | 2002-08-05 | 鐘淵化学工業株式会社 | Polyester resin composition and polyester resin molded article |
JPH0866927A (en) | 1994-06-22 | 1996-03-12 | Asahi Chem Ind Co Ltd | Matte synthetic resin injection-molded article and manufacture thereof |
JP2910579B2 (en) | 1994-10-12 | 1999-06-23 | 日本硝子繊維株式会社 | Metallic pigment and synthetic resin composition containing the same |
JP3745476B2 (en) | 1996-12-11 | 2006-02-15 | 電気化学工業株式会社 | Thermoplastic resin composition |
JPH10182873A (en) | 1996-12-24 | 1998-07-07 | Matsushita Electric Works Ltd | Molding material and molded item obtained therefrom |
JPH11279434A (en) | 1998-03-26 | 1999-10-12 | Hitachi Chem Co Ltd | Metallic pigment, composition for metallic tone molding product and metallic tone molding product |
JP2000313747A (en) * | 1999-04-30 | 2000-11-14 | Japan Polychem Corp | Production of brightening material-containing polypropylene-based resin molded product |
JP2001226601A (en) | 1999-12-06 | 2001-08-21 | Nippon Sheet Glass Co Ltd | Glossy resin composition and molded product therefrom |
JP2001262003A (en) | 2000-03-15 | 2001-09-26 | Hitachi Chem Co Ltd | Production method for metallic pigment, composition prepared by using the same and used for metallic molded article, and metallic molded article |
JP4048782B2 (en) | 2002-01-08 | 2008-02-20 | ユーエムジー・エービーエス株式会社 | Metallic tone resin molded article and molding method of metallic tone resin composition |
US7312257B2 (en) | 2003-01-23 | 2007-12-25 | General Electric Company | Polymer encapsulation of high aspect ratio materials and methods of making same |
KR100550808B1 (en) | 2003-11-17 | 2006-02-09 | 주식회사 에스테크 | The multi-layer type sheet for shielding from electromagnetic waves and the method for making it |
JP2006137888A (en) * | 2004-11-15 | 2006-06-01 | Sumitomo Chemical Co Ltd | Bright material-containing resin composition |
KR100789244B1 (en) * | 2005-05-11 | 2008-01-02 | 주식회사 엘지화학 | Polymer resin composition and the method of manufacturing the same |
US7629403B2 (en) * | 2005-08-01 | 2009-12-08 | Basf Coatings Ag | Organic dispersions of inorganic particles and coating compositions containing them |
JP5188676B2 (en) | 2005-11-16 | 2013-04-24 | 住友化学株式会社 | Luster-containing resin composition |
KR100739192B1 (en) | 2005-12-29 | 2007-07-13 | 엘지전자 주식회사 | Plastic injection molding method and mold thereof |
JP5049695B2 (en) | 2007-08-10 | 2012-10-17 | 日本ポリプロ株式会社 | Propylene polymer composition |
KR101297159B1 (en) | 2009-12-31 | 2013-08-21 | 제일모직주식회사 | Thermoplastic resin composition and molded product using the same |
WO2011081304A2 (en) | 2009-12-31 | 2011-07-07 | 제일모직 주식회사 | Thermoplastic resin composition, and molded product using same |
WO2011081305A2 (en) | 2009-12-31 | 2011-07-07 | 제일모직 주식회사 | Thermoplastic resin composition, and molded product using same |
EP2559731A4 (en) * | 2010-04-16 | 2014-01-22 | Asahi Kasei Chemicals Corp | Polyacetal resin composition, process for production of the composition, and molded article |
-
2010
- 2010-06-10 KR KR20100054948A patent/KR101297159B1/en active IP Right Grant
- 2010-06-10 KR KR20100054950A patent/KR20110079466A/en not_active Application Discontinuation
- 2010-12-02 CN CN2010800599408A patent/CN102686656A/en active Pending
- 2010-12-02 CN CN201080059942.7A patent/CN102686657B/en active Active
-
2012
- 2012-06-28 US US13/535,939 patent/US20120264869A1/en not_active Abandoned
- 2012-06-28 US US13/535,872 patent/US8946337B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61159453A (en) * | 1984-12-29 | 1986-07-19 | Canon Inc | Resin molding |
JPH07156299A (en) * | 1993-12-08 | 1995-06-20 | Kanegafuchi Chem Ind Co Ltd | Resin molded form and synthetic resin composition |
US5530051A (en) * | 1993-12-08 | 1996-06-25 | Kanegafuchi Kagaku Kabushiki Kaisha | Synthetic resin composition and metallic pigment for incorporation into synthetic resin |
US6270895B1 (en) * | 1999-03-12 | 2001-08-07 | E.I. Du Pont De Nemours And Company | Glitter containing filaments for use in brushes |
JP2003049082A (en) * | 2001-08-08 | 2003-02-21 | Ono Sangyo Kk | Thermoplastic resin composition and molded article of the same |
Non-Patent Citations (4)
Title |
---|
CAPlus Abstract of JP 61-159453 (AN 1986:573852, 07-1986) * |
Machine translated English equivalent of JP 07-156299 (06-1995, 10 pages). * |
Machine translated English equivalent of JP 2003-049082 (02-2003, 4 pages). * |
Starr (Glass-Fibre Directory and Databook Edition 2. 8.1 Flake Glass: 1.11 Nippon Sheet Glass Co Ltd. 1997, p. 323). * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8946337B2 (en) | 2009-12-31 | 2015-02-03 | Cheil Industries Inc. | Thermoplastic resin composition and molded product using the same |
US8962733B2 (en) | 2011-12-13 | 2015-02-24 | Cheil Industries Inc. | Thermoplastic resin composition |
EP2604647A1 (en) * | 2011-12-13 | 2013-06-19 | Cheil Industries Inc. | Thermoplastic resin composition |
US9657167B2 (en) | 2011-12-30 | 2017-05-23 | Samsung Sdi Co., Ltd. | Thermoplastic resin composition |
US9249330B2 (en) | 2012-09-06 | 2016-02-02 | Cheil Industries Inc. | Resin composition and article using the same |
US10118370B2 (en) | 2012-09-07 | 2018-11-06 | Lotte Advanced Materials Co., Ltd. | Article and manufacturing method of article |
US9944053B2 (en) | 2012-10-24 | 2018-04-17 | Lotte Advanced Materials Co., Ltd. | Laminate sheet, method of manufacturing the laminate sheet, and article using the laminate sheet |
US9790369B2 (en) | 2012-12-31 | 2017-10-17 | Lotte Advanced Materials Co., Ltd. | Composite material and method for preparing composite material |
JP2016505088A (en) * | 2013-02-06 | 2016-02-18 | エスケー ケミカルズ カンパニー リミテッド | Polymer resin composition excellent in impact resistance or heat resistance |
US9637630B2 (en) | 2013-02-21 | 2017-05-02 | Samsung Sdi Co., Ltd. | Resin composition and moulded article using same |
US9732211B2 (en) | 2013-10-30 | 2017-08-15 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition having improved weather resistance |
US9951216B2 (en) | 2013-10-30 | 2018-04-24 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition having improved weather resistance |
US10626266B2 (en) | 2016-12-20 | 2020-04-21 | Lotte Advanced Materials Co., Ltd. | Thermoplastic resin composition and molded product using the same |
Also Published As
Publication number | Publication date |
---|---|
US8946337B2 (en) | 2015-02-03 |
CN102686657B (en) | 2015-03-25 |
US20120270988A1 (en) | 2012-10-25 |
CN102686656A (en) | 2012-09-19 |
KR20110079466A (en) | 2011-07-07 |
KR101297159B1 (en) | 2013-08-21 |
CN102686657A (en) | 2012-09-19 |
KR20110079465A (en) | 2011-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8946337B2 (en) | Thermoplastic resin composition and molded product using the same | |
KR101474799B1 (en) | Thermoplastic resin composition and molded product using the same | |
KR101020353B1 (en) | High flow engineering thermoplastic compositions and products made therefrom | |
US9657167B2 (en) | Thermoplastic resin composition | |
US8546469B2 (en) | Glass fiber-reinforced polyester resin composition and molded product using the same | |
US7956127B2 (en) | Polycarbonate resin composition and plastic article | |
KR101795132B1 (en) | Polycarbonate resin composition and molded article using the same | |
US20100056700A1 (en) | Environmentally-Friendly Polylactic Acid Resin Composition | |
US9862822B2 (en) | Thermoplastic resin composition and molded article made using the same | |
US8962733B2 (en) | Thermoplastic resin composition | |
KR20130078747A (en) | Thermoplastic resin composition | |
US9249330B2 (en) | Resin composition and article using the same | |
US20140221547A1 (en) | Thermoplastic Resin Composition and Article Using the Same | |
KR100876200B1 (en) | Polycarbonate thermoplastic resin composition | |
US10822492B2 (en) | Thermoplastic resin composition and molded product containing same | |
US20170002198A1 (en) | Thermoplastic Resin Composition and Article Comprising the Same | |
WO2011081305A2 (en) | Thermoplastic resin composition, and molded product using same | |
KR101583223B1 (en) | Thermoplastic resin composition and molded product using the same | |
KR101409432B1 (en) | Polycarbonated based thermoplastic resin composition and articles made therefrom | |
TW201837115A (en) | Composition and thermoplastic moulding compound having reduced gloss and good chemical resistance | |
WO2011081304A2 (en) | Thermoplastic resin composition, and molded product using same | |
KR20130074366A (en) | Thermoplastic resin composition and molded product using the same | |
KR20130073538A (en) | Thermoplastic resin composition and molded product using the same | |
JP2016204459A (en) | Hard copolymer, thermoplastic resin composition and resin molding | |
KR20130078430A (en) | Thermoplastic resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CHEIL INDUSTRIES INC., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, HYUNG-TAK;HA, DOO-HAN;CHO, JIN-KYUNG;AND OTHERS;REEL/FRAME:028461/0571 Effective date: 20120628 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |