TW200841016A - Pronged fork probe tip - Google Patents

Pronged fork probe tip Download PDF

Info

Publication number
TW200841016A
TW200841016A TW096121506A TW96121506A TW200841016A TW 200841016 A TW200841016 A TW 200841016A TW 096121506 A TW096121506 A TW 096121506A TW 96121506 A TW96121506 A TW 96121506A TW 200841016 A TW200841016 A TW 200841016A
Authority
TW
Taiwan
Prior art keywords
probe
tip
axis
shaft
node
Prior art date
Application number
TW096121506A
Other languages
Chinese (zh)
Inventor
Alexander Leon
Original Assignee
Hewlett Packard Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co filed Critical Hewlett Packard Development Co
Publication of TW200841016A publication Critical patent/TW200841016A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/06738Geometry aspects related to tip portion

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

Provided is a pronged fork probe tip (100) for probing a node, such as a through-hole node (1900), on a circuit. The probe tip (100) has a shaft (104) made from an electrically conductive material, concentric to a longitudinal probe axis (102), and two fork prongs (106, 108) coupled to the shaft (104) and positioned parallel to the probe axis (102). The two fork prongs (106, 108) provide two geometrically singular points of contact (110, 112), concentrating applied force from the shaft (104) to the node hole (1900), and more particularly, to solder (1904) within the node hole (1900), at two points. A self-cleaning space (116, 600) between the fork prongs (106, 108) aid in preventing clogging of the probe (100) by flux material (1906) and/or debris. The shaft (104) may also include a plunger (1800) and/or a structure to provide a preferred fixed orientation by preventing rotation of the probe (100) about the probe axis (102).

Description

200841016 九、發明說明: 【發明所屬之技術領威】 發明領域 本發明概括有關電測試探針之領域,且特別有關一尖 ” 5 叉式探針。 ; 【关^月VI #支冬好】 發明背景 _ 一般而言,現代電性產品採用印刷電路總成(PCA),諸 如印刷電路板。產品範圍很廣泛,舉例而言包括行動電話、 10膝上型電視、MP3播放器、遊戲面板、個人資料助理及航 空器組件。 • 這些產品内的印刷電路係互連多種不同的電路組件, 諸如二極體、電晶體、電阻器、積體電路及類似物。各者 製成個別組件時一般具有一或多個腳或針腳(常稱為引 15線)。利用一提供出入不同組件的電性線跡之電路板及便利 φ 將組件永久性安裝在板上之區域藉以使得個別組件成為有 效和諧。 由於許多產品的製造複雜度,PCA以階段組裝。一給 定PCA及其上的至少部分組件因此可能受到重覆的處理步 20驟。因此,組件在製程期間頻繁地需要監測及測試以確保 最終裝置能夠運作。若早期偵測到不可矯正的瑕疵,可停 止瑕疵產品的進一步組裝藉以節省額外的製造成本。 使用電性測試探針在PCA組件與測試儀器之間提供電 性連接。^ ^電性測试板針' 般係由' 接合至一電傳導轴之 5 200841016 =導探測梢部所組成’該電傳導轴轉而連接至— 板、十對準至一特定組件之測試附件。 " _般組件藉由__接至pcA。環 素已經造成㈣料基礎的銲料至無料料 ^ 化。利用無錯銲料係對於組裝及測試製程造成額外==200841016 IX. INSTRUCTIONS: [Technical Leadership of the Invention] Field of the Invention The present invention generally relates to the field of electrical test probes, and in particular to a sharp-pointed 5-fork probe; [off ^ month VI #支冬好] BACKGROUND OF THE INVENTION In general, modern electrical products employ printed circuit assemblies (PCAs), such as printed circuit boards. A wide range of products, including, for example, mobile phones, 10 laptops, MP3 players, gaming panels, Personal Data Assistants and Aircraft Components • The printed circuits within these products interconnect a variety of different circuit components, such as diodes, transistors, resistors, integrated circuits, and the like. One or more feet or pins (often referred to as lead wires). Use a circuit board that provides electrical traces for different components and facilitates the permanent mounting of components on the board to make individual components effective. Due to the manufacturing complexity of many products, the PCA is assembled in stages. A given PCA and at least some of its components may therefore be subject to repeated processing steps. Therefore, the components frequently need to be monitored and tested during the process to ensure that the final device can operate. If an uncorrectable flaw is detected early, further assembly of the product can be stopped to save additional manufacturing costs. An electrical connection is provided between the PCA component and the test instrument. ^ ^Electrical test plate needle ' is normally joined to an electrically conductive axis 5 200841016 = guided detection tip composed of 'the electrically conductive axis is connected to — The board and ten are aligned to the test accessories of a specific component. " The components are connected to pcA by __. The ring has caused the (four) material-based solder to no material. Using the error-free solder for assembly and Test process caused extra ==

10 1510 15

,取件,可彻通孔迴 …且衣至板藉以>肖除波銲的製程及成本。了取係為一種與 表面黏著技術(SMT)組件㈤時地安裝Τ町組件之方式。通 5、干料用模板以貧形式施加至電路板。組件隨後被 I:抵至銲月内,及/或連同銲膏進人板中的孔内。板隨後被 加熱至銲料融化溫度以使銲料迴流故使其濕潤 一塾表面及 /或/口將被接合至板之一組件的針腳流動 。除了銲料金屬 外’知賞亦含有稱為助熔劑之化學物的一組合,其幫助銲 料保持I ^/式作為黏劑以使膏黏至墊及針腳,藉以在迴 流之Θ將組件固持在板上,且清理墊及針腳的金屬藉以達 成一良好辉料接合部。迴流製程係釋放膏的助熔劑組件且 在板及銲料接合部上留下助纏殘留物 。助溶劑殘留物係 為非傳導材料的一組合。 板中的孔頻繁地用來安裝組件及/或提供板互連作 20用。當經迴流銲料流入這些孔中時,其可能部份地或完全 地予以充填。助熔劑材料亦將流入孔中且聚集於經迴流銲 料頂上。助熔劑材料可位於孔的墊下方,與其齊平或溢流 或突起於其上方。 當孔及/或其周遭的墊身為一測試探針的目標時,助熔 6 200841016 劑殘留物可能在墊與目標之間々 皮此驅迫時阻止可靠且可重 覆的電性連接。並且,將測試探針梢部驅迫至録料内時一 般使用-特定量的力。若施加過大的力,這可能破壞鲜料 接合部、組件或板本身。若施加過小的力,探針可能未充 —5分接觸於㈣且—合格組件可能被纖為具有瑕疲。因 ^ 此,需要一可重覆地在一測試探針與其目標之間產生良好 電性接觸之低力量。, 馨大部份習知測試探針梢部一般係為一圓錐形狀或窄化 至一點之其他形狀。與探針縱軸線呈直列狀之此點係准許 1〇與該軸線呈直列狀之-力量集中,因此亦限制探針磨耗。 相對於-充填有包含轉而被其中灘塘狀助熔劑殘留物所充 • 填之凹形液彎面的銲料之通孔,習知探針點目標在於助熔 , _塘的最深部分。接觸銲料之企圖可能因此受挫,且儘 管節點實際上可適當地運作,測試可能失效。 5 亦存在具有二或更多個梢部以對準於堆墩狀銲料元件 • 上方之杯、冠及徑向星形的探針梢部。然而,隨著接觸點 數增多,接觸的表面積亦增大。更確切言之,隨著接觸點 增多,轉移至各點之施力的集中程度係降低。 可藉由位於备鞋上的人作為範例來顯示此作用。因為 2〇雪鞋將其重量橫跨一大表面積分佈在雪上,該人可走過軟 夺地。-更確切範例中,ϋ由單點施加至一表面之一啤 位(任心)的力里值將轉移12的力量值。藉由三點所施加之相 同的力係看見各點只施加4的力量值,身為總力的三分之一 (2 3 4)。易5之,柱基施加的接觸力係除以接合點數,導 200841016 二觸力。材料係限制各梢部的接觸表面 積可製成多小。因此,一 ^w 三梢部探針响肖抑2=^輪嶋將比一 部具有鱗接觸表_)。_力更以倍(假設所有梢 5, the pick-up, can pass through the hole back ... and the clothes to the board to borrow > Xiao Xiao wave soldering process and cost. The method of installing the Τ 组件 组件 component is a type of surface adhesion technology (SMT) component (5). 5. The dry material is applied to the board in a lean form using a template. The assembly is then I: brought into the weld month, and/or along with the solder paste into the holes in the panel. The plate is then heated to the solder melting temperature to allow the solder to flow back so that it wets the surface and/or the port will be bonded to the pins of one of the plates. In addition to solder metal, 'there is also a combination of chemicals called fluxes that help the solder maintain I ^ / as an adhesive to adhere the paste to the pads and pins, thereby holding the components on the plate after reflow. The metal of the pad and the pins are cleaned up to achieve a good bridging joint. The reflow process releases the flux component of the paste and leaves a entanglement residue on the board and solder joint. The cosolvent residue is a combination of non-conductive materials. Holes in the board are frequently used to mount components and/or provide board interconnections. When the reflowed solder flows into the holes, it may be partially or completely filled. The flux material will also flow into the holes and collect on top of the reflowed solder. The flux material can be located below the pad of the aperture, flush or overflow or protrude above it. When the hole and/or its surrounding pad is the target of a test probe, the flux 6 200841016 agent residue may prevent a reliable and reproducible electrical connection between the pad and the target. Also, a specific amount of force is typically used when the test probe tip is driven into the recording. If excessive force is applied, this can damage the fresh joints, components or the board itself. If too little force is applied, the probe may not be charged to -5 points to (4) and - the qualified component may be strained with fatigue. Because of this, there is a need for a low force that can repeatedly produce good electrical contact between a test probe and its target. Most of the well-known test probe tips are generally conical or narrowed to other shapes. This point, which is in-line with the longitudinal axis of the probe, permits the concentration of forces that are in-line with the axis, thus limiting probe wear. The conventional probe point is aimed at fluxing, the deepest part of the pond, relative to the through-hole filled with solder containing the concave surface of the concave liquid which is filled by the beach-like flux residue. Attempts to contact the solder may be frustrated, and although the node may actually function properly, the test may fail. 5 There are also probe tips with two or more tips to align with the pile-shaped solder elements • the upper cup, crown and radial star. However, as the number of contact points increases, the surface area of the contact increases. More specifically, as the number of contact points increases, the concentration of the force applied to each point decreases. This effect can be shown by way of example of a person sitting on a shoe. Because the 2〇 snowshoes distribute their weight across a large surface area on the snow, the person can walk through the soft ground. - In a more precise example, the force value applied to a beer (a heart) from a single point will transfer the force value of 12. The same force applied by the three points shows that only 4 forces are applied at each point, which is one-third of the total force (2 3 4). In the case of Easy 5, the contact force applied by the column base is divided by the number of joints, and the conductivity is 200841016. The material limits how small the contact surface area of each tip can be made. Therefore, a ^w three-tip probe ringing 2=^ rim will have a scale contact table _). _ force more times (assuming all tips 5

10 因此’來自起點梢部、冠梢部或類似物之多數個接觸 =部與銲料之間達成一適當電性接觸之= 受二由二二片=梢部係同樣亦由於存在㈣劑而 供制㈣料致較低接 此外’杯狀梢部及多點梢部可能容易被助溶劑材料弄 髒。由於探針梢部企圖抵達助㈣材料下方的銲料,助溶 騎料被壓實至_及/或沿多重卿周_其間。此材料 可聚集至探針梢部單純無法產生電性接觸之點,甚至乾淨 的測試區位。10 Therefore, 'a proper electrical contact between the contact portion of the starting tip, the crown tip or the like and the solder is determined by the second two pieces = the tip system is also provided by the presence of the (four) agent. The system (4) causes a lower connection. In addition, the cup-shaped tip and the multi-point tip may be easily soiled by the solvent-promoting material. As the tip of the probe attempts to reach the solder underneath the material (4), the assisted rider is compacted to _ and/or along the multiple weeks. This material can be concentrated to the point where the probe tip is simply unable to make electrical contact, or even a clean test location.

fl言之’由於單關部傾向於對準助熔_料最厚處 之孔中心,單點梢部不太適合探測被助熔劑材料所堵塞或 盖覆之通孔。平片探針梢部及具有三或更多個梢部之梢部 係導致力量分佈於-增大的表面積上方。可能避免助溶劑 材料尽α卩伤之多點梢部係具有穿透過助溶劑殘留物之較小 20力量且容易被聚集在探針梢部的助熔劑弄髒,且因此無法 產生可重覆且可靠的電性接觸。 因此,並未在所有情況中達成探針與銲料之間所需要 的黾性接觸且測試系統可能單純由於接觸失效而將一健康 的板及/或組件錯誤地評價為有瑕疵。並且,不良接觸可能 200841016 導致不良板被不正㈣通過。由於昂貴的相_誤排除、 良好產品變成廢品、或受到備 的保固期客戶支援來影響利潤 师署的不良產品轉而需要昂貴 本 ’此等不正確評價將耗費成Since the single-section portion tends to align with the center of the hole at the thickest point of the fluxing, the single-point tip is less suitable for detecting through-holes that are blocked or covered by the flux material. The tab tip and the tip having three or more tips result in a force distribution over the increased surface area. It may be avoided that the multi-point tip of the co-solvent material has a smaller 20 force that penetrates the solvent residue and is easily soiled by the flux that collects at the tip of the probe, and thus cannot be reproducible and Reliable electrical contact. Therefore, the inert contact between the probe and the solder is not achieved in all cases and the test system may erroneously evaluate a healthy board and/or component as defective due to contact failure. Also, bad contact may cause 200841016 to cause bad boards to be corrected (4). Due to the expensive phase, the elimination of good products, the rejection of good products, or the support of customers during the warranty period, the bad products of the division will be expensive. This kind of incorrect evaluation will cost

『因此,需要-可克服1多項上述缺陷之裝置 【考务明内J 發明概要 本發明提供一用於探測一泰 梢部 包路上的一節點之接觸探針 〇 10 15 20 定言之,且只藉由範例,根據—實施例,提供-用 於抹測-電路上的-節點之尖又式探針梢部,其包括:一 =了線;一由—電傳導材料製造之轴,該轴與探針 ^ =心;兩叉尖頭’其輕合至該軸且平行於該探針軸 、=尖頭提供一端接觸點;及-自我清理空間,其配 置於该專兩叉尖頭之間。 圖式簡單說明 第 /圖顯示根據—實施例之—兩尖又式探針的面視圖; 弟2圖顯示第1圖的尖又式探針之側視橫剖視圖; 圖;第3圖顯示根據—實施例之-尖叉式探針的部份立體 弟4圖顯示根據一會μ > ,麵-: 尖叉式探針的侧視橫剖 視圖其如—㈣使_偏向之自我清理空間· /5圖顯41圖料㈣又式探狀1代性實施例 組態的側視橫剖視圖; a j 9 200841016 替代性尖又式探針之部份立體圖; 圖為弟6圖所示的尖又式探針之 . 圖所示的尖又式探針之側視橫剖視圖; 代性頭林他實施-於尖叉式探針之兩; 第圖為一尖叉式探針之側視圖; 第/圖為—尖又式探針之-替代性實施例的側視圖;"Thus, there is a need for a device that overcomes more than one of the above-mentioned drawbacks. [Inventive Summary] The present invention provides a contact probe for detecting a node on a Thai package road. By way of example only, according to the embodiment, there is provided a tip-and-tip probe tip for use on a wipe-on-circuit, comprising: a = line; a shaft made of an electrically conductive material, Axis and probe ^ = heart; two-pronged tip 'which is lightly coupled to the axis and parallel to the probe axis, = tip provides one end contact point; and - self-cleaning space, which is disposed on the two-forked tip between. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side elevational view of a two-pointed probe according to an embodiment; FIG. 2 is a side elevational cross-sectional view of the pointed probe of FIG. 1; FIG. - Example - Partial Stereo 4 of the tined probe shows a side cross-sectional view of the face-: tines probe according to a point μ >, such as - (d) _ biased self-cleaning space /5 Figure 41 (4) Side-viewing cross-sectional view of the configuration of the 1st generation embodiment; aj 9 200841016 Partial perspective view of the alternative tip-type probe; Probe of the tip of the probe shown in the figure; side view of the tip probe; the two sides of the tip probe; the figure is a side view of a tines probe; / Figure is a side view of an alternative probe - a side view of an alternative embodiment;

$圖為-大又式探針之一替代性實施例的侧視圖; 分圖為一大叉式探針之一替代性實施例片的側視 10 圖; #固為第9圖所示之尖叉式探針的叉尖頭端視圖; 第15圖為一尖叉式探針之一有頭實施例的面視圖; 第16圖為一尖叉式探針之一無頭替代性實施例的平面 第17圖為一尖叉式探針之一推拔狀替代性實施例的面 視圖; 、第18圖為根據一替代性實施例之一包括一柱塞的尖叉 式採針之部份立體圖; 第19圖顯示根據一實施例之一使用於一尖叉式探針之 2〇 方法;及 第2〇圖顯示一以一尖叉式探針作測試之節點孔的俯視 圖; 弟21圖為该使用方法之高階流程圖。 【㉟式】 10 200841016 較佳實施例之詳細說明 詳細描述 繼續作詳細描述之前,請瞭解本教導只供範例而非限 制用。此處的概念並不限於配合使用或應用一特定兩尖又 • 5式探針。因此,雖然此處所描述的工具係為了方便就示範 、 性實施例作說明、顯示及描述,請瞭解此處的原理可同樣 適用於其他類型的尖叉式探針。 • 現在參照圖式,且更特別參照第1至4圖,其中顯示/ 尖叉式探針梢部1〇〇以探測一電路上的一節點,確切來說, 10在至少一實施例中為一孔節點。至少一實施例中,尖又式 探針100具有一縱向探針軸線102, 一與探針軸線1〇2呈同心 ^ 之軸104,及兩叉尖頭106、108,其各提供一端接觸點11〇、 一 112,叉尖頭106、108及用以提供一探針梢部114之接觸點 110 、 112 〇 15 兩叉尖頭106、108係耦合至軸1〇4且沿探針軸線102定 • 位,並提供梢部114的頂點。各又尖頭106、108平行於探針 軸線102。至少一實施例中,又尖頭1〇6、⑽輕合至探針轴 線102的相對側上之軸刚。並且,至少—實施例中,又尖 頭106、108位於相同平面308中(請見第3圖),該平面平行於 20且包括探針軸線1〇2。此組態可提供一沿探針轴線胸: 之兩尖叉式探針梢部刚。至少一替代性實施例中,又尖頭 106 108不位於與楝針軸線1〇4相同的平面中,且因此,|、,、 編十梢部叫沿探針軸線陶稱。接觸_。广二 於一對於探針軸線104呈橫向之平面中。 11 200841016 尖叉式探針梢部100的結構可進一步就第3圖所提供的 部份立體圖來瞭解。並且,至少一實施例中,梢部114沿探 針軸線102由兩相對面30〇、3〇2所界定。面3〇〇、3〇2沿著— 實質地平行於探針軸線102的第一軸線(顯示為z轴線)朝向 5彼此收斂。面3〇〇、302係沿著一對於探針軸線1〇2呈橫向的 第二軸線(顯示為X轴線)分離且推祓至接觸點11〇、112。並 且’面300、302的推拔及分離將叉尖頭1〇6、1〇8設置於探 針軸線102的相對側上。各叉尖頭1〇6、1〇8轉而分別提供接 觸點 110、112。 10 叉尖頭106、1〇8進一步界定接觸點110、112之間的一 區域或空間116。此空間116係區分叉尖頭1〇6、108所提供 且施加於探針軸線102上之梢部114頂點。如下文進一步討 論,空間116為一自我清理空間。 請瞭解及理解叉尖頭1Q6、108提供針點接觸點11〇、 15 112。易言之,接觸點110、112係為提供實質地奇異的接觸 點之尖銳梢部,如同對於一共同平面中之多點幾何接觸表 面或區域所區分。 第2圖提供沿著探針軸線1〇2之第1圖所示的尖叉式探 針100之橫剖視圖,其顯示自我清理空間116的一半。如圖 20所示,藉由從梢部接觸點110延伸至侧204的一第一表面150 及從接觸點110延伸至侧206的一第二表面2〇〇來形成自我 清理空間116的所顯示部分。 參照第1至3圖,自我清理空間116具有一中央區域極點 152,其沿著探針軸線1〇2在一第一平面3〇8 (χζ平面,請見 12 200841016 第3圖)中配置於叉尖頭l〇6、l〇8之間。自我清理空間116進 一步在中央區域152上方具有出離極點區域154及154,。出 離區域154及154’沿著一第二軸線(顯示為Y軸線)位於一第 二平面310 (YZ平面,請見第3圖)中。參照第3圖可瞭解, , 5 出離區域154相對於Z軸線及Y軸線位於中央區域極點152 、 上方。確切言之,具有從中央區域極點152外出至出離區域 154及另外至出離區域154’之一斜率角(slope angle)。 g 如第3圖所示,第一表面150如圖所示由接觸點no之間 的邊界、中央區域極點152及出離區域極點154所界定。第 10 一表面150’如圖所示由接觸點112之間的邊界、中央區域極 點152、及出離區域極點154所界定。第二表面2〇〇由接觸點 - 110之間的邊緣、中央區域極點152、及出離區域極點154, 所界定(請見第2圖)。一第二表面200,(第3圖未顯示;請見 第14圖)由接觸點112之間的邊緣、中央區域極點152、及出 15離區域極點154,所界定(請見第2圖)。 # 共同來說,第一及第二表面150、150,、20〇、2〇0,對於 自我清理空間116提供自我清理態樣。由於尖又式探針 被帶領而接觸於一節點以作測試,諸如銲料殘留物、助熔 劑、塵土或其他材料等雜屑可能進入自我清理空間116。第 2〇 一及第二表面150、150,、200、200,的斜角可有利地確保此 等雜屑將被偏向遠離探針軸線且將不會卡在自我清理空 116 中。 更確切言之,第一表面15〇及第二表面200共用接觸點 110與中央區域極點152之間的共同邊緣304。同理,第一表 13 200841016 面150’及第二表面2〇〇,共用接觸點112與中央區域極點i52 之間的共同邊緣306。如第4圖所示,從梢部110頂點趨近且 打擊第一表面150或第二表面2〇〇之任何材料400皆被偏向 遠離探針軸線102且因此遠離尖叉式探針1〇〇。 5 由於自我清理空間116内並未提供腔穴、孔徑或其他半 包圍式結構,自我清理空間116不會困陷及聚集雜屑材料。 萬一任何雜屑材料聚集於第一或第二表面150、150,、200、 2〇〇上,後績探測循環中進入自我清理空間116之新雜屑材 料係〜著第一及第二表面15〇、15〇’、2〇〇、2〇〇,將所聚集材 ίο料推離探針軸線102,且因此防止梢部ιΐ4弄辨。 第5圖提供沿著探針軸線1〇2之第1圖所示的尖叉式探 針〇〇之曰代性侧視橫剖視圖。雖然在第2圖中將自我清理 工門116的邛分顯不為具有概呈扁平第一及第二表面ι5〇、 2〇0第5圖中將第一及第二表面500、502顯示為曲線狀。 15此^線狀表面可在至少一實施例中為有利以進一步增強自 我/月理空間116的自我清理態樣並作為便利製造的一替代 方式。 ,、參知第1至3圖’顯然至少一實施例中,梢部114自軸104 1成。更確切言之,由於軸1()4具有—實質地_橫剖面, 20可瞭解緊鄰於各接觸點ii〇、m之各叉尖頭1⑽、⑽的橫 ]概呈二角形,具有凸形側312及兩平侧314、316。 6至8圖提供尖叉式探針梢部1G0的-替代性實施 〇以圖提供&又式探針⑽的部份立體圖。第顶提供第 圖斤不的大又式探針1〇〇之面才見圖,而第8圖提供沿著探針 14 200841016 軸線102之第6圖所示的尖叉式探針梢部1〇〇之側視橫剖視 圖。 如第1至5圖所示,第6至8圖所示的尖叉式探針梢部1〇() 具有一縱向探針軸線102,對於探針軸線1〇2呈同心之一軸 5 104 ’及用以提供一探針梢部114之兩分離叉尖頭106、108。 兩叉尖頭106、108分別提供接觸點ι1〇、112。 不同於第1至5圖所示的實施例,第6至8圖中顯示一藉 由至少兩彎曲結構的兩交會部分來提供自我清理空間6⑽ 之實施例。更確切言之,第6至8圖所示的自我清理空間6〇q 10係由兩彎曲表面602、604形成,其各可為一圓柱、球體、 蛋形或其他三維彎曲表面的一部分。如圖所示,彎曲表面 602、604係交會於第一平面3〇8(χζ平面)中且從中央極點區 域152推拔至接觸點11〇及112。 貝貝地如上文參知弟4圖所描述,沿著一逼近探針軸線 15 1〇2的路徑進入自我清理空間600内之雜屑材料將遭遇到彎 曲表面602或604(第4圖中顯示為表面15〇、200)。隨著彎曲 表面602、604的彎曲斜坡導引離開探針軸線1〇2,打擊雜屑 被偏向遠離探針梢部110。由於自我清理空間6〇〇内未設有 腔穴、孔徑或其他開放結構,自我清理空間600不會困陷及 20聚集助熔劑殘留物雜屑或其他物質。 對於自我清理空間116及600,兩者皆顯示為對於探針 軸線102對稱。此對稱性係為設計偏好事項且可能對於特定 實施例為有利。替代性實施例中,自我清理空間116或6〇〇 可對於中心軸線102及/或梢部114中心呈歪斜。又此外,將 15 200841016 自我清理空間116及600顯示為簡單斜坡狀結構。至少一替 代性實施例中,界定自我清理空間之表面(譬如,150、150,、 200、200’、500、502、602、604)可具有用以界定一拔塞螺 錐狀通路或其他偏向通道(未圖示)之輪廓。 5 參照第6至8圖,顯然至少一實施例中,梢部114自軸1〇4 形成。更確切言之,由於軸104具有一實質地圓形橫剖面, 可瞭解緊鄰於各接觸點110、112之各叉尖頭1〇6、108的橫 剖面可能概呈三角形,具有凸形側606及兩凹形侧608、610。 參照第3及6圖及第2、5及8圖的側視切除圖,可瞭解接 10觸點11〇、112設置於梢部114的叉尖頭106、108頂點處藉由 一耦合至軸104之推拔結構與探針軸1〇4相對。至少一實施 例中,梢部114為轴104的一整體組件以使尖叉式探針梢部 100稱為無頭式,譬如第3、6及16圖所示。至少一替代性實 施例中,一可清楚識別的結構(亦即,一頭)係提供梢部114 15 使付乂叉式彳朱針梢部100稱為具有一頭或有頭式,譬如第15 及17圖所示。為了提供梢部114的此一較大或較小頭剖面, 軸104可能如圖所示呈階步推拔,或逐漸地推拔變小或變大 藉以提供梢部114的一較大或較小頭剖面。軸1〇4上之頭的 開始區位係以第丨至^圖的虛線us顯示。$ Figure is a side view of an alternative embodiment of a large-sized probe; the sub-graph is a side view 10 of an alternative embodiment of a large fork probe; #固为第图的图A prong tip end view of a tined probe; Figure 15 is a side view of a headed embodiment of a tined probe; Figure 16 is a headless alternative embodiment of a tined probe Figure 17 is a plan view of an alternative embodiment of a pick-up probe; and Figure 18 is a portion of a tines-type needle including a plunger according to an alternative embodiment. Figure 19 shows a two-way method for a tines probe according to one embodiment; and a second figure shows a top view of a node hole for testing with a tines probe; The figure shows a high-level flow chart of the method of use. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S) DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The description is to be construed as illustrative and not restrictive. The concept here is not limited to the use or application of a specific two-pointed and 5 type probe. Accordingly, while the tools described herein are illustrative, exemplary, and illustrated for convenience, the principles herein are equally applicable to other types of tines probes. • Referring now to the drawings, and more particularly to Figures 1 through 4, wherein the tip/tip probe tip is shown to detect a node on a circuit, specifically, in at least one embodiment One hole node. In at least one embodiment, the pointed probe 100 has a longitudinal probe axis 102, a shaft 104 concentric with the probe axis 1〇2, and two prongs 106, 108 each providing an end contact point 11〇, 112, prongs 106, 108 and contact points 110, 112 〇 15 for providing a probe tip 114 are coupled to the shaft 1〇4 and along the probe axis 102. Position and provide the apex of the tip 114. Each of the prongs 106, 108 is parallel to the probe axis 102. In at least one embodiment, the prongs 1〇6, (10) are lightly coupled to the axis just on the opposite side of the probe axis 102. Also, at least in the embodiment, the pointed ends 106, 108 are located in the same plane 308 (see Figure 3), which is parallel to 20 and includes the probe axis 1〇2. This configuration provides a tip-finger probe tip along the probe axis: In at least one alternative embodiment, the prongs 106 108 are not located in the same plane as the acantral axis 1 〇 4, and thus, the |, , , , , , , , , , contact_. The second is in a plane transverse to the probe axis 104. 11 200841016 The structure of the tines probe tip 100 can be further understood from the partial perspective provided in Fig. 3. Also, in at least one embodiment, the tip portion 114 is defined along the needle axis 102 by two opposing faces 30, 3, 2. The faces 3〇〇, 3〇2 converge toward each other along a first axis (shown as a z-axis) substantially parallel to the probe axis 102. The faces 3, 302 are separated along a second axis (shown as the X axis) that is transverse to the probe axis 1〇2 and pushed to the contact points 11〇, 112. And the pushing and separating of the faces 300, 302 places the prongs 1 〇 6, 1 〇 8 on opposite sides of the stylus axis 102. Each of the prongs 1 〇 6, 1 〇 8 turns to provide contacts 110, 112, respectively. The prongs 106, 1 〇 8 further define an area or space 116 between the contact points 110, 112. This space 116 is distinguished from the apex of the tip 114 provided by the prong tip 1 , 6 , 108 and applied to the probe axis 102 . As discussed further below, space 116 is a self-cleaning space. Please understand and understand that the prongs 1Q6, 108 provide pin point contacts 11〇, 15 112. In other words, the contact points 110, 112 are sharp tips that provide substantially singular contact points as distinguished from multi-point geometric contact surfaces or regions in a common plane. Figure 2 provides a cross-sectional view of the tines probe 100 shown in Figure 1 along the probe axis 1〇2, which shows half of the self-cleaning space 116. As shown in FIG. 20, the display of the self-cleaning space 116 is formed by a first surface 150 extending from the tip contact point 110 to the side 204 and a second surface 2〇〇 extending from the contact point 110 to the side 206. section. Referring to Figures 1 through 3, the self-cleaning space 116 has a central region pole 152 disposed along the probe axis 1〇2 in a first plane 3〇8 (χζ plane, see 12 200841016, Figure 3). The fork tip is between l〇6 and l〇8. The self-cleaning space 116 further has exiting pole regions 154 and 154 above the central region 152. The exit regions 154 and 154' are located along a second axis (shown as the Y axis) in a second plane 310 (YZ plane, see Figure 3). Referring to Fig. 3, it can be seen that the 5 exiting region 154 is located above the central region pole 152 with respect to the Z axis and the Y axis. Specifically, there is a slope angle from the central region pole 152 to the exit region 154 and additionally to the exit region 154'. g As shown in Fig. 3, the first surface 150 is defined by the boundary between the contact points no, the central region pole 152, and the exit region pole 154 as shown. The tenth surface 150' is defined by the boundary between the contact points 112, the central region pole 152, and the exit region pole 154 as shown. The second surface 2 is defined by the edge between the contact points - 110, the central region pole 152, and the exit region pole 154 (see Figure 2). A second surface 200, (not shown in Fig. 3; see Fig. 14) is defined by the edge between the contact points 112, the central region pole 152, and the exit 15 from the region pole 154 (see Figure 2). . # In common, the first and second surfaces 150, 150, 20〇, 2〇0 provide a self-cleaning aspect for the self-cleaning space 116. Since the pointed probe is brought into contact with a node for testing, debris such as solder residue, flux, dust or other material may enter the self-cleaning space 116. The bevel angles of the second and second surfaces 150, 150, 200, 200 may advantageously ensure that such debris will be deflected away from the probe axis and will not get stuck in the self-cleaning void 116. More specifically, the first surface 15 and the second surface 200 share a common edge 304 between the contact point 110 and the central region pole 152. Similarly, the first table 13 200841016 face 150' and the second surface 2〇〇 share a common edge 306 between the contact point 112 and the central region pole i52. As shown in FIG. 4, any material 400 that approaches from the apex of the tip 110 and strikes the first surface 150 or the second surface 2〇〇 is biased away from the probe axis 102 and thus away from the tines probe 1〇〇. . 5 Since the cavity, aperture or other semi-enclosed structure is not provided within the self-cleaning space 116, the self-cleaning space 116 does not trap and collect the debris material. In the event that any of the swarf material collects on the first or second surface 150, 150, 200, 2, the new swarf material entering the self-cleaning space 116 in the post-test cycle is the first and second surfaces. 15〇, 15〇', 2〇〇, 2〇〇, push the gathered material away from the probe axis 102, and thus prevent the tip ι4 from being discerned. Figure 5 provides a cross-sectional side elevational cross-sectional view of the tines probe shown in Figure 1 along the probe axis 1〇2. Although in FIG. 2, the self-cleaning work 116 is not shown as having a flat first and second surface ι5 〇, 2 〇 0, the first and second surfaces 500, 502 are shown as Curved. 15 such a linear surface may be advantageous in at least one embodiment to further enhance the self-cleaning aspect of the self/monthly space 116 and as an alternative to convenient manufacturing. Referring to Figures 1 through 3, it is apparent that in at least one embodiment, the tip portion 114 is formed from the shaft 1041. More specifically, since the shaft 1() 4 has a substantially-cross section, 20 can understand that the cross-tips 1 (10), (10) of the respective contact points ii 〇, m have a substantially rectangular shape and have a convex shape. Side 312 and two flat sides 314, 316. 6 to 8 provide an alternative embodiment of the tines probe tip 1G0. A partial perspective view of the & reverberative probe (10) is provided. The top of the large probe is shown in Fig. 8, and Fig. 8 provides the tip probe tip 1 shown in Fig. 6 along the axis of the probe 14 200841016. Side view of the cross section. As shown in Figures 1 through 5, the tines probe tip 1() shown in Figures 6 through 8 has a longitudinal probe axis 102 which is concentric with one axis 5 104 ' for the probe axis 1 〇 2 And two split prongs 106, 108 for providing a probe tip 114. The two prongs 106, 108 provide contact points ι1 〇, 112, respectively. Unlike the embodiment shown in Figs. 1 to 5, Figs. 6 to 8 show an embodiment in which the self-cleaning space 6 (10) is provided by two intersection portions of at least two curved structures. More specifically, the self-cleaning spaces 6 〇 q 10 shown in Figures 6 through 8 are formed by two curved surfaces 602, 604, each of which may be part of a cylinder, sphere, egg or other three-dimensional curved surface. As shown, the curved surfaces 602, 604 intersect in the first plane 3〇8 (χζ plane) and are pushed from the central pole region 152 to the contact points 11〇 and 112. Bebey ground, as described above in Figure 4, the debris material entering the self-cleaning space 600 along a path approaching the probe axis 15 1〇2 will encounter the curved surface 602 or 604 (shown in Figure 4) For the surface 15〇, 200). As the curved slope of the curved surfaces 602, 604 is directed away from the probe axis 1〇2, the blow debris is deflected away from the probe tip 110. Since there are no cavities, apertures or other open structures in the self-cleaning space, the self-cleaning space 600 does not trap and collect the flux residue or other substances. For self-cleaning spaces 116 and 600, both are shown to be symmetrical about probe axis 102. This symmetry is a design preference and may be advantageous for a particular embodiment. In an alternative embodiment, the self-cleaning space 116 or 6〇〇 may be skewed toward the center axis 102 and/or the center of the tip 114. In addition, 15 200841016 self-cleaning spaces 116 and 600 are shown as simple ramp-like structures. In at least one alternative embodiment, the surface defining the self-cleaning space (eg, 150, 150, 200, 200', 500, 502, 602, 604) may have a decoupling tapered path or other bias to define The outline of the channel (not shown). 5 Referring to Figures 6 through 8, it is apparent that in at least one embodiment, the tip portion 114 is formed from the shaft 1〇4. More specifically, since the shaft 104 has a substantially circular cross-section, it can be appreciated that the cross-sections of the prongs 1 , 6 , 108 of the respective contact points 110 , 112 may be generally triangular in shape with a convex side 606 . And two concave sides 608, 610. Referring to Figures 3 and 6 and the side cutaway views of Figures 2, 5 and 8, it can be seen that the 10 contacts 11〇, 112 are disposed at the apex of the prongs 106, 108 of the tip 114 by a coupling to the shaft. The push structure of 104 is opposite to the probe shaft 1〇4. In at least one embodiment, the tip portion 114 is an integral component of the shaft 104 such that the tines probe tip 100 is referred to as a headless type, such as shown in Figures 3, 6 and 16. In at least one alternative embodiment, a clearly identifiable structure (i.e., a head) provides a tip portion 114 15 that is said to have a head or head type, such as the 15th and Figure 17 shows. To provide this larger or smaller head profile of the tip 114, the shaft 104 may be stepped up as shown, or gradually pushed down to become smaller or larger to provide a larger or larger tip 114. Small head profile. The starting position of the head on the axis 1〇4 is shown by the dotted line us of the second to the second figure.

20 第9圖顯示頭結構900之兩替代性實施例(顯示為9〇〇A 及900B),其對於叉尖頭1〇6、1〇8提供各別接觸點11〇、112 及自我α理空間116、000。如圖所示,各頭結構具有一與 軸104直徑實質地相同之寬度,且各頭在耦合至軸1〇4之點 處概呈長方形。並且,至少一實施例中,頭900在與軸1〇4 16 200841016 聯合之點處具有概括與軸丨〇 4相同之幾何結構。至少一替代 性實施例中,頭9〇〇在與軸1〇4聯合之點處具有實質地與軸 104不同之幾何結構。 第10至13圖顯示尖叉式探針梢部100的探針梢部114之 5替代性實施例的四個側視圖。更確切言之,梢部^何對於 ’ 直線以―肖度呈推拔,如第10®所示。其亦可具有扇貝狀 側邊,如第Η圖所示。另一替代性實施例中,又尖頭1〇6、 % 1〇8相當顯著,如第12圖所示。叉尖頭106、108亦可快速地 推拔如第13圖所示。 1〇 第14圖為概括對應於第1至3圖及第9圖的實施例之仰 視圖。此圖中,可進一步瞭解接觸點11〇、112的奇異性本 貝為了谷易識別’將各接觸點11 〇、112顯示為一誇大的 、 點’而非一直線或受包圍幾何區域。 如第11至13圖所示,具有對於梢部114端點之一額外推 15拔’以確保提供適當的趨近角度以達成接觸點11〇、112。 • 更確切言之,預定使接觸點110、112充分尖銳藉以穿透預 定電路節點的表面來建立適當電性接觸供測試目的用。自 我清理空間116及600有助於確保接觸點ho、Η2未受阻而 無法接觸一測試節點。 2〇 用以建立接觸點11〇、112之面角(face angle)將具應用 特定性且將依包括但不限於探針軸1〇4的直徑、測試期間所 預定施加的力、被測試節點的類型、形成尖叉式探針梢部 100之材料、形成及/或覆蓋受測試節點之材料(譬如無鉛銲 料)專數項因素而定。一般而言,面角將位於約十度(1〇。) 17 200841016 至約三十五度(35。)的一範圍中。設定接觸點no、112之間 的距離使得各接觸點110、112恰撞到測試目標的墊凸緣内 侧’故避免助熔劑殘留物的中央灘塘之大宗駐留在通孔 中。或者,可設定接觸點110、112之間的距離以使接觸點 G 112撞到測減目彳示的塾凸緣’故亦避免助溶劑殘留物 的中央灘塘駐留在通孔中。叉尖頭106、108的輪廓及用以 提供接觸點110、112之面角可利用有關電性測試探針的技 ® 蟲之領域中所熟知的製程形成,包括但不限於鑄造、磨銑、 機械加工、研磨、銳化、拋光、衝壓及其组合。 10 , 為了准許作一電路上的一節點之電性測試,軸係適合 龟性耦合於測試設備且探針梢部114適合電性耦合至一電 路上的一節點。更確切言之,軸1〇4自一諸如但不限於黃 • 銅、鎳、鋼、鈹、鋼、不銹鋼、鋁、鈦及其組合等電傳導 材料形成。至少一實施例中,轴由鋼形成。此外,接觸點 11 〇 I 、112、頭114及軸104可鍍覆有傳導材料諸如金、銀或 • 以且合以進—步增強探針壽命、探針的電傳導性質及/或防 止氧化。 ' 20 鎳至於該轴,叉尖頭1〇6、1〇8由一諸如但不限於黃銅 ^銅、鈹、鋼、不銹鋼、鋁、鈦及其組合等電傳導材 S至少一實施例中,叉尖頭屬、⑽由提供軸104的 110才抖形成。此外,又尖頭1G6、則且更確切來說接觸 姆m可鑛覆有一諸如金、銀或其組合等材料以進-"強^針*命、探針的電料性質及/或防止氧化。20 Figure 9 shows two alternative embodiments of the head structure 900 (shown as 9A and 900B) which provide respective contact points 11〇, 112 and self-care for the prongs 1〇6, 1〇8 Space 116,000. As shown, each head structure has a width that is substantially the same as the diameter of the shaft 104, and each head is generally rectangular at a point coupled to the axis 1〇4. Also, in at least one embodiment, the head 900 has a geometry that is generally the same as the axis 4 at the point of association with the axis 1〇4 16 200841016. In at least one alternative embodiment, the head 9 has a geometry that is substantially different from the axis 104 at the point of association with the axis 1〇4. Figures 10 through 13 show four side views of an alternative embodiment of the probe tip 114 of the tined probe tip 100. To be more precise, the tip ^ is pushed out in the 'straight line' as shown in the 10th. It may also have a scalloped side as shown in the figure. In another alternative embodiment, the pointed tips 1〇6, %1〇8 are quite significant, as shown in Fig. 12. The prongs 106, 108 can also be quickly pushed out as shown in Fig. 13. Fig. 14 is a bottom view summarizing the embodiments corresponding to Figs. 1 to 3 and Fig. 9. In this figure, it can be further understood that the singularity of the contact points 11 〇, 112 is for the valley to identify 'display each contact point 11 〇, 112 as an exaggerated point, rather than a straight line or surrounded geometric area. As shown in Figures 11 through 13, there is an additional push for one of the ends of the tip 114 to ensure that the appropriate approach angle is provided to achieve the contact points 11, 112. • More specifically, it is predetermined that the contact points 110, 112 are sufficiently sharp to penetrate the surface of the predetermined circuit node to establish proper electrical contact for testing purposes. Self-cleaning spaces 116 and 600 help to ensure that the contact points ho, Η2 are unobstructed and cannot touch a test node. 2) The face angle used to establish the contact points 11〇, 112 will be application specific and will include, but is not limited to, the diameter of the probe axis 1〇4, the force applied during the test, the tested node The type, the material forming the tines probe tip 100, and the material that forms and/or covers the material being tested (such as lead-free solder) are specific factors. In general, the face angle will be in a range of about ten degrees (1 〇.) 17 200841016 to about thirty-five degrees (35.). The distance between the contact points no, 112 is set such that each contact point 110, 112 just hits the inner side of the pad flange of the test target' so that the bulk of the central beach pond that avoids flux residue resides in the through hole. Alternatively, the distance between the contact points 110, 112 can be set such that the contact point G 112 hits the 塾 flange of the tamper-evident ’ so that the central pool of the co-solvent residue is also retained in the through-hole. The contours of the prongs 106, 108 and the face angles used to provide the contact points 110, 112 can be formed using processes well known in the art of electrical test probes, including but not limited to casting, milling, Machining, grinding, sharpening, polishing, stamping and combinations thereof. 10, to permit electrical testing of a node on a circuit, the shafting is adapted to be coupled to the test equipment and the probe tip 114 is adapted to be electrically coupled to a node on a circuit. More specifically, the shaft 1〇4 is formed from an electrically conductive material such as, but not limited to, yellow copper, nickel, steel, tantalum, steel, stainless steel, aluminum, titanium, and combinations thereof. In at least one embodiment, the shaft is formed from steel. In addition, contact points 11 〇 I , 112 , head 114 , and shaft 104 may be plated with a conductive material such as gold, silver, or the like to further enhance probe life, electrical conductivity of the probe, and/or prevent oxidation. . '20 nickel as for the shaft, the prongs 1〇6, 1〇8 are made of an electrically conductive material S such as, but not limited to, brass, copper, tantalum, steel, stainless steel, aluminum, titanium, and combinations thereof, in at least one embodiment The prongs, (10) are formed by the 110 providing the shaft 104. In addition, the tip 1G6, and more precisely the contact m, can be coated with a material such as gold, silver or a combination thereof to achieve a strong magnetic property and/or prevention of the probe. Oxidation.

正如同尖又式探針軸線1〇〇可併入有一頭900A 18 200841016 900B(請見第9圖)以提供梢部ι14,其可能具有或沒有實質 地與轴104相同之幾何結構,梢部114的橫剖面寬度可能大 於或小於軸104,如第15至π圖所示。譬如,第15圖顯示大 於軸104的橫剖面覓度之梢部114的橫剖面寬度,而第17圖 5顯示一比軸1〇4具有更大橫剖面寬度之梢部114。梢部114的 橫剖面寬度亦可實質地與探針軸1()4者相同,如第16圖。並 且,不同實施例可併入對於梢部114之一不同頭元件,如第 15及17圖所示,或對於梢部114之一整合式頭元件,如第16 圖所示。尚且,頭900A及900B以及軸104橫剖面可彼此獨 10 立地為圓形或為長方形。 此外,至少一實施例中,軸1〇4包括一柱塞。確切言之, 與叉尖頭106、108相對之軸104的一部分係為一柱塞18⑽如 第18圖所示。柱塞係被結構化且配置為可配合且扣持在一 筒1802内。筒1802提供一結構,諸如一摺縐18〇4,其防止 15柱基1800整個離開筒1802,同時容許柱塞1800沿著探針軸 線102在筒内1802移行或移動於由設計設定的一範圍内,如 第18圖所示。 在筒1802内部因此未圖示者係為一經部份壓縮的彈 簧,其抵靠柱塞1800端及筒1802端。當壓縮至一設定深度 2〇且一般身為完全移行的一部分,當轴被帶領接觸於一節點 時,彈簧對於杈塞1800且因此包括軸1〇4提供一經測量力。 至少一實施例中,可容許柱塞18〇〇在筒18〇2内自由地移 動,故探針梢部114因此沿中央軸線1〇2旋轉。 至少一替代性實施例中,柱塞18〇〇及筒18〇2亦可設有 19 200841016 用以防止尖又式探針梢部丨⑻旋轉之結構。至少一實施例 中,諸如一舌及樁配置等之此一旋轉防止結構係位於筒 18 0 2内部。兔γ # 、 …、了不乾用途,顯示一實施例其中此一結構身 著軸104的一脊18〇6(及軸1〇4的柱塞⑻部分)及筒 5 1 目8〇2中的樁⑽8 °旋轉防止結構之選擇係為設計偏好項 目易。之,桎塞1800可准許尖叉式探針梢部1〇〇沿著探針 =線1〇2之動作同時防止其旋轉動作。並且,如第18圖所 馨不,尖叉式探針梢部100的梢部114可沿著Ζ軸線平移,但其 文抑制不沿Ζ#4線旋轉。此—固定式定向在許多實施例中為 10 有利。 至少一實施例中,尖叉式探針梢部100的筒係為結構化 • 且配置為可被—傳導容槽或插座(未圖示)所接收,其被諸如 • ㈣器或只藉由摩擦等特徵結構固持在尖叉式探針梢部 1 100的冋1802上。至少一實施例中,當筒已插入容槽或插座 15巾之後’容槽或插座不准筒觀旋轉。容槽或插座通常製 • «試附件的部份並通常嵌人—非傳導材料内且配置在一 匹=於讀測節點的區位之矩陣中。尚且,此容槽或插座 通系用來從測試附件在一測試系統中產生連接並實際上將 節點經由探針連接至測試系統的電子件測試設備。 2〇 如上述,尖叉式探針筒1802通常被強迫配合於一容槽 内可利用此強迫配合來在其併入一防止旋轉的結構時提 供尖叉式探針梢部1〇〇的一固定式較佳定向,亦即,提供一 非說轉樣針或固定式定向探針。測試製程期間,一節點略 微地失準並不少見。當一測試探針可沿其軸線自由地旋轉 20 200841016 時,此失準可能導致探針旋轉至一使又尖頭1〇6、1〇8遺漏 節”沾1902的接觸表面之位置如第19圖所示。此失準可能降 低品質或根本阻止可重覆的電性接觸並導致偽誤讀數與節 點失效。 若不採取可能昂貴、耗時且導致生產線停工時間之測 試附件修復,依據節點19_目標表面而定,可利用一最 適口玲點見度且將失準列人考慮之非旋轉尖叉式探針梢部 100來確保叉尖頭廳、1G8不會遺漏預定接觸表面腫或 1906。易言之,一非旋轉尖又式探針梢部1〇〇可物理性設定 在測武附件巾被對準以有效地打擊經失準節點。由於尖叉 式探針梢部100不旋轉,將維持此設定的對準。亦可使用一 固疋式定向騎以免*良地翻於太接近—節點之傳導線 跡或者防止損傷或接觸到鄰近組件。 Μ請瞭解具有位於可能需要測試之一電路上的多種不同 節點。-特定類型的節點已知係為通孔。f孔及/或通 孔在經迴流銲料流从h部份或完全地域該孔時安裝 、、且件及/或提供板錢。迴流製雜間,助炫㈣料將難流 至表面且在銲料頂上固體化。此助熔劑材料係可能位於孔 頂部下方、背平於節點上的銲料頂部或予以溢流。尖叉式 料梢部1()()可藉由避免灘錄祕劑或其最厚部分之大 宗來有利地克服其他測試探針所遭賴_孔節點或通孔 郎點之問題。 描述兩尖叉式探針梢部刚的物理結構之後,亦經由討 論至少-使用方法的_實施例清楚地瞭解結構的額外優 21 200841016 參照弟19圖提供此描述。請瞭解 α 4田逮方法不豐屮 處所描述次序進行,而是此描述只供示範 而乂此 針梢部100之方法。 點 使用尖又式探 如 5 10 15 20 第19圖的左上所示,一如上述的,丨、 、次又式探針梢部1〇〇 設置於一節點孔1900上方以供测試。繁 冰 弟19圖的圖示係描繪 節點孔1900的一橫剖面,其顯示墊 ηΛΑ ϋ2及墊上及節點孔 1900内的銲料1904。助熔劑1906已於萨把 趴知枓凹形液彎面上在 節點孔1900内成灘於銲料1904頂上。 Jr直平片探針、一箭探針或一在節一 早”祕觸之騎,助、㈣刚6如_示對於節點孔测的 測試構成顯著阻礙。平片式探針在大接觸表面積上耗盡其 力量,故較難以穿透殘留助熔劑1906。亦可配合平片式探 針或箭探針使祕高簧力以企圖確保穿透過助_或U 材料。然而,此等較高簧力可能增高損傷板之機會。 在圖示的特別應用中,請瞭解尖叉式探針梢部100的尺 寸係在接觸點11G、U2之間具有小於節點孔1_的内直徑 1910之一維度1908。因此,請瞭解尖叉式探針梢部1〇〇係預 定在節點孔1900内之銲料1904液彎面的淺端處建立接觸, 而非圍、丸節點孔19〇〇之鄰接的墊1902或具有最厚助熔劑 1906累積之節點孔1900中心。 由於尖又式探針梢部100被驅迫接觸於節點孔1900,各 接觸點110、112係在節點孔1900内接觸到銲料1904的一邊 緣部分。尖又式探針梢部100可有利地避免經過助熔劑1906 抵達孔内銲料19〇4之企圖。萬一助熔劑或其他雜屑覆蓋住 22 200841016 節點孔1900,自我清理空間600可准許接觸點1〇6、1〇8接觸 銲料1904而不屈服於探針梢部丨14上的障礙或殘留物累積。Just as the same tip probe axis 1〇〇 can incorporate a 900A 18 200841016 900B (see Figure 9) to provide the tip ι14, which may or may not have the same geometry as the shaft 104, the tip The cross-sectional width of 114 may be larger or smaller than the axis 104, as shown in Figures 15 through π. For example, Fig. 15 shows the cross-sectional width of the tip portion 114 of the cross-section of the shaft 104, and Figure 17 shows a tip portion 114 having a larger cross-sectional width than the axis 1〇4. The cross-sectional width of the tip portion 114 can also be substantially the same as that of the probe shaft 1 () 4, as shown in Fig. 16. Moreover, different embodiments may incorporate different head elements for one of the tips 114, as shown in Figures 15 and 17, or for an integrated head element of the tip 114, as shown in Figure 16. Still further, the heads 900A and 900B and the cross-section of the shaft 104 may be circular or rectangular in shape from each other. Moreover, in at least one embodiment, the shaft 1〇4 includes a plunger. Specifically, a portion of the shaft 104 opposite the prongs 106, 108 is a plunger 18 (10) as shown in FIG. The plunger is structured and configured to fit and be retained within a barrel 1802. The barrel 1802 provides a structure, such as a fold 18〇4, which prevents the 15 column base 1800 from leaving the barrel 1802 entirely while allowing the plunger 1800 to move or move within the barrel 1802 along the probe axis 102 to a range set by design. Inside, as shown in Figure 18. Inside the barrel 1802, therefore, the unillustrated one is a partially compressed spring that abuts the end of the plunger 1800 and the end of the barrel 1802. When compressed to a set depth of 2 〇 and generally as part of a complete transition, the spring provides a measured force for the dam 1800 and thus the shaft 1 〇 4 when the shaft is brought into contact with a node. In at least one embodiment, the plunger 18 can be allowed to move freely within the barrel 18A, so the probe tip 114 thus rotates along the central axis 1〇2. In at least one alternative embodiment, the plunger 18〇〇 and the barrel 18〇2 may also be provided with a structure that prevents the tip end probe tip (8) from rotating. In at least one embodiment, such a rotation preventing structure, such as a tongue and pile configuration, is located inside the barrel 802. Rabbit γ # , ..., for dry use, showing an embodiment in which one of the structures is placed on a ridge 18〇6 of the shaft 104 (and the plunger (8) portion of the shaft 1〇4) and the cylinder 5 1 mesh 8〇2 The pile (10) 8 ° rotation prevents the choice of structure for the design preference project. The tampon 1800 can permit the tines probe tip 1 to follow the action of the probe = line 1 〇 2 while preventing its rotation. Also, as shown in Fig. 18, the tip portion 114 of the tines probe tip 100 can be translated along the Ζ axis, but its suppression does not rotate along the Ζ#4 line. This - fixed orientation is advantageous in many embodiments. In at least one embodiment, the barrel of the tined probe tip 100 is structured and configured to be received by a conductive receptacle or socket (not shown), such as by a (four) or only by A feature such as friction is retained on the ridge 1802 of the tines probe tip 1 100. In at least one embodiment, the receptacle or receptacle is not allowed to rotate after the cartridge has been inserted into the receptacle or receptacle 15 . The receptacle or socket is usually made up of «the part of the test attachment and is usually embedded in the non-conducting material and is placed in a matrix of the position of the read node. Still, the receptacle or socket is used to connect the test accessory from a test system and actually connect the node to the electronic test equipment of the test system via the probe. 2, as described above, the tines probe barrel 1802 is typically forced into a pocket to utilize this forced fit to provide a tines probe tip 1 when it is incorporated into a rotation preventing structure The fixed type is preferably oriented, that is, a non-directional needle or a fixed orientation probe is provided. It is not uncommon for a node to be slightly out of alignment during the test process. When a test probe is free to rotate 20 200841016 along its axis, this misalignment may cause the probe to rotate to a position where the tip 1 〇6, 1 〇 8 missing section of the contact surface of the dip 1902 is as in the 19th As shown in the figure, this misalignment may reduce the quality or prevent reversible electrical contact and cause false false readings and node failure. If you do not take test attachment repair that may be expensive, time consuming, and cause line downtime, 19_Depending on the target surface, a non-rotating tines probe tip 100 that is considered to be the most suitable and will be misaligned to ensure that the fork tip head, 1G8 will not miss the intended contact surface swelling or 1906. In other words, a non-rotating tip-type probe tip 1 〇〇 can be physically set in the metric attachment towel to be aligned to effectively strike the misaligned node. Since the tines probe tip 100 is not Rotating will maintain the alignment of this setting. You can also use a solid-state directional ride to avoid turning too close to the conductive traces of the nodes or to prevent damage or contact with adjacent components. Μ Please understand that there is a need to test a variety of circuits The same type of node is known to be a through hole. The f hole and/or the through hole are installed when the reflowed solder flows from the h portion or the entire region of the hole, and the piece and/or the plate is supplied. The mating room will help it flow to the surface and solidify on top of the solder. This flux material may be located under the top of the hole, flattened on top of the solder on the node or overflowed. Tip fork tip 1()() can advantageously overcome the problem of the other test probes being affected by the hole detector or the thickest part by avoiding the bulk of the beach recording agent or its thickest part. After the physical structure of the ministry, the additional advantages of the structure are also clearly understood through the discussion of at least the method of using the method. 200841016 This figure is provided in the figure of Figure 19. Please understand that the order of the α4 field capture method is not sufficient. Rather, this description is only for demonstration and the method of picking up the needle tip 100. Point-to-point and probing 5 10 15 20 As shown in the upper left of Figure 19, as described above, the 丨, 次, and The part 1 is placed above a node hole 1900 for testing. The diagram of Figure 19 depicts a cross-section of the node aperture 1900 that shows the pad η ΛΑ 2 and the solder 1904 on the pad and the node hole 1900. The flux 1906 has been placed on the curved surface of the concave cavity of the 萨 趴 趴The hole 1900 is formed on the top of the solder 1904. The Jr straight flat probe, an arrow probe or a ride in the early morning of the knot, the help, (4) just 6 as shown for the test of the node hole test constitute a significant obstacle. Flat sheet probes deplete their strength over a large contact surface area, making it more difficult to penetrate residual flux 1906. It can also be used with a flat-panel probe or an arrow probe to attempt to ensure penetration of the _ or U material. However, such higher spring forces may increase the chance of damage to the board. In the particular application illustrated, it is understood that the size of the tines probe tip 100 has a dimension 1908 that is less than the inner diameter 1910 of the node hole 1_ between the contact points 11G, U2. Therefore, it is understood that the tines probe tip 1 is intended to establish contact at the shallow end of the solder 1904 liquid bend surface in the node hole 1900, rather than the adjacent pad 1902 of the perimeter, the pellet node hole 19〇〇 or The center of the node hole 1900 has the thickest flux 1906 accumulated. Since the pointed probe tip 100 is forced into contact with the node aperture 1900, each contact 110, 112 contacts the edge portion of the solder 1904 within the node aperture 1900. The pointed probe tip 100 advantageously avoids attempts to reach the solder 19〇4 through the flux 1906. In the event that a flux or other debris covers the 22 200841016 node hole 1900, the self-cleaning space 600 may permit the contact points 1〇6, 1〇8 to contact the solder 1904 without succumbing to obstacles or residues on the probe tip 丨14. accumulation.

並且,由於銲料1904表面張力低於銲料1904與孔壁之 間所形成的毛細力,轉而在銲料19〇4表面上形成一凹形液 5彎面,相對於身為最大之孔1900中心的深度,沿著孔19〇〇 邊緣部分之銲料1904深度通常極小。因此,在緊鄰於節點 孔1900的一般中心處諸如助熔劑19〇6等雜屑聚集亦通常遠 為更厚。並且,如圖所示,助熔劑19〇6及其他雜屑的堆墩 可能至少部份地延伸至自我清理空間6〇〇内,然如圖所示, 1〇各叉尖頭106、108已經穿過助熔劑1906的一實質地較薄區 域,且顯著地穿透至銲料19〇4内。 由於各又尖頭106、1〇8在一單點處產生初始接觸,從 軸104至節點孔1900之施力係只減半。更確切言之,若將一 十:單位(任意單位)的壓力力加至—單點,在該點實現 15 了完全十二單位的力。假設每點相同的接觸表面,隨著接 觸點數增多(亦即,接觸面積增大),各接觸點所實現的接觸 力及壓力係減小。藉由兩接觸點,一十二單位的施力係被 各接觸點實現成為六單位的力。藉由三接觸點,—十二單 位的壓力力量被各接觸點只實現成為四單位的力。 2〇 並且’因為叉式探針梢部100只在兩點與節點孔19〇〇 產生接觸,從軸104至節點孔19〇〇之施力只減半。更碟切令 若十"單雖意單位)的—力施加至單點,在該點實i 兀全十二单位的力。隨著接觸點數增多(亦即,接觸面積辦 加)’各接觸點處所實現之接觸力係減小。藉由兩接觸點: 23 200841016 一十二單位的施力係在各接觸點處導致六單位的力量。藉 由二接觸點,十二單位的施力係被各接觸點只實現成為四 單位的力。 利用車乂大力量的探針來克服助溶劑殘留物將可能危及 - 5損傷該板、經銲接節點或組件,特別是當大量使用以探測 • 咼密度板時尤然。又尖頭106、108的接觸點11〇、112達成 之車乂低探針力所貫現的較大麼力係增加了接觸點、Η: 將電性接觸於節點孔19〇〇表面而不破壞性損傷該板、銲料 或郎點孔19〇〇之機率。 1〇 隨著尖又式探針梢部100自節點孔1900抽取,該抽取係 ”、、貝心節點孔19〇〇内之兩銲料凹陷、19ι4(亦稱為目擊標 • =)。穿刺部1912、19丨4可有利地對於尖叉式探針梢部1〇〇 見獨4寸如上文參照第3及6圖所顯示及描述,各叉尖頭 1〇6、108的橫剖面概呈三角形。至少一實施例中,各穿刺 、有凸形邊緣及兩直線邊緣。至少一替代性實施例 φ 中各穿刺部具有一凸形邊緣及兩凹形邊緣,如第2〇圖所 不顯不移除尖又式探針梢部1〇〇之後的節點孔19〇〇的俯視 圖。沒些實施例包含全部,因為一替代性實施例(未圖示) 、旱料凹卩曰1912可能為一菱形、斜方形、圓錐形或其他 '視兔“驗一經測試孔節點1900時,一觀察者可能容 易地决定一尖叉式探針梢部100是否使用於測試製程中或 决疋极針在對於節點的附件上之對準精確度。 ^在第21圖的流程圖中總結此方法。該方法首先係提供 ★ 文參?、?、弟1至18圖所描述的一尖叉式探針梢部1 〇〇, 24 200841016 方塊2100。尖叉式探針梢部100被驅迫以接觸節點,方塊 2102。更確切言之,叉尖頭106、108所提供的接觸點係分 別配置於節點内之銲料表面的邊緣中(請見第18圖)。 在尖叉式探針梢部100與節點之間建立接觸時,電性評 5 價該節點,決策2104。若節點評價為良好,其可被報告或 記錄,方塊2106,且若節點評價為不良,其被報告為不良, 方塊2108。至少一實施例中,將棄置具有不良節點的電路 以節省進一步處理成本。 評價之後,尖叉式探針梢部100自節點抽取,方塊 10 2110。如上文指示,抽取製程在節點上留下兩彎曲凹陷或 目擊標記,方塊2112,其可用來確認尖叉式探針梢部100在 測試製程中之使用或檢驗其對於節點之對準。 可在上述方法、系統、製程及結構中作改變而不脫離 本發明的範圍。因此應注意上文描述所包含及/或圖中所顯 15 示的主體應詮釋為示範性而非限制性意義。下列申請專利 範圍預定涵蓋此處所描述的所有一般性及特定性特徵結 構,及就語言來說有可能落在其間之本方法、系統及結構 的範圍之所有陳述。 【圖式簡單說明】 20 第1圖顯示根據一實施例之一兩尖叉式探針的面視圖; 第2圖顯示第1圖的尖叉式探針之侧視橫剖視圖; 第3圖顯示根據一實施例之一尖叉式探針的部份立體 圖; 第4圖顯示根據一實施例之一尖叉式探針的側視橫剖 25 200841016 視圖’其顯示-用以使_偏向之自我清理空間. 第5圖顯示第1圖所示的尖 ,Afc 又式1 木針之一替代性實施例 組態的侧視橫剖視圖; κ 第6圖為一替代性尖又式探針之部份立體圖; 第7圖為第6圖所示的尖又式探針之面視圖; 第8圖顯示第7圖所示的尖叉式探針之側視橫剖視圖;Moreover, since the surface tension of the solder 1904 is lower than the capillary force formed between the solder 1904 and the hole wall, a concave liquid 5 curved surface is formed on the surface of the solder 19〇4, with respect to the center of the largest hole 1900. The depth, the depth of the solder 1904 along the edge portion of the aperture 19 is typically very small. Therefore, the accumulation of debris such as flux 19〇6 at the general center adjacent to the node hole 1900 is also generally much thicker. Also, as shown, the stack of flux 19〇6 and other debris may extend at least partially into the self-cleaning space 6〇〇, as shown, 1〇 each prongs 106, 108 have A substantially thinner region of flux 1906 is passed through and penetrates significantly into solder 19〇4. Since each of the prongs 106, 1 〇 8 produces an initial contact at a single point, the force applied from the shaft 104 to the node hole 1900 is only halved. More precisely, if a tenth: unit (arbitrary unit) pressure is added to a single point, at this point 15 full force of twelve units is achieved. Assuming the same contact surface at each point, as the number of contacts increases (i.e., the contact area increases), the contact force and pressure achieved by each contact point decreases. With two contact points, twelve units of force are achieved as six units of force by each contact point. With three contact points, the pressure force of twelve units is only achieved as four units of force by each contact point. 2〇 and 'Because the fork probe tip 100 makes contact with the node hole 19〇〇 only at two points, the force from the shaft 104 to the node hole 19〇〇 is only halved. If the force of the ten-quote (single unit) is applied to a single point, at this point, the force of twelve units is full. As the number of contact points increases (i.e., the contact area is increased), the contact force achieved at each contact point is reduced. With two points of contact: 23 200841016 A force of twelve units results in six units of force at each point of contact. With two contact points, twelve units of force are only achieved as four units of force by each contact point. Overcoming the solvent residue with a rut-powered probe can potentially jeopardize - 5 damage to the plate, welded joints or components, especially when used in large quantities to detect • MDF. Moreover, the contact points 11〇, 112 of the pointed ends 106, 108 achieve a greater force of the locomotive low probe force, which increases the contact point, Η: electrically contacts the surface of the node hole 19 without Destructive damage to the board, solder or the probability of a hole. 1〇 With the pointed probe tip 100 being extracted from the node hole 1900, the extraction system, the two solder recesses in the shell hole 19〇〇, 19ι4 (also known as the target mark • =). 1912, 19丨4 may advantageously be shown for the tines probe tip 1 as shown and described above with reference to Figures 3 and 6, the cross-section of each of the prongs 1 〇 6, 108 In at least one embodiment, each puncture has a convex edge and two straight edges. At least one alternative embodiment φ has a convex edge and two concave edges, as shown in the second drawing. A top view of the node hole 19A after the pointed probe tip 1〇〇 is not removed. None of the embodiments include all, since an alternative embodiment (not shown), the dry pit 1912 may be When a diamond, rhombic, conical or other 'seeing rabbit' test hole node 1900 is tested, an observer may easily determine whether a tines probe tip 100 is used in the test process or The alignment accuracy on the attachment of the node. ^ This method is summarized in the flowchart of Fig. 21. The method first provides a tines probe tip 1 〇〇, 24 200841016, block 2100, as described in the figures 、, ?, 弟 1-18. The tines probe tip 100 is urged to contact the node, block 2102. More specifically, the contact points provided by the prongs 106, 108 are disposed in the edges of the solder surface within the nodes, respectively (see Figure 18). When a contact is established between the tines probe tip 100 and the node, the node is electrically evaluated, and decision 2104 is made. If the node evaluates to be good, it can be reported or recorded, block 2106, and if the node evaluates to be bad, it is reported as bad, block 2108. In at least one embodiment, circuitry with bad nodes will be discarded to save further processing costs. After evaluation, the tines probe tip 100 is extracted from the node, block 10 2110. As indicated above, the extraction process leaves two curved depressions or sight marks on the nodes, block 2112, which can be used to confirm the use of the tines probe tip 100 in the testing process or to verify its alignment with respect to the nodes. Changes may be made in the methods, systems, processes and structures described above without departing from the scope of the invention. It is therefore to be understood that the subject matter shown in the foregoing description and/ The following claims are intended to cover all such general and specific features and the scope of BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side elevational view of a two-forked probe according to an embodiment; FIG. 2 is a side elevational cross-sectional view of the tines probe of FIG. 1; A partial perspective view of a tines probe according to an embodiment; FIG. 4 shows a side cross-sectional view of a tines probe according to an embodiment. 200841016 View 'its display - used to make _ biased self Clean up the space. Figure 5 shows a side cross-sectional view of an alternative embodiment of the tip shown in Figure 1, Afc and Formula 1 wood needle; κ Figure 6 shows the part of an alternative tip probe. Figure 7 is a side view of the pointed probe shown in Figure 6; Figure 8 is a side cross-sectional view of the tines probe shown in Figure 7;

第9圖顯示根據替代性實施例用於尖叉式探針之兩替 代性頭及軸組態; 第10圖為-尖又式探針之側視圖; =11圖為-尖又式探針之―替代性實施例的側視圖; =12圖為一尖又式探針之一替代性實施例的側視圖; 第圖為*又式探針之一替代性實施例片的側視 第,圖為第9圖所示之尖叉式探針的叉尖頭端齡 ^ 5圖為大又式探針之一有頭實施例的面視圖; 第圖為大又式探針之一無頭替代性實施例的平面 第17圖 視圖; 為一尖又式探針之 推拔狀替代性實施例的面 20 第18圖為根據—替》 代性實施例之一包括一柱塞的尖叉 式探針之部份立體圖; 第19圖顯示根據—徐 馬知例之一使用於一尖叉式探針之 万法,及 弟20圖顯示一以 尖又式探針作測試之節點孔的俯視 26 200841016 圖; 第21圖為該使用方法之高階流程圖。Figure 9 shows two alternative head and shaft configurations for a tined probe in accordance with an alternative embodiment; Figure 10 is a side view of a tip-and-tip probe; =11 is a tip-and-tip probe Side view of an alternative embodiment; = 12 is a side view of an alternative embodiment of a pointed probe; the figure is a side view of an alternative embodiment of the *reclosed probe, The figure shows the prong tip end of the tines probe shown in Fig. 9. Fig. 5 is a front view of one of the large-type probes. The figure shows one of the large-type probes without head. Figure 17 is a plan view of an alternative embodiment; a face 20 of an alternative embodiment of a push-and-tap probe. Figure 18 is a cross-section of a plunger according to one embodiment. Partial perspective view of the probe; Figure 19 shows the method used for a tines probe according to one of the examples of Xu Ma, and the figure 20 shows a node hole for testing with a pointed probe. Looking down at 26 200841016; Figure 21 is a high-level flow chart of the method of use.

【主要元件符號說明】 100…尖叉式探針梢部 102…縱向探針軸線 104…袖 106,108…叉尖頭 110,112…接觸點 114…探針梢部 116···自我清理空間 118···頭的開始區位 150,150’,500…第一表面 152···中央區域極點 154,154’···出離極點區域 200,200’,502…第二表面 204,206…侧 300,302···面 304,306···共同邊緣 308…平面 308…第一平面 600…自我清理空間 602,604…彎曲表面 606…凸形側 608,610…凹形侧 900,900A,900B··^ 1800…柱塞 1802…筒 1804…摺縐 1806…脊 1808…樁 1900···節點,節點孔 1902…節點,墊 1904…銲料 1906…助溶劑 1908…維度 1910…節點孔1900的内直徑 1912、1914…銲料凹陷,目擊標 記,穿刺部 2100…提供尖叉式探針 2102…驅迫尖叉式探針以接觸 節點 27 200841016 •顯露節點上之兩凹陷,各 概呈三角形 2104…評價節點 2112·· 2106…報告成功 2108…報告^$文 2110…自節點抽取尖叉式探針[Main component symbol description] 100... tines probe tip 102... longitudinal probe axis 104... sleeve 106, 108... fork tip 110, 112... contact point 114... probe tip 116··· self-cleaning space 118························································································ Face 304, 306... Common Edge 308... Plane 308... First Plane 600... Self-cleaning Space 602, 604... Curved Surface 606... Convex Side 608, 610... Concave Side 900, 900A, 900B··^ 1800... Plunger 1802... Cartridge 1804 ... folding 1806...ridge 1808...pile 1900···node,node hole 1902...node,pad 1904...solder 1906...cosolvent 1908...dimension 1910...node hole 1900 inner diameter 1912,1914...solder recess, sight mark, The puncture portion 2100...provides a tines probe 2102...to drive the tines probe to contact the node 27 200841016 • expose two depressions on the node, each of which is a triangle 2104...evaluation node 2112·· 2106...reported success 2108...report ^$文2110...from Point extraction prongs probe

2828

Claims (1)

200841016 十、申請專利範圍: 1 · 一種用於探测一電路上的一節點之尖叉式探針梢部,包 含: 一縱向探針軸線; 5 一由一電傳導材料製造之軸,該軸與該探針軸線呈 同心; 兩叉尖頭,其耦合至該軸且平行於該探針軸線,各 該叉尖頭提供一端接觸點;及 一自我清理空間,其配置於該等兩叉尖頭之間。 10 2.如申請專利範圍第1項之尖叉式探針梢部,其中該自我 清理空間具有一沿著一第一軸線配置於該等兩叉尖頭 之間的中央區域,該自我清理空間具有沿著一與該第一 軸線相交的第二軸線位於該中央區域上方之一出離區 域。 15 3·如申請專利範圍第1項之尖叉式探針梢部,其中該自我 清理空間係由至少兩彎曲表面之兩交會部分所提供。 4·如申請專利範圍第1項之尖叉式探針梢部,其中該等端 接觸點配置在一對於該探針軸線呈橫向之平面中。 5. 如申請專利範圍第1項之尖叉式探針梢部,其中各叉尖 20 頭具有一由一凸形侧及兩直線侧所組成之概呈三角形 橫剖面。 6. 如申請專利範圍第1項之尖叉式探針梢部,其中各叉尖 頭具有一由一凸形側及兩凹形側所組成之概呈三角形 橫剖面。 29 200841016 7. 如申請專利範圍第1項之尖又式探針梢部,其中該軸係 包括一准許該軸及該等叉尖頭沿著該探針軸線運動之 柱塞。 8. 如申請專利範圍第1項之尖又式探針梢部,其中該軸包 5 括一准許該軸及該等叉尖頭在—固定式定向中沿著該 探針軸線運動之柱塞。 9. 如申請專利範圍第1項之尖叉式探針梢部,其中該探針 梢部可操作以在-通孔節點内於—邊緣鋒料表面與各 接觸點之間產生接觸,該等接觸點鱗來自該軸的〆施 1〇 力集中至該節點。 10=申請專利範圍第i項之尖又式探針梢部,進〆步包括 -接合至該轴之頭,該等兩又尖頭與該軸相對地接合至 該頭’該自我清理空間至少部份地配置於該頭内。 申月專利範圍第1項之尖叉式探針梢部,其中該等兩 15 =尖頭沿該探針軸線被兩相對面所界定,該等面沿著該 楝針軸線沿著-第_軸線收斂朝向彼此,該等面沿著— ;&針轴線壬橫向的第二軸線分離且推拔成點。 •如申請專利範圍第1項之尖叉式探針梢部,立中該尖又 =針梢部可操作以在該節點孔的邊緣内產生兩獨特 20 的概呈三角形凹陷。 種使用-尖又式探針梢部來探測1路上 即點之方法,包含: 札 提供—探針,其具有: 縱向探針軸線; 30 200841016 呈同^由—電傳導材料製造之轴,該轴與該探針轴綠 -兩又尖頭’其輕合至該軸且平行於該探針轴線, 各叉尖頭提供一端接觸點; 自我清理空間,其配置於該等兩叉央頭之間; 驅迫該探針以接觸該通孔内之—鲜料井表面的— 邊緣,各接觸點配置於該銲料内·, 電性評價該節點;及 自該節點抽取該探針,該抽取係顯露該通孔内之該 、干科井的邊緣内之兩獨特的概呈三角形凹陷。 14.如申請專利範圍第13項之方法,其中該方法係經由該等 2接觸點將來自該軸之-施力集中至具有最小助溶劑 材料之該銲料井的區域。 Η 15.M請專利範圍第13項之方法,其中各又㈣具有—由 —凸形側及兩直線酬組成之概呈三角形橫剖面,該等 經顯露凹陷具有一與該等又尖頭_致之幾何結構。 ^申請專利範圍第13項之方法,其中各又尖頭具有—由 -凸形側及兩凹形側所組成之概呈三角形橫剖面,該等 經顯露凹陷具有—與該等又尖頭-致之幾何結構。 31200841016 X. Patent application scope: 1 · A tines probe tip for detecting a node on a circuit, comprising: a longitudinal probe axis; 5 a shaft made of an electrically conductive material, the axis The probe axis is concentric; a two-pronged tip coupled to the axis and parallel to the probe axis, each of the prongs providing an end contact point; and a self-cleaning space disposed on the two prongs between. The tipping probe tip of claim 1, wherein the self-cleaning space has a central region disposed between the two prongs along a first axis, the self-cleaning space There is an exit region located above the central region along a second axis that intersects the first axis. 15 3. The tines probe tip of claim 1, wherein the self-cleaning space is provided by two intersection portions of at least two curved surfaces. 4. The tines probe tip of claim 1, wherein the end contact points are disposed in a plane transverse to the axis of the probe. 5. The tines probe tip of claim 1, wherein each of the prongs 20 has a generally triangular cross section consisting of a convex side and two straight sides. 6. The tines probe tip of claim 1, wherein each of the prongs has a generally triangular cross section consisting of a convex side and two concave sides. 29 200841016 7. The tip of the probe tip of claim 1, wherein the shaft includes a plunger that permits movement of the shaft and the prongs along the axis of the probe. 8. The pointed probe tip of claim 1, wherein the shaft package 5 includes a plunger that permits movement of the shaft and the prongs along the axis of the probe in a fixed orientation . 9. The tines probe tip of claim 1, wherein the probe tip is operable to create a contact between the edge edge surface and each contact point in the through hole node, such The contact point scale is concentrated from the axis of the shaft to the node. 10 = the tip of the probe tip of the scope of claim i, the step comprising: engaging the head of the shaft, the two pointed ends being joined to the head opposite the shaft - the self-cleaning space at least Partially disposed in the head. The tines probe tip of the first aspect of the patent application, wherein the two 15 = pointed ends are defined by the opposite faces along the axis of the probe, the faces along the axis of the needle along the -th_ The axes converge toward each other, which are separated and pushed into a point along the second axis of the transverse axis of the needle axis. • As in the tip of the tines probe tip of claim 1, the tip and the needle tip are operable to create two unique 20 representative triangular depressions in the edge of the node hole. A method for detecting a point on a road using a tip-and-tip probe tip, comprising: a probe-providing probe having: a longitudinal probe axis; 30 200841016 being a shaft made of electrically conductive material, The shaft and the probe shaft are green-both and pointed, and are lightly coupled to the shaft and parallel to the probe axis, each prong provides one end contact point; a self-cleaning space is disposed at the two fork ends Interacting the probe to contact the edge of the fresh well surface in the through hole, each contact point is disposed in the solder, electrically evaluating the node; and extracting the probe from the node, The extraction system reveals two unique triangular recesses in the edge of the dry well in the through hole. 14. The method of claim 13 wherein the method applies a force from the shaft to the region of the solder well having the smallest solvent material via the 2 contact points. Η 15.M. The method of claim 13 of the patent scope, wherein each (4) has a triangular cross-section consisting of a convex side and two straight lines, the exposed depressions having one and the same pointed _ The resulting geometry. The method of claim 13, wherein each of the pointed ends has a substantially triangular cross section consisting of a convex side and two concave sides, the exposed recesses having - and the pointed ends - The resulting geometry. 31
TW096121506A 2007-04-13 2007-06-14 Pronged fork probe tip TW200841016A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2007/009156 WO2008127241A1 (en) 2007-04-13 2007-04-13 Pronged fork probe tip

Publications (1)

Publication Number Publication Date
TW200841016A true TW200841016A (en) 2008-10-16

Family

ID=38809811

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096121506A TW200841016A (en) 2007-04-13 2007-06-14 Pronged fork probe tip

Country Status (2)

Country Link
TW (1) TW200841016A (en)
WO (1) WO2008127241A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835986A (en) * 1994-07-21 1996-02-06 Aiwa Co Ltd Contact probe for inspecting board
JP4398061B2 (en) * 2000-04-28 2010-01-13 日置電機株式会社 Contact probe manufacturing method
US6538424B1 (en) * 2000-07-31 2003-03-25 Le Croy Corporation Notched electrical test probe tip
JP2005308619A (en) * 2004-04-23 2005-11-04 Hioki Ee Corp Plunger

Also Published As

Publication number Publication date
WO2008127241A1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
KR100664393B1 (en) Probe for Testing Electric Conduction
JP5113392B2 (en) Probe and electrical connection device using the same
TW492219B (en) Membrane probing system
JP4792465B2 (en) Probe for current test
US7602200B2 (en) Probe for electrical test comprising a positioning mark and probe assembly
US20040177499A1 (en) Tested semiconductor device produced by an interconnection element with contact blade
US20100213956A1 (en) Probe for current test, probe assembly and production method thereof
US7279912B2 (en) Dual arcuate blade probe tip
JP2007278859A (en) Electrical connection device
WO2007100713A2 (en) Approach for fabricating cantilever probes
JP2009229410A5 (en)
TW200841016A (en) Pronged fork probe tip
KR100988814B1 (en) Probe for probe card and method for manufacturing the same
JP5438908B2 (en) Contact for electrical test, electrical connection device using the contact, and method for manufacturing contact
US7316065B2 (en) Method for fabricating a plurality of elastic probes in a row
TW200848744A (en) Dual arcuate blade probe tip
US20070084903A1 (en) Pronged fork probe tip
JP2003282635A (en) Contactor and electric connector using it
JP2009216562A5 (en)
JP3425125B2 (en) Socket for BGA package
JP2011089918A (en) Contact
TW200918917A (en) Testing probe and electrical connection method using the same
JP3792580B2 (en) Contact probe and manufacturing method thereof
JP2003194847A (en) Contact probe
JPH0145029B2 (en)