TW200838739A - Optical system for vehicles forward lighting and a dipped headlight module for the same - Google Patents

Optical system for vehicles forward lighting and a dipped headlight module for the same Download PDF

Info

Publication number
TW200838739A
TW200838739A TW96109223A TW96109223A TW200838739A TW 200838739 A TW200838739 A TW 200838739A TW 96109223 A TW96109223 A TW 96109223A TW 96109223 A TW96109223 A TW 96109223A TW 200838739 A TW200838739 A TW 200838739A
Authority
TW
Taiwan
Prior art keywords
light source
mirror
led light
ellipse
reflecting surface
Prior art date
Application number
TW96109223A
Other languages
Chinese (zh)
Other versions
TWI308530B (en
Inventor
Yuan-Chang Liou
Jung-Shuo Huang
Original Assignee
Chungchou Inst Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chungchou Inst Of Technology filed Critical Chungchou Inst Of Technology
Priority to TW96109223A priority Critical patent/TWI308530B/en
Publication of TW200838739A publication Critical patent/TW200838739A/en
Application granted granted Critical
Publication of TWI308530B publication Critical patent/TWI308530B/en

Links

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

An optical system for vehicles forward lighting includes a high beam module and a dipped headlight module. The high beam module includes a first LED light source and a first reflector. The dipped headlight module includes a second LED light source, a second reflector, a fan-shaped shield and a projection lens. The first reflector has a first reflecting surface that is determined by a non- symmetrical and non- parabolic equation. The second reflector has a second reflecting surface that is determined by a variable-axis and poly-ellipsoid equation. Both the first reflecting surface and the second reflecting surface reflect the beam of the LED light source thus the final light distribution can quantitatively meet the ECE R112 regulations.

Description

200838739 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種車燈照明光學系統,且特別是有 關於一種以LED為光源,並包含遠光燈模組與近光燈模組 之高效率光學系統。 【先前技術】 目前汽車照明設計是以符合歐洲經濟委員會 (Economic Commission for Europe,ECE)法規配光標準 為主,其中遠光燈的配光要求為具有足夠大的發光強度與 足夠寬的照明範圍,而且還要求遠光光束(最大照度點) 儘量靠近中心(HV點),所以歐規標举對於配光屏幕上檢驗 點的照度值要求如表1及第1圖所示,僅有亮區照度五個 測試點要求,而且測試點皆位於水平線上、左右最遠僅至 5.14度(最少需6 Lux),因此屬於集中扁平光型。 測試點或測試區域 照度要求(Lux ) H-5.14R 6 min H-2.57R 24 min H-V Emax x 0.8 min H-2.57L 24 min H-5.14L 6 min Emax 48 〜240 表1歐規汽車遠光燈之配光標準 歐規對於近光燈的光型與主要亮度要求如表2及第2 圖所示,在於使駕駛人可以看清前方的路面與右方的狀況 如標識牌、行人等,但卻不至於對前方車輛或對向來車的 200838739 駕駛人造成不適的眩光,所以光型的上方暗區(B50L和 Zone III)要求不得過亮,而亮區則集中於右下方(50R和 75R) ° 測試點 認證規格(Lux ) 1 Point B50L ^0.4 2 Point 75R ^ 12 3 Point 75L ^ 12 4 Point SOL ^ 15 5 Point 50R ^ 12 6 Point 50V 7 Point 25L 8 Point 25R Any point in zone III ^ 0.7 Any point in zone IV Any point in zone I x (E50R) 表2歐視右行車系近光燈配光標準 因此在設計汽車頭前燈之遠光燈與近光燈的時候,皆 應朝符合ECE法規之配光標準來設計。由於遠光燈規範中 僅亮區照度要求(並無明暗截止線),因此光學設計上的 彈性教大,目前一般(傳統光源)採用H4燈泡(内有含 遮片之近光燈燈絲與無遮片之遠光燈燈絲)之多重反射面 式(Multi-Reflector,MR )設計或是獨立遠光燈MR設計或 是投射式(Poly-Ellipsoid System,簡稱PES)設計中將近光 燈光型所需的遮光片以機構打平形成遠光燈光型,這些方 式皆需額外增加遮光片亦或是推動遮光片之機構,對於生 產上不只成本較高,同時也增加了設計的複雜性。 由於遠光燈配光測試點皆位於水平線上、左右最遠僅 至5.14度,因此屬於集中扁平光型,開始會令人先想以具 200838739 有聚光效果的拋物面來當成反射鏡面。當反射鏡設計採用 拋物面時(LED光源設定為140流明),其中6 Lux等照 度範圍僅至2度,而且最大值約為1425 Lux,亦遠遠超過 照度最大值不得超過240 Lux要求,可見拋物面反射鏡產 生的配光太集中致使過亮且分佈範圍不夠寬廣,顯然不符 合ECE遠光燈配光規範,因此即使led光源提高流明數 亦無法產生符合法規的配光。當反射鏡設計採用雙曲面 (具有擴散光束的特性)時,產生軸對稱之配光,可產生 符合法規的配光,惟LED光源流明最低需求為600 Lm, 由於一位駕駛者需要的是一個寬廣但不高的配光,軸對稱 之光型在上下方向將形成過高之分佈(配光浪費),因此 k成LED光源流明_數需求高。 而在近光燈之設計方面,為了使近光燈之光型與光度 符合配光標準,其反射鏡主要功能為將光源發出的光線聚 木到點’因此基本上是橢圓曲面(Ellipsoid ),但此方 式設計出來的反射鏡是一個旋轉對稱的外形(反射鏡開口 為圓形),將產生一個旋轉對稱的光型,如此是無法符合 仃車需求的,一位駕駛者需要的是一個寬廣但並不高的配 光(非旋轉對稱的光形),基於這個理由,使得反射鏡必 須《又汁成垂直截面與水平截面為不同參數,因此過去採用 的橢圓曲面設計方式必須加以修改,修改後所設計出來的 反射鏡之垂直截面與水平截面為參數不同之橢圓,每個橢 圓在光軸方向(z轴上)有前後兩個焦點,惟個別的焦點 位置不同,因此來自光源的光束經此反射鏡後會聚光於不 200838739 同焦點’當選定不同的參數組合,將產生不同曲率的複合 橢圓曲面從而造成不同的光型與光度分配,所以如何找出 此複合橢圓曲面適當的參數組合、搭配投射透鏡焦點位置 的決定、光源正確位置的決定,係設計上最困難的部分, 需累積相當的設計經驗並花費相當多的嘗試與錯誤(丁^ and Error )過程,才能完成。 【發明内容】 因此本發明的目的就是在提供一種車輛前方照明光 學系統,本發明中所提出之遠光燈模組,只需採用非轴對 稱非拋物面方程式設計之反射面,並與透明燈殼搭配,便 可達到法規要求之配光標準,無須像習知的方法中以燈泡 内加遮片或外加機構帶動遮片的方式來產生遠光燈之光 型,所以在成本上可相形降低。 本發明的另一目的就是在提供一種高效率車輛前方 照明光學系統,利用非軸對稱非拋物面方程式及變軸多橢 圓方程式設計之遠光燈反射面與近光燈反射面,皆可有效 地反射發光二極體光源的光線,大幅提高了光源利用率, 使得LED光源之流明數需求很低,即能達到ECE法規之 配光要求。 本發明的又一目的是在提供一種車輛前方照明光學 系統之近光燈模組,該近光燈模組之反射面之設計方法特 別適用於減少光學設計的複雜性,無需經由耗時費力之嘗 試與錯誤(Try and Error)過程,只要決定反射鏡之設計參 200838739 數,便能得到所需的配光控制以及各光學元件(遮光片、 投射透鏡等)間之位置關係,因而提高設計成果的實用性。 本發明之車輛前方照明光學系統,包含有遠光燈模組 及近光燈模組。其中的遠光燈模組包含有第一 led光源及 第一反射鏡。近光燈模組包含有第二LED光源、第二反射 鏡、遮光片及投射透鏡。該第一反射鏡具有一第一反射面200838739 IX. Description of the Invention: Technical Field of the Invention The present invention relates to an illumination system for a vehicle lamp, and more particularly to an LED as a light source, and includes a high beam module and a low beam module. High efficiency optical system. [Prior Art] At present, automotive lighting design is based on the Emissions Standards of the European Commission for Economic Affairs (ECE). The high beam illumination requirements are sufficient for a sufficiently large illumination range and a sufficiently wide illumination range. And also requires the high beam (maximum illuminance point) as close as possible to the center (HV point), so the European standard is required for the illumination value of the checkpoint on the light distribution screen as shown in Table 1 and Figure 1, only the bright area The illuminance requires five test points, and the test points are all on the horizontal line, and the farthest left and right are only 5.14 degrees (minimum 6 Lux), so they belong to the concentrated flat light type. Test point or test area illumination requirement (Lux) H-5.14R 6 min H-2.57R 24 min HV Emax x 0.8 min H-2.57L 24 min H-5.14L 6 min Emax 48 ~240 Table 1 European standard car high beam Light distribution standard European regulations for the low beam light type and main brightness requirements as shown in Table 2 and Figure 2, is to enable the driver to see the road ahead and the right side of the situation such as signs, pedestrians, etc. However, it does not cause discomfort to the front vehicle or the 200838739 driver of the incoming vehicle, so the upper dark area (B50L and Zone III) of the light type should not be too bright, while the bright area is concentrated on the lower right (50R and 75R). ° Test point certification specification (Lux) 1 Point B50L ^0.4 2 Point 75R ^ 12 3 Point 75L ^ 12 4 Point SOL ^ 15 5 Point 50R ^ 12 6 Point 50V 7 Point 25L 8 Point 25R Any point in zone III ^ 0.7 Any point in zone IV Any point in zone I x (E50R) Table 2 European-right right-hand drive low-beam light distribution standard. Therefore, when designing the high beam and low beam of the headlights of the car, it should be in compliance with ECE. Designed with the light distribution standards of the regulations. Due to the bright area illumination requirement in the high beam specification (there is no clear cut-off line), the flexibility of the optical design is large. At present, the general (conventional light source) uses the H4 bulb (with the low beam filament and the matte inside). Multi-Reflector (MR) design of the high-beam reflector of the matte, or the design of the independent high beam MR or the Poly-Ellipsoid System (PES) The visor is flattened by a mechanism to form a high beam type. These methods require additional shims or mechanisms for urging the visor. This is not only costly but also increases the complexity of the design. Since the high beam light distribution test points are all on the horizontal line and the farthest left and right are only 5.14 degrees, it is a concentrated flat light type. At first, it is thought to be a paraboloid with a lightening effect of 200838739 as a mirror surface. When the mirror design adopts paraboloid (LED light source is set to 140 lumens), the illumination range of 6 Lux is only 2 degrees, and the maximum value is about 1425 Lux, which is far beyond the maximum illumination limit of 240 Lux. Visible parabolic surface is visible. The light distribution produced by the mirror is too concentrated to make it too bright and the distribution range is not wide enough. Obviously, it does not meet the ECE high beam light distribution specification. Therefore, even if the LED light source increases the lumen number, it cannot produce a compliant light distribution. When the mirror design uses a hyperboloid (with the characteristics of a diffused beam), it produces an axisymmetric light distribution that produces a compliant light distribution, but the minimum requirement for lumens of the LED source is 600 Lm, since one driver needs a Wide but not high light distribution, the axisymmetric light pattern will form an excessively high distribution in the up and down direction (the light is wasted), so the demand for k LED light source lumens is high. In the design of the low beam, in order to make the low beam light type and luminosity meet the light distribution standard, the main function of the mirror is to gather the light from the light source to the point 'so it is basically an elliptical surface (Ellipsoid). However, the mirror designed in this way is a rotationally symmetrical shape (the mirror opening is circular), which will produce a rotationally symmetrical light pattern, which is incapable of meeting the needs of the brakes. One driver needs a wide range. However, it is not a high light distribution (non-rotationally symmetrical light shape). For this reason, the mirror must be made into a vertical section and a horizontal section. Therefore, the elliptical surface design method used in the past must be modified and modified. The vertical section and the horizontal section of the mirror designed by the latter are ellipse with different parameters. Each ellipse has two front and back focal points in the optical axis direction (z axis), but the individual focus positions are different, so the light beam from the light source passes through This mirror will condense after the 200838739 with the focus 'When different parameter combinations are selected, a composite elliptical surface with different curvature will be produced. Different light types and luminosity distributions are caused, so how to find the appropriate parameter combination of the composite elliptical surface, the decision of the focal position of the projection lens, and the decision of the correct position of the light source are the most difficult parts of the design, and it is necessary to accumulate a considerable design. Experience and spend quite a bit of trial and error (d and ^) process to complete. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a vehicle front illumination optical system. The high beam module proposed in the present invention only needs to adopt a non-axisymmetric non-parabolic equation design reflective surface, and a transparent lamp housing. With the collocation, the light distribution standard required by the regulations can be achieved, and the light type of the high beam lamp can be generated by the method of adding the mask or the external mechanism to move the mask in the conventional method, so that the cost can be reduced. Another object of the present invention is to provide a high-efficiency vehicle front illumination optical system, which can effectively reflect by using a non-axisymmetric non-parabolic equation and a variable-axis multi-elliptical equation design for a high beam reflector and a low beam reflector. The light of the LED light source greatly improves the utilization of the light source, so that the lumen demand of the LED light source is very low, that is, the ECE regulations can meet the light distribution requirements. Another object of the present invention is to provide a low beam module for a vehicle front illumination optical system, the design method of the reflective surface of the low beam module is particularly suitable for reducing the complexity of the optical design without requiring time and effort. In the Try and Error process, as long as the design of the mirror is determined to be 200838739, the desired light distribution control and the positional relationship between each optical component (shading film, projection lens, etc.) can be obtained, thereby improving the design result. Practicality. The vehicle front illumination optical system of the present invention comprises a high beam module and a low beam module. The high beam module includes a first led light source and a first mirror. The low beam module includes a second LED light source, a second mirror, a light shielding film, and a projection lens. The first mirror has a first reflecting surface

係由一非軸對稱非拋物面方程式設計,其中,非轴對稱非 拋物面方程式為: ^ r2 r4 其中 咖)=cos2 <9 + sin2 6» r =徑向 Z:光軸方向 f:抛物面的焦距 ,:角度 c( Θ ):可隨角度0而改變的配光調整係數,決定反射 鏡面的光型範圍。 而該第二反射鏡具有一第二反射面係由一變軸多橢 圓的方程式設計,其中,變軸多橢圓反射鏡面的方程式以 圓挺座標(1%气;)表示為: 200838739 ^ {Φ) = ax c〇s4/w φ^αγ sin4/w φ r :徑向 2::光軸方向 0:光軸截面上之角度 :橢圓長軸之半轴長 :橢圓短軸之半軸長 〜:β⑷位於水平時的值 々· α(0)位於垂直時的值 η:可調整的係數,決定邊界效應延伸至内部的多寡, 當η愈大時〜效應變大而%效應變小,為了增加控制光線 分佈的彈性。反射鏡設計參數&)。 藉此,本發明所提出之光學系統之光源利用率很高, 第一反射鏡與第二反射鏡皆可有效地反射發光二極體光 源的光線,將使該兩反射鏡產生的配光光型與光度在各方 位皆能符合ECE法規的配光要求,可更有效提高配光效 率’降低發光二極體光源所需的流明數。而且本發明中所 提出的近光燈之反射鏡設計方法可以在报有效率的方式 下’決定反射鏡的參數組合、投射透鏡焦點的位置及光源 的正確位置,而得到所需的配光控制。 功/上述本發明較佳實_可知,應用本發明具有下列 1.本發明所提出之光學系統之光源利用率报高,因此 10 200838739 該車輛前方照明光學系統的第一反射面與第二反射面,皆 可有效地反射發光二極體光源的光線,使得LED光源之流 明數需求很低,即能達到ECE法規之配光標準。 2·本發明提出之近光燈模組設計方法可以減少光學 設計的複雜性,因而提高設計成果的實用性。 3 ·本發明所提出之遠光燈模組之設計方法可以降低 生產的成本,因此提高產品商業化後的競爭力。 【實施方式】 請參照第3圖,其繪示依照本發明一較佳實施例的一 種車輛前方照明光學系統100,包含有遠光燈模組11〇與 近光燈模組120。其中的遠光燈模組110係設有第一 led 光源111及第一反射鏡112。近光燈模、组12〇係設有第二 led光源m、第二反射鏡I22 '遮光片!23及投射透鏡 124 〇 為了達到付合ECE法規之返光燈配光標準,盆配光要 求為具有一足夠大的發光強度與足夠寬的照明範圍,因 此,第一反射鏡112需針對此一特性設計。該第_ 界反射鏡 112具有一第一反射面係使用一非軸對稱非拋物面方程 設計,該方程式如式(1)所示為: x 2 4 Ζ^ + α(θ)χ^-τ 4/ 64/3 ( 1) 其中 c(9) = cx cos2 Θ + cY sin2 Θ 11 200838739 r :徑向 Z :光軸方向 f :拋物面的焦距 沒:角度 c( (9)·可隨角度0而改變的配光調整係數,決定反射 鏡的光型範圍。 當沒=〇度,表示水平位置,c(0) = cz; 0 = 9〇度時,表 不垂直位置,咖)=4 ;當設定Cx:=Cr,第一反射鏡112將 是轴對稱,因此產生之配光亦將是轴對稱,屬於轴對稱的 光型設計。當,在水平方向與垂直方向光線分佈的 聚散政應不同,因而可設計出非軸對稱的光型。為了符合 配光標準需要的是一個寬廣但不高的配光,因此,係數需 取較適合。 進一步參照第4圖,其繪示依照本發明一較佳實施例 之遠光燈模組之立體組合示意圖,在本發明之較佳實施例 中,該第一反射鏡112之縱身為9.5cm、開口約I2cm、 卜9mm、c,-〇.〇6和〜=0,而且第一 LED光源lu置於該 弟反射面之焦點上並朝光軸方向z=9mm,並設定為14〇 流明,產生之配光如第5圖所示,上下分佈約為±2度、左 右为佈約為±6度,呈現扁平分佈將十分適合遠光燈的法規 規範。表3為本實施例遠光燈模組之實測值,比較表i, 本實施例中最大值為5 2 Lux符合法規要求,每個測試點或 測試區域皆可符合法規需求。 12 200838739It is designed by a non-axisymmetric non-parabolic equation, where the non-axisymmetric non-parabolic equation is: ^ r2 r4 where coffee) = cos2 <9 + sin2 6» r = radial Z: optical axis direction f: focal length of the paraboloid , : Angle c ( Θ ): The light distribution adjustment coefficient that can be changed with angle 0 determines the light type range of the mirror surface. The second mirror has a second reflecting surface designed by a variable-axis multi-ellipse equation, wherein the equation of the variable-axis multi-elliptical mirror surface is represented by a round azimuth (1% gas;): 200838739 ^ {Φ ) = ax c〇s4/w φ^αγ sin4/w φ r : Radial 2:: optical axis direction 0: angle on the optical axis section: half length of the ellipse long axis: half length of the elliptical short axis ~ : β (4) is the value at the horizontal 々 · α (0) is the value when it is vertical η: the adjustable coefficient determines the extent to which the boundary effect extends to the inside. When η is larger, the effect becomes larger and the % effect becomes smaller. Increase the flexibility to control the distribution of light. Mirror design parameters & Thereby, the light source utilization rate of the optical system proposed by the invention is high, and both the first mirror and the second mirror can effectively reflect the light of the light emitting diode light source, and the light distribution light generated by the two mirrors is generated. The type and luminosity can meet the ECE regulations of the light distribution requirements in all places, which can effectively improve the light distribution efficiency 'reducing the lumens required for the light-emitting diode light source. Moreover, the mirror design method of the low beam lamp proposed in the present invention can determine the parameter combination of the mirror, the position of the projection lens focus, and the correct position of the light source in an efficient manner to obtain the desired light distribution control. . The present invention is better than the above. It is known that the application of the present invention has the following 1. The light source utilization rate of the optical system proposed by the present invention is high, and therefore 10 200838739 The first reflecting surface and the second reflection of the vehicle front illumination optical system The surface can effectively reflect the light of the light-emitting diode light source, so that the lumen demand of the LED light source is very low, that is, the ECE regulations can meet the light distribution standard. 2. The design method of the low beam module proposed by the present invention can reduce the complexity of the optical design, thereby improving the practicality of the design result. 3. The design method of the high beam module proposed by the present invention can reduce the cost of production, thereby improving the competitiveness of the product after commercialization. [Embodiment] Please refer to FIG. 3, which illustrates a vehicle front illumination optical system 100 including a high beam module 11A and a low beam module 120, in accordance with a preferred embodiment of the present invention. The high beam module 110 is provided with a first led light source 111 and a first mirror 112. The low beam mode and the group 12 are provided with a second led light source m and a second mirror I22 'shading film! 23 and the projection lens 124 〇 In order to meet the ECE regulations of the backlight light distribution standard, the basin light distribution requirement is to have a sufficiently large luminous intensity and a sufficiently wide illumination range. Therefore, the first mirror 112 needs to be directed to this one. Feature design. The first boundary mirror 112 has a first reflecting surface designed using a non-axisymmetric non-parabolic equation, and the equation is as shown in the formula (1): x 2 4 Ζ^ + α(θ)χ^-τ 4 / 64/3 ( 1) where c(9) = cx cos2 Θ + cY sin2 Θ 11 200838739 r : Radial Z: direction of the optical axis f: focal length of the paraboloid is not: angle c ( (9) · with angle 0 The changed light distribution adjustment coefficient determines the light type range of the mirror. When there is no = degree, it indicates the horizontal position, c(0) = cz; 0 = 9 degrees, the table is not vertical position, coffee) = 4; Setting Cx:=Cr, the first mirror 112 will be axisymmetric, so the resulting light distribution will also be axisymmetric, belonging to an axisymmetric light design. When the convergence of the light distribution in the horizontal direction and the vertical direction is different, a non-axisymmetric light pattern can be designed. In order to meet the light distribution standard, a wide but not high light distribution is required, so the coefficient needs to be suitable. 4 is a schematic perspective view of a high beam module according to a preferred embodiment of the present invention. In the preferred embodiment of the present invention, the first mirror 112 is 9.5 cm long. The openings are about I2cm, bur 9mm, c, -〇.〇6 and 〜=0, and the first LED light source lu is placed at the focus of the reflection surface of the brother and is z=9mm in the direction of the optical axis, and is set to 14 〇 lumens. The resulting light distribution, as shown in Figure 5, has an upper and lower distribution of about ±2 degrees and a left and right cloth of about ±6 degrees. The flat distribution will be very suitable for high beam lighting regulations. Table 3 is the measured value of the high beam module of the present embodiment. Comparing the table i, the maximum value of the embodiment is 5 2 Lux meets the regulatory requirements, and each test point or test area can meet the regulatory requirements. 12 200838739

测試點或 測試區域 本實施例 實測值 Η - 5.14 R 7 Η - 2.57 R 50 Π - V 42 Π - 2.57 L 50 Η - 5.14 L 7 Emax 52 表3本實施例遠光燈模組之實測值 請參照第6圖,其繪示依照本發明一較佳實施例之近 光燈模組之立體組合示意圖。其中之近光燈模組120包括 第二LED光源121、第二反射鏡122、遮光片123及投射 透鏡124。 投射透鏡124以高聚焦非球面透鏡方程式設計,該方 程式如式(2)所示為:Test point or test area The measured value of this embodiment Η - 5.14 R 7 Η - 2.57 R 50 Π - V 42 Π - 2.57 L 50 Η - 5.14 L 7 Emax 52 Table 3 The measured value of the high beam module of this embodiment Referring to FIG. 6, a three-dimensional combination diagram of a low beam module in accordance with a preferred embodiment of the present invention is shown. The low beam module 120 includes a second LED light source 121, a second mirror 122, a light shielding sheet 123, and a projection lens 124. Projection lens 124 is designed in a highly focused aspheric lens equation, as shown in equation (2):

r2 2R r4 Μ3 (2) 其中R為頂點曲率半徑、Κ為可調整之係數,其聚焦能力 較所有二次圓錐面為佳,惟當透鏡之口徑或厚度改變時, • 調整係數Κ須重新尋找以獲得最佳之聚焦結果。透鏡材質 多為玻璃、壓克力或聚石炭酸酯PC(Polycarbonate),其中投 射透鏡124 —般為玻璃材質,所以取折射率為1.58,當投 射透鏡124的口徑為66 mm,並取頂點曲率半徑R=33 mm,藉由折射定律並以數學計算推導及電腦程式設計模擬 平行光束通過透鏡之光跡路徑,分析聚焦情淹,經過一系 列測試得知當K= 0.54時對於光束的會聚效果最佳,光軸 上最大的球差值僅0.5 mm、焦距為46 mm、投射透鏡124 13 200838739 的厚度為18.7 mm,此透鏡球面像差保持报小而且焦距長 度不長對於整體燈具縱深的降低十分有利。因此本發明一 較佳實施例中,該投射透鏡124之K值取0.54。 第二反射鏡122具有一第二反射面係使用一變軸多橢 圓的方程式設計,該方程式以圓柱座標(r,0,2 )表 示,如式(3)所示為:R2 2R r4 Μ3 (2) where R is the radius of curvature of the apex and Κ is an adjustable factor. The focusing ability is better than that of all secondary conical surfaces. However, when the diameter or thickness of the lens changes, • the adjustment factor does not need to be searched again. For the best focus results. The lens material is mostly glass, acrylic or polycarbonate PC. The projection lens 124 is generally made of glass, so the refractive index is 1.58. When the projection lens 124 has a diameter of 66 mm, the curvature of the vertex is taken. The radius R=33 mm, by the law of refraction and mathematical calculation and computer programming to simulate the path of the parallel beam passing through the lens path, analyze the focus flooding, after a series of tests to know the convergence effect of the beam when K = 0.54 Optimally, the largest spherical difference on the optical axis is only 0.5 mm, the focal length is 46 mm, and the thickness of the projection lens 124 13 200838739 is 18.7 mm. The spherical aberration of the lens is kept small and the focal length is not long. Very beneficial. Therefore, in a preferred embodiment of the invention, the projection lens 124 has a K value of 0.54. The second reflecting mirror 122 has a second reflecting surface which is designed using a variable-axis multi-ellipsoid, which is expressed by a cylindrical coordinate (r, 0, 2), as shown in the formula (3):

’,丫 ( Z Y ㈣+UT1 =1 / (3) 其中 (4) α Μ = «X C0S4/n φΛ-ay sin4/n φ r :徑向 z :光軸方向 _ 0·光軸截面上之角度 :橢圓長軸之半軸長 咖):橢圓短軸之半軸長 )位於水平時的值 «y · “⑷位於垂直時的值 η:可調整的係數,決定邊界效應延伸至内部的多〜 當η愈大時〜效應變大而4效應變小,為了增加控=, 分佈的彈性。 ·卫光線 請進一步參照第7圖,其繪示依照本發明一較俨每> 例的-種變軸多橢圓曲面設計之幾何關係::實施 弟7圖說明 14 200838739 本發明所提出的第二反射面是設計成垂直橢圓與水平橢 圓不同形狀的外形,任一 #截面之每個橢圓皆有相同之頂 點210 (在座標原點處)與兩橢圓的第二焦點26〇 (兩橢 圓的焦點在同一位置所以以㊉表示)。垂直橢圓的第一焦 點220(垂直橢圓焦點符號為〇)與水平橢圓的第一焦點 23〇(水平橢圓焦點符號為+ )兩焦點相距j二1 _2c,其中 :、、距d-办2,由於〇〇所以〜矣〜、~,可見兩剖面 為不同形狀的橢圓,並且垂直橢圓中心點2f4〇和水平橢圓 中心點250的距離也是不同的。如此也使得第二反射面是 由無限多個不同焦距(焦點至中心點的距離)的橢圓所形 成,而形成多橢圓反射面(p〇ly_ellips〇id)。由此便可以明 確且輕易決定投射透鏡124之第三焦點位置應置於此兩橢 圓之共同的第二個焦點260處,以通過較多由第二反射面 所反射第二LED光源121之光線。而第二LED光源121 應位於垂直橢圓的第一焦點22〇以獲得上下方向最聚光的 效果。而配光控制便交由反射鏡設計參數d(由 第7圖中之幾何關係、可推導得之)來決定。此半'軸長&(幻 如式(4)的設計目的是隨角度#的變化並非線性關係,而是 如S形的非線性關係,在〜〜〜之間緩和變化;半軸長b 可由擴圓幾何關係^決定,其中e為焦距,因此 半軸長a、b皆隨角度多而異。 反射鏡設計參數d會影響光型分佈,當d = 〇表示 \ 一屮,第一反射面恢復為一般標準橢圓面,產生左右約 4.5度、上下約3度的光型分佈,由於第二反射面在圓周 15 200838739 方向範圍較光轴方向大’因此產生的配光範圍左右大於上 下,並形成左右對稱及上下不全然對稱的光型,但此配光 範圍遠小於近光燈所需(± 9度以上)的分佈;當d关0表 示心★ ay,第二反射面的水平橢圓與垂直橢圓為不同轴 長,而且當d越來越大時,水平橢圓比垂直橢圓越來越大。 d越大時光型分佈越往左右兩侧擴散,呈現兩側翹起、左 右對稱的弧形配光,由於垂直橢圓大小一值維持不變,因 此在ΗV點仍維持上下約3度的配光。在本發明一較佳實 施例中,為了產生駕駛者需要的一個寬廣但並不高的近光 燈配光光型且符合法規之要求,選擇 2 mm (如第8圖 所示)’此時光域左右擴大到9度,已符合近光燈光型的 基本要求(左右超過9度以上)之寬廣扁平的配光,但尚 需借助遮光片123的設計阻擋暗區部份的光束以產生清晰 之明暗截止線。 遮光片123採用平面設計,以減少製造上的難度並降 低實際製造上的門檻,而且能適合LED光源特性,遮光片 123的形狀呈朝下之扇形,左側上緣呈15度向下傾斜,右 側上緣為水平並與水平線相距D之高度,遮光片123的位 置Z=96 mm ’ D = 〇·6 mm時上緣略高於水平線〇·6 mm產 生的配光洽位於水平線下方。 在本發明一較佳實施例中,該近光燈模組12〇中之第 二反射鐃122其縱身55mm、開口寬約85mm、高約40mm、 〜=58 mm、〜=57 mm,第二LED光源121的位置 mm、朝上5並設定為200流明,投射透鏡124之位置z=142 16 200838739 mm、厚度18.7 mm、開口 66mm。本較佳實施例中,在設 計此近光燈模組120的各主要光學元件及各元件間的整合 測試時,皆朝符合歐洲法規近光燈規範的光型分佈設計, 最後的光域分佈如第9圖所示,左右分佈各約11度、最下 方只到4度之寬廣但不高之配光、明暗截止線十分清楚。 表4為本實施例近光燈模組之實測值,比較表2,結果證 實本發明之近光燈模組設計實施例的每個量測點與區域 皆可符合法規需求。 測試點 本文設計值 1 Point B50L 0 2 Point 75R 12.2 3 Point 75L 8.6 4 Point 50L 13.1 5 Point 50R 13.9 6 Point 50V 12.9 7 Point 25L 2.8 8 Point 25R 2.7 Any point in zone III < 0.7 Any point in zone IV >3 Any point in zone I < 2 X13.9 表4本實施例近光燈模組之實測值 藉此,本發明所提出之光學系統之光源利用率很高, 因此當LED流明數設定為140 lm (遠光燈)、200 lm (近 光燈,)以上時,配光結果即可符合ECE法規配光標準,意 即若採用目前全世界最亮的白光LED(Lumileds所產出的 最新產品一LUXEON® K2 Emitter,最亮可達140 lm )遠 17 200838739 光燈僅需1顆、近光燈2顆,都是目前習知方法中使用最 少LED數量,所以本發明之光學系統十分實用。並由上述 結果可知該近光燈模組之反射鏡的配光控制僅需調整一 個設計參數,便^秦到所需之配光要求,所以相當有效率。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖是歐規遠光燈配光測試圖。 第2圖是歐規近光燈規範要求的光型與測試點圖。 弟3圖係繪示依照本發明一較佳實施例的一種車柄前 方照明光學系統之分解圖。 第4圖係綠示依照本發明一較佳實施例的遠光燈模組 之立體示意圖。 第5圖係繪示依照本發明一較佳實施例的遠光燈模組 之最佳光型示意圖。 第6圖係繪示依照本發明一較佳實施例的近光燈模組 之分解圖。 第7圖本發明一較佳實施例的一種反射鏡的變軸多橢 圓曲面設計之幾何關係示意圖 18 200838739 第8圖係繪示依照本發明一較佳實施例的近光燈模組 當反射鏡設計參數d=2mm時之配光光型示意圖。 第9圖係繪示依照本發明一較佳實施例的近光燈模組 之最佳光型示意圖。 【主要元件符號說明】 100 :車輛前方照明光學系統110 :遠光燈模組 111 :第一 LED光源 120 :近光燈模組 122 :第二反射鏡 124 :投射透鏡 220 :第一焦點 240 ··中心點 260 :第二焦點 112 :第一反射鏡 121 :第二LED光源 123 :遮光片 210 :頂點 230]第一焦點 250 :中心點',丫( ZY (4)+UT1 =1 / (3) where (4) α Μ = «X C0S4/n φΛ-ay sin4/n φ r : radial z: optical axis direction _ 0· optical axis section Angle: the semi-axis of the long axis of the ellipse): the half-axis length of the short axis of the ellipse) The value at the horizontal «y · · "(4) The value at the vertical η: the adjustable coefficient, which determines how much the boundary effect extends to the inside. ~ When η is larger, the effect becomes larger and the effect of 4 becomes smaller. In order to increase the control, the elasticity of the distribution. For the illuminating light, please refer to Fig. 7, which is a more detailed example of the present invention. The geometric relationship of the variable axis multi-elliptical surface design: The implementation of the second embodiment of the invention is as follows: 200838739 The second reflecting surface proposed by the present invention is designed to have a different shape of a vertical ellipse and a horizontal ellipse, and each ellipse of any #section is There is the same vertex 210 (at the coordinate origin) and the second focus of the two ellipse 26〇 (the focus of the two ellipse is at the same position so it is represented by ten). The first focus of the vertical ellipse 220 (the vertical elliptical focus symbol is 〇) The first focus of the horizontal ellipse is 23〇 (the horizontal elliptical focus symbol is +) and the two focal points are separated by j. 1 _2c, where:,, from d-do 2, because 〇〇 so ~ 矣 ~, ~, the two sections are visible as elliptical shapes, and the distance between the vertical elliptical center point 2f4〇 and the horizontal ellipse center point 250 is also different. This also makes the second reflecting surface be formed by an ellipse of an infinite number of different focal lengths (the distance from the focus to the center point), and forms a multi-elliptical reflecting surface (p〇ly_ellips〇id), thereby making it clear and easy to decide. The third focus position of the projection lens 124 should be placed at the second focus 260 common to the two ellipses to pass the light of the second LED light source 121 reflected by the second reflection surface. The second LED light source 121 should The first focus 22 is located at the vertical ellipse to obtain the most concentrated effect in the up and down direction, and the light distribution control is determined by the mirror design parameter d (derived from the geometric relationship in Fig. 7). The semi-axis length & (the illusion (4) is designed to vary with the angle # and the nonlinear relationship, but as a non-linear relationship of the S-shape, moderately change between ~~~; the half-axis length b can be Expanding the geometric relationship ^ determines, where e It is the focal length, so the half-axis lengths a and b vary with the angle. The mirror design parameter d affects the light distribution. When d = 〇 indicates \ 屮, the first reflective surface returns to the general standard elliptical surface, resulting in left and right The light pattern distribution of about 4.5 degrees and about 3 degrees above and below, because the second reflecting surface is larger in the direction of the circumference 15 200838739 than the optical axis direction, the resulting light distribution range is larger than the upper and lower sides, and the left and right symmetry and the upper and lower symmetry are not completely symmetrical. Light type, but this light distribution range is much smaller than the distribution required by the low beam (± 9 degrees or more); when d is off 0 means the heart ★ ay, the horizontal ellipse of the second reflecting surface is perpendicular to the vertical ellipse, and As d grows larger, the horizontal ellipse becomes larger and larger than the vertical ellipse. The larger the d is, the more the light distribution spreads to the left and right sides, and the curved light distribution on both sides is symmetrical and symmetrical. Since the vertical ellipse size remains unchanged, the light distribution at the ΗV point is maintained at about 3 degrees. . In a preferred embodiment of the present invention, in order to generate a wide but not high low beam light distribution type required by the driver and comply with regulatory requirements, 2 mm (as shown in Fig. 8) is selected. The field is expanded to 9 degrees to the left and right, and has been conformed to the broad and flat light distribution of the basic requirements of the low beam type (more than 9 degrees left and right). However, it is necessary to block the light beam in the dark portion by the design of the light shielding sheet 123 to produce a clear light. Cut-off line. The light-shielding sheet 123 adopts a planar design to reduce the manufacturing difficulty and reduce the threshold of actual manufacture, and can be adapted to the characteristics of the LED light source. The shape of the light-shielding sheet 123 is downward-shaped, and the upper left edge is inclined downward by 15 degrees, right side. The upper edge is horizontal and is at a height D from the horizontal line. The position of the light-shielding sheet 123 is Z=96 mm ' D = 〇·6 mm, the upper edge is slightly higher than the horizontal line 〇·6 mm, and the light distribution is located below the horizontal line. In a preferred embodiment of the present invention, the second reflector 122 of the low beam module 12 has a vertical body of 55 mm, an opening width of about 85 mm, a height of about 40 mm, a width of ~=58 mm, and a width of ~=57 mm. The position of the LED light source 121 is set to mm, upwards to 5, and is set to 200 lumens. The position of the projection lens 124 is z=142 16 200838739 mm, the thickness is 18.7 mm, and the opening is 66 mm. In the preferred embodiment, when designing the main optical components of the low beam module 120 and the integration tests between the components, the optical distribution is designed to meet the European regulations of the low beam, and the final optical distribution is As shown in Fig. 9, the light distribution and the cut-off line of the light and dark, which are about 11 degrees from the left and right, and only 4 degrees at the bottom, are not clear. Table 4 shows the measured values of the low beam module of the present embodiment. Comparing Table 2, it is confirmed that each measurement point and area of the design example of the low beam module of the present invention can meet the regulatory requirements. Test point Design value 1 Point B50L 0 2 Point 75R 12.2 3 Point 75L 8.6 4 Point 50L 13.1 5 Point 50R 13.9 6 Point 50V 12.9 7 Point 25L 2.8 8 Point 25R 2.7 Any point in zone III < 0.7 Any point in zone IV <3 Any point in zone I < 2 X13.9 Table 4 Actual measured values of the low beam module of the present embodiment, whereby the light source utilization rate of the optical system proposed by the present invention is high, so when the LED lumen number is set For 140 lm (high beam), 200 lm (low beam), the light distribution results can meet the ECE regulations, which means that the world's brightest white LED (Lumileds) is used. The latest product, a LUXEON® K2 Emitter, is up to 140 lm. The farthest 17 200838739 only needs one light and two low-beam lights. It is the minimum number of LEDs used in the current method, so the optical system of the present invention is very practical. From the above results, it can be seen that the light distribution control of the mirror of the low beam module only needs to adjust a design parameter, so that it is required to have the required light distribution requirement, so it is quite efficient. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above and other objects, features, advantages and embodiments of the present invention more obvious, the detailed description of the drawings is as follows: Figure 1 is a blue light beam light distribution test chart . Figure 2 is a diagram of the light type and test points required by the European regulations for low beam. Figure 3 is an exploded view of a front illumination optical system of a handlebar in accordance with a preferred embodiment of the present invention. Figure 4 is a perspective view of a high beam module in accordance with a preferred embodiment of the present invention. Figure 5 is a schematic diagram showing the optimum light pattern of a high beam module in accordance with a preferred embodiment of the present invention. Figure 6 is an exploded view of a low beam module in accordance with a preferred embodiment of the present invention. FIG. 7 is a schematic diagram showing the geometric relationship of a variable-axis multi-elliptical surface design of a mirror according to a preferred embodiment of the present invention. 18387387. FIG. 8 is a view showing a low beam module as a mirror according to a preferred embodiment of the present invention. Schematic diagram of the light distribution pattern when the design parameter d=2mm. Figure 9 is a diagram showing an optimum light pattern of a low beam module in accordance with a preferred embodiment of the present invention. [Main component symbol description] 100: Vehicle front illumination optical system 110: High beam module 111: First LED light source 120: Low beam module 122: Second mirror 124: Projection lens 220: First focus 240 Center point 260: second focus 112: first mirror 121: second LED light source 123: light shield 210: vertex 230] first focus 250: center point

1919

Claims (1)

200838739 十、申請專利範圍: 1·一種車輛前方照明光學系統,包含: 一遠光燈模組,該遠光燈模組包含 一第一反射鏡,該第一反射鏡具有一由非轴對稱 非拋物面方程式所設計成的第一反射面;以及 一第一 LED光源,該第一 LED光源大致上設於 第一反射面之焦點位置;以及200838739 X. Patent application scope: 1. A vehicle front illumination optical system, comprising: a high beam module, the high beam module comprising a first mirror, the first mirror having a non-axisymmetric non- a first reflecting surface designed by the parabolic equation; and a first LED light source, the first LED light source being substantially disposed at a focus position of the first reflecting surface; 一近光燈模組,該近光燈模組包含 一第二反射鏡,該第二反射鏡具有一由變轴多橢 圓方程式設計而成的第二反射面,該第二反射面包括有垂 直橢圓與水平橢圓; 外一 一第二LED光源,該第二led光源大致上位於 第二反射面之垂直橢圓的第一焦點位置; 一投射透鏡,該投射透鏡具有一第三焦點,其中 該投射透鏡之第三焦點大致上置於第- 工址门 並罝於弟一反射面之兩橢圓 /、U的弟二焦點位置;以及 一遮光片,該遮光片置於 之間。 直於弟一反射面與投射透鎖 2·系統, 如申請專利範圍第 其中該第一反射面 1項所述之車輛前 之設計方程式為 方照明光學 4/ + c(9)x ’其中 c(〇) - cx cos2 Θ + cY sin2 Θ y 200838739 r:徑向, ζ :光軸方向, f:拋物面的焦距, Θ :角度,以及 c(θ ):可隨角度0而改變的配光調整係數。a low beam module, the low beam module comprising a second mirror having a second reflecting surface designed by a variable axis multi-elliptic equation, the second reflecting surface comprising a vertical An ellipse and a horizontal ellipse; a second LED light source, the second LED light source is substantially at a first focus position of a vertical ellipse of the second reflective surface; a projection lens having a third focus, wherein the projection The third focus of the lens is substantially placed on the first-site door and is located at the two elliptical positions of the two ellipse/, U, and the second focus position of the U; and a light shielding film is placed between the two. Straight to the brother-reflective surface and the projection through-lock 2 system, as in the patent scope, the design equation of the vehicle in front of the first reflecting surface 1 is square illumination optics 4/ + c(9)x ' where c (〇) - cx cos2 Θ + cY sin2 Θ y 200838739 r: radial, ζ: optical axis direction, f: focal length of paraboloid, Θ: angle, and c(θ): light distribution adjustment that can be changed with angle 0 coefficient. 日、·如申清專利範圍第1項或第2項所述之車輛前方照 光予系統,其中該第二反射面之設計方程式以圓柱座沪 (1^,Z)表示為 不 ( \ r 2 r z ) Uwj + α{Φ)^αχ^ΑΙηφ + αγύΆΑΙηφ ^ Γ :徑向, Ζ ·光轴方向,The vehicle front illumination system according to the first or second aspect of the patent scope of the patent application, wherein the design equation of the second reflection surface is represented by a cylindrical seat (1^, Z) as not ( \ r 2 Rz ) Uwj + α{Φ)^αχ^ΑΙηφ + αγύΆΑΙηφ ^ Γ : radial, Ζ · optical axis direction, 參·光軸截面上之角度, ••橢圓長軸之半軸長, ⑹*橢圓短軸之半軸長, ' :位於水平時的值, 〜:位於垂直時的值,以及 • - * 、 η:可調整的係數。 4、如申請專利範圍第3項所述之車輛前方照明光學系 21 200838739 統,其中該變轴多橢圓方程式包含一反射鏡設計參數 5.如申請專利範圍第4項所述之車輛前方照明光學系 統,其中該第一 LED光源位置為Z=9mm朝光轴方向,並 設定為140流明,第一反射鏡長度為9.5cm、開口約12cm、 f=9mm、q =-0.06 及 = 0 〇The angle on the cross section of the optical axis, • The half axis length of the ellipse long axis, (6) * the half axis length of the elliptical short axis, ': the value at the horizontal position, ~: the value at the vertical position, and • - *, η: Adjustable coefficient. 4. The vehicle front illumination optical system 21 200838739 according to claim 3, wherein the variable axis multi-elliptic equation comprises a mirror design parameter. 5. The vehicle front illumination optical according to claim 4 The system, wherein the first LED light source is positioned at Z=9 mm toward the optical axis, and is set to 140 lumens, the first mirror has a length of 9.5 cm, the opening is about 12 cm, f=9 mm, q =-0.06, and = 0 〇 6·如申請專利範圍第5項所述之車輛前方照明光學系 統,其中 投射透鏡的口徑為66 mm、頂點曲率半徑R=33 mm、 可調整之係數K>0.54、厚度為18.7 mm以及位置Z=142 mm ; 反射鏡設計參數d=2mm ; 遮光片的位置為Z=96 mm,且右側上緣為水平並與水 平線相距D之南度’其中D = 0 · 6 mm, 第二反射鏡長度55mm、開口寬約85mm、高約40mm、 fl/ = 5 8 mm 以及乂 = 5 7 mm ;以及 第二LED光源的位置Z=18 mm、朝上,並設定為200 流明。 7.如申請專利範圍第6項所述之車輛前方照明光學系 統,其中投射透鏡材質為玻璃、壓克力或聚碳酸酯 (Polycarbonate) 〇 22 200838739 8·如申請專利範圍第7項所述之車輛前方照明光學系 統’其中該弟一 LED光源和弟一 LED光源為白光LED。 9·一種近光燈模組,包含:6. The vehicle front illumination optical system according to claim 5, wherein the projection lens has a diameter of 66 mm, a vertex curvature radius R=33 mm, an adjustable coefficient K> 0.54, a thickness of 18.7 mm, and a position Z. =142 mm ; mirror design parameter d=2mm; the position of the visor is Z=96 mm, and the upper right edge is horizontal and is at a distance D from the horizontal line' where D = 0 · 6 mm, the second mirror length 55mm, opening width approx. 85mm, height approx. 40mm, fl/= 5 8 mm and 乂= 5 7 mm; and the position of the second LED light source Z=18 mm, facing up, and set to 200 lumens. 7. The vehicle front illumination optical system according to claim 6, wherein the projection lens is made of glass, acrylic or polycarbonate 200822 200838739 8 as described in claim 7 The vehicle front illumination optical system 'where the younger one LED light source and the younger one LED light source are white light LEDs. 9. A low beam module comprising: 一反射鏡,該反射鏡具有一由變軸多橢圓方程式 設計而成的反射面,該反射面包括有垂直橢圓與水平橢 圓’該方程式包含反射鏡設計參數^ = ; 一 LED光源,該LED光源大致上位於反射面之 垂直橢圓的第一焦點位置; 一投射透鏡,該投射透鏡具有一第三焦點,其中 該投射透鏡之第三焦點大致上置於反射面之兩橢圓共同 的第二焦點位置;以及 一遮光片,該遮光片置於反射面與投射透鏡之間。 10.如申請專利範圍第9項所述之近光燈模組,其中該 反射面之設計方程式以圓柱座標(r/,z)表示為 \2 Z [Ψ)) —1 其中 α{φ)-αχζο^Ιη φ^αγύηΑΙη φ ? r :徑向 Ζ ·光轴方向, 多:光軸截面上之角度, 23 200838739 ·):橢圓長軸之半軸長, δ⑷:橢圓短軸之半軸長, % : 位於水平時的值, % : β⑷位於垂直時的值,以及 η :可調整的係數。 11.如申請專利範圍第10項所述之近光燈模組,其中 投射透鏡的口徑為66 mm、頂點曲率半徑R=33 mm、 可調整之係數K=0.54、厚度為18 ·7 πιπι以及位置Ζ= 142 mm ; 反射鏡設計參數d=2mm ; 遮光片的位置為Z=96 mm,且右側上緣為水平並與水 平線相距D之高度,其中D = 0.6 mm ; 反射鏡長度55mm、開口寬約85mm、高約40mm、〜二 5 8 mm以及屮=5 7 mm ;以及 LED光源的位置Z=18 mm、朝上,並設定為200流 明。 12. 如申請專利範圍第11項所述之近光燈模組,其中 投射透鏡材質為玻璃、歷克力或聚碳遽酯 (Polycarbonate) 〇 13. 如申請專利範圍第12項所述之近光燈模組,其中 24 200838739 該LED光源為白光LEDa mirror having a reflecting surface designed by a variable-axis multi-elliptic equation, the reflecting surface comprising a vertical ellipse and a horizontal ellipse 'The equation includes a mirror design parameter ^ = ; an LED light source, the LED light source a first focus position substantially at a vertical ellipse of the reflective surface; a projection lens having a third focus, wherein the third focus of the projection lens is substantially disposed at a second focus position common to the two ellipse of the reflective surface And a light shielding sheet disposed between the reflecting surface and the projection lens. 10. The low beam module according to claim 9, wherein the design equation of the reflecting surface is represented by a cylindrical coordinate (r/, z) as \2 Z [Ψ)) -1 wherein α{φ) -αχζο^Ιη φ^αγύηΑΙη φ ? r : Radial Ζ · Optical axis direction, Multi: Angle on the optical axis section, 23 200838739 ·): Half-axis length of the ellipse long axis, δ(4): Half-axis length of the elliptical short axis , % : the value at the horizontal, % : the value at which β(4) is in the vertical, and η: the adjustable coefficient. 11. The low beam module of claim 10, wherein the projection lens has a diameter of 66 mm, a vertex curvature radius R=33 mm, an adjustable coefficient K=0.54, a thickness of 18·7 πιπι, and Position Ζ = 142 mm; mirror design parameter d = 2mm; visor position Z = 96 mm, and the upper right edge is horizontal and at a height D from the horizontal line, where D = 0.6 mm; mirror length 55 mm, opening It is about 85 mm wide, about 40 mm high, ~25 8 mm, and 屮=5 7 mm; and the position of the LED light source is Z=18 mm, upwards, and is set to 200 lumens. 12. The low beam module of claim 11, wherein the projection lens is made of glass, gram or polycarbonate 〇 13. as described in claim 12 Light module, of which 24 200838739 The LED light source is white LED
TW96109223A 2007-03-16 2007-03-16 Optical system for vehicles forward lighting and a dipped headlight module for the same TWI308530B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96109223A TWI308530B (en) 2007-03-16 2007-03-16 Optical system for vehicles forward lighting and a dipped headlight module for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96109223A TWI308530B (en) 2007-03-16 2007-03-16 Optical system for vehicles forward lighting and a dipped headlight module for the same

Publications (2)

Publication Number Publication Date
TW200838739A true TW200838739A (en) 2008-10-01
TWI308530B TWI308530B (en) 2009-04-11

Family

ID=44820622

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96109223A TWI308530B (en) 2007-03-16 2007-03-16 Optical system for vehicles forward lighting and a dipped headlight module for the same

Country Status (1)

Country Link
TW (1) TWI308530B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841062A (en) * 2015-01-28 2016-08-10 隆达电子股份有限公司 Light-emitting diode headlight
WO2023123236A1 (en) * 2021-12-30 2023-07-06 华域视觉科技(上海)有限公司 Lamp unit, headlamp, and vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396638B (en) * 2010-03-18 2013-05-21 私立中原大學 Lamp structure
TWI396639B (en) * 2010-03-18 2013-05-21 私立中原大學 Lamp structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105841062A (en) * 2015-01-28 2016-08-10 隆达电子股份有限公司 Light-emitting diode headlight
TWI554713B (en) * 2015-01-28 2016-10-21 隆達電子股份有限公司 Light emitting diode headlight
US10012357B2 (en) 2015-01-28 2018-07-03 Lextar Electronics Corporation Light emitting diode headlight
WO2023123236A1 (en) * 2021-12-30 2023-07-06 华域视觉科技(上海)有限公司 Lamp unit, headlamp, and vehicle

Also Published As

Publication number Publication date
TWI308530B (en) 2009-04-11

Similar Documents

Publication Publication Date Title
EP2664841B1 (en) Vehicle headlamp with both low-beam and high-beam and devoid of moving parts
US8348486B2 (en) Vehicular lamp unit and vehicular lamp
US11686446B2 (en) Thin aspect lighting system with cutoff
EP2182272B1 (en) Vehicular lamp unit and vehicular lamp
CN104075208B (en) Vehicular headlamp
CN102798067B (en) Vehicular illumination lamp
US20100118559A1 (en) Vehicular lamp unit and vehicular lamp
CN109958958A (en) Lamps apparatus for vehicle
US20050219856A1 (en) Vehicle illumination lamp
CN207196370U (en) Lighting structure
CN105556200A (en) Vehicle-mounted headlight
JP2010212148A (en) Vehicular headlight
CN210740277U (en) High-low beam integrated headlamp module, headlamp and vehicle
WO2021147732A1 (en) Headlamp optical element, headlamp module, vehicle lamp, and vehicle
JP2022522258A (en) Low beam optics module, low beam lighting module, vehicle lighting and vehicle
CN107435836A (en) Light source system
TWI308530B (en) Optical system for vehicles forward lighting and a dipped headlight module for the same
US9759400B2 (en) Vehicle low-beam headlamp with concave reflector and sub-reflector having two concave reflecting surfaces
JP7479374B2 (en) Optical system for headlamps
TW201500692A (en) LED bicycle light
TWM615055U (en) Vehicle lighting device
TWM391490U (en) Vehicle optical module
TW201728479A (en) Automobile headlamp
CN107816696A (en) Illumination structure and light distribution method thereof
TWI261097B (en) The projector headlamp

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees