TW200842208A - High temperature molten salts electrolyte and its preparing method, and preparing method applied the electrolyte to produce platinum thin film - Google Patents

High temperature molten salts electrolyte and its preparing method, and preparing method applied the electrolyte to produce platinum thin film Download PDF

Info

Publication number
TW200842208A
TW200842208A TW096115396A TW96115396A TW200842208A TW 200842208 A TW200842208 A TW 200842208A TW 096115396 A TW096115396 A TW 096115396A TW 96115396 A TW96115396 A TW 96115396A TW 200842208 A TW200842208 A TW 200842208A
Authority
TW
Taiwan
Prior art keywords
platinum
electrolyte
high temperature
temperature molten
molten salt
Prior art date
Application number
TW096115396A
Other languages
Chinese (zh)
Inventor
Chao-Chen Yang
Original Assignee
Univ Nat Yunlin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Yunlin Sci & Tech filed Critical Univ Nat Yunlin Sci & Tech
Priority to TW096115396A priority Critical patent/TW200842208A/en
Publication of TW200842208A publication Critical patent/TW200842208A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

A high temperature molten salts electrolyte and its preparing method, and a preparing method applied the high temperature molten salts electrolyte to produce platinum thin film are disclosed. The high temperature molten salts electrolyte has a broad electrochemical potential window and high ionic conductivity, which can electrolyze and deposit metal coating including platinum group. The proper composition of electrolyte and pulse electrolyzing parameters can produce more thick coating and more durable Ti-based platinum coating.

Description

200842208 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種高溫型 蛐鹽電解質及盆· 方法,與應用該電解質製備白金薄 、一 ^ 1 /寻膜之方法,且特別是有 電解質及其製備方法 關於一種以電化學沈積法製備白一 _ . _ _ 兔,專膜之南溫型溶融鹽 【先前技術】 臨近海邊發電廠設施及油f輪㈣統等以海水作為 熱交換用冷卻水系統者居多’冷卻管材_般常用材料為黃 銅:鈦金屬為主。隨著表面材質不同亦有各式防蝕措施。 依資料統計海中所存活生物,細@類5()種、&藻類11〇種、 海藻450種、動物類1340種,共計195〇種,具有吸附固著 性質者近146G種。為此具附著細菌_大小可包括加程度 之微附著生物至l〇cm左右之巨附著貝類生物。這些均會以 膜狀、纖維狀、棒狀附著於熱交換水管内外側,造成傳熱 效率損失、流動阻抗增加、熱交換器腐蝕等問題。當循環 用輸水管'引水管等冷卻水系統如有微生物附著時,更會 對流量造成影響。因此如何消除吸附於發電廠冷卻水系統 及輸送油管熱交換管路中之海中菌類乃為待決之問題。 為了避免於海水吸入時會將具有附著習性之附著生 物幼蟲同時吸入,附著於管道的内壁,降低海水冷卻效 用’因此需在吸入的水中添加少許的含氣化合物,以殺死 這些附著生物幼蟲,以保持熱交換器管路之暢通。目前為 200842208 a尺進口處及熱父換器内海洋生物的繁殖,避面影響 正吊供水置並確保管路暢通,維持良好熱傳導效率,減低 設備故障率及不必要的損失。 一般處理的方法有 (U液氯法:將液氯蒸發為氯氣,用水抽送添加; (2) 次氯酸鈉法:直接添加次氯酸鈉藥液; (3) -人氯酸鈣或氯化石灰漂白粉··即將漂白粉先溶 為混濁液後添加; (4) 電解法:電解海水產生次氯酸鈉。 以上四種方法中部分屬於暫時性作業方式,且不合經 濟原則(如漂白粉的添加)’次氯酸納的添加方式則不比 液氯法來的經濟,操作與安全性亦較差;而液氯法又常考 慮氣=卜茂’設備容易腐蝕及氯污染影響生態問題。 綜合論之,以海水電解製造次氣酸納法之優點可以歸 =為具高安全性(僅產生u%cl2),高經濟效益(投資費 尚、營運成本低)’高穩定性等優點並有功能佳、可提高 技術層次及無氯氣污染問題等特徵。 電解工業上為提升電解製造次氯酸鈉之電解效率,言 叩貝夕機月b性電極材料開發乃為相當重要的課題。隨著 工業電解發展,多種電極材料之品f要求日益嚴格,尤盆 是腐姓性明顯之鹽水電解製造氣化合物用不溶性金屬電 極(DhnensionallyStableElectr〇de; dse)所需 件,如電阻抗性*,反應觸媒能大,化學機 電 化學安錢等更為材料選擇所需考慮的因素。白金族金^ 200842208 例如鉑(Pt)、鈀(Pd)、釕(RU)、铑(Rh)、銥(Ir)等 均具有上述電極材料之特殊性質。例如白金具有高純度及 化學安定性,乃過硫酸鹽、過氣酸鹽工業電解程序上廣為 使用之電極材料。 多種電極基材表面進行貴金屬薄膜披覆成形方法有 真空蒸鍍法、金屬有機化合物之熱分解法、氣相化學披覆 法及電化學坡覆法為主;為提升電極使用壽命及電流效 率,改善白金披覆層厚度以及與金屬基材間之結合特性均 十分重要,尤其白金金屬價昂,各種基材表面處理時,為 達到貝重貧源之有效利用,熔融鹽表面電解披覆技術乃能 滿足產業所需。 具有離子導電特性之熔融鹽電解質兼備低蒸汽壓、高 導電度、高分解電壓及低黏度等性f,適用於—般水溶液 無法進行之電解沈積反應。近年來有關金屬基材表面電解 披覆鎢、鈦、鉬等高熔點金屬之技術報導頗受注目。 欽金屬具優良之耐钮性及強度,為先端技術產業廣為 使用之基材。特別是於含有氯離子之水溶液環境中不錄鋼 及銅合金等均不具抗純;相對的,鈦金相具有耐孔 蝕’耐應力腐银的特,點。本發明乃以鈦金屬冑電極板基 材,利用無機熔融鹽所具備之良好傳導特性,以調配三元 系驗金屬共融氯化物電解質浴並添加Ptcl2、H2Ptci6等睡類 以脈衝電流技術,改變T,T〇ff比例、電流密度、電;時 間、電解質組成及㈣電解操作參數,建域融鹽浴法於 鈦基板上電解鍍鉑技術。所得鉑鍍層以SEM&x_ray進行表 7 200842208 面結構及成分分析。 由於脈衝電流技術可控制熔融鹽浴法。金屬表面電解 披覆層之結晶特性;換言之,可以有效的控制鈦基板上披 覆白金顆粒之有效面積及高電極活性,對pt/Ti電極之製作 極具特色。 本發明乃以熔融鹽電解質浴之配製,電化學反應裝置 設計,並以製取鍍層厚、附著性佳之翻金屬層膜為主要目 標;所得Pt/Ti電極將提供做為如電化學電解工業,海水電 解製造次氯酸鈉程序之不溶性電極材料。 白金披後之金屬電極用途甚廣,例如純水電解製造 H2/〇2,海水電解製造次氯酸納,及其料類電化學反應用 電極材料。以海水電解製造次氯酸鈉為例,可適用於濱海 地區之發鹤海水電解處理、_發電廠海水處理、核子 發電廠海水處理、海水淡化廠、海中石油鑽探等海水處 理、海洋船純用水處理及卫業廢水處理。湘本發明所 得電極特色包含: (1) 白金鍍層厚度大,符合工業電解需求。 (2) 電化予脈衝披覆技術所得之白金鍍層純度可達9〇 %以上,具有良好的附著性,安定觸媒性,良好的耐蝕特 性,可提升電極之使用壽命。 (3) 採用新型無機熔融鹽電解組成,於製程中無二次污 染問題,且製程所需設備簡單,可大幅降低成本,符合綠 色科技之實用化效益。 200842208 【發明内容】 本1明的目的就是在提供一種高温型溶融鹽電解質。 本發明的另-目的就是在提供一種高溫型熔融鹽電 解質之製備方法。 本I明的又一目的就是在提供一種應用高溫型熔融 鹽電解質製備白金薄膜之方法。 根據本發明之上述目的,此高溫型㈣鹽包含數種驗 金屬氯化物,氯化鋰(LiC1)、氯化鈉(NaC1)、氯化鉀(kci) 與虱化鉑(HjtCl6或PtClJ,預先配製含12〜3〇克氣化鋰 (LiCl) 3里與15〜5〇克氯化_(KC1)含量,研磨均勻成一混 6物’置於直立式石英加熱爐中,溫度設定為673〜773k, 加熱6〜12小時後融解混合均勻,進一步添加〇6〜6克研磨成 粉末之氯化鈉(NaCl)與6〜10克氯化鉑(H2PtCl6或PtCl2)含 量’並均勻混合完成為電解鉑金屬之電解質。 根據本發明之另一目的,高溫型熔融鹽電解質之製備 方法,包含下列步驟: (a) 將所需使用之數種材料置於真空系統中,抽真空並 加熱72小時,加熱溫度為8(rc〜1〇(rc,材料包含氣化鋰 (LiCl)、氯化鈉(NaCl)、氣化鉀(KC1)與氣化鉑(H2PtCl6或 PtCl2) 〇 (b) 並測定上述各項材料之水份含量為以下,再 將邊些材料儲存於氧氣含量低於5 ppm之手套箱内備用。 (c) 以氮氣充滿該手套箱。 (d) 依該氯化鋰(12〜30克),該氯化鉀(15〜50克),預先 9 200842208 調製二元系熔融鹽電解質研磨均勻成一混合物,進行高溫 加熱以熔融,並適度添加該氯化鈉(0.6〜6克)及該氯化鈾 (6〜10克)。 (e)將步驟(d)之該混合物置於直立式石英加熱爐中,溫 度設定為673〜773K,加熱6〜12小時後融解混合均勻即可。 根據本發明之又一目的’開發一種應用高溫型溶融鹽 電解質製備白金薄膜的方法,其製備步驟如下: (a) 以圓请型舶片為陽極,欽片為陰極。 (b) 該鈦片須以氫氟酸(HF)水溶液及硫酸水溶液的順 序進行表面潰蝕處理15分鐘後,清洗乾燥備用。 (0配製硝酸銨鉑溶液(i^nhawO2)2)塗佈於該鈦片。 (d) 於50°C乾燥後,再於250°C〜550°C之間,熱分解 30分鐘,循此步驟反覆操作20〜5〇次,並於該鈦片表面 生成鉑活性基。 (e) 以電化學沈積法於該欽片上製作錄鐘層,電化學沈 積法之電解操作條件為:操作溫度為35〇。〇〜6〇〇它,電流 值的fe圍為每單位面積2〇〜350毫安培(mA/cm2),脈衝電 流的型式為 Ln/Gon + t〇ff) = 〇. 1 〜0.9。 【實施方式】 本發明係以脈衝電流技術於三㈣驗金屬氯化物溶 融鹽電解質浴中進行在自金屬電解電鑛預期藉由電解質鹽 浴組成調配,電解操作溫度,電流密度、L與U脈衝比 例等參數改變’以電解製備鈦基鉑金屬電極。以掃描式電 200842208 子顯微鏡(SEM)觀察分析表面構造並探討鍍層晶粒大小、 鍍層厚度,以瞭解驗金屬氣化合物溶融鹽電解鍍麵與電解 操作因素間之關係,並以電化學技術評析其腐餘特性。 參照第1圖,其綠示依照本發明一較佳實施例的一種 製備鉑/鈦電極薄膜之流程圖。流程1〇〇包含了步驟11〇, 步驟120,步驟13〇,步驟14〇,步驟15〇與步驟⑽。 步驟110為熔融鹽電解質材料之乾燥、脫水與純化。首 先將所使用之鹼金屬氯化物,含氣化鋰(Licl)、氯化鈉 (NaCl)、氯化鉀(KC1)等於80〜丨0(rc下進行真空乾燥72小 時,並利用水份測定儀量測水份含量 < 丨%後再將上列之 鹼金屬氯化物儲存於氧氣含量低於5 ?{)111之手套箱備用。 鉑金屬化合物鹽類(PtCU或HaPtCU)以直接購入標示使用。 步驟120為熔融鹽電解質之配製。於氮氣充填手套箱 中,預先配製含12〜30克氯化鋰(LiCl)含量與15〜50克氯化 鉀(KC1)含量且研磨均勻成的一混合物,放置於直立式石英 加熱爐,溫度為673〜773 K,加熱融解混合時間為6〜丨2小 時。進一步添加0.6〜6克氣化鈉(NaC1)含量與6〜1〇克氣化鉑 (PtCh或HJtCl6)含量並均勻混合完成為電解鉑金屬之電 解質。 步驟130為基材前處理。本發明之實施例係以圓筒型 鉑片為陽極,以薄板型鈦片為陰極材料;電解鍍鉑前鈦片 須以4% HF酸水溶液及硫酸(1 : 1}水溶液的順序進行表面 潰#處理15分鐘後,清洗乾燥備用。 配製硝酸銨鉑溶液(Pt(NH3)2(N02)2)適量塗布前處理 11 200842208 過之鈦基板,於50°C乾燥後再於250〜550°C之間,熱分解 30分鐘’循此步驟反覆操作20〜50次,並於鈦基材表面生 成始活性基。 步驟140為電化學系統之組裝。 步驟150為電解沈積鉑金屬鍍層。 步驟160則為鉑金屬鍍層之鑑定分析。 參照弟2圖’其繪示依照本發明—較佳實施例的一種 黾化學糸統製作翻/鈦電極鑛層之示意圖。電化學系統 200包含電解質210,圓筒狀之鉑陽極22〇,鈦陰極23〇,溫 度感測器240與加熱元件250。 電化學系統200為氮氣充填之電解系統,配合填充氮 氣260將電化學糸統2〇〇内之水份去除,再將電解質21〇放 入電化學系統200内,並插入鉑陽極22〇與鈦陰極23〇,此 為鉑鍍層披覆之基材。完成電化學系統2〇〇的組裝後,利 用電化學沈積法於鈦陰極230上製作鉑鍍層,所需之電解 操作條件,包含加熱元件250之操作溫度為35〇〜6〇〇χ:, 電流值的範圍為每單位面積2〇〜35〇毫安培(mA/cm2),脈 衝電"il 的型式為 ton / (ι^η + t^ff) = 〇. 1 〜〇.9。 參照第3圖,其繪示依照本發明一較佳實施例的一種 脈衝電流為3:1(5000Q),f流密度為13〇 mA/cm2 之電解操作條件下所得鍍層結構之示意圖。並參照上述之 電解操作條件,進-步製作第3圖中所綠示之欽鍵層 結構。 ⑴其中頂層3GG,中間層31G均為鉬材料,底層32〇為 12 200842208 鈦材料。頂層300為電解沈積後所得鉑鍍層,中間層310為 塗佈熱裂解所得鉑活性基座鍍層。依照步驟150所得之鉑 /鈦鍍層,進一步利用掃描式電子顯微鏡(SEM)觀察分析 鉑金屬鍍層之表面結構及截面等性質。 (2) 利用能量分布光譜儀(EDX)進行鍍層成分元素分 析。 (3) 利用電化學腐蝕測定技術,含電化學直流極化法、 動態極化曲線。 以下將分別說明利用熔融鹽電解質脈衝電解彼覆法 所製備Pt/Ti鍍層之量測結果。量測之儀器為掃瞄式電子顯 微鏡與能量分布光譜儀,電沈積面積為1 · 5 cm X 3 cm面 積,分析面積為0.5 cm X 0.5 cm。 本發明之實施例進行熔融鹽電解電鍍之前,需於鈦基 板上塗覆數次石肖酸鈹翻溶液(Pt(NH3)2(N02)2)。因鈦基板不 易直接電鍍鉑金屬鍍層,故以硝酸銨鉑溶液 (Pt(NH3)2(N02)2)塗覆之目的乃為了 Pt2+離子活性基座生 成,以利電解電鍍之進行。 參照第4A圖與第4B圖,其分別繪示依照本發明一較佳 實施例的一種脈衝電流型式為TQn:TQff == 3:1 (5000Q)之低電 流密度與高電流密度之電解操作條件下所得Pt/Ti鍍層表 面之SEM圖。 操作溫度為673K,脈衝電流型式為= 3:1,通 電量為3000C。(A)低電流密度:37.5 mA/cm2,(B)高電流 密度:127.5mA/cm2之SEM影像圖。 13 200842208 參照第5A圖,其繪示依照本發明一較佳實施例的一種 鍍層橫截面之SEM圖。為在673K操作溫度下,脈衝電流型 式為Τοη··Τ。^ = 3:1(5000Q),脈衝電流密度為127·5 mA/cm2,通電量為 3000C。 參照第5B圖,其繪示依照本發明一較佳實施例的一種 鍍層橫截面之SEM圖。為在673K操作溫度下,脈衝電流型 式為Tc^Tw = 1:3(5000Q) ^脈衝電流密度為127.5 mA/cm2,通電量為 3000C。 參照第6圖,其繪示依照本發明一較佳實施例的一種 Pt/Ti鍍層之Pt與Ti含量組成分布圖。由上述之第5A,5B與 6圖可知,鑛層厚度介於13.1/zm〜45.45 /zm,#自組成介於 90.35%〜94.53%之間。 參照第7圖、第8圖,其分別繪示依照本發明一較佳實 施例的一種鉑/鈦電極於3.5% NaCl模擬海水溶液中之電 化學直流極化塔弗曲線圖。電極製作條件分別為:不同的 脈衝電流型式Tc^Toff = 1:3及3:1 ’不同脈衝電流密度i = 37.5 mA/cm2〜127.5 mA/cm2,由曲線圖可知,腐餘電位在 低電流密度i = 37.5 mA/cm2為介於272mv〜281mv,高電流 密度 i= 127.5111八/(:1112為介於465111¥〜494111¥。 參照第9圖,系本發明一較佳實施例的一種鉑/鈦電 極於3.5% NaCl模擬海水溶液中之動態極化曲線圖。電極製 作條件與第7與8圖相同,脈衝電流型式= 1:3及 3:1,所得鍍層於E = 0.15〜IV屬於鈍性電位區,E = 1〜 1.25V轉折處已趨近孔蝕電位,在E=1.25〜1.6v達過鈍態 14 200842208 電位。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖係繪示依照本發明一較佳實施例的一種製備鉑 /鈦電極薄膜之流程圖。 第2圖係繪示依照本發明一較佳實施例的一種利用熔 融鹽電化學沈積法製作Pt/Ti電極之二電極系統之示意圖。 第3圖係繪示依照本發明一較佳實施例的一種脈衝電 流為 Ton:Toff = 3:1(5000Q),電流密度為 130 mA/cm2 之電 解操作條件下所得鍍層結構之示意圖。 第4A圖係繪示依照本發明一較佳實施例的一種脈衝 電流為Tc^T^f == 3:1(5000Q)之低電流密度電解操作條件下 所得Pt/Ti鍍層表面之SEM圖。 第4B圖係繪示依照本發明一較佳實施例的一種脈衝 電流為= 3:1(5000Q)之高電流密度電解操作條件下 所得Pt/Ti鍍層表面之SEM圖。 第5A圖係繪示依照本發明一較佳實施例的一種脈衝 電流為 ΤοηΐΤ。^ = 1:3(5000Q),電流密度為 127.5 mA/cm2 15 200842208 之電解操作條件下所得鍍層橫截面之SEM圖。 第5B圖係繪示依照本發明一較佳實施例的一種脈衝 電流為 Ton:Toff = 3:1(5000Q),電流密度為 127.5 mA/cm2 之電解操作條件下所得鍍層橫截面之SEM圖。 第6圖係繪示依照本發明一較佳實施例的一種Pt/Ti 鍍層之Pt與Ti含量組成分布圖。 第7圖係繪示依照本發明一較佳實施例的一種鉑/鈦 電極於3.5%NaCl模擬海水溶液中之電化學直流極化曲線 圖(T〇n:T0ff = 1:3) 〇 第8圖係繪示依照本發明一較佳實施例的一種鉑/鈦 電極於3.5% NaCl模擬海水溶液中之電化學直流極化曲線 圖(Ton: Toff = 3:1) 〇 第9圖係繪示依照本發明一較佳實施例的一種鉑/鈦 電極於3.5% NaCl模擬海水溶液中之動態極化曲線圖。 【主要元件符號說明】 100 : 流程 110 :步驟 120 : 步驟 130 :步驟 140 : 步驟 150 :步驟 160 : 步驟 200 :電化學系統 210 : 熔融鹽電解質 220 ··鉑陽極 230 : 鈦陰極 240 ··溫度感測器 250 : 加熱元件 260 :填充氮氣 300 : 頂層 310 :中間層 320 : 底層200842208 IX. Description of the Invention: [Technical Field] The present invention relates to a high temperature type strontium salt electrolyte and a pot method, and a method for preparing a thin platinum, a film, or a film by using the electrolyte, and particularly Electrolyte and preparation method thereof for preparing a white one by electrochemical deposition method _ _ _ rabbit, the south temperature type molten salt of the film [previous technique] near the seaside power plant facilities and the oil f wheel (four) system, etc. Most of the cooling water systems are used to cool the pipes. The commonly used materials are brass: titanium. There are various anti-corrosion measures depending on the surface material. According to statistics, the surviving organisms in the sea, fine @类5() species, & algae 11 species, 450 species of seaweed, 1340 species of animals, a total of 195 species, nearly 146G species with adsorption and fixation properties. For this purpose, the attached bacteria _ size may include a degree of attachment of the micro-adhering organism to a giant attached shellfish of about 1 〇 cm. These are attached to the inside and outside of the heat exchange water tube in the form of a film, a fiber, or a rod, causing problems such as loss of heat transfer efficiency, increase in flow resistance, and corrosion of the heat exchanger. When circulating a cooling water system such as a water pipe, such as a water pipe, if there is microbes attached, it will affect the flow rate. Therefore, how to eliminate the marine bacteria adsorbed in the cooling water system of the power plant and the heat exchange pipeline of the oil pipeline is a problem to be solved. In order to avoid the simultaneous inhalation of the attached larvae with attachment habits when seawater is inhaled, it adheres to the inner wall of the pipeline and reduces the seawater cooling effect. Therefore, it is necessary to add a little gas-containing compound to the inhaled water to kill the attached biological larvae. In order to keep the heat exchanger tubes open. At present, it is the breeding of marine organisms in the entrance of the 200842208 a-foot and the hot-family changer. The effect of avoiding the surface is to ensure that the pipeline is unblocked, maintain good heat transfer efficiency, and reduce equipment failure rate and unnecessary losses. The general treatment method is (U liquid chlorine method: evaporation of liquid chlorine into chlorine gas, water is added to add; (2) sodium hypochlorite method: direct addition of sodium hypochlorite liquid; (3) - human calcium chlorate or chlorinated lime bleaching powder The bleaching powder is first dissolved in the turbid liquid and then added; (4) Electrolysis method: electrolysis of seawater to produce sodium hypochlorite. Some of the above four methods are temporary operation methods, and are not economical (such as the addition of bleaching powder) 'addition of hypochlorite It is not economical than the liquid chlorine method, and the operation and safety are also poor. The liquid chlorine method often considers that the gas = Bumao's equipment is prone to corrosion and chlorine pollution affects ecological problems. Comprehensively, the production of sub-gas sulphate by seawater electrolysis The advantages of the law can be attributed to high safety (only u% cl2), high economic efficiency (investment costs, low operating costs), high stability and other functions, and can improve the technical level and chlorine-free gas pollution. Characteristics such as problems. In the electrolysis industry, in order to improve the electrolysis efficiency of electrolytic production of sodium hypochlorite, the development of B-electrode materials is a very important issue. The demand for a variety of electrode materials is increasingly strict, and the basin is a necessary component of the insoluble metal electrode (Dhnensionally StableElectr〇de; dse) for the salt-electrolytic production of gas compounds, such as resistance resistance*, and the reaction catalyst can be large. Factors such as chemical machine electrochemical safety and other material selection. Platinum gold ^ 200842208 For example, platinum (Pt), palladium (Pd), ruthenium (RU), rhodium (Rh), iridium (Ir), etc. The special properties of the above electrode materials, such as platinum, have high purity and chemical stability, and are widely used as electrode materials for industrial electrolysis procedures of persulfate and peroxylate. Vacuum evaporation method, thermal decomposition method of metal organic compound, gas phase chemical coating method and electrochemical slope coating method; in order to improve electrode life and current efficiency, improve the thickness of platinum coating layer and metal substrate The combination characteristics are very important, especially the price of platinum metal is high. When the surface treatment of various substrates is used, in order to achieve the effective utilization of the poor source of the shellfish, the surface of the molten salt is electrolytically coated. It can meet the needs of the industry. The molten salt electrolyte with ion-conducting properties combines low vapor pressure, high electrical conductivity, high decomposition voltage and low viscosity, and is suitable for electrolytic deposition reactions in which aqueous solutions cannot be carried out. The technology of electrolyzing high-melting-point metals such as tungsten, titanium, molybdenum, etc. on the surface of the substrate has attracted much attention. Chinmetal has excellent resistance to buttoning and strength, and is widely used as a substrate for the advanced technology industry, especially for containing chloride ions. In the aqueous environment, the steel and copper alloys are not resistant to pureness; in contrast, the titanium phase has the characteristics of pitting corrosion resistance to stress rust and silver. The present invention uses titanium metal ruthenium electrode substrate to utilize inorganic The good conductivity of the molten salt, in order to mix the ternary metal-refined chloride electrolyte bath and add Ptcl2, H2Ptci6 and other sleeping species to pulse current technology, change T, T〇ff ratio, current density, electricity; time, Electrolyte composition and (4) Electrolytic operation parameters, the domain-by-salt salt bath method is electroplated on a titanium substrate. The obtained platinum plating layer was subjected to the surface structure and composition analysis of Table 7 200842208 by SEM&x_ray. The molten salt bath method can be controlled by pulse current technology. The crystallization characteristics of the metal surface coating layer; in other words, the effective area and high electrode activity of the coated platinum particles on the titanium substrate can be effectively controlled, and the fabrication of the pt/Ti electrode is very characteristic. The invention is prepared by a molten salt electrolyte bath, an electrochemical reaction device design, and the main purpose of preparing a metallized layer film with good plating thickness and adhesion; the obtained Pt/Ti electrode will be provided as an electrochemical electrolysis industry, for example. Insoluble electrode material for the production of sodium hypochlorite by seawater electrolysis. The metal electrode after platinum is widely used, such as H2/〇2 in pure water electrolysis, sodium hypochlorite in seawater electrolysis, and electrode materials for electrochemical reaction of materials. Taking sodium hypochlorite from seawater electrolysis as an example, it can be applied to the seawater treatment of the seawater in the coastal area, the seawater treatment of the power plant, the seawater treatment of the nuclear power plant, the seawater desalination plant, the oil drilling in the sea, the pure water treatment of the marine ship and the Industrial wastewater treatment. The characteristics of the electrode of Xiangben invention include: (1) The thickness of platinum plating is large, which meets the requirements of industrial electrolysis. (2) The purity of platinum plating obtained by electro-oxidation to pulse coating technology can reach above 9〇%, with good adhesion, stable catalytic properties and good corrosion resistance, which can improve the service life of the electrode. (3) With the new inorganic molten salt electrolysis composition, there is no secondary pollution problem in the process, and the equipment required for the process is simple, which can greatly reduce the cost and meet the practical benefits of green technology. 200842208 SUMMARY OF THE INVENTION The object of the present invention is to provide a high temperature type molten salt electrolyte. Another object of the present invention is to provide a method for preparing a high temperature molten salt electrolyte. A further object of the present invention is to provide a method for preparing a platinum film using a high temperature molten salt electrolyte. According to the above object of the present invention, the high temperature type (tetra) salt comprises several metal chlorides, lithium chloride (LiC1), sodium chloride (NaCl), potassium chloride (kci) and platinum telluride (HjtCl6 or PtClJ, in advance Prepare containing 12~3 gram of lithium hydride (LiCl) 3 and 15~5 gram of chlorinated _ (KC1) content, grind evenly into a mixture of 6 'placed in an upright quartz heating furnace, the temperature is set to 673~ 773k, after heating for 6~12 hours, melt and mix well, further add 6~6g of 〇6 to 6g of sodium chloride (NaCl) and 6~10g of platinum chloride (H2PtCl6 or PtCl2) content and uniformly mix to complete electrolysis Electrolyte of platinum metal. According to another object of the present invention, a method for preparing a high temperature molten salt electrolyte comprises the steps of: (a) placing a plurality of materials to be used in a vacuum system, evacuating and heating for 72 hours, The heating temperature is 8 (rc~1〇(rc, the material includes lithium carbonate (LiCl), sodium chloride (NaCl), potassium carbonate (KC1) and vaporized platinum (H2PtCl6 or PtCl2) 〇(b) and the above is determined The moisture content of each material is below, and then the materials are stored in an oxygen content of less than 5 ppm. (c) Fill the glove box with nitrogen gas. (d) According to the lithium chloride (12~30g), the potassium chloride (15~50g), pre- 9 200842208 to prepare the binary system molten salt The electrolyte is uniformly ground into a mixture, heated at a high temperature to be melted, and the sodium chloride (0.6 to 6 g) and the uranium chloride (6 to 10 g) are appropriately added. (e) The mixture of the step (d) is placed. In the vertical quartz heating furnace, the temperature is set to 673~773K, and after melting for 6 to 12 hours, it can be melted and mixed uniformly. According to another object of the present invention, a method for preparing a platinum film by using a high-temperature molten salt electrolyte is prepared, and the preparation thereof is prepared. The steps are as follows: (a) The round plate is used as the anode and the slice is the cathode. (b) The titanium piece must be subjected to surface ablation treatment in the order of hydrofluoric acid (HF) aqueous solution and aqueous sulfuric acid solution for 15 minutes, then cleaned. Drying is used. (0 Preparation of ammonium nitrate platinum solution (i^nhawO2) 2) is applied to the titanium sheet. (d) After drying at 50 ° C, and then thermally decomposing for 30 minutes between 250 ° C and 550 ° C Then, the steps are repeated for 20 to 5 times, and a platinum active group is formed on the surface of the titanium sheet. (e) Electrochemical deposition method is used to make the recording layer on the zirconia. The electrolysis operation condition of the electrochemical deposition method is: the operating temperature is 35 〇. 〇~6〇〇, the current value of the fe circumference is 2〇~350 per unit area. Milliamperes (mA/cm2), the pulse current is of the type Ln/Gon + t〇ff) = 〇. 1 to 0.9. [Embodiment] The present invention uses a pulse current technique to detect a metal chloride molten salt electrolyte bath in three (four) The titanium-based platinum metal electrode is prepared by electrolysis in a metal electrolytic electric ore which is expected to be composed by an electrolyte salt bath, electrolysis operation temperature, current density, L and U pulse ratio, and the like. The surface structure and the thickness of the coating were observed by scanning electric system 200842208 sub-microscope (SEM) to understand the relationship between the electrolytic plating surface of molten metal salt and the electrolysis operation factors, and the electrochemical technology was used to evaluate its relationship. Corrosion characteristics. Referring to Figure 1, there is shown a flow chart of a platinum/titanium electrode film in accordance with a preferred embodiment of the present invention. The process 1〇〇 includes steps 11〇, 120, 13 and 14, step 15 and step (10). Step 110 is drying, dehydration and purification of the molten salt electrolyte material. First, the alkali metal chloride used, containing lithium sulfide (Licl), sodium chloride (NaCl), potassium chloride (KC1) equal to 80~丨0 (vacuum drying under rc for 72 hours, and determination by moisture) Measure the moisture content < 丨% and store the above listed alkali metal chloride in a glove box with an oxygen content below 5?{)111. Platinum metal compound salts (PtCU or HaPtCU) are used as direct purchase labels. Step 120 is the preparation of a molten salt electrolyte. In a nitrogen-filled glove box, a mixture containing 12 to 30 grams of lithium chloride (LiCl) and 15 to 50 grams of potassium chloride (KC1) is prepared in advance and placed in a vertical quartz furnace at a temperature. For 673~773 K, the heating and melting time is 6~丨2 hours. Further, 0.6 to 6 g of sodium hydride (NaCl) content and 6 to 1 g of gasified platinum (PtCh or HJtCl6) content were added and uniformly mixed to complete the electrolysis of the platinum metal. Step 130 is a substrate pretreatment. In the embodiment of the present invention, the cylindrical platinum plate is used as the anode and the thin plate type titanium plate is used as the cathode material; the titanium plate before the electrolytic platinization is subjected to the surface collapse in the order of 4% aqueous HF acid solution and sulfuric acid (1:1} aqueous solution. #处理15分钟, rinse and dry for use. Prepare ammonium nitrate platinum solution (Pt(NH3)2(N02)2) Appropriate amount of pre-treatment 11 200842208 The titanium substrate is dried at 50 ° C and then at 250~550 ° C Between the two, thermal decomposition for 30 minutes 'This step is repeated 20 to 50 times, and the initial active group is formed on the surface of the titanium substrate. Step 140 is the assembly of the electrochemical system. Step 150 is electrolytic deposition of platinum metal plating. Step 160 For the identification and analysis of the platinum metal plating layer. Referring to FIG. 2, a schematic diagram of a ruthenium chemical system for producing a turned/titanium electrode ore layer according to the preferred embodiment of the present invention is shown. The electrochemical system 200 comprises an electrolyte 210, a cylinder. The platinum anode 22〇, the titanium cathode 23〇, the temperature sensor 240 and the heating element 250. The electrochemical system 200 is a nitrogen-filled electrolysis system, and is filled with nitrogen gas 260 to remove the water in the electrochemical system 2 , then put the electrolyte 21〇 In the electrochemical system 200, a platinum anode 22〇 and a titanium cathode 23〇 are inserted, which are substrates coated with platinum plating. After the assembly of the electrochemical system 2〇〇, the electrochemical cathode deposition method is used to fabricate the titanium cathode 230. Platinum plating, required electrolysis operating conditions, including heating element 250 operating temperature of 35 〇 ~ 6 〇〇χ:, current value range of 2 〇 ~ 35 〇 milliamperes per amp (mA / cm 2), pulsed electricity "il is of the form ton / (ι^η + t^ff) = 〇. 1 ~ 〇.9. Referring to Figure 3, a pulse current of 3:1 is shown in accordance with a preferred embodiment of the present invention. (5000Q), a schematic diagram of the structure of the plating layer obtained under the electrolysis operating conditions of f flow density of 13 〇 mA/cm 2 , and referring to the above-described electrolysis operating conditions, the structure of the green layer shown in Fig. 3 is further produced. The top layer 3GG, the middle layer 31G are all molybdenum materials, and the bottom layer 32 is 12 200842208 titanium material. The top layer 300 is a platinum plating layer obtained by electrolytic deposition, and the intermediate layer 310 is a platinum active pedestal coating layer obtained by coating thermal cracking. Platinum/titanium plating, further using a scanning electron microscope (SEM) Observing and analyzing the surface structure and cross-section of platinum metal plating. (2) Analysis of the composition of coating components by energy distribution spectrometer (EDX). (3) Electrochemical corrosion measurement technique, including electrochemical DC polarization method, dynamic pole The following is a description of the measurement results of the Pt/Ti coating prepared by the pulsed-electrolyte pulse electrolysis method. The measuring instrument is a scanning electron microscope and an energy distribution spectrometer with an electrodeposited area of 1 · 5 cm. The area of X 3 cm has an analysis area of 0.5 cm X 0.5 cm. In the embodiment of the present invention, it is necessary to apply a solution of bismuth acid citrate (Pt(NH3)2(N02)2) several times on a titanium substrate before performing molten salt electroplating. Since the titanium substrate is not easily directly plated with the platinum metal plating layer, the platinum nitrate solution (Pt(NH3)2(N02)2) is coated for the Pt2+ ion active susceptor to facilitate electroplating. Referring to FIG. 4A and FIG. 4B, respectively, an electrolytic operating condition of a low current density and a high current density of a pulse current type TQn:TQff==3:1 (5000Q) according to a preferred embodiment of the present invention is illustrated. SEM image of the surface of the Pt/Ti coating obtained. The operating temperature is 673K, the pulse current type is = 3:1, and the power is 3000C. (A) Low current density: 37.5 mA/cm2, (B) High current Density: SEM image of 127.5 mA/cm2. 13 200842208 Referring to Figure 5A, there is shown an SEM image of a cross section of a plating layer in accordance with a preferred embodiment of the present invention. For the operating temperature of 673 K, the pulse current pattern is Τοη··Τ. ^ = 3:1 (5000Q), the pulse current density is 127·5 mA/cm2, and the energization amount is 3000C. Referring to Figure 5B, there is shown an SEM image of a cross section of a plating layer in accordance with a preferred embodiment of the present invention. For the operating temperature of 673K, the pulse current type is Tc^Tw = 1:3 (5000Q) ^ The pulse current density is 127.5 mA/cm2, and the energization amount is 3000C. Referring to Figure 6, there is shown a Pt/Ti composition distribution map of a Pt/Ti plating layer in accordance with a preferred embodiment of the present invention. It can be seen from the above 5A, 5B and 6 that the thickness of the ore layer is between 13.1/zm and 45.45 /zm, and the self-composition is between 90.35% and 94.53%. Referring to Figures 7 and 8, respectively, there is shown an electrochemical DC-polarized graph of a platinum/titanium electrode in a 3.5% NaCl simulated seawater aqueous solution in accordance with a preferred embodiment of the present invention. The electrode fabrication conditions are: different pulse current patterns Tc^Toff = 1:3 and 3:1 'different pulse current density i = 37.5 mA/cm2~127.5 mA/cm2. From the graph, the residual potential is at low current. The density i = 37.5 mA/cm2 is between 272 mv and 281 mv, and the high current density is i = 127.5111 八/(: 1112 is between 465111 and 494111. Referring to Fig. 9, a platinum of a preferred embodiment of the present invention is used. The dynamic polarization curve of the titanium electrode in a 3.5% NaCl simulated seawater solution. The electrode fabrication conditions are the same as those in Figures 7 and 8, the pulse current pattern = 1:3 and 3:1, and the resulting coating is at E = 0.15~IV. In the blunt potential region, the E = 1~1.25V transition has approached the pitting potential, and the potential of the passivation 14 200842208 has been reached at E = 1.25~1.6v. Although the invention has been disclosed above with a preferred embodiment, The present invention is not limited to the scope of the invention, and the scope of protection of the present invention is defined by the scope of the appended claims. The following is a brief description of the present invention. The objects, features, advantages and embodiments will be more apparent and understood. The detailed description of the drawings is as follows: FIG. 1 is a flow chart showing the preparation of a platinum/titanium electrode film according to a preferred embodiment of the present invention. 2 is a schematic view showing a two-electrode system for forming a Pt/Ti electrode by molten salt electrochemical deposition according to a preferred embodiment of the present invention. FIG. 3 is a view showing a preferred embodiment of the present invention. The pulse current is a schematic diagram of the plating structure obtained under the electrolysis operating conditions of Ton:Toff=3:1 (5000Q) and a current density of 130 mA/cm2. FIG. 4A is a diagram showing a pulse current according to a preferred embodiment of the present invention. SEM image of the surface of the Pt/Ti coating obtained under low current density electrolysis operating conditions of Tc^T^f == 3:1 (5000Q). FIG. 4B is a diagram showing a pulse current according to a preferred embodiment of the present invention. SEM image of the surface of the Pt/Ti coating obtained under high current density electrolysis operating conditions of = 3:1 (5000Q). Fig. 5A is a diagram showing a pulse current of ΤοηΐΤ. ^ = 1 according to a preferred embodiment of the present invention. : 3 (5000Q), current density is 127.5 mA/cm2 15 2008 SEM image of the cross section of the obtained coating layer under the electrolytic operating conditions of 42208. Fig. 5B is a diagram showing a pulse current of Ton:Toff = 3:1 (5000Q) and a current density of 127.5 mA/in accordance with a preferred embodiment of the present invention. SEM image of the cross section of the resulting coating under electrolytic operating conditions of cm2. Figure 6 is a diagram showing the composition distribution of Pt and Ti contents of a Pt/Ti plating layer according to a preferred embodiment of the present invention. 7 is a graph showing electrochemical DC polarization of a platinum/titanium electrode in a 3.5% NaCl simulated seawater aqueous solution according to a preferred embodiment of the present invention (T〇n: T0ff = 1:3) 〇 8th The figure shows an electrochemical DC polarization curve of a platinum/titanium electrode in a 3.5% NaCl simulated seawater aqueous solution (Ton: Toff = 3:1) according to a preferred embodiment of the present invention. A dynamic polarization plot of a platinum/titanium electrode in a 3.5% NaCl simulated aqueous seawater solution in accordance with a preferred embodiment of the present invention. [Main component symbol description] 100: Flow 110: Step 120: Step 130: Step 140: Step 150: Step 160: Step 200: Electrochemical system 210: Molten salt electrolyte 220 · Platinum anode 230: Titanium cathode 240 · Temperature Sensor 250: heating element 260: filled with nitrogen 300: top layer 310: intermediate layer 320: bottom layer

Claims (1)

200842208 十、申請專利範圍: l一種高溫型熔融鹽電解質,至少包含: 複數個驗金屬氯化物,氯化鋰(LiCl)、氯化鈉(NaCl)、 氯化鉀(KC1)與氯化翻(H2PtCl64 PtCl2),其中該氯化鋰含 量為12〜30克,該氯化鉀含量為15〜5〇克,該氯化鈉含量 為0.6〜6克及該氯化鉑含量至少為1〇克。 2· —種高溫型熔融鹽電解質之製備方法,至少包含下 列步驟: (a) 將所需使用之複數個材料置於真空系統中,抽真空 並加熱72小時,加熱溫度為80°C〜100°C,材料包含氯化 鋰(LiCl)、氣化鈉(NaC1)、氣化鉀冗⑶與氣化鉑(H2ptCl6/ PtCl2); (b) 並測定上述各項材料之水份含量為以下,再 將該些材料儲存於一氧氣含量低於5 ppm之手套箱内備 用; (c) 以鼠氣充滿該手套箱; (d) 依5亥氣化鐘(LiC1)含量為12〜30克與氣化鉀(kci) 含量為15〜50克所研磨均勻成的一混合物,並加熱熔融 後,進一步添加0.6〜6克氯化鈉(NaCl)重量與6〜1〇克氣化 鉑(PtCl2或H2PtCl6)重量;以及 (e) 將步驟(d)之該混合物置於一直立式石英加熱爐 中’溫度設定為673〜773K,加熱6〜12小時後融解混合均 勻即可。 17 200842208 3· 一種應用高溫型熔融鹽電解質製備白金薄臈之方 法,至少包含下列步驟·· 0)以圓筒型鉑片為陽極,一薄板型鈦片為陰極; (b)該鈦片須以一氳氟酸水溶液及硫酸水溶液的順序 進行表面潰蝕處理15分鐘後,清洗乾燥備用; 、 (0配製一硝酸銨鉑溶液(j^NKWNO2)2)塗佈於該鈦 片; (d) 於50。〇乾燥後,再於250°c〜55(rc之間,熱分解 30分鐘,循此步驟反覆操作2〇〜5〇次,並於該鈦片表面 生成鉑活性基;以及 (e) 以一電化學沈積法於該鈦片上製作鉑鍍層,該電化 學沈積法之電解操作條件,至少包含:操作溫度為35(rc 〜600°C ’電流值的範圍為每單位面積20〜350毫安培 ⑽八/⑽^脈衝電流的型式為^^+“),」〜"。 4.如申請專利範圍第3項所述之應用高溫型熔融鹽電 解質製備白金薄膜之方法,其中該HF酸水溶液之濃度為 4%。 18200842208 X. Patent application scope: l A high temperature molten salt electrolyte, comprising at least: a plurality of metal chlorides, lithium chloride (LiCl), sodium chloride (NaCl), potassium chloride (KC1) and chlorination ( H2PtCl64 PtCl2), wherein the lithium chloride content is 12 to 30 g, the potassium chloride content is 15 to 5 g, the sodium chloride content is 0.6 to 6 g, and the platinum chloride content is at least 1 g. 2. A method for preparing a high temperature molten salt electrolyte, comprising at least the following steps: (a) placing a plurality of materials to be used in a vacuum system, evacuating and heating for 72 hours, and heating at a temperature of 80 ° C to 100 °C, the material comprises lithium chloride (LiCl), sodium carbonate (NaC1), potassium carbonate (3) and gasified platinum (H2ptCl6 / PtCl2); (b) and determine the moisture content of the above materials, below Store the materials in a glove box with an oxygen content of less than 5 ppm for use; (c) fill the glove box with a rat gas; (d) 12 to 30 grams with a gasification clock (LiC1) A mixture of gasified potassium (kci) content of 15 to 50 grams is uniformly ground, and after heating and melting, further adding 0.6 to 6 grams of sodium chloride (NaCl) weight and 6 to 1 gram of gasified platinum (PtCl2 or H2PtCl6) weight; and (e) the mixture of the step (d) is placed in a vertical quartz furnace at a temperature of 673 to 773 K, and after heating for 6 to 12 hours, the mixture is melted and uniformly mixed. 17 200842208 3· A method for preparing a platinum thin crucible using a high temperature molten salt electrolyte, comprising at least the following steps: 0) using a cylindrical platinum plate as an anode and a thin plate titanium plate as a cathode; (b) the titanium sheet is required The surface is subjected to surface ablation treatment in the order of a hydrofluoric acid aqueous solution and an aqueous sulfuric acid solution for 15 minutes, and then washed and dried for use; (0 is prepared by dissolving an ammonium nitrate platinum solution (j^NKWNO2) 2) on the titanium sheet; (d) At 50. After drying, the mixture is further dried at 250 ° C to 55 (rc, thermally decomposed for 30 minutes, followed by a step of 2 to 5 times, and a platinum active group is formed on the surface of the titanium sheet; and (e) Electrochemical deposition method is used to prepare a platinum plating layer on the titanium sheet. The electrochemical operating conditions of the electrochemical deposition method include at least: an operating temperature of 35 (rc ~ 600 ° C 'the current value ranges from 20 to 350 mA per unit area (10). The method of preparing a platinum film by using a high-temperature molten salt electrolyte as described in claim 3, wherein the HF acid aqueous solution is used as a method of preparing a platinum film according to the third aspect of the invention. The concentration is 4%. 18
TW096115396A 2007-04-30 2007-04-30 High temperature molten salts electrolyte and its preparing method, and preparing method applied the electrolyte to produce platinum thin film TW200842208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096115396A TW200842208A (en) 2007-04-30 2007-04-30 High temperature molten salts electrolyte and its preparing method, and preparing method applied the electrolyte to produce platinum thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096115396A TW200842208A (en) 2007-04-30 2007-04-30 High temperature molten salts electrolyte and its preparing method, and preparing method applied the electrolyte to produce platinum thin film

Publications (1)

Publication Number Publication Date
TW200842208A true TW200842208A (en) 2008-11-01

Family

ID=44821876

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096115396A TW200842208A (en) 2007-04-30 2007-04-30 High temperature molten salts electrolyte and its preparing method, and preparing method applied the electrolyte to produce platinum thin film

Country Status (1)

Country Link
TW (1) TW200842208A (en)

Similar Documents

Publication Publication Date Title
Elias et al. Electrodeposition of laminar coatings of Ni–W alloy and their corrosion behaviour
EP2757179B1 (en) Chlorine-generating positive electrode
Costovici et al. Investigation of Ni-Mo and Co-Mo alloys electrodeposition involving choline chloride based ionic liquids
JP4884333B2 (en) Electrode for electrolysis
Adelkhani et al. Properties of Fe–Ni–Cr alloy coatings by using direct and pulse current electrodeposition
Shestakova et al. Novel Ti/Ta2O5-SnO2 electrodes for water electrolysis and electrocatalytic oxidation of organics
CS209834B2 (en) Electrode and method of making the same
US9353448B2 (en) Electrolytic electrode, anode for electrolytic production of ozone, anode for electrolytic production of persulfuric acid and anode for electrolytic oxidation of chromium
Protsenko et al. Trivalent chromium electrodeposition using a deep eutectic solvent
CN104755658B (en) For the electrode for analysing oxygen in electrochemistry in industry technique
CN109234757B (en) Preparation method of uniform and stable ruthenium-iridium bimetallic doped titanium electrode
CN110318069A (en) Electrode for electrolysis and preparation method thereof and electrolytic cell
JP5105406B2 (en) Electrode for reverse electrolysis
Galvanauskaite et al. Influence of Te (VI) additive on manganese electrodeposition at room temperature and coating properties
NO790997L (en) PROCEDURES FOR ELECTROLYSIS OF A WATER, HALOGENIC SOLUTION
CN101988207A (en) Electrode material for electrolysis, electrode for electrolysis, and method for producing same
CN108315795A (en) A kind of production method of antibacterial aluminium
Fashu et al. Electrodeposition of high corrosion resistant Ni–Sn–P alloy coatings from an ionic liquid based on choline chloride
Pavlović et al. On the use of platinized and activated titanium anodes in some electrodeposition processes
TW200842208A (en) High temperature molten salts electrolyte and its preparing method, and preparing method applied the electrolyte to produce platinum thin film
JP7330490B2 (en) Electrodes for ozone generation
JP3507278B2 (en) Electroplating method
Sherine et al. Corrosion behaviour of stainless steel 304 electroplated with zinc followed by blue passivation
Mirali et al. Effect of current density and temperature on nanostructure of PbO2 coating on Ti/SnO2 substrate provided by pulse electrodeposition process
Badea et al. The cathodic evolution of hydrogen on nickel in artificial seawater