TW200840406A - The color display directly displayed by coaxial color light emitting diodes with both optical and electronical guiding axis - Google Patents

The color display directly displayed by coaxial color light emitting diodes with both optical and electronical guiding axis Download PDF

Info

Publication number
TW200840406A
TW200840406A TW96109016A TW96109016A TW200840406A TW 200840406 A TW200840406 A TW 200840406A TW 96109016 A TW96109016 A TW 96109016A TW 96109016 A TW96109016 A TW 96109016A TW 200840406 A TW200840406 A TW 200840406A
Authority
TW
Taiwan
Prior art keywords
color
light
coaxial
display
layer
Prior art date
Application number
TW96109016A
Other languages
Chinese (zh)
Other versions
TWI369151B (en
Inventor
Chun-Chu Yang
Original Assignee
Chun-Chu Yang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chun-Chu Yang filed Critical Chun-Chu Yang
Priority to TW096109016A priority Critical patent/TWI369151B/en
Priority to TW96114070A priority patent/TWI378553B/en
Publication of TW200840406A publication Critical patent/TW200840406A/en
Application granted granted Critical
Publication of TWI369151B publication Critical patent/TWI369151B/en

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

There is disclosed a coaxial color light emitting diode structure and the high resolution color display which is combined by the coaxial color light emitting diodes (CCLED). Avoiding the light to be blocked upon the top as prior technological electronic contact, the axial electronic contact is not only supply the power, but also guiding out the light from the bottom layers with higher refractive index. All of three layers (RGB LEDS) are vertically strung up in the same axial contact, it may directly display a complex color in one area and condenses three times of picture size (nine times in same plane size ) than the prior . Because of increasing the picture density and improving the response time, the color display may get higher resolution and better quality. The CCLED directly emits and collects RGB color in one size, it can displace the color filter and save the cost and system space too.

Description

200840406200840406

801同轴彩色發光二極體CCLED 轴心電極在顯示器底_連接而成的連接導線 顯示器的水平掃描及多卫處理器控制電路” _顯示器的垂直掃描及多工處理信號控制電路 彩色顯示產生器的顯示程序控制電路801 coaxial color light-emitting diode CCLED axis electrode at the bottom of the display _ connected horizontal display of the wire display and multi-processor control circuit _ display vertical scanning and multiplex processing signal control circuit color display generator Display program control circuit

八、本案若有化學式時,賴示最能顯示 發明特徵的化學式: 九、發明說明: 【發明所屬之技術領域】 像錢於—種使用於影像顯示之統結構和其叙成影 【先前技術】 電子顯示裝置己是齡人輸奸於傳送訊息不可或海 的工具’它大量被用於電視、電腦終端機、手機、及各種隨身攜 帶的快速顯像及處理工具上。眾所周知的顯示器有發光二極體 酿丽瞧ING_DES以下簡稱卿的顯示器及包括料 200840406 發光二極體 0LED( ORGANIC LIGHT EMITTING DIODES )、電漿顯示 器(PLASMA DISPLAYS)、液晶顯示器 LCD( LIQUID CRYSTAL DISPLAYS) 及最早的CRT陰極射線映像管式顯示器等。以上除了厚重的CRT 在真空管内以控制陰極電子射線掃描至螢光幕上的三色螢光點來 顯色外;其餘皆已進步到薄型半導體電子技術以位址控制的彩色 點發光顯色技術’以達到追求『輕薄短小、省電美色、長壽價廉』 的目的。 色彩的顯示主要以紅光(R)、綠光(G)及藍光(B)三原色來 組合呈現顏色’是人類用科學方式來回復並重現彩色的方法,且 已行之多年。尤其在使用CRT顯像管時,即己在顯示面板上用三 色細小的的彩色螢光片C0L0RFILTER來組合重現色彩。這種方式 歷經數十年顯示歷史後,也還同時在後續開發的電漿顯示器、lcd 顯示器、場效發射顯示器FED(FIELDEMISS麵DISPLAY)及發白光 0LED等顯像技術上採用至今。傳統以上這些彩色顯示器是利用_ 三色點發光或穿透彩色濾、片式RGB三色點’以各種平面並置排列 的方式做’光色組合並顯示色彩。因彩色濾光片上的極細三色 區塊的極小間距,以腦X 768解析度的14销示器舉例,其 水平寬度約286毫米(286咖_),其像素間距為279· ,職 三彩色間之間距為93卵。依人眼之分解力約為◎. 7(Μη (一對暗 線中心對中心之距離)並以明視距離25 cm (25〇〇〇〇_)計算對: 人眼觀看距離呈現的解析辨識物間隔: 2008404068. If there is a chemical formula in this case, it depends on the chemical formula that best shows the characteristics of the invention: IX. Description of the invention: [Technical field of invention] Like money, the structure used for image display and its formation [Previous technology] 】 Electronic display devices have been the tools of the age-old people to transmit information to the sea. It is widely used in televisions, computer terminals, mobile phones, and various fast-moving imaging and processing tools. The well-known display has a light-emitting diode ING_DES hereinafter referred to as Qing's display and includes 200840406 LED OLED EOLEDTING DIODES, plasma display (PLASMA DISPLAYS), LCD LCD (LIQUID CRYSTAL DISPLAYS) and The earliest CRT cathode ray image tube display. In addition to the heavy CRT in the vacuum tube to control the cathode electron beam scanning to the three-color fluorescent spot on the fluorescent screen to develop color; the rest have progressed to the thin-type semiconductor electronic technology with address-controlled color point illuminating color technology 'To achieve the goal of "light and thin, power saving, longevity and low price". The display of colors mainly combines the three primary colors of red (R), green (G) and blue (B) to present colors. It is a method in which humans use scientific methods to recover and reproduce color, and it has been for many years. In particular, when a CRT picture tube is used, the color reproduction is combined with a three-color fine color fluorescent film C0L0RFILTER on the display panel. After decades of display history, this method has also been used in the subsequent development of plasma display, lcd display, field emission display FED (FIELDEMISS surface DISPLAY) and white light 0LED and other imaging technologies. Conventionally, these color displays use the _ three-color point illuminating or penetrating color filter, and the chip RGB three-color dot' to be arranged in a variety of planes juxtaposed to form a 'light color combination and display color. Due to the extremely small spacing of the extremely thin three-color blocks on the color filter, the 14-pin display with a resolution of brain X 768 has a horizontal width of about 286 mm (286 coffee _) and a pixel pitch of 279·. The distance between the color spaces is 93 eggs. According to the human eye, the decomposition force is about ◎. 7 (Μη (the distance between the center of a pair of dark lines and the center) and the distance of the clear vision is 25 cm (25〇〇〇〇_). Interval: 200840406

ΔΙ = 2 X tan(0· 70/60) χ 250000//m = 102/zm 像素間距279· 2 > Μ >三彩色間之間距93 比RGB 色塊間距93//in大9μ®約10%,因此人眼無法分辨RGB三色塊而 達成彩色濾光片可混色雨未被看出的目的。這也是1024 χ 768解 析度顯示器為何只要用93/xm,亦即比1〇2μιη少9//m的彩色濾光 片色塊間距,就足以瞒過人眼鑑別能力,而不必小得夠多致使彩 色濾光片更難製造的原因。而因像素間距279.2/zm大於人眼鑑別 間距’以致使我們還可看出LCD上的像素格子。又另一缺點是人 眼在觀看小尺寸顯示器時尚能接受清晰鑑別的要求,但在隨著顯 示器逐漸變大或遠距離放大投影時,即因RGB三色塊放大逐漸分 離失真而無法達到高解析度像素呈現的要求。 在習知半導體光源、有機半導體光源及液晶LCD控制光 輸出半導體等製造技術,皆在平面型基板上以一層又一層平鋪式 沈積、磊晶、蒸鍍或擴散印製等方法堆疊所需要的材料,並以最 底層電極及最上層電極供電雨達到中間發光層向上(或向下)發光 或穿透光線(如LCD)的目的。由習知技術可看出向上(或向下)發光 的光源結構,其上層(或下層)不透光之供電電極1〇1佔用出光口, 並阻擔中間發光層所發出之光,而降低原有發光效能及消耗不必 要的功率,如圖1所示,舉例圖為一雙重異構造發光二極體。 為出光口電極、102為rHUGaAs、1〇3為p—A1GaAs發光活性層 (ACTIVE LAYER)、104為p_GaAs基板、1〇5為底層p歐姆接觸電 6 200840406 極。如果為出光口電極阻擋而提高發光亮度則又會降低發光體壽 命。為克服此供電電極遮光之問題,雖已有改用透明電極以增加 輸出光能之技術;但目前亦無法達到全透明電極之材料可解決此 問題。又習知上下層式堆疊法之光源為使出光率增大,皆以縮小 出光口部位電極面積的作法,而造成上下電極所提供發光作用的 各電子電洞對因所行路徑長短不一;以致在供電脈衝開關區間内 先後發光’而造成亮度不均或無法集中瞬間亮度並降底反應速 度。而部份採發白光之QLEJ)及利用LCD穿透之白光至RGB彩色濾 光片,以如同早期CRT以間接合成彩色像素的作法,長期一直受 彩色濾、光片製造業之非屬於半導體製造本業能自主的技術所控 制。時至今日主動性直接發光LED已十分成熟的年代,應擺脫間 接發光的使用彩色濾光片之作法以降低成本且提高解析度,發揮 自發光直接演色的天生優勢。 【發明内容】 馨於上述先前技術所製造之傳統習知發光二極體光 源及習知彩色顯示器的三項缺點,亦即: 一、以财迅三色塊間接混色而非直接重疊穿透合成彩色, 來重現一像素原色的方法,其又不耐放大尺寸的顯示 需求。 一、上下層供電方式的電極佔用出光口,無法完全避免遮 光缺陷。 7 200840406 三、上下層供電電極相對位置結構缺陷產生脈衝開關區間 先後發光。 本發明利記宇請發料利『㈣發明專利案 號:095146963號』之專利名稱:『折射率分佈在半徑上的同轴 光導光纖及其_料縣賴檢絲共__光導系統』中 之同轴轉縣狀結構顧,加找崎_心掘及轴心共 用的色層直立重豐的直接顯色技術,以同時解決上述問題。 、同軸半導體光源係-種以正肋外同軸等距供電的兩電 “構成斟中間發光的環形半導體層同軸方式供電所形成的同輛 “光振。下列二項技術則利用同軸供電以解決上列問題之方 法,如下: 將各色發光二極體同軸結構化如圖2所示,使習知發 光-極體電極之上下層排列佈置變成為本發明的同軸化 佈置。舉例圖一之2〇1為軸心電極、2Q2為同軸外環形電 極、203為環形發光作用層、2〇4為環形電洞注人或傳導 層、205為環形電子注入或傳導層、2〇6為透光絕緣層、 2阶為基底平板。則電流由軸心之陽極2〇1提供,並以半 俊向輻射狀等距擴散至外環導體2〇2之安排,去除習知 咖出光口上方電極1〇1接點及導接線之光射出阻擔而 可提高出光率。更重要的是所有提供發光之電子電洞對 因同軸等距分佈的安排,在供電脈衝開關區間同時放光 發色,不但亮度集中以增加發光效率節省功率,且無延 遲發光落差以提高顯示反應速度一解決問題二及問題 一 〇 將同轴化後之三色發光二極體之軸心共用共構如圖3所 示發光二極體(以下稱同軸彩色發光二極體CQJJ) 一 COAXIAL COLOR LIGHT 腦TTING DIODES ),舉例圖之 3〇1 為三色軸心共用電極、302為紅色R層、3()3為綠色G層、 304為藍色B層、305為紅色R同軸外環形供電電極、3冊 為綠色G同軸外環形供電電極、307為藍色b同軸外環形 供電電極、308為基底平板、309為透明絕緣層、no為 透明絕緣層、311為透明絕緣層、312為環形發光作用層、 313為環形電洞注入或傳導層、314為環形電子注入或傳 導層。則由習知平面彩色顯示器上以平面方向三色塊排 列佈置,變成三色層以在同軸心垂直向直立重疊共構佈 置後’所有CCLED組成的顯示器可以提高三倍解析度。 同軸共構後的RGB三色層(302為紅色R層、303為綠色G 層、304為藍色B層)可以最少層數直接向上發色,三色 並集中在同一像素區以原色呈現並擺脫使用彩色濾光片 避免間接發光。因三色為直立重疊,再放大也不會將三 色再分離產生失真解決問題一。 將同軸共用之軸心電極301改用透光之IT0電極,供電 200840406 又兼具將底層光導出和混色之功用,使單一像素中心無 暗點存在—解決問題二。 玆詳加說明如下: 、將各色發光二極體各自同軸結構化後,使習知LED電極由 上下層佈置成為同轴化佈置,則電流由軸心之陽極2Q1提 供,並以半徑向輻射狀等距擴散至外環導體2〇2,如圖4 之一 LED頂視圖所示。發光二極體係將電能轉變為光能的 半導體元件。因此需要電流的注入,尤其是如何使注入電 流很均勻的擴散在整個發光二極體中則極為重要。依圖 示,在同軸供電兩電極提供電壓形成電場之驅動下,電洞 和電子對在環形發光層203中因不同的發光機制(如 HOPING · EXCITING.··)產生自然發光(Sp0NTANE0US EMISSION)而四向射出。因形成同軸供電的兩電極,對兩 電極所提供的電子4Q4及電洞403流動至其間所夾的圓環 形發光層203 ’走最近距離方向移動,也正好為各半徑的 電場極化方向,亦即在其形成最大徑向電場作用中,載子 依最大徑向電場推動方向移動。以本發明軸心電極為中心 的同心半導體各環層厚度一致,電子或電洞皆沿其半徑走 最短路徑十分均勻擴散至外環電極並在發光層中結合發 光。此圖為橫切面所看者。因電極非如圖1之習知LED上 下不等距分佈排列之供電方式而產生如圖5之不等距不均 10 200840406 勻分佈移動;而是以_等距供電方式,以致在供電脈衝 開關區間内,兩⑽電極所提供發光作_各電子電洞對 因其所行_長_,謂邮發並扣最鐘離行進至 發光層結合發光。其在供電脈衝關區_可針瞬間亮 度及快速顯像反應。本發剩已完全絲習知^光口上方 電極接點及導絲之光㈣輯啸㈣絲。傳統習知 結構雖有使用上下高透明度的IT0陰陽電極(如祕換雜 10%Sn〇2,穿透率81%);但其透光率非達百分之百,表示亦 有阻擋10〜20% ’這對彳艮難得從發光材料量子效率提高忉 〜20%的努力而言,甚不值得。本發明的同軸半導體光源 正是無上方電極之安排而可擁有三色同軸共構後之射出 合成光不被絲亳阻擔之功能。 將同軸化後之三色發光二極體之軸心共用且同軸共構,以 提高像素密度(或解析度)並可在同一像素區塊位置上直 接合成彩色。同軸心垂直向共構佈置後之三色同軸結構化 發光二極體CCLED,如上項所述其可在RQg三色同步信號 脈衝同時到達時,RGB三色將依訊號内容同時發色。依顯 示器製造原理,可將各個CCLED組成彩色顯示器。 彩色顯示器主要以顯示彩色像素為主,其顯示彩色 像素多寡的能力有許多表示方法。以常用的銀幕顯示解析 度舉例說明,習知的一個1024 X 768解析度彩色顯示器, 11 200840406 表示其水平方向有1024個彩色像素,其垂直方向有768 個彩色像素。在實際製作時,因—個桃像素是由一個紅 光LED、-個綠光及一個藍光led共三個位置區塊的 ⑽排列顺成。·顯示_水平方向確是製作了腦 X 3 = 3072個LED單色位置區塊。 當以本發明之_轉體光源之三色UD _共構化 後的彩色像素單體CCLED,來組成同樣是習知的醜χ768 的彩色顯示器尺寸大小時,則己因廳三色區塊的直立重 逢顯示’使得水平向3謂個單色位置區塊可全部改變成 3072個直立深度方向的彩色像素區塊,垂直列的7觀 2304個單色位置區塊可全部改變成2綱個直立深度方向 的彩色像素區塊。這些CCLED如做成直徑9〇卵且ca肋 與CCLED以3//m間距隔開排列後,則本發明之同軸半導 體同轴共構後麟色顯示ϋ可明加三倍解析度,成為 3072 X 2304個彩色像素,其間距⑽卿也符合小於人眼 鑑別Μ -⑽卿之要求。因此不但提高解析度也可做任 何倍數放大顯示絕不色彩分離,亦即解決放大後產生三色 區塊分離之缺點。 本發明之同軸彩色發光體直接合成彩色的方法和普 靈斯頓大學料層堆疊法之親發光體同是直接發色,其 方法己於1998年由美國普靈斯頓大學(The Trustees 〇f 12 200840406ΔΙ = 2 X tan(0· 70/60) χ 250000//m = 102/zm Pixel pitch 279· 2 > Μ > The distance between three colors is 93 than the RGB color block spacing 93//in is larger 9μ® 10%, so the human eye can't distinguish the RGB tri-color block and achieve the purpose that the color filter can not be seen. This is why the 1024 χ 768 resolution display only needs 93/xm, which is 9//m less color filter patch spacing than the 1〇2μιη, which is enough to overcome the human eye discrimination ability, not necessarily small enough Causes color filters to be more difficult to manufacture. Since the pixel pitch of 279.2/zm is larger than the human eye discrimination pitch, we can also see the pixel grid on the LCD. Yet another disadvantage is that the human eye can accept the requirement of clear identification when watching a small-sized display fashion, but when the display is gradually enlarged or enlarged at a long distance, the RGB three-color block is gradually amplified to gradually separate the distortion, and high resolution cannot be achieved. Degree pixel rendering requirements. Manufacturing techniques such as conventional semiconductor light sources, organic semiconductor light sources, and liquid crystal LCD controlled light output semiconductors are all required for stacking on a flat substrate by layer-by-layer deposition, epitaxy, evaporation, or diffusion printing. The material is powered by the bottommost electrode and the uppermost electrode to achieve the purpose of illuminating the upper luminescent layer upwards (or downwards) or penetrating light (such as an LCD). It can be seen from the prior art that the upward (or downward) illuminating light source structure, the upper (or lower) opaque power supply electrode 1 占用 1 occupies the light exit port, and blocks the light emitted by the intermediate light-emitting layer, thereby reducing The original luminous efficiency and the consumption of unnecessary power, as shown in Fig. 1, are illustrated as a double-isolated light-emitting diode. For the light exit electrode, 102 is rHUGaAs, 1〇3 is p-A1GaAs active active layer (ACTIVE LAYER), 104 is p_GaAs substrate, and 1〇5 is bottom layer p ohmic contact 6 200840406 pole. If the brightness of the light is blocked for the light exit electrode, the life of the illuminant is lowered. In order to overcome the problem of light-shielding of the power supply electrode, there has been a technique of using a transparent electrode to increase the output light energy; however, the material of the fully transparent electrode cannot be achieved at present to solve the problem. It is also known that the light source of the upper and lower layer stacking method is such that the light output rate is increased, and the electrode area of the light exiting portion is reduced, and the length of each electronic hole pair which causes the light-emitting function provided by the upper and lower electrodes is different; As a result, the light is emitted sequentially in the interval of the power supply pulse switch, resulting in uneven brightness or inability to concentrate the instantaneous brightness and reduce the bottom reaction speed. Some QLEJs that emit white light and white light to RGB color filters that use LCDs, as in the early CRTs to indirectly synthesize color pixels, have long been subject to color filtering and optical manufacturing. The industry can be controlled by independent technology. Nowadays, active direct-emitting LEDs are very mature. They should get rid of the use of color filters for indirect illuminating to reduce cost and improve resolution, and play the natural advantage of self-illumination direct color rendering. SUMMARY OF THE INVENTION The three shortcomings of the conventional conventional light-emitting diode light source and the conventional color display manufactured by the above prior art are as follows: 1. Indirect color mixing by the three-color block of Cai Xun instead of direct overlap penetration synthesis Color, a method of reproducing a primary color of a pixel, which is not resistant to the display requirements of the enlarged size. 1. The electrodes of the upper and lower power supply modes occupy the light exit port, and the blind defects cannot be completely avoided. 7 200840406 III. The pulse switch interval of the relative position structure defects of the upper and lower power supply electrodes is successively illuminated. The invention has the patent name of "(4) invention patent case number: 095146963": "coaxial optical fiber with refractive index distributed in radius and its _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Coaxial to the county-like structure, plus the direct color development technology of the color layer upright and heavy, which is shared by the _ heart and the core, to solve the above problems at the same time. The coaxial semiconductor light source system is a kind of "electrical vibration" formed by coaxially supplying power to the annular semiconductor layer of the middle illuminating layer. The following two techniques use coaxial power supply to solve the above problems, as follows: Coaxial structure of each color LED is shown in Figure 2, so that the arrangement of the lower layer above the conventional illuminator-electrode electrode becomes the invention. Coaxial arrangement. For example, FIG. 1 is an axis electrode, 2Q2 is a coaxial outer ring electrode, 203 is an annular light-emitting layer, 2〇4 is an annular hole injection or conduction layer, and 205 is a ring-shaped electron injection or conduction layer, 2〇 6 is a light-transmissive insulating layer, and the second-order is a base plate. Then, the current is supplied from the anode 2〇1 of the shaft center, and is equally distributed in the radial direction to the outer ring conductor 2〇2, and the light of the electrode 1〇1 contact and the guide wire above the light outlet of the conventional coffee is removed. The light emission rate can be increased by emitting a resistance. What's more important is that all the electronic holes that provide illumination are arranged by the equidistant distribution of the coaxial, and the light is emitted at the same time in the power supply pulse switch interval. Not only the brightness is concentrated to increase the luminous efficiency to save power, and there is no delay illuminating drop to improve the display reaction. Speed 1 solves the problem 2 and the problem. The axis of the three-color light-emitting diode that is coaxialized is shared by the light-emitting diode shown in Fig. 3 (hereinafter referred to as coaxial color light-emitting diode CQJJ). A COAXIAL COLOR LIGHT brain TTING DIODES), for example, 3〇1 is a three-color axis shared electrode, 302 is a red R layer, 3()3 is a green G layer, 304 is a blue B layer, and 305 is a red R coaxial outer ring power supply. Electrode, 3 volumes are green G coaxial outer ring power supply electrodes, 307 is blue b coaxial outer ring power supply electrode, 308 is base plate, 309 is transparent insulation layer, no is transparent insulation layer, 311 is transparent insulation layer, 312 is ring shape The light-emitting layer, 313 is an annular hole injection or conductive layer, and 314 is a ring-shaped electron injection or conductive layer. Then, the conventional flat color display is arranged in a planar three-color block arrangement, and becomes a three-color layer to be arranged in a vertically vertical overlapping co-construction. The display composed of all CCLEDs can improve the resolution by three times. The coaxial RGB three-color layer (302 is a red R layer, 303 is a green G layer, and 304 is a blue B layer) can directly color upwards with a minimum number of layers, and the three colors are concentrated in the same pixel area and are presented in primary colors. Get rid of the use of color filters to avoid indirect illuminating. Since the three colors are erect, the amplification will not separate the three colors to produce a distortion problem. The coaxial shared electrode 301 is changed to the light-transmitting IT0 electrode, and the power supply 200840406 has the function of deriving and mixing the underlying light, so that there is no dark spot in the center of the single pixel - solving the problem 2. The details are as follows: After the respective color LEDs are coaxially structured, the conventional LED electrodes are arranged from the upper and lower layers to be coaxial, and the current is supplied from the anode 2Q1 of the shaft and radiated by the radius. Equidistant diffusion to the outer ring conductor 2〇2, as shown in the top view of one of the LEDs in Figure 4. A light-emitting diode system converts electrical energy into a semiconductor component of light energy. Therefore, the injection of current is required, and in particular, how to uniformly diffuse the injection current throughout the light-emitting diode is extremely important. According to the illustration, the hole and the electron pair generate natural light (Sp0NTANE0US EMISSION) in the ring-shaped light-emitting layer 203 due to different light-emitting mechanisms (such as HOPING · EXCITING.··) driven by the electric field of the coaxial power supply electrodes. Four-way shot. Due to the formation of the coaxially powered two electrodes, the electrons 4Q4 and the holes 403 provided by the two electrodes flow to the circular light-emitting layer 203' sandwiched therebetween to move in the closest distance direction, which is also the direction of the electric field polarization of each radius. That is, in the action of forming the maximum radial electric field, the carrier moves in the direction of the maximum radial electric field. The thickness of each ring layer of the concentric semiconductor centered on the axial electrode of the present invention is uniform, and the electron or the hole is uniformly diffused along the radius to the outer ring electrode and combined to emit light in the light emitting layer. This picture is for the cross section. Because the electrodes are not connected to the power supply mode of the unequal distance distribution of the LEDs as shown in Fig. 1, the uneven distance 10 as shown in Fig. 5 200840406 is evenly distributed; instead, the power supply mode is _ equidistant power supply, so that the power supply pulse switch In the interval, the light provided by the two (10) electrodes is used as the _length_, which means that the mail is carried out and the buckle is traveled to the luminescent layer to combine the illuminating. It is in the power supply pulse off zone _ can be instantaneous brightness and rapid development response. The hair is completely accustomed to the ^ optical port above the electrode contact and the guide wire light (four) series whistle (four) wire. Although the conventional structure has the use of upper and lower transparency of the IT0 yin and yang electrodes (such as the secret 10% Sn 〇 2, the penetration rate of 81%); but its light transmittance is not 100%, indicating that it also blocks 10~20% ' This is hardly worthwhile for efforts to increase the quantum efficiency of luminescent materials by ~20%. The coaxial semiconductor light source of the present invention has the function of not being shielded by the wire after the three-color coaxial co-construction without the arrangement of the upper electrodes. The axes of the coaxial three-color light-emitting diodes are shared and coaxially co-constructed to increase the pixel density (or resolution) and can be directly joined to color at the same pixel block position. The three-color coaxial structured LED diode of the concentric arrangement after the concentric arrangement of the coaxial core, as described above, can simultaneously emit color according to the content of the signal when the RQg three-color sync signal pulse arrives at the same time. According to the principle of display manufacturing, each CCLED can be composed of a color display. Color displays are mainly based on display color pixels, and their ability to display color pixels has many representations. As an example of a commonly used screen display resolution, a conventional 1024 X 768 resolution color display, 11 200840406, has 1024 color pixels in its horizontal direction and 768 color pixels in the vertical direction. In actual production, because a peach pixel is arranged by a red LED, a green light, and a blue light LED, the three positions are arranged. · Display _ horizontal direction is indeed made of brain X 3 = 3072 LED monochrome position block. When the color pixel unit CCLED of the three-color UD _ co-constructed by the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Upright reunion display 'Let the horizontal direction 3 to be a monochrome position block can be changed to 3072 upright depth direction of the color pixel block, the vertical view of the 7 view 2304 monochrome position block can be changed to 2 erect Color pixel blocks in the depth direction. If the CCLEDs are arranged to have a diameter of 9 〇 eggs and the ca ribs are arranged at a distance of 3//m from the CCLED, then the coaxial semiconductor of the coaxial coaxial display of the present invention can be triple-resolutiond and become 3072. X 2304 color pixels, the spacing (10) is also in line with the requirements of the human eye identification Μ - (10) Qing. Therefore, not only the resolution can be improved, but also any multiple magnification display can be performed without color separation, that is, the disadvantage of generating a three-color block separation after amplification. The method for directly synthesizing the color of the coaxial color illuminator of the present invention and the pro-luminescence of the stacking method of the University of Princeton are direct color development, and the method has been performed by the University of Princeton in 1998 (The Trustees 〇f 12 200840406

Princeton University)的 Forrest 等人提出並獲 us 5,707,745 “Multicolor organic light emitting devices ‘‘專利,如圖6所示。由於此方法(多層堆疊法) 將RGB有機半導體發光元件堆疊起來,使之可以在一個像 素元件發出原色或合成白光’其缺點是由於把三色垂直重 疊時,使出光方向之膜層數目的增加,相對的在製程上控 制的困難度增加及底層光必須透過夠多的膜層致須提高 • 功率增加亮度,造成顯示器可靠度降低。本發明和其不同 的是本發明RGB三色環形發光作用層緊鄰上下重疊,其中 僅隔'一層全透光二氧化碎絕緣層309及310。此不但是在 出光方向以最少層數直接向上發色可以低功率簡化電 路,而且無習知三層之非全透明電極阻擋雨失去部分之透 明度。在本發明形成三色同軸供電的兩電極各自對兩電極 間所夾圓環形半導體發光作用層(或空泛層)内之電子及 _ 電洞流動,同時產生之激發光子可經由製造各元件時的各 種波導反射或折射路徑組合的安排完成合成光射出的目 的。 三、將同軸共用之軸心電極改用透光之IT0電極供電,利用 ΠΌ之低電阻率(可約200" Ω · cm以下可為導體)及高折 射率0相對於周圍較低折射率材料利於集中光線) 之特性,在以圓環形發光層内(Ν_ί€=1·7)及其上絕緣透 13 光玻璃(N細=1·45)界面下,小於臨界角5>c =sin」(Nglass / N°rganic ) = 58·5。形成光射出錐(LIGHT ESCAPE CONE)内 之所有光皆直接能向上射出;其餘在大於臨界角58.5。 外被全反射射入發光層内的光,也可以下列二種方式在同 軸發光二極體内部構造安排下將光導出·· (一)使用較高折射率的透明軸心。因較周圍材料高之 折射率將使進入之光線產生全反射而不易射 出’則使軸心電極像集光柱般把各底層内之光輕 易導出,達到直接與間接混色及使每一像素中心 無暗點存在之功用,如圖7A所示,舉例爾之701 為藍色發光二極體層、702為綠色發光二極體 層、703為紅色發光二極體層、704為紅色底層 導出光、705為綠色底層反射導出光、706為藍 色表面發出光。圖中同軸發光二極體是以同軸 0LED結構為例,軸心電極有較高折射率 CKo ),圓環形發光層折射率(N_nic:rl.7) 及其上下絕緣透光玻璃(N glass ~ 1· 45)的光導安 排’可知轴心電極己將内部及底内部之光導出。 (一) 使用同軸結構内部天生之光反射與軸心圓形如 透鏡聚光性交互反射,且利用同軸供電之外環金 屬電極表面707的反射光之特性,如鍍銀以增加 200840406 反射率及凹面鏡之聚光能力。則同軸彩色發光二 極體發光層708内部光射出錐(LIGHT ESCAPE CONE)外遭全反射未能射出之光可輕易導出,如 圖7B所示。 利用本光電共導之透明共用轴心電極結構的顯示器,使 光如在集光圓筒中射出。在中心之共用電極軸IT〇形成 了導光及合成顯像晝素之透光柱,有利光點之亮度及色 • 度之呈現。 總結以上,本發明重新定位同軸化發光二極體供電電極結 構後,可以解決以上習知LED及其應用在顯示器上的間題,並達 到下列目的: 一、同軸化發光二極體發光效能提昇又將三色同軸共用共構,使 其組成的彩色顯示器解析度提高三倍,且隨尺寸放大的顯示器永 不受三色塊失真分離之影響。 _ —、無出1:1處電極線阻擋,光源變大可提高出光亮度。 三、 使騎越將錄絲轉心使絲核心更亮。 四、 直接發光擺脫使用三色區合成顯示之彩色滤光片的複雜性並 降低成本。直接發光將使色彩更生動飽和。 五、 同軸等距供電電極使發光二極體瞬間亮度集中,且可提高顯 不的反應速度使品質更優良。 【實施方式】 以下舉例說明本發明的實施例·· 15 200840406 實施例 以-水平列1024個同軸彩色發光二極體,及垂直行 ^彩色發光二極體組錢彩色顯示驗構為實_,如圖8 = 列闊述各種細節所引用各參考編號之元件,皆 功能上類似之元件,且意欲以極簡化 圖說實例所表示之主要實施特點;因此,此圖示並非意 實際實施彳狀所有獅,亦並非意欲描纟細纟會元件之相對尺^及 參照圖8之彩色顯示器内各發光體係由Ϊ024 X 768 =聰32Forrest et al. of Princeton University proposed and patented us 5,707,745 "Multicolor organic light emitting devices", as shown in Figure 6. Since this method (multilayer stacking method) stacks RGB organic semiconductor light-emitting elements, it can be used in one The pixel element emits a primary color or a synthetic white light. The disadvantage is that when the three colors are vertically overlapped, the number of layers in the light-emitting direction is increased, the relative difficulty in controlling the process is increased, and the underlying light must pass through a sufficient number of layers. It is necessary to increase the power to increase the brightness, resulting in a decrease in the reliability of the display. The difference between the present invention and the invention is that the RGB three-color annular light-emitting layer of the present invention overlaps immediately above and below, wherein only one layer of the fully transparent oxidized broken insulating layers 309 and 310 is separated. This not only directly illuminates the color in the light-emitting direction with a minimum number of layers, but also simplifies the circuit with low power, and there is no conventional three-layer non-transparent electrode to block the loss of transparency of the rain. In the present invention, the two electrodes of the three-color coaxial power supply are respectively formed. Electrons in a circular semiconductor light-emitting layer (or airborne layer) sandwiched between two electrodes The hole flow and the generated excitation photon can complete the synthetic light emission through the arrangement of various waveguide reflection or refraction paths when manufacturing each component. 3. The coaxial shared electrode is replaced by the transparent IT0 electrode. Use the low resistivity of ΠΌ (can be about 200 " Ω · cm below the conductor) and the high refractive index 0 relative to the surrounding lower refractive index material to concentrate the light), in the circular luminescent layer (Ν_ί€ =1·7) and its insulated 13-light glass (N fine = 1.45) interface, less than the critical angle of 5 > c = sin" (Nglass / N°rganic) = 58·5. All of the light in the LIGHT ESCAPE CONE can be directed upwards; the rest is greater than the critical angle of 58.5. The light that is totally reflected by the total reflection into the light-emitting layer can also be used to derive the light in the internal structure of the coaxial light-emitting diode in the following two ways: (1) A transparent axis having a higher refractive index is used. Since the higher refractive index than the surrounding material will cause the incoming light to be totally reflected and not easily emitted, the axial electrode will be easily led out like a light collecting column, and the direct and indirect color mixing will be achieved and the center of each pixel will be eliminated. The function of the dark spot exists, as shown in FIG. 7A, for example, 701 is a blue light emitting diode layer, 702 is a green light emitting diode layer, 703 is a red light emitting diode layer, 704 is a red bottom layer light, and 705 is green. The bottom layer reflects the light, and the 706 emits light to the blue surface. The coaxial light-emitting diode in the figure is an example of a coaxial OLED structure, the axial electrode has a higher refractive index (CKo), the refractive index of the circular light-emitting layer (N_nic: rl. 7) and the upper and lower insulating transparent glass (N glass) ~ 1· 45) The light guide arrangement 'is known that the shaft electrode has led out the light inside and inside the bottom. (1) Using the intrinsic light reflection inside the coaxial structure and the circular circle as the lens concentrating interaction, and utilizing the characteristics of the reflected light of the outer ring metal electrode surface 707, such as silver plating, to increase the reflectivity of 200840406 and Concentrating power of concave mirrors. Then, the light that is not reflected by the total reflection of the LIGHT ESCAPE CONE of the coaxial color light emitting diode 708 can be easily derived, as shown in FIG. 7B. The light is projected in the collecting cylinder by using the display of the transparent common coaxial core structure of the photoelectric coupling. At the center of the common electrode axis IT〇, a light-transmitting column for guiding light and synthesizing the pixel is formed, which is advantageous for the brightness and color of the light spot. To sum up, the present invention can solve the above problems of the conventional LED and its application on the display after repositioning the coaxial power supply diode electrode structure, and achieve the following objectives: 1. The coaxial light-emitting diode has improved luminous efficiency. The three-color coaxial shared co-construction, the resolution of the color display composed of the three colors is increased by three times, and the display enlarged with size is never affected by the separation of the three-color block distortion. _ —, no 1:1 electrode line blocking, the light source becomes larger to improve the brightness of the light. Third, the ride will turn the record to turn the heart to make the silk core brighter. 4. Direct illumination eliminates the complexity of using color filters synthesized by three-color regions and reduces costs. Direct illumination will make the color more vivid and saturated. 5. The coaxial equidistant power supply electrode makes the instantaneous brightness of the light-emitting diode concentrated, and can improve the apparent reaction speed to make the quality better. [Embodiment] Hereinafter, an embodiment of the present invention will be described by way of example. 15 200840406 The embodiment is based on - horizontal array of 1024 coaxial color light-emitting diodes, and vertical line color light-emitting diodes. 8 is a functionally similar component, and is intended to be a very simplified representation of the main implementation features; therefore, this illustration is not intended to be an actual implementation. The lion is not intended to describe the relative dimensions of the components of the fine assembly and the illumination system in the color display of Figure 8 by Ϊ024 X 768 = Cong 32

^^^首^:彩色發光二極體組成^因各發光體801 ΐίΐίί直接合成顯示器各位址的色彩,顯示器上方不再用 L色滤ΐ片乂水平方向的_個同軸彩色發光二極體的1〇24 =^心在顯不器底層所連接而成的連接導線議,接至顯示器的 平柃描及多工處理器(H0RIZ0NTAL saN 刚CESS0R)控制電路8〇3。當顯像需要的信號依水平位址 提供各水平靡心電壓至關各_發光二極體之軸心。在 ^Ttnf描供電開啟時間内’顯示器的垂直掃描及多工處理 (VIRTICAL SCAN AN_LTIPLEX^ P_SS0R)信號控制電路刚, 依顯像需要的位址上彩色RGB信號内容,逐—輸出各自彩色電壓 準位至同_色發光二鋪上的_外環電極。使第—水平同 上的1024個同軸彩色發光二極體依次完成顯像發色作肖。水平 描控制電路接隨輸出下-水平位址線信號,並在關水平掃描供 電開啟時間内’顯示器的垂直信號控制電路綱,再依顯像需要的 位址上^色RGB信號内容,逐一輸出各自彩色電壓準位至同軸彩 色發光二極體上的同軸外環電極。使第二水平同列上的1〇24個同 軸彩色發光一極體依次完成顯像發色作用。當彩色顯示產生器 (COLOR DISPLAY GENERATOR)的顯示程序控制電路8〇5依序完& 768條水平掃描輸出控制信號及1〇24 χ 3條水平位址内容後,即 16 200840406 賴作。重複以幼_示程序即能 明_本圖發明的同⑽色發光二極體,僅作為代表轉 他可據編謂‘ 哭η實ΐΐγ,本⑽彩色發光二極騎_的彩色顯示 i顯it顯像像素而以更高解減來觀在各種應用場合^^^首^: Color LED composition ^ Because each illuminator 801 ΐ ΐ ΐ ί 直接 合成 合成 合成 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接1〇24 =^ The connection wire formed by the bottom of the display is connected to the flat scan and multiplexer (H0RIZ0NTAL saN CESS0R) control circuit 8〇3 of the display. When the signal required for imaging is provided by the horizontal address, the horizontal core voltage is supplied to the axis of each of the light-emitting diodes. In the ^Ttnf trace power-on time 'display vertical scanning and multiplex processing (VIRTICAL SCAN AN_LTIPLEX ^ P_SS0R) signal control circuit, according to the color RGB signal content on the address required for imaging, output their respective color voltage levels To the same _ color illuminating two _ outer ring electrode. The 1024 coaxial color light-emitting diodes of the first level and the same level are sequentially subjected to the development of the color development. The horizontal drawing control circuit is connected with the output lower-horizontal address line signal, and the vertical signal control circuit of the display is turned on during the horizontal scanning power supply opening time, and then the color RGB signal content is output according to the address required for the image display, and output one by one. The respective color voltage levels are to the coaxial outer ring electrodes on the coaxial color LED. The 1 〇 24 co-axial color illuminating ones on the same level in the second level are sequentially subjected to the development of color development. When the display program control circuit 8〇5 of the COLOR DISPLAY GENERATOR sequentially finishes & 768 horizontal scanning output control signals and 1〇24 χ 3 horizontal address contents, that is, 16 200840406. Repeating the same (10) color light-emitting diode invented by the younger-showing program, the color display i-display of the (10) color light-emitting diode riding _ can only be described as a representative It visualizes pixels and looks at higher resolutions in a variety of applications

真的效果。比較^要多花成本以彩色濾光片間接。 衫色的方式,演色將較生動得多。 風 應可瞭解’上絲—元狀魏及其_制發光功能、 或兩個或多個元件之功能及制軸顧光導補,时單獨. 5有效應肖在不祕上賴型之其翅型之同減構發光系^ 儘管本文係以光電共導同軸發光二極體及其組成同軸彩 色顯示器系統圖解說明並闞述本發明;但此並非意欲僅將本發^ ,限於此等圖示細節,因為在以不脫離本發明精神之任何方i之 前提下,可對本發明實施各種修改及結構之改變。 工 無需再分析以上說明所全面披露本發明之要旨,其己可以 使人們能夠應用現有知識在合併根據先前技術觀點,以合理構成 本發明之一般或具體樣悲之基本特徵之辦提下,可輕易地將本發 ,修改用於各種應用或改用其他材料應用於本發明,且因此,丄 專修改應該且己意欲包含在隨附申請專利範圍之等效意義及範圍 内0 【圖式簡單說明】 圖1係習知發光二極體剖面結構示意圖。 圖2係同軸發光二極體構造立體剖面示意圖。 17 200840406 同發ΐ二極體結構立體剖面示意圖。 佈頂視示意®^朗轴供電之電子與電洞在徑向電場等距分 圖5係電子電㈣不等距分佈移動示意圖。 圖6係多層堆疊發光示意圖。 ⑵示意圖。 圖8係同軸彩色顯示_實施= 之反射不思圖。Really effective. Compare ^ to spend more on color filters indirectly. The color of the shirt will be much more vivid. The wind should be able to understand the 'on-line------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ The same type of subtractive illumination system ^ Although the present invention is illustrated and described in the context of an opto-coaxial coaxial light-emitting diode and its constituent coaxial color display system; however, it is not intended to limit the present invention to only such details. Various modifications and changes may be made to the present invention without departing from the spirit and scope of the invention. It is not necessary to analyze the above description to fully disclose the gist of the present invention, which can enable one to apply the existing knowledge, and to combine the basic features of the general or specific sorrow of the present invention according to the prior art. The present invention can be easily applied to various applications or other materials to be used in the present invention, and therefore, the modifications are intended to be included in the equivalent meaning and scope of the accompanying claims. Description of the drawings Figure 1 is a schematic view of a cross-sectional structure of a conventional light-emitting diode. 2 is a schematic cross-sectional view showing the structure of a coaxial light emitting diode. 17 200840406 Schematic diagram of the three-dimensional structure of the same dipole structure. The top of the cloth is shown as a schematic diagram of the electrons and holes of the power supply in the radial field. Figure 5 is a schematic diagram of the movement of the electronic (4) unequal distance distribution. Figure 6 is a schematic diagram of a multi-layer stack illumination. (2) Schematic. Figure 8 is a reflection of the coaxial color display _ implementation = reflection.

圖9係實施例_彩色顯示II結構之各層分解圖Figure 9 is an exploded view of each layer of the embodiment _ color display II structure

【主要元件符號說明】 101出光口電極 103 p〜AlGaAs發光活性層 105底層p歐姆接觸電極 201 轴心陽極 203環形發光作用層 205環形電子注入或傳導層 207基底平板 301三色軸心共用電極 303綠色G層 305紅色R同轴外環電極 307藍色B同軸外環電極 309透明絕緣層 311透明絕緣層 102 n-AlGaAs 104 p-GaAs 基板 202外環導體電極 204環形電洞注入或傳導層 2 0 6透光絕緣層 302紅色r層 304藍色b層 306綠色g同軸外環電極 308基底平板 310透明絕緣層 312環形發光作用層 18 200840406 313環形電洞注入傳導層 403電洞 701藍色發光二極體層 703紅色發光二極體層 705綠色底層反射導出光 7阶外環電極内層反射層 314環形電子注入傳導層 404電子 702綠色發光二極體層 紅色底層導出光 706藍色表面發出光 708環形發光層[Description of main component symbols] 101 light exit electrode 103 p~AlGaAs light-emitting active layer 105 bottom layer p-ohmic contact electrode 201 axial anode 203 annular light-emitting layer 205 ring-shaped electron injection or conduction layer 207 base plate 301 three-color axis shared electrode 303 Green G layer 305 red R coaxial outer ring electrode 307 blue B coaxial outer ring electrode 309 transparent insulating layer 311 transparent insulating layer 102 n-AlGaAs 104 p-GaAs substrate 202 outer ring conductor electrode 204 annular hole injection or conduction layer 2 0 6 transparent insulating layer 302 red r layer 304 blue b layer 306 green g coaxial outer ring electrode 308 base plate 310 transparent insulating layer 312 ring light emitting layer 18 200840406 313 ring hole injection conductive layer 403 hole 701 blue light Diode layer 703 red light emitting diode layer 705 green bottom layer reflection derived light 7th order outer ring electrode inner layer reflective layer 314 ring electron injection conductive layer 404 electron 702 green light emitting diode layer red bottom layer light 706 blue surface emitting light 708 ring light Floor

801同軸彩色發光二極體CCLED801 coaxial color LED diode CCLED

802轴心電極在顯示器底層所連接而成的連接導線 803顯示器的水平掃描及多工處理器控制電路 804顯示器的垂直掃描及多工處理信號控制電路 80 5彩色顯示產生器的顯示程序控制電路 十、申請專利範圍: 卜-種軸心光電共導_軸發光二極體結構,其特徵為提供 此二極體電子及電洞以產生在無機半導體的自然性發光作用 ㈣__麵侧)或產生在有機半導體的電激發光作用 (ELECTROLUMINESCENCE ^ , 〇 2、按權利要求第i項所述的軸心光電共導的同軸發光二極 體,其同軸化供電之軸心電極係提供發光作用電荷及具較高折 射率以將射入軸心之光集中並導出轴心外者。 3 雜辦電共導的_彩色發光二極體結構,其組成色 19802 axis electrode connected to the bottom of the display connected to the display line 803 display horizontal scanning and multiplex processor control circuit 804 display vertical scanning and multiplex processing signal control circuit 80 5 color display generator display program control circuit Patent application scope: Bu-type axis photoelectric co-axial _axis illuminator structure, which is characterized by providing the diode electrons and holes to generate natural luminescence in the inorganic semiconductor (4) __ face side or The electroluminescence effect of an organic semiconductor (ELECTROLUMINESCENCE ^, 〇2, the coaxial optically-coupled coaxial light-emitting diode according to claim i, the coaxially-powered axial electrode system provides a luminescent charge and A higher refractive index to concentrate the light incident on the axis and out of the axis. 3 杂Color-conducting _color LED structure, its composition color 19

Claims (1)

200840406 313環形電洞注入傳導層 403電洞 701藍色發光二極體層 703紅色發光二極體層 705綠色底層反射導出光 7阶外環電極内層反射層 314環形電子注入傳導層 404電子 702綠色發光二極體層 紅色底層導出光 706藍色表面發出光 708環形發光層 801同軸彩色發光二極體CCLED200840406 313 ring hole injection conductive layer 403 hole 701 blue light emitting diode layer 703 red light emitting diode layer 705 green bottom layer reflection light 7th order outer ring electrode inner layer reflective layer 314 ring electron injection conductive layer 404 electronic 702 green light two Polar layer red underlayer light 706 blue surface emitting light 708 ring light emitting layer 801 coaxial color light emitting diode CCLED 802轴心電極在顯示器底層所連接而成的連接導線 803顯示器的水平掃描及多工處理器控制電路 804顯示器的垂直掃描及多工處理信號控制電路 80 5彩色顯示產生器的顯示程序控制電路 十、申請專利範圍: 卜-種軸心光電共導_軸發光二極體結構,其特徵為提供 此二極體電子及電洞以產生在無機半導體的自然性發光作用 ㈣__麵侧)或產生在有機半導體的電激發光作用 (ELECTROLUMINESCENCE ^ , 〇 2、按權利要求第i項所述的軸心光電共導的同軸發光二極 體,其同軸化供電之軸心電極係提供發光作用電荷及具較高折 射率以將射入軸心之光集中並導出轴心外者。 3 雜辦電共導的_彩色發光二極體結構,其組成色 19 200840406 彩變化的同軸彩色發光二極體結構,包含: 按權利要求第1項所述的紅色R同輛發光二極體;或 按權利要求第1項所述的綠色G同軸發光二極體;或 按權利要求第1項所述的藍色B同軸發光二極體;或 將按權利要求第2項所述的各色供電及導光軸心串接共用共 構,以直立重疊三色且集中在同一軸心區塊合成色彩;及 各色層間加上一絕緣透光層;及 • 底層發色層與底層基板間加上一層絕緣透光層,所組成的結 構者。 4、 一種彩色顯示器,其組成顯示發光的彩色發光二極體係按 , 權利要求第3項所述的同軸彩色發光二極體結構排列構成者。 ‘ 5、按制要求第4酬述轉色顯示H,其各水平行所有同軸 彩色發光二極體的供電軸心之連接線,係作為定址供電水平掃 描線者。 • 6、郷利要求第4項所述的彩色顯示器,其各垂直列所有同耗 彩色發光二極體的供電軸心之連接線,係作為定址供電垂直掃 描線者。802 axis electrode connected to the bottom of the display connected to the display line 803 display horizontal scanning and multiplex processor control circuit 804 display vertical scanning and multiplex processing signal control circuit 80 5 color display generator display program control circuit Patent application scope: Bu-type axis photoelectric co-axial _axis illuminator structure, which is characterized by providing the diode electrons and holes to generate natural luminescence in the inorganic semiconductor (4) __ face side or The electroluminescence effect of an organic semiconductor (ELECTROLUMINESCENCE ^, 〇2, the coaxial optically-coupled coaxial light-emitting diode according to claim i, the coaxially-powered axial electrode system provides a luminescent charge and A higher refractive index to concentrate the light incident on the axis and out of the axis. 3 杂Color-conducting OLED color-emitting diode structure, its composition color 19 200840406 Color-changing coaxial color light-emitting diode The structure comprising: the red R same light emitting diode according to claim 1; or the green G coaxial light emitting diode according to claim 1; or The blue-B coaxial light-emitting diode according to claim 1, or the power supply and the light-guiding axis of the second aspect of the invention are connected in common to form an upright three-color overlap and concentrated on The color of the same axis block is synthesized; and an insulating light transmissive layer is added between the color layers; and a structure is formed by adding an insulating light transmissive layer between the bottom coloring layer and the bottom substrate. 4. A color display. The color light-emitting diode system constituting the display light is arranged according to the coaxial color light-emitting diode structure according to claim 3. '5. According to the requirements of the system, the fourth color is displayed, and the horizontal lines are all displayed. The connection line of the power supply axis of the coaxial color light-emitting diode is used as the horizontal scanning power line for addressing. • 6. The color display of the fourth item is required to have all the same-color color LEDs in each vertical column. The connection line of the power supply shaft is used as the vertical scanning line for addressing the power supply.
TW096109016A 2006-12-15 2007-03-16 The color display directly displayed by coaxial color light emitting diodes with both optical and electronical guiding axis TWI369151B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW096109016A TWI369151B (en) 2007-03-16 2007-03-16 The color display directly displayed by coaxial color light emitting diodes with both optical and electronical guiding axis
TW96114070A TWI378553B (en) 2006-12-15 2007-04-20 The coaxial selectable multiwavelength photodiode structures and its image sensing devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096109016A TWI369151B (en) 2007-03-16 2007-03-16 The color display directly displayed by coaxial color light emitting diodes with both optical and electronical guiding axis

Publications (2)

Publication Number Publication Date
TW200840406A true TW200840406A (en) 2008-10-01
TWI369151B TWI369151B (en) 2012-07-21

Family

ID=44821149

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096109016A TWI369151B (en) 2006-12-15 2007-03-16 The color display directly displayed by coaxial color light emitting diodes with both optical and electronical guiding axis

Country Status (1)

Country Link
TW (1) TWI369151B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110838556A (en) * 2018-08-16 2020-02-25 创王光电股份有限公司 Light emitting device
CN111768723A (en) * 2020-08-05 2020-10-13 浙江德广信电子科技股份有限公司 LED display screen unit and spatial resolution adjusting method thereof
CN114023617A (en) * 2021-11-02 2022-02-08 电子科技大学 Annular multi-electron-beam radiation source based on cold cathode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110838556A (en) * 2018-08-16 2020-02-25 创王光电股份有限公司 Light emitting device
CN110838556B (en) * 2018-08-16 2023-01-17 台州观宇科技有限公司 Light emitting device
CN111768723A (en) * 2020-08-05 2020-10-13 浙江德广信电子科技股份有限公司 LED display screen unit and spatial resolution adjusting method thereof
CN114023617A (en) * 2021-11-02 2022-02-08 电子科技大学 Annular multi-electron-beam radiation source based on cold cathode
CN114023617B (en) * 2021-11-02 2023-01-31 电子科技大学 Annular multi-electron-beam radiation source based on cold cathode

Also Published As

Publication number Publication date
TWI369151B (en) 2012-07-21

Similar Documents

Publication Publication Date Title
JP6270943B2 (en) Display device
CN101431051B (en) Light emitting module and method of forming the same
CN104617124B (en) Organic light emitting diode display
CN109817109A (en) A kind of display panel and display device
US8981391B2 (en) Display panel with high transparency
US11289564B2 (en) Double-sided display panel and method for manufacturing the same
CN108075048B (en) OLED panel, manufacturing method thereof and display device
CN108666342A (en) A kind of display panel and production method, display device
JPH0757873A (en) Organic light emitting element and image display device
CN108258140A (en) Organic light emitting apparatus
US10490121B2 (en) Display device
CN109524442A (en) Organic light-emitting diode display substrate and preparation method thereof, display device
JP2011228249A (en) Transmissive color organic el display device
WO2019033858A1 (en) Array substrate and preparation method, display device and driving method
CN209000957U (en) A kind of display panel and display device
TW200840406A (en) The color display directly displayed by coaxial color light emitting diodes with both optical and electronical guiding axis
TWI262038B (en) Pixel structure and organic electroluminescent panel with the structure
CN113921673B (en) Light emitting diode for display
CN211062744U (en) Double-sided display panel
CN212571002U (en) Micro-display device
CN111048655B (en) Light emitting diode chip, display panel, preparation method of light emitting diode chip and display device
CN109860272B (en) Display substrate and display device
US11616099B2 (en) Display substrate with two-side light emitting components, preparation method thereof, and display apparatus
CN110611046B (en) Double-sided display panel
WO2024093239A1 (en) Display screen and preparation method therefor, and electronic device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees