TW200842207A - Gated electrodes for electrolysis and electrosynthesis - Google Patents

Gated electrodes for electrolysis and electrosynthesis Download PDF

Info

Publication number
TW200842207A
TW200842207A TW096143967A TW96143967A TW200842207A TW 200842207 A TW200842207 A TW 200842207A TW 096143967 A TW096143967 A TW 096143967A TW 96143967 A TW96143967 A TW 96143967A TW 200842207 A TW200842207 A TW 200842207A
Authority
TW
Taiwan
Prior art keywords
electrode
gate
electrodes
gate electrode
working electrode
Prior art date
Application number
TW096143967A
Other languages
Chinese (zh)
Other versions
TWI439568B (en
Inventor
Rakesh K Lal
li-kun Shen
Umesh K Mishra
Original Assignee
Univ California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ California filed Critical Univ California
Publication of TW200842207A publication Critical patent/TW200842207A/en
Application granted granted Critical
Publication of TWI439568B publication Critical patent/TWI439568B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

A gated electrode structure for altering a potential and electric field in an electrolyte near at least one working electrode is disclosed. The gated electrode structure may comprise a gate electrode biased appropriately with respect to a working electrode. Applying an appropriate static or dynamic (time varying) gate potential relative to the working electrode modifies the electric potential and field in an interfacial region between the working electrode and the electrolyte, and increases electron emission to and from states in the electrolyte, thereby facilitating an electrochemical, electrolytic or electrosynthetic reaction and reducing electrode overvoltage/overpotential.

Description

200842207 九、發明說明: 【發明所屬之技術領域】 本申明案以35 U.S.C· Section 119(e)主張以下同在申請 中及共同讓與之美國專利申請案的權利: 2006年11月20日由1^]^11匕1^151^1〇11181^11及1;11^11 K· Mishra申請之名為,,用於電解與電合成的閑控電極 (GATED ELECTRODES FOR ELECTROLYSIS AND ELECTROSYNTHESIS ),,的美國臨時申請案第 6〇/866 56〇 號,代理人檔案號碼 30794.183-US-U1 ; 其以引用之方式併入本文中。 此發明係關於設計旨在藉由改變在一電極附近的電解質 中之電場來減低在電化學及光電化學電池中的過電壓之閘 控電極結構。 【先前技術】 預期氫將成為用於可更新能源(其因環境因素的可變性 而具有一易變輸出)以及用於行動應用(例如運輸)之一重要 的能量儲存媒體。用以從水獲得氫之具成本效益的技術對 於氫經濟而言係-必要條件,而有若干方法正在探究令。 對於分解水而t,電解看來係最有吸引力的方案之一。電 解可直接應用於光電極,或者可以藉由太陽能電池陣列、 風力機或其他構件以及藉由在一電化學電池中的電解產生 的氫來產生電能。 圖1⑷至⑼顯示用於水電解之一傳統電化學電池(1〇〇)之 示意圖。離子電流流經該電池⑽),而電子傳輸發生於該 126931.doc 200842207 等電極(101、102),從而在適當選擇電解質(1〇5)與電池電 壓(106)之條件下於陰極(1〇1)產生氫(1〇3)而於陽極(1〇2)產 生氧(104)。在傳統電池(1〇〇)中,一電極(ι〇1、1〇2)係由可 月&係一合成物之一材料製成。圖1 (a)顯示該電極(1 〇 1)之一 前視圖,而圖1(b)顯示該等電極(ιοί)及(1〇2)之一邊視圖。 對於作為一陽極之一工作電極而言,電子從該電解質傳 輸至該陽極。對於作為一陰極之一工作電極而言,電子從 該陰極傳輸至該電解質。200842207 IX. INSTRUCTIONS: [Technical field to which the invention pertains] This application claims 35 USC Section 119(e) the following rights in the same application and the commonly assigned US patent application: November 20, 2006 1^]^11匕1^151^1〇11181^11 and 1;11^11 K· Mishra application name, GATED ELECTRODES FOR ELECTROLYSIS AND ELECTROSYNTHESIS, U.S. Provisional Application Serial No. 6/866, 56, pp. No. 30794.183-US-U1; hereby incorporated by reference. This invention relates to the design of gated electrode structures designed to reduce overvoltages in electrochemical and photoelectrochemical cells by altering the electric field in the electrolyte in the vicinity of an electrode. [Prior Art] It is expected that hydrogen will become an important energy storage medium for renewable energy, which has a variable output due to variability of environmental factors, and for mobile applications such as transportation. The cost-effective technology for obtaining hydrogen from water is a necessary condition for the hydrogen economy, and several methods are being explored. For the decomposition of water and t, electrolysis seems to be one of the most attractive solutions. Electrolysis can be applied directly to the photoelectrode, or electrical energy can be generated by a solar cell array, a wind turbine or other components, and hydrogen produced by electrolysis in an electrochemical cell. Figures 1(4) to (9) show schematic diagrams of a conventional electrochemical cell (1〇〇) for water electrolysis. An ion current flows through the battery (10)), and electron transport occurs at the electrode (101, 102) such as 126931.doc 200842207, so that the cathode (1) is properly selected under the conditions of the electrolyte (1〇5) and the battery voltage (106). 〇 1) produces hydrogen (1〇3) and produces oxygen (104) at the anode (1〇2). In a conventional battery (1〇〇), an electrode (ι〇1, 1〇2) is made of a material of a composition of a moon & Figure 1 (a) shows a front view of one of the electrodes (1 〇 1), and Figure 1 (b) shows a side view of the electrodes (ιοί) and (1〇2). For a working electrode as one of the anodes, electrons are transferred from the electrolyte to the anode. For a working electrode as a cathode, electrons are transported from the cathode to the electrolyte.

用於在1大氣(atm)壓力下於25 °C分解水之標準電位係 1·23 V。但是,由於所需要的各種過電壓,當一電解電流 密度為100 mA cm·2時,橫跨具有(例如)一鉑電極與作為電 解質的飽和氫氧化鈉(NaOH)之一電池的電壓在室温下約為 2.0 V(若在125 °C操作該電池則可令此電壓減低為〜^ 6 V)。事實上,在室溫下,常用於水電解之操作電池電壓高 於2 V,此遠遠高於用於分解水之123v的熱力標準電位。 因此’為改良此等系統之整體效率q艮需要減低電極過電 壓0 在光電極電池組態中,一或兩個電極皆可以係由半導體 材料製成以便可以使用光伏效應來產生用於驅動電解之電 動力(emf)。若在一光電化學電池中具有一單—的光電 極’則需要在該電極中產生電解所f要的總電池電位。此 意味著,#用於電解t電壓約為2〇v,Μ應藉由且有— 大於約2·5 eV的帶隙之—半導體材料來製造該光電極。此 使得可用於產生光電流的光子數目顯著減少,而需要—串 126931.doc 200842207 接電池電極設計或串聯的兩個電池。在用於電解的純電化 學電池之情況下,過電壓減低轉換效率。因此,需要設計 減低電池過電壓之電極結構。 在公開的文獻及專利案中已述及用以減低在電極處的電 池過電壓之若干方法。此等方法包括··⑷形成奈米結構的 塗層,例如藉由麵黑、奈米結構合金、奈米結構氧化物半 導體、碳奈米管、碳奈米管(CNT)與其他材料的合成物、 奈米管及多孔半導體以及與富勒烯及導電聚合物的奈米合 成物來覆蓋電極表面;(b)使用低功函數金屬;⑷使用金 屬-絕緣體-金屬(MIM)穿隧結構來促進電子向自由基之傳 輸,自由基捕獲電子以產生氫;以及⑷藉由—疏水層來部 分塗布該表面以促進氫產生。除就最適用於電解的電極及 電,質進行:Μ乍外,研究者還研究過用於電解之脈衝源。 但是’迄今為止’將不錢鋼用於陰極、將鎳或㈣的錄用 於陽極,而以飽和KOH4Na〇H作為該電解質,已成為用 於水電解之工業電池的標準電池組態。 ' 在金屬陰極中,當可以採用單一步驟穿隧時,或者藉由 多步驟穿隨,電子傳輸從接近金屬f米⑽刪能階之能量 出現而達到約相t㈣費米能階的可在該電解質中獲得之 最高能量狀態。金屬陰極並非高效率光陰極。半導體可以 用作一陰極以及光陰極。 圖2(a)及2(b)係能帶圖。圖2(a)顯示由一退化n型半導體 製成之一半導體陰極之一能帶圖(2〇〇),其中電子(2〇1)向 表面狀態(203)而接著向在該電解質(2〇5)中的水合氫離子 126931.doc 200842207 (204)傳輸(202)(本發明僅顯示水合氫離子,作為在電解情 況下向其發生電子傳輸之一可能的自由基,但是電子穿隧 達到的能階(206)仍係一爭議標的)。圖2(b)顯示藉由p型半 導體製造的傳統光陰極之一能帶圖(2〇7)。 圖2(a)及2(b)顯示半導體陰極一般如何在該半導體之導 電γ(208)中使用較高能量的電子(2〇1)來促進電子(2〇ι)向 自由基(204)之傳輸(2〇2)以及自由基(2〇4)如何分解以產生 氫(209) 〇 圖2 (a)顯示η型半導體需要如何重度摻雜以便促進電子 (2〇1)向表面狀態(203)及接著向該自由基(2〇4)之穿隨注入 (202)(例如’從而達到與電解相關之水合氫能階(2〇6))。 圖2(b)顯示半導體光陰極之能帶圖(2〇7)。圖顯示在 該半導體/電解質介面(211}處文獻中最廣泛說明的光陰極 如何使用p型材料及使用表面電荷(21〇),來產生能帶彎曲 (212)以引起該等電子(2〇1)與電洞(214)之電荷分離。 前頭(2 15)表示該光陰極中的光子激發及隨後的電荷分離在 該陰極與陽極之間產生電池電流及電壓。 對於兩個結構,圖2(a)及圖2(b)顯示,由該半導體/電解 貝接面(211)決定該能帶彎曲(212)。退化摻雜的n型半導體 陰極似乎並不提供任何優於金屬陰極之特殊優點,但該退 化摻雜的η型半導體陰極與不銹鋼相比確實為電子提供一 更高的能階。本文獻中對此少有論述。具有較低摻雜的Ν 型半導體已用作光陽極但在氧化方面有問題。針對光陰 極’已廣泛研究過Ρ型半導體。 126931.doc 200842207 由於該月匕$琴曲係受該半導體/電解質接面(2 11)控制, 因此在兩個方案中從整體概念上皆存在某些缺點: ⑷產生載子分離的内建電麼及電場係因可重製性較小的 表面效應所致,而該内建電壓低於在一基板上以—特 定帶隙製造的半導體同質接面或異質接面之條件下可 以獲得之内建電壓; Ο用於向,亥水合氫離+的電子傳輸之能階並非最佳化而 導致一過電壓;以及 (C)與,亥半導體/電解質介面鄰接的電解質中之電場受該半 導體中的纟面電荷及空乏電荷控制而且經常受前者控 制。 ,使用奈米結構塗層有助於增加表面面積而且可以增加在 大端或奈米結構對子/對半電池附近的局部電場。但是, 該等奈米結構塗層並不明顯改良效能,即,使得在高電流 密度下的過電壓與傳統金屬電極之情況相比而減低。此係 由於上述方案皆未直接解決改變在與—電極鄰接的電解質 中之電場及電位分佈之問題,而此係一需要研究的參數。、 本發明藉由設計作4數層#料夾合物t電極來解決此問 題,從而形成旨在藉由改變與該電極相鄰的電解質中之電 荷、電場及電位分佈來減低過電壓之各類閘控電極結構。 【發明内容】 ^ 本發明揭示一種用以改變在至少一工作電極附近之一電 解質中的電荷、電場及電位分佈之閘控電極結構。可以採 取以下方式來實現電氣參數之此改變。可以將任何兩個電 126931.doc -10- 200842207 極用作陽極與陰極而以—或多個額外電極作為該間極電 極。可以施加穩態或隨時間變化的電壓來實現所需動作。 電極之接近將增強此等效果。 例如,用以改變電極過電壓之一閘控電極結構可以包含 用以向該電解質或從該電解質傳輸電荷的至少一工作電極 以及與該工作電極適當間隔的至少一間極電極,從而使得 在該閘極電極與該玉作電極之間的—相對偏壓改變在該工 作電極與該電解質之間的一介面區域中的電荷、電場及電 位,並修改工作電極電位,其中該間極電極與工作電極係 適當間隔以使得發生此等效應(即,該閘極電極與工作電 極係適當間隔成使得言亥間極電極可以I改該工作電極之表 面電荷、電%及電位)。該閘控電極結構可以包含兩個或 兩個以上的工作或閘控電極之一陣列。 猎由施加相對於該工作電極之一適當的閘極電壓來修改 在忒工作電極之一或多個表面處的電荷密度、電場及電 位,並增加該工作電極與該電解質中的各狀態之間的電荷 傳輸(例如,增加從該工作電極向該電解質中的各狀態之 電子發射),從而促進電化學、電解或電合成反應。在一 具體實施例中,該工作電極係一陰極,而在該閘極電極上 之一靜態或動態偏壓影響在該陰極附近之電荷、電場及電 位刀佈。該閘極電極可以係在閘控循環之某一部分中之一 反電極。該相對偏壓可以係浮動、靜態或隨時間變化。 該閘控電極結構可以進一步包含一共面交指閘控電極、 -環繞或重疊的閘極電極陣列、在一具有或不具有偏振的 126931.doc -11 - 200842207 ΟThe standard potential system for decomposing water at 25 ° C at 1 atmosphere (atm) is 1·23 V. However, due to the various overvoltages required, when an electrolytic current density is 100 mA cm·2, the voltage across a battery having, for example, a platinum electrode and saturated sodium hydroxide (NaOH) as an electrolyte is at room temperature. The lower is about 2.0 V (if the battery is operated at 125 °C, this voltage can be reduced to ~^ 6 V). In fact, at room temperature, the operating battery voltage commonly used for water electrolysis is higher than 2 V, which is much higher than the thermal standard potential of 123 v for decomposing water. Therefore, in order to improve the overall efficiency of these systems, it is necessary to reduce the electrode overvoltage. In a photoelectrode cell configuration, one or both electrodes can be made of a semiconductor material so that a photovoltaic effect can be used to generate the electrolysis. Electric power (emf). If a single photoelectrode is present in a photoelectrochemical cell, then the total cell potential required for electrolysis is required to be produced in the electrode. This means that # is used to electrolyze a voltage of about 2 〇v, and the photoelectrode should be fabricated by a semiconductor material having a band gap greater than about 2.5 volts. This results in a significant reduction in the number of photons that can be used to generate photocurrent, while requiring - string 126931.doc 200842207 to connect the battery electrode design or two cells in series. In the case of a pure electrochemical cell for electrolysis, overvoltage reduces conversion efficiency. Therefore, it is necessary to design an electrode structure that reduces battery overvoltage. Several methods for reducing the battery overvoltage at the electrodes have been described in the published literature and patents. These methods include (4) forming a coating of a nanostructure, for example, by surface black, a nanostructured alloy, a nanostructured oxide semiconductor, a carbon nanotube, a carbon nanotube (CNT), and other materials. Materials, nanotubes and porous semiconductors and nanocomposites with fullerenes and conductive polymers to cover the electrode surface; (b) using low work function metals; (4) using metal-insulator-metal (MIM) tunneling structures Promoting the transport of electrons to free radicals, which trap electrons to produce hydrogen; and (4) partially coating the surface by a hydrophobic layer to promote hydrogen production. In addition to the electrodes and electricity that are most suitable for electrolysis, the quality is carried out: In addition, researchers have also studied pulse sources for electrolysis. However, the use of steel for cathodes, nickel or (four) for anodes, and saturated KOH4Na〇H for electrolytes has become the standard battery configuration for industrial batteries for water electrolysis. In a metal cathode, when a single step can be used for tunneling, or by multi-step traversing, electron transfer from the energy near the metal fm (10) occurs to reach the phase t (four) Fermi level. The highest energy state obtained in the electrolyte. Metal cathodes are not high efficiency photocathodes. The semiconductor can be used as a cathode as well as a photocathode. Figures 2(a) and 2(b) are energy band diagrams. Figure 2(a) shows a band diagram (2〇〇) of a semiconductor cathode made of a degenerate n-type semiconductor, wherein electrons (2〇1) are in a surface state (203) and then in the electrolyte (2) Hydrogen ion in 〇5) 126931.doc 200842207 (204) transmission (202) (The present invention only shows hydronium ions, as one of the possible free radicals to which electrons are generated in the case of electrolysis, but electron tunneling is achieved The energy level (206) is still a controversial target). Fig. 2(b) shows a band diagram (2〇7) of a conventional photocathode fabricated by a p-type semiconductor. Figures 2(a) and 2(b) show how a semiconductor cathode generally uses higher energy electrons (2〇1) in the conductive γ (208) of the semiconductor to promote electrons (2〇ι) to free radicals (204). How the transmission (2〇2) and the radical (2〇4) decompose to produce hydrogen (209) 〇 Figure 2 (a) shows how the n-type semiconductor needs to be heavily doped to promote the electron (2〇1) to the surface state ( 203) and then injecting (202) to the free radical (2〇4) (eg, to achieve electrolysis-related hydro-hydrogen energy levels (2〇6)). Figure 2(b) shows the energy band diagram of the semiconductor photocathode (2〇7). The figure shows how the photocathode, which is the most widely described in the literature at the semiconductor/electrolyte interface (211), uses p-type materials and uses surface charges (21 Å) to create band bends (212) to cause the electrons (2〇). 1) Separating the charge from the hole (214). The front head (2 15) indicates that photon excitation and subsequent charge separation in the photocathode produces battery current and voltage between the cathode and the anode. For both structures, Figure 2 (a) and Figure 2(b) show that the band bend (212) is determined by the semiconductor/electrolytic bead (211). The degenerately doped n-type semiconductor cathode does not appear to provide any speciality over the metal cathode. The advantage, however, that the degenerately doped n-type semiconductor cathode does provide a higher energy level for electrons than stainless steel. This is rarely discussed in this document. A germanium semiconductor with a lower doping has been used as a photoanode. However, there is a problem in oxidation. The germanium-based semiconductor has been extensively studied for photocathodes. 126931.doc 200842207 Since this month, the lyrics are controlled by the semiconductor/electrolyte junction (2 11), so in two schemes The overall concept remains Some disadvantages: (4) The built-in electricity and the electric field that generate the carrier separation are caused by the surface effect of less reproducibility, and the built-in voltage is lower than the semiconductor homogeneity fabricated on a substrate with a specific band gap. The built-in voltage can be obtained under the condition of the junction or the heterojunction; the energy level of the electron transport used for the hydration is not optimized to cause an overvoltage; and (C) and The electric field in the electrolyte adjacent to the electrolyte interface is controlled by the surface charge and the depletion charge in the semiconductor and is often controlled by the former. The use of a nanostructured coating helps to increase the surface area and can be increased in the big end or nanostructure. The local electric field in the vicinity of the pair/pair half cells. However, the nanostructured coatings do not significantly improve the performance, i.e., the overvoltage at high current densities is reduced compared to the case of conventional metal electrodes. Since the above solutions do not directly solve the problem of changing the electric field and the potential distribution in the electrolyte adjacent to the electrode, this is a parameter to be studied. The present invention is designed to be 4 The material traps the t electrode to solve this problem, thereby forming various types of gate electrode structures aimed at reducing overvoltage by changing the charge, electric field and potential distribution in the electrolyte adjacent to the electrode. The present invention discloses a gate-controlled electrode structure for changing the charge, electric field and potential distribution in one of the electrolytes in the vicinity of at least one working electrode. The change in electrical parameters can be achieved in the following manner. Any two electric 126931 can be used. .doc -10- 200842207 The pole is used as the anode and the cathode with or as a plurality of additional electrodes as the interelectrode. A steady state or time varying voltage can be applied to achieve the desired action. The proximity of the electrodes will enhance these effects. For example, a gate electrode structure for changing an electrode overvoltage may include at least one working electrode for transferring electric charge to or from the electrolyte, and at least one electrode electrode appropriately spaced from the working electrode, thereby enabling a relative bias between the gate electrode and the jade electrode changes an interface region between the working electrode and the electrolyte Charge, electric field and potential, and modify the working electrode potential, wherein the interelectrode electrode and the working electrode are appropriately spaced to cause such effects to occur (ie, the gate electrode and the working electrode are appropriately spaced such that the interelectrode electrode The surface charge, electricity % and potential of the working electrode can be changed. The gated electrode structure can comprise an array of two or more working or gated electrodes. Hunting modifies the charge density, electric field, and potential at one or more surfaces of the 忒 working electrode by applying an appropriate gate voltage relative to one of the working electrodes, and increasing the state between the working electrode and the electrolyte The charge transport (eg, increasing electron emission from the working electrode to various states in the electrolyte) promotes electrochemical, electrolytic or electrosynthesis reactions. In one embodiment, the working electrode is a cathode and a static or dynamic bias on the gate electrode affects the charge, electric field, and potential knife cloth adjacent the cathode. The gate electrode can be one of the counter electrodes in a portion of the gating cycle. The relative bias can be floating, static or changing over time. The gate electrode structure may further comprise a coplanar finger gate electrode, an array of surrounding or overlapping gate electrodes, with or without polarization 126931.doc -11 - 200842207 Ο

半導體基板上之一閘控交指電極、一或多個條帶電極及一 基板閘控ΜΙΜ結構。該閘控電極結構可以係—μιμ或金 屬-絕緣體-半導體(MIS)結構,其在介於ΜΙΜ結構的金屬之 間或介於MIS結構的金屬與半導體之間具有一邊緣場。在 此情況下,可藉由一絕緣層分離該閘極電極與該工作電 極,以形成一 MIM或MIS結構,而該工作電極可以係一金 屬、半金屬或一半導體。還可以有非共面及遠端閉極組 態。該工作電極或閘控電極可以係懸垂或懸掛,而且該工 作電極與閘控電極可以係製造於兩個不同基板上並適當定 位0 該等電極可以係互換以用作一陽極、陰極或閘 包括居於遠端之一或多個電極。多於一個電極可用作一閘 極’而該等閘極中的每一閘極可處於不同電位。多於一個 電極可用作-陰極。多於一個電極可用作一陽極。向該等 電極中的任何電極施加之偏壓可以係穩態或隨時間變化。 本發明還揭示一種用以藉由修改在該電極附近(明確言 之,在介於一電解質與一或多個電極之間的一介面區域 中)的電解質中之φ .h U ^ 、中之電何、電~及電位來減低在電化學及光 子電池中(或在電化學、電解 电胛貝或電合成反應中)的過 ^ 4。該修改可以使用適當間隔的電極或介於一半 二體肖特基(SehGttky)接點或異質接面之間的一邊緣 :用作以错由使用介於該工作電極(其係-肖特基接點)與 一用作一閘極的半導許或 嗲雷尸〜 、貝接面之間的-邊緣場來增強 W隨時間變化編,還可以進行遠程間控。 126931.doc -12- 200842207 該方法可進-步包含為能量對齊建立條件以促進電子向 該電解質中的分子或自由基傳輸。該增強可以使用包含至 少-閘極與至少-工作電極之一閘控電極以及介於該閘極 與該工作電極之間的一相對偏壓或電壓。可以將該等電極 之尺寸及密度最佳化以獲得較高的巨觀電流密度。可以藉 由使用該方法來實行電化學、電解或電合成。 本發明還揭示-種藉由使用該閘控電極來減低過電壓之 電化學或光電化學電池。該電池可具有閉控電極以減低在 該電池之一陽極與一陰極處的過電壓,其中一電解質反應 發生於該等電極m ’而—電合成反應發生於該等電 極之另-電極。該閘極電極將載送產生閘控效應所需要之 電流。 【實施方式】 在以下較佳具體實施例之詳細說明巾,參考形成該詳細 說明之-部分的附圖,@圖中藉由圖解顯示用以實施本發 明的特定具體實施例。應瞭解,亦可使用其他具體實施 例,而S在不.障離本發明《範嘴下仍可達成結構變化。 概述 本揭示内容係關於閘控電極,其中該電化學或光電化學 電池之一電極係替換為由兩個電極組成之一適當的閘控電 極,其中該閘極電極相對於該工作電極受到適當偏壓。在 一閘控電極處的主要電流會穿過該工作電極。與該工作電 極接近的閘極電極係用於修改在與該工作電極鄰接的電解 質中之電荷、電場及電位。在隨時間變化的閘極電壓條件 126931.doc -13- 200842207 下之运閘控亦可行。閘控電極可用於在水電化學電池或 非水電化學電池中的電解或電合成,而一電池之任一或兩 個電極皆可能係閘控電極。A gated interdigital electrode, one or more strip electrodes, and a substrate gate structure on the semiconductor substrate. The gate electrode structure may be a -μμ or metal-insulator-semiconductor (MIS) structure having a fringe field between the metal of the germanium structure or between the metal and the semiconductor of the MIS structure. In this case, the gate electrode and the working electrode may be separated by an insulating layer to form a MIM or MIS structure, and the working electrode may be a metal, a semimetal or a semiconductor. There can also be non-coplanar and distal closed-loop configurations. The working electrode or the gate electrode may be suspended or suspended, and the working electrode and the gate electrode may be fabricated on two different substrates and properly positioned. The electrodes may be interchanged for use as an anode, cathode or gate. One or more electrodes at the distal end. More than one electrode can be used as a gate' and each of the gates can be at a different potential. More than one electrode can be used as the - cathode. More than one electrode can be used as an anode. The bias applied to any of the electrodes can be steady or time varying. The present invention also discloses a method for modifying φ.h U ^ in an electrolyte in the vicinity of the electrode (specifically, in an interface region between an electrolyte and one or more electrodes) Electricity, electricity, and potential to reduce the amount of electricity in electrochemical and photonic cells (or in electrochemical, electrolytic mussel or electrosynthesis reactions). The modification may use an appropriately spaced electrode or an edge between a half-body Schottky contact or a heterojunction: used as a fault between the working electrode (the system - Schottky) The contact point) and a semi-guided or 嗲 嗲 尸 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 126931.doc -12- 200842207 The method can further include establishing conditions for energy alignment to promote electron or molecular transport of electrons into the electrolyte. The enhancement may use a gate bias electrode comprising at least one of the gate and at least one of the working electrodes and a relative bias or voltage between the gate and the working electrode. The size and density of the electrodes can be optimized to achieve a higher macro current density. Electrochemical, electrolytic or electrosynthesis can be carried out by using this method. The present invention also discloses an electrochemical or photoelectrochemical cell that reduces overvoltage by using the gated electrode. The battery can have a closed control electrode to reduce overvoltage at one of the anode and cathode of the cell, wherein an electrolyte reaction occurs at the electrodes m' and an electrosynthesis reaction occurs at the other electrode of the electrodes. The gate electrode will carry the current required to generate the gating effect. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings in which It should be understood that other specific embodiments may be used, and that S may still achieve structural changes without departing from the scope of the present invention. SUMMARY The present disclosure relates to a gated electrode, wherein one of the electrochemical or photoelectrochemical cells is replaced by a suitable gated electrode consisting of two electrodes, wherein the gate electrode is appropriately biased relative to the working electrode Pressure. The main current at a gate electrode passes through the working electrode. A gate electrode that is adjacent to the working electrode is used to modify the charge, electric field, and potential in the electrolyte adjacent to the working electrode. The gate voltage condition under 126931.doc -13- 200842207 can also be changed. The gated electrode can be used for electrolysis or electrosynthesis in a water electrochemical cell or a non-aqueous electrochemical cell, and either or both of the electrodes of the cell may be gated electrodes.

解祝此類結構之五個實例:三個實例係採用導體與絕緣 體來製造’而兩個實例係採用具有與不具有偏振工程結構 :半導體、絕緣體及金屬來製造。此等結構實例可用於在 -整合的光電極系統中產生氫或僅用作用於與電源供應源 無關的電解之電極。採用適當的材料並對偏壓進行適當修 改之類似結構可用於該陽極、用於氧產生及用於其他可能 包括燃料電池之電化學應用。 :()♦、、、員不針對本發明之一具體實施例而可能在圖1(d) 所示之-電化學電池(108)令使用的陰極⑽)之面之示意 圖(圖1⑷所示陰極(107)之邊視圖),其顯示在-基板(111) 上具有相鄰控制閘極條帶⑴0)之僅一陰極條帶⑽)。本 發明將至少-電極(⑻或102)替換為一對電極⑽及 其中電極傳輸發生於該工作電極⑽),而一附近閉 極⑴0)用於在該間極電極⑴〇)相對於該工作電極⑽)受 到適當偏a⑴2)時增強或改變在該卫作電 解質(岡之間的介面區域處之電場及電位。儘管在圖中: 該等Γ之斷面顯示為直線,但其可能具有其他斷面二 能係奈米結構以增加用於電子傳輸之表面面積或電場。所 要_及電: 可能係來自可能供應所需 、 W之一直流電或交流電源。所建議的閘控電 12693 Ldoc -14· 200842207 極結構可以併入所提到材料中的某些材料或其他合適材料 並使用直流電、脈衝或上面提到的其他隨時間變化的偏壓 方案此外’所建4的閘控電極結構可以使用對流效應來 緩解偏振效應。還應注意,儘管本說明内容將陰極稱為工 • 作電極,但本發明同樣適用於陽極(適當地改變閘極材 料、位置及偏壓)。在以下說明内容中,,,電池,,係用於表示 ' 電化學電池或在由工作與閘控電極結構組成之一電極陣列 中之一電池。 i 閘控電極結構 可藉由使用以下電極來增加該電解質中的電荷、電場及 電位: 1·在一絕緣基板上之共面交指電極,其中在該等電極之間 具有足夠小的間隔; 2 ·環繞及/或重疊閘極陣列; 3.在具有與不具有偏振的半導體基板上之閘控交指電極; f 4·使用基板閘控MIM結構之條帶電極; 5 ·懸垂或懸掛的工作或閘極電極;以及 6.在兩個不同基板上製造並適當並置的電極。 , 上述結構1及2藉由讓該閘極電極與該工作電極緊密接近 • 而在該陰極處產生大電場。此可以係一相當大的技術挑 戰,因為必須產生具有小特徵之大面積電極。上述結構3 及4可具有一更相關的圖案化要求。 在絕緣基板上之共面交指閘控電極 圖3(a)及(b)分別顯示沿在一絕緣基板(3〇丨)上之一共面交 126931.doc -15· 200842207 心閘扰電極(300)之χΧΑ平面及正視圖。該共面交指閘控 電極(300)包含一閘極電極(3〇2),其可能或可能並非塗布 有-介電質(3G3),與—卫作電極(3()4)(例如…陰極)交 指。沿該陰極(304)之表面修改該電荷、電場及電位。在該 #陰極(304)係-直線條帶(3()5)之條件下解說該概念, 仁疋該概心還可以適用於其他形狀(例如曲折、彎曲或鋸 ui I )之電極。另外’該等電極可能具有其他斷面。該等 電極(3()2)及(3G4)可以係製造於低成本的絕緣基板(3〇ι)(例 如玻璃或塑膠)上。該結構之草圖顯示在此情況下該等電 極(302)與(304)之緊密間隔(3〇6)如何能增強沿該工作電極 (304)的周邊之電場。 包含(例如)一陰極之工作電極(3〇4)可能係一適當的導體 (例如一金屬、一導電聚合物、半導體或印刷的碳/石墨或 其他適當的電極材料)或者可以係受一奈米粒子/管薄層覆 蓋,該薄層増加該工作電極(3〇4)之表面面積並且還可以增 加,亥工作電極之表面電場。該閘極(3〇2)係由一導電材料製 成,並且可能或可能不受一防止離子或電子電流流向該閘 極(302)之介電質(3〇3)覆蓋。 该等電極(302)與(3〇4)需以足夠小的間隔(3〇6)來緊密地 間隔,以便修改在該工作電極處之電荷、表面電場及電 位。猎由施加相對於該工作電極(3〇4)(在此情況下係陰極) 之一閘極電位,本發明可以修改在該陰極(304)處的電荷、 電場及電位並增加從該電極(3〇4)向該電解質(3〇7)中的各 狀悲之電子發射,從而促進在該電解質中的電化學、電解 126931.doc • 16 - 200842207 或電合成反應。為獲得較高的巨觀電流密度,本發明需要 具有緊密間隔(306)的窄指狀物(3〇5)以使得非作用區域覆 蓋一相對較小的區域。 環繞及/或重疊閘極電極陣列 圖4(a)及(b)分別顯示沿一環繞閘極電極陣列(4〇〇)的χΧι 之平面及正視圖,其中在該陰極(4〇1)之某些表面上修改電 荷、電場及電位。儘管該方案係針對一圓柱形工作電極 (401)而顯示’但該概念適用於在該陣列的每一電池中具有 任意形狀及斷面之電極。在此背景下之一電池係一工作電 極/閘極-電極對。一重疊結構具有一類似組態。該閘極可 能與該工作電極區域性重疊而不與其接觸且不僅居於側。 事實上,針對本發明之所有設計,該組態皆可行。 由適當的導電材料製成之工作電極(401)及閘極電極 (4〇2)可能係製造於絕緣或導電基板上,而用於該陰極 (401)與閘極(402)之連接係彼此適#分離並絕緣。在此情 況下,δ亥陰極(401)在各側上受閘極(4〇2)包圍,而該等閘 極(402)係相對於該陰極而略微升高(偏),從而修改 在該陰極(4G1)之頂部(彻)(尤其係周邊(傷))上的電荷、 電场及電位。該陰極(4G1)係、由—導電材料(其可能係一金 屬,V電聚合物、半導體或印刷的碳/石墨)或其他合適 材料製成’並可能係藉由一奈米結構的材料成形或用一奈 米結構的材料覆蓋以進一步增加表面面積及電場。該等閘 極導電材料製成,凸出於-基架(4G7)上並圍 %該陰極(401) ’該陰極可能係藉由處理與設計來指定的任 126931.doc -17- 200842207 何幵> 狀。忒閘極(402)可能或可能並非在一絕緣基架(4〇7) 上。當本發明選擇使用一絕緣基板(403)並將該基板(403) 圖案化成使得該閘極(4〇2)處於比該陰極(4〇1)更高之一能 階(404)時,不需要一基架(4〇7)。該閘極(4〇3)可能或可能 不受一絕緣體/介電質(4〇8)覆蓋/塗布。 藉由在該(等)閘極(4〇2)與陰極(401)之間施加適當偏壓, 來修改在後者處的電荷、電場及電位並促進電子傳輸及電 化學反應。最大電場出現於該陰極(4〇1)之邊緣,而必須將 該等電極(401)之尺寸及密度最佳化以獲得最大巨觀電流密 度。而且’在此情況下,該圖案化必須精細得足以使得該 閘極(402)與陰極(401)之間隔電荷區域重疊。圖4(b)還顯示 浸泡於電解質(409)申的閘控電極(4〇〇)。 在半導體基板上的閘控交指電極 此類閘控電極使用從一肖特基接點的金屬及半導體洩漏 出的邊緣場來修改該電解質中的電荷、電場及電位。在此 針對一肖特基阻障之情況顯示該概念,但還可以由一異質 接面來替換該宵特基接點。 藉由圖5(a)及(b)中的示意性結構及圖6(a)、(b)、(勾及 (d)中的能帶圖來解說所建議的新概念之一具體實施例。 圖5(a)及(b)分別顯示沿在一(jaN及AlGaN囊封結構(501) 上之一交指電極對(500)之又义1的平面及正視圖。該交指電 極對(500)包含與一工作電極(5〇3)交指之一閘極電極 (501)。該閘極(501)及其歐姆接點(502)可能受一絕緣體覆 蓋,而本發明可能在形成與該半導體的肖特基接點之金屬 126931.doc •18· 200842207 (503)下具有-絕緣層。結合包含直線條帶⑼4)的工作卜 極(503)與閘極⑽)來解說該概念,但該概念還適用^ 他形狀(例如,曲折 '彎曲或鋸齒形)的電極以及具有除圖 示斷面以外的其他斷面之電極。 、回 圖5⑷及(b)顯示偏振的半導體_)之情況。但是,應可 以使用-適當摻雜的非偏振半導體來獲得在形成該肖特基 接點的金屬/導電材料(503)之邊緣處獲得所需要電場及; 位而需要之電荷分佈。 可以使用一半導體異質結構(5〇1)及一交指電極陣列 (500)來產生旎階對齊及/或高電場條件以將電子傳輸進電 解貝(505)中乃至來自該工作電極(5〇3)的水合氫或其他所 需自由基。可以使用偏振工程在半導體異質結構(5〇1)中於 該半導體異質結構(501)之表面(506)附近產生一二維退化 電子氣體(2DEG),而同時升高在該電解質(5〇5)中的水合 氫離子能階之能量。該半導體異質結構(5()1)可以包含(例 如)GaN或AlGaN—結構。其他摻雜方案可能用於修改在該 電解質(505)中的表面附近電荷及電場。電荷分佈之一可行 性會在該半導體(501)之表面附近但不會在該金屬(5〇3)的 邊緣下及沿此邊緣產生很高的摻雜。 形成與該2DEG之一歐姆接點(502),而且還將包含一肖 特基接點之一工作電極(5〇3)放置於附近。此產生圍繞以下 三個材料的介面之一高電場:囊封的半導體(501)、包含該 工作電極(503)與該電解質(505)之金屬。圖5(b)還顯示如何 可以將該囊封結構(501)沈積於一基板(507)(例如,一藍寶 126931.doc -19- 200842207 石或GaN基板)上。 在圍繞三個相位(5〇1)、(503)及(5〇5)的介面之區域中綠 製能帶圖可能相當困難’但沿圖6⑷、(b)、⑷及⑷中二 lAAi之㈣®之草圖顯示所f内容。圖6(b)&6(d)分別顯 示沿圖6(a)及⑷所示交指閘控電極的線A'之能帶圖之示 意圖(應注意,圖6⑷及6⑷與圖5⑷相同)。圖6〇?)及咐) 表示兩個不同的偏壓狀況。該方案促進電子(㈣)向在一電 解質(505)中的能階(6G3)(其可以係諸如水合氫(6()4)之類的 自由基能階或0-H分子執道)之傳輸(6〇1),從而產生氫 (H)(605)或實現某一其他電極反應。 如圖所不,本發明顯示在使用該結構之條件下的兩個偏 壓情況: 1.在第-情況中,圖6(b)所示能帶圖係沿圖6⑷之正視圖 中的線AAl。該卫作電極⑼”係―肖特基阻障之金屬, 其受反向偏壓而且將係最適合用作一閘控陰極之組態。 在此情況下,該電場在金屬側上(即,在介於該工作電 極(503)與該電解質⑼5)之間的介面區域)得到增強,而 因來自該金屬(503)的電子傳輸_)發生電解。此將導 致氫(605)沿用作—肖特基阻障的金屬(5()3)之邊緣之產 生增加。 2.在第- if ;兄巾’圖6(b)所示能帶g係沿圖6(。)之正視圖 中的線AAl。該肖特基阻障不受偏壓,或者係部分受到 正向偏壓而本發明允許電子(602)可以從該2DEG(607) 穿隧(601)到水合氫(6〇4)以產生h(6〇5)。此情況可能更 126931.doc -20- 200842207 適用於一光陰極組態。 該能帶圖顯示將一絕緣體或一寬帶隙半導體(6〇9)放置 於該半導體(501)上之情況。在一替代性具體實施例(未顯 示)中,該絕緣體(609)係介於該工作電極(5〇3)與該半導體 (501)之間,而非介於該歐姆接點(5〇2)與半導體(5^)之 間。該歐姆接點(502)在某些情況下可能還用作一閘極。該 •半導體(5〇1)可以係形成於一基板(5〇7)上(亦如圖6(c)^ f、 示),其可以係一絕緣體(例如藍寶石)或一半導體(例如碳 化石夕)。 在另一情況下,若與該2DEG及該半導體(5〇1)形成該歐 姆接點(502),則該半導體及該2DEG用作該閘極。 可以針對從在該電解質(505)中的離子/自由基(6〇4)向該 工作電極(503)之電子傳輸而修改該等方案,而該半導體 (5 0 1)或δ亥金屬(5 〇 3)係该極。從一穩定性之觀點來看, 本發明將優先採用一適當的金屬(503)或半導體(5〇1)作為 該陽極。對於兩類離子(604),該等電極(5〇3)皆會需要可 能從兩個不同電壓源或從兩個光電極獲得之兩個偏壓。 使用基板閘控MIM結構之條帶電極 圖7(a)及(b)分別顯示沿條帶電極之XX〗的平面及正視 圖。此再次使用因藉由閘極(700)中的電荷設定的邊緣場而 產生之場增強。作為與電解質(7〇2)接觸的工作電極(7〇υ 之上部電極可能係具有電化學穩定之一適當的導體(一金 屬、一導電半導體、導電聚合物或印刷的碳/石墨等)。該 工作電極(701)可能係如圖所示具有端接點(7〇4)之交指條 126931.doc -21 - 200842207 帶(彻)或者可能係條帶(7G3)、鋸齒形或其他形狀,該等 开y狀係於僅一端或於一柵格(例如,一網目)中連接在一 起。其可能具有可能不同於圖示直線斷面之斷面。 該基板金屬電極(7〇〇)用作該閘極,而且其可能係沈積 於、、、邑緣基板上之一金屬。夾入的絕緣層或介電質(7〇5)可Five examples of such structures are illustrated: three examples are fabricated using conductors and insulators' and two examples are fabricated with and without polarization engineering structures: semiconductors, insulators, and metals. Examples of such structures can be used to generate hydrogen in an integrated photoelectrode system or as an electrode for electrolysis independent of a power supply. Similar structures employing appropriate materials and appropriate modifications to the bias voltage can be used for the anode, for oxygen generation, and for other electrochemical applications that may include fuel cells. :(), and/or the schematic diagram of the surface of the cathode (10) used in the electrochemical cell (108) shown in Figure 1(d) for a specific embodiment of the present invention (shown in Figure 1 (4)) A side view of the cathode (107) showing only one cathode strip (10) having adjacent control gate strips (1) 0) on the substrate (111). The present invention replaces at least the electrode ((8) or 102) with a pair of electrodes (10) and the transfer of the electrodes therein occurs at the working electrode (10)), while a nearby closed pole (1) 0) is used for the interelectrode (1) 〇) relative to the work The electrode (10)) is enhanced or altered by the appropriate bias a(1)2). The electric field and potential at the interface between the electrolytes (the interface between the gangs. Although in the figure: the 断面 section is shown as a straight line, it may have other The cross-section can be a nanostructure to increase the surface area or electric field used for electron transport. _ and electricity: may be from a possible supply, W DC or AC power. The recommended gate control 12693 Ldoc - 14· 200842207 The pole structure may incorporate some of the materials mentioned or other suitable materials and use direct current, pulse or other time varying biasing schemes mentioned above. In addition, the built gate electrode structure can be The convection effect is used to mitigate the polarization effect. It should also be noted that although the description refers to the cathode as the working electrode, the invention is equally applicable to the anode (appropriately changing the gate material, bit) And bias voltage. In the following description, the battery is used to represent an 'electrochemical cell or one of the electrodes in an electrode array consisting of a working and gated electrode structure. i The gate electrode structure can be borrowed The following electrodes are used to increase the charge, electric field and potential in the electrolyte: 1. Coplanar interdigitated electrodes on an insulating substrate with a sufficiently small spacing between the electrodes; 2 • Surround and/or overlap a gate array; 3. a gated interdigitated electrode on a semiconductor substrate with and without polarization; f4 a strip electrode using a substrate-gated MIM structure; 5) a suspended or suspended working or gate electrode; 6. Electrodes fabricated and suitably juxtaposed on two different substrates. The above structures 1 and 2 generate a large electric field at the cathode by bringing the gate electrode into close proximity to the working electrode. This can be quite large. The technical challenge is that large-area electrodes with small features must be produced. The above structures 3 and 4 can have a more relevant patterning requirement. Coplanar interdigitated gate electrodes on an insulating substrate Figure 3(a) and (b) )Minute Displaying a plane and a front view of a thyristor electrode (300) along a surface of an insulating substrate (3〇丨) 126931.doc -15· 200842207. The coplanar interdigitated gate electrode (300) includes a a gate electrode (3〇2), which may or may not be coated with a dielectric (3G3), interdigitated with a servo electrode (3()4) (eg, a cathode) along the cathode (304) The surface is modified by the charge, the electric field and the potential. The concept is explained under the condition of the # cathode (304)-linear strip (3()5), and the core can also be applied to other shapes (such as zigzag and bending). Or saw the electrodes of ui I). In addition, the electrodes may have other cross-sections. The electrodes (3()2) and (3G4) can be fabricated on low-cost insulating substrates (such as glass or Plastic). The sketch of the structure shows how the close spacing (3〇6) of the electrodes (302) and (304) in this case enhances the electric field along the perimeter of the working electrode (304). A working electrode (3) comprising, for example, a cathode may be a suitable conductor (eg, a metal, a conductive polymer, a semiconductor or printed carbon/graphite or other suitable electrode material) or may be subjected to a The rice particle/tube is covered by a thin layer which adds the surface area of the working electrode (3〇4) and can also increase the surface electric field of the working electrode. The gate (3〇2) is made of a conductive material and may or may not be covered by a dielectric (3〇3) that prevents ion or electron current from flowing to the gate (302). The electrodes (302) and (3〇4) are closely spaced at sufficiently small intervals (3〇6) to modify the charge, surface electric field and potential at the working electrode. Hunting by applying a gate potential relative to the working electrode (3〇4) (in this case, the cathode), the present invention can modify the charge, electric field, and potential at the cathode (304) and increase from the electrode ( 3〇4) Emission of various erroneous electrons in the electrolyte (3〇7), thereby promoting electrochemical, electrolysis in the electrolyte, or electrosynthesis reaction. In order to achieve a higher macroscopic current density, the present invention requires narrow fingers (3〇5) having closely spaced (306) such that the inactive area covers a relatively small area. Surrounding and/or overlapping gate electrode arrays Figures 4(a) and (b) show planes and elevations, respectively, along a surrounding gate electrode array (4〇〇), where the cathode (4〇1) The charge, electric field and potential are modified on some surfaces. Although the scheme is shown for a cylindrical working electrode (401), the concept is applicable to electrodes having any shape and cross-section in each cell of the array. One battery in this context is a working electrode/gate-electrode pair. An overlapping structure has a similar configuration. The gate may be in a regional overlap with the working electrode without being in contact therewith and not only on the side. In fact, this configuration is feasible for all designs of the invention. The working electrode (401) and the gate electrode (4〇2) made of a suitable conductive material may be fabricated on an insulating or conductive substrate, and the connection between the cathode (401) and the gate (402) is mutually Suitable for separation and insulation. In this case, the δ hai cathode (401) is surrounded by the gate (4〇2) on each side, and the gates (402) are slightly raised (biased) relative to the cathode, thereby modifying The charge, electric field and potential at the top (thick) of the cathode (4G1), especially the periphery (injury). The cathode (4G1) is made of a conductive material (which may be a metal, a V-electropolymer, a semiconductor or a printed carbon/graphite) or other suitable material and may be formed by a material of a nanostructure. Or covered with a nano-structured material to further increase the surface area and electric field. The gates are made of a conductive material that protrudes from the pedestal (4G7) and encloses the cathode (401). The cathode may be designated by processing and design. 126931.doc -17- 200842207 > Shape. The gate (402) may or may not be on an insulating substrate (4〇7). When the present invention chooses to use an insulating substrate (403) and pattern the substrate (403) such that the gate (4〇2) is at a higher energy level (404) than the cathode (4〇1), A pedestal (4〇7) is required. The gate (4〇3) may or may not be covered/coated by an insulator/dielectric (4〇8). The charge, electric field and potential at the latter are modified and the electron transport and electrochemical reactions are promoted by applying an appropriate bias between the (etc.) gate (4〇2) and the cathode (401). The maximum electric field appears at the edge of the cathode (4〇1), and the size and density of the electrodes (401) must be optimized to obtain the maximum macroscopic current density. Moreover, in this case, the patterning must be fine enough to cause the gate (402) and the cathode (401) to overlap the charge regions. Figure 4(b) also shows the gate electrode (4〇〇) soaked in the electrolyte (409). Gated Interdigital Electrodes on a Semiconductor Substrate Such gated electrodes use a fringe field leaking from a Schottky junction of metal and semiconductor to modify the charge, electric field, and potential in the electrolyte. This concept is shown here for a Schottky barrier, but the heterojunction can also be replaced by a heterojunction. A specific embodiment of the proposed new concept is illustrated by the schematic structure in FIGS. 5(a) and (b) and the energy band diagrams in FIGS. 6(a), (b) and (b) Figures 5(a) and (b) show the planar and front views of a pair of interdigitated electrode pairs (500) on a (jaN and AlGaN encapsulation structure (501), respectively. (500) includes a gate electrode (501) interdigitated with a working electrode (5〇3). The gate (501) and its ohmic contact (502) may be covered by an insulator, and the present invention may be formed The metal 126931.doc •18· 200842207 (503) with the Schottky junction of the semiconductor has an insulating layer. The working dipole (503) and the gate (10) including the linear strip (9) 4) are combined to illustrate the concept. However, the concept also applies to electrodes having a shape (for example, a meandering 'bending or zigzag shape') and electrodes having a cross section other than the cross section shown. 5 (4) and (b) show the case of a polarized semiconductor _). However, it should be possible to use a suitably doped non-polarized semiconductor to obtain the desired electric field and the desired charge distribution at the edge of the metal/conductive material (503) where the Schottky junction is formed. A semiconductor heterostructure (5〇1) and an interdigitated electrode array (500) can be used to generate 旎-order alignment and/or high electric field conditions for transporting electrons into the electrolysis cell (505) or even from the working electrode (5〇 3) Hydrogen hydration or other desired free radicals. Polarization engineering can be used to generate a two-dimensional degraded electron gas (2DEG) in the semiconductor heterostructure (5〇1) near the surface (506) of the semiconductor heterostructure (501) while simultaneously raising the electrolyte (5〇5) The energy of the hydrated hydrogen ion energy level. The semiconductor heterostructure (5()1) may comprise, for example, a GaN or AlGaN-structure. Other doping schemes may be used to modify the charge and electric field near the surface in the electrolyte (505). One of the possibilities of charge distribution would be near the surface of the semiconductor (501) but would not produce high doping under and along the edge of the metal (5〇3). An ohmic junction (502) is formed with the 2DEG, and a working electrode (5〇3) including a Schottky junction is also placed nearby. This produces a high electric field around one of the interfaces of the following three materials: an encapsulated semiconductor (501), a metal containing the working electrode (503) and the electrolyte (505). Figure 5(b) also shows how the encapsulation structure (501) can be deposited on a substrate (507) (e.g., a sapphire 126931.doc -19-200842207 stone or GaN substrate). The green band diagram may be quite difficult in the region around the interface of the three phases (5〇1), (503), and (5〇5)' but along the two lAAi in Figure 6(4), (b), (4), and (4) (4) The sketch of the ® displays the contents of f. Fig. 6(b) &6(d) respectively show the energy band diagrams of the line A' of the interdigitated gate electrode shown in Figs. 6(a) and (4) (it should be noted that Figs. 6(4) and 6(4) are the same as Fig. 5(4). ). Figure 6〇?) and 咐) indicate two different bias conditions. This scheme promotes the electron ((iv)) to the energy level (6G3) in an electrolyte (505) (which may be a free radical energy level such as hydronium (6()4) or a 0-H molecule) Transfer (6〇1) to produce hydrogen (H) (605) or to achieve some other electrode reaction. As shown in the figure, the present invention shows two bias conditions under the condition of using the structure: 1. In the first case, the energy band diagram shown in Fig. 6(b) is along the line in the front view of Fig. 6(4). AAl. The guard electrode (9)" is a Schottky barrier metal that is reverse biased and will be most suitable for use as a gated cathode configuration. In this case, the electric field is on the metal side (ie, The interface region between the working electrode (503) and the electrolyte (9) 5) is enhanced, and electrolysis occurs due to electron transport from the metal (503). This will result in the use of hydrogen (605) along the axis. The generation of the edge of the special barrier metal (5()3) is increased. 2. In the front view of Fig. 6(.), the energy band g shown in Fig. 6(b) is shown in Fig. Line AAl. The Schottky barrier is unbiased or partially biased forward and the present invention allows electrons (602) to tunnel (601) from the 2DEG (607) to hydronium (6〇4) To produce h(6〇5). This situation may be more 126931.doc -20- 200842207 applies to a photocathode configuration. The band diagram shows the placement of an insulator or a wide bandgap semiconductor (6〇9) in the semiconductor. (501) In an alternative embodiment (not shown), the insulator (609) is interposed between the working electrode (5〇3) and the semiconductor (501) , rather than between the ohmic contact (5〇2) and the semiconductor (5^). The ohmic contact (502) may also serve as a gate in some cases. The semiconductor (5〇1) It can be formed on a substrate (5〇7) (also shown in Figure 6(c)^f), which can be an insulator (such as sapphire) or a semiconductor (such as carbon carbide). In another case Next, if the ohmic contact (502) is formed with the 2DEG and the semiconductor (5〇1), the semiconductor and the 2DEG are used as the gate. The ion/free radical from the electrolyte (505) can be targeted (6〇4) modifying the scheme to the electron transfer of the working electrode (503), and the semiconductor (5 0 1) or δ hai metal (5 〇 3) is the pole. From a stability point of view In the present invention, a suitable metal (503) or semiconductor (5〇1) is preferably used as the anode. For both types of ions (604), the electrodes (5〇3) may need to be from two different voltage sources. Or two bias voltages obtained from two photoelectrodes. Strip electrodes using a substrate-gated MIM structure Figure 7(a) and (b) show the XX along the strip electrode Plane and front view. This again uses field enhancement due to the fringe field set by the charge in the gate (700). As the working electrode in contact with the electrolyte (7〇2) (the upper electrode of 7〇υ may It is one of electrochemically stable conductors (a metal, a conductive semiconductor, a conductive polymer or a printed carbon/graphite, etc.). The working electrode (701) may have a termination point as shown (7〇4). ) Intersection finger 126931.doc -21 - 200842207 belt (complete) or possibly strap (7G3), zigzag or other shape, the open y-like line is only at one end or in a grid (for example, a mesh) ) are connected together. It may have a section that may differ from the straight section shown. The substrate metal electrode (7 turns) serves as the gate, and it may be deposited on one of the metals on the substrate. Sandwiched insulation or dielectric (7〇5)

能係一單一材料,其可能係低K(其中K係介電常數)及高K 材料之父替條▼,或者其可能係一更複雜的組合,以至於 ρ 在與該工作電極(701)鄰接的電解質(702)中增強該邊緣 %。同樣,由於與該工作電極(7〇1)鄰接的增強電場,因此 會減低該電極過電位。 電極偏壓 對於所有上述方案,該閘極可能一直受偏壓或浮動,而 該偏壓可能係靜態或隨時間變化,而特定的選擇係由電極 程序、電極幾何結構及該電池中的電解質決定。該工作電 極上的電壓可能還受到脈衝作用以減小偏振效應。例如, (j 若該工作電極係一陰極,則隨時間變化/動態的偏壓或靜 恶偏壓將影響在該陰極處的電場。工作電極動態偏壓有助 於修改尤其係處於該電極之電場。 用於電解之第二電極可能係一正規電極或另一閘控電 * 極,而參數係針對發生於該陽極側的電極程序而最佳化, 而該第二電極之偏壓可能係靜態或隨時間變化。 用以改變電化學電位並減低過電壓之方法 圖6(b)顯示用以改變用於電解或電合成反應之電化學電 位並減低過電壓之一方法,其係藉由修改在介於該電解質 126931.doc -22· 200842207 (505)與一或多個工作電極(5〇3)之間的一介面區域(61〇)内 之電場(606)來為能量對齊產生條件以促進在電極與電解質 (505)之間的電子(602)傳輸(601),例如,藉由在該工作電 極(503)與該閘極電極(5〇2)之間施加一相對的反向偏壓。 圖6(d)中,藉由在該工作電極(5〇3)與該閘極電極(5〇2)之間 不施加任何偏壓(或施加部分正向偏壓),從而在介於一電 解質(505)與一或多個工作電極(5〇3)之間的介面區域(61〇) 中修改電場(608)。該方法不限於使用圖6所示具體實施 例,而可以使用(例如)圖丨至7所示之任何具體實施例。 圖7所示MIM結構包含夾在兩個金屬(7〇〇)與(7〇1)之間的 一絕緣體(705)。若該工作電極(7〇丨)係一半導體而非一金 屬,則可以形成一 MIS結構。藉由在該MIM結構的金屬之 間或在該MIS結構的金屬與半導體之間產生一邊緣場,可 以在该工作電極處改變該電場。 可行的修改及變化方案 水電解係實作本發明之背景。但是,閘控電極構想可用 於在一電解質中的電極附近需要增強的電場之其他情況, 而且可用於其他電化學領域,包括電合成、電聚合及燃料 電池。例如,電極過電壓對於燃料電池而言係一要考量的 問題。 由於本發明係以氫產生為背景而提出用於例示構想,因 此說明閘控陰極之範例,但應記住該等構想還可在對材料 及偏壓作適當變化之條件下用於閘控陽極。此外,一問控 陰極及一閘極陽極可用於同一電化學電池。例如,一具體 126931.doc -23- 200842207 實施例可能包括具有閘控電極以減低在該電池之一陽極與 -陰極兩者處的過電塵之—電池,其中—電解反應發生於 j等電極之-電極’而—電合成反應發生於該等電極之另 電極,此一對程序之一範例係該燃料電池。 f'' 、^發明還顯示—(例如)用於電解之三個電極的系統還可 乂稭由將該閘極與該陽極電極互換(即,讓該陽極與陰極 彼此鄰接並讓遠端電極(在以上說明中稱為該陽極)用作咳 間極)來運作。在此情況下,該陽極係該陰極之反電極: 且係電解所需要的第二電極。或者該陰極係用於—陽極之 反電極。因此,可以蔣兮望帝 將忒專電極之任何電極互換成用作一 亟、陰極或閘極,包括一遠端閘極。 如該閑控電極結構可以包含兩個或兩個以上的電極(例 工作電極)之一陣列。多於一 而_笠M m 個電極可用作一閘極, 〜專閘極中的每一閘極可處於不同電位。多於 可用作一陰極。多於一個 11 夕於個電極可用作一陽極。向該 的任何電極施加之偏壓 化。 1 J W ㈣+動或隨時間變 可能用於該等電極及閘極材 厲士、兹& 卞 < 柯抖包括但不限於金 屬、體、聚合半導體及氧化物半導體。 、, 結論 兹對本發明之較佳具时_之說 及說明的目的,前面已接屮μ BB 基於圖解 之說明。1益立勺产益^ x或多項具體實施例 式。在以或將本發明限於所揭示的精確形 教導的啟發下,可有許多修改及變更。期望本 126931.doc •24- 200842207 發明之範疇不受此詳細說明之限制,而受其隨附申請專利 範圍之限制。 【圖式簡單說明】 上文參考附圖,圖中凡相似的參考數字皆表示對應的零 件: 圖1(a)、(b)、(c)及(d)係用於水電解之電化學電池之示 意圖,其中圖1(a)顯示可能在圖1(b)所示傳統電池中使用Can be a single material, which may be low K (where K dielectric constant) and high K material parent strip ▼, or it may be a more complex combination, so that ρ is at the working electrode (701) This edge % is enhanced in the adjacent electrolyte (702). Also, due to the enhanced electric field adjacent to the working electrode (7〇1), the electrode overpotential is reduced. Electrode Bias For all of the above schemes, the gate may be constantly biased or floating, and the bias may be static or time varying, and the particular choice is determined by the electrode program, the electrode geometry, and the electrolyte in the cell. . The voltage on the working electrode may also be pulsed to reduce the polarization effect. For example, (j if the working electrode is a cathode, the time-varying/dynamic bias or static bias will affect the electric field at the cathode. The dynamic bias of the working electrode helps to modify especially at the electrode. The second electrode used for electrolysis may be a regular electrode or another gated electrode, and the parameters are optimized for the electrode procedure occurring on the anode side, and the bias of the second electrode may be Static or time-varying. Method for changing the electrochemical potential and reducing the overvoltage Figure 6(b) shows a method for changing the electrochemical potential for electrolysis or electrosynthesis and reducing the overvoltage. Modifying the electric field (606) in an interface region (61〇) between the electrolyte 126931.doc -22· 200842207 (505) and one or more working electrodes (5〇3) to create conditions for energy alignment To facilitate electron (602) transfer (601) between the electrode and the electrolyte (505), for example, by applying a relative reversal between the working electrode (503) and the gate electrode (5〇2) Bias. Figure 6(d), by the working electrode (5〇 3) no bias is applied between the gate electrode (5〇2) (or a partial forward bias is applied), thereby being between an electrolyte (505) and one or more working electrodes (5〇3) The electric field (608) is modified in the interface region (61〇) between. The method is not limited to the use of the specific embodiment shown in Fig. 6, but any specific embodiment shown, for example, in Figs. 7 can be used. The MIM structure comprises an insulator (705) sandwiched between two metals (7〇〇) and (7〇1). If the working electrode (7〇丨) is a semiconductor instead of a metal, a MIS structure. The electric field can be changed at the working electrode by generating a fringe field between the metal of the MIM structure or between the metal and the semiconductor of the MIS structure. Possible modifications and variations of the water electrolysis system BACKGROUND OF THE INVENTION However, gated electrodes are contemplated for use in other situations where an enhanced electric field is required near an electrode in an electrolyte, and can be used in other electrochemical fields, including electrosynthesis, electropolymerization, and fuel cells. Voltage for fuel cells A problem to be considered. Since the present invention is presented for illustrative purposes in the context of hydrogen generation, an example of a gated cathode is illustrated, but it should be borne in mind that such concepts can also be appropriately modified for materials and bias voltages. In the case of a gated anode, a controlled cathode and a gate anode can be used for the same electrochemical cell. For example, a specific 126931.doc -23- 200842207 embodiment may include a gated electrode to reduce the battery One of the anode and the cathode is an electric dust-battery, wherein - the electrolysis reaction occurs at the electrode of the electrode such as j, and the electrosynthesis reaction occurs at the other electrode of the electrode, one of the pair of procedures An example is the fuel cell. f'', the invention also shows that, for example, the system for the three electrodes for electrolysis can also be used to exchange the gate with the anode electrode (ie, the anode and cathode are adjacent to each other and the distal electrode is allowed to be (referred to as the anode in the above description) to operate as a cough pole. In this case, the anode is the counter electrode of the cathode: and is the second electrode required for electrolysis. Or the cathode is used for the counter electrode of the anode. Therefore, any of the electrodes of the 忒 electrode can be interchanged for use as a 亟, cathode or gate, including a distal gate. For example, the idle control electrode structure may comprise an array of two or more electrodes (e.g., working electrodes). More than one _ 笠 M m electrodes can be used as a gate, and each gate in the ~ gate can be at a different potential. More than can be used as a cathode. More than one 11th electrode can be used as an anode. The bias applied to any of the electrodes. 1 J W (4) + or change over time May be used for these electrodes and gates. 士士,兹& 卞 < Ke shake includes but is not limited to metals, bulk, polymeric semiconductors and oxide semiconductors. Conclusions The purpose of the description of the present invention and the purpose of the description are as hereinbefore described. 1 Yili spoon yields x or a number of specific embodiments. Many modifications and variations are possible in light of the teachings of the invention. The scope of the invention is not limited by the detailed description, but is limited by the scope of the accompanying claims. BRIEF DESCRIPTION OF THE DRAWINGS [0009] Referring to the drawings, like reference numerals refer to the corresponding parts in the drawings: Figure 1 (a), (b), (c) and (d) are used for electrochemistry of water electrolysis. Schematic diagram of the battery, wherein Figure 1 (a) shows possible use in the traditional battery shown in Figure 1 (b)

之一傳統電極(在此情況下係陰極),而圖1(c)顯示可能在 圖1⑷所示電池使用的用於本發明之—具體實施例的陰極 之面之示意圖(僅顯示一陰極條帶及相鄰的控制閘極條 帶)。 圖2⑷及⑻係能帶圖,其中圖2⑷係由一退化n型半導體 製成並使用向表面狀態及接著向該水合氫離子的穿随電子 傳輸之-半導體陰極之一能帶圖,而圖2(b)係藉由ρ型半導 體製成的傳統光陰極之一能帶圖。 圖3⑷及(b)分別顯示沿在-絕緣基板上之一共面交指閘 控電極之XXi的平面及正; 丁囬及止視圖,其中該閘極可能或可能並 非塗布有一介電質,而在該险 牡邊◎極之某些表面上修改電荷、 電场及電位。在工作降;1¾总 . τ極係一直線條帶之條件下解說該概 念,但是該概念還適用於里 、/、他形狀(例如曲折、彎曲或銀 齒形)之電極及具有比所给-^丄 1不的直線斷面更複雜的斷面之 電極’包括該閘極電極懸挂 〜掛於该工作電極之上或相反之可 能情形。 柱形工作電極之一環繞 圖4(a)及(b)分別顯示沿具有一圓 126931.doc -25- 200842207 閘極電極陣列之XXM平面及正視圖,其中在該陰極之某 些表面上修改電荷、電場及電位。儘管顯示針對一圓柱形 工作電極之方案,但該概念適用於在該陣列的每一電池中 具有任意形狀及斷面之電極。此外,在一陣列中的電池不 必相同。 圖5(a)及(b)分別顯示沿在一 GaN及A1GaN(或其他適當選 擇的半導體)結構上之一交指電極對之χΧι的平面及正視 圖,其中該歐姆接點可能受一絕緣體覆蓋而一電極可能在 形成該肖特基接點的金屬下具有一絕緣層(在該工作陰極 係一直線條狀之條件下解說該概念,但該概念還會適用於 其他形狀(例如曲折或彎曲或鋸齒形)的電極,另外電極可 月色具有與所緣示斷面不同的其他斷面)。 圖6(a)、(b)、(c)及(d)顯示針對兩個偏壓情況沿線AAi之 不意性能帶圖,其中圖6(b)顯示針對在電子從該金屬陰極 穿隨至該水合氫能階之條件下受到反向偏壓的肖特基阻障 之沿線AA!的能帶圖,而圖6(d)顯示針對在電子從該2deg 穿隧(在一光陰極情況下可能需要如此)之條件下部分受正 向偏壓的肖特基阻障之沿圖6(c)所示線AA!的能帶圖(對於 此等兩個偏壓條件,皆可能使用一 MIS結構來減小閘極浪 漏電流)。 圖7(a)與(b)分別顯示沿條帶電極之ΧΧι的平面及正視 圖’其中該絕緣體可能係一單一材料或數個材料之一組合 以增強在該電解質中的電場(在該工作陰極係一直線條帶 之條件下解說該概念,但該概念還會適用於其他形狀(例 126931.do, •26- 200842207 如曲折或彎曲或鋸齒形)之電極而且該等電極可能具有與 所繪示電極斷面不同之斷面)。 【主要元件符號說明】 Γ 100 傳統電化學電池 101 電極/陰極 102 電極/陽極 105 電解質 106 電池電壓 107 陰極 108 電化學電池 109 陰極條帶/工作電極 110 相鄰控制閘極條帶/閘極電極 111 基板 112 適當偏壓 205 電解質 208 導電帶 210 表面電荷 211 半導體/電解質介面 212 能帶彎曲 214 電洞 300 共面交指閘控電極 301 絕緣基板 302 閘極電極 303 介電質 126931.doc •27- 200842207 304 工作電極/陰極 305 直線條帶/窄指狀物 307 電解質 400 環繞閘極電極陣列/閘極電極 401 陰極/工作電極 402 閘極電極 403 絕緣基板 405 陰極(401)之頂部 406 周邊 407 基架 408 絕緣體/介電質 409 電解質 500 交指電極對 501 囊封結構/閘極電極/半導體(異質結構) 502 歐姆接點/閘極電極 503 工作電極/金屬/導電材料 504 直線條帶 505 電解質 506 半導體異質結構(501)之表面 507 基板 609 寬帶隙半導體/絕緣體 610 介面區域 700 閘極/金屬(電極) 701 工作電極/金屬 126931.doc -28- 200842207 702 電解 703 條帶 704 端接 705 絕緣 質 點 層或介電質/絕緣體 126931.doc -29-One of the conventional electrodes (in this case, the cathode), and FIG. 1(c) shows a schematic view of the surface of the cathode used in the embodiment of the present invention, which may be used in the battery of FIG. 1 (4) (only one cathode strip is shown) With and adjacent control gate strips). Figure 2 (4) and (8) are energy band diagrams, wherein Figure 2 (4) is a band diagram of a semiconductor cathode made of a degenerate n-type semiconductor and using a surface-to-surface state and subsequent electron transport to the hydrated hydrogen ion. 2(b) is a band diagram of a conventional photocathode made of a p-type semiconductor. 3(4) and (b) respectively show the plane and positive XXi of a co-planar interdigitated gate electrode along the on-insulator substrate; and the gate and the stop view, wherein the gate may or may not be coated with a dielectric, The charge, electric field and potential are modified on some of the surface of the dangerous edge. In the work drop; 13⁄4 total. τ pole system has been explained under the condition of the line, but the concept also applies to the inner, /, his shape (such as zigzag, curved or silver tooth) electrode and has the ratio - ^丄1不的线结构 More complex sections of the electrode 'including the gate electrode suspension ~ hanging above the working electrode or vice versa. One of the cylindrical working electrodes surrounds FIG. 4(a) and (b) respectively showing an XM plane and a front view along a gate electrode array having a circle 126931.doc -25-200842207, wherein the charge is modified on some surfaces of the cathode , electric field and potential. Although shown for a cylindrical working electrode, the concept is applicable to electrodes having any shape and cross section in each cell of the array. In addition, the batteries in an array do not have to be the same. 5(a) and (b) respectively show a plan and a front view of a pair of interdigitated electrodes along a GaN and A1GaN (or other suitably selected semiconductor) structure, wherein the ohmic contact may be subjected to an insulator. Covering an electrode may have an insulating layer under the metal forming the Schottky junction (the concept is explained under the condition that the working cathode system is always line-shaped, but the concept is also applicable to other shapes (such as zigzag or bending) Or zigzag electrodes, the other electrodes may have a different cross section than the edge of the edge. Figures 6(a), (b), (c) and (d) show unintentional performance band diagrams along line AAi for two bias conditions, wherein Figure 6(b) shows the passage of electrons from the metal cathode to the An energy band diagram along the line AA! of the reverse biased Schottky barrier under hydrated hydrogen energy level conditions, and Figure 6(d) shows the tunneling of electrons from the 2deg (in the case of a photocathode) The band diagram of the partially biased Schottky barrier along the line AA! shown in Figure 6(c) is required under such conditions (for both bias conditions, an MIS structure may be used) To reduce the gate leakage current). 7(a) and (b) respectively show a plane and a front view along the strip electrode of the strip electrode, wherein the insulator may be a single material or a combination of several materials to enhance the electric field in the electrolyte (in the work) The concept of the cathodic system is explained under the condition of a strip, but the concept will also apply to electrodes of other shapes (eg 126931.do, • 26-200842207 such as zigzag or curved or zigzag) and the electrodes may have a section with a different cross section of the electrode). [Main component symbol description] Γ 100 Conventional electrochemical cell 101 Electrode/Cathode 102 Electrode/Anode 105 Electrolyte 106 Battery voltage 107 Cathode 108 Electrochemical cell 109 Cathode strip/Working electrode 110 Adjacent control gate strip/gate electrode 111 Substrate 112 Appropriately biased 205 Electrolyte 208 Conductive strip 210 Surface charge 211 Semiconductor/electrolyte interface 212 Band bend 214 Hole 300 Coplanar interdigitated gate electrode 301 Insulating substrate 302 Gate electrode 303 Dielectric 126931.doc •27 - 200842207 304 Working electrode/cathode 305 Straight strip/narrow finger 307 Electrolyte 400 Surrounding gate electrode array/gate electrode 401 Cathode/working electrode 402 Gate electrode 403 Insulating substrate 405 Cathode (401) Top 406 Peripheral 407 Base 408 Insulator / Dielectric 409 Electrolyte 500 Interdigitated electrode pair 501 Encapsulation structure / Gate electrode / Semiconductor (heterostructure) 502 Ohmic contact / Gate electrode 503 Working electrode / Metal / Conductive material 504 Straight strip 505 Electrolyte 506 Semiconductor Heterostructure (501) Surface 507 Substrate 609 Broadband Gap Semiconductor/Insulator 610 Interface Area 700 Gate/Metal (Electrode) 701 Working Electrode/Metal 126931.doc -28- 200842207 702 Electrolytic 703 Strip 704 Termination 705 Insulation Dot Layer or Dielectric/Insulator 126931.doc -29 -

Claims (1)

200842207 十、申請專利範圍: 1 · 一種用以改變電極過電壓之閘控電極結構,其包含· ⑷至少-工作電極,其係用以向_電解質或從 質傳輸電荷;以及 二)至少-閘極電極,其係與該卫作電極適當間隔,以 使得介於該閘極電極與該工作電極之間的一相對偏壓改 變:介於該工作電極與該電解質之間的一介面區域 f 電荷、電場及電位並修改該工作電極之電位。 2·如請求項1之閘控電極結構,其係 ,、货田d等工作電極之兩 個或兩個以上的電極之一陣列組成。 3 ·如請求項1之閘控電極結構,豆中哕 八r巧工作電極係一陰 極’而在该閘極電極上之^一雷你從旦_ ^電位係影響在該陰極處的該 電荷、電場及電位之一靜態或動態偏壓。 4·如請求項1之閘控電極結構, 傅兵中相對於該工作電極施 加一適當的閘極電位以修改VL 丨少队/口邊工作電極之一戋多個表 面之該電場及電位並增加該工作電極與該電解質的各狀 態之間的電荷傳輸’從而促進該電解質中的電化學、電 解或電合成反應。 其中該閘極電極可兼用作 其中該閘極電極環繞該工 其中該工作電極或閘極電 5·如請求項1之閘控電極結構 一閘控電極與一反電極。 6·如請求項1之閘控電極結構 作電極。 7·如請求項1之閘控電極結構 極係懸垂或懸掛。 126931.doc 200842207 8·如明求項1之閘控電極結構,其中該工作電極與閘極電 極係製造於兩個不同基板上並適當並置。 月长項1之閘控電極結構,其中該閘極電極與工作電 極係共面並交指。 10.如請求項9之閘控電極結構,其中該閘極電極與工作電 極係在一半導體基板上。 11·如請求項Η)之閑控電極結構,其中該半導體基板 振。 12·如明求項9之閘控電極結構,其中該工作電極包含一或 多個條帶電極。 13·如請求項/之問控電極結構,其中該閘極電極與該工作 電極係糈由一絕緣層分離以形成一金屬_絕緣體-金屬 (ΜΙΜ)或金屬-絕緣體_半導體(Mls)結構,而該工作電極 係一金屬或一半導體。 14·如請求項!之閘控電極結構,其中該卫作電極與閑極電 極之間的該相對偏壓係浮動、靜態或隨時間變化。 A如請求項!之問控電極結構,其中該等電極係互換以用 作-陽極、陰極或閘極,包括一遠端閘極。 16.如請求項15之問控電極結構,其中該等電極之多於一個 2極用作-閘極,而料閘極之每—閘極處於不同電 17·如請求項15之閘控電極結構,里中 傅,、甲这4電極之多於一個 電極用作一陰極。 18.如請求項15之閘控電極結構,豆 偁兵T該4電極之多於一個 126931.doc 200842207 電極用作一陽極。 19.如請求項15之閘控電極結構,其中向該等電極中的任何 電極施加之該偏壓係穩態或隨時間變化。 20. -種使用如請求項!之閘控電極結構來減低過電麼的電 化學或光電化學電池。 2 1 · —種用以改變電化辠、雪站斗、啦人, 電解或電a成反應並改變過電麼 之方法,其包含: ⑷修改在介於一電解質與一或多個電極之間的一介面 區域中之-電%及電位以產生促進該電解質與該等電極 之間的電子傳輸條件。 22. 如請求項21之方法’其中藉由使用包含至少一間極與至 少-工作電極之-閘控電極來修改電荷、電場及電位, 並在該閘極與該工作電極之間施加一相對偏壓。 23. 如„月求項22之方法,其中該修改步驟包含使用介於該問 極與該工作電極之間的一邊緣場,其形成一肖特基接點 或異質接面。 24· —種使用如請求項幻之方法來執行的電化學、電解或電 合成。 25· —種具有複數個閘控電極以減低在該電池之一陽極與一 陰極兩者處的過電壓之電池,纟中一冑解質反應發生於 該等閘控電極之一電極,而一電合成反應發生於該等閘 控電極之另一電極。 126931.doc 200842207 七、指定代表圖: (一) 本案指定代表圖為:第(1(c))圖。 (二) 本代表圖之元件符號簡單說明: 106 電池電壓 107 陰極 ^ 109 陰極條帶/工作電極 . 110 相鄰控制閘極條帶/閘極電極 111 基板 ^ 112 適當偏壓 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無) 126931.doc200842207 X. Patent application scope: 1 · A gate-controlled electrode structure for changing the over-voltage of an electrode, comprising: (4) at least a working electrode for transferring charge to the electrolyte or the substance; and (2) at least a gate a pole electrode appropriately spaced from the guard electrode such that a relative bias between the gate electrode and the working electrode changes: an interface region f charge between the working electrode and the electrolyte , electric field and potential and modify the potential of the working electrode. 2. The gate electrode structure of claim 1 is composed of an array of two or more electrodes of a working electrode such as a cargo field and a cargo field d. 3 · As in the gate electrode structure of claim 1, the working electrode of the bean is a cathode, and the electrode on the gate electrode affects the charge at the cathode. One of the electric field and the potential is static or dynamic bias. 4. According to the gate electrode structure of claim 1, Fu Bingzhong applies an appropriate gate potential with respect to the working electrode to modify the electric field and potential of one of the plurality of surfaces of the VL 丨 队 / / / / / / Increasing the charge transport between the working electrode and the various states of the electrolyte to promote electrochemical, electrolytic or electrosynthesis reactions in the electrolyte. Wherein the gate electrode can also serve as the gate electrode surrounding the work electrode or the gate electrode. 5. The gate electrode structure of claim 1 is a gate electrode and a counter electrode. 6. The gate electrode structure of claim 1 is used as an electrode. 7. The gate electrode structure of claim 1 is suspended or suspended. 126931.doc 200842207 8. The gate electrode structure of claim 1, wherein the working electrode and the gate electrode are fabricated on two different substrates and are juxtaposed appropriately. The gate electrode structure of the monthly term 1 wherein the gate electrode and the working electrode are coplanar and intersect. 10. The gate electrode structure of claim 9, wherein the gate electrode and the working electrode are on a semiconductor substrate. 11. The idle control electrode structure of claim Η), wherein the semiconductor substrate is vibrated. 12. The gated electrode structure of claim 9, wherein the working electrode comprises one or more strip electrodes. 13. The requesting electrode structure of claim 1 wherein the gate electrode and the working electrode system are separated by an insulating layer to form a metal-insulator-metal (M) or metal-insulator-semiconductor (Mls) structure. The working electrode is a metal or a semiconductor. 14·If requested! The gate electrode structure wherein the relative bias between the blade electrode and the idle electrode is floating, static or time varying. A. The control electrode structure of claim 1 wherein the electrodes are interchanged for use as an anode, a cathode or a gate, including a distal gate. 16. The control electrode structure of claim 15, wherein more than one of the electrodes is used as a gate, and each gate of the gate is at a different electrical power. 17. The gate electrode of claim 15 More than one electrode of the four electrodes of the structure, Lizhongfu, and A is used as a cathode. 18. The gate electrode structure of claim 15 wherein more than one of the four electrodes is 126931.doc 200842207 The electrode is used as an anode. 19. The gated electrode structure of claim 15 wherein the bias applied to any of the electrodes is steady or time varying. 20. An electrochemical or photoelectrochemical cell that uses a gated electrode structure such as the request item to reduce over-current. 2 1 · A method for changing the electro-chemical enthalpy, the snow station, the person, the electrolysis or the electro-a reaction and changing the over-electricity, comprising: (4) modifying between an electrolyte and one or more electrodes The % of electricity and the potential in an interface region are used to promote electron transport conditions between the electrolyte and the electrodes. 22. The method of claim 21, wherein the charge, the electric field, and the potential are modified by using a gate electrode comprising at least one pole and at least a working electrode, and a relative is applied between the gate and the working electrode bias. 23. The method of claim 22, wherein the modifying step comprises using a fringe field between the pole and the working electrode to form a Schottky junction or a heterojunction. Electrochemical, electrolytic or electrosynthesis performed using a method as claimed. 25 - A battery having a plurality of gated electrodes to reduce overvoltage at both the anode and the cathode of the battery, A deuteration reaction occurs at one of the electrodes of the gated electrode, and an electrosynthesis reaction occurs at the other electrode of the gated electrode. 126931.doc 200842207 VII. Designated representative map: (1) Representative representative map of the case It is: (1(c)) Fig. (b) The symbol of the symbol of this representative diagram is simple: 106 Battery voltage 107 cathode ^ 109 cathode strip / working electrode. 110 adjacent control gate strip / gate electrode 111 Substrate ^ 112 Appropriate bias 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: (none) 126931.doc
TW096143967A 2006-11-20 2007-11-20 Gated electrodes for electrolysis and electrosynthesis TWI439568B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86656006P 2006-11-20 2006-11-20

Publications (2)

Publication Number Publication Date
TW200842207A true TW200842207A (en) 2008-11-01
TWI439568B TWI439568B (en) 2014-06-01

Family

ID=40075405

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096143967A TWI439568B (en) 2006-11-20 2007-11-20 Gated electrodes for electrolysis and electrosynthesis

Country Status (3)

Country Link
US (1) US8147659B2 (en)
TW (1) TWI439568B (en)
WO (1) WO2008147399A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153829A1 (en) * 2007-05-29 2008-12-18 Transphorm, Inc. Electrolysis transistor
WO2009051788A2 (en) * 2007-10-15 2009-04-23 Transphorm, Inc. Compact electric appliance providing hydrogen injection for improved performance of internal combustion engines
KR100896436B1 (en) * 2008-11-07 2009-05-12 황부성 A hydrogen-oxygen generating apparatus
KR100894288B1 (en) * 2008-12-02 2009-04-21 황부성 A hydrogen-oxygen generating apparatus
CN102317244A (en) 2009-01-29 2012-01-11 普林斯顿大学 Carbonic acid gas is converted into organic product
KR100918958B1 (en) * 2009-02-03 2009-09-25 황부성 A hydrogen-oxygen generating apparatus
US8721866B2 (en) 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
US8500987B2 (en) * 2010-03-19 2013-08-06 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US8845877B2 (en) * 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
US8845878B2 (en) 2010-07-29 2014-09-30 Liquid Light, Inc. Reducing carbon dioxide to products
US8524066B2 (en) * 2010-07-29 2013-09-03 Liquid Light, Inc. Electrochemical production of urea from NOx and carbon dioxide
US8568581B2 (en) 2010-11-30 2013-10-29 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US8961774B2 (en) 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
US8562811B2 (en) 2011-03-09 2013-10-22 Liquid Light, Inc. Process for making formic acid
KR20140050037A (en) 2011-07-06 2014-04-28 리퀴드 라이트 인코포레이티드 Carbon dioxide capture and conversion to organic products
WO2013006711A1 (en) 2011-07-06 2013-01-10 Liquid Light, Inc. Reduction of carbon dioxide to carboxylic acids, glycols, and carboxylates
CN104229946B (en) * 2013-06-20 2017-02-08 罗民雄 Simple electrolysis method capable of preparing electrolytic water from pure water
US9484601B2 (en) * 2013-07-30 2016-11-01 Elwha Llc Load-managed electrochemical energy generation system
US9343783B2 (en) 2013-07-30 2016-05-17 Elwha Llc Electrochemical energy generation system having individually controllable cells
US9893369B2 (en) 2013-07-30 2018-02-13 Elwha Llc Managed access electrochemical energy generation system
WO2016052002A1 (en) * 2014-09-29 2016-04-07 富士フイルム株式会社 Artificial photosynthesis module
US10626511B2 (en) * 2016-05-25 2020-04-21 University Of Southern California Nanoelectrodes for water splitting
WO2018068094A1 (en) * 2016-10-12 2018-04-19 Newsouth Innovations Pty Limited Method and apparatus for controlling an electrochemical process
JPWO2018198861A1 (en) * 2017-04-28 2020-04-16 富士フイルム株式会社 Electrode for artificial photosynthesis module and artificial photosynthesis module
US11618955B2 (en) * 2019-10-04 2023-04-04 Research & Business Foundation Sungkyunkwan University Hydrogen evolution apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044939A (en) * 1975-09-08 1977-08-30 Ncr Corporation Method of fabricating diffraction grating masters and apparatus therefor
US20050145499A1 (en) * 2000-06-05 2005-07-07 Applied Materials, Inc. Plating of a thin metal seed layer
JP4172149B2 (en) * 2000-09-22 2008-10-29 富士ゼロックス株式会社 Low potential electrodeposition electrodeposition liquid and electrodeposition method using the same
EP2267784B1 (en) * 2001-07-24 2020-04-29 Cree, Inc. INSULATING GATE AlGaN/GaN HEMT
US6824656B2 (en) * 2001-10-22 2004-11-30 Perkinelmer Instruments Llc Interdigitated electrochemical gas generator
JP4691648B2 (en) * 2002-03-08 2011-06-01 独立行政法人情報通信研究機構 Conductive nanowire manufacturing apparatus and manufacturing method
US7384791B2 (en) * 2004-01-21 2008-06-10 Hewlett-Packard Development Company, L.P. Method of analyzing blood
US7253061B2 (en) * 2004-12-06 2007-08-07 Tekcore Co., Ltd. Method of forming a gate insulator in group III-V nitride semiconductor devices

Also Published As

Publication number Publication date
US20080116080A1 (en) 2008-05-22
TWI439568B (en) 2014-06-01
US8147659B2 (en) 2012-04-03
WO2008147399A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
TW200842207A (en) Gated electrodes for electrolysis and electrosynthesis
Hassan et al. High-performance ZnS/GaN heterostructure photoanode for photoelectrochemical water splitting applications
AlOtaibi et al. High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode
Hill et al. An electrodeposited inhomogeneous metal–insulator–semiconductor junction for efficient photoelectrochemical water oxidation
Song et al. Bifunctional NiFe inverse opal electrocatalysts with heterojunction Si solar cells for 9.54%-efficient unassisted solar water splitting
Seger et al. Silicon protected with atomic layer deposited TiO 2: conducting versus tunnelling through TiO 2
Dahal et al. Realizing InGaN monolithic solar-photoelectrochemical cells for artificial photosynthesis
CN104201221A (en) Solar cell based on graphene-metal nanoparticle composite material
JP6816735B2 (en) Electrodes for chemical reactions, cells for chemical reactions using them, and chemical reaction equipment
CN108385132A (en) A kind of Co doping MoS2The CVD preparation methods of array original position electrode
Kang et al. Efficient photoelectrochemical water splitting by a doping-controlled GaN photoanode coated with NiO cocatalyst
Mani et al. Novel single pot synthesis of metal (Pb, Cu, Co) sulfide nanomaterials-Towards a quest for paintable electrode materials that supersedes Pt electrode
Hien et al. Energy diagram analysis of photoelectrochemical water splitting process
Lee et al. Preparation of nickel selenide by pulsed-voltage electrodeposition and its application as a highly-efficient electrocatalyst at counter electrodes of quantum-dot sensitized solar cells
KR101043582B1 (en) Dye- sensitized solar cell using carbon-nano-tube doped with nitrogen and its manufacturing method
KR101523743B1 (en) Hybrid type device
JP4573594B2 (en) Secondary battery
Li et al. Doping as an effective recombination suppressing strategy for performance enhanced quantum dots sensitized solar cells
Hwang et al. Carbon nanotubes as counter electrode for dye-sensitised solar cells
Han et al. Heterojunction Fe 2 O 3-SnO 2 Nanostructured Photoanode for Efficient Photoelectrochemical Water Splitting
Zhao et al. InGaN/Cu2O heterostructure core-shell nanowire photoanode for efficient solar water splitting
Yang et al. Counter electrodes from platinum alloy nanotube arrays with ZnO nanorod templates for dye-sensitized solar cells
CN111962083B (en) Preparation method and application of graphene roll-coated graphite-phase carbon nitride nanotube photoelectrode
Yoon et al. Enhanced electrocatalytic activity of the Au-electrodeposited Pt nanoparticles-coated conducting oxide for the quantum dot-sensitized solar cells
JP5618485B2 (en) Electrochemical cell operation method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees