TW200838180A - Radiated performance of a wireless device - Google Patents
Radiated performance of a wireless device Download PDFInfo
- Publication number
- TW200838180A TW200838180A TW096133774A TW96133774A TW200838180A TW 200838180 A TW200838180 A TW 200838180A TW 096133774 A TW096133774 A TW 096133774A TW 96133774 A TW96133774 A TW 96133774A TW 200838180 A TW200838180 A TW 200838180A
- Authority
- TW
- Taiwan
- Prior art keywords
- test
- wireless device
- antenna
- signal
- gain
- Prior art date
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
Abstract
Description
200838180 九、發明說明: 【發明所屬之技術領域】 所述實施例係關於無線通信裝置,且更特定而言係關於 用於確疋與無線裝置相關聯之天線糸統之轄射效能之系 統、方法、設備、處理器及電腦可讀媒體。 【先前技術】 無線裝置利用無線電波來提供長途通信而不存在基於導 線之系統之實體約束條件。無線裝置利用可攜載於預定頻 帶上之無線電波來傳輸並接收資訊。連接至發射機及接收 機之天線連同關聯電路使無線裝置能夠發射並接收此等無 線電波信號。無線裝置(包括天線及各種與發射機及接收 機相關之組件)之設計影響無線裝置發射及接收無線電波 信號之能力,且因此限定並影響裝置之輻射效能。因此, 需要確定並調諧無線裝置之輻射效能以優化無線裝置傳送 無線電波信號之能力。 然而,於確定無線裝置之輻射效能之先前技術方法具有 諸多缺點。某些用於確定輻射效能之測試涉及對無線裝置 之破壞性修改。舉例而言,於一實例中,天線與接收機之 間的信號路徑被中斷且重新選路至一外部射頻(”rf,,)連接 器。然後,輕射信號功率量測由介接於該連接器處從而充 當無線裝置上之接收機之替代物之外部測試設備來實施。 外部RF連接器及關聯外部電纜之存在可使無線裝置1 =實 輕射效能失真。此外,此等破壞性修改因實施該修改所需 之額外設備及額外人力而增加測試過程之費用。另外,破 124807.doc 200838180 壞性修改因使經修改之無線裝置不能用於其他測試而進一 步增加費用。 另外,在無線通信系統中,來自發射機之RF調變信號可 藉由若干傳播路徑到達接收器。該等傳播路徑之特性通常 因多種因數(例如衰落及多重路徑)而隨著時間改變。 此外,建築物(例如大樓)及周圍地形(包括牆壁及山坡) 促成所發射信號之散射及反射。發射信號之散射及反射導 、致多個自發射機至接收機之信號路徑。該多個信號路徑之 促成因素隨接收機移動而改變。 其他信號源亦促成所需信號之降級。該等其他信號源可 係有意運作於與所需信號相同之頻率上的其他發射機、以 於及以所需信號之頻帶產生假信號之發射機。信號降級之 再一源可產生於接收機本身内。接收機内信號放大器及信 號處理級可使所需信號之位準相對於熱雜訊之位準降級。 接收機内信號放大器及處理器亦可產生雜訊產物或使所接 收之#號失真並進一步降級其品質。 為了 k供防止有害路控效應之分集並改良效能,可使用 多個發射及接收天線。若發射與接收天線之間的傳播路徑 係線性無關的(亦即,一個路径上之一傳輸不會形成為其 他路徑上之傳輸之一線性組合),而此通常至少在-定程 度上係真貝的,則正確接收一資料傳輸之可能性隨天線數 量增加而增大。因此,通常,隨著發射及接收天線增加, 分集增加且效能改良。 此外its於多種原因,一無線裝置可使用多個天線。例 124807.doc 200838180 如,一無線裝置常需要運作於多個頻帶上並服務多個運作 杈式。另一原因在於,先進收發機架構將使用多個天線來 構建以便改良場中此等模式中之某些模式之效能。當同時 運作時,此等模式可彼此干擾,從而使總體效能降級。因 此,設計出能夠捕獲自我干擾效應的用於評估無線裝置之 輻射效能之精確構件係非常重要。現行方法需要若干步驟 來評估一組合式裝置/天線設計,且現行”有線"測試存在測200838180 IX. Description of the Invention: [Technical Field of the Invention] The embodiments relate to a wireless communication device, and more particularly to a system for determining the performance of an antenna system associated with a wireless device, Method, device, processor and computer readable medium. [Prior Art] A wireless device utilizes radio waves to provide long-distance communication without the physical constraints of a wire-based system. The wireless device transmits and receives information using radio waves carried on a predetermined frequency band. The antennas coupled to the transmitter and receiver, along with associated circuitry, enable the wireless device to transmit and receive such radio signals. The design of wireless devices, including antennas and various transmitter and receiver related components, affects the ability of the wireless device to transmit and receive radio wave signals, and thus limits and affects the radiation performance of the device. Therefore, there is a need to determine and tune the radiation performance of a wireless device to optimize the ability of the wireless device to transmit radio wave signals. However, prior art methods for determining the radiation performance of wireless devices have a number of disadvantages. Some tests for determining radiation performance involve destructive modifications to wireless devices. For example, in one example, the signal path between the antenna and the receiver is interrupted and re-routed to an external radio frequency ("rf,") connector. The light signal power measurement is then interfaced to the connection. The device is implemented as an external test device that acts as a replacement for the receiver on the wireless device. The presence of the external RF connector and associated external cable can cause wireless device 1 = true light-emitting performance distortion. Moreover, such destructive modifications The additional equipment and additional manpower required to implement the modification increases the cost of the testing process. In addition, the break of the 124807.doc 200838180 bad modification further increases the cost by making the modified wireless device unavailable for other tests. In the system, RF modulated signals from the transmitter can arrive at the receiver through a number of propagation paths. The characteristics of the propagation paths typically change over time due to a variety of factors, such as fading and multiple paths. The building and its surrounding terrain (including walls and hillsides) contribute to the scattering and reflection of the transmitted signals. The scattering and reflection of the transmitted signals Transmitting, causing multiple signal paths from the transmitter to the receiver. The contributing factors of the multiple signal paths change as the receiver moves. Other sources also contribute to the degradation of the desired signal. These other sources may be intentional a transmitter operating at the same frequency as the desired signal, and generating a false signal in the frequency band of the desired signal. A further source of signal degradation can be generated in the receiver itself. The signal processing stage can degrade the level of the desired signal relative to the level of the thermal noise. The signal amplifier and processor in the receiver can also generate noise products or distort the received ## and further degrade its quality. To prevent diversity of harmful path control effects and improve performance, multiple transmit and receive antennas can be used. If the transmit and receive antennas are linearly independent of each other (ie, one of the paths will not be formed into other One of the transmissions on the path is linearly combined), and this is usually at least - to a certain extent, the possibility of correctly receiving a data transmission with the antenna As the amount increases, the diversity increases and the performance improves. Generally, for a variety of reasons, a wireless device can use multiple antennas. Example 124807.doc 200838180 For example, a wireless device often It is necessary to operate on multiple frequency bands and serve multiple operational modes. Another reason is that the advanced transceiver architecture will use multiple antennas to build to improve the performance of some of these modes in the field. These modes can interfere with each other, degrading the overall performance. Therefore, it is important to design a precise component for evaluating the radiation performance of a wireless device that captures the effects of self-interference. The current method requires several steps to evaluate a combined device. / Antenna design, and the current "wired" test exists
( 試精度的^定性。@此’尚„發可靠設計及測試方法。 因此’需要用於確定無線裝置之輕射效能的新的及經改 良的系統、設備、電腦可讀媒體、處理器及方法。 【發明内容】 所述實施例實現在—單個測試中且使用—單個未改變之 無線裝置來確個或多個輻射效能特性,例如有效各向 ^性輕射功率("EIRP")、接收機靈敏度、總輕射功率 ("TRP")、總各向同性靈敏度(nTIS")、及與接收機分集效 能相關之包絡相關性。 ; 貫加例中,一種於確定一無線裝置之一輻射效能 特14 ^方法包括:在複數個關聯時間例項(time instance) 中之母一者處確定一由該無線裝置接收之唯正向鏈路 (forward hnk 〇nly)信號之—量測信號特性,其中該複數個 關聯時間例項係相對於—開始時間時間例$;並在該複數 個關聯時間例項中 I ^ ^ 巧干之母一者處將該等量測信號特性記錄於 關於該無線裝置一 曰—中。於一相關實施例中,至少一 個處理器經組態以眚# μ ϋ i 心从實施上这動作。於另一相關實施例中, 124807.doc 200838180 -駐存於—電腦可讀媒體中之電腦程式在被執行 電腦裝置實施上述動作。 曰 於另一實施例中,一種用於確定一無線裝置之一(The accuracy of the test accuracy. @本' is still a reliable design and test method. Therefore 'requires new and improved systems, devices, computer readable media, processors and processors for determining the light performance of wireless devices. The present invention implements one or more radio performance characteristics, such as effective directional light power ("EIRP"), in a single test and using a single unaltered wireless device. Receiver sensitivity, total light power ("TRP"), total isotropic sensitivity (nTIS"), and envelope correlations related to receiver diversity performance. Among the examples, one is to determine a wireless device. A radiation efficiency method includes: determining, in a plurality of associated time instances, a forward-only link (forward hnk 〇nly) signal received by the wireless device Measuring signal characteristics, wherein the plurality of associated time instances are relative to the start time time instance $; and the characteristics of the measured signals are recorded in the plurality of associated time instances in the case of I ^ ^ In a related embodiment, at least one processor is configured to implement this action from the implementation of the #μ ϋ i heart. In another related embodiment, 124807.doc 200838180 - The computer program resident in the computer readable medium performs the above actions on the executed computer device. In another embodiment, one is used to determine one of the wireless devices
Ah liL ^ 平田射夕文 …之設備包括_確定構件,m在複數個關聯時 間例項中之每一者處確定一由該無線裝置接收之唯正向鏈 路L遽之-1測信號特性,#中該複數個關聯時間例項係 相對於-開始時間時間例項;並在該複數個關聯時間例項 +之每-者處將該等量測信號特性記錄於關於該署 之一日誌中。 …、、 直 △於再-實施例中…種用於確定—無線裝置之—輕射效 能特性之控制器包括一無線電信號系統,該無線電信㈣ 統可運作於以:在複數個關聯時間例項中之每一者處確定 :由該無線裝置接收之唯正向鏈路信號之一量測信號特 性,其中該複數個關聯時間例項係相對於一開始時間時間 例項;並在該複數個關聯時間例項中之每一者處將該等量 ij 測信號特性記錄於關於該無線裝置之一日誌中。 【實施方式】 W 0 參見圖1,於一實施例中,一 ^ ^ J T 用於確定-無線裝置12之 幸田射效月b之糸統1 〇包括一控击丨|哭么^^ 匕符衩制态糸統14,該控制器系統 可運作於以產生一用以將一盔魂 ”、、線電波偽號18發射至一無線 虞置12之控制信號16。無線裝置彳9 衣罝12位於一測試室20内,該 測試室位於與一正由控制器系 兄14執行之預定輻射效能測 试24相關聯之複數個可能位置 T之—位置22處。控制信號 16包括一定位分量26,該定位 刀里疋義選定位置22之實體 124807.doc 200838180 座標且由此規定一安裝有無線裝置丨2之定位系統2 8之移 動。此外,控制信號16包括一對應的傳訊分量30,該傳訊 分量定義一無線電波信號18且由此規定無線電信號系統32 之傳輸。例如,於一實施例中,無線電信號系統32模擬一 蜂巢式電話網路中之一基地台,且因此可將無線電波信號 18視為一正向頻道信號。於一實施例中,該基地台模擬一 於以唯正向鏈路模式運作之基地台,此意味著僅存在一正 〇 向鏈路而不存在反向鏈路(亦即,無線裝置12不組態成或 可運作於以將任何信號傳輸回至基地台)。此外,無線電 波信號18可包括一實際或參考信號特性34(例如一信號功 率)、及預定同步資料36(例如可用於將選定位置22處所獲 得之量測值同步至一特定位置及/或時間之資訊),如本文 將進一步闡述。例如,參考信號特性34係一已知特性或 值,其可作為基線值用於以後之計算,例如一增益計算。 類似地,預定同步資料36能夠使由無線裝置12所得出Z量 ί, ^值與在獲得該等量測值時無線裝置12之位置22之實體座 標相關。 於一實施例中,為了將TIS破定為無線裝置12之輻射效 能特性42’ -第-步驟係讀定無線裝置12之接收機增益場 型…種可能之方法可涉及獲得針對無線裝置以特定角 度位置所接收之信號強度指示(,,RSSI")量測值。對於每— 以幻量測值而言’無線裝置12之日訪包括無線裝置】& 間戳及娜量測值m系統38旋轉軸線時,控制器车 統14將無線裝置12之標高位置與控制器系統14上之時間日、 I24807.doc 200838180The apparatus of Ah liL ^ Ping Tian Ying Wen... includes a determining component, m determining, at each of the plurality of associated time instances, a measured signal characteristic of the forward link L遽 received by the wireless device , the plurality of associated time instances in # are relative to the - start time time instance; and the log characteristics are recorded in a log about the department at each of the plurality of associated time instances + in. The controller for determining the light-emitting performance characteristic of the wireless device includes a radio signal system, and the wireless telecommunication system can operate in: in a plurality of associated time instances. Determining, at each of the items, a signal characteristic of one of the forward link signals received by the wireless device, wherein the plurality of associated time instances are relative to a start time time instance; and in the plural Each of the associated time instances records the equivalent ij signal characteristic in a log of one of the wireless devices. [Embodiment] W 0 Referring to FIG. 1 , in an embodiment, a ^ ^ JT is used to determine - the wireless device 12 of the Koda field effect period b 糸 1 〇 includes a control 丨 哭 哭 哭 哭 哭 ^ ^ ^ The controller system is operable to generate a control signal 16 for transmitting a sacred semaphore 18 to a wireless device 12. The wireless device 彳 9 罝 12 Located in a test chamber 20 located at a plurality of possible positions T associated with a predetermined radiation performance test 24 being executed by the controller brother 14 - the control signal 16 includes a positioning component 26 The positioning tool defines the entity 124807.doc 200838180 coordinates of the location 22 and thereby specifies the movement of the positioning system 28 with the wireless device 丨 2. In addition, the control signal 16 includes a corresponding communication component 30, which The communication component defines a radio wave signal 18 and thereby specifies the transmission of the radio signal system 32. For example, in one embodiment, the radio signal system 32 simulates a base station in a cellular telephone network, and thus can radio waves Signal 18 is considered as one Forward channel signal. In one embodiment, the base station emulates a base station operating in a forward link only mode, which means that there is only one forward link without a reverse link (ie, Wireless device 12 is not configured or operable to transmit any signal back to the base station. Additionally, radio wave signal 18 may include an actual or reference signal characteristic 34 (e.g., a signal power), and predetermined synchronization data 36. (e.g., information that can be used to synchronize the measurements obtained at selected location 22 to a particular location and/or time), as will be further explained herein. For example, reference signal characteristic 34 is a known characteristic or value that can be used as The baseline value is used for later calculations, such as a gain calculation. Similarly, the predetermined synchronization data 36 enables the Z-quantity, ^ value obtained by the wireless device 12 and the location 22 of the wireless device 12 when the measurements are obtained. Physical coordinate correlation. In one embodiment, in order to break the TIS into the radiation performance characteristic 42' of the wireless device 12 - the first step is to read the receiver gain field of the wireless device 12... a possible method may be involved Obtaining a signal strength indication (,, RSSI") value received at a particular angular position for the wireless device. For each - in terms of magical measurements, 'day visits to the wireless device 12 include wireless devices' & When the measured value m system 38 rotates the axis, the controller system 14 sets the elevation position of the wireless device 12 with the time of day on the controller system 14, I24807.doc 200838180
C 誌於一位置與時間日誌中。但是,由於無線裝置12之時鐘 與控制器系統14之時鐘不同步(例如,因時鐘差),因此無 線裝置12之RSSI與時間日誌與控制器系統14之位置與時間 日誌不同步。於一實施例中,為了解決該同步問題,預定 同步資料36包括一功率脈衝,該功率脈衝在無線裝置以之 方疋轉開始前產生並發送至無線裝置12。例如,一具有一預 定量值之功率脈衝由控制器系統14產生,丨中控制器系統 14可在該功率脈衝之下降緣上獲得本地機時間(以冑秒⑽) 為單位)作為控制器系統14上日誌檔案之一參考時間開始 點。該參考時間開始點隨後將用於確定一位置與時間日誌 中之H點。於一實施例中,豸日誌中之時間可確定控 制器系統"上之時間與開始點之間的差。資料後處理將: 由下述方式達到與來自無線裝置12之日誌上相同之結果: 搜索該等日誌中之脈衝之下降緣,並將該點處之時間戳用 作時間開始點。於一實施例中,該功率脈衝將充當一開始 δ己錄時的開始點且該功率脈衝將於處於日誌封包中。 無線裝置12接收並處理信號18,從而產生—對應於參考 信號特性34之量測信號特性38。換言之,量測信號特㈣ 係所接收到的值,其由駐存於無線裝置12上具有參考信號 特性34之與接收機㈣之組件來量測。此外,無線裝置η 二信號18接收同步資料36,藉此為系統提供最終使相應 :測信號特性38與該量測發生時之相應選定位置22相關之 此力。另外’無線裝置12包括一輻射效能測試模組,該 模組監控對所接收信號之量測並指揮對其資料之語法分 124807.doc 200838180 析。此外,輻射效能測試模組40執行於以記錄量測信號特 性38及同步資料36,藉此形成—針對每一選定位㈣之測 試條件及測試結果之記錄。然後,系統職序經過其餘複 數個預疋位置直到在由既定的預定轄射效能測試24所確定 之所有位置處皆接收到該等信號為止。 -旦記錄了所有測試資訊,便可於在控制器系統以處確 定輻射效能特性42。在此情況下,量測信號特性^之日諸 f,(其包括同步資料36)可自無線裝置12輸送至-位於控制器 系統14處之測試管理器模組44。測試管理器模組私維持位 置資訊及對應時間資訊之另一日諸,該記錄與來自無線裝 置12之記錄相關以產生一與由預定輻射效能測試2 4所規定 之每一位置之篁測信號特性38同步之位置資訊之記錄或曰 誌。在此情況下,測試管理器模組44起始對此同步日誌之 分析以確定輻射效能特性42。 於一實施例中,量測信號特性38之日誌可在產生該日誌 ( 後藉由使用一附接至無線裝置12之電纜輸送至控制器系統 14。於另一實施例中,無線裝置12可包括一發射機,該發 射機可用於將該日t志發射回至控制器系統丨4。於其中無線 裝置12係一唯正向鏈路裝置(亦即,無線裝置12不包含一 可在反向鏈路中將信號發射回至無線電信號系統32之發射 機)之系統中’無線裝置12可包括一經組態用於一不同於 被里測通彳&糸統之通信系統之收發機。例如,無線裝置1 2 可包括一可用於發射該日諸之Bluetooth®收發機。亦可使 用其他類型之收發機。使用此種替代收發機,資料可即時 124807.doc -12- 200838180 發送至無線裝置12及自無線裝置12接收。例如,信號特性 38可隨著對其之量測而自無線裝置12傳輸至控制器系統 14。該收發機之使用不應干擾對信號特性38之量測。另 外,控制資料可在無線裝置12與控制器系統14之間傳輸。 例如’可藉由一使用該替代收發機發送之命令由控制器系 統14來指令無線裝置12開始記錄。 於另一實施例中,輻射效能測試模組4〇可用於分析所有 (' 所0己錄之里測“號特性38並使用同步資料36來確定一開始 點以產生無線裝置12之一輻射效能特性42。例如,於一實 施例中,輻射效能特性42可包括一輻射靈敏度量度,該輻 射靈敏度量度隨無線裝置12之一天線處之功率增益及/或 電壓增益而變化,1其可針對單個或多㈤天線來加以量 測。對於一具有多個天線之無線裝置12之實施例而言,輻 射效能特性38可包括複式電壓接收增益,該等複數電壓接 收增盈可用來預測該多個接收鏈/天線之間的相關性,從 1, 而提供一對由既定天線設置所提供之分集增益的指示。 例如’在其中同步資料3 6包括時間資訊之另一實施例 • 中,可於控制器系統14處確定輕射效能特性42。在此情況 下’星測#號特性3 8及對應同步資料3 6之日誌可自無線裝 置12輸送至一位於控制器系統14處之測試管理器模組44。 測試管理器模組44維持對應時間資訊及位置資訊之另一曰 誌,該日誌與來自無線裝置12之日誌相關以產生一與由預 定輻射效能測試24所規定之每一位置之量測信號特性3 8同 步之位置資訊之記錄或日誌。在此情況下,測試管理器模 124807.doc -13- 200838180 組44起始對该同步日諸之分析以確定輕射效能特性a。 例如’在其他實施例中’預^輻射效能測試24可包括一 涉及:傳輸至無線電信㈣統32的由無線裝置始發之無線 電波L號46之測3式。该測試係一對無線裝置工2之發射鍵/ 天、線之效能測試。於一其中無、線電信號系統32模擬一蜂巢 <電話網路之基地台之實施例中,可將由無線裝置始發之 無線電波信號46視為一反向頻道信號。信號46包括一可作 〇 Λ基線用於將來計算之參考信號特性48,且無線電信號系 ㈣接收並處理信號46’從而產生—供㈣32接收之對應 量測信號特性50。於該實施例中,控制器系統14上之測試 s理器模組44執行於以記錄量測信號特性5Q及於在位置分 量26中發現的對應之位置資訊。然後,系統ι〇依序經過其 餘複數個預定位置直到由既定的預定輕射效能測制所確 定之所有位置處皆接收到信號46為止。一旦記錄了所有測 試資訊’測試管理器模組44便分析所有所記錄之量測信號 C 特性50及來自位置分量26之對應位置資訊(其亦可視為同 步資訊36)並產生無線裝置12之輻射效能特性42。例如, 纟此情況下,輕射效能特性42可包括一無線裝置12之傳輸 效能量度’例如-發射功率增益。此外,無線裝置叫: 設置以同時接收信號18並發射信號46,進而若與每—測; 相關聯之複數個預定位置中存在重疊則縮短測試時間。一 因此,系統10有利地包括將接收機資料直接記錄於無線 裝置上’從而免除對可使該裝置之真實的與接收機^關 之輻射效能失真之外部連接器及電纜之需要。此 1 糸統 124807.doc •14- 200838180 l〇有利地達成量測信號特性38與對應於每一選定位置η之 位置資訊或實體座標之無線同步,從而免除對連接至外部 同步及後處理設備之外部連接器及電纜之需要。此外,由 系統10之無線裝置12所提供之夺挤l π捉供之σ己錄及冋步能力允許同時實 施多個輻射效能測試。因此,系統職供-用於確定無線 裝置12之韓射效能之有效設置。 例如’在-特定實施例中,本文中所述之系統、設備及 方法有助於對行動電話之輻射測試。於該實施例中,可自 -單個測試中所收集之量測f料中導出若干輻射效能特性 42。特定而言,可確定之輻射效能特性42係:_總輕射功 率("TRP")特性、一總各向同性靈敏度("Tis")特性、一峰 值有效各向同性輻射功率(”EIRP”)特性、一峰值接收機靈 敏度特性、一峰值增益特性、一平均增益特性、及一具備 分集能力電話之場型相關性。通常,所述實施例藉由空中 傳輸(OTA)在三個頻道頻率下實施複式接收及最大發射 EIRP場型量測而無需連接至受測試裝置之測試電纜。藉由 以無線方式實施該等預定輻射測試,所述實施例因免^可 使輻射場型失真之外部天線測試電纜而改良量測精度。此 外,所述實施例不需要特殊測試夾具,此乃因所有測試僅 需要一個電話;與此相反,先前技術需要一單獨的有線電 話夾具來進行天線增益/場型測試及一第二無線電話來進 行峰值EIRP及接收靈敏率輻射測試。另外,此特定實施例 提供比現行TRP及TIS測試方法快得多的加速洌試方法, 如下文更詳細闡述。例如,根據使用本發明系統之實驗於 124807.doc -15- 200838180 果,TRP及TIS測試在低、中及高頻率下之總持續時間約 為1.75小時,而先前技術TIS測試僅在一種頻率下約為3巧 小時持續時間。 土例如,在該特定實施例中,該等量測實施於一經校準的 遠場隔音室中。測試應用程式被載入至受測試裝置(例如 無線裝置12)中,而其他專用控制及後處理軟體則被載入 至用於控制該室設備之主電腦(例如控制器系統丨4)中。 一小區站點模擬器或公共電話亭連接至該室號角天線 (chamber horn antenna),藉此啟用一對測試電話之呼叫, 該測試電話安裝於一位於該室之遠端處的旋轉架臺上。 對於接收模式測試而言,命令受測試裝置將由使用者定 義之資料封包記錄至受測試裝置上之記憶體。所定義之= 料封包(例如一”指狀件頻道估計,,日誌封包)包含複式導= 信號(例如同相及正交相),該等複數導頻信號係在受測試 虞置又到一自该公共電話苧設備發射之電磁平面波照射時 由受測試裝置之天線接收。於一實施例中,可藉由空中傳 輸將來自該公共電話亭之命令發送至受測試裝置而觸發該 記錄。藉由使該記錄事件與該架台及受測試裝置之移動同 步,可在一覆蓋球面範圍之視場内之每一量測角度下獲得 該複式同相及正交相接收場型資料。此外,測試係藉^ 定向用於垂直及水平極化之室號肖完成,且目此獲得垂直 及水平接收場型。另外,對於具備分集能力裝置而言,輔 助天線之複式接收場型係藉由以一類似方式記錄相同封包 資料而獲得。 124807.doc -16- 200838180 對於發射模式測試而言,使用一功率計來量測由受測試 裝置使用電話發射機以最大功率沿一既定量測方向發射之 幸田射功率。例如藉由來自公共電話亭設備之OTA信號來命 々X貝]Λ裝置以其最大發射功率輻射。所發射之功率由該 至號角收集並由一功率計以每一量測角度予以量測。此 外,至路徑損耗被確定,且由此可藉由參考信號來加以計 ^仗而只現對電話之EIRP之確定。當受測試裝置旋轉至 p 覆蓋球面範圍之不同測試角度時,即時健存所量測之資 料。此外,測試係針對以垂直及水平極化二者定向之室號 角進仃,且因此獲得垂直及水平極化EIRp場型。 所有里/則(發射EIRP及主和辅助天線接收若干複式場量 測)可於每一量測角度依序實施。因&,所有接收及發射 資料皆可藉助一單個測試執行來收集。 下文將論述關於此特定實施例之其他細節。 參見圖2’無線裝置12可包括任一類型之電腦化無線裝 C 置,例如,一蜂巢式電話、一個人數位助理、一雙向文字 傳呼機及-可攜式電腦。該無線裝置可係—遠端從屬裝置 《其不具有最終使用者而只跨越無線網路傳送資料之其他 裝置。-遠端從屬裝置之實例包括:一遠端感測器、一冷 斷工具、-資料中繼器及類似裝置。因此,實施於本文中乂 所述無線裝置12上之功能可實施於任何形式之無線裝置或 電腦模組上’包括(但不限於):無線數據機、職似 卡、無線存取終端、無線個人電腦、無線電話、 組合或子組合。 ° U 一 124807.doc •17- 200838180 另外’無線裝置12具用於產生進入無線裝置内之輸入之 輸入機件52、及用於產生供該無線裝置使用者耗用之資訊 之輸出機件54。例如,輸入機件52可包括一諸如一鍵或鍵 盤、一滑鼠、一觸摸螢幕顯示器、一語音識別模組等之機 件。進入無線裝置内之輸入可包括用於設置、改變參數並 執行一輻射測試或將所記錄之資訊輸送出該裝置之選單選 擇。此外,例如,輸出機件54可包括一顯示器、一音訊揚 η i 聲器、-觸覺回饋機件等。所產生之輸出資訊可包括上述 用於實施-測試並輸制試結果之選單、該測試結果之一 檢視畫面等等。 此外,無線裝置12具有電腦平臺%,該電腦平臺可跨越 -無線網路傳輸資料且可接收及執行軟體應用程式並顯示 $另一連接至該無線網路之電腦裝置傳輸之資料。電腦平 堂56包括—資料儲存庫58,該資料儲存庫可包括揮發性及 非揮發性心It If,例如唯讀記憶體(,,r〇m”)及/或隨機存取 記憶體(”RAM,,)、可擦除可程式化唯讀記憶體(”EPR0M”)、 電可擦除可私式化唯讀記憶體("eepr〇 卡一電腦平臺所共有之記憶體。此外,二: Γ了=媒:或多:第二或第三級儲存裝置,例如磁性媒 N 磁帶、或軟碟或硬碟。 此外《月旬平臺56亦包括一處理引擎6〇,該處理 :專用積體電路(”撕”)、或其他晶片組、處^ 電路或其他資料虛神肤μ 邏軏 如-遺)可執置。處理引擎60或其他處理器⑼ 丁與任何駐存於無線裝置12之資料儲存 124807.doc •18· 200838180 庫58中之程式(例如輻射效能測試模組4〇)介接之應用程式 化介面("API”)層62。API 62係一可在各自無線裝置上執行 之執行環境。此一執行環境可係:由位於加利福尼亞州聖 地亞哥的Qualcomm公司所開發之Wireless⑧(brew⑧)二進 制執行環境軟體。可使用其他(例如)運作於以控制無線計 异裝置上應用程式執行之執行環境。 處理引擎60包括各種可嵌入於硬體、韌體、軟體及其組 p 合内之處理子系統以,該等子系統啟用無線裝置12之功能 及該無線裝置在-無線網路上之可運作十生。例%,處理子 系統64允許起始及維持與其他連網裝置之通信,並與其交 換貝料。在-實施例中,例如在一蜂巢式電話中,通信處 理引擎60可包括諸如以下處理子系統64中之一者或其一組 合,例如:聲音 '非揮發性記憶體、檔案系統、發射、接 收、搜索器、層i、層2、層3、主控制、遠端程序、手 機、功率㈣、診斷、數位信號處理器、語音編碼器、訊息 ( 收發、呼叫管理器、Bluet〇〇th®系統、B—⑧Lp〇s、位 置確疋、位置引擎、使用者介面、休眠、資料服務、安 全、驗證、通用用戶識別模組/用戶識別模組 (USIM/SIM )、,吾音服務、圖形、通用串列匯流排 (’•USB”)、多媒體(例如運動圖像專家組("Μ·,,》、通用 封包無線電服務(,,GPRS,,)等。對於所揭示實施例而言,處 理引擎60之處理子系統64可包括任何與執行於電腦平臺% 上之應用私式父互作用之子系統組件。例如,處理子系統 64可包括任何代表輕射效能測試模組4〇自趟μ接收資料 124807.doc -19- 200838180 靖取及資料寫入之子系統組件。此外,由輻射效能測試模 組40搜集並隨後記錄的全部或部分與接收機相關之資料及/ 與發射機㈣之資料可自此等子㈣64獲得。 電月自平!56可進-步包括_通信模組66,該通信模組傲 入於硬體韋33體、軟體及其組合内,且啟用無線裝置^之 各種、、且件之間以及無線裝置12與_無線網路之間的通信C is in a position and time log. However, since the clock of the wireless device 12 is not synchronized with the clock of the controller system 14 (e. g., due to clock differences), the RSSI of the wireless device 12 and the time log are not synchronized with the location and time logs of the controller system 14. In one embodiment, to address the synchronization issue, the predetermined synchronization profile 36 includes a power pulse that is generated and transmitted to the wireless device 12 before the wireless device begins to rotate. For example, a power pulse having a predetermined magnitude is generated by controller system 14, and controller system 14 can obtain local machine time (in leap seconds (10)) as the controller system on the falling edge of the power pulse. One of the log files on the 14 reference time start point. This reference time start point will then be used to determine the H point in a location and time log. In one embodiment, the time in the log can determine the difference between the time on the controller system & the starting point. The post-processing of the data will: achieve the same result as the log from the wireless device 12 by: searching for the falling edge of the pulse in the logs and using the timestamp at that point as the time start point. In one embodiment, the power pulse will act as the starting point at the beginning of the delta recording and the power pulse will be in the log packet. The wireless device 12 receives and processes the signal 18 to produce a measured signal characteristic 38 corresponding to the reference signal characteristic 34. In other words, the measurement signal (4) is the value received, which is measured by the component of the receiver (4) having the reference signal characteristic 34 resident on the wireless device 12. In addition, the wireless device η signal 18 receives the synchronization data 36, thereby providing the system with the force that ultimately causes the corresponding signal characteristic 38 to correlate with the corresponding selected position 22 at which the measurement occurred. In addition, the wireless device 12 includes a radiation performance test module that monitors the measurement of the received signal and directs the grammar of the data to be analyzed. In addition, the radiation performance test module 40 is configured to record the signal characteristics 38 and the synchronization data 36, thereby forming a record of the test conditions and test results for each of the selected locations (4). The system order then passes through the remaining plurality of pre-emption positions until the signals are received at all of the locations determined by the predetermined predetermined PD test 24. Once all test information has been recorded, the radiation performance characteristics 42 can be determined at the controller system. In this case, the measurement signal characteristics, which may include the synchronization data 36, may be transmitted from the wireless device 12 to the test manager module 44 located at the controller system 14. The test manager module privately maintains location information and another time corresponding to the time information associated with the record from the wireless device 12 to generate a guess signal for each location specified by the predetermined radiation performance test 24 The record or status of the location information of the feature 38 synchronization. In this case, test manager module 44 initiates an analysis of this synchronization log to determine radiation performance characteristics 42. In one embodiment, the log of the measured signal characteristic 38 can be generated in the log (after being delivered to the controller system 14 using a cable attached to the wireless device 12. In another embodiment, the wireless device 12 can A transmitter is included, the transmitter can be used to transmit the day back to the controller system 丨 4. The wireless device 12 is a forward link device (ie, the wireless device 12 does not include a In a system that transmits signals back to the transmitter of the radio signal system 32 in the link, the 'wireless device 12' may include a transceiver configured for a communication system different from the ones being tested. For example, the wireless device 12 can include a Bluetooth® transceiver that can be used to transmit the day. Other types of transceivers can be used. With this alternative transceiver, the data can be sent to the wireless immediately. 124807.doc -12- 200838180 The device 12 is received from the wireless device 12. For example, the signal characteristic 38 can be transmitted from the wireless device 12 to the controller system 14 as measured. The use of the transceiver should not interfere with the measurement of the signal characteristic 38. In addition Control data may be transmitted between the wireless device 12 and the controller system 14. For example, the wireless device 12 may be instructed by the controller system 14 to initiate recording by a command transmitted using the alternate transceiver. In another embodiment, The radiant efficacy test module 4 can be used to analyze all of the metrics 38 and use the synchronization data 36 to determine a starting point to produce a radiation performance characteristic 42 of the wireless device 12. For example, In an embodiment, the radiation performance characteristic 42 can include a radiation sensitivity measure that varies with power gain and/or voltage gain at one of the antennas of the wireless device 12, 1 which can be measured for a single or multiple (five) antennas For an embodiment of a wireless device 12 having multiple antennas, the radiation performance characteristic 38 can include a complex voltage receive gain that can be used to predict correlation between the plurality of receive chains/antennas. Sex, from 1, providing an indication of the diversity gain provided by the given antenna settings. For example, 'in which the synchronization data 3 6 includes another time information In the example, the light-emitting performance characteristic 42 can be determined at the controller system 14. In this case, the log of the 'Star Test ## feature 38 and the corresponding synchronization data 36 can be transmitted from the wireless device 12 to a controller system. 14 test manager module 44. Test manager module 44 maintains another message corresponding to time information and location information associated with logs from wireless device 12 to generate a predetermined radiation performance test 24 The measurement signal characteristic of each location is specified as a record or log of the position information of the synchronization. In this case, the test manager module 124807.doc -13 - 200838180 group 44 initiates analysis of the synchronization day to determine Light shot performance characteristics a. For example, in other embodiments, the pre-radiation performance test 24 may include a measurement of the radio wave L-number 46 originating from the wireless device transmitted to the wireless telecommunications system. This test is a pair of wireless device 2's launch key / day, line performance test. In an embodiment in which the line signal system 32 simulates a cellular base station, the radio wave signal 46 originating from the wireless device can be regarded as a reverse channel signal. Signal 46 includes a reference signal characteristic 48 that can be used as a baseline for future calculations, and the radio signal (4) receives and processes signal 46' to produce a corresponding measurement signal characteristic 50 for (d) 32 reception. In this embodiment, the test s processor module 44 on the controller system 14 performs the recording of the measured signal characteristics 5Q and the corresponding position information found in the position component 26. The system then sequentially passes through the remaining plurality of predetermined positions until a signal 46 is received at all of the locations determined by the predetermined predetermined light performance measurements. Once all test information has been recorded, the test manager module 44 analyzes all of the recorded measurement signal C characteristics 50 and corresponding position information from the position component 26 (which can also be considered as synchronization information 36) and produces radiation from the wireless device 12. Performance characteristics 42. For example, in this case, the light-emitting performance characteristic 42 can include a transmission efficiency metric of the wireless device 12, e.g., a transmit power gain. In addition, the wireless device is configured to: simultaneously receive the signal 18 and transmit the signal 46, thereby reducing the test time if there is overlap in a plurality of predetermined locations associated with each measurement. Thus, system 10 advantageously includes the ability to record receiver data directly on the wireless device' thereby eliminating the need for external connectors and cables that can distort the true radiation performance of the device. This 1 糸 system 124807.doc • 14- 200838180 l advantageously achieves wireless synchronization of the measured signal characteristics 38 with position information or physical coordinates corresponding to each selected position η, thereby eliminating the need for connection to external synchronization and post-processing equipment The need for external connectors and cables. In addition, the squeezing and pacing capabilities provided by the wireless device 12 of the system 10 allow for the simultaneous implementation of multiple radiation performance tests. Therefore, the system serves - an effective setting for determining the Korean performance of the wireless device 12. For example, in the particular embodiment, the systems, devices, and methods described herein facilitate radiation testing of mobile phones. In this embodiment, a number of radiation performance characteristics 42 can be derived from the measurements collected in a single test. In particular, the radiant performance characteristics 42 can be determined: _ total light power ("TRP") characteristics, a total isotropic sensitivity ("Tis") characteristic, one peak effective isotropic radiation power (" EIRP") characteristics, a peak receiver sensitivity characteristic, a peak gain characteristic, an average gain characteristic, and a field type correlation of a diversity capable telephone. Typically, the described embodiment implements dual reception and maximum transmit EIRP field type measurements at three channel frequencies by over-the-air (OTA) without the need to connect to the test cable of the device under test. By performing the predetermined radiation tests in a wireless manner, the embodiment improves the measurement accuracy by eliminating external antenna test cables that can distort the radiation pattern. Moreover, the described embodiment does not require a special test fixture, since only one telephone is required for all tests; in contrast, the prior art requires a separate wired telephone fixture for antenna gain/field testing and a second wireless telephone. Peak EIRP and receive sensitivity radiation tests were performed. In addition, this particular embodiment provides an accelerated test method that is much faster than current TRP and TIS test methods, as explained in more detail below. For example, according to the experiment using the system of the present invention at 124807.doc -15-200838180, the total duration of the TRP and TIS tests at low, medium and high frequencies is about 1.75 hours, whereas the prior art TIS test is only at one frequency. It is about 3 hours of duration. Soil, for example, in this particular embodiment, the measurements are performed in a calibrated far field soundproof chamber. The test application is loaded into the device under test (e.g., wireless device 12), while other dedicated control and post-processing software is loaded into the host computer (e.g., controller system 丨 4) for controlling the room device. A cell site simulator or public kiosk is connected to the chamber horn antenna, thereby enabling a pair of test phone calls mounted on a rotating stand at the far end of the room. For the receive mode test, the commanded test device records the data packet defined by the user to the memory on the device under test. The defined = material packet (eg, a "finger channel estimate, log packet") includes a complex derivative = signal (eg, in-phase and quadrature phases) that are tested and placed in a self-test The electromagnetic plane wave emitted by the public telephone device is received by the antenna of the device under test. In an embodiment, the command from the public kiosk can be transmitted to the device under test by over-the-air transmission to trigger the record. The recording event is synchronized with the movement of the gantry and the device under test, and the dual in-phase and quadrature phase receiving field data can be obtained at each measurement angle within a field of view covering the spherical range. In addition, the test system is oriented by ^ The room number for vertical and horizontal polarization is completed, and the vertical and horizontal receiving field types are obtained. In addition, for the device with diversity capability, the multiple receiving field type of the auxiliary antenna is recorded in a similar manner. 124807.doc -16- 200838180 For the launch mode test, a power meter is used to measure the use of the telephone transmitter by the device under test. The power of the Koda field transmitted at a maximum power in a quantitative direction, for example, by the OTA signal from the public kiosk device, the X-ray device is radiated at its maximum transmit power. The transmitted power is collected from the horn. It is measured by a power meter at each measurement angle. In addition, the path loss is determined, and thus the reference signal can be used to calculate the EIRP of the telephone only when the device under test is rotated. When p covers the different test angles of the spherical range, the measured data is instantly saved. In addition, the test is for the room horn oriented with both vertical and horizontal polarization, and thus the vertical and horizontal polarization EIRp fields are obtained. All / in (transmit EIRP and the main and auxiliary antennas receive several complex field measurements) can be implemented in sequence for each measurement angle. Because &, all received and transmitted data can be collected by a single test execution Additional details regarding this particular embodiment are discussed below. Referring to Figure 2, the wireless device 12 can include any type of computerized wireless device, such as a cellular telephone, Personal digital assistant, a two-way text pager and a portable computer. The wireless device can be a remote slave device - other devices that do not have an end user but only transmit data across the wireless network. - Remote slave device Examples include: a remote sensor, a cold-shut tool, a data repeater, and the like. Accordingly, the functions embodied in the wireless device 12 herein can be implemented in any form of wireless device or computer. Modules include, but are not limited to, wireless data, role cards, wireless access terminals, wireless personal computers, wireless phones, combinations or sub-combinations. ° U 124807.doc • 17- 200838180 In addition, 'wireless devices An input member 52 for generating input into the wireless device and an output member 54 for generating information for consumption by the user of the wireless device. For example, input member 52 can include a mechanism such as a button or keyboard, a mouse, a touch screen display, a voice recognition module, and the like. Inputs into the wireless device can include menu selections for setting, changing parameters, and performing a radiation test or conveying the recorded information out of the device. Further, for example, the output member 54 can include a display, an audio megaphone, a tactile feedback device, and the like. The output information generated may include the above-described menu for implementing-testing and translating test results, one of the test results, a viewing screen, and the like. In addition, the wireless device 12 has a computer platform % that can transmit data across the wireless network and can receive and execute software applications and display data transmitted by another computer device connected to the wireless network. The computer library 56 includes a data repository 58 which may include volatile and non-volatile hearts It If, such as read-only memory (, r〇m) and/or random access memory (" RAM,,), erasable programmable read-only memory ("EPR0M"), electrically erasable and customizable read-only memory ("eepr〇 card-computer platform shared memory. In addition, Two: Γ = media: or more: second or third-level storage devices, such as magnetic media N tape, or floppy or hard disk. In addition, "monthly platform 56 also includes a processing engine 6 〇, the process: dedicated The integrated circuit ("Tear"), or other chipset, circuit, or other data can be implemented. The processing engine 60 or other processor (9) is programmed with any application program (such as the radiation performance test module 4) that is stored in the data storage 124807.doc •18·200838180 library 58 of the wireless device 12 (for example, the radiation performance test module 4) "API" layer 62. API 62 is an execution environment that can be executed on a respective wireless device. This execution environment can be: Wireless8 (brew8) binary execution environment software developed by Qualcomm, Inc. of San Diego, California. Other execution environments, for example, that operate on an application that controls the wireless metering device can be used. The processing engine 60 includes various processing subsystems that can be embedded in hardware, firmware, software, and a group thereof. The subsystems enable the functionality of the wireless device 12 and the wireless device to operate over the wireless network. For example, the processing subsystem 64 allows for initiation and maintenance of communication with other networked devices and exchanges with it. In an embodiment, such as in a cellular telephone, communication processing engine 60 may include one or a combination of processing subsystems 64, such as For example: sound 'non-volatile memory, file system, transmit, receive, searcher, layer i, layer 2, layer 3, main control, remote program, mobile phone, power (4), diagnostics, digital signal processor, speech coding , messaging (transceiver, call manager, Bluet〇〇th® system, B-8Lp〇s, location confirmation, location engine, user interface, hibernation, data service, security, authentication, universal user identification module/user Identification Module (USIM/SIM), My Voice Service, Graphics, Universal Serial Bus ('USB), Multimedia (eg Motion Picture Experts Group ("Μ·,,》, General Packet Radio Service ( , GPRS,, etc. For the disclosed embodiment, the processing subsystem 64 of the processing engine 60 can include any subsystem components that interact with the application private parent on the computer platform %. For example, the processing subsystem 64 may include any subsystem component representing the light-emitting performance test module 4 〇 接收 receiving data 124807.doc -19- 200838180 靖取 and data writing. In addition, collected by the radiation performance test module 40 and All or part of the post-recorded data related to the receiver and/or the information of the transmitter (4) can be obtained from (4) 64. The electric moon is self-leveling! 56 can further include the _ communication module 66, which is proud of Into the hardware body 33, software and combinations thereof, and enable communication between the wireless devices, and between the devices and between the wireless device 12 and the wireless network
例如,在-實施例中,通信模組66包括··一發射機模組 68,其用於藉由-天線系統”無線傳輸資訊(例如無線電 波L號48),及接收機模組7〇,其用於藉由天線系統^ 無線接收資訊(例如無線電波信號18)。如上所述,天線系 統72可包括一單個天線(例如一單極天線、一偶極天線、 螺方疋天線、平面天線等)或其任一組合以形成多個天 線。例如’此等多個天線系統可包括一多輸入多輸出 (ΜΙΜΟ )通#系統,該通信系統採用多個(A)發射天線及 多個(NR)接收天線來進行資料傳輸。或者,例如,此等多 個天線系統可包括一多輸入單輸出("MIS〇”)通信系統,其 採用多個(Ντ)發射天線及一單個接收天線來進行資料傳 輸。在任何情況下,可將與天線系統72通信之接收機模組 70視為無線裝置12之接收鏈。類似地,可將發射機模組68 及天線系統72視為無線裝置之發射鏈。除通信模組66外, 電細平$ 5 6中還可存在其他通信模組。例如,可包括一通 信模組67以使用諸如Bluet00th®*IEEE 8〇211之類的無線 通信協定來為無線裝置12提供其他通信能力。該等通信能 力可係僅發射、僅接收、或發射與接收二者。 124807.doc -20- 200838180 另外,如上所述,電腦平臺13進一步包括輻射效能測試 模組4 0以管理無線裝置12上與輕射測試相關之活動。轄射 效能測試模組40可包括任何硬體、軟體、韌體及/或其他 可運作於以管理對任何關於無線裝置12之一輻射效能特性 42之資訊(例如接收機資料及/或發射機資料)之收集之可執 行指令集合。輻射效能測試模組4〇可在任一時刻起始於以 記錄、儲存量測信號特性38、同步資料36、任何與發射機 ΓFor example, in an embodiment, the communication module 66 includes a transmitter module 68 for wirelessly transmitting information (e.g., radio wave L number 48) and a receiver module 7 by an antenna system. It is used to wirelessly receive information (e.g., radio wave signal 18) by the antenna system. As described above, the antenna system 72 can include a single antenna (e.g., a monopole antenna, a dipole antenna, a helical square antenna, a plane). Antennas, etc., or any combination thereof, to form a plurality of antennas. For example, 'the plurality of antenna systems may include a multiple input multiple output (ΜΙΜΟ) pass# system that employs multiple (A) transmit antennas and multiple (NR) receiving antennas for data transmission. Or, for example, the plurality of antenna systems may include a multiple input single output ("MIS〇") communication system employing multiple (Ντ) transmit antennas and a single receive Antenna for data transmission. In any event, the receiver module 70 in communication with the antenna system 72 can be considered a receive chain of the wireless device 12. Similarly, transmitter module 68 and antenna system 72 can be considered a transmit chain of a wireless device. In addition to the communication module 66, other communication modules may exist in the battery pack. For example, a communication module 67 can be included to provide wireless communication device 12 with other communication capabilities using wireless communication protocols such as Bluet00th®* IEEE 8〇211. These communication capabilities may be only transmitting, receiving only, or both transmitting and receiving. 124807.doc -20- 200838180 Additionally, as noted above, computer platform 13 further includes a radiation performance test module 40 to manage activities associated with light shot testing on wireless device 12. The SAR performance test module 40 can include any hardware, software, firmware, and/or other information operable to manage any of the radio performance characteristics 42 of the wireless device 12 (eg, receiver data and/or transmitter). Data) A collection of executable instructions collected. The radiation performance test module 4 can be started at any one time to record, store the measured signal characteristics 38, the synchronization data 36, any with the transmitter.
及/或接收機相關之資料、及/或任何與預定輻射效能測試 24相關之資訊並使其可用。 例如,在一實施例中,輻射效能測試模組4〇包括效能邏 輯74,該效能邏輯提供收集、儲存與輻射效能測試相關之 資訊並提供對其之存取或轉發之能力。此外,於某些實施 例中,效能邏輯74可起始無線裝置12之能力以根據一既定 效能測試24之參數來產生輻射效能特性42。 此外,轄射效能測試模組4G包括—裝置測試組態%,該 組態定義對應於正由㈣以、統14執行之職輻射效能測 =24之日誌、參數78及/或測試變數8()。例如,日德參數μ 定義欲在該既定輻射效能測試期間作為接收機資料^及/ 或發射機資料84收集及記錄之資訊類型。例如,在一實施 例中,日諸參數7W義可自-個或多個處理子系統以獲得 之量測或參考接收機資料82及/或量測或參考發射機資料 ⑷例如,在-無線電話之情況下,日諸參數啊包括可 自處理引擎60及/或處理子系統64獲得之曰綠資料封包。 包含於此類曰誌資料封包中之資訊的實例包括(但不限 124807.doc -21- 200838180 於):自一既定接收鏈/天線之所接收功率、來自一既定發 射鏈/天線之所發射功率、與一既定接收鏈相關聯之同相 導頻電壓及正交相導頻電壓、指狀件鎖定狀態、一接收信 號中之相對延遲(例如,接收同一信號之一第一與第二例 項之間的時間差,例如當接收一反射信號時)等。特定而 吕,在一 CDMA系統之實施例中,此類日誌資料封包包 括’’搜索丁NG指狀件狀態"封包、”RF”子封包、,,指狀件資 ( 訊’’子封包、及經濾波的導頻符號”子封包、於一CDMA系 統之另一實施例中,一實例性日誌資料封包係,,ta之 WCDMA指狀件資訊-指狀件/導頻頻道參數,,封包或f,分集式 天線輻射狀態’’封包。在一唯正向鏈路裝置之情況下,一 實例性曰誌、資料封包係"MFLO RSSI值動態參數,,封包。另 外,或另一選擇為,日諸參數78可定義由無線裝置12接收 或者可存取至無線裝置12之其他與輻射效能相關之資訊。 例如,在一實施例中,曰誌參數78可包括與測試組態相關 1, 之資訊、及/或來自由無線裝置12所接收之信號之資料封 包中之資訊,例如來自信號18之參考信號特性34及/或同 步資料36。然而,應瞭解,可根據該既定輻射效能測試之 性質定義諸多其他日誌參數78。 此外,例如,測試變數80定義相關聯下列項目之值:收 集接收機資料82及/或發射機資料84、及/或對所收集之資 料實施分析。例如,在一實施例中,測試變數8〇之類型包 括一採樣速率、每樣本資料封包數目、一用以啟用或禁用 記錄之代碼等。然而,應瞭解,可根據該既定輻射效能測 124807.doc -22- 200838180 ϋ式之性貝疋義諸多其他測試變數80。 Γ 另外效能邏輯74可執行以提示無線裝置12之一使用者 自複數^可用测試組態、日誌、參數及/或測試變數中選擇 、义疋袋置測试組態76、及/或關聯之曰誌參數78及/或測 口式艾數80。例如,參見圖2及3,輻射效能測試模組扣可包 使用者"面或檢視晝面75,例如複數個可藉由輸出機 =54呈現給_使用者之導覽選單。檢視畫面乃可包括標頭 負訊7及頁尾 > 訊79,例如用於識別該既定選單、程式及/ 或版本。此外,檢視畫面75可呈現可執行命令仙啟用各 種與一既定測試相關聯之功能。例如,命令8 1可包括以下 〒7 ·開始,其指令該模組根據該組態開始記錄;停止, 其指令該模組停止記錄,抹除所有曰諸,以抹除任何儲存 於記憶體中之日誌“暫停,其指令該模組暫停記錄,不 過,該模組可包括用以在所使用之記憶體達到一預定臨限 值時自動暫停記錄之邏輯;重新開始,其在一暫停命令後 重新起始記錄;釋放,其釋放該内部記憶體緩衝器,例如 供用於除錯操作;寫入至記憶體,其將來自一第一記憶體 之記錄資料寫入至-第二記憶體;模擬電源關閉,其使裝 置模仿一正常電源關閉以便呼叫並執行清除功能,此適^ 於除錯;請求上載,其請求將任何所儲存之資料及/或記 錄上載至另一電腦裝置(例如控制器系統14) ·’及音訊/振 動,其係一用於設定音訊及/或振動提醒回饋之觸發器, 例如在自另一裝置接收一命令、及/或起始一資料呼叫 時、及/或當請求或完成-上載時使用,並用於除錯操 124807.doc -23- 200838180 作。另外,檢視畫面75可包括例如用於輸入測試變數⑼之 值之可,變更攔位83。0此,一使用者可藉由無線裝置^上 之檢視畫面75來組態並執行一預定輻射效能測試。 或者’ I置測#、组悲76可藉由—有'線或無線連接傳輸至 無線裝置12’或可在製造時包括在電腦平臺%上。 另外,輻射效能測試模組40包括用於儲存根據裝置測試 組態76與輻射效能相關之資訊的裝置測試日誌%。裝置測 試曰誌86包括一儲存於資料儲存庫58中之記錄,該記錄可 包括與一個或多個使用無線裝置12實施之輻射效能測試相 關聯之測試條件及/或測試結果。舉例而言,如上所述, 裝置測試日誌86可包括無線裝置(”WD”)接收機資料“及/ 或WD發射機資料84。於一實施例中,接收機資料82包括 一個或多個在每一選定位置22處處理信號18時自處理子系 統64收集之量測信號特性38。另外,裝置測試日誌%可包 括對應於在一既定輻射效能測試期間由該無線裝置所產生 之貝料的其他貪訊。舉例而言,裝置測試日誌86可包括一 接收仏號内所包含之負訊,例如來自信號18之預定同步資 料及/或參考仏號特性3 4。於一實施例中,參考信號資 料34可係疋義由無線裝置12接收之信號以之原始狀態的資 料,例如一功率值、一振幅值、一相位值、一頻率值、一 L號類型/協疋専。於一實施例中,預定同步資料3 6可係 對應於當無線裝置處於選定位置22中之時間的時間資訊或 義k疋位置22之座標之位置資訊。此外,裝置測試曰誌 。匕括與所收集之接收機資料82及/或發射機資料84相 124807.doc -24- 200838180 關聯之所有或任-部分,以提供一對與—既定所收集資料 集合相關聯之測試條件之方便參考。 ^外:在某些實施例中,輻射效能測試模組4G可包括裝 置刀析盗拉組88以在-既定預定輻射效能測試24期間確定 與無線裝置12相關聯之轄射效能特⑽。裝置 f t -可包括任何硬體、軟體、_及/或其他可運作於以分 析任何收集於裳置測試曰諸86中之資訊並產生輻射效能特 =2之可執行指令集合。例如,在一實施例中,裝置分析 益桓組88可包括一分析協定9〇,該分析協定可包括與一用 於處理及/或分析曰誌附之資訊以產生輻射效能特性C 之方法相關聯之功能、演算法等。例如,分析協定可包 括效能測試之實施方案、積分協定、模擬模型、預測模 ^、統计分析等,例如以利用所記錄之資訊來確定一所需 例如對一測試結果之部分解,或對該測試之最終 解㈢亦即,輻射效能特性42。因此,輻射效能特性42可係 、里度,例如,但不限於,一功率及/或電壓增益、一靈 感度里測、-複式場型相關性、一衰落相關性、兩個接收 ::天線之間的一增益差動等。此外,輻射效能測試模組 4〇可將所產生之輻射效能特性42儲存於裝置測試日諸86 或儲存於與日誌86之一個或多個分量相關聯之某一其 、彔中以用於在無線裝置12上及/或於另一電腦化裝 置(例如控制器系統14)處進行傳輸、檢查及/或分析。另 外’分析協定90可包含於裝置測試組態湖,並在執行期 置刀析器模組8 8存取以確定一輻射效能測試結果。 124807.doc -25- 200838180 圖1中所不之無線裝置12之組件之任一功能皆可由另— 裝置來實施。另外,某些組件可定位於一單獨裝置上。例 T,當無線裝置12係一為一計算裝置(例如一膝上型電腦) 提供無線通信能力之適配器卡時,即可將部分或全部裝置 測試日總86儲存於該膝上型電腦上。類似地,計算平臺% 之某些部分或全部可定位於該膝上㉟電腦本身上。 多見圖1及4至6,控制器系統丨4可包括任何類型之硬 (' 冑幸人體、物體、工作站、飼服器、個人電月|、微型電 腦、主電腦或任何專用或通用計算裝置中之至少一者。此 外,控制器系統14可完全駐存於無線裝置12上。另外,控 制器系統14可包括協同運作於以實施本文中所述功能之單 獨伺服器或電腦裝置。控制器系統14(或複數個模組)可於 跨越一無線網路向無線裝置12發送軟體代理程式或應用程 弋(例如駐存軲射效能測試模組4〇),以便無線裝置12自其 存應用&式及子系統回送資訊。例如,無線裝置丄2可以 C 裝置測試曰誌8 6之形式傳輸在一預定輻射效能測試2 4期間 執仃裝置測試組態76之結果’其中控制器系統14隨後可使 • Λ結果與狀時間資訊或位置資訊同步以產生輻射效能特 性42。 另外,控制器系統14具有一用於產生一進入該系統内之 輸入之輸入機件92、及一用於產生供該控制器系統之使用 者耗用之> δί1之輸出機件94。例如,輸入機件92可包括-諸^一鍵或鍵盤、一滑鼠、一觸摸螢幕顯示器、-語音識 別模組等之機件。進入控制器系統14内之輸入可包括用以 124807.doc -26- 200838180 設置、改變參數、及執行—輻射測試、或用以使來自該無 線裝置之記錄資訊與該控制器系統上之記錄資訊同步之選 單選擇。此外,例如,輸出機件94可包括一顯示器、一音 訊揚聲器、一觸覺回饋機件等。所產生之輸出資訊可包括 用於實施一測試以及同步及/或計算測試結果、該測試結 果之一檢視晝面等之上述選單。 此外,控制器系統14具有可傳輸及接收資料且可接收及 執行軟體應用程式並促使資料顯示的電腦平臺96。電腦平 至96包括儲存機件98,該儲存機件可包括揮發性及非揮 發性記憶體,例如唯讀記憶體(”R〇M,,)及/或隨機存取記憶 體(RAM )、可擦除可程式化唯讀記憶體(f,EpR〇M")、電 可擦除可程式化唯讀記憶體(”EEpR〇M")、快閃記憶卡或 任何為電腦平臺所共有之記憶體。此外,儲存機件%可包 括個或多個第二級或第三級儲存裝置,例如磁媒體、光 媒體、磁帶或者軟或硬磁碟。 此外,電腦平臺96亦包括一中央處理單元1〇〇,該中央 處理單元可係專用積體電路(”ASIC")或其他晶片組、一邏 輯電路、一可程式化邏輯機、或任何其他資料處理裝置中 之一者或一組合。中央處理單元1〇〇解釋並執行包含於軟 體(例如輻射測試管理器模組44之全部或部分)中之指令及 資料,如下文更詳細論述。 *另外,電鲕平堂96進一步包括一通信模組1〇2,該通信 模組喪人於硬體、龍、軟體及其組合巾以啟用控制器系 統14之各種組件之間以及控制器系統14與其他裝置(例如 124807.doc -27- 200838180 定位系統28、無線電信辨糸站π 、 电乜琥糸統32及無線裝置12)之間的通 信。例如’通信模組1 〇2包括例如分別 符1 J如刀別用於接收裝置測試 曰誌86及傳輸控制信號16之輸入埠及輸出埠。 fAnd/or receiver related information, and/or any information related to the predetermined radiation performance test 24 and make it available. For example, in one embodiment, the radiation performance test module 4 includes a performance logic 74 that provides the ability to collect, store, and provide access to or transfer information related to radiation performance testing. Moreover, in some embodiments, performance logic 74 can initiate the ability of wireless device 12 to generate radiation performance characteristics 42 based on parameters of a given performance test 24. In addition, the SAR performance test module 4G includes a device test configuration %, which corresponds to a log, parameter 78, and/or test variable 8 that is being executed by (4) ). For example, the zen parameter μ defines the type of information to be collected and recorded as receiver data and/or transmitter data 84 during the predetermined radiation performance test. For example, in one embodiment, the parameters 7W can be obtained from one or more processing subsystems to obtain measurement or reference receiver data 82 and/or to measure or reference transmitter data (4), for example, in-wireless In the case of a telephone, the daily parameters include a green data packet that can be obtained from the processing engine 60 and/or the processing subsystem 64. Examples of information contained in such data packages include (but are not limited to 124807.doc -21-200838180): received power from a given receive chain/antenna, transmitted from a given transmit chain/antenna Power, in-phase pilot voltage and quadrature phase pilot voltage associated with a given receive chain, finger lock state, relative delay in a received signal (eg, receiving one of the same signal, first and second terms) The time difference between, for example, when receiving a reflected signal). Specifically, in a CDMA system embodiment, such a log data packet includes a ''search ng finger status" packet, an "RF" sub-packet, and a quotation (a message packet) And filtered pilot symbol "sub-packet, in another embodiment of a CDMA system, an example log data packet system, ta WCDMA finger information - finger / pilot channel parameters, Packet or f, diversity antenna radiation state ''package. In the case of a forward link device only, an example ambition, data packet system" MFLO RSSI value dynamic parameter, packet. In addition, or another Optionally, the day parameters 78 may define other radiation performance related information received by or accessible to the wireless device 12. For example, in an embodiment, the parameter 78 may include a test configuration. 1, information, and/or information from a data packet of a signal received by the wireless device 12, such as reference signal characteristics 34 and/or synchronization data 36 from signal 18. However, it should be understood that the predetermined radiation can be based on Performance measurement The nature defines a number of other log parameters 78. Further, for example, test variable 80 defines values associated with the following items: collecting receiver data 82 and/or transmitter data 84, and/or performing an analysis of the collected data. In one embodiment, the type of test variable 〇 includes a sampling rate, a number of data packets per sample, a code to enable or disable recording, etc. However, it should be understood that the predetermined radiation performance can be measured 124807.doc - 22-200838180 ϋ 之 诸多 诸多 诸多 诸多 诸多 诸多 诸多 诸多 诸多 Γ Γ 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能 效能Select, 疋 bag test configuration 76, and / or associated 参数 参数 parameter 78 and / or mouth-type Ai number 80. For example, see Figures 2 and 3, radiation performance test module can be packaged users " The face or view face 75, for example, a plurality of navigation menus that can be presented to the user by the output machine = 54. The view screen may include a header message 7 and a footer > 79, for example for identification The established menu Programs and/or versions. In addition, the view screen 75 can present executable commands to enable various functions associated with a given test. For example, the command 8 1 can include the following: • Start, which instructs the module to be configured according to the configuration Start recording; stop, it instructs the module to stop recording, erase all the files to erase any log stored in the memory "pause, which instructs the module to pause recording, however, the module can include The logic of automatically suspending recording when the memory used reaches a predetermined threshold; restarting, restarting the recording after a pause command; releasing, releasing the internal memory buffer, for example for debugging operations Writing to the memory, which writes the recorded data from a first memory to the second memory; the analog power is turned off, which causes the device to simulate a normal power off to call and perform the clear function, which is suitable for Debug; request upload, which requests uploading of any stored data and/or records to another computer device (eg controller system 14) - 'and audio/vibration, its system A trigger for setting an audio and/or vibrating alert feedback, for example, when receiving a command from another device, and/or initiating a data call, and/or when requesting or completing-uploading, and for debugging Exercise 124807.doc -23- 200838180. In addition, the view screen 75 may include, for example, a value for inputting the test variable (9), and the change block 83. 0. A user can configure and execute a predetermined radiation performance by using the view screen 75 on the wireless device. test. Alternatively, the group I can be transmitted to the wireless device 12 by a 'wire or wireless connection' or can be included on the computer platform % at the time of manufacture. In addition, the radiation performance test module 40 includes a device test log % for storing information relating to radiation performance based on the device test configuration 76. The device test 86 includes a record stored in a data repository 58, which may include test conditions and/or test results associated with one or more radiation performance tests performed using the wireless device 12. For example, as described above, device test log 86 may include wireless device ("WD") receiver data "and/or WD transmitter data 84. In one embodiment, receiver data 82 includes one or more The measured signal characteristic 38 is collected from the processing subsystem 64 at each selected location 22 when processing the signal 18. Additionally, the device test log % may include beetles corresponding to the beauties produced by the wireless device during a given radiation performance test. Other cravings. For example, the device test log 86 can include a negative message included in the received nickname, such as predetermined synchronization data from the signal 18 and/or reference nickname characteristics 34. In one embodiment, reference is made to The signal data 34 can be used to determine the data of the signal received by the wireless device 12 in its original state, such as a power value, an amplitude value, a phase value, a frequency value, and an L type/cooperation. In the example, the predetermined synchronization data 36 may correspond to the time information of the time when the wireless device is in the selected position 22 or the position information of the coordinates of the position 22. In addition, the device tests the information. Any or all-parts associated with the collected receiver data 82 and/or transmitter data 84 124807.doc -24- 200838180 to provide a convenient reference for the test conditions associated with the set of collected data. ^External: In some embodiments, the radiation performance test module 4G can include a device resolution analysis group 88 to determine the policing effectiveness (10) associated with the wireless device 12 during the predetermined predetermined radiation performance test 24. Device ft - may include any hardware, software, _ and/or other set of executable instructions operable to analyze any information collected in the skirt test 86 and to produce a radiation effect = 2. For example, in a In an embodiment, the device analysis benefit group 88 can include an analysis protocol, which can include a function associated with a method for processing and/or analyzing information attached to generate radiation performance characteristics C, Algorithms, etc. For example, the analysis protocol may include an implementation of a performance test, an integral agreement, a simulation model, a prediction model, a statistical analysis, etc., for example, to utilize the recorded information to determine a desired The partial solution of the test result, or the final solution (3) of the test, that is, the radiation performance characteristic 42. Therefore, the radiation performance characteristic 42 can be, for example, but not limited to, a power and/or voltage gain, an inspiration Degree measurement, - complex field type correlation, one fading correlation, two receptions: a gain difference between antennas, etc. In addition, the radiation performance test module 4 can store the generated radiation performance characteristics 42 On the device test day 86 or stored in one of the components associated with one or more components of the log 86 for use on the wireless device 12 and/or on another computerized device (eg, controller system 14) The transmission protocol, inspection and/or analysis may be performed. In addition, the analysis protocol 90 may be included in the device test configuration lake, and accessed during the execution period to determine a radiation performance test result. 124807.doc -25- 200838180 Any of the components of the wireless device 12 of Figure 1 can be implemented by another device. Additionally, certain components can be positioned on a single device. For example, when the wireless device 12 is an adapter card that provides wireless communication capabilities for a computing device (e.g., a laptop), some or all of the device test days 86 can be stored on the laptop. Similarly, some or all of the computing platform % can be located on the laptop 35 computer itself. As shown in Figures 1 and 4 to 6, the controller system 丨4 can include any type of hard ('fortunately, human body, object, workstation, feeder, personal electric moon|, minicomputer, host computer or any special or general purpose computing At least one of the devices. Additionally, controller system 14 can reside entirely on wireless device 12. Additionally, controller system 14 can include a separate server or computer device that cooperates to perform the functions described herein. The system 14 (or a plurality of modules) can send a software agent or application (eg, resident radiation performance test module 4) to the wireless device 12 across a wireless network, so that the wireless device 12 can store the application. & and subsystems return information. For example, the wireless device 可以2 can transmit the result of the device test configuration 76 during a predetermined radiation performance test 24 in the form of a device test '2 where the controller system 14 The Λ result can then be synchronized with the time information or location information to produce a radiant performance characteristic 42. Additionally, the controller system 14 has an input for generating an input into the system. An output member 94 for generating a < δί1 for use by the user of the controller system. For example, the input member 92 can include a keyboard or a keyboard, a mouse, a touch Screen display, voice recognition module, etc. Inputs into controller system 14 may include settings for 124807.doc -26-200838180, changing parameters, and performing-radiation testing, or for enabling wireless The recording information of the device is selected in synchronization with the recorded information on the controller system. Further, for example, the output device 94 can include a display, an audio speaker, a tactile feedback device, etc. The output information generated can include The above-mentioned menu for performing a test and synchronizing and/or calculating test results, one of the test results, etc. Further, the controller system 14 has the ability to transmit and receive data and can receive and execute software applications and promote data display. Computer platform 96. The computer flat to 96 includes a storage device 98, which may include volatile and non-volatile memory, such as read-only memory ("R〇M,, And/or random access memory (RAM), erasable programmable read-only memory (f, EpR〇M"), electrically erasable programmable read-only memory ("EEpR〇M") , flash memory card or any memory shared by the computer platform. In addition, the storage unit % may include one or more second or third level storage devices, such as magnetic media, optical media, tape or soft or hard In addition, the computer platform 96 also includes a central processing unit 1 〇〇, the central processing unit can be a dedicated integrated circuit ("ASIC") or other chipset, a logic circuit, a programmable logic machine, or Any one or a combination of any other data processing apparatus. The central processing unit 1 interprets and executes the instructions and data contained in the software (eg, all or part of the radiation test manager module 44), as discussed in more detail below . * In addition, the electric 鲕 堂 96 96 further includes a communication module 1 〇 2, the communication module is lost in hardware, dragons, software and its combination to enable the various components of the controller system 14 and the controller system 14 Communication with other devices (e.g., 124807.doc -27-200838180 positioning system 28, wireless telecommunications identification station π, cymbal system 32, and wireless device 12). For example, the 'communication module 1 包括 2 includes, for example, the input 埠 and the output 埠 of the receiving device test 86 86 and the transmission control signal 16 respectively. f
如上所述,電腦平臺96進—步包括用以在控制器系㈣ 上執行並管理所有輻射效能測試活動之輕射測試管理器模 組44。輻射測試管理器模組44可嵌人於硬體、動體、軟體 及其組合中。於-實施财,輻射測試管理器模組44包括 提供執行預定輻射效能測試24之能力的管理邏輯刚。此 外’於某些實施你J中,;f理邏輯1〇4可提供起始對收集日 誌之分析以產生輻射效能特性24之能力。 於一實施例中,輻射測試管理器模組料包括一具有複數 個可由控制器系統14執行之預定輻射效能測試1〇8之程式 庫106。例如,該複數個預定輻射效能測試1〇8可包括不同 之測試協定,該等測試協定可因標準團體、無線運營商、 無線裝置製造商、無線裝置處理器、天線系統、無線裝置 i號#而異’且亦可没計用於確定不同之輕射效能特性。 在任何情況下,管理邏輯104皆可提供一使用者介面以從 該複數個預定輻射效能測試108中選擇輻射效能測試24。 或者’輻射效能測試24可個別地載入至電腦平臺96上且由 輻射測試管理器模組44執行。 參見圖5,於一實施例中,預定輻射效能測試24包括一 組複數個位置110,在該等位置處分別向或自無線裝置12 發射#號1 8及46。該複數個位置11 〇對應於一特定測試協 定°例如’根據某些輻射測試之要求,該複數個位置! ! 〇 124807.doc -28 - 200838180 可包括-球面範圍上之點。然而,應瞭解,該複數個位置 11 〇可包括可與任何類型之線或任何類型之形狀相關聯之 點。所上所述’-個或多個參考信號特性34及48可分別與 每-信號18、46相關聯。此等參考信號特性34、48可包括 (但不限於):一信號功率、-信號振幅、-信號相位、一 信號頻率、-信號類型/協定、及任何可設定用於確定無 線裝置12之-輻射效能之目的之其他可控信號參數。As noted above, the computer platform 96 further includes a light shot test manager module 44 for performing and managing all of the radiation performance test activities on the controller system (4). The radiation test manager module 44 can be embedded in hardware, moving bodies, software, and combinations thereof. In the implementation, the radiation test manager module 44 includes management logic that provides the ability to perform predetermined radiation performance tests 24. In addition, in some implementations, the logic 1〇4 provides the ability to initiate an analysis of the collection log to produce the radiation performance characteristic 24. In one embodiment, the radiation test manager module material includes a library 106 having a plurality of predetermined radiation performance tests 1-8 executable by the controller system 14. For example, the plurality of predetermined radiation performance tests 1 可 8 may include different test protocols, such as standard groups, wireless carriers, wireless device manufacturers, wireless device processors, antenna systems, wireless devices, i# It can't be used to determine different light-emitting performance characteristics. In any event, management logic 104 can provide a user interface to select radiation performance test 24 from the plurality of predetermined radiation performance tests 108. Alternatively, the radiation performance test 24 can be individually loaded onto the computer platform 96 and executed by the radiation test manager module 44. Referring to Figure 5, in an embodiment, the predetermined radiation performance test 24 includes a plurality of locations 110 at which ##18 and 46 are transmitted to or from the wireless device 12, respectively. The plurality of locations 11 〇 correspond to a particular test agreement. For example, the plurality of locations are required according to certain radiation tests! ! 〇 124807.doc -28 - 200838180 can include - points on the sphere range. However, it should be understood that the plurality of locations 11 can include points that can be associated with any type of line or any type of shape. The above-described one or more reference signal characteristics 34 and 48 may be associated with each-signal 18, 46, respectively. These reference signal characteristics 34, 48 may include, but are not limited to, a signal power, a signal amplitude, a signal phase, a signal frequency, a signal type/agreement, and any settings that may be set for determining the wireless device 12. Other controllable signal parameters for the purpose of radiation performance.
另外,在某些實施例中,每—信號18、46皆可進一步包 括可定義為預定空中傳輸(”0TA")資料112之資料封包。例 如,如上所述,預定〇TAf料112可包括定義時間資訊ιΐ4 及/或位4資訊U6之預定同步資料36。日夺間資訊ιΐ4包括 定義當無線裝置12處於該複數個位置11〇中之一者(例如選 定位置22)處之時間之資料,,在一實施例中,時間 資訊U4可自一時間模組118獲得,該時間模組可係一與中 央處理單元100相關聯之本地模組或可係一可出於同步資 料之目的由控制器系統14存取於之遠端模組。位置資訊 116包括定義選定位置22之空間座標之資料。如上所述, 預定同步資料则來將每—敎位置22處之4測值(諸如 量測信號特性38(其由無線裝置12接收)或量測信號特性 5〇(其由無線電信號系統32接收)與所有該複數個位置ιι〇之 量測值相關聯以產生一組供分析之量測資料。 此外,贼OTA資料112可包括附加〇TA資料12〇,該附 加OTA資料可包括預定資料封包’該等預定資料封包括一 既定無線協定中之訊息。此等訊息可包括複數個進一步定 124807.doc -29- 200838180 義附加資料之子封包。例如,於一分碼多重近接協定中, 附加OTA資料120可包括傳呼訊息、確認訊息、登記訊 息、系統參數訊息、及任何其他開銷訊息。此外,附加 OTA資料120可進一步包括子封包資訊,例如服務選項、 系統識別("SID’1)代碼、網路識別c,NID”)代碼、基地台之 緯度及經度座標、系統組態/參數資訊、測試組態/參數資 訊等。此外,附加OTA資料120可包括用以控制無線裝置 ^ 12之功能(例如接通及關斷記錄、指示一位置變化、指示 何時傳輸一信號及任何其他裝置控制參數)之代碼。舉例 而言’不同之SID代碼值可用來接通及關斷對日誌參數78 之記錄。此外,在一實施例中,預定同步資料36可嵌入於 一由附加OTA資料120定義之標準開銷訊息之一未使用部 分内。 另外’預定輻射效能測試24可進一步包括上文詳細論述 之裝置測試組態76。裝置測試組態76可包括一具有於執行 預疋輪射效能測試24之全部或一部分之適宜測試模組之電 腦化裝置之相關資訊。舉例而言,裝置測試組態76可使無 線裝置12及控制器系統14中之一者或二者能夠實施預定輻 射效能測試24。此外,裝置測試組態76可包括詳述該測試 之參數的概要資訊。例如,在一實施例中,裝置測試級態 76可作為附加OTA資料120之一部分傳輸至無線裝置12。 另外’輻射效能測試24可包括一組用於執行該測試或用 於封裳於裝置測試組態76内之日誌參數78及測試變數8〇 此外’根據該測試之既定參數,輻射效能測試24可包括預 124807.doc -30 - 200838180 疋的一組用以實施該測試之控制命令1 6。 此外’預定輻射效能測試24可另外包括用於處理及/或 分析日諸86中之資訊以產生輻射效能特性42之分析協定 9〇 ’如上文詳細論述。例如,在一其中無線裝置12實施該 刀析之實施例中,分析協定9〇可作為附加〇TA資料12〇之 一部分傳輸至無線裝置12。或者,分析協定9〇可在本地由 控制器系統14利用。 重新參見圖4,預定輻射效能測試24由輻射測試管理器 模組44執行於以根據與每一位置處之測試24相關聯之各種 多數來產生控制信號1 6。如先前所提及,控制信號丨6包括 定位分量26以藉由定位系統28使無線裝置12移動經過複數 個位置11 〇中之每一者。此外,如先前所提及,控制信號 包括傳訊分量30,該傳訊分量用以根據參考信號特性34來 控制信號18自無線電信號系統32至無線裝置12之傳輸。 於一實施例中,例如當無線裝置12將裝置測試日誌86輸 运至控制器系統14時,或當測試24涉及對來自無線裝置12 之傳輸信號46之量測時,控制器系統14確定無線裝置^之 輻射效能特性42。在上述任一情況下,參見圖6,輻射測 喊管理器模組44進-步包括一控制測試日諸122以維持一 對測試條件及/或測試結果之記錄。例如,在一實施例 中,控制測試日誌122包括裝置測試組態76以記錄測試參 數,裝置測試組態76可包括與預定輻射測試以相關聯之資 料之全部或任一部分,如上文所述。 、 此外,控制測試日誌122可包括測試參數之預定值,該 124807.doc -31 - 200838180 等預定值隨後可與測試參數之量測值相比較以確定無線裝 置12之一輻射效能。例如,控制測試日誌122可包括一對 控制接收機資料126之記錄,該記錄包括關於由無線電信 號系統32自無線裝置12接收之信號(例如信號46)的資訊。 例如,控制接收機資料126可包括量測信號特性50、預定 同步資料36、參考信號特性48、及/或任何與自無線裝置 12接收之信號46相關聯之其他資訊。類似地,控制測試日 諸122可包括一對控制發射機資料ι28之記錄,該記錄包括 關於由無線電信號系統32發射至無線裝置12之信號(例如 信號18)之資訊。例如,控制發射機資料128可包括··定義 關於發射至無線裝置12之信號18之資訊的參考信號特性 34、同步資料36、量測信號特性38、及/或任何與發射至 無線裝置12之信號18相關聯之其他資訊。 另外’在上述實施例中,輻射測試管理器模組44可包括 一效能分析器模組130,該效能分析器模組如上文所述用 以對包含於控制測試日誌122及/或裝置測試日誌86中之資 料執行分析協定90以確定輻射效能特性42。效能分析器模 組130(其可與無線裝置12上之分析器模組88相同或相似)可 包括任何硬體、軟體、韌體及/或其他可運作以分析任何 收集於控制測試日誌122及/或裝置測試日誌86中之資訊的 可執行指令集合。 此外’效能分析器模組130可另外包括同步邏輯132,該 同步邏輯可執行以收集控制測試曰誌122及/或裝置測試曰 誌、86並組合記錄以使信號、量測及位置同步以產生一同步 124807.doc -32- 200838180 貧料日誌134。特定而言,同步邏輯132匹配裝置測試日誌 86與控制測喊日誌、122之間的同步資料36,以對應地使量 測信號特性與其關聯之參考信號特性相匹配。例如,在一 實施例中,此匹配之記錄組合之結果係同步資料日誌 134。在此情況下,效能分析器模組13〇對同步資料曰誌 134執行分析協定90以產生輻射效能特性42。 重新參見圖1,定位系統28可係任一能夠將無線裝置12 移動至選定位置22之機件。例如,在一實施例中,定位系 統28包括一定位控制器136,該定位控制器接收控制信號 16之定位分量26,並指揮一定位器組合件138移動一附接 之無線裝置12。例如,定位器組合件138可包括複數個支 撐結構(例如臂及基座),該複數個支撐結構可各自獨立地 旋轉及/或可線性地移動以使定位器組合件138能夠將無線 裝置12移動至任一既定平面及/或球面位置中,或使無線 裝置12以一軸線為中心旋轉穿過該既定位置。例如,在一 實施例中,定位器組合件138可以一垂直軸線為中心以任 一角度Θ且以一水平軸線為中心圍繞任一角度φ旋轉無線裝 置12。經過每一切口(圓錐或大圓)之移動係連續的且在 DUT旋轉期間連續地對量測值(例如RSSI量測值)進行採 樣。因此,不存在無線裝置12於在預定位置處之,,停與走,,。 而是,定位器組合件138將無線裝置12以一恆定速度移動 穿過每一切口。雖然對無線裝置12之量測並非於固定位置 處進行,但指定量測座標處之RS 81值可藉由内插所採樣之 貧料來確定。於一實施例中,定位器組合件138旋轉無線 124807.doc -33- 200838180 裝置12之速度取決於所需樣本 需之時間長度。 之數量以及獲得每一樣本所 此外,無線裝置12之-高度可調節至以—垂直軸線為中 心之任-標高e。以立器組合件138可包括旋轉及/或線性 =達(例:Wg服馬達)以自位置控制器136接收命令並精確地 定位無線裝置12。此外,定位器組合件138可包括—安裝 機件H0,該安裝機件用於將無線裝置如可移動方式緊Additionally, in some embodiments, each of the signals 18, 46 can further include a data packet that can be defined as a predetermined over-the-air transmission ("OTA") data 112. For example, as described above, the predetermined 〇TAf material 112 can include definitions. The time synchronization information ιΐ4 and/or the predetermined synchronization data 36 of the bit 4 information U6. The daytime information ιΐ4 includes information defining the time when the wireless device 12 is at one of the plurality of locations 11 (eg, the selected location 22), In an embodiment, the time information U4 can be obtained from a time module 118, which can be a local module associated with the central processing unit 100 or can be controlled for the purpose of synchronizing data. The remote information is accessed by the system 14. The location information 116 includes data defining the spatial coordinates of the selected location 22. As described above, the predetermined synchronization data is used to measure 4 of each location 22 (such as measurement). A signal characteristic 38 (which is received by the wireless device 12) or a measured signal characteristic 5 (which is received by the radio signal system 32) is associated with all of the plurality of positions ιι〇 to produce a set of measurements for analysis. Capital In addition, the thief OTA data 112 may include additional 〇TA data 12 〇, the additional OTA data may include a predetermined data packet 'the predetermined data package includes a message in a predetermined wireless agreement. The message may include a plurality of further 124807.doc -29- 200838180 Sub-packages for additional information. For example, in a one-code multiple proximity protocol, additional OTA data 120 may include paging messages, confirmation messages, registration messages, system parameter messages, and any other overhead messages. The additional OTA data 120 may further include sub-package information such as service options, system identification ("SID'1) code, network identification c, NID") code, base station latitude and longitude coordinates, system configuration/parameters Information, test configuration / parameter information, etc. In addition, the additional OTA data 120 can include code to control the functionality of the wireless device (e.g., to turn the recording on and off, to indicate a change in position, to indicate when a signal is transmitted, and any other device control parameters). For example, a different SID code value can be used to turn the logging of log parameters 78 on and off. Moreover, in one embodiment, the predetermined synchronization material 36 can be embedded in an unused portion of one of the standard overhead messages defined by the additional OTA data 120. Additionally, the predetermined radiation performance test 24 may further include the device test configuration 76 discussed in detail above. The device test configuration 76 may include information relating to a computerized device having a suitable test module for performing all or a portion of the pre-shooting effectiveness test 24. For example, device test configuration 76 enables one or both of wireless device 12 and controller system 14 to implement predetermined radiation performance test 24. Additionally, device test configuration 76 may include summary information detailing the parameters of the test. For example, in one embodiment, device test level 76 may be transmitted to wireless device 12 as part of additional OTA data 120. In addition, the 'radiation performance test 24 may include a set of log parameters 78 and test variables 8 for performing the test or for sealing in the device test configuration 76. In addition, 'the radiation performance test 24 may be based on the established parameters of the test. Includes a set of pre-124807.doc -30 - 200838180 控制 control commands to implement the test. In addition, the predetermined radiation performance test 24 may additionally include an analysis protocol for processing and/or analyzing information in the day 86 to produce the radiation performance characteristic 42' as discussed in detail above. For example, in an embodiment in which the wireless device 12 performs the knife analysis, the analysis protocol 9 can be transmitted to the wireless device 12 as part of the additional UI data 12〇. Alternatively, the analysis protocol 9 can be utilized locally by the controller system 14. Referring again to Figure 4, the predetermined radiation performance test 24 is performed by the radiation test manager module 44 to generate the control signal 16 based on various majority associated with the test 24 at each location. As previously mentioned, control signal 丨6 includes a positioning component 26 to cause wireless device 12 to move through each of a plurality of locations 11 by positioning system 28. Moreover, as previously mentioned, the control signal includes a communication component 30 for controlling the transmission of signal 18 from radio signal system 32 to wireless device 12 in accordance with reference signal characteristic 34. In one embodiment, controller system 14 determines wireless, such as when wireless device 12 transports device test log 86 to controller system 14, or when test 24 involves measurement of transmission signal 46 from wireless device 12. The radiation performance characteristic of the device ^42. In either case, referring to Fig. 6, the radiation utterance manager module 44 further includes a control test day 122 to maintain a record of a pair of test conditions and/or test results. For example, in one embodiment, control test log 122 includes device test configuration 76 to record test parameters, and device test configuration 76 may include all or any portion of the data associated with the predetermined radiation test, as described above. In addition, the control test log 122 can include a predetermined value of the test parameter, which can then be compared to the measured value of the test parameter to determine a radiation performance of the wireless device 12. For example, control test log 122 may include a record of a pair of control receiver data 126 that includes information regarding signals (e.g., signal 46) received by wireless device system 32 from wireless device 12. For example, control receiver data 126 may include measurement signal characteristics 50, predetermined synchronization data 36, reference signal characteristics 48, and/or any other information associated with signals 46 received from wireless device 12. Similarly, control test day 122 may include a record of a pair of control transmitter data ι 28 that includes information regarding signals (e.g., signal 18) transmitted by radio signal system 32 to wireless device 12. For example, controlling transmitter data 128 may include reference signal characteristics 34 defining information about signals 18 transmitted to wireless device 12, synchronization data 36, measurement signal characteristics 38, and/or any and transmitting to wireless device 12. Additional information associated with signal 18. In addition, in the above embodiment, the radiation test manager module 44 can include a performance analyzer module 130, as described above, for use in the control test log 122 and/or device test log. The data in 86 performs an analysis protocol 90 to determine the radiation performance characteristics 42. The performance analyzer module 130 (which may be the same as or similar to the analyzer module 88 on the wireless device 12) may include any hardware, software, firmware, and/or other operable to analyze any collected in the control test log 122 and / or a set of executable instructions for device information in the test log 86. In addition, the performance analyzer module 130 can additionally include synchronization logic 132 that can be executed to collect control tests 122 and/or device tests, 86 and combine records to synchronize signals, measurements, and locations to generate A synchronization 124807.doc -32- 200838180 poor material log 134. In particular, synchronization logic 132 matches synchronization test data between device test log 86 and control probe log 122 to correspondingly match the characteristics of the measurement signal to its associated reference signal characteristics. For example, in one embodiment, the result of this matching record combination is the synchronization data log 134. In this case, the performance analyzer module 13 performs an analysis protocol 90 on the synchronization data unit 134 to generate the radiation performance characteristics 42. Referring again to FIG. 1, positioning system 28 can be any mechanism that can move wireless device 12 to selected location 22. For example, in one embodiment, the positioning system 28 includes a positioning controller 136 that receives the positioning component 26 of the control signal 16 and directs a positioner assembly 138 to move an attached wireless device 12. For example, the locator assembly 138 can include a plurality of support structures (eg, arms and pedestals) that can each independently rotate and/or move linearly to enable the locator assembly 138 to wirelessly Moving into any of the predetermined plane and/or spherical positions, or rotating the wireless device 12 through the predetermined position about an axis. For example, in one embodiment, the locator assembly 138 can rotate the wireless device 12 about any vertical angle about a vertical axis and center at any angle φ about a horizontal axis. The movement through each slit (cone or large circle) is continuous and the measured values (e.g., RSSI measurements) are continuously sampled during rotation of the DUT. Therefore, there is no wireless device 12 at the predetermined location, stop and go. Rather, the locator assembly 138 moves the wireless device 12 through each of the slits at a constant speed. Although the measurement of the wireless device 12 is not performed at a fixed location, the RS 81 value at the specified measurement coordinate can be determined by interpolating the sampled lean material. In one embodiment, the positioner assembly 138 rotates wirelessly. 124807.doc -33- 200838180 The speed of the device 12 depends on the length of time required for the desired sample. The number and the availability of each sample, in addition, the height of the wireless device 12 can be adjusted to the center-level e at the center of the vertical axis. The riser assembly 138 can include a rotation and/or linearity = (eg, a Wg service motor) to receive commands from the position controller 136 and accurately position the wireless device 12. Additionally, the locator assembly 138 can include a mounting mechanism H0 for tightening the wireless device such as a movable device
CC
固至定位器組合件138。例如,安裝機件14〇可係一對應鉤 =環狀緊固件“、膠帶、膠水、其尺寸可容納該無線 虞置之開槽式盒等。 例如’在另一實施例中,定位系統28之位置控制器136 接收控制信號16之定位分量26,該定位分量識別選定位置 22 ’並指揮一定位器組合件138將—附接無線裝置^移動 至選定位置22。於該另一實施例中,選擇用於選定位置22 之位置為固定位置,且量測於固定座標處進行。 仍參見圖1 ’無線電信號线32可係任何能夠分別向及/ 或自無線裝置12發射及/或接收無線電波信號之機件。例 在實細例中’無線電信號系統32包括一用於根據控 制命令16之傳訊分量3〇產生並接收信號之通信模擬器模組 142。例如’在一其中無線裝置12包括一蜂巢式電話之實 施例中’通信模擬器模組142可係一在一無線網路中模仿 一基地台收發機之功能之基地台模擬器,例如一可自加利 私尼亞州 Palo Alto的 Agilent Technologies購得之型號 896〇 無線通信測試裝置。通信模擬器模組142可包括啟用無線 124807.doc -34- 200838180 電k號系統32以經由一天線144發射信號18及接收信號48 之發射與接收組件。於一實施例中,天線144包括一定向 角式天線,该天線可包括一定位器14 6以調節一與該等信 號相關聯之水平h及/或垂直v極化。另外,定位器146也許 能夠調節天線144之一垂直高度,但若無線裝置12之垂直 咼度可由定位器組合件138來加以調節則也許未必如此。 另外,如上所述,通信模擬器模組142可包括接收組件 fLocating to the locator assembly 138. For example, the mounting mechanism 14 can be a corresponding hook = loop fastener ", tape, glue, slotted box sized to accommodate the wireless device, etc.. For example, in another embodiment, the positioning system 28 The position controller 136 receives the positioning component 26 of the control signal 16, which identifies the selected location 22' and directs a locator assembly 138 to move the attached wireless device ^ to the selected location 22. In this alternative embodiment The position selected for the selected position 22 is a fixed position and the measurement is performed at the fixed coordinate. Still referring to Figure 1 'The radio signal line 32 can be any capable of transmitting and/or receiving wirelessly to and/or from the wireless device 12, respectively. The apparatus of the radio signal. In the actual example, the 'radio signal system 32 includes a communication simulator module 142 for generating and receiving signals based on the communication component 3 of the control command 16. For example, 'in one of the wireless devices 12 In the embodiment including a cellular phone, the 'communication simulator module 142 can be a base station simulator that mimics the function of a base station transceiver in a wireless network, for example, a self-growth Model 896" wireless communication test set available from Agilent Technologies of Palo Alto, N.. The communication simulator module 142 may include a wireless 124807.doc-34-200838180 electric k-number system 32 for transmitting signals 18 via an antenna 144 and The transmit and receive components of receive signal 48. In one embodiment, antenna 144 includes a directional antenna that can include a locator 14 6 to adjust a level h and/or vertical v associated with the signals. In addition, the locator 146 may be capable of adjusting the vertical height of one of the antennas 144, although this may not be the case if the vertical twist of the wireless device 12 can be adjusted by the locator assembly 138. Additionally, as described above, the communication simulator Module 142 can include a receiving component f
以量測接收信號46之預定參數。或者,無線電信號系統32 可包括附加接收機組件148(例如一功率計)以量測所感興趣 之參數。在任何情況下,無線電信號系統32量測接收信號 46並將此資訊報告給控制器系統14。例如,無、線電信號系 統32將控制接收機資料126(例如量測信號特性5〇)報告給控 制器系統14,控制器系統14將此資訊記錄於控制測試日誌 122(圖4及6)中。 、 仍參見圖1,測試室20提供一將無線裝置12與外部無線 電波及雜訊隔離之環境。此外,測試室2〇提供一減少來自 反射無線電波信號之干擾的環境,且因此可包括一隔音 室。例如,測試室20包括複數個形成—環繞無線裝置12^ 少無線電波反射之吸波材料丨52。因此 外殼之壁150。壁150之面朝内之側包括吸波材料152,例 如一具有複數個用於吸收並耗散無線電波及雜訊之圓錐形 凸出物之發泡材料。此外,測試室2〇内之任一組件(例如 定位組合件138)可進一步包括位於一個或多個表面上以減 測试室2 0提供與 外部環境之射頻("RF")隔離並允許在由幻也無線運營商所 124807.doc -35- 200838180 率頻道上執行賴射測試而不存在干擾,例如 對戍來自商用無線網路之干擾 參見圖7’於—實施例中’―種可在—無線裝置上運作 用於確定該無線裝置之_輻射效能特性之方法包括接收及 載入-輻射效能測試模組(方塊16G)。例如’無線裝置12可 藉由一有線或無線連接來接收及載人輻射效能測試模組 40 °The predetermined parameters of the received signal 46 are measured. Alternatively, radio signal system 32 may include an additional receiver component 148 (e.g., a power meter) to measure the parameters of interest. In any event, radio signal system 32 measures received signal 46 and reports this information to controller system 14. For example, the no-line signal system 32 reports control receiver data 126 (e.g., measurement signal characteristics 5) to the controller system 14, which records this information in the control test log 122 (Figs. 4 and 6). in. Still referring to Fig. 1, test room 20 provides an environment for isolating wireless device 12 from external radio waves and noise. In addition, the test chamber 2 provides an environment that reduces interference from reflected radio wave signals, and thus may include a soundproof chamber. For example, test chamber 20 includes a plurality of absorbing materials 52 that form a surrounding wireless device that reduces radio wave reflections. Thus the wall 150 of the outer casing. The inwardly facing side of the wall 150 includes an absorbing material 152, such as a foamed material having a plurality of conical projections for absorbing and dissipating radio waves and noise. Additionally, any component within the test chamber 2 (eg, the positioning assembly 138) can further include one or more surfaces to reduce the RF ("RF") isolation from the external environment from the test chamber 20 and allow Perform the ray test on the channel of the singular wireless carrier 124807.doc -35- 200838180 without interference, for example, for interference from commercial wireless networks, see Figure 7 'in the embodiment' The method for operating the wireless device to determine the radiation performance characteristics of the wireless device includes receiving and loading-radiation performance testing modules (block 16G). For example, the wireless device 12 can receive and carry a radiation efficacy test module 40 ° by a wired or wireless connection.
ί 此外,該方法可進一步包括接收一與該預定輻射效能測 試相關聯之測試組態(方塊162)。例如,無線裝置12可接收 裝置測試組態76 ’裝置測試組態76識別在實施該既定輕射 效能測試期間記錄之參數78及利用之變數8〇。 另外,該方法可進一步包括根據所接收之測試組態來執 行該既定輻射效能測試(方塊164)。該既定輻射效能測試之 執行可涉及若干動作’例如接收一無線電波信號(方塊 166),發射一無線電波信號(方塊168),及/或在由該預定 輻射效能測試所定義之複數個位置中之每—者處根據所接 收之測試組態記錄量測及/或參考信號特性及同步資料(方 塊170)。例如,當測試無線裝置12之接收能力時,輻射效 能測試模組40根據裝置測試組態76記錄接收機資料82,例 如量測信號特性38❶類似地,輻射效能測試模組4〇可根據 既定輻射效能測試24之參數來發射信號46並記錄其關聯之 參考信號特性48。對於一唯正向鏈路裝置而言,方塊168 為可選,此乃因當無線裝置12不包括一發射機時不存在對 無線裝置12之發射能力進行測試之可能性。 124807.doc -36 - 200838180 於一達成遠端分析之實施例(方塊1 7 2)中,該方法包括 輸送該等曰誌以便其可由另一裝置分析(方塊180)。例如, 輻射效能測試模組40可將裝置測試日誌86輸送至控制器系 統14以供進一步分析。如本文中所述,無線裝置12及控制 器糸統14上之曰諸可籍由下述方式來加以同步:確定其中 該同步脈衝係由控制器系統14發送之日誌之點出現在該兩 個日誌上。In addition, the method can further include receiving a test configuration associated with the predetermined radiation performance test (block 162). For example, the wireless device 12 can receive the device test configuration 76' the device test configuration 76 identifies the parameters 78 recorded during the implementation of the established light performance test and the variables used. Additionally, the method can further include performing the predetermined radiation performance test based on the received test configuration (block 164). Execution of the predetermined radiation performance test may involve a number of actions 'e.g., receiving a radio wave signal (block 166), transmitting a radio wave signal (block 168), and/or in a plurality of locations defined by the predetermined radiation performance test. Each of the measurements is based on the received test configuration and/or reference signal characteristics and synchronization data (block 170). For example, when testing the receiving capabilities of the wireless device 12, the radiation performance testing module 40 records the receiver data 82 based on the device testing configuration 76, such as the measured signal characteristics 38. Similarly, the radiation performance testing module 4 can be based on a predetermined radiation. The parameters of the performance test 24 are used to transmit the signal 46 and record its associated reference signal characteristic 48. Block 168 is optional for a forward link device only because there is no possibility of testing the transmit capability of the wireless device 12 when the wireless device 12 does not include a transmitter. 124807.doc -36 - 200838180 In an embodiment of reaching a remote analysis (block 172), the method includes transporting the signals so that they can be analyzed by another device (block 180). For example, the radiation performance test module 40 can deliver the device test log 86 to the controller system 14 for further analysis. As described herein, the wireless device 12 and the controllers 14 can be synchronized by determining the point at which the synchronization pulse is transmitted by the controller system 14 at the two points. On the log.
於一涉及局部分析之實施例(方塊172)中,該方法進一 步包括接收並載入一與一包括接收機靈敏度之預定輻射效 能測試相關聯之分析協定(方塊174)。例如,輻射效能測試 模組40可接收一分析協定9〇以應用於裝置測試日誌%中所 記錄之日誌、資訊。此外,此實施例包括分析所記錄之量測 及/或參考信號特性及❹資料(方塊176),並根據該分析 協定來產生-輻射效能特性(方塊178)。例如,輻射效能測 試模組40執行分析協定9〇以分析記錄於裝置測試日㈣内 之預定參數。此分析導致輜射效能特性仏之產生。 在另一實施例中,—種可在—設備上運作用 裝置之—輻射效能特性之方法包括接收並載 入一輕射效能應用程式(方塊 妓Η番 兄82)例如,控制器系統14可 接收並載入具有一個或多 器模組44。 ’田射效-測成之輻射測試管理 卜該方法包括執行一預定輻射效能測試(方 184)。例如,転鼾:目_ 从此别式(方塊 輻射測试官自器模組44 測試24。一預宕耘M川了貝疋?田射效旎 “射效,之執行可涉及若干動作,例 124807.doc -37. 200838180 如根據w亥預疋测試向其他系統組件發送控制信號(方塊 1 86)。例如,在複數個與一既定效能測試相關聯之位置 110中之每一者處,輻射測試管理器模組44可產生具有定 位分量26之控制信號16以藉由定位系統以之移動來改變無 • 線裝置12之位置。在涉及向無線裝置12傳輸信號之實施例 中,發运控制信號之動作可進一步包括向無線電信號系統 32發运一傳訊分量3〇以起始信號18之產生。另外,例如, f' 執行預疋輻射效能測試之動作可進一步涉及記錄預定參 考及7或量測信號特性及同步資料(方塊188)。例如,輻射 測試官理器模組44可將控制接收機資料126及/或控制發射 機資料128記錄於控制測試日誌122中。 於一涉及局部分析之實施例(方塊190)中,該方法進一 步包括自該無線裝置接收一對量測特性及同步資料之記錄 (方塊192)。例如,輻射測試管理器模組料自無線裝置η接 收裝置測試日諸86。若所接收之日諸包括與位置資訊同步 ( 之量測信號特性(方塊194),則該方法進一步包括根據一預 定分析協定來分析所接收之日誌(方塊196)並產生一輻射效 能特性(方塊198)。例如,效能分析器模組130可使用分析 協疋90來刀析裝置測试日誌86以確定輻射效能特性。於 一貝施例中,無線裝置12能夠確定該裝置本身上之並 收集彼資料。該TER資料儲存至裝置測試曰誌%。一實例 性FLO封包係,,MFL0 MLC pLp灯奶p〇sT說趣,,日 1包’其記錄好的實體層封包(PLp)之數量及pLp擦除之 數里或者’右所接收之日該不同步(方塊工94),則該方法 124807.doc -38- 200838180 包括使所接收之日誌資訊與本地日誌資訊同步以產生一經 同步之資料曰誌(方塊200)。例如,效能分析器模組13〇可 執行同步邏輯132以藉由下述方式來將裝置測試日誌“與 控制測試日誌122相組合:匹配每一日誌内所包含之同步 資訊,例如一發送用於同步該測試之開始點且出現於這兩 個日誌上之功率脈衝。在此情況下,一旦產生同步資料曰 • 誌134,則該方法可繼續藉由一預定分析協定來分析該經 € 同步的資訊(方塊196)並產生輻射效能特性42(方塊198)。 或者,於一涉及例如無線裝置12上之分析之遠端分析之 實施例(方塊190)中,該方法可包括將一與該預定輻射測試 相關聯之分析協定傳輸至另一裝置(方塊2〇2)。例如,若分 析協定90尚未作為裝置測試組態76之一部分包括在内,則 輻射測試管理器模組44可例如藉由信號18將分析協定9〇傳 輸至無線裝置12。視需要,該方法之此實施例可進一步包 括自另一裝置接收輻射效能特性(方塊2〇4)。例如,輻射測 (., 試管理器模組44可自無線裝置12接收輻射效能特性42,若 該無線裝置包括分析器模組88。該資訊可使用多種方法來 輸运,包括使用與接收機相關聯之無線裝置12之發射機、 一單獨的發射機(例如Bluetooth®或802· 11)或一電纜。 特定而言,於-先前所強調之非限制性實例中,所述實 施例可用於蜂巢式電話輻射天線/接收機測試,例如·· w各向同〖生簠敏度(TIS)測試;(2)一總輻射功率(TRp)測 试,及(3)—天線場型相關性(rh〇)測試。 所有這三個輻射測試皆需要球面量測垂直及水平極化二 124807.doc •39- 200838180 者之天線增益。一對天線接收增益場型之量測為TIS測試 所固有,但該量測在傳統上係藉由接收機靈敏度間接達 成。TRP測試取決於一對天線之發射增益之量測。天線場 型相關性測試或天線rh〇測試需要同時量測兩個或兩個以 上天線之複式電壓接收(”RX”)增益,包括振幅及相位。量 測球面增益之實體程序對於所有測試而言皆基本相同:當 該電話以實體方式於該球面範圍周圍旋轉(此在一系列大 圓切口(仰角切口)中最為常見)時,量測發射機與接收機之 間的損耗。每一測試之間的不同之處在於發射機及接收機 的性質及位置 在TIS測試及天線場型相關性測試之情況下,該發射機 (其通常為一例如一通信模擬器模組142之小區站點模擬器) 連接至一例如一號角天線144之範圍定向天線,而該接收 機連接至該受測試天線。在此情況下,該接收機係接收機 模組70且该受測試天線係無線裝置12之天線系統72。對於 TRP測试而言,無線裝置12充當該發射機,且該接收機係 一連接至範圍天線144之RF功率計148。In an embodiment involving partial analysis (block 172), the method further includes receiving and loading an analysis protocol associated with a predetermined radiation performance test including receiver sensitivity (block 174). For example, the radiation performance test module 40 can receive an analysis protocol 9 to apply to the logs and information recorded in the device test log %. Moreover, this embodiment includes analyzing the recorded measurements and/or reference signal characteristics and data (block 176) and generating a radiation performance characteristic based on the analysis protocol (block 178). For example, the radiation performance test module 40 performs an analysis protocol 9 to analyze predetermined parameters recorded in the device test day (4). This analysis led to the generation of emission performance characteristics. In another embodiment, a method of radiant performance characteristics of a device operable on a device includes receiving and loading a light-emitting performance application (blocking function 82). For example, the controller system 14 can A one or more modules 44 are received and loaded. Field Shot Effect - Radiation Test Management of Measurements This method involves performing a predetermined radiation performance test (Section 184). For example, 転鼾: 目 _ From this singularity (square radiation test official self-module module 44 test 24. A pre-M 了 川 疋 疋 田 田 田 田 田 田 田 田 田 田 田 田 射 射 射 射 射 射 射 射 射 射 射 射 射124807.doc -37. 200838180 sends a control signal to other system components according to the pre-test (block 186). For example, at each of a plurality of locations 110 associated with a given performance test, The radiation test manager module 44 can generate a control signal 16 having a positioning component 26 to change the position of the wireless device 12 by movement of the positioning system. In embodiments involving transmission of signals to the wireless device 12, shipping The action of the control signal may further include transmitting a communication component 3 to the radio signal system 32 to initiate the generation of the signal 18. Additionally, for example, f' performing the pre-radiation performance test may further involve recording a predetermined reference and 7 or The signal characteristics and synchronization data are measured (block 188). For example, the radiation test panel module 44 can record the control receiver data 126 and/or the control transmitter data 128 in the control test log 122. In an embodiment involving partial analysis (block 190), the method further includes receiving a record of a pair of measurement characteristics and synchronization data from the wireless device (block 192). For example, the radiation test manager module is received from the wireless device n The device test day 86. If the received date includes synchronization with the location information (measurement signal characteristics (block 194), the method further includes analyzing the received log according to a predetermined analysis protocol (block 196) and generating A radiation performance characteristic (block 198). For example, the performance analyzer module 130 can use the analysis protocol 90 to analyze the device test log 86 to determine radiation performance characteristics. In one embodiment, the wireless device 12 can determine the The device itself collects and collects the data. The TER data is stored in the device test%. An example FLO packet system, MFL0 MLC pLp lamp milk p〇sT fun, day 1 package 'its recorded physical layer The number of packets (PLp) and the number of pLp erasures or 'the right to receive the day is not synchronized (block 94), then the method 124807.doc -38- 200838180 includes the log information received Synchronizing with the local log information to generate a synchronized data message (block 200). For example, the performance analyzer module 13 can execute the synchronization logic 132 to "consist the device test log with the control test log 122 by: Combination: Match the synchronization information contained in each log, for example, a power pulse sent to synchronize the start point of the test and appear on the two logs. In this case, once the synchronization data is generated, The method can then continue to analyze the synchronized information by a predetermined analysis protocol (block 196) and generate a radiation performance characteristic 42 (block 198). Alternatively, in an embodiment involving remote analysis, such as analysis on wireless device 12 (block 190), the method can include transmitting an analysis protocol associated with the predetermined radiation test to another device (block 2 〇 2). For example, if the analysis protocol 90 has not been included as part of the device test configuration 76, the radiation test manager module 44 can transmit the analysis protocol 9〇 to the wireless device 12, for example, by signal 18. This embodiment of the method can further include receiving radiation performance characteristics from another device, as needed (block 2〇4). For example, the radiation test module 44 can receive the radiation performance characteristic 42 from the wireless device 12 if the wireless device includes the analyzer module 88. The information can be transmitted using a variety of methods, including use and receiver. The transmitter of the associated wireless device 12, a separate transmitter (e.g., Bluetooth® or 802.11) or a cable. In particular, in the non-limiting example previously highlighted, the embodiment can be used Honeycomb-type telephone radiating antenna/receiver testing, such as ··· all-in-one 簠sensitivity (TIS) test; (2) one total radiant power (TRp) test, and (3)-antenna field type correlation (rh〇) test. All three radiation tests require spherical measurement vertical and horizontal polarization. The antenna gain of a pair of antenna receiving gain fields is inherent to the TIS test. However, this measurement is traditionally achieved indirectly by receiver sensitivity. The TRP test depends on the measurement of the transmit gain of a pair of antennas. The antenna field type correlation test or the antenna rh test requires simultaneous measurement of two or two. More than one antenna Voltage reception ("RX") gain, including amplitude and phase. The physical procedure for measuring spherical gain is essentially the same for all tests: when the phone is physically rotated around the spherical range (this is in a series of large circular cuts) (the most common of the elevation cuts), measure the loss between the transmitter and the receiver. The difference between each test is the nature and location of the transmitter and receiver in the TIS test and antenna field correlation. In the case of testing, the transmitter (which is typically a cell site simulator such as a communication simulator module 142) is coupled to a range directional antenna such as a horn antenna 144, and the receiver is connected to the tested Antenna. In this case, the receiver is the receiver module 70 and the antenna under test is the antenna system 72 of the wireless device 12. For TRP testing, the wireless device 12 acts as the transmitter and the receiver is An RF power meter 148 is coupled to the range antenna 144.
在此等測試中,無線裝置12之接收機模組7〇對基於RX 之測試(RX增益、天線Rh〇)進行必要之量測。藉由使用無 線裝置12之接收機模組7〇,所述實施例提供多個優點,例 如·時間節省,此乃因不必修改無線裝置丨2來進行測試; 及可能的更精確結果,此乃因先前技術對無線裝置12之修 改及先前技術對外部設備及電纜之使用可改變天線之增益 場型。 124807.doc 200838180 另外,輻射效能測試模組40藉由與處理子系統M介接之 API 62提供對接收機資料82(例如來自每一耙指之 RX_AGC(所接收功率)及導頻I/Q估計值)之存取。此外, 輻射效能測試模組4 0將接收機資料8 2記錄至資料儲存庫μ 内之裝置測試日誌、74。此方法提供能夠輯未附接電镜之 無線裝置12之優點。這時,騎裝置12變成職設備及資 料記錄器二者4提供—在—更有代表性的狀態(無線)下 評估無線裝置12之更整潔的測試設置且亦可提供時間節 此外,上述設置使所有必要的測試資料能夠記錄於 裝置12上一個單個地方中。例如,藉助系統10,可 功率量測時向位置控制器136查詢位置資訊。此位置資 訊、或對應於此位置資訊之某一資料(例如一時間)可在測 试(無電纜)期間傳送至無線裝 迥仏H 衣置12以使所有必要的測試資 枓均可5己錄於無線裝置12上。此使無線裝Μ能 己 錄位置資訊與接收機參數以便 ° ψ ^ Λ. , . ^ ^中收集一功率與位 或者,控制器系統14可記錄該位置資訊及 ;數=:該位置資訊可與無線裝置12同步的其他 他同步資料Λ:裝置Η記錄量測資料參數及時間(或其 写季统14 無線裝置12可㈣日Μ送至控制 态糸、、先14,控制器系統14 使該位置資訊與該等量剩或其他同步資料來 36可包括一在-程序^^ 例如,同步資料 接供⑬ 相始時發送以在無線裝置12之曰★士中 —始點之脈衝。於另一實施例中,位置資= 124807.doc -41 · 200838180 至少同步資料36可藉由下述方式傳輸至無線裝置12:在— 活動訊務頻道上開啟_資料插σ,在正向鏈路開銷頻道訊 息中之—個或多個不用攔位(例如系統參數訊息中之SID、 網路識別(,,細")或基地台緯度及經度)中進行編碼;且可 在輔助頻道(例如Biuet00th®4 802 11頻率頻道)上傳送資 料。 、 該TIS測試慮及天線與電話電子設備之交互作用,包括 來自由可耦合至天線模組之電話電子設備輻射之干擾效應 在内。特定而言,就TIS測試而言,一MediaFL_收機靈 敏度量測需要發現所接收之信號品質開始降級時之訊務頻 道功率;特定而言,封包錯誤率(PER)變成0·5%之點。類 似地,CDMA接收機靈敏度量測需要發現所接收之信號品 質開始降級時之訊務頻道功率;特定而言,訊框錯誤率 (FER)變成0.5%之點。然而,應注意,某一其他pER或fer 臨限值可根據該既定方案來指定。此外,應注意,亦可利 用其他臨限參數。例如,利用全球行動通信系統(,,GSMn) 技術,該臨限參數可係位元錯誤率("BER”)。對於CDMA情 況而吕,由蜂巢式通信&網際網路協會(”CTiAn)指定之tis 測試程序規定在丁heta(仰角)及Phi(方位角)軸線中每隔3〇。 進行一輻射靈敏度量測。同樣,根據該方案,亦可利用其 他預定位置。除Theta=0。及180。之點外,先前技術針對每 一極化需要60個個別靈敏度量測,隨後將該等量測對該球 面範圍積分,從而產生TIS量度。此係一實施起來極其費 時之量測,此乃因對每一位置處靈敏度點之識別需要一在 124807.doc -42- 200838180 過去一直人工實施之漸進的疊代過程。 然而,所述實施例達成加快可藉以實施TIS測試之速 度。該球面範圍周圍之輻射靈敏度僅作為天線以增益變 化之結果而變化。該鏈路中所有其他因數皆為怪定的。因 此’由此可見’若已知天線之RX增益場型,則僅需要在 一單個參考點(較佳為最大天線增益點)處進行一靈敏度量 測因此’ 5亥球面範圍上之任一其他點⑽)處之輕射靈敏 ^ 度Sens可表示為: Ξβη5(θ,φ) = ^βη3φ〇>φ〇) + [βκχ(θ>φ)_〇ΐίχ(θ〇 φ〇)] (j} 其中如卻,約係球面座標(θ肩處之輻射靈敏度(其以犯瓜 表不)’ ^砍妁係球面座標Μ,#)處之尺又天線增益(其以犯表 示),且(仏,心)係參考靈敏度量測之座標,亦即,較佳為最 大增盈位置處之靈敏度。 在先前技術中,此方法不實用,此乃因上述先前技術裝 置經破壞性修改以量測。然而,所述實施例允許以 (^非皮衷座方式來確S〜(从,此乃因所接收之功率量測係 由無線裝置12之接收機模組7〇實施。因此,在一特定實施 W中’可利用下述針對每—極化(垂直及水平)之加速技 術: (1) 執行輻射效能測試模組4〇以量測並記錄預定的複數 個位置(例如在此種情況下定義一球面範圍之形狀之㈣)的 3〇。增量(除θ = 〇。及180。外))處之〜(以); (2) 識別GRX為最大之位置队,九); (3) 在位置吹冰)處實施一單個輻射靈敏度測試,亦即, 124807.doc -43- 200838180 使至該無線裝置之所發射功率斜降同時監控per(或一基於 CDMA之裝置之FER ;或一基於GSM之裝置之BER)直到達 到一預定臨限PER為止,以確定Sens队,么); (4) 將上述方程式1應用於整組預定位置(例如上述球面 位置)’以確定每一預定位置之公瓜⑼妁;及 (5) 將所計算之&似队的對該等預定位置之形狀積分以確 定該無線裝置之TIS量度。 換吕之,TIS需要"輻射靈敏度場型,TJKM)及 EISh(仏0),其中EISV^(有效各向同性靈敏度)係針對一既定 PER(或BER或FER)臨限值於一既定量測角度(民…下之輻射 接收機靈敏度。然而,在一測試室中,此等值難以直接量 測,此乃因呼叫常在受測試裝置旋轉至一天線場型零位 (例如接收信號位準可處於電話雜訊位準以下)時中斷。為 了避免此問題,以一高到足以避免呼叫中斷之接收功率位 準量測該等接收圖形,且隨後藉由量測峰值靈敏度值來加 以換算以導出EIS“以)及EISh(以)場型。例如,於一實施例 中,室路徑損耗經校準以使一已知功率位準入射於受測試 袭置上,忒功率位準約等於或大於電話雜訊最低標準以上 30 dB(例如,電話測試地點處之約_7〇犯瓜對於典型電話 係一良好數字)。然而,應注意,可根據既定測試方案利 用其他dBm值。天線增益場型(Gv 係藉由歸一 化至咖1值(㈣當將參考功率位準(在此種情況下為·7〇 犯m)直接”注射"至接收機中(通常藉由電話上之rf测試埠) 時由電話所報告之量測功率)而從上述量測場型資料中導 124807.doc -44- 200838180In these tests, the receiver module 7 of the wireless device 12 performs the necessary measurements on the RX based test (RX gain, antenna Rh 〇). By using the receiver module 7 of the wireless device 12, the described embodiments provide a number of advantages, such as time savings, since the wireless device 不必2 does not have to be modified for testing; and possibly more accurate results, Modifications to the wireless device 12 by prior art and the use of external devices and cables by prior art can change the gain field pattern of the antenna. 124807.doc 200838180 In addition, the radiation performance test module 40 provides the receiver data 82 by means of an API 62 interfacing with the processing subsystem M (eg, RX_AGC (received power) and pilot I/Q from each finger). Estimated value) access. In addition, the radiation performance test module 40 records the receiver data 8 2 to the device test log, 74 in the data repository μ. This method provides the advantage of being able to serialize the wireless device 12 to which the electron microscope is not attached. At this time, the riding device 12 becomes both a service device and a data recorder 4 - in a more representative state (wireless) to evaluate the more tidy test setup of the wireless device 12 and also provides a time section. All necessary test data can be recorded in a single location on device 12. For example, with system 10, position information can be queried to position controller 136 during power measurement. This location information, or a piece of information corresponding to this location information (eg, for a time), can be transmitted to the wireless device H device 12 during testing (without cable) so that all necessary testing resources can be used. Recorded on the wireless device 12. This enables the wireless device to record the location information and the receiver parameters to collect a power and bit in the range 或者 ^ Λ. , . ^ ^ or the controller system 14 can record the location information and the number =: the location information can be Other synchronization data synchronized with the wireless device 12: the device Η records the measurement data parameters and time (or its writing system 14 wireless device 12 can (4) send to the control state, 14 first, the controller system 14 makes The location information and the equal amount of other or other synchronization data 36 may include a pulse that is transmitted at the beginning of the synchronization data connection, for example, at the beginning of the wireless device 12. In another embodiment, location information = 124807.doc -41 · 200838180 At least the synchronization data 36 can be transmitted to the wireless device 12 by: turning on the data channel on the active traffic channel, in the forward link One or more of the overhead channel messages are encoded in a non-blocking (eg, SID in the system parameter message, network identification (,, fine) and base station latitude and longitude); and can be in the auxiliary channel (eg Biuet00th®4 802 11 frequency channel) upload The TIS test considers the interaction of the antenna with the telephone electronics, including interference effects from the radiation of the telephone electronics that can be coupled to the antenna module. In particular, for the TIS test, a MediaFL_ The receiver sensitivity measurement needs to find the signal channel power when the received signal quality begins to degrade; in particular, the packet error rate (PER) becomes 0.5%. Similarly, the CDMA receiver sensitivity measurement needs to be found. The signal channel power at which the received signal quality begins to degrade; in particular, the frame error rate (FER) becomes 0.5%. However, it should be noted that some other pER or fer threshold may be based on the established scheme. In addition, it should be noted that other threshold parameters may also be utilized. For example, using the Global System for Mobile Communications (GSMN) technology, the threshold parameter may be the bit error rate ("BER"). For CDMA situations Lu, the tis test procedure specified by the Honeycomb Communication & Internet Association ("CTiAn") stipulates every 3 〇 in the Dingheta (elevation angle) and Phi (azimuth) axes. Similarly, according to the scheme, other predetermined locations may also be utilized. In addition to Theta=0 and 180., the prior art requires 60 individual sensitivity measurements for each polarization, and then the measurements are taken. Integrating the sphere range to generate a TIS metric. This is a very time-consuming measurement that is implemented because the identification of sensitivity points at each location requires a progressive implementation of the manual at 124807.doc -42-200838180. The iterative process. However, the described embodiment achieves a speed at which the TIS test can be implemented by speeding up. The radiation sensitivity around the spherical range varies only as a result of the gain variation of the antenna. All other factors in the link are weird. Therefore, it can be seen that if the RX gain field type of the antenna is known, only one sensitivity measurement needs to be performed at a single reference point (preferably the maximum antenna gain point), so any other of the '5-height sphere range The light-sensitive sensitivity Sens at point (10) can be expressed as: Ξβη5(θ,φ) = ^βη3φ〇>φ〇) + [βκχ(θ>φ)_〇ΐίχ(θ〇φ〇)] (j } Among them, it is about the spherical coordinate (the radiation sensitivity at the shoulder of the θ (which is not in the form of a melon)' ^ 妁 妁 球 spherical coordinate Μ, #) at the foot and antenna gain (which is expressed by the offense), and仏, 心) is the coordinate of the reference sensitivity measurement, that is, preferably the sensitivity at the maximum gain position. In the prior art, this method is not practical, because the above prior art device is destructively modified to measure However, the described embodiment allows for the determination of the power measurement system by the receiver module 7 of the wireless device 12. Therefore, in one In the specific implementation, 'the following acceleration techniques for each-polarization (vertical and horizontal) can be utilized: (1) Execution The shot performance test module 4 量 measures and records 3 〇 of the predetermined plurality of positions (for example, (4) defining the shape of a spherical range in this case). Increments (except θ = 〇 and 180.) (where) (2) identify the GRX as the largest position team, IX); (3) perform a single radiation sensitivity test at the location of the ice blowing, ie, 124807.doc -43- 200838180 The transmit power of the wireless device ramps down while monitoring per (or FER of a CDMA based device; or BER of a GSM based device) until a predetermined threshold PER is reached to determine the Sens team, (4); Applying Equation 1 above to the entire set of predetermined positions (eg, the above-described spherical position) 'to determine the melon (9) 每一 for each predetermined position; and (5) to calculate the shape of the predetermined position of the & The score is determined to determine the TIS metric of the wireless device. For Lv, TIS requires "radiation sensitivity field type, TJKM) and EISh(仏0), where EISV^ (effective isotropic sensitivity) is for a given PER (or BER or FER) threshold to a certain amount Measuring the angle (the radiation receiver sensitivity of the people. However, in a test room, this value is difficult to measure directly, because the call is often rotated by the test device to an antenna field type zero (such as the receiving signal bit) In order to avoid this problem, the received patterns are measured at a received power level high enough to avoid call interruption, and then converted by measuring the peak sensitivity value. To derive the EIS "and" and EISh field patterns. For example, in one embodiment, the chamber path loss is calibrated such that a known power level is incident on the test, and the power level is approximately equal to or Greater than 30 dB above the minimum standard for telephone noise (for example, about _7 〇 电话 电话 电话 对于 对于 对于 对于 对于 对于 对于 对于 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Type (Gv By normalizing to the value of 1 ((4) when the reference power level (in this case, 7 〇 m) directly "injected" into the receiver (usually by rf test on the phone)埠) The measured power reported by the telephone) and from the above measured field data guide 124807.doc -44- 200838180
隨後以入射角度⑽)及針對導致該峰值天線增益Then at the incident angle (10)) and for the peak antenna gain
增益場型而獲得: 腦orh(〜)=加卿(如釦卜。 旦已知EISV(^)及EISh(^)場型,即藉由在一測試角度Gain field type obtained: brain orh (~) = plus Qing (such as deduction. Once known EISV (^) and EISh (^) field type, that is, by a test angle
12上、完全在控制器系統14 例如,無線裝置丨2可獨立地 確疋何時將接收到的例如位置資訊之同步資料36、或例如 時間資訊114之同步資料36與來自控制器系統14的同步資 料3 6與位置資訊之曰誌相結合。無線裝置丨2可確定 ‘队冰)並將位置忧冰)傳輸至控制器系統14以再定向定位 系統28並起始該協定之靈敏度測試部分。然後,無線裝置 1 2可汁异所需,並實施積分以確定TIS量度,無線 裝置12可儲存該TIS量度及/或將其發送至控制器系統14。 或者,無線裝置12處之資料收集可在步驟1及2後中斷以 允許將裝置測試日誌86自無線裝置12卸載至例如控制器系 統14以進行後處理來確定‘队的及、汛冰)。例如,日誌% 124807.doc -45- 200838180 包括-對量測資料與同步資料之記錄。這時,控制器系统 可發送控制信號16以將無較置定位於位置以)處以進 行輻射κ敏度測試。類似地,無線裝置12可在最大增益位 置處記錄-組靈敏度量測後’或在確定Se吨磁,卸载 裝置測試日諸86。錢,控制^系統14可在所有位置處應 用方程式1及/或跨越球面範圍實施積分,從而確定該tis 量度。 此外,可在無線裝置12處於空閒模式之情況下實施步驟 1,此乃因RX—AGC處於活動狀態。有利地,此技術免除 對在該測試之持續時間期間維持一訊務呼叫之需要。然 而,應注思,無線裝置12可在步驟3期間處於一呼叫狀態 中,此乃因FER可經定義僅用於訊務資料訊框。 〜 在一只鈿例中,人工實施上述靈敏度測試-手動調節小 區站點权擬$上之正向鏈路發射功率以達到無線裝置^上 之目^ PER。如上所述’所述實施例達成靈敏度測試之自 動化。例如,控制器系統14與無線裝置12建立一呼叫並使 正向鏈路功率逐漸斜降同時維持—功率與時間記錄,亦 即’在控制測試日諸122中。㈣,輻射效能測試模組4〇 記錄PER與時間,亦即,在裝置測試日諸%中。輕射測試 g理器模組44接收裝置測試日誌、86並執行同步邏輯m以 使與每一日誌122及86中所記錄之時間相關聯之量測同 步,藉此產生包括一 PER與功率記錄之經同步的日誌 134。根據遠pER與功率記錄,效能分析器模組“ο可確定 該 0.5% PER點。 124807.doc -46- 200838180 在另一替代形式中,甚兮 右忒正向發射功率於該正 二置12’則可在無線⑽記錄所有= 二_:二輻射效能測試模組4°執行分心模組 _疋狀5/°PER點。因此,合併無㈣置12上之㈣ 有利地免除對分別來自控制器系統14及無線裝置、 122及86之離線同步之需要。 ㈡w f12, completely in the controller system 14, for example, the wireless device 2 can independently determine when to synchronize the received synchronization data 36, such as location information, or the synchronization data 36, such as the time information 114, with the controller system 14. Information 3 6 is combined with the location information. The wireless device 可2 can determine the 'team ice' and transmit the position to the controller system 14 to redirect the positioning system 28 and initiate the sensitivity test portion of the agreement. The wireless device 12 can then be sized and implemented to determine the TIS metric, and the wireless device 12 can store the TIS metric and/or send it to the controller system 14. Alternatively, data collection at the wireless device 12 may be interrupted after steps 1 and 2 to allow the device test log 86 to be offloaded from the wireless device 12 to, for example, the controller system 14 for post processing to determine 'team' For example, log % 124807.doc -45- 200838180 includes - record of measurement data and synchronization data. At this point, the controller system can send a control signal 16 to position the inferior position at the position to perform a radiation κ sensitivity test. Similarly, wireless device 12 may record - group sensitivity measurements at the maximum gain position or - determine the Se ton magnetic, unloading device test day 86. The money, control system 14 can perform integration by applying Equation 1 and/or across the spherical range at all locations to determine the tis measure. In addition, step 1 can be implemented with wireless device 12 in idle mode because RX-AGC is active. Advantageously, this technique dispenses with the need to maintain a service call during the duration of the test. However, it should be noted that the wireless device 12 can be in a call state during step 3 because the FER can be defined only for the traffic data frame. ~ In an example, manually perform the above sensitivity test - manually adjust the forward link transmit power of the cell site to achieve the target PER on the wireless device. The embodiment described above achieves the automation of the sensitivity test. For example, controller system 14 establishes a call with wireless device 12 and ramps forward link power while maintaining a power-time record, i.e., in control test day 122. (4) The radiation performance test module 4 records the PER and time, that is, in the % of the device test day. The light shot test module 44 receives the device test log, 86 and executes the synchronization logic m to synchronize the measurements associated with the time recorded in each of the logs 122 and 86, thereby generating a PER and power record. Synchronized log 134. According to the far-pER and power recording, the performance analyzer module "o can determine the 0.5% PER point. 124807.doc -46- 200838180 In another alternative, what is the right-hand forward transmit power to the positive two-position 12' It can be recorded in wireless (10) all = two _: two radiation efficiency test module 4 ° implementation of the distraction module _ 5 5 / ° PER point. Therefore, the merger without (four) set 12 (four) is beneficially exempt from the control separately The need for offline synchronization of the system 14 and the wireless devices, 122 and 86. (2) w f
關於TRP,TRP測試係對無線裝置12之發射鏈之效 試。對於該測試而言,無線裝置12可藉由裝置測試組態% 來加以組態以在全功率下發射。例如,在一CDMA裝置 中,此大多數時候係藉由指令小區站點模擬器發送"徹底 完成(all-up)"功率控制位元同時維持一訊務呼叫所達成。一 自無線裝置12接收之功率係、由附接至天線範圍定向(角)天 線114之功率計148來量測。 由CTIA指定之TRP測試程序規定針對每一極化在 Theta(仰角)及Phi(方位角)軸線中每隔15。進行一功率量 測。除Theta=0。及180。之點外,此技術需要針對每一極化 之264個個別資料點,隨後將該等資料點對該球面範圍積 分,從而產生TRP量度。由於需要量測之位置之重疊,因 此所述實施例允許TRP測試與TIS測試同時實施,從而提 供顯著時間節省。 或者,另一針對全功率運作組態無線裝置12之方法係藉 由使其處於工薇測試模式(FTM)中來工人設定數位發射增 益。在此組態中,TRP測試可與上文關於TIS測試所述之 空閒模式RX增盈確定同時實施’從而達成可能的時間節 124807.doc -47- 200838180 省。 換言之,TRP量度可藉由以下方程式來確定: 77?? = ^-· <^EIRP,{9, φ) + EIRPh(e, φ)] · sin ^ · άθάφ 其中五係垂直極化之有效各向同性輻射功率,且 的係水平極化之有效各向同性輻射功率,其可根據 發射增益場形Gvorl^»來確定:Regarding TRP, the TRP test is an effect on the transmit chain of the wireless device 12. For this test, the wireless device 12 can be configured to transmit at full power by the device test configuration %. For example, in a CDMA device, this is mostly achieved by the command cell site simulator sending "all-up" power control bits while maintaining a traffic call. The power system received from the wireless device 12 is measured by a power meter 148 attached to the antenna range orientation (angle) antenna 114. The TRP test procedure specified by CTIA specifies every 15th in the Theta (elevation angle) and Phi (azimuth) axes for each polarization. Perform a power measurement. Except Theta=0. And 180. In addition, this technique requires 264 individual data points for each polarization, which are then integrated over the spherical range to produce a TRP metric. The embodiment allows TRP testing to be performed concurrently with TIS testing, thereby providing significant time savings, due to the need for overlapping locations of the measurements. Alternatively, another method of configuring the wireless device 12 for full power operation is to set the digital transmit gain by the worker by placing it in the Work Quality Test Mode (FTM). In this configuration, the TRP test can be implemented concurrently with the idle mode RX gain determination described above with respect to the TIS test to achieve a possible time period 124807.doc -47 - 200838180. In other words, the TRP metric can be determined by the following equation: 77?? = ^-· <^EIRP,{9, φ) + EIRPh(e, φ)] · sin ^ · άθάφ where five vertical polarizations are effective Isotropic radiated power, and the effective isotropic radiated power of the horizontal polarization, which can be determined according to the transmit gain field shape Gvorl^»:
Gv or h(^? φ) = EIRPy 〇r h (θ, φ) / MaxPAOut 其中ΜαχΛΙ (9⑽係功率放大器之最大功率輸出,亦即發射 機模組68在每一測試頻率下之最大功率輸出。 由此可見,峰值有效輻射功率係EIRP場型之最 大值:Gv or h(^? φ) = EIRPy 〇rh (θ, φ) / MaxPAOut where ΜαχΛΙ (9(10) is the maximum power output of the power amplifier, that is, the maximum power output of the transmitter module 68 at each test frequency. It can be seen that the peak effective radiated power is the maximum value of the EIRP pattern:
PeakEIRP = Μαχ[Μαχ(ΕΙΚΡ^Θ,φ)),Μαχ(ΕΙΚΡ^Θ,φ))] 一無線裝置之規章驗證(亦即,SAR、類級驗證、輻射 發射)可能需要PeakEIRP。 此外,另一發射模式輻射效能特性係天線效率: 7 = -L. φ) + Gh(e, φ)] · sin 0. άθάφ 其係以一類似於從天線增益場型中導出TRP之方式導 出。 場型包絡相關性Pe評估在一行動環境中一雙天線、雙接 收機電話之分集增益之可能性。該rho測試根據量測複式 增益來確定衰落相關性。主及辅助天線之量測複式Rx場型 (例如下文所述之五W、五#、502、五02)可用來估計由該 天線對上之入射場之一模型所致之包絡相關性。 124807.doc -48- 200838180PeakEIRP = Μαχ[Μαχ(ΕΙΚΡ^Θ,φ)),Μαχ(ΕΙΚΡ^Θ,φ))] A wireless device's regulatory verification (ie, SAR, class level verification, radiation emission) may require PeakEIRP. In addition, another emission mode radiation performance characteristic is the antenna efficiency: 7 = -L. φ) + Gh(e, φ)] · sin 0. άθάφ is derived in a manner similar to the way in which the TRP is derived from the antenna gain field. . Field Envelope Correlation Pe evaluates the likelihood of diversity gain for a dual antenna, dual receiver phone in an active environment. The rho test determines the fading correlation based on the measured complex gain. The quadrature Rx field type of the primary and secondary antennas (e.g., five W, five #, 502, and five 02 described below) can be used to estimate the envelope correlation caused by one of the fields of incidence on the pair of antennas. 124807.doc -48- 200838180
隨著接收機分集作為當代行動台數據機("MSm”)ASIC 中之一可用特徵出現,已形成一對輻射測試預測一多天線 系統將在該場中多好地實施之需要。MIM〇裝置亦將得益 於此一測試。一雙天線裝置之一極其重要的設計參數係天 線之間的相關性。一在雙接收鏈中產生高度相關之信號的 天線對係對接收分集之最小使用。所述實施例利用包絡相 關性(其亦稱作衰落相關性)作為雙天線系統中一分集增益 之預測器。 Γ 該包絡相關性可根據一對天線之複式電壓增益場型及一 假定入射RF場來加以預測。與其他接收增益量測一樣,複 式天線增益場型傳統上一直使用有線測試來加以量測。在 一商用無線裝置之情況下,此需要對該裝置進行破壞性修 改以安裝外部連接器。然而,替代破壞性修改,所述實施 例利用無線裝置12之接收機模組70之組件。例如,在一蜂 巢式電話之情況下,CDMA耙式接收機功能需要對導頻頻 ί; 道進行精確相位估計。藉由自一小區站點模擬器(例如模 擬器142)提供一活動導頻頻道,並使輻射效能測試模組4〇 記錄自每一接收鏈及/天線接收之功率(其可在一 rx AGC 資料封包中發現)及當該電話繞一球面範圍旋轉時來自該 耙式接收機之同相/正交相(I/Q)導頻估計值(其可在一 RX一Pilot查找器資料封包中發現),可在無線裝置12上完整 地產生一複式增盈場形。此無需對手機進行破壞性修改。 與上述接收機增益場形一樣,若位置/角度資訊在資料 收集期間例如在該正向鏈路上無線傳輸至該裝置,則可無 124807.doc -49- 200838180 線裝置12上合併所有記錄。 若無線裝置12未精確地以空閒模式實施接收機分集,則 多天線複式場型確定可由處於一訊務呼叫中之無線裝置12 來達成。 特定而言,所述實施例包括用於根據來自測試室2〇内之 無線裝置12上的一對天線之量測複式輻射場型來估計一行 動裱境中之包絡衰落相關性&之設備及方法。 r ' 了以下式給出因第k個電磁平面波(射線)Fkm (0,的及一複 式天線場場型Em⑼妁而以⑼的入射於一第㈤個天線元件上之 複式電壓V—同·· K = ίίΕΜΦ)^^(θ,φ) •sin9-d0· άφ 0 0 τ 2ππ =C“以)+〜“从· 4 (从)·如义洲.办 因此’此天線元件處之總複式天線場場型方差 為: 2ηπAs receiver diversity emerges as one of the available features in the Contemporary Mobile Station Data Machine ("MSm") ASIC, a pair of radiation tests have been developed to predict how well a multi-antenna system will be implemented in the field. MIM〇 The device will also benefit from this test. One of the most important design parameters of a pair of antenna devices is the correlation between the antennas. The minimum use of antenna pairs for receive diversity that produces highly correlated signals in the dual receive chain. The described embodiment utilizes envelope correlation (which is also referred to as fading correlation) as a predictor of diversity gain in a dual antenna system. Γ The envelope correlation can be based on a complex voltage gain field pattern of a pair of antennas and a hypothetical incidence. The RF field is used for prediction. As with other receive gain measurements, the complex antenna gain pattern has traditionally been measured using wired tests. In the case of a commercial wireless device, this device requires destructive modification of the device to install. External connector. However, instead of destructive modification, the described embodiment utilizes components of the receiver module 70 of the wireless device 12. For example, in a bee In the case of a telephone, the CDMA rake receiver function requires accurate phase estimation of the pilot frequency channel by providing an active pilot channel from a cell site simulator (e.g., simulator 142) and enabling radiation performance. The test module 4 records the power received from each receive chain and/or antenna (which can be found in an rx AGC data packet) and the in-phase/orthogonality from the rake receiver as the phone rotates around a spherical range The phase (I/Q) pilot estimate (which can be found in an RX-Pilot Finder data packet) can completely generate a double gain field on the wireless device 12. This eliminates the need for destructive modification of the handset. As with the receiver gain field shape described above, if the position/angle information is wirelessly transmitted to the device during data collection, such as on the forward link, then all records may be merged on line device 12 without 124807.doc -49-200838180. If the wireless device 12 does not accurately perform receiver diversity in idle mode, the multi-antenna duplex field determination may be achieved by the wireless device 12 in a traffic call. In particular, the embodiment Apparatus and method for estimating envelope fading correlation & in a mobile environment based on measurements of a complex radiation pattern from a pair of antennas on a wireless device 12 within a test chamber 2 r. Given the k-th electromagnetic plane wave (ray) Fkm (0, and a complex antenna field type Em(9) 妁 and (9) the complex voltage V--··· K = ίί Φ incident on a (five) antenna element) ^^(θ,φ) •sin9-d0· άφ 0 0 τ 2ππ =C “Yes”+~“From·4 (From)·如义洲.Does the total duplex antenna field type at this antenna element The variance is: 2ηπ
E A · (以)|2 ·/>〆以)· Sin0 ·抓却 0 0 2ππ 卜户"· ί JKw⑼的|2 · Α (以)· Sin 0 ·洲·却 其中Ρθ及代表沿呎垂直極化)及火水平極化)方向之入 射場角功率始、度功能,及尸好係代表在一例如可沿一隨機 駕駛路徑找到的有代表性RF環境裏分別沿外垂直)及〆水 平)極化之無線裝置12上之平均入射功率之常數。 對於天線1及2而言,來自該兩個天線之所接收信號之間 的交叉協方差.Pfj為: 124807.doc -50- 200838180EA · (以)|2 ·/>〆以)· Sin0 · Grab 0 0 2ππ 卜户"· ί JKw(9)|2 · Α (I)· Sin 0 ·洲·其中Ρθ and representative along 呎The vertical field of incidence and the horizontal polarization of the fire are the initial and degree functions of the incident field angle, and the corpse is represented by a vertical, for example, in a representative RF environment that can be found along a random driving path. The constant of the average incident power on the horizontally polarized wireless device 12. For antennas 1 and 2, the cross-covariance between the received signals from the two antennas. Pfj is: 124807.doc -50- 200838180
Inn / \\\ΧΡΚ^ΕΘΛ{θ,φ)^ΕΘ2\θ9φ)·Ρθ{θ,φ) 0 0 * + εφλ φ) ^Εφ 2* (θ,φ) · Ρφ (θ9φ)\ sin Θ-άθ^άφ 其中ZPi?= Ρ〆’且其中*指示複式共輛。 根據該兩個信號方差及交叉協方差,可以下式給出包絡 相關性係數: ,,2 \mk-vf] pe = \p\ ---—Inn / \\\ΧΡΚ^ΕΘΛ{θ,φ)^ΕΘ2\θ9φ)·Ρθ{θ,φ) 0 0 * + εφλ φ) ^Εφ 2* (θ,φ) · Ρφ (θ9φ)\ sin Θ- Άθ^άφ where ZPi?= Ρ〆' and where * indicates the duplex common vehicle. According to the two signal variances and the cross covariance, the envelope correlation coefficient can be given by: , 2 \mk-vf] pe = \p\ ---
EW^yfyEiv^vf] 可在先前公式中使用針對具有包括雙天線之天線系統72 之無線裝置12以一覆蓋4π球面度之視場内之分立角度之所 篁測複式天線場型五07、五%、五02、五%以如下式來計算 Pe : Νφ ΝΘ Νφ ΝΘ σ1 = Σ Σ ^XPR ·Εθι^ j · Ε ΘΫ /, ;. Ρ β + Εψ\ί, j · ΕφΫ /, j. Ρφ). sin 6i. Δ 0. Δ(ζί Νφ ΝΘ σ2 = ΣΣ(Χ抑·仰 + /=1 /=1 f 其中:R與天線1與2之間的交叉協方差相關;i、j係與 量測樣本之角位置有關之指數;Arp代表0角度之數量;且 代表$角度之數量。 因此’包絡相關性為: A=N1 σ1·σ2 於此等計算中,(入射場之極化比)之值及&和Α功能 之形式取決於RF環境(例如市區、郊外、鄉村、公路等)。 124807.doc -51 - 200838180 作為一實例,以下給出針對一具有沿方位角之均勻擴展 及沿仰角之Gaussian擴展之頻道模型之。及心表達形式·· .· -[fall P9i = Pyi = Av-Qxp v W = /W = A·exp L W - 其中:如及W係歸一化常數以便當對該球面範圍積分時。 及7%=1 ; mv、_係相應以料亟化外場之平均到達角度,其 在一實施例中具有mv=5度及%mo度之典型值;且〜、〜 係相應極化外場之角度擴展,其在一實施例中具有 (' 以=15度及σ《=30度之典型值。 然而,應注意,亦可具有其他表達形式。 製作若干具有雙天線之電話實體模型。針對每一測試情 況,量測複式場型並根據該等場型計算衰落相關性。所獲 得的Ρ值介於自0.05至0.98之範圍内。另外,使用相同的實 體模型電話來量測在典型室内環境中由每一天線接收之信 號之間的相關性。該等測試係在由本地pcs服務提供㈣ 覆蓋之區域中實施。 特定而言’參見圖7,看到由賴室2()内之量測所致之 量測"場型"相關性合適i也比擬從原始場量測所獲得之量測 ”場型”相關性。例如,圖表7〇〇包括—對應於量測場型ρ值 t水平轴線702及-對應於場p值之垂直軸線綱,其用 於’ t活706 ’其具有一連接至一分路器且在非視線 ("NLOS")條件(室内)下量測之單個偶極天線;一電話 ,其具有兩對在接近視線("L〇s")條件下狀B分離在 -屋頂上量測之偶極天線;一電話71〇,其具有兩對在 124807.doc •52- 200838180 NLOS條件下以〇.〇5λ分離量測之偶極天 712,其具有在肌⑽ “式電話 俅件下里測之一個外部天線及一個 部天線;-蛤殼式電話714,彡具有在肌⑽條件下量 一個外部天線及一個内部天線;一電話716,其具有一 NL0S條件下量測之雙短粗外部天線;及一電話μ,其具 有在NL0S條件下量測之_短粗外部天線及—内部天線。、EW^yfyEiv^vf] can be used in the previous formula for a wireless device 12 having an antenna system 72 including a dual antenna to measure the complex antenna field at a discrete angle within a field of view of 4π steradian. , 5 02, 5 % Calculate Pe by the following formula: Ν φ ΝΘ Ν φ ΝΘ σ1 = Σ Σ ^XPR · Ε θι^ j · Ε ΘΫ /, ;. Ρ β + Εψ\ί, j · ΕφΫ /, j. Ρφ) Sin 6i. Δ 0. Δ(ζί Νφ ΝΘ σ2 = ΣΣ(ΧΧ·仰+ /=1 /=1 f where: R is related to the cross-covariance between antennas 1 and 2; i, j-system and quantity The index of the angular position of the sample is measured; Arp represents the number of 0 angles; and represents the number of angles. Therefore, the envelope correlation is: A = N1 σ1 · σ2 In these calculations, (polarization ratio of the incident field) The value and the form of the & Α function depend on the RF environment (eg urban, suburban, rural, highway, etc.) 124807.doc -51 - 200838180 As an example, the following gives a uniform spread along azimuth And the channel model of the Gaussian extension along the elevation angle. And the expression of the heart····[fall P9i = Pyi = Av-Qxp v W = /W = A· Exp LW - where: if the W system normalizes the constant so as to integrate the spherical range, and 7% = 1; mv, _ corresponds to the average angle of arrival of the external field, which in one embodiment There is a typical value of mv = 5 degrees and % mo degrees; and ~, ~ are angular extensions of the corresponding polarized outer field, which in one embodiment have a typical value of ''==15 degrees and σ<=30 degrees. However, it should be noted that there may be other forms of expression. A number of telephone entity models with dual antennas are produced. For each test case, the complex field patterns are measured and the fading correlation is calculated according to the field types. In the range from 0.05 to 0.98. In addition, the same physical model phone is used to measure the correlation between signals received by each antenna in a typical indoor environment. These tests are provided by the local pcs service (4) In the area of implementation. In particular, 'see Figure 7, seeing the measurement caused by the measurement in the room 2 () "field type" correlation is also suitable for the original field measurement Measure the "field type" correlation. For example, Figure 7〇〇 includes - The measured field type ρ value t horizontal axis 702 and - corresponds to the vertical axis of the field p value, which is used to 't live 706' which has a connection to a splitter and is in a non-line of sight ("NLOS" a single dipole antenna measured under conditions (indoor); a telephone with two pairs of dipole antennas measured on the roof in close proximity to the line of sight ("L〇s"); a telephone 71〇, which has two pairs of dipole days 712 measured by 〇.〇5λ under the conditions of 124807.doc •52- 200838180 NLOS, which has an external antenna measured under the muscle (10) “phone case and a partial antenna; a clamshell phone 714, having an external antenna and an internal antenna under muscle (10) conditions; a telephone 716 having a double short and thick external antenna measured under a NL0S condition; and a telephone μ It has a short-thick external antenna and an internal antenna measured under the NL0S condition. ,
因此’圖表7GG指示根據該等場型及場資料所計算之心幾 乎鋪設在彼此頂上以達成一大的(3值範圍。 由於$測場型p’s與場p,s之間的相關性,因此該等結果 確涊可根據所述實施例來實施實驗室測試,以評估雙天線 具備分集能力之無線裝置之分集效能而不必採取廣泛的場 測試。 此外,參見圖8,一表800包括一使用來自一演示電話之 量測輕射場型針對不同頻道模型8〇4所計算p,s 802之實 例。在此情況下,頻道模型8〇4包括一室内環境,該室内 環扰具有一外部基地台收發機、一市區微小區、市區巨集 小區及一公路巨集小區。此外,每一頻道模型8〇4皆包括 不同的一組變數806。例如,在此情況下,變數8〇6包括極 化波m、角度擴展〇及極化比χρκ。應注意,用於頻道模型 之統計資料係來自由Kalli〇la等人所實施之量測,參見 IEEE Transactions on Vehicular Technology (2002年 9 月第 5 期弟 51 卷)’ "Angular Power Distribution and Mean Effective Gain of Mobile Antennas In Different Propagation Environments”,此文件以引用的方式倂入本文中。根據此 124807.doc -53- 200838180 等计异結果,所述設備及方法提供一種用於使用複式輻射 場型來估計行動環境中雙天線之間的衰落相關性以特徵化 具備分集能力之無線裝置之分集效能之健全的方法。 因此,在所述實施例中,可在一單個測試期間確 線裝置之一個或多個預定輻射效能特性,其中該無線裝置 沒有連接電纜,且其中該無線裝置將其自身的量測值連同 同步資料記錄於一駐存記憶體中。例如,該等輻射效能特 性可包括TIS值、TRP值及包絡相關性仏。根據本文中所述 之量測,該輻射效能特性之計算值隨後可與其一預定臨限 值(例如可由一網路運營商、一製造商或標準團體所設定 之預定臨限值)相比較,以確定一該無線裝置之輻射效能 可接受性、認可及/或驗證。 仏官上文揭示内谷顯示了各說明性實施例,但應注音, 在不脫離隨附申請專利範圍所定義之本發明範轉前提下, 可對該等實施例進行各種改變及修改。此外,儘管本文可 能以單數來闡釋或請求所述實施例之元件,但本發明亦涵 蓋複數,除非已明確地聲明限制為單數。 【圖式簡單說明】 圖1係一用於確定一無線裝置之一輻射效能之系統的一 個實施例之不意圖, 圖2係一用於圖1之系統中之無線裝置的一個實施例之示 意圖; 圖3係一可在圖1之無線裝置上運作之使用者介面/檢視 晝面的一個實施例之示意圖; 124807.doc -54- 200838180 圖4係一用於圖丨之系統中之控制器系統的一個實施例之 示意圖; 圖5係一由圖丨之無線裝置及/或控制器系統使用之預定 輻射效能測試之組件的一個實施例之示意圖; 圖6係一與圖4之控制器系統相關聯之控制測試日誌的一 個實施例之示意圖; 圖7係一可運作於用於確定圖1之無線裝置之一輻射效能 ^、 之無線裝置上之方法的一個實施例之流程圖; 圖8係一可運作於例如控制器系統之設備上用於確定圖1 之無線裝置之一輻射效能之方法的一個實施例之流程圖; 圖9係一根據所述實施例自複式輻射場型量測之天線rh〇 值與針對多個不同類型之電話而於場中量測之天線p值相 比較的圖表;及 圖10係一根據所述實施例包括針對多個表示具有不同行 為之入局電磁場之不同環境或頻道模型的所計算之rho值 ί 之表0 【主要元件符號說明】 10 糸統 12 無線裝置 14 控制器系統 16 控制信號 18 無線電波信號 20 測試室 22 位置 124807.doc -55- 200838180 1 24 預定輻射效能測試 26 定位分量 28 定位系統 30 傳訊分量 32 無線電信號系統 34 參考信號特性 36 預定同步資料 38 量測信號特性 40 輻射效能測試模組 42 輻射效能特性 44 測試管理器模組 46 無線電波信號 48 參考信號特性 50 量測信號特性 52 輸入機件 54 輸出機件 56 電腦平臺 58 資料儲存庫 60 處理引擎 62 應用程式化介面層 64 處理子系統 66 通信模組 67 通信模組 68 發射機模組 124807.doc -56- 200838180 70 接收機模組 72 天線糸統 74 效能邏輯 75 檢視晝面 76 裝置測試組態 77 標頭資訊 78 日諸參數 79 頁尾貧訊 80 測試變數 80 測試變數 81 命令 82 接收機資料 83 可變欄位 84 發射機資料 86 裝置測試曰諸 88 裝置分析器模組 90 分析協定 92 輸入機件 94 輸出機件 96 電腦平臺 98 儲存機件 100 中央處理單元 102 通信模組 104 管理邏輯 -57-Therefore, 'Graph 7GG indicates that the heart calculated according to the field type and field data is almost laid on top of each other to achieve a large (3 value range. Because of the correlation between the field type p's and the field p, s, These results confirm that laboratory testing can be performed in accordance with the described embodiments to evaluate the diversity performance of a dual antenna capable diversity capable wireless device without having to take extensive field testing. Furthermore, referring to Figure 8, a table 800 includes a use. The measurement light field type from a demo phone is an example of p, s 802 calculated for different channel models 8〇4. In this case, the channel model 8〇4 includes an indoor environment, the indoor ring disturbance has an external base station The transceiver, an urban micro cell, the urban macro cell, and a highway macro cell. In addition, each channel model 8〇4 includes a different set of variables 806. For example, in this case, the variable 8〇6 Including polarized wave m, angular spread 〇 and polarization ratio χρκ. It should be noted that the statistics used for the channel model are from the measurements performed by Kalli〇la et al. See IEEE Transactions on Vehicular Technology (2 Volume 5 of September 002, vol. 51, 'Aquot, Angular Power Distribution and Mean Effective Gain of Mobile Antennas In Different Propagation Environments', this document is incorporated by reference. According to this 124807.doc -53- 200838180 Depending on the results, the apparatus and method provide a robust method for using the complex radiation pattern to estimate the fading correlation between two antennas in a mobile environment to characterize the diversity performance of a wireless device with diversity capabilities. In the described embodiment, one or more predetermined radiation performance characteristics of the device may be determined during a single test, wherein the wireless device has no connection cable, and wherein the wireless device has its own measured value along with the synchronization data Recorded in a resident memory. For example, the radiation performance characteristics may include a TIS value, a TRP value, and an envelope correlation 仏. The calculated value of the radiation performance characteristic may then be predetermined with a measurement according to the measurements described herein. Threshold (eg, a predetermined threshold set by a network operator, a manufacturer, or a standards body) Comparing to determine the acceptability, approval, and/or verification of the radiation performance of the wireless device. The above disclosure shows that each of the illustrative embodiments, but should be phonetic, without departing from the scope of the accompanying claims Various changes and modifications may be made to the embodiments without departing from the spirit and scope of the invention. In addition, although the elements of the described embodiments may be illustrated or claimed in the singular. 1 is a schematic diagram of an embodiment of a system for determining the radiation performance of a wireless device, and FIG. 2 is a diagram of a wireless device for use in the system of FIG. 1. 3 is a schematic diagram of an embodiment of a user interface/viewing surface that can operate on the wireless device of FIG. 1; 124807.doc -54- 200838180 FIG. 4 is a system for drawing A schematic diagram of one embodiment of a controller system; FIG. 5 is an illustration of one embodiment of a predetermined radiation performance test component used by the wireless device and/or controller system of the figure Figure 6 is a schematic diagram of one embodiment of a control test log associated with the controller system of Figure 4; Figure 7 is a wireless device operable to determine one of the wireless devices of Figure 1 Figure 8 is a flow diagram of one embodiment of a method for operating on a device such as a controller system for determining the radiation performance of one of the wireless devices of Figure 1; Figure 9 is a A graph comparing the antenna rh value of the self-recovering radiation pattern measurement according to the embodiment with an antenna p value measured in the field for a plurality of different types of telephones; and FIG. 10 is a diagram according to the implementation Examples include a table of calculated rho values for a plurality of different environmental or channel models representing incoming electromagnetic fields having different behaviors. [Key element symbol description] 10 System 12 Wireless device 14 Controller system 16 Control signal 18 Radio waves Signal 20 Test Room 22 Location 124807.doc -55- 200838180 1 24 Scheduled Radiation Effectiveness Test 26 Positioning Component 28 Positioning System 30 Signaling Component 32 Radio Signal System 34 Reference Signal Characteristics 36 Predetermined Synchronization Data 38 Measurement Signal Characteristics 40 Radiation Performance Test Module 42 Radiation Performance Characteristics 44 Test Manager Module 46 Radio Wave Signals 48 Reference Signal Characteristics 50 Measurement Signal Characteristics 52 Input Mechanism 54 Output Mechanism 56 Computer platform 58 data repository 60 processing engine 62 application programming interface layer 64 processing subsystem 66 communication module 67 communication module 68 transmitter module 124807.doc -56- 200838180 70 receiver module 72 antenna system 74 performance Logic 75 Viewing the surface 76 Device test configuration 77 Header information 78 Day parameters 79 End of the page 80 Test variable 80 Test variable 81 Command 82 Receiver data 83 Variable field 84 Transmitter data 86 Device test 曰 88 Device analyzer module 90 analysis protocol 92 input device 94 output device 96 computer platform 98 storage device 100 central processing unit 102 communication module 104 management logic -57-
124807.doc 200838180 106 程式庫 108 預定輻射效能測試 110 位置 112 預定ΟΤΑ資料 114 時間貧訊 116 位置資訊 118 時間模組 120 附加ΟΤΑ資料 122 控制測試日諸 126 控制接收機資料 128 控制發射機資料 130 效能分析器模組 132 同步邏輯 134 同步資料日誌 136 定位控制器 138 定位器組合件 140 安裝機件 142 通信模擬器模組 144 天線 146 定位器 148 RF功率計 150 壁 152 吸波材料 700 圖表 124807.doc -58· 200838180 702 水平轴線 704 垂直軸線 706 電話 708 電話 710 電話 712 蛤殼式電話 714 蛤殼式電話 716 電話 Γ 718 電話 800 表 802 p’s 804 頻道模型 806 變數 c •59- 124807.doc124807.doc 200838180 106 Library 108 Scheduled Radiation Effectiveness Test 110 Location 112 Scheduled Information 114 Timeline 116 Location Information 118 Time Module 120 Additional Data 122 Control Test Days 126 Control Receiver Data 128 Control Transmitter Data 130 Performance Analyzer Module 132 Synchronization 134 Synchronization Data Log 136 Positioning Controller 138 Positioner Assembly 140 Mounting Mechanism 142 Communication Simulator Module 144 Antenna 146 Positioner 148 RF Power Meter 150 Wall 152 Absorbing Material 700 Chart 124807.doc -58· 200838180 702 Horizontal axis 704 Vertical axis 706 Telephone 708 Telephone 710 Telephone 712 Clamshell telephone 714 Clamshell telephone 716 Telephone Γ 718 Telephone 800 Table 802 p's 804 Channel model 806 Variable c • 59- 124807.doc
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US84303506P | 2006-09-08 | 2006-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200838180A true TW200838180A (en) | 2008-09-16 |
Family
ID=41003597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096133774A TW200838180A (en) | 2006-09-08 | 2007-09-10 | Radiated performance of a wireless device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101512941B (en) |
TW (1) | TW200838180A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI453675B (en) * | 2008-10-06 | 2014-09-21 | Elektrobit System Test Oy | Over-the-air test |
TWI797887B (en) * | 2021-12-14 | 2023-04-01 | 聯發科技股份有限公司 | Testing method and testing system for determining radiation performance of a device under test (dut) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103119875B (en) * | 2010-08-13 | 2016-06-22 | 英特尔公司 | For distributing the technology controlling channel |
BR112013006653B1 (en) * | 2010-10-04 | 2021-03-16 | Telefonaktiebolaget L M Ericsson (Publ) | method on a network node, network node, method on a user device and user device to assist in network-based control of report messages on a wireless communications network |
US9319908B2 (en) | 2011-10-12 | 2016-04-19 | Apple Inc. | Methods for reducing path loss while testing wireless electronic devices with multiple antennas |
CN102833017B (en) * | 2012-08-21 | 2014-09-03 | 北京众谱达科技有限公司 | Quick test method for omnidirectional radiation power of mobile phone |
US8824588B2 (en) * | 2012-12-10 | 2014-09-02 | Netgear, Inc. | Near-field MIMO wireless transmit power measurement test systems, structures, and processes |
CN103384835B (en) * | 2012-12-31 | 2015-09-30 | 华为技术有限公司 | Active antenna Pattern measurement system and method |
CN104038294B (en) * | 2013-03-06 | 2016-12-28 | 光宝电子(广州)有限公司 | Wireless test system and apply its measuring method |
CN103257282B (en) * | 2013-05-02 | 2016-01-13 | 惠州Tcl移动通信有限公司 | A kind of terminal antenna TRP method for rapidly testing |
CN103336181B (en) * | 2013-05-28 | 2015-10-07 | 惠州Tcl移动通信有限公司 | A kind of GPS OTA method of testing and system |
CN104422826A (en) * | 2013-08-19 | 2015-03-18 | 鸿富锦精密电子(天津)有限公司 | Anechoic chamber and electric wave test device thereof |
CN106817719B (en) * | 2017-02-06 | 2019-07-16 | 上海鸿洛通信电子有限公司 | TRP test method and device based on tdd mode |
CN109813966A (en) * | 2017-11-21 | 2019-05-28 | 韩劝劝 | Router radiometric analysis system |
CN108833028B (en) * | 2018-04-25 | 2021-05-28 | 深圳市共进电子股份有限公司 | Radiation power testing device |
CN109581080B (en) * | 2018-12-21 | 2022-03-25 | 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) | Aerial test equipment for evaluating short wave antenna performance |
CN110501667B (en) * | 2019-08-02 | 2023-07-21 | 西安飞机工业(集团)有限责任公司 | Test system and ground test method of ultrashort wave orientation instrument |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1027026C (en) * | 1992-05-23 | 1994-12-14 | 北方交通大学 | Sine measuring method for radio interference propagation characteristic of electrified railway |
-
2007
- 2007-09-10 CN CN2007800329017A patent/CN101512941B/en active Active
- 2007-09-10 TW TW096133774A patent/TW200838180A/en unknown
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI453675B (en) * | 2008-10-06 | 2014-09-21 | Elektrobit System Test Oy | Over-the-air test |
US9786999B2 (en) | 2008-10-06 | 2017-10-10 | Keysight Technologies Singapore (Holdings) Pte. Ltd. | Over-the-air test |
US11152717B2 (en) | 2008-10-06 | 2021-10-19 | Keysight Technologies Singapore (Sales) Pte. Ltd. | Over-the-air test |
TWI797887B (en) * | 2021-12-14 | 2023-04-01 | 聯發科技股份有限公司 | Testing method and testing system for determining radiation performance of a device under test (dut) |
Also Published As
Publication number | Publication date |
---|---|
CN101512941B (en) | 2013-11-06 |
CN101512941A (en) | 2009-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200838180A (en) | Radiated performance of a wireless device | |
JP5502478B2 (en) | Radiation performance of radio equipment | |
JP4625087B2 (en) | System, method and apparatus for determining radiation performance of a wireless device | |
CN100592090C (en) | Methods and apparatus for determining a radiated performance of a wireless device | |
US9660739B2 (en) | System and methods of testing adaptive antennas | |
JP6690009B2 (en) | Motion detection based on iterative wireless transmission | |
US7797132B1 (en) | Benchmarking and testing GPS performance on communication devices | |
US20130271317A1 (en) | Methods and Apparatus for Testing Satellite Navigation System Receiver Performance | |
US20150025818A1 (en) | Synchronized testing of multiple wireless devices | |
CN110231591A (en) | Method for requesting parallel uplink link radio signals to measure | |
JP2005525541A (en) | Method and apparatus for testing assisted positionable devices | |
KR20070112281A (en) | Apparatus and methods for product acceptance testing on a wireless device | |
CN106896356A (en) | Determine method, position indicating method and its device and system of distance change | |
CN108521876B (en) | Measuring method and device of Bluetooth equipment | |
KR102319704B1 (en) | Measurement system and a method | |
Lauridsen et al. | Verification of 3G and 4G received power measurements in a crowdsourcing Android app | |
CN102237934A (en) | Test method of terminal data transmission performance, system and apparatus thereof | |
JP2010117275A (en) | Multi-antenna measuring system | |
Bielawa | Position location of remote bluetooth devices | |
TWI227079B (en) | Batch testing system and method for wireless communication devices | |
US20240107341A1 (en) | Automated method and system for evaluating mobile applications to facilitate network and/or application remediation | |
US20240036151A1 (en) | Method and apparatus for locating misplaced cell phone with two high accuracy distance measurement (hadm) streams from earbuds and vice versa | |
CN118611783A (en) | Device radiation value determining method, system, electronic device and storage medium | |
WO2024187157A1 (en) | Systems and methods for measurement integration and accurate digital twin creation | |
Bangalan | Client location in 802.11 networks |