TW200838002A - Damascene phase change RAM and manufacturing method - Google Patents
Damascene phase change RAM and manufacturing method Download PDFInfo
- Publication number
- TW200838002A TW200838002A TW96108088A TW96108088A TW200838002A TW 200838002 A TW200838002 A TW 200838002A TW 96108088 A TW96108088 A TW 96108088A TW 96108088 A TW96108088 A TW 96108088A TW 200838002 A TW200838002 A TW 200838002A
- Authority
- TW
- Taiwan
- Prior art keywords
- electrode
- layer
- forming
- electrodes
- insulating member
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
200838002 九、發明說明: 【發明相關申請案】 本發明係為美國專利申請案號11/155,067號之部分連 續案,該母案之申請曰為2005/6/17,並列為本案之參考。 【聯合研究合約之當事人】 紐約國際商業機械公司、台灣旺宏國際股份有限公司 及德國英飛凌技術公司(Infineon Technologies A.G.)係為聯 合研究合約之當事人。 【發明所屬之技術領域】 本發明有關於以相變化記憶材料為基礎的南密度記憶 裝置,以及製造此等裝置的方法,相變化記憶材料包括硫 屬化物材料與其他材料。 【先前技術】 以相變化為基礎之記憶材料係被廣泛地運用於讀寫光 碟片中。這些材料包括有至少兩種固態相,包括如一大部 分為非晶態之固態相,以及一大體上為結晶態之固態相。 雷射脈衝係用於讀寫光碟片中,以在二種相中切換,並讀 取此種材料於相變化之後的光學性質。 如硫屬化物及類似材料之此等相變化記憶材料,可藉 由施加其幅度適用於積體電路中之電流,而致使晶相變 化。一般而言非晶態之特徵係其電阻高於結晶態,此電阻 值可輕易測量得到而用以作為指示。這種特性則引發使用 可程式化電阻材料以形成非揮發性記憶體電路等興趣,此 200838002 電路可用於隨機存取讀寫。 從非S日悲轉邊至結晶態_般係為一低产。" 晶態轉變至非晶態(以下指稱g,。 。k "、口 雷泣牛®\ L軏為重置(reset))一般係為一高 電肌步驟’其包括-㈣的高電流密度脈細融化 結晶結構’其後此相變化材料會快速冷卻,抑制相變化义 過程’使得至少部份相變化結構得以維持在非晶離。理相 狀悲下,致使相變化材料從結晶態轉變至非晶態之重置g ,幅度應越低越好。欲降低重置所需的重置電流幅度,可 藉由減低在記憶體中的相變化材料元件的尺寸、以及 r 電極與此相變化材料之接觸面積而達成,因此可針對此相 變化材料元件施加較小的絕對電流值而達成較高的電流穷 度。 山 此領域發展的一種方法係致力於在一積體電路結構上 形成微小孔洞,並使用微量可程式化之電阻材料填充這些 微小孔洞。致力於此等微小孔洞的專利包括:於1997年 11月11曰公告之美國專利第5,687,^2號,,Multibit Single Cell Memory Element Having Tapered Contact”、發明人為 Ovshinky;於1998年8月4曰公告之美國專利第5,789,277 万虎 Method of Making Chalogenide [sic] Memory Device,,、 發明人為Zahorik等;於2000年11月21日公告之美國專 利第 6,150,253 號” Controllable Ovonic Phase-Change Semiconductor Memory Device and Methods of Fabricating the Same”、發明人為Doan等。 研究同時發現,用以圖案化相變化材料的蚀刻化合 物,可能會因為不均勻地從表面移除相變化材料的成分而 傷害材料的表層。較佳係可保護相變化材料的核心區域不 受到此種傷害。 在以非常小的尺度製造這些裝置、以及欲滿足生產大 尺寸記憶裝置時所需求的嚴格製程變數時,則會遭遇到問 6 200838002 J尺S 2 S :種記憶胞(me_ry,結構其包括有 ϋΐϊϊί電流’以及用以製造此等結構之方法其 係可i供〜ic置時的嚴格製程變數規格。更佳 之周邊電路的製程^構,其係與製造在同—積體電路上 【發明内容】 置述之一相變化隨機存取記憶體pcram裝 記憶裝i,豆包體電路中。在此描述的技術包括-之-i:雷C一了頁侧之一第一電極、具有-頂側 構件。位於第一電極與第二電極之間的絕緣 頂芯?第ij極3、接近第-電極之 橫跨了絕緩爐杜^側處,具有一見度。一鑲嵌薄膜導橋 定義了一電極門路二在第一與第二電極橫跨此絕緣構件處 路度喙極間路徑具有- 而可相或施加電壓於第-與第二電極之間 件的目f化:記憶材料體積可以非常微小,由絕緣構 ===向的路徑長度)、用以形成導橋的薄膜ί 所決及與路徑長度垂直之導橋寬度(ζ方向) 薄膜的戶产、,夂的厚度、以及用以形成導橋之記憶材料 ^的尽度’在各實施例中係由薄膜厚度的形成技術所決 ^,且不限於用以製造記憶胞的微影製程。導橋的亦 明最ί特徵尺寸F,此最小特徵尺寸係為用以在:發 貫轭例中圖案化各材料層所使用的微影製程所擁有。因 ^ 可以輕易地製造相變化記憶胞,其具有簡單的結構並 達成非常小的重置電流以及低功耗的效果。 w 7 200838002 在本發明所述的實施例技術中 列。在此陣列中,複數個電_件^陣 層具有-上表面’其在本發明的某些實施二極 的絕緣構件’並她亟層的上表面上包括C牛=之間 此陣列的每-記憶胞中,建立了從電極層;m 極、穿過-電極層上表面之薄膜導橋 ^ ^ 二電極的電流路徑。 电$層中之一弟 ί 田體電路上之電極層下的電路,可以利 用熟知的#電路技術與記憶陣列電 】 cm〇s技術。在-實施例中,如電晶體之隔 中之-記憶胞而言’-導體在電晶體的終端與第二 間形成導通。根據-代表性實施例’在電極 路 裝置。複,個隔離裝置,具有一第―終端轉== 壓線、一弟二終端、以及一導體延伸 條偏 層之第-電極之間:此第一電極係屬於此陣'列中 記憶胞。此外,也提供了複數條字元線於電極層之下的^ 路中。複數條字元線係耦接至沿著陣列 = 列的記憶胞與複數條偏壓線之一之間的連結。在本發 一陣列實施例中,複數條偏壓線係緊鄰著著陣列中^ 列對(pairs of rows)而安排,且在複數個隔離裝置中 = 隔離裝置(與對應的列對記憶胞耦接)係耦 & 壓線中的一條共用偏壓線。 後双彳汆偏 同時,在本發明的一個陣列實施例中,在電極層上 電路包括複數條位元線。在本發明電極層之上具有&元線 8 200838002 的一個實施例中,電極層中的電極構件作用為一記憶胞的 第一電極,並被共用,使得單一電極構件作用為在該陣列 中的一行記憶胞之二者的第一電極。同時,在本發明的一 實施例中,複數條位元線的位元線係沿著陣列的對應行而 安排,且在此對應行中的二相鄰記憶胞共用一接觸結構, 以接觸至該第一電極。 本發明係描述利用鑲嵌技術以形成相變化元件而製造 一記憶裝置的方法。此方法包括形成一電極層於一基板 上,此基板包括利用前段製程所製造的電路。此方法中的 電極層具有一上表面。對於每一個待形成的相變化記憶胞 而言,電極層包括一第一電極與一第二電極、以及位於第 一與第二電極之間的絕緣構件。第一與第二電極以及絕緣 構件延伸至電極層的上表面,且絕緣構件在第一與第二電 極的上表面之間具有一寬度,如前所述地與相變化記憶胞 結構連接。此方法也包括,對於每一個待形成的記憶胞而 言,利用鑲嵌技術(包括在一層電極上的材料中蝕刻一溝 槽,並以記憶材料填充此溝槽以形成一鑲嵌導橋)形成記 憶材料導橋於電極層的上表面上、橫跨絕緣構件處。此導 橋包括一記憶材料薄膜其具有第一側與第二側,並以第一 側接觸至第一與第二電極。導橋在第一與第二電極之間、 橫跨絕緣構件處,定義了 一電極間路徑,其路徑長度係由 絕緣構件的寬度所定義。在此方法的實施例中,係藉由形 成一圖案化導體層於導橋之上、接著在該第一電極與該圖 案化導體層之間形成接觸,以製造一存取結構於電極層之 上0 在本發明的實施例中,一種用以形成鑲嵌導橋的方法 包括: 形成一介電層於該電極層上; 於該介電層中姓刻一溝槽陣列; 9 200838002 /二尤積> 層兄I思材料於該溝槽陣列中之該些溝槽之中,以 鑲肷圮憶材料塊陣列於該電極層之上表面之上,鑲 斗塊陣列包括對應至該電極對陣列中之每一電極 ,,圮憶材料塊,其接觸至對應之第一與第二電極、 愔應之絕緣構件,這些鑲嵌記憶材料塊包括記 i對應k兮二ΐΐ:第—侧與一第二側、並以第一側接觸 一位二今了二第二電極,這些鑲礙記憶材料塊係定義 徑,心二ϊί二電極間且橫跨該絕緣構件之電極間路 ;構;;有:路徑長度’該路徑長度係由該絕 極對=列中^該鑲敌記憶材料塊之上,並於電 -接點陣歹V 與該圖案化導電層之間,形成 法,可以中的:記憶胞内形成鑲嵌導橋的方 微小導橋結構的非的J橋。具有非常 式化電阻材料而提供。衣置’係利用相變化以外的可程 接近於主相變化導橋的技術’不會將 刻化合物可能會傷害;變刻?合物’因為钱 充以及研磨製程,將 ^枓的表層,猎由使用鑲嵌填 研磨化合物cT 、 _把導橋的核心區域暴露至蝕刻或 明章ΐΓΓί,說明本發明之結構與方法。本發明内容說 二義本發明:本發明係由⑵範 可透過下列朗直=實施例特徵、目的及優點等將 卜夕h兄明申睛專利範圍及所附圖式獲得充分瞭解。 【實施方式】 關於薄膜保險絲相變化記憶胞、此記憶胞之陣列、以 200838002 及用以製造此記憶胞之方法,係參照第1J7圖而進行詳細 描述。 第1圖繪示了記憶胞10的基本結構,包括位於電極層 之上的記憶材料導橋11,此電極層包括一第一電極12、一 第二電極13、以及位於第一電極12與第二電極13之間的 絕緣構件14。如前所述,第一電極與第二電極12,13分別 具有上表面12a,13a。相似地,絕緣構件14具有上表面 14a。在電極層中之各結構的上表面12a,13 a,14a定義了電 極層的實質平坦上表面,如所繪示的實施例。記憶材料導 f 橋11位於電極層的平坦上表面之上,使得位於第一電極 12與導橋11之間、以及位於第二電極13與導橋11之間的 接觸,係位於導橋11的底側。 第2圖繪示了位於第一電極12、導橋11、以及第二電 極13之間,由記憶胞結構所形成的電流路徑15。可以實 施存取電路而以不同之組態接觸至第一電極12與第二電 極13,進而控制記憶胞的操作,使得記憶材料導橋11可 以被程式化而可逆地設置於至少二固態相之一。舉例而 言,使用硫屬化物為基礎的相變化記憶材料,此記憶胞可 以被設置至相對高電阻率的狀態,其中此導橋11位於電流 : 路徑15中的至少一部份係為非晶態,並且可被設置至一相 對低電阻率狀態,其中此導橋11在電流路徑15中的大部 分仍為結晶悲。 第3圖繪示了導橋11的主動通道16,其中主動通道 16係為記憶材料被誘發而在至少二固態相之間切換的區 域。可以理解的是,在例示結構中主動通道16可以非常微 小,減少用以誘發相變化所需要的電流幅度。 第4圖緣示了記憶胞10的重要尺寸。主動通道在電極 間路徑長度L ( X方向),係由絕緣構件14 (在圖中稱為通 道介電質)介於第一電極12與第二電極13之間的厚度所 11 200838002 定義。在記憶胞的實施例中,此長度L可以藉由控制絕緣 構件14的寬度而改變。在代表性實施例中,絕緣構件14 的寬度可以利用薄膜沈積技術而決定,此薄膜沈積技術係 用以形成一薄膜侧壁介電質於一電極堆疊的侧邊。因此, 記憶胞的實施例中,絕緣構件14的寬度、以及伴隨的路徑 長度L係少於100 nm。其他實施例可以具有路徑長度L大 約為40 nm或以下。在其他實施例中,路徑長度L可以少 於20 nm。可以理解的是,路徑長度L甚至可以小於20 nm, 根據特定應用的需求,而使用如原子層沈積等薄膜沈積技 f 術而達成。 ' 相似地,在記憶胞的實施例中,導橋厚度T (y方向) 可以非常微小。導橋厚度T可以利用薄膜沈積技術而建立 於第一電極12、絕緣構件14、以及第二電極13的上表面 上。因此,記憶胞的實施例具有導橋厚度T為50 nm或以 下。其他記憶胞的實施例具有導橋厚度為20 nm或以下。 其他實施例中,導橋厚度T為10 nm或以下。可以理解的 是,導橋厚度T甚至可以少於10 nm,根據特定應用的需 求,而使用如原子層沈積等薄膜沈積技術而達成,只要此 厚度足以令導橋實施其記憶元件之功能,亦即具有至少二 ; 固態相、由一電流或將電壓施加於第一電極12與第二電極 13之間而可逆地誘發。 如第4圖所示,導橋寬度W(z方向)也可非常微小。 在較佳實施例中,導橋寬度W係利用鑲嵌製程而實施,使 得其具有小於100 nm的寬度。在某些實施例中,導橋寬度 W係為約40 nm或以下。 記憶材料的實施例包括了相變化為基礎的記憶材料, 包括以硫屬化物為基礎與的材料與其他材料做為導橋11。 硫屬化物包括下列四元素之任一者:氧(Ο )、硫(S )、石西 (Se)、以及碲(Te),形成元素週期表上第VI族的部分。 12 200838002 硫物包括將一硫屬元素與一更為正電性之元素或自由 基結合而得。硫屬化合物合金包括將硫屬化合物盥豆他物 質^過渡金屬等結合。一硫屬化合物合金通常包括一個以 上k自元週期表第六欄的元素,例如錯(Ge )以及錫 jSn)。通常,硫屬化合物合金包括下列元素中一個以上的 ,合物:錄(Sb)、鎵(Ga)、銦(In)、以及銀(Ag)。許 多以相變化為基礎之記憶材料已經被描述於技術文件中, ^括下列合金·鎵/銻、銦/録、銦/砸、銻/碲、鍺/碲、鍺/ 銻/碲、銦/錄/碲、鎵/石西/締、鍚/錄/碎、銦/銻/鍺、銀/銦/錄 Γ /碲、鍺/錫/錄/碲、錯/銻/砸/碌、以及碲/鍺/銻/硫。在鍺/錄 /碲合金,家族中,可以嘗試大範圍的合金成分。此成分可以 下列特彳政式表示:TeaGebSbioo^a,。一位研究員描述了最有 用的合金係為,在沈積材料中所包含之平均碲濃度係遠低 於70%,典型地係低於60%,並在一般型態合金中的碲含 量範圍從最低23%至最高58%,且最佳係介於48%至58% 之碲含量。鍺的濃度係高於約5%,且其在材料中的平均範 圍係從最低8%至最高30%,一般係低於50%。最佳地,鍺 的濃度範圍係介於8%至40%。在此成分中所剩下的主要成 分則為銻。上述百分比係為原子百分比,其為所有組成元 I 素加總為100%。( Ovshinky ‘112專利,欄10〜11 )由另一 研究者所評估的特殊合金包括Ge2Sb2Te5、GeSb2Te4、以及</ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; [Parties to the Joint Research Contract] New York International Business Machines Corporation, Taiwan Wanghong International Co., Ltd. and Infineon Technologies A.G. are the parties to the joint research contract. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a south density memory device based on phase change memory materials, and a method of fabricating such devices, the phase change memory material comprising a chalcogenide material and other materials. [Prior Art] Memory materials based on phase change are widely used in reading and writing optical discs. These materials include at least two solid phases, including, for example, a solid phase that is largely amorphous, and a solid phase that is substantially crystalline. Laser pulses are used to read and write optical discs to switch between the two phases and to read the optical properties of such materials after phase changes. Such phase change memory materials, such as chalcogenides and the like, can be altered by applying a current whose amplitude is applied to the integrated circuit. In general, the amorphous state is characterized by a higher electrical resistance than the crystalline state, and this resistance value can be easily measured and used as an indication. This feature has led to interest in the use of programmable resistive materials to form non-volatile memory circuits. This 200838002 circuit can be used for random access. From the non-S day sorrow to the crystalline state _ like a low yield. " The crystalline state transitions to the amorphous state (hereinafter referred to as g, . k ", the mouth of the weeping cow® \ L軏 is reset) is generally a high-electromusic step 'it includes - (four) high The current density pulse melts the crystalline structure 'after which the phase change material rapidly cools, suppressing the phase change process' so that at least part of the phase change structure is maintained at amorphization. Under the sorrow of the phase, the phase change of the phase change material from the crystalline state to the amorphous state, the lower the better. To reduce the magnitude of the reset current required for resetting, this can be achieved by reducing the size of the phase change material component in the memory and the contact area of the r electrode with the phase change material, so that the material component can be changed for this phase A lower absolute current value is applied to achieve a higher current excess. A method developed in this field is to create tiny holes in an integrated circuit structure and fill these tiny holes with a trace of programmable resistance material. The patents dedicated to such microscopic holes include: U.S. Patent No. 5,687,^2, published November 11, 1997, Multibit Single Cell Memory Element Having Tapered Contact, inventor Ovshinky; August 4, 1998 U.S. Patent No. 5,789,277, Method of Method of Memory Chalogenide [sic] Memory Device,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Of Fabricating the Same", the inventor is Doan et al. The study also found that the etching compound used to pattern the phase change material may damage the surface layer of the material by unevenly removing the composition of the phase change material from the surface. The core area of the phase change material can be protected from such damage. When manufacturing these devices on very small scales and the rigorous process variables required to produce large size memory devices, you will encounter the question 6 200838002 J S 2 S: a kind of memory cell (me_ry, the structure includes ϋΐϊϊί current' and In order to manufacture such structures, it is possible to provide a strict process variable specification for the ~ic set. A better process of the peripheral circuit is fabricated and fabricated on the same-integrated circuit. Phase change random access memory pcram memory device i, bean package circuit. The technology described herein includes -i: Ray C has one of the page side of the first electrode, has a top side member. Located at the first The insulating top core between the electrode and the second electrode? The ij pole 3, close to the first electrode, spans the side of the slow furnace, and has a visibility. A mosaic film guide defines an electrode gate two in the first The first electrode and the second electrode have a path between the dipoles across the insulating member - and phase or voltage can be applied between the first and second electrodes: the volume of the memory material can be very small, by the insulating structure ===path length of the path), the film used to form the bridge ί, the width of the bridge perpendicular to the path length (ζ direction), the thickness of the film, the thickness of the crucible, and the memory used to form the bridge The material 'bestness' is formed by the film thickness in each embodiment. The method is not limited to the lithography process for fabricating the memory cell. The guide bridge also has the best feature size F, which is used to pattern each material layer in the stencil yoke example. The lithography process has the advantage that the phase change memory cell can be easily fabricated, which has a simple structure and achieves very small reset current and low power consumption. w 7 200838002 is listed in the technology of the embodiment of the present invention. In this array, a plurality of electrical layers have an upper surface 'which is in some embodiments of the present invention's two-pole insulating member' and on the upper surface of her layer includes C cow = between each of this array - In the memory cell, a current path from the electrode layer; the m-pole, through the thin film viaduct on the upper surface of the electrode layer, is established. One of the electrician's layers is the circuit under the electrode layer on the field circuit, which can be used by the well-known #circuit technology and memory array. In the embodiment, as in the case of the memory cell - the conductor - the conductor forms a conduction between the terminal and the second of the transistor. According to the - representative embodiment, the electrode path device. The plurality of isolation devices have a first-terminal turn==press line, a second-second terminal, and a first electrode of a conductor extension strip: the first electrode belongs to the memory cell in the array. In addition, a plurality of word lines are provided in the path below the electrode layer. A plurality of word line lines are coupled to a link between the memory cell along the array = column and one of the plurality of bias lines. In an array embodiment of the present invention, a plurality of bias lines are arranged next to the pairs of rows in the array, and in a plurality of isolation devices = isolation devices (coupled to corresponding column pairs of memory cells) Connect) a common bias line in the & crimp line. In the case of an array embodiment of the present invention, the circuit includes a plurality of bit lines on the electrode layer. In one embodiment having & element line 8 200838002 above the electrode layer of the present invention, the electrode members in the electrode layer act as a first electrode of a memory cell and are shared such that a single electrode member acts in the array The first electrode of both of the rows of memory cells. Meanwhile, in an embodiment of the invention, the bit lines of the plurality of bit lines are arranged along corresponding rows of the array, and the two adjacent memory cells in the corresponding row share a contact structure to contact The first electrode. The present invention describes a method of fabricating a memory device using damascene techniques to form phase change elements. The method includes forming an electrode layer on a substrate including circuitry fabricated using a front-end process. The electrode layer in this method has an upper surface. For each phase change memory cell to be formed, the electrode layer includes a first electrode and a second electrode, and an insulating member between the first and second electrodes. The first and second electrodes and the insulating member extend to the upper surface of the electrode layer, and the insulating member has a width between the upper surfaces of the first and second electrodes, as described above, connected to the phase change memory cell structure. The method also includes, for each memory cell to be formed, forming a memory using a damascene technique (including etching a trench in a material on a layer of electrodes and filling the trench with a memory material to form a damascene viaduct) The material is bridged on the upper surface of the electrode layer across the insulating member. The bridge includes a film of memory material having a first side and a second side and contacting the first and second electrodes with a first side. The bridge is defined between the first and second electrodes across the insulating member and defines an inter-electrode path whose path length is defined by the width of the insulating member. In an embodiment of the method, an access structure is formed on the electrode layer by forming a patterned conductor layer over the viaduct and then forming a contact between the first electrode and the patterned conductor layer. In the embodiment of the present invention, a method for forming a damascene viaduct includes: forming a dielectric layer on the electrode layer; engraving a trench array in the dielectric layer; 9 200838002 / 二尤a stack of materials in the trenches in the array of trenches, an array of inlaid material blocks over the upper surface of the electrode layer, the array of inlay blocks including corresponding to the pair of electrodes Each of the electrodes in the array, the memory material block, is in contact with the corresponding first and second electrodes, the insulating member of the corresponding electrode, and the blocks of the mosaic memory material include the corresponding k兮二ΐΐ: the first side and the first The second side, and the first side contacts a second electrode, the second electrode, the memory material block defines the diameter, the electrode between the two electrodes and the electrode between the electrodes; There is: path length 'the length of the path is determined by the pole pair = column ^ Over the memory material block, and electrical - V bad connection between the lattice patterned conductive layer forming method may be of: forming a non-conductive micro-bridge square of J-bridge structure embedded within the memory cell is conductive bridge. Available with a very structured resistor material. The clothing's use of a technique other than the phase change that is close to the main phase change guide' does not cause the compound to be damaged; The composition of the present invention will be described by the method of charging and polishing, the surface layer of the crucible, and the core region of the viaduct being exposed to the etching or the seal by using the inlaid abrasive compound cT, _. The invention is described in the following: (2) The invention can be fully understood through the following features, objects and advantages of the embodiment of the present invention. [Embodiment] A thin film fuse phase change memory cell, an array of the memory cell, 200838002, and a method for manufacturing the memory cell are described in detail with reference to Fig. 1J7. FIG. 1 illustrates the basic structure of the memory cell 10, including a memory material vial 11 above the electrode layer, the electrode layer including a first electrode 12, a second electrode 13, and a first electrode 12 and a first electrode The insulating member 14 between the two electrodes 13. As previously described, the first and second electrodes 12, 13 have upper surfaces 12a, 13a, respectively. Similarly, the insulating member 14 has an upper surface 14a. The upper surface 12a, 13a, 14a of each of the structures in the electrode layer defines a substantially flat upper surface of the electrode layer, as in the illustrated embodiment. The memory material guide 14 is located above the flat upper surface of the electrode layer such that the contact between the first electrode 12 and the via 11 and between the second electrode 13 and the via 11 is located at the via 11 Bottom side. Figure 2 illustrates a current path 15 formed by the memory cell structure between the first electrode 12, the via 11 and the second electrode 13. The access circuit can be implemented to contact the first electrode 12 and the second electrode 13 in different configurations, thereby controlling the operation of the memory cell, so that the memory material bridge 11 can be programmatically reversibly disposed in at least two solid phases One. For example, using a chalcogenide-based phase change memory material, the memory cell can be set to a relatively high resistivity state, wherein the via 11 is at current: at least a portion of the path 15 is amorphous State, and can be set to a relatively low resistivity state, wherein the majority of the via 11 in the current path 15 remains crystalline. Figure 3 depicts the active channel 16 of the vial 11, wherein the active channel 16 is the region in which the memory material is induced to switch between at least two solid phases. It will be appreciated that the active channel 16 can be very small in the illustrated configuration, reducing the magnitude of the current required to induce phase changes. The fourth figure shows the important size of the memory cell 10. The path length L (X direction) of the active channel between the electrodes is defined by the thickness of the insulating member 14 (referred to as a channel dielectric in the drawing) between the first electrode 12 and the second electrode 13 200838002. In the embodiment of the memory cell, this length L can be changed by controlling the width of the insulating member 14. In a representative embodiment, the width of the insulating member 14 can be determined by thin film deposition techniques used to form a thin film sidewall dielectric on the side of an electrode stack. Therefore, in the embodiment of the memory cell, the width of the insulating member 14 and the accompanying path length L are less than 100 nm. Other embodiments may have a path length L of about 40 nm or less. In other embodiments, the path length L can be less than 20 nm. It will be appreciated that the path length L can be even less than 20 nm, depending on the needs of the particular application, using thin film deposition techniques such as atomic layer deposition. Similarly, in embodiments of the memory cell, the via thickness T (y direction) can be very small. The bridge thickness T can be established on the upper surfaces of the first electrode 12, the insulating member 14, and the second electrode 13 by a thin film deposition technique. Thus, embodiments of the memory cell have a via T thickness of 50 nm or less. Other embodiments of memory cells have a via thickness of 20 nm or less. In other embodiments, the via thickness T is 10 nm or less. It can be understood that the thickness T of the bridge can be even less than 10 nm, which is achieved by using a thin film deposition technique such as atomic layer deposition according to the requirements of a specific application, as long as the thickness is sufficient for the bridge to perform the function of its memory element. That is, it has at least two; the solid phase is reversibly induced by a current or a voltage applied between the first electrode 12 and the second electrode 13. As shown in Fig. 4, the guide bridge width W (z direction) can also be very small. In the preferred embodiment, the via width W is implemented using a damascene process such that it has a width of less than 100 nm. In some embodiments, the via width W is about 40 nm or less. Embodiments of the memory material include phase change based memory materials, including chalcogenide based materials and other materials as the vias 11. The chalcogenide includes any of the following four elements: oxygen (Ο), sulfur (S), sir (Se), and tellurium (Te), forming part of the group VI of the periodic table. 12 200838002 Sulfur includes the combination of a chalcogen with a more positive element or free radical. The chalcogen compound alloy includes a combination of a chalcogen compound, a cowpea, a transition metal, and the like. A chalcogenide alloy typically includes more than one element from the sixth column of the meta-period table, such as the error (Ge) and tin jSn). Generally, the chalcogenide alloy includes one or more of the following elements: Sb, gallium (Ga), indium (In), and silver (Ag). Many phase change-based memory materials have been described in the technical documents, including the following alloys: gallium/germanium, indium/record, indium/bismuth, antimony/bismuth, antimony/bismuth, antimony/bismuth, antimony/indium/ Record / 碲, gallium / Shixi / 钖, 钖 / recorded / broken, indium / 锑 / 锗, silver / indium / recorded 碲 / 碲, 锗 / tin / recorded / 碲, wrong / 锑 / 砸 / 、, and 碲/锗/锑/sulfur. In the 锗/record/碲 alloy, family, a wide range of alloy compositions can be tried. This ingredient can be expressed in the following special political form: TeaGebSbioo^a,. One researcher described the most useful alloys in that the average enthalpy concentration contained in the deposited material is well below 70%, typically below 60%, and the bismuth content in the general type alloy ranges from the lowest. 23% up to 58%, and the best line is between 48% and 58%. The concentration of cerium is above about 5% and its average range in the material ranges from a minimum of 8% to a maximum of 30%, typically less than 50%. Most preferably, the concentration range of 锗 is between 8% and 40%. The main component remaining in this composition is 锑. The above percentages are atomic percentages, which are all 100% of all constituent elements. (Ovshinky '112 patent, columns 10-11) Special alloys evaluated by another investigator include Ge2Sb2Te5, GeSb2Te4, and
GeSb4Te7。( Noboru Yamada,"Potential of Ge-Sb-Te Phase-change Optical Disks for High-Data-Rate Recording,,, π/五ν·37⑽,pp· 28-37(1997))更一般地,過渡金屬如鉻 (Cr)、鐵(Fe)、鎳(Ni)、鈮(Nb)、鈀(Pd)、鉑(Pt)、以及上述 之混合物或合金,可與鍺/銻/碲結合以形成一相變化合金其 包括有可程式化的電阻性質。可使用的記憶材料的特殊範 例,係如Ovshinsky ‘112專利中欄11_13所述,其範例在 此係列入參考。 13 200838002 相變化合金能在此細胞主動通道區域内依其位置順序 於材料為一般非晶狀態之第一結構狀態與為一般結晶固體 狀態之第二結構狀態之間切換。這些材料至少為雙穩定 態。此詞彙「非晶」係用以指稱一相對較無次序之結構, 其較之一單晶更無次序性,而帶有可偵測之特徵如較之結 晶態更南之電阻值。此詞莱「結晶悲」係用以指稱一相對 較有次序之結構,其較之非晶態更有次序,因此包括有可 偵測的特徵例如比非晶態更低的電阻值。典型地,相變化 材料可電切換至完全結晶態與完全非晶態之間所有可偵測 , 的不同狀態。其他受到非晶態與結晶態之改變而影響之材 料特中包括,原子次序、自由電子密度、以及活化能。此 材料可切換成為不同的固態、或可切換成為由兩種以上固 態所形成之混合物,提供從非晶態至結晶態之間的灰階部 分。此材料中的電性質亦可能隨之改變。 相變化合金可藉由施加一電脈衝而從一種相態切換至 另一相態。先前觀察指出,一較短、較大幅度的脈衝傾向 於將相變化材料的相態改變成大體為非晶態。一較長、較 低幅度的脈衝傾向於將相變化材料的相態改變成大體為結 晶態。在較短、較大幅度脈衝中的能量夠大,因此足以破 ( 壞結晶結構的鍵結,同時夠短因此可以防止原子再次排列 成結晶態。在沒有不適當實驗的情形下,可決定特別適用 於一特定相變化合金的適當脈衝量變曲線。在本文的後續 部分,此相變化材料係以GST代稱,同時吾人亦需瞭解, 亦可使用其他類型之相變化材料。在本文中所描述之一種 適用於PCRAM中之材料,係為Ge2Sb2Te5。 可用於本發明其他實施例中之其他可程式化之記憶材 料包括,摻雜N2之GST、GexSby、或其他以不同結晶態轉 換來決定電阻之物質;PrxCayMn03、PrSrMnO、ZrOx、TiOx、 NiOx、WOx、經摻雜的SrTi03或其他利用電脈衝以改變電 14 200838002 阻狀態的材料;或其他使用一電脈衝以改變電阻狀態之物 質; TCNQ(7,7,8,8-tetracyanoquinodimethane)、PCBM (methanofullerene 6,6-phenyl C61 -butyric acid methyl ester)、TCNQ-PCBM、Cu-TCNQ、Ag-TCNQ、C60-TCNQ、 以其他物質摻雜之TCNQ、或任何其他聚合物材料其包括 有以一電脈衝而控制之雙穩定或多穩定電阻態。其他可程 式化電阻記憶材料的例子包括GeSbTe、GeSb、NiO、GeSb4Te7. (Noboru Yamada, "Potential of Ge-Sb-Te Phase-change Optical Disks for High-Data-Rate Recording,,, π/五ν·37(10), pp·28-37 (1997)) More generally, transition metals Such as chromium (Cr), iron (Fe), nickel (Ni), niobium (Nb), palladium (Pd), platinum (Pt), and mixtures or alloys thereof, may be combined with 锗 / 锑 / 碲 to form a phase Varying alloys include programmable resistance properties. A special example of a memory material that can be used is described in column 11_13 of the Ovshinsky '112 patent, an example of which is incorporated herein by reference. 13 200838002 Phase change alloys can be switched between the first structural state in which the material is in a generally amorphous state and the second structural state in a generally crystalline solid state in the active channel region of the cell. These materials are at least bistable. The term "amorphous" is used to refer to a relatively unordered structure that is more unordered than one of the single crystals, with detectable features such as a resistance value souther than the crystalline state. The term "crystal sad" is used to refer to a relatively ordered structure that is more ordered than amorphous and therefore includes detectable features such as lower resistance than amorphous. Typically, the phase change material can be electrically switched to all detectable, distinct states between the fully crystalline state and the fully amorphous state. Other materials that are affected by changes in amorphous and crystalline states include atomic order, free electron density, and activation energy. The material can be switched to a different solid state, or can be switched to a mixture of two or more solid states, providing a gray-scale portion from amorphous to crystalline. The electrical properties of this material may also change. The phase change alloy can be switched from one phase to another by applying an electrical pulse. Previous observations indicate that a shorter, larger amplitude pulse tends to change the phase of the phase change material to a substantially amorphous state. A longer, lower amplitude pulse tends to change the phase of the phase change material to a substantially crystalline state. The energy in the shorter, larger amplitude pulse is large enough to break (the bond of the bad crystalline structure, while being short enough to prevent the atoms from re-arranging into a crystalline state. In the absence of improper experimentation, the special Appropriate pulse volume curve for a particular phase change alloy. In the subsequent part of this paper, this phase change material is referred to as GST, and we also need to understand that other types of phase change materials can be used. A material suitable for use in PCRAM is Ge2Sb2Te5. Other programmable memory materials that can be used in other embodiments of the invention include GST doped with N2, GexSby, or other materials that are converted to different resistances by different crystalline states. ; PrxCayMn03, PrSrMnO, ZrOx, TiOx, NiOx, WOx, doped SrTi03 or other materials that use electrical pulses to change the resistance state of electricity 14 200838002; or other substances that use an electrical pulse to change the resistance state; TCNQ (7, 7,8,8-tetracyanoquinodimethane), PCBM (methanofullerene 6,6-phenyl C61 -butyric acid methyl ester), TCNQ-PCBM, Cu-TCNQ, Ag-T CNQ, C60-TCNQ, TCNQ doped with other materials, or any other polymeric material including bistable or multi-stable resistance states controlled by an electrical pulse. Examples of other programmable resistive memory materials include GeSbTe, GeSb, NiO,
Nb-SrTi03、Ag-GeTe、PrxCayMn03、Zno、Nb20、Cr-SrTi03。 接著係簡單描述四種電阻記憶材料。第一種係為硫屬 化物材料’例如GexSbyTez,其中x:y:z = 2:2:5,或其他成 分為X: 0〜5; y: 0〜5; z: 0〜10。以氮、矽、鈦或其他元素摻 雜之GeSbTe亦可被使用。 一種用以形成硫屬化物材料的例示方法,係利用PVD 濺鍍或磁控濺鑛(Magnetron Sputtering)方式,其反應氣體 為氬氣、氮氣、及/或氦氣、壓力為1 mTorr至1〇〇 mTorr。 此沈積步驟一般係於室溫下進行。一長寬比為^之準直 器(collimater)可用以改良其填入表現。為了改善其填入表 現,亦可使用數十至數百伏特之直流偏壓。另一方面, 時合併使用直流偏壓以及準直器亦是可行的。 可以選擇性地在真空中或氮氣環境中進行一沈積 火處理,以改良硫屬化物材料之結晶態。此退火處理 度典型地係介於l〇(TC至4〇(^c,而退火時間則少於邓八 鐘。 、 刀 硫屬化物材料之厚度係隨著細胞結 般而言:硫屬化物之厚度大於8 nm者可 性,,彳于此材料展現至少雙穩定的電阻態。交寺 第二種適合用於本發明實施態樣中 巨磁阻(CMR)材料,例如吻一,其二材=為超 ^5 立他成分為 Υ〇·5·0·5, L、他成4 X. (M; y: W。包括核氧化物之超巨磁阻 15 200838002 材料亦可被使用。 一用以形成超巨磁阻材料之例示方法,係利用PVD賤 鍵,磁電管濺鍍方式,其反應氣體為氬氣、氮氣、氧氣及/ 或氦氣、壓力為1 mTorr至100 mTorr。此沈積步驟的溫产 可介於室溫至600°C,視後處理條件而定。一長寬比為^二 之準直器(collimater)可用以改良其填入表現。為了改、盖其 填入表現’亦可使用數十至數百伏特之直流偏壓。另二 面,同時合併使用直流偏壓以及準直器亦是可行的。可施 加數十高斯(Gauss)至1特司拉扣31&,10,000高斯)之 =Nb-SrTi03, Ag-GeTe, PrxCayMn03, Zno, Nb20, Cr-SrTi03. Next, four types of resistive memory materials are briefly described. The first type is a chalcogenide material such as GexSbyTez, where x:y:z = 2:2:5, or other components X: 0 to 5; y: 0 to 5; z: 0 to 10. GeSbTe doped with nitrogen, helium, titanium or other elements can also be used. An exemplary method for forming a chalcogenide material is by PVD sputtering or Magnetron Sputtering, the reaction gas being argon, nitrogen, and/or helium at a pressure of 1 mTorr to 1 Torr. 〇mTorr. This deposition step is generally carried out at room temperature. A collimator with an aspect ratio of ^ can be used to improve its filling performance. In order to improve its filling performance, a DC bias of tens to hundreds of volts can also be used. On the other hand, it is also feasible to combine DC bias and collimator. A deposition fire treatment may be selectively performed in a vacuum or in a nitrogen atmosphere to improve the crystalline state of the chalcogenide material. The annealing treatment is typically between 1 〇 (TC to 4 〇 (^c, and the annealing time is less than Deng Bazhong.) The thickness of the sulphur chalcogenide material is as follows: the thickness of the chalcogenide It is greater than 8 nm, and the material exhibits at least a bistable resistance state. The second type is suitable for use in the giant magnetoresistance (CMR) material of the embodiment of the present invention, such as Kiss One, and its two materials = For the super^5, the composition is Υ〇·5·0·5, L, and he becomes 4 X. (M; y: W. The super giant magnetoresistance including nuclear oxide 15 200838002 Material can also be used. An exemplary method for forming a giant magnetoresistive material is a PVD , bond, a magnetron sputtering method in which the reaction gas is argon, nitrogen, oxygen, and/or helium at a pressure of 1 mTorr to 100 mTorr. The temperature can be between room temperature and 600 ° C, depending on the post-treatment conditions. A collimator with an aspect ratio of ^ 2 can be used to improve its filling performance. 'It is also possible to use DC bias voltages of tens to hundreds of volts. On the other hand, it is also feasible to combine DC bias and collimator. Can apply dozens of Gauss (Gauss to 1 Tesla buckle 31 & 10,000 Gauss) =
磁場,以改良其磁結晶態。 曰的 可以選擇性地在真空中或氮氣環境中或氧氣/氮貪、、曰 合環境中進行一沈積後退火處理,以改良超巨磁阻材 結晶態。此退火處理的溫度典型地係介於4〇(TC至6〇〇p之 而退火時間則少於2小時。 ’ 超巨磁阻材料之厚度係隨著記憶胞結構的設計而^ 厚度介於10 nm至200 nm的超巨磁阻材料,可被用作=° 心材料。一 YBCO(YBaCu〇3,一種高溫超導體材料)緩^^ 係通常被用以改良超巨磁阻材料的結晶態。此曰 積係在沈積超巨磁阻材料之前進行。YBCO的厘择你,沈 Mrrnmm。 叫度係介於 第三種記憶材料係為雙元素化合物,例如Ni 〇A magnetic field to improve its magnetic crystalline state. The ruthenium can be selectively annealed in a vacuum or in a nitrogen atmosphere or in an oxygen/nitrogen, chelating environment to improve the crystalline state of the giant magnetorheological material. The annealing temperature is typically between 4 〇 (TC to 6 〇〇p and annealing time is less than 2 hours. 'The thickness of the giant magnetoresistive material is related to the design of the memory cell structure. A giant magnetoresistive material from 10 nm to 200 nm can be used as a =° core material. A YBCO (YBaCu〇3, a high-temperature superconductor material) is usually used to improve the crystalline state of a giant magnetoresistive material. This hoarding is carried out before depositing the super giant magnetoresistive material. The YBCO is chosen by you, sinking Mrrnmm. The third system is a two-element compound, such as Ni 〇.
TixOy、AlxOy、WxOy、ZnxOy、Zrx〇y、Cux〇y 等,其中X '、 0.5:0.5,或其他成分為x: 0〜1; y: 0〜1。用以形成此記 料的例示方法,係利用PVD濺鍍或磁控濺鑛方式,材 氣體為氬氣、氮氣、氧氣、及/或氦氣、壓力為1 應 lOOmTorr,其標靶金屬氧化物係為如Nix〇y、Tix〇、Α^Γ至TixOy, AlxOy, WxOy, ZnxOy, Zrx〇y, Cux〇y, etc., wherein X ', 0.5: 0.5, or other components are x: 0~1; y: 0~1. The exemplary method for forming the material is by PVD sputtering or magnetron sputtering. The material gas is argon, nitrogen, oxygen, and/or helium, and the pressure is 1 100 mTorr, and the target metal oxide is used. For example, Nix〇y, Tix〇, Α^Γ
WxOy、ZnxOy、ZrxOy、CuxOy 等。此沈積步驟一般係 溫下進行。一長寬比為1〜5之準直器可用以改良其填^又室 現。為了改善其填入表現,亦可使用數十至數百伏^ 表 之直 200838002 流偏壓。若有需要時,同時合併使用直流偏壓以及準直器 亦是可行的。 可以選擇性地在真空中或氮氣環境或氧氣/氮氣混合 環境中進行一沈積後退火處理,以改良金屬氧化物内的氧 原子分佈。此退火處理的溫度典型地係介於400°C至 600°C,而退火時間則少於2小時。 一種替代性的形成方法係利用PVD濺鍍或磁控濺鍍 方式,其反應氣體為氬氣/氧氣、氬氣/氮氣/氧氣、純氧、 氦氣/氧氣、氦氣/氮氣/氧氣等,壓力為1 mTorr至100 f mTorr,其標革巴金屬氧化物係為如Ni、Ti、Al、W、Zn、WxOy, ZnxOy, ZrxOy, CuxOy, etc. This deposition step is generally carried out at a temperature. A collimator having an aspect ratio of 1 to 5 can be used to improve its filling and revitalization. In order to improve its filling performance, it is also possible to use a tens of tens to hundreds of volts of the straight line of the 200838002 flow bias. It is also possible to combine DC bias and collimator if necessary. A post-deposition annealing treatment may be selectively performed in a vacuum or in a nitrogen atmosphere or an oxygen/nitrogen mixed atmosphere to improve the distribution of oxygen atoms in the metal oxide. The temperature of this annealing treatment is typically between 400 ° C and 600 ° C and the annealing time is less than 2 hours. An alternative formation method utilizes PVD sputtering or magnetron sputtering, and the reaction gases are argon/oxygen, argon/nitrogen/oxygen, pure oxygen, helium/oxygen, helium/nitrogen/oxygen, etc. The pressure is from 1 mTorr to 100 f mTorr, and the metal oxide of the standard is such as Ni, Ti, Al, W, Zn.
Zr、Cu等。此沈積步驟一般係於室溫下進行。一長寬比為 1〜5之準直器可用以改良其填入表現。為了改善其填入表 現,亦可使用數十至數百伏特之直流偏壓。若有需要時, 同時合併使用直流偏壓以及準直器亦是可行的。 可以選擇性地在真空中或氮氣環境或氧氣/氮氣混合 環境中進行一沈積後退火處理,以改良金屬氧化物内的氧 原子分佈。此退火處理的溫度典型地係介於400°C至 600°C,而退火時間則少於2小時。 另一種形成方法,係使用一高溫氧化系統(例如一高 ^ 溫爐管或一快速熱處理(RTP))進行氧化。此溫度係介於 200°C至700°C、以純氧或氮氣/氧氣混合氣體,在壓力為數 mTorr至一大氣壓下進行。進行時間可從數分鐘至數小時。 另一氧化方法係為電漿氧化。一無線射頻或直流電壓源電 漿與純氧或氬氣/氧氣混合氣體、或氬氣/氮氣/氧氣混合氣 體,在壓力為1 mTorr至100 mTorr下進行金屬表面的氧 化,例如Ni、Ti、A卜W、Zn、Zr、Cu等。此氧化時間係 從數秒鐘至數分鐘。氧化溫度係從室溫至約300°C,視電 漿氧化的程度而定。 第四種記憶材料係為聚合物材料,例如摻雜有銅、碳 17 200838002 六十、銀等的TCNQ,或PCBM、TCNQ混合聚合物。一 種形成方法係利用熱蒸發、電子束蒸發、或原子束蠢晶系 統(MBE)進行蒸發。一固態TCNQ以及摻雜物丸係在一單 獨室内進行共蒸發。此固態TCNQ以及摻雜物丸係置於一 鶴座或一钽座或一陶瓷座中。接著施加一大電流或電子 束,以炫化反應物,使得這些材料混合並沈積於晶圓之上。 此處並未使用反應性化學物質或氣體。此沈積作用係於壓 力為10_4Torr至10_1GTorr下進行。晶圓溫度係介於室溫至 200〇C。 可以選擇性地在真空中或氮氣環境中進行一沈積後退 火處理,以改良聚合物材料的成分分佈。此退火處理的溫 度典型地係介於室溫至300°C,而退火時間則少於i小時。 另一種用以形成一層以聚合物為基礎之記憶材料的技 術,係使用一旋轉塗佈機與經摻雜之TCNQ溶液,轉速低 於1000 rpm。在旋轉塗佈之後,此晶圓係靜置(典型地係 在至溫下:或低於200°C之溫度)一足夠時間以利固態 ^成。此靜置時間可介於數分鐘至數天,視溫度以及^ 條件而定。 第5圖描繪了 PCRAM記憶胞的結構。此 成Γγ半導體基板2G之上。如淺溝槽隔離介電質 ^ )等隔離結構’係將每二列記憶胞存取電晶之 存取電晶體的形成,係在基板2G中以η型 ^離^ 3共同源極終端、並以η型摻雜區域25,27、°°域^ 、冬鳊。字元線23,24,可由多晶矽所構成 :J為汲極 j的,。介電填充層(未示)係形成成於=線m 勺紅:电填充層(未不)係經圖案化’因而形成導電1士播 可以為適用於栓塞與導線結構的鎢 口。共同源極線28接觸至摻雜區域26,並且沿著列= 200838002 的:列作用為共同源極線。拴塞結構29,30分別接觸至摻 f 5域25,26。介電填充層(未示)、共同源極線28、以及 栓基結構29,30具有大致平坦的上表面,其係適用於形成 一電極層31。 電極層31包括電極構件32,33,34,其係以絕緣構件 舉例而言’以如下所述的侧壁製程所形成)以及 二底構件^9而彼此隔離。在此結構的實施例中,基底構件 η度可以大於絕緣構件35a,35b,並且分隔而減少在 ^極構:上3 ’共同源極、線28之間的電容耦合效應。舉例 ί Hi構件3!的厚度可以為80幻40 nm,而絕緣構 is 技炎可以遇窄於此。在例示實施例中,絕緣構件 斜& 位於電極構件32,34之側壁上的薄膜介電材 定] ’亟層Μ表面的厚度係由側壁的薄膜厚度所決 镶^憶材料薄膜導橋36,37 (例如由⑵ 成極ί ”,上,薄膜導橋36横跨絕緣構件35a i 因而形成:第:記憶胞’且薄膜導橋37橫跨絕遂 亚因而开> 成一第二記憶胞。 構件3 5 下所ΐΐ填充:(未示)係位於薄膜導橋36,37之上。‘ ΐί ϊΐ可:Γ: ΪΓ電填充層係用於鑲後製程ΐ: ί 電填充材料所構成。在較佳實施例中’介電Uj他介 相當優良的熱絕緣體與塾絕緣體,提供導橋36〆^括- 等材料所構成的導電栓塞38’,係;s電 J極構件33。由金屬或其他導電材料所構成的圖至 層4〇,在-陣列中包括了位元線,且位4 =以體 亚接觸至栓塞38,以建立對應至薄膜導橋% 上 胞的存取。 <圮憶 第6 ’示了在第5圖中所示、位於基板2G之上的結 19 200838002 構平面圖。因此,字元線23,24係實質 憶胞陣列的各列而排列:栓 觸至+V體基板中的汲極終端以及電極構^刀別接 T。記,材料薄膜導橋36,37係位於電極構件32,34,底 上,而絕緣構件35a,35b則分隔電極構件3 ^,4之 38接觸至位於導橋36,37之間的電極構件33、’ ,4。栓塞 3體層40中的一金屬位元線41 (第中案 J侧。金屬位元線42 (非透明)同時繪示=2)的 強調此結構的陣列佈局。 曰τ於弟6圖中,以 在操作中,針對導橋36之記憶胞的 ^制信號至字元線23而達成,字元線23係丄=由施加 由摻雜區域25、栓塞29、以及電極構件;線 橋36。電極構件33係經由栓接至 =體層40中的位元線。相似地,對=位於圖 _,’係藉由施加控制信號至字元線之記憶 的結構7里=’多種材料可以應用於第5與6圖所干 屬化匕可以使用銅金屬化。其他類Ξ的: 非人^紹、^化鈦、以及含鎮材料等,均可你田^ 士 例^的Ϊ電材料如摻雜多晶矽等,亦可使用。在你丨-, 極=化ff係為氣化鈦或氮化麵。 之金屬/鋁鈕’或可包括一種以上選自U 及波AI、、鎢、錮、鋁、钽、銅、鉑、銀、繃,、、且 構™可以為氧化 無、;、氣义;;種以上選自下列群級之元素:發、鈦 5 U使用其他細胞社爐而?的①⑯在弟7圖中的陣列結構可 、胞、、,。構而貫施。在第7圖中’共同源極線= 20 200838002 字元線23、以及字亓绐〇 線41與42係大致=4係大致平行Y軸而排列。位元 的一 Υ軸解碼器盥二=軸,排列。因此,在方塊45中 23,24。在方塊邨中的一子=±線驅動器,係耦接至字元線 耦接至位元線41盥42。妓^軸解碼器與一組感測放大器係 體50,51,52,53之^極级端、。^;原 28 _接至存取電晶 接至字元線23。存取雷a鹏存取電晶體50,52之閘極係耦 24。存取電晶體5〇之^^ 係f接至字元線 憶胞導橋36,電極構株π 由电極構件而耦接至記 地,存取電晶體51之、、、、係耦接至電極構件33。相似 憶胞導橋37,而電才ίϋ糸經由電極構件34而輕接至記 33係緣示於位元線4策41 U巧方便,電極構件 其他實施例中,獨立的位置。可以理解的是,在 導橋36,37。存取電曰的體f件可以應用於獨立的記憶胞 42。從圖中可見取1 曰曰^2,53係以相似方式搞接至位元線 其中一列係如-二v 線2 8係被二列記憶胞所共用, 係被陳列中y軸方向排列。相似地,電極構件33 \ 二所-γ Γ丁中的二記憶胞所共用,此時之一行則係 如圖所不沿者X轴方向排列。 係根據本發明之一實施例,繪示一積體電路之 簡 :。積體電路74包括一記憶陣列60,其係利用 本發明之薄膜保險絲相變化記憶胞所實施於一半導體基板 上。一列解碼器61係耦接至複數條字元線62,且係在記 憶陣列60中沿著各列排列。一行解碼器63係_接至複數 條位元線64,其係在記憶陣列60中沿著各行排列並用以 讀取以及程式化從記憶陣列60中之多閘極記憶胞所獲得 之資料。位址係從匯流排65提供至行解碼器63以及列解 碼器61。在方塊66之中的感測放大器以及資料讀入(data-in) 線路,係經由資料匯流排67而耦接至行解碼器63。資料 21 200838002 係從積體電路基板75上的輸入/輸出埠、或從積體電路75 之其他内部或外部資料來源,經由資料輸入線路71而提供 至方塊66之資料輸入結構。在所述實施例中,此積體電路 係包括其他電路,如泛用目的處理器或特定目的應用電 路、或以薄膜保險相變化記憶胞陣列所支持而可提供系統 單晶片(system on a chip)功能之整合模組。資料從方塊66 中的感測放大器經由資料輸出線路72,而傳送至積體電路 75之輸入/輸出埠,或傳送至積體電路75内部或外部之其 他資料目的。 在本實施例中使用偏壓安排狀態機器69之一控制 器,係控制偏壓安排供給電壓68之應用,例如讀取、程式 化、抹除、抹除確認與程式化確認電壓等。此控制器可使 用習知之特定目的邏輯電路。在替代實施例中,此控制器 包括一泛用目的處理器,其可應用於同一積體電路中,此 積體電路係執行一電腦程式而控制此元件之操作。在又一 實施例中,此控制器係使用了特定目的邏輯電路以及一泛 用目的處理器之組合。 了在前段製㈣的結構",形成標準 开 1 ifff示的實施例中,對應至第7圖陣列中的字 几線、源極線、以及存取電晶體。在第9圖 係位於半導體基板中的摻雜 原極線106 2對應至圖中摻雜區域‘:側之第一存:f f體區二= 延伸至結^的^面例中在^他極4 r中從ί雜區域103 未延伸至結構99的上表面,或者,線106並 之一摻雜區域,並在摻雜區域上可°以^括了基板中 J。摻雜區域⑽對應至第一存取電二η:包括矽化 括有導線107 (可舉例由吝a體的汲極終端。包 日日夕所形成)以及導電罩108 22 200838002 (可舉例由矽化物所形成)之一字元線,作用為第一存取 電晶體的閘極。介電層109位於導線107與導電罩108之 上。導電栓塞110接觸至摻雜區域104,並提供導電路徑 至結構99的表面,而以下述方式接觸至一記憶胞電極。第 二存取電晶體之汲極終端係藉由摻雜區域105而提供。包 括有導線111與導電罩(未標示)的字元線,係作用為第 二存取電晶體的閘極。導電栓塞112接觸至摻雜區域105 並提供一導電路徑至結構99的上表面,而以下述方式接觸 至一記憶胞電極。耦接至栓塞110,112的二電晶體結構, , 以及相鄰的二電晶體結構,係藉由隔離溝槽1〇1,1〇2而隔 離。在隔離溝槽101左側,係繪示包括有導線117之一字 元線,以及接觸至摻雜區域115的導電栓塞114。隔離溝槽 102的右側,係繪示一包括有導線118之一字元線,以及 接觸至摻雜區域116的導電栓塞113。第9圖中的結構99 提供了用以形成記憶胞元件的基板,包括第一與第二電極 以及記憶材料導橋,如下所詳述。 第10圖繪示了此製程的下一步驟,其中一薄介電層 120係形成於結構99的上表面上,此介電層包括氮化石夕或 其他材料。接著一導電電極材料層121 (例如氮化鈦)係 ( 形成於介電層120之上。 第11A與11B圖繪示了此製程的下一步驟,其中導電 電極層121以及介電層120係被圖案化,以定義電極堆疊 130,131,132於結構99的表面上。第11A圖係為第11B圖 結構的上視圖。在一實施例中,電極堆疊130,131,132係利 用遮罩微影方法定義,其製造一光阻劑圖案化層,接著進 行習知之尺寸測量與確認步驟,接著對導電電極層121與 介電層120蝕刻,以形成電極堆疊130,131,132,並暴露在 堆疊130,131,132之間的結構99。 第12圖繪示了此製程的下一步驟,其中藉由先形成與 23 200838002 堆疊131,132,133以及侧壁133,134順形的薄介電層,接著 對此薄介電層進行非等向性蝕刻而移除在堆疊130,131,132 之間、以及在堆疊130,131,132之上的區域,留下在側壁 133,134之上的薄膜介電層,以在侧壁133,134之上形成側 壁絕緣子140,141,142,143。在此製程的實施例中,用以形 成側壁絕緣子140,141,142,143的材料,包括氮化矽或其他 介電材料,例如二氧化石夕、氮氧化石夕、氧化鋁等。 第13圖繪示了此製程的下一步驟,其中一第二電極材 料層150係形成於堆疊13〇,131,132以及側壁絕緣子 140,141,142,143之上。此電極材料層15〇包括氮化鈦或其 他合適的導電材料,例如氮化鈕、鋁合金、銅合金、摻雜 多晶矽等。 第14圖繪示了此製程的下一步驟,其中第二電極材料 :、1則壁絕緣子14〇,141,142,143、以及堆疊13〇,131132 雷ΐΐ刻以及平坦化’以在結構99所提供的基板上定義一 CMP:垃ί刻與平坦化製程的實施例,包括化學機械研磨 ㈣耕ίΓ進行毛刷清潔以及㈣或氣體清潔程序,如此 f週知。電極層包括絕緣構件163,164,1係介於第一 例中的電極層、^iiW6G,162之間。在例示實施 所示,電極“。^平坦的上表面。如f 14圖中 於電極層的上以及絕緣構件163,164係外露 包括了介Ϊ姓構實施例中,、絕緣構件163,164 用不同的材料於106隔離。其他例示結構可以使 163,164 16°^ 防止屺L、材枓暴硌至光阻劑以及光阻劑 24 200838002 剝除製程。第一鑲嵌技術係從第15A_15B圖開始。第 15A-15B圖係繪示了第14圖的結構,其包括了前段製程結 構(標示了 101-107以及1HM12),以及包括了第一電極 構件161、左側第二電極構件160、以及右侧第二電極構件 的電極層,其係與此頁面垂直之方向平行,如上所詳述。 根據鑲嵌技術的第一實施例,一介電層500 (例如二氧化 矽)係形成於電極層之上,且罩層5〇1 (例如氮化矽)係 开>成於介電層500之上。光阻劑502係經塗佈且圖案化, 以定義溝槽的位置503,而接續地蝕刻於層500,501之中,Zr, Cu, etc. This deposition step is generally carried out at room temperature. A collimator with an aspect ratio of 1 to 5 can be used to improve its filling performance. In order to improve its filling performance, a DC bias of tens to hundreds of volts can also be used. It is also possible to combine DC bias and collimator if necessary. A post-deposition annealing treatment may be selectively performed in a vacuum or in a nitrogen atmosphere or an oxygen/nitrogen mixed atmosphere to improve the distribution of oxygen atoms in the metal oxide. The temperature of this annealing treatment is typically between 400 ° C and 600 ° C and the annealing time is less than 2 hours. Another method of formation is by oxidation using a high temperature oxidation system such as a high temperature furnace tube or a rapid thermal process (RTP). This temperature is between 200 ° C and 700 ° C and is carried out as a mixed gas of pure oxygen or nitrogen/oxygen at a pressure of several mTorr to one atmosphere. The progress can take from a few minutes to a few hours. Another oxidation process is plasma oxidation. A radio frequency or DC voltage source plasma is mixed with a pure oxygen or argon/oxygen gas mixture, or an argon/nitrogen/oxygen gas mixture, and the metal surface is oxidized at a pressure of 1 mTorr to 100 mTorr, such as Ni, Ti, A, W, Zn, Zr, Cu, and the like. This oxidation time is from a few seconds to a few minutes. The oxidation temperature is from room temperature to about 300 ° C depending on the degree of plasma oxidation. The fourth type of memory material is a polymer material, such as TCNQ doped with copper, carbon 17 200838002, silver, or the like, or a mixed polymer of PCBM and TCNQ. One method of formation utilizes thermal evaporation, electron beam evaporation, or atomic beam stray crystal system (MBE) for evaporation. A solid TCNQ and dopant pellets are co-evaporated in a single chamber. The solid state TCNQ and dopant pellets are placed in a crane or a squat or a ceramic seat. A large current or electron beam is then applied to smudge the reactants so that the materials are mixed and deposited on the wafer. No reactive chemicals or gases are used here. This deposition is carried out at a pressure of 10_4 Torr to 10_1 GTorr. The wafer temperature is between room temperature and 200 °C. A post-deposition annealing treatment may be selectively performed in a vacuum or in a nitrogen atmosphere to improve the composition distribution of the polymer material. The temperature of this annealing treatment is typically between room temperature and 300 ° C, and the annealing time is less than i hours. Another technique for forming a layer of polymer-based memory material is to use a spin coater with a doped TCNQ solution at a speed of less than 1000 rpm. After spin coating, the wafer is allowed to stand (typically at a temperature of: or below 200 ° C) for a sufficient time to solidify. This rest time can range from a few minutes to a few days, depending on the temperature and conditions. Figure 5 depicts the structure of the PCRAM memory cell. This is formed on the yttrium semiconductor substrate 2G. For example, the shallow trench isolation dielectric ^) and other isolation structures 'separate the access transistor of each of the two columns of memory cells to access the crystal, in the substrate 2G to η-type ^ 3 common source terminal, And doped with n-type region 25,27, ° ° domain ^, winter 鳊. The word lines 23, 24 may be composed of polysilicon: J is a bungee j. A dielectric fill layer (not shown) is formed at = line m scoop red: the electrically filled layer (not otherwise) is patterned' thus forming a conductive one. It can be a tungsten port suitable for use in plug and wire structures. The common source line 28 contacts the doped region 26 and acts as a common source line along the column of column = 200838002. The damming structures 29, 30 are in contact with the f5-doped domains 25, 26, respectively. A dielectric fill layer (not shown), a common source line 28, and a plug base structure 29, 30 have a substantially flat upper surface suitable for forming an electrode layer 31. The electrode layer 31 includes electrode members 32, 33, 34 which are isolated from each other by an insulating member, for example, formed by a side wall process as described below, and a bottom member. In this embodiment of the structure, the base member may have a degree of η greater than the insulating members 35a, 35b and may be spaced apart to reduce the capacitive coupling effect between the ^3 common source and the line 28. For example, HI Hi 3! can have a thickness of 80 幻 40 nm, and the insulation is technically narrower. In the illustrated embodiment, the insulating member is inclined & the thin film dielectric material on the sidewalls of the electrode members 32, 34. The thickness of the surface of the tantalum layer is determined by the film thickness of the sidewall. , 37 (for example, by (2) forming a 355", the thin film viaduct 36 is formed across the insulating member 35a i such that: the memory cell 'and the thin film via 37 traverses the 遂 因而 and thus becomes a second memory cell Filling under the member 3 5: (not shown) is located on the film guides 36, 37. ' ΐί ϊΐ: Γ: ΪΓ electric filling layer is used for the post-setting process ΐ: ί Electric filling material. In the preferred embodiment, the dielectric UJ is a very good thermal insulator and tantalum insulator, and a conductive plug 38' is formed of a material such as a bridge 36. Or a layer of other conductive material, layer 4, includes a bit line in the array, and bit 4 = contacts the body 38 to the plug 38 to establish access to the cell of the thin film vial.圮 第 6'' shows a plan view of the junction 19 200838002 located above the substrate 2G as shown in FIG. Thus, the word lines 23, 24 are arranged in columns of the substantial memory cell array: the drain terminals in the +V body substrate and the electrode structure are connected to the T. Note that the material film guides 36, 37 are Located on the electrode members 32, 34, the bottom, and the insulating members 35a, 35b separate the electrode members 3, 4 of 38 into contact with the electrode members 33, ', 4 between the bridges 36, 37. The plug 3 body layer 40 A metal bit line 41 (the middle case J side. The metal bit line 42 (non-transparent) is simultaneously shown = 2) to emphasize the array layout of this structure. 曰τ in the brother 6 picture, in operation, Achieved by the signal of the memory cell of the bridge 36 to the word line 23, the word line 23 is 丄 = applied by the doped region 25, the plug 29, and the electrode member; the wire bridge 36. The electrode member 33 is via Pinned to the bit line in the body layer 40. Similarly, the pair = located in the figure _, 'by the application of the control signal to the memory of the word line 7 = 'multiple materials can be applied to the 5th and 6th The dried bismuth can be metallized by copper. Other types of bismuth: non-human ^ Shao, ^ titanium, and containing materials, etc., can be your field ^ 士 ^ ^ Ϊ Ϊ For example, if doped polysilicon or the like, it can also be used. In your 丨-, pole = ff is a vaporized titanium or nitrided surface. The metal/aluminum button' may include more than one selected from U and wave AI, tungsten,锢, aluminum, bismuth, copper, platinum, silver, stretch, and structure TM can be oxidized without;; gas; meaning more than the above group of elements: hair, titanium 5 U using other cell furnace And the array structure of 116 in Figure 7 can be configured, cell, and. In Figure 7, the common source line = 20 200838002 word line 23, and the word line 41 and The 42 series is approximately = 4 lines arranged substantially parallel to the Y axis. A 解码 axis decoder of the bit 盥 2 = axis, arranged. Therefore, in block 45, 23, 24. A sub-±wire driver in the block village is coupled to the word line and coupled to the bit line 41盥42. The 轴^ axis decoder and the set of sense amplifier systems 50, 51, 52, 53 of the terminal end. ^; The original 28 _ is connected to the access transistor to the word line 23. Accessing the gate of the Ray-Ang access transistor 50, 52 is coupled 24 . The access transistor 5 is connected to the word line channel bridge 36, and the electrode structure π is coupled to the ground by the electrode member, and the access transistor 51 is coupled to the antenna. To the electrode member 33. Similarly, the cell bridge 37 is electrically connected to the cell via the electrode member 34, and is shown in the bit line 4, which is convenient and convenient, and the electrode member is in an independent position in other embodiments. It can be understood that at the guide bridges 36, 37. The body member of the access device can be applied to the independent memory cell 42. It can be seen from the figure that 1 曰曰^2, 53 is connected to the bit line in a similar manner. One of the columns, such as the -2 v line, is shared by the two columns of memory cells, and is arranged in the y-axis direction of the display. Similarly, the two memory cells of the electrode member 33 \ two - gamma ray are shared, and one row is arranged in the X-axis direction as shown in the figure. According to an embodiment of the invention, a simplified circuit is shown. The integrated circuit 74 includes a memory array 60 that is implemented on a semiconductor substrate using the thin film fuse phase change memory cells of the present invention. A column of decoders 61 is coupled to a plurality of word line lines 62 and arranged along columns in memory array 60. A row of decoders 63 is coupled to a plurality of bit lines 64 that are arranged along the lines in memory array 60 and used to read and program the data obtained from the multi-gate memory cells in memory array 60. The address is supplied from the bus bar 65 to the row decoder 63 and the column decoder 61. The sense amplifier and data-in line in block 66 are coupled to row decoder 63 via data bus 67. The data 21 200838002 is supplied to the data input structure of the block 66 via the data input line 71 from the input/output port on the integrated circuit substrate 75 or from other internal or external data sources of the integrated circuit 75. In the embodiment, the integrated circuit includes other circuits, such as a general purpose processor or a special purpose application circuit, or is supported by a thin film fuse phase change memory cell array to provide a system on a chip. ) The integrated module of the function. The data is passed from the sense amplifier in block 66 to the input/output port of the integrated circuit 75 via the data output line 72, or to other data objects internal or external to the integrated circuit 75. In the present embodiment, one of the controllers of the biasing arrangement state machine 69 is used to control the application of the bias voltage to supply the voltage 68, such as reading, programming, erasing, erasing confirmation, and stylizing confirmation voltage. This controller can be used with conventional purpose-specific logic circuits. In an alternate embodiment, the controller includes a general purpose processor that can be applied to the same integrated circuit that executes a computer program to control the operation of the component. In yet another embodiment, the controller uses a combination of specific purpose logic circuitry and a general purpose processor. In the embodiment of the front-end (4) structure, the standard is formed as shown in Fig. 7, corresponding to the word lines, the source lines, and the access transistors in the array of Fig. 7. The doped primordial line 106 2 located in the semiconductor substrate in Fig. 9 corresponds to the doped region in the figure: the first side of the side: the ff body region 2 = the surface of the junction extending to the junction ^ in the case 4 r does not extend from the λ region 103 to the upper surface of the structure 99, or the line 106 is one of the doped regions, and the substrate J can be included in the doped region. The doped region (10) corresponds to the first access voltage η: includes a germanium including a wire 107 (which may be exemplified by a 汲 a body of a drain terminal), and a conductive cover 108 22 200838002 (exemplified by a telluride) The formed one of the word lines acts as the gate of the first access transistor. Dielectric layer 109 is located over conductor 107 and conductive cover 108. The conductive plug 110 contacts the doped region 104 and provides a conductive path to the surface of the structure 99 to contact a memory cell electrode in the following manner. The drain terminal of the second access transistor is provided by doping region 105. A word line including a wire 111 and a conductive cover (not shown) functions as a gate of the second access transistor. The conductive plug 112 contacts the doped region 105 and provides a conductive path to the upper surface of the structure 99 to contact a memory cell electrode in the following manner. The two transistor structures coupled to the plugs 110, 112, and the adjacent two transistor structures are isolated by the isolation trenches 〇1,1〇2. On the left side of the isolation trench 101, a word line including one of the wires 117 and a conductive plug 114 contacting the doped region 115 are shown. The right side of the isolation trench 102 is a conductive plug 113 including a word line of wires 118 and a contact to doped region 116. Structure 99 in Figure 9 provides a substrate for forming memory cell elements, including first and second electrodes and memory material vias, as described in more detail below. Figure 10 illustrates the next step in the process in which a thin dielectric layer 120 is formed on the upper surface of structure 99, which includes nitride or other materials. Next, a conductive electrode material layer 121 (for example, titanium nitride) is formed on the dielectric layer 120. The 11A and 11B drawings illustrate the next step of the process, in which the conductive electrode layer 121 and the dielectric layer 120 are Patterned to define electrode stacks 130, 131, 132 on the surface of structure 99. Figure 11A is a top view of the structure of Figure 11B. In one embodiment, electrode stacks 130, 131, 132 utilize masks The lithography method defines a photoresist patterning layer, followed by a conventional sizing and confirming step, followed by etching the conductive electrode layer 121 and the dielectric layer 120 to form electrode stacks 130, 131, 132, and exposed Structure 99 between stacks 130, 131, 132. Figure 12 illustrates the next step in the process by first forming a thin dielectric with 131 200838002 stacks 131, 132, 133 and sidewalls 133, 134. a layer, followed by anisotropic etching of the thin dielectric layer to remove regions between the stacks 130, 131, 132, and over the stacks 130, 131, 132, leaving over the sidewalls 133, 134 Thin film dielectric layer to shape over sidewalls 133, 134 Sidewall insulators 140, 141, 142, 143. In the embodiment of the process, the materials used to form the sidewall insulators 140, 141, 142, 143 include tantalum nitride or other dielectric materials such as dioxide, nitrogen, and nitrogen. Oxide oxide, alumina, etc. Figure 13 illustrates the next step of the process in which a second electrode material layer 150 is formed on the stacks 13, 131, 132 and the sidewall insulators 140, 141, 142, 143. The electrode material layer 15 includes titanium nitride or other suitable conductive materials, such as a nitride button, an aluminum alloy, a copper alloy, a doped polysilicon, etc. Figure 14 depicts the next step of the process, wherein Two-electrode material: 1 wall insulator 14〇, 141, 142, 143, and stack 13〇, 131132 Thunder and planarization' to define a CMP on the substrate provided by structure 99: etch and planarize Embodiments of the process, including chemical mechanical polishing (4) cultivating brush cleaning and (4) or gas cleaning procedures, are well known. The electrode layer includes insulating members 163, 164, 1 which are electrode layers in the first example, ^ iiW6G, between 162. In the illustration As shown in the implementation, the electrode "." flat upper surface. As shown in Fig. 14 on the electrode layer and the insulating members 163, 164 are exposed, the insulating members 163, 164 are made of different materials. 106 Isolation. Other exemplary structures allow 163, 164 16°^ to prevent 屺L, 枓 枓 to photoresist, and photoresist 24 200838002 stripping process. The first inlay technique begins with Figure 15A-15T. 15A-15B are diagrams showing the structure of Fig. 14 including a front stage process structure (labeled 101-107 and 1HM12), and including a first electrode member 161, a left second electrode member 160, and a right side. The electrode layer of the second electrode member is parallel to the direction perpendicular to the page, as described in detail above. According to a first embodiment of the damascene technique, a dielectric layer 500 (e.g., hafnium oxide) is formed over the electrode layer, and a cap layer 5?1 (e.g., tantalum nitride) is opened > Above. The photoresist 502 is coated and patterned to define the location 503 of the trench and subsequently etched into the layers 500, 501.
此位置外露了罩層501的部分表面,並位於絕緣構 163,164 之上。 T 在由第16Α-16Β圖所繪示的下一步驟中,層5〇〇盥5〇1 係被蝕刻,並剝除光阻劑5〇2,在層5〇〇,5〇1之中留下、 504,505延伸至電極層的表面。 /曰 接者,如第17圖所示 hh、,昂ΙΟΰ _的踎稱你選擇性地蝕 划;丨包層500,留下罩層5〇1的凸懸部分5〇6 層500的㈣5〇7之上。對於層獅(由如二氧 分506的關係,I之材上 ==意材料層509。由於凸懸部 507之上 隐材科層並未形成於介電層·的側壁 了溝槽5G4,5G5。接著/二覆上7匕材枓條並填滿 程進行平坦化如CMP等製 電層512於把憶材料條508之上,如第19圖所示而形成介 25 200838002 第20A-20B圖纷示了下一步驟,其中光阻劑層係塗佈 於介電層512之上,並經圖案化以形成遮罩52〇,且定義 第一電極514、第二電極515,510以及記憶材料導橋5U,513 之佈局。介電層512、記憶材料條5〇8、以及第二電極構件 160, 162,係根據圖案化光阻劑遮罩52〇而被向下蝕刻至隔 離結構101,102,進而形成溝槽51〇。繼續進行後續製程同 以填滿溝槽510,形成第一電極514之接點、形成圖案化 導電層於此結構之上、並在第一電極514以及圖案化導雷 層之間形成接點。 ( 第21圖繪示了用以形成記憶材料導橋之替代鑲嵌技 術的起始步驟。此製程在形成前段製程結構(圖中標示之 101-107, 110-112)之後開始,且電極層包括一第一電極構 件161、左侧/的第一電極構件16〇、以及右侧的第二電極構 件162,其係與頁面垂直的條狀結構,如上所詳述。在此 替代技術中,一層犧牲材料450 (包括多晶矽或其他材料 係沈積於電極層之上。 —如第22A-22B圖/所示,係塗佈並圖案化一層光阻劑, 以定義遮罩451,其係位於將從電極構件16〇,161,162形成 電極結構的位置上,遮罩451定義了將從犧牲材料層45〇 形成犧牲塊的圖案。遮罩451接著被修剪(例如藉由等向 性蝕刻)以形成窄遮罩結構452,如第23A-23B圖所示。 窄遮罩結構452係接著被用作為姓刻遮罩,以在電極 層之上定義由犧牲材料所構成的窄犧牲塊453,且侧壁結 構454係形成於犧牲塊453之上,如第24A_24B圖所示。 側壁結構454以及犧牲塊453係最用為電極層中之電極結 構的姓刻遮罩,而電極層則包括了電極構件 162 以及絕緣構件163,164。 牲塊453與 ,向下生成 第25A-25B圖繪示了利用蝕刻遮罩(由犧 側壁結構4M所形成)以對電極層#刻之結果 26 200838002 溝槽至隔離結構101,102並隔離電極結構。再蝕刻之後, 犧牲塊453係選擇性地被移除,進而留下由側壁結構454 所疋義的溝槽。接著係形成一記憶材料層460,其覆蓋了 側壁結構454、並填入溝槽455以及由側壁結構454所定 義的溝槽,如第26圖所示。接著,一介電填充係利用如二 氧化矽等而塗佈,覆蓋記憶材料層46〇、並填充溝槽455。 接著此結構係被蝕刻且利用如CMP等方式進行平面化,以 移除介電填充、以及層460在侧壁結構454上的部分,而 將層460分隔為獨立的元件,包括導橋461以及在溝_ f 中的記憶材料部分462。 如第27圖所示,另一介電填充464係被施加並平面 化二以形成一結構,其可接著進行介層窗、接觸栓塞以及 金屬化等製程,如上所述。 申請人所熟知的大多數相變化記憶胞, 微小孔洞並以相變化材料填充、接著 3 = 低了程式化電流而不需要形成微小U化 ίΓ製私控制性。此外’在本發明記憶胞中,並未使i上 害避免在形成上電極的製程中可能對相變化材ΐ造成 本發明的記憶胞包括了兩個底電極,其稼 間隔子,以及一鑲嵌相變化材料導 [:有” 成於前段製程CMOS邏成於電極層(形 易支援内建記憶與功能^供了可1 單晶片(SOC)裝置。 日日片之、'、口構,例如系姚 * 施例的優點包括,相變化係發生於導㈣中 央、位於介電間隔子之上 ;橋的二 供車么的叮罪度。同時,用於重置與程式化的電流^艮制 27 200838002 於一微小的體積中,允許南電流後度,並使得所造成的局 部加熱僅需低重置電流位階以及低重置功耗。本發明實施 例中的結構,允許了記憶胞的兩個尺度藉由薄膜厚度來定 義,達到奈米尺度下較佳的製程控制,而此記憶胞中僅有 一個尺度可由鑲嵌製程所定義。 雖然本發明係已參照較佳實施例來加以描述,將為吾 人所瞭解的是,本發明創作並未受限於其詳細描述内容: 2方式及f改樣式係已於先前描述中所建議,並且其他 ΠίίΞ樣式將為熟習此項技藝之人士所思及。特 X明:與方法,所有具有實質上㈣^ 阶ϋ月之構件、、、口 a而達成與本發明實質上i日P1 4士里本比丁 脫離本發明之精神範_。 , N相同、、、口果者白不 樣式係意欲落在本發明於^二2此等替換方式及修改 界定的範疇之中。任仿附申印專利範圍及其均等物所 刷β,均係列為本中提及之專利申請案以及印 【圖式簡單說明】 第1圖係綠示—镇Η 士第2圖鱗示在相變/匕記憶元件之實施例。 中的電流路徑。 圖中之薄膜導橋相變化記憶元件 第3圖係纟會示當1 的主動區域。"“圖中之薄膜導橋相變化記憶元件中 中之薄膜導橋相變化記憶元件的 圖 第4圖係纟會示第 尺寸。 而户 .....…其在一電極 第6圖係綠示第5 m _電極層之上包括有位元線。 圖 第7圖俜之結構的平面圖。 不包括有相變化記憶轉之記憶陣列示意 28 200838002 第8圖係一積體電路裝置之方塊圖,包括一薄膜 絲相變化記憶陣列與其他電路。 、 第9圖係一基板的剖面,其包括由前踱製程所 存取笔路,且係在以第5圖所示之相變化記憶裝置為虛 的製程中製造。 夏馬基礎 剖面_ 圖麟示第5 0之結射形成1極層的初始步驟 第11A與11B圖係繪示對第1G圖之結構進行 Ϊ =與剖面圖’而形成在第5圖結構中的電極物 絕緣在第1則之電料4±形成側壁 的步係繪衫第12圖的結構上形成—科電材料 第14圖係繪示針對第13圖中 子進行研磨的步驟剖面圖。 料電材料與侧壁絕緣 料緣示在利用鑲嵌製程而製造-記憶材 料4以=系繪示在利用鑲物呈而製造-記憶材 第π圖係繪示在利用鑲嵌製藉 橋的第三步驟。 而製造一記憶材料導 第18圖係繪示在利用鑲嵌製 橋的第四步驟。 衣造一記憶材料導 第19圖係繪示在利用鑲嵌掣 橋的第五步驟。 $ 製造一記憶材料導 第20A-20B圖係繪示在利用鎮椒 料導橋的第六步驟。 〜I程而製造一記憶材 第21圖係繪示在利用替代鎮 攝〜製程而製造一記憶材 29 200838002 料導橋的第一步驟。 第22A_2B圖係繪示在利用替代鑲嵌製程而製造一記 憶材料導橋的第二步驟。 第23A-23B圖係繪示在利用替代鑲嵌製程而製造一記 憶材料導橋的第三步驟。 第24A-24B圖係繪示在利用替代鑲嵌製程而製造一記 憶材料導橋的第四步驟。 第25A-25B圖係繪示在利用替代鑲嵌製程而製造一記 憶材料導橋的第五步驟。 穿 第26圖係繪示在利用替代鑲嵌製程而製造一記憶材 " 料導橋的第六步驟。 第27圖係繪示在利用替代鑲嵌製程而製造一記憶材 料導橋的第七步驟。 【主要元件符號說明】 10 記憶胞 11 記憶材料導橋 12 第一電極 12a 第一電極上表面 13 第二電極 13a 第二電極上表面 14 絕緣構件 14a 絕緣構件上表面 15 電流路徑 16 主動通道 20 半導體基板 23,24 字元線 25,27 汲極終端 26 共同源極終端 28 共同源極線 29,30 栓塞結構 31 電極層 30 200838002 l 32,33,34 電極構件 35a,35b 絕緣構件 36,37 記憶材料導橋 38 導電栓塞 39 基底構件 40 圖案化導體層 41,42 金屬位元線 50-53 存取電晶體 60 記憶陣列 61 列解碼器 62 字元線 63 行解碼器 64 位元線 65,67 匯流排 68 偏壓安排供給電壓 69 偏壓安排狀態機器 71 資料輸入線路 72 資料輸出線路 75 積體電路基板 99 記憶結構 101,102 隔離溝槽 103-105 摻雜區域 106 源極線 107,111 導線 108 導電罩 110-114 導電栓塞 115,116 摻雜區域 117 導線 120 介電層 31 200838002 121 導電電極材料層 130-132 電極堆疊 133,134 側壁 140-143 側壁絕緣子 160-162 電極構件 163,164 絕緣構件 450 犧牲材料層 451 遮罩 452 窄遮罩 453 犧牲塊 454 側壁結構 455 溝槽 460 記憶材料層 461 導橋 462 在溝槽中的記憶材料部分 500 介電層 501 罩層 504,505 溝槽 506 凸懸部分 507 側壁 508 記憶材料條 509 記憶材料層 510 溝槽 511,513 記憶材料導橋 512 介電層 514 第一電極 515,516 第二電極 520 遮罩 32A portion of the surface of the cover layer 501 is exposed at this location and is located above the insulating structures 163, 164. T In the next step depicted by the 16th-16th diagram, the layer 5〇〇盥5〇1 is etched and the photoresist 5〇2 is stripped, in the layer 5〇〇, 5〇1 Leave, 504, 505 extending to the surface of the electrode layer. / 接接, as shown in Figure 17, hh, ΙΟΰ _ 踎 你 你 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性 选择性Above 〇7. For layer lions (from the relationship of dioxane 506, I = = material layer 509. Since the hidden material layer 507 above the hidden material layer is not formed on the sidewall of the dielectric layer, the groove 5G4, 5G5. Then / two cover 7 coffin strips and fill the process to flatten the power layer 512 such as CMP on the memory material strip 508, as shown in Figure 19 to form a medium 25 200838002 20A-20B The figure illustrates the next step in which a photoresist layer is applied over the dielectric layer 512 and patterned to form a mask 52, and defines a first electrode 514, a second electrode 515, 510, and a memory material guide. The layout of the bridges 5U, 513. The dielectric layer 512, the strip of memory material 5〇8, and the second electrode members 160, 162 are etched down to the isolation structure 101, 102 according to the patterned photoresist mask 52〇 And forming a trench 51. The subsequent process is continued to fill the trench 510, forming a contact of the first electrode 514, forming a patterned conductive layer over the structure, and at the first electrode 514 and the patterned guide Contacts are formed between the lightning layers. (Figure 21 shows the beginning of an alternative mosaic technique for forming a memory material viaduct. The process begins after the formation of the front-end process structure (101-107, 110-112 in the figure), and the electrode layer includes a first electrode member 161, a left/first electrode member 16A, and a right side. a second electrode member 162, which is a strip-like structure perpendicular to the page, as detailed above. In this alternative technique, a layer of sacrificial material 450 (including polysilicon or other material deposited on the electrode layer) - as in section 22A -22B/show, a layer of photoresist is applied and patterned to define a mask 451 that is positioned to form an electrode structure from electrode members 16, 161, 162, and mask 451 defines A pattern of sacrificial blocks is formed from the sacrificial material layer 45. The mask 451 is then trimmed (eg, by isotropic etching) to form a narrow mask structure 452, as shown in Figures 23A-23B. Narrow mask structure 452 It is then used as a surname mask to define a narrow sacrificial block 453 of sacrificial material over the electrode layer, and a sidewall structure 454 is formed over the sacrificial block 453 as shown in Figure 24A-24B. 454 and sacrificial block 453 are most used as electrode layers The electrode structure has a surname mask, and the electrode layer includes the electrode member 162 and the insulating members 163, 164. The lumps 453 and the downward generation 25A-25B illustrate the use of an etch mask (by the sidewall structure) 4M is formed by the result of the counter electrode layer 26 200838002 trenches to the isolation structures 101, 102 and the electrode structure is isolated. After re-etching, the sacrificial block 453 is selectively removed, thereby leaving the sidewall structure 454 The groove. A memory material layer 460 is then formed which covers the sidewall structure 454 and fills the trenches 455 and the trenches defined by the sidewall structures 454, as shown in FIG. Next, a dielectric fill is applied by, for example, hafnium oxide or the like, covering the memory material layer 46 and filling the trench 455. This structure is then etched and planarized by means such as CMP to remove dielectric fill and portions of layer 460 on sidewall structure 454, while layer 460 is separated into individual components, including vias 461 and Memory material portion 462 in trench_f. As shown in Fig. 27, another dielectric fill 464 is applied and planarized to form a structure which can then be subjected to a via, contact plug, and metallization process, as described above. Most of the phase change memory cells known to the applicant, the tiny holes are filled with phase change material, and then 3 = the stylized current is low without the need for micro-chemical control. In addition, in the memory cell of the present invention, the memory cell of the present invention may be caused to avoid phase damage in the process of forming the upper electrode. The memory cell of the present invention includes two bottom electrodes, a spacer, and a mosaic. Phase change material guide [: Yes" is formed in the front-end process CMOS logic on the electrode layer (shape easy to support built-in memory and function ^ for a single-chip (SOC) device. Japanese film, ', mouth structure, for example The advantages of the Yao* case include that the phase change occurs in the center of the guide (4), above the dielectric spacer; the sin of the bridge is used for the vehicle. At the same time, the current used for resetting and stylizing 27200838002 In a small volume, the south current is allowed to be post-degree, and the resulting local heating requires only a low reset current level and a low reset power consumption. The structure in the embodiment of the invention allows the memory cell The two dimensions are defined by the film thickness to achieve better process control at the nanometer scale, and only one dimension of the memory cell can be defined by the damascene process. Although the invention has been described with reference to the preferred embodiments, Will be ours It is to be understood that the creation of the present invention is not limited by the detailed description thereof: 2 modes and f styles have been suggested in the previous description, and other ΠίίΞ styles will be considered by those skilled in the art. Ming: and the method, all of the members having substantially (four) ^ steps of the month, and the mouth a reach the essence of the present invention, the P1 4 sibbene is out of the spirit of the invention. The word of the mouth is not intended to fall within the scope of the present invention in the alternatives and modifications defined by the invention. The scope of the patents and the equivalents of the patents are all in the series. And the patent application and printing [simplified description of the drawing] The first picture is the green display - the second figure of the town is shown in the embodiment of the phase change / 匕 memory element. The current path in the film. Fig. 3 of the phase change memory element shows the active area of the 1st. "Fig. 4 of the film guide phase change memory element in the film guide phase change memory element in the figure. Dimensions.................................................................... The top view includes the bit line. Figure 7 is a plan view of the structure. The memory array is not included with the phase change memory. 28 200838002 Figure 8 is a block diagram of an integrated circuit device, including a film phase change. The memory array and other circuits. Fig. 9 is a cross-section of a substrate including a pen path accessed by a front-end process, and is manufactured in a process in which the phase change memory device shown in Fig. 5 is virtual. The basic section of the horse base section _ Fig. 1 shows the initial steps of forming the first pole layer by the junction of the 50th. The 11A and 11B diagrams show the structure of the 1G diagram and the profile of the 1G diagram. The electrode material insulation is formed on the structure of the first step of the electric material 4± forming the side wall of the step drawing shirt. Fig. 14 is a cross-sectional view showing the step of grinding the neutron in Fig. 13. The material of the electrical material and the edge of the insulating material of the sidewall are produced by using the damascene process - the memory material 4 is shown by the use of the inlay and the memory is formed by the inlay - the third figure of the memory is shown in the third using the inlaid bridge step. The fabrication of a memory material guide 18 is illustrated in a fourth step in the use of a damascene bridge. The fabrication of a memory material guide is illustrated in the fifth step of the use of a mosaic bridge. $ Manufacturing a memory material guide 20A-20B is a sixth step in the use of a pepper guide. ~I process to create a memory material Figure 21 shows the use of a replacement lens ~ process to create a memory material 29 200838002 The first step of the material guide bridge. Figure 22A-2B illustrates a second step in the fabrication of a memory material viaduct using an alternate damascene process. Figures 23A-23B illustrate a third step in the fabrication of a memory material viaduct using an alternate damascene process. Figures 24A-24B illustrate a fourth step in the fabrication of a memory material viaduct using an alternate damascene process. 25A-25B illustrate a fifth step in the fabrication of a memory material viaduct using an alternative damascene process. Fig. 26 shows the sixth step of manufacturing a memory material "material guide bridge using an alternative damascene process. Figure 27 is a diagram showing the seventh step in fabricating a memory material viaduct using an alternative damascene process. [Main component symbol description] 10 Memory cell 11 Memory material bridge 12 First electrode 12a First electrode upper surface 13 Second electrode 13a Second electrode upper surface 14 Insulating member 14a Insulating member upper surface 15 Current path 16 Active channel 20 Semiconductor Substrate 23, 24 word line 25, 27 DMD terminal 26 Common source terminal 28 Common source line 29, 30 Plug structure 31 Electrode layer 30 200838002 l 32, 33, 34 Electrode member 35a, 35b Insulating member 36, 37 Memory Material Guide 38 Conductive Plug 39 Base Member 40 Patterned Conductor Layer 41, 42 Metal Bit Line 50-53 Access Crystal 60 Memory Array 61 Column Decoder 62 Word Line 63 Line Decoder 64 Bit Line 65, 67 Bus 68 biasing supply voltage 69 biasing state machine 71 data input line 72 data output line 75 integrated circuit substrate 99 memory structure 101, 102 isolation trench 103-105 doped region 106 source line 107, 111 wire 108 conductive cover 110 -114 Conductive plug 115,116 Doped region 117 Conductor 120 Dielectric layer 31 200838002 121 Conductive Pole material layer 130-132 electrode stack 133, 134 sidewall 140-143 sidewall insulator 160-162 electrode member 163, 164 insulating member 450 sacrificial material layer 451 mask 452 narrow mask 453 sacrificial block 454 sidewall structure 455 trench 460 memory material layer 461 462 Memory material portion 500 in the trench dielectric layer 501 cap layer 504, 505 trench 506 bump portion 507 sidewall 508 memory material strip 509 memory material layer 510 trench 511, 513 memory material via 512 dielectric layer 514 first electrode 515, 516 Second electrode 520 mask 32
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/677,354 US7534647B2 (en) | 2005-06-17 | 2007-02-21 | Damascene phase change RAM and manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200838002A true TW200838002A (en) | 2008-09-16 |
Family
ID=44839764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96108088A TW200838002A (en) | 2007-02-21 | 2007-03-08 | Damascene phase change RAM and manufacturing method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW200838002A (en) |
-
2007
- 2007-03-08 TW TW96108088A patent/TW200838002A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7534647B2 (en) | Damascene phase change RAM and manufacturing method | |
US7642539B2 (en) | Thin film fuse phase change cell with thermal isolation pad and manufacturing method | |
US7903457B2 (en) | Multiple phase change materials in an integrated circuit for system on a chip application | |
US7820997B2 (en) | Resistor random access memory cell with reduced active area and reduced contact areas | |
US7732800B2 (en) | Resistor random access memory cell with L-shaped electrode | |
US8106376B2 (en) | Method for manufacturing a resistor random access memory with a self-aligned air gap insulator | |
CN100440486C (en) | Manufacturing method for phase change ram with electrode layer process | |
CN100555699C (en) | The structure of bistable resistive random access memory and method | |
US7619237B2 (en) | Programmable resistive memory cell with self-forming gap | |
US7414258B2 (en) | Spacer electrode small pin phase change memory RAM and manufacturing method | |
CN100563040C (en) | Phase change memory cell and manufacture method thereof | |
US7956358B2 (en) | I-shaped phase change memory cell with thermal isolation | |
TWI387103B (en) | Fully self-aligned pore-type memory cell having diode access device | |
US8415651B2 (en) | Phase change memory cell having top and bottom sidewall contacts | |
TWI489591B (en) | Fill-in etching free pore device | |
TWI442518B (en) | Self aligning pillar memory cell device and method for making the same | |
US7527985B2 (en) | Method for manufacturing a resistor random access memory with reduced active area and reduced contact areas | |
US7718533B2 (en) | Inverted variable resistance memory cell and method of making the same | |
TW200908313A (en) | Phase change memory with dual word lines and source lines and method of operating same | |
US9082954B2 (en) | PCRAM with current flowing laterally relative to axis defined by electrodes | |
TW200838002A (en) | Damascene phase change RAM and manufacturing method |