TW200837822A - Water-based dispersion for chemical mechanical grinding, chemical mechanical grinding method and kit used for preparing water-based dispersion for chemical mechanical grinding - Google Patents

Water-based dispersion for chemical mechanical grinding, chemical mechanical grinding method and kit used for preparing water-based dispersion for chemical mechanical grinding Download PDF

Info

Publication number
TW200837822A
TW200837822A TW96142941A TW96142941A TW200837822A TW 200837822 A TW200837822 A TW 200837822A TW 96142941 A TW96142941 A TW 96142941A TW 96142941 A TW96142941 A TW 96142941A TW 200837822 A TW200837822 A TW 200837822A
Authority
TW
Taiwan
Prior art keywords
honing
chemical mechanical
insulating layer
layer
water
Prior art date
Application number
TW96142941A
Other languages
Chinese (zh)
Inventor
Masayuki Motonari
Eiichirou Kunitani
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW200837822A publication Critical patent/TW200837822A/en

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

To provide a water-based dispersion for chemical mechanical grinding, a chemical mechanical grinding method and a kit used for preparing water-based dispersion for chemical mechanical grinding, wherein the physical property of insulated layer would not change, and surface imperfection of material coming unstuck or being scratched would not occur, therefore, a grinded surface with high precision could be obtained. A water-based dispersion for chemical mechanical grinding comprises (A)abrasive grain, (B)quinoline carboxy acid and/or pyridine carboxy acid, (C)organic acid other than said (B), (D)oxidation agent, (E)non-ionic surfactant having a triple bond and (F)dispersing medium, and said (A)abrasive grain is a colloidal silica having a average primary particle diameter of 5 to 55 nm and a associated degree of 1.5 to 4.0.

Description

200837822 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種化學機械硏磨用水系分散體及化 學機械硏磨方法、以及用以調製化學機械硏磨用水系分散 體之套組。更詳言之,係有關於一種化學機械硏磨用水系 分散體及使用其之化學機械硏磨方法、以及用以調製化學 機械硏磨用水系分散體之套組,該化學機械硏磨用水系分 散體能夠使用於銅配線(形成於半導體裝置的低介電常數 絕緣層/高介電常數絕緣層的二層結構的層間絕緣層)的形 成步驟’可有效地化學機械硏磨設置在半導體基板上之各 種被硏磨材料,且能夠得到充分平坦化之高精確度的加工 完成面。 【先前技術】 近年來,隨著半導體裝置的高密度化,在半導體裝置內 所形成的配線朝向微細化進展。已知有稱爲金屬鑲嵌 ^, (damascene)法之技術,係一種能夠使該配線達成更加微細 化之技術。該方法係藉由在絕緣層中所形成的槽等埋入配 線材料後,使用化學機械硏磨除去槽以外所堆積之多餘的 配線材料’來形成需要的配線。在此,使用銅或銅合金作 爲配線材料時,爲了避免銅原子往絕緣體中移動,在銅或 銅合金與絕緣體的界面,通常形成有以鉅、氮化鉅、及氮 化it等作爲材料之高強度的高介電常數絕緣層(導電性阻 障層)。 @ _或銅合金使用作爲配線材料來製造半導體裝置並 -6- .200837822 採用金屬鑲嵌法時,該化學機械硏磨的方法雖然有各種方 法’但是進行2階段的化學機械硏磨爲佳,該2階段的化 學機械硏磨法包含第1硏磨步驟及第2硏磨步驟,該第1 硏磨步驟係主要進行除去銅或銅合金;而該第2硏磨步驟 係主要除去導電性阻障層。該第2硏磨步驟有時不只是除 去導電性阻障層,亦同時硏磨在導電性阻障層下所存在的 層間絕緣層,藉此,能夠得到充分平坦化之高精確度的加 工完成面。 又’隨著微細配線化進一步進展,銅配線寬度變爲非常 狹窄’只有使用低電阻的銅配線時逐漸地無法得到充分的 電氣特性,而逐漸應用使用介電常數低的低介電常數材料 (Low-k材料)作爲層間絕緣層之配線結構。其中,藉由使用 相對介電常數(k)爲小於2.5的低介電常數材料,能夠降低 在銅配線間的層間絕緣層所帶有的電容量,藉此,能夠使 銅配線的電氣特性發揮至最大限。而且,使用低介電常數 材料來形成層時,因爲能夠在材料中製造多數個空穴,藉 由調整空穴的比率或大小,能夠調整層的相對介電常數。 空穴的比率多時會使層的相對介電常數變爲非常低,另 一方面,因爲會有材料的機械強度變爲非常差之傾向,所 得到的層會有無法保持經得起在化學機械硏磨時所施加應 力的強度之可能性。 又,因爲上述具有空穴的低介電常數絕緣層之空穴比率 多’膜容易因化學機械硏磨而蒙受損傷。Low-k膜產生如 此的損傷時,在經過蝕刻、灰化、或是溼式洗淨等製造步 200837822 上 數 常 電 介 對 相 的 層 緣 絕 大此, 增如果 流。結 電形之 泄情性 、漏之賴 i差信 ^變的 性置 特裝 氣體 電導 的半 層害 緣損 絕成 數造 常會 電差 介變 有低性 會使特 , 致氣 後,電 驟等的 乃是不佳。 如上述技術,在第2硏磨步驟時,使用相對介電常數高 且較硬的二氧化矽膜作爲層間絕緣層使用時,被硏磨面不 會產生表面缺陷而能夠得到比較高精確度的平坦化。 但是,使用機械強度差之低介電常數絕緣層時,因爲(i) 因化學機械硏磨,會在被硏磨面產生剝落、或稱爲擦傷的 表面缺陷;(i i)因爲在硏磨具有微細配線結構之晶圓時,被 硏磨材之低介電常數絕緣層的硏磨速度顯著變高,所以無 法得到平坦化之高精確度的加工完成面;及(i i i)阻障層與 低介電常數絕緣層的黏附性不佳等理由,而採用以下的方 法,係在低介電常數絕緣層的上層形成被稱爲覆蓋層(cap layer)之絕緣層(相對介電常數比低介電常數絕緣層高、且 由二氧化矽等所構成),來形成稱爲(下層)低介電常數絕緣 層/(上層)高介電常數絕緣層(相對介電常數比低介電常數 絕緣層高的絕緣層)的二層結構的層間絕緣層之方法。 進行化學機械硏磨時必須迅速地除去上層的高介電常 數絕緣層,且必須極力抑制下層的低介電常數絕緣層的硏 磨速度。亦即,要求高介電常數絕緣層的硏磨速度(RR2) 與低介電常數絕緣層的硏磨速度(RR1)具有RR2>RR1之關 係。 硏磨低介電常數絕緣層時不只是抑制硏磨速度,而且不 200837822 可使被硏磨面的物理性質(相對介電常數、漏泄i 生變化。隨著微細配線化的進展,必須更降低低 絕緣層的相對介電常數,伴隨著必須使材料的 大。低介電常數絕緣層的空穴徑越大時,因爲不 電常數絕緣層變脆,而且因化學機械硏磨會有物 生變化之可能性,所以必須有一種技術,不會改 常數絕緣層的物理性質、且能夠抑制硏磨速度。 如此,因爲第2硏磨步驟係相當於所謂加工完 在第2硏磨步驟’要求一種化學機械硏磨用水系 能夠抑制在脆的被硏磨面所產生之材料剝落或表 且不會改變被硏磨面的物理性質、並能夠抑制硏 第2硏磨步驟之目的係主要除去高介電常數| 縮短硏磨製程時間的觀點,對被硏磨面必須具有 度,但是若提高硏磨速度時,在較脆的被硏磨面 料剝落或表面缺陷。又,如前述,在低介電常數 上層形成有硬的覆蓋層時,必須對二氧化矽膜具 磨速度。因此,爲了得到高精確度的被硏磨面, 硏磨壓力來進行高介電常數絕緣層的硏磨,且要 低硏磨壓力下對高介電常數絕緣層及二氧化矽膜 到高的硏磨速度。 具體上的例子,專利文獻1揭示一種含有由 構成的硏磨粒、氧化劑、及碳酸鹽之鹼性領域 成物。使用該硏磨液時,雖然能夠充分地得到 絕緣層的硏磨速度,但是,無法充分地抑制低 S流値)產 介電常數 空穴徑增 只是低介 理性質產 變低介電 :成步驟, 分散體, 面缺陷, 磨速度。 g緣層,從 高硏磨速 會產生材 絕緣層的 有高的硏 必須以低 求即便在 亦能夠得 氧化矽所 硏磨用組 介電常數 電常數絕 -9 - 200837822 緣層的硏磨速度,而且,形成有上述覆蓋層時,對二氧化 矽膜無法得到充分的硏磨速度,而致使硏磨製程的時間變 長,且生產量下降。 又,專利文獻2揭示一種含有特定聚醚改性矽酮及各種 添加劑之硏磨用組成物,並揭示藉由使用該硏磨液,由於 該聚醚改性矽酮的效果,能夠充分地抑制低介電常數絕緣 層的硏磨速度。但是,該硏磨液被硏磨對象膜之相對介電 常數爲2.8,介電常數高且機械強度強、而且係由物理性質 不容易產生變化的材料所構成。因此,使用此種硏磨液來 硏磨膜中存在有空穴結構之低介電常數絕緣層(例如相對 介電常數爲2.4以下的層)時,因爲不只是會使低介電常數 絕緣層造成機械性損傷,而且會改變低介電常數絕緣層的 物理性質,所以不適合作爲第2硏磨步驟所使用的硏磨液。 [專利文獻1]特開2000-24 8 2 6 5號公報 [專利文獻2 ]特開2 0 0 5 - 1 2 9 6 3 7號公報 【發明內容】 鑒於以上情形,本發明的目的係提供一種化學機械硏磨 用水系分散體及使用其之化學機械硏磨方法、以及用以調 製前述化學機械硏磨用水系分散體之套組,該化學機械硏 磨用水系分散體在對絕緣層進行化學機械硏磨時,不會改 變絕緣層的物理性質、在被硏磨面不會產生材料剝落或擦 傷等表面缺陷、且能夠得到高精確度的被硏磨面。 [解決課題之手段] 本發明的第1態樣之化學機械硏磨用水系分散體,含有 -10- 200837822 (A)硏磨粒、(B)喹啉羧酸及/或吡啶羧酸、(C)前述(B)以外 的有機酸、(D)氧化劑、(E)具有三鍵之非離子性界面活性 劑、及(F)分散介質,其中前述(A)硏磨粒之平均一次粒徑 爲5〜55奈米且締合度爲1.5〜4.0之膠體二氧化矽。 在上述化學機械硏磨用水系分散體,其中前述(D)氧化 劑係過氧化氫。 在上述化學機械硏磨用水系分散體,其中前述(E)非離 子性界面活性劑能夠以下述通式(1 )來表示。200837822 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD The present invention relates to a chemical mechanical honing water dispersion and a chemical mechanical honing method, and a kit for modulating a chemical mechanical honing water dispersion. More specifically, there is a chemical mechanical honing water dispersion and a chemical mechanical honing method using the same, and a set for modulating a chemical mechanical honing water dispersion, the chemical mechanical honing water system The dispersion can be used in the formation step of the copper wiring (the interlayer insulating layer of the two-layer structure of the low dielectric constant insulating layer/high dielectric constant insulating layer formed in the semiconductor device), and can be effectively chemically mechanically honed on the semiconductor substrate. A variety of honed materials are available, and a highly precise finished surface that is sufficiently flattened can be obtained. [Prior Art] In recent years, as the density of semiconductor devices has increased, the wiring formed in the semiconductor device has progressed toward miniaturization. A technique called a damascene method is known, and is a technique capable of making the wiring more fine. In this method, by burying the wiring material in a groove or the like formed in the insulating layer, the necessary wiring is formed by chemical mechanical honing to remove excess wiring material deposited outside the groove. Here, when copper or a copper alloy is used as the wiring material, in order to prevent the copper atoms from moving into the insulator, the interface between the copper or the copper alloy and the insulator is usually formed of giant, arsenic, and nitrided. High-strength high dielectric constant insulating layer (conductive barrier layer). @ _ or copper alloy is used as a wiring material to manufacture a semiconductor device and -6-200837822 When the metal damascene method is used, the chemical mechanical honing method has various methods', but it is preferable to perform a two-stage chemical mechanical honing. The two-stage chemical mechanical honing method includes a first honing step and a second honing step, the first honing step is mainly for removing copper or a copper alloy; and the second honing step is mainly for removing the conductive barrier. Floor. The second honing step may not only remove the conductive barrier layer, but also honing the interlayer insulating layer existing under the conductive barrier layer, thereby achieving high-precision processing with sufficient planarization. surface. In addition, as the fine wiring progresses, the copper wiring width becomes very narrow. When only low-resistance copper wiring is used, sufficient electrical characteristics are not gradually obtained, and a low dielectric constant material having a low dielectric constant is gradually applied ( Low-k material) as a wiring structure of an interlayer insulating layer. In addition, by using a low dielectric constant material having a relative dielectric constant (k) of less than 2.5, the capacitance of the interlayer insulating layer between the copper wirings can be reduced, whereby the electrical characteristics of the copper wiring can be utilized. To the maximum. Further, when a layer is formed using a low dielectric constant material, since a plurality of holes can be formed in the material, the relative dielectric constant of the layer can be adjusted by adjusting the ratio or size of the holes. When the ratio of holes is large, the relative dielectric constant of the layer becomes very low. On the other hand, since the mechanical strength of the material becomes very poor, the resulting layer may not be able to withstand the chemistry. The possibility of the strength of the stress applied during mechanical honing. Further, since the hole ratio of the low dielectric constant insulating layer having holes described above is large, the film is easily damaged by chemical mechanical honing. When the Low-k film is damaged as described above, in the manufacturing step 200837822, such as etching, ashing, or wet cleaning, the number of layers of the dielectric phase is extremely large, and the current is increased. The electric leakage of the junction shape, the leakage of the difference, the difference between the characteristics of the special gas, the semi-layer of the gas conductance, the number of damages, the regularity of the electrical conductivity, the low frequency will make the special, after the gas, the electricity Waiting is not good. According to the above technique, in the second honing step, when a ceria film having a relatively high dielectric constant and a relatively hard cyanide film is used as the interlayer insulating layer, the surface to be honed does not cause surface defects, and a relatively high precision can be obtained. flattened. However, when using a low dielectric constant insulating layer with poor mechanical strength, (i) due to chemical mechanical honing, surface defects may occur on the surface to be flaking, or called scratches; (ii) because of honing In the case of a wafer having a fine wiring structure, the honing speed of the low dielectric constant insulating layer of the honed material is remarkably high, so that a highly processed surface having high flatness cannot be obtained; and (iii) the barrier layer and the low layer The dielectric constant insulating layer has poor adhesion, and the like, and an insulating layer called a cap layer is formed on the upper layer of the low dielectric constant insulating layer (relative dielectric constant ratio low dielectric) The electric constant insulating layer is high and composed of ruthenium dioxide or the like to form a low dielectric constant insulating layer/(upper layer) high dielectric constant insulating layer (relative dielectric constant is lower than low dielectric constant insulating) A method of a two-layered interlayer insulating layer of a high-level insulating layer. The upper dielectric high dielectric constant insulating layer must be quickly removed during chemical mechanical honing, and the honing speed of the lower low dielectric constant insulating layer must be suppressed as much as possible. That is, the honing speed (RR2) of the high dielectric constant insulating layer and the honing speed (RR1) of the low dielectric constant insulating layer are required to have a relationship of RR2 > RR1. When honing the low dielectric constant insulating layer, not only the honing speed is suppressed, but also the physical properties (relative dielectric constant and leakage) of the surface to be honed can be changed without 200837822. With the progress of fine wiring, it must be further reduced. The relative dielectric constant of the low insulating layer is accompanied by the necessity of making the material large. When the hole diameter of the low dielectric constant insulating layer is larger, the insulating layer becomes brittle due to the non-electrical constant, and the chemical mechanical honing has a substance. There is a possibility of change, so there must be a technique that does not change the physical properties of the constant insulating layer and can suppress the honing speed. Thus, since the second honing step is equivalent to the so-called processing in the second honing step' A chemical mechanical honing water system can suppress the peeling or surface of the material generated on the brittle honed surface without changing the physical properties of the honed surface, and can suppress the second honing step. Dielectric constant | The viewpoint of shortening the honing process time must have a degree to the honed surface, but if the honing speed is increased, the brittle honed fabric is peeled off or surface defects. As described above, when a hard coating layer is formed on the upper layer of the low dielectric constant, the cerium oxide film must have a grinding speed. Therefore, in order to obtain a highly precise honed surface, the honing pressure is performed to perform a high dielectric constant insulating layer. The honing, and the honing speed of the high dielectric constant insulating layer and the cerium oxide film to a high honing pressure. In the specific example, Patent Document 1 discloses a honing granule containing an oxidizing agent, In the case of using the honing solution, the honing speed of the insulating layer can be sufficiently obtained, but the low S flow cannot be sufficiently suppressed. The dielectric properties are low dielectrics: steps, dispersions, surface defects, and grinding speed. The g-edge layer, which has a high enthalpy from the sorghum grinding rate, must have a low enthalpy, and even if it can be obtained, it can be obtained by yttrium oxide. The dielectric constant of the group is -9 - 200837822 At the same time, when the above-mentioned coating layer is formed, a sufficient honing speed cannot be obtained for the cerium oxide film, and the honing process time becomes long, and the throughput is lowered. Further, Patent Document 2 discloses a honing composition containing a specific polyether-modified anthrone and various additives, and discloses that by using the honing liquid, the effect of the polyether-modified anthrone can be sufficiently suppressed. The honing speed of the low dielectric constant insulating layer. However, the honing liquid is honed to have a relative dielectric constant of 2.8, a high dielectric constant, a strong mechanical strength, and a material which is not easily changed by physical properties. Therefore, when such a honing liquid is used to honing a low dielectric constant insulating layer having a hole structure in the film (for example, a layer having a relative dielectric constant of 2.4 or less), since not only a low dielectric constant insulating layer but also a low dielectric constant insulating layer is used. It causes mechanical damage and changes the physical properties of the low dielectric constant insulating layer, so it is not suitable as the honing liquid used in the second honing step. [Patent Document 1] JP-A-2000-24 8 2 6 5 [Patent Document 2] JP-A-2000- 1 2 9 6 3 7 SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide A chemical mechanical honing water-based dispersion, a chemical mechanical honing method using the same, and a kit for preparing the above-mentioned chemical mechanical honing water-based dispersion, wherein the chemical mechanical honing water-based dispersion is used for the insulating layer In chemical mechanical honing, the physical properties of the insulating layer are not changed, surface defects such as peeling or scratching of the material are not generated on the surface to be honed, and a highly honed surface to be honed can be obtained. [Means for Solving the Problem] The chemical mechanical honing aqueous dispersion according to the first aspect of the present invention contains -10 200837822 (A) honing abrasive particles, (B) quinolinecarboxylic acid and/or pyridinecarboxylic acid, C) an organic acid other than the above (B), (D) an oxidizing agent, (E) a nonionic surfactant having a triple bond, and (F) a dispersion medium, wherein the average primary particle diameter of the aforementioned (A) honing particles It is a colloidal cerium oxide having a degree of association of 5 to 55 nm and an association degree of 1.5 to 4.0. In the above chemical mechanical honing aqueous dispersion, the aforementioned (D) oxidizing agent is hydrogen peroxide. In the above chemical mechanical honing aqueous dispersion, the (E) nonionic surfactant can be represented by the following general formula (1).

(式中,η及m係各自獨立之1以上的整數,且滿足n + m^50) 在上述化學機械硏磨用水系分散體,其中相對於前述(E) 非離子性界面活性劑的調配量,前述(B)喹啉羧酸及/或吡 啶羧酸的調配量比例(B/E)可以是0.01〜5。 在上述化學機械硏磨用水系分散體,其中以同一條件化 學機械硏磨導電性阻障層及第1絕緣層時,前述導電性阻 障層的硏磨速度(RB)與第1絕緣層的硏磨速度(Rln_l}之硏 磨速度比(RB/(Rin-i)爲1.2〜4.0。 在上述化學機械硏磨用水系分散體,其中以同一條件化 -11- 200837822 學機械硏磨銅層、導電性阻障層、第1絕緣層、及介電常 數比該第1絕緣層高的第2絕緣層的各層時,前述導電性 阻障層的硏磨速度(Rb)與銅層的硏磨速度(RM)之硏磨速度 比(RB/RM)爲1 .5以上,前述第2絕緣層的硏磨速度(Rln_2) 與前述銅層(Rm)的硏磨速度之硏磨速度比(RIn_2/RM)爲 0.9〜2_5,且前述第2絕緣層的硏磨速度(RIn_2)與前述第1 絕緣層(Rln-l)硏磨速度之硏磨速度比(Rln-2/ 爲 0.5〜5 ° 在上述化學機械硏磨用水系分散體,其中使用含有非水 溶性基質材(含有交聯聚合物)及分散在該非水溶性基質材 而成的水溶性粒子之硏磨墊,以同一條件化學機械硏磨銅 層、導電性阻障層、第1絕緣層、及介電常數比該第1絕 緣層高的第2絕緣層的各層時,前述第1絕緣層的硏磨速 度(R I η _ 1 )、前述導電性阻障層的硏磨速度(R B )、前述銅層的 硏磨速度(Rm)、及前述第2絕緣層的硏磨速度(RIn_2)能夠 滿足 Rlnd’RB’RM’Rln-l。 本發明之第2態樣之化學機械硏磨方法包含以下步驟: 第1硏磨步驟,其係化學機械硏磨透過中止層而設置在 具有凹部的絕緣層上且埋設於該凹部之金屬層,至該中止 層露出爲止;及 第2硏磨步驟,其係使用上述化學機械硏磨用水系分散 體,來化學機械硏磨前述金屬層及前述中止層至該絕緣層 露出爲止。 在前述化學機械硏磨方法,其中前述絕緣層係含有第i -12- 200837822 絕緣層、及介電常數比該第1絕緣層高的第2絕緣層之積 層體’且前述第2硏磨步驟是可以化學機械硏磨前述金屬 層、即述中止層、及前述第2絕緣層之步驟。 在前述化學機械硏磨方法,其中前述第1絕緣層的相對 介電常數可以是3 · 5以下。 在前述化學機械硏磨方法,其中前述中止層可以是導電 性阻障層。 (本發明之第3態樣之用以調製化學機械硏磨用水系分 散體之套組,係混合液(I)及液(11),用以調製上述化學機 械硏磨用水系分散體之套組,其中 該液(I)係含有(A )平均一次粒徑爲5〜5 5奈米且締合度 爲1 . 5〜4.0的膠體二氧化矽之硏磨粒、(B )喹啉羧酸及/或吡 D定羧酸、(C)前述(B)以外的有機酸、(E)具有三鍵之非離子 性界面活性劑、及(F)分散介質之水系分散體, 該液(Π)係含有(D)氧化劑。 ( 本發明之第4態樣之用以調製化學機械硏磨用水系分 散體之套組,係混合液(I)及液(11 ),用以調製上述化學機 械硏磨用水系分散體之套組,其中 該液(I)係含有(A)平均一次粒徑爲5〜55奈米且締合度 爲1.5〜4.0的膠體二氧化矽之硏磨粒、及(F)分散介質之水 系分散體, 該液(11)係含有(B )喹啉羧酸及/或吡啶竣酸、(c)前述(b ) 以外的有機酸、(D)氧化劑、及(E)具有三鍵之非離子性界 面活性劑。 -13 - 200837822 本發明之第5態樣之用以調製化學機械硏磨用水系分 β夂體之套組,係混合液(I)、液(π )、及液(111),用以調製上 述化學機械硏磨用水系分散體之套組,其中 液(I)係含有(Α)平均一*次粒徑爲5〜55奈米且締合度 爲1.5〜4.0的膠體二氧化矽之硏磨粒、及(F)分散介質之水 系分散體, 該液(Π)係含有(B)喹啉羧酸及/或吡啶羧酸、及(E)具有 三鍵之非離子性界面活性劑, 而該液(III)係含有(D)氧化劑。 在前述第4或5的態樣之套組,其中 前述液(I)可以更含有選自(B)喹啉羧酸及/或吡啶羧 酸、(C)前述(B)以外的有機酸、(D)氧化劑、及(E)具有三鍵 之非離子性界面活性劑之1種類以上的成分。 [發明之效果] 藉由使用上述化學機械硏磨用水系分散體來進行化學 機械硏磨絕緣層,在進行化學機械硏磨絕緣層時,不會改 變絕緣層的物理性質、在被硏磨面不會產生材料剝落或擦 傷等表面缺陷、且能夠得到高精確度的被硏磨面。 例如,使用上述化學機械硏磨用水系分散體來化學機械 硏磨以機械強度差的絕緣層(例如,相對介電常數爲3 . 5以 下的絕緣層)作層間絕緣層之半導體基板時,不會改變絕緣 層的物理性質、在被硏磨面不會產生材料剝落或擦傷等表 面缺陷、且能夠得到高精確度的被硏磨面,而且能夠充分 地抑制前述絕緣層的硏磨速度。特別是在上述的金屬鑲嵌 -14- 200837822 法進行二階段硏磨處理時,使用上述化學機械硏磨用水系 分散體作爲第2硏磨步驟中的硏磨材係有用的。 又,例如硏磨設置在絕緣層上的導電性阻障層時,及研: 磨設置在第1絕緣層上之相對介電常數比第1絕緣層高的 第2絕緣層時,不會變化改變此等絕緣層的物理性質、g 被硏磨面不會產生材料剝落或擦傷等表面缺陷、且能夠得 到高精確度的被硏磨面。 【實施方式】 以下,參照圖示來說明本發明的實施形態。 又,本發明未限於下述的實施形態,亦包含在未變更本 發明要旨的範圍所實施各種變型例。 1 .化學機械硏磨用水系分散體 本發明的一個實施形態的化學機械硏磨用水系分散體 係含有(A)硏磨粒、(B)喹啉羧酸及/或吡啶羧酸、(C)前述(B) 以外的有機酸、(D)氧化劑、(E)具有三鍵之非離子性界面 活性劑、及(F)分散介質(以下亦分別稱爲「(A)〜(F)成分」)。 以下,詳述本發明的一個實施形態的化學機械硏磨用水 系分散體所含的各成分。 1·1.(A)硏磨粒 (A)硏磨粒係平均一次粒徑爲5〜55奈米、且締合度爲 1 .5〜4.0的膠體二氧化矽。(A)硏磨粒的締合度爲小於1.5 時,因爲(E)成分容易黏附於(A)硏磨粒,結果硏磨被抑制, 所以絕緣層的硏磨速度有變慢的傾向。另一方面,(A)硏磨 粒的締合度大於4.0時,會有硏磨速度變爲太高,而無法 -15- 200837822 得到良好的被硏磨面之情形。 (A)硏磨粒的平均一次粒徑能夠從藉由透射型電子顯微 鏡觀察所求得的50個(A)硏磨粒的粒徑的平均値來算出。 又,(A)硏磨粒的平均二次粒徑能夠從藉由動態光散射 法、雷射散射繞射法來測定。其中,以藉由雷射散射繞射 法來測定較爲簡便,乃是較佳。 而且,(A)硏磨粒的締合度能夠使用上述方法所算出的 (A)硏磨粒的平均一次粒徑及平均二次粒徑,並使用以下的 算出式來算出。 締合度=(平均二次粒徑)/(平均一次粒徑) 膠體二氧化矽例如能夠藉由使用預先精製的原料而成 的無機膠體法等來得到。 相對於硏磨粒,(A)硏磨粒之不純物金屬含量以l〇ppm 以下爲佳,以5ppm以下爲較佳,以3ppm以下爲更佳,以 1 p p m以下爲特佳。不純物金屬可舉出例如鐵、鎳、及鋅等。 又,(A)硏磨粒的締合度以1 .9〜3.8爲佳,以2.2〜3 .5爲 更佳。 而且,(A)硏磨粒的平均一次粒徑以10〜45奈米爲佳, 以15〜40奈米爲較佳,以20〜35奈米爲更佳。又,(A)硏磨 粒的平均二次粒徑以6 0〜1 7 0奈米爲佳,以6 5〜1 4 0奈米爲 較佳,以7 〇〜1 2 0奈米爲更佳。藉由使用該範圍的締合度、 平均一次粒徑、及平均二次粒徑的(A)硏磨粒,能夠謀求良 好的被硏磨面與硏磨速度的平衡。藉由(A)硏磨粒的平均一 次粒徑爲5〜55奈米且締合度爲1.5〜4.0的膠體二氧化砂’ -16 - 200837822 在硏磨被硏磨物(特別是導電性阻障層及/或絕緣層)時,能 夠同時得到良好的被硏磨面及硏磨速度。 相對於化學機械硏磨用水系分散體的總量,(A)硏磨粒 的量爲0.05〜10質量%,以2〜7質量%爲佳。 在實施形態之化學機械硏磨用水系分散體,例如藉由含 有PH調整爲7〜12(較佳是7.5〜11)、平均一次粒徑爲5〜55 奈米、且締合度爲1.5〜4.0的膠體二氧化矽之(A)硏磨粒, 能夠提高導電性阻障層的硏磨速度。 1.2. (B)喹啉羧酸及/或吡啶羧酸 作爲(B )喹啉殘酸及/或吡D定殘酸(以下亦稱爲(B )成分) 使用之喹啉羧酸,可舉出例如未取代的喹啉羧酸、或在D奎 啉羧酸的羧酸基以外的部位,以羥基、鹵素原子等取代i 個或複數個氫原子而成的取代喹啉羧酸。 吡啶羧酸可舉出例如未取代的吡啶羧酸、在吡啶殘酸的 羧酸基以外的部位,以羥基、鹵素原子等取代丨個或複數 個氫原子而成的取代吡啶羧酸。 此等之中,以未取代的喹啉羧酸及未取代的吡啶竣酸爲 佳,以2-喹啉羧酸(喹啉甲酸)及2,3-吡啶二羧酸(喹n林酸) 爲佳。又’喹啉羧酸及吡啶羧酸亦可以是各自藉由調配紳 鹽、銨鹽等的鹽所得到的殘酸鹽。 相對於本實施形態的化學機械硏磨用水系分散體的總 量,成分(B)的調配量以0.001〜2質量%爲佳,以0.005^ 質量%爲更佳’以〇·〇1〜0·5質量%爲特佳。成分(B)的調配 量小於0.001質量%,會有無法得到充分的銅膜硏磨速度之 -17- 200837822 可能性。另一方面,成分(B)的調配量大於2質量%時,無 法按照需要的調配量來含有其他成分。 在本實施形態之化學機械硏磨用水系分散體,例如藉由 調整pH爲7〜12(較佳是7.5〜11)、且含有成分(B),能夠將 金屬層(特別是銅層)的硏磨速度控制在適當的範圍。 1.3· (C)前述(B)以外的有機酸 (C) 前述(B)以外的有機酸係例如以碳數4以上的脂肪族 有機酸爲佳。碳數4以上的脂肪族有機酸係例如以碳數4(wherein η and m are each independently an integer of 1 or more and satisfy n + m^50) in the above-described chemical mechanical honing water-based dispersion, wherein the (E) nonionic surfactant is blended with respect to the above The ratio (B/E) of the compound (B) quinolinecarboxylic acid and/or pyridinecarboxylic acid may be 0.01 to 5. In the above-described chemical mechanical honing water-based dispersion in which the conductive barrier layer and the first insulating layer are chemically honed under the same conditions, the honing speed (RB) of the conductive barrier layer and the first insulating layer The honing speed ratio (RB/(Rin-i) of the honing speed (Rln_l} is 1.2 to 4.0. In the above chemical mechanical honing water-based dispersion, in which the same condition is -11-200837822 mechanical honing copper layer When the conductive barrier layer, the first insulating layer, and each layer of the second insulating layer having a higher dielectric constant than the first insulating layer, the honing speed (Rb) of the conductive barrier layer and the 铜 of the copper layer The honing speed ratio (RB/RM) of the grinding speed (RM) is 1.5 or more, and the honing speed ratio of the honing speed (Rln_2) of the second insulating layer to the honing speed of the copper layer (Rm) ( RIn_2/RM) is 0.9 to 2_5, and the honing speed ratio of the honing speed (RIn_2) of the second insulating layer to the honing speed of the first insulating layer (Rln-1) (Rln-2/ is 0.5 to 5) ° In the above chemical mechanical honing water dispersion, in which a water-insoluble matrix material (containing a cross-linked polymer) is used and dispersed in the non-aqueous solution a honing pad of water-soluble particles made of a matrix material, chemically honing a copper layer, a conductive barrier layer, a first insulating layer, and a second insulating layer having a higher dielectric constant than the first insulating layer under the same conditions In each layer, the honing speed (RI η _ 1 ) of the first insulating layer, the honing speed (RB ) of the conductive barrier layer, the honing speed (Rm) of the copper layer, and the second insulating layer The honing speed (RIn_2) of the layer can satisfy Rlnd'RB'RM'Rln-1. The chemical mechanical honing method according to the second aspect of the present invention comprises the following steps: a first honing step, which is a chemical mechanical honing process a stop layer provided on the insulating layer having the recessed portion and embedded in the metal layer of the recessed portion until the stop layer is exposed; and a second honing step using the chemical mechanical honing water-based dispersion to chemical mechanically In the chemical mechanical honing method, the insulating layer contains the insulating layer of i--12-200837822 and has a dielectric constant higher than that of the first insulating layer. a layered body of the second insulating layer' The second honing step is a step of chemically honing the metal layer, that is, the stop layer and the second insulating layer. In the chemical mechanical honing method, the relative dielectric constant of the first insulating layer may be In the above chemical mechanical honing method, the stop layer may be a conductive barrier layer. (The third aspect of the present invention is used to modulate a chemical mechanical honing water dispersion. a mixture (I) and a liquid (11) for modulating the above-mentioned chemical mechanical honing water dispersion, wherein the liquid (I) contains (A) an average primary particle size of 5 to 5 5 nm And the degree of association is 1.5 to 4.0% of the colloidal cerium oxide cerium particles, (B) the quinoline carboxylic acid and/or the pyridinic carboxylic acid, (C) the organic acid other than the above (B), (E) A non-ionic surfactant having a triple bond and (F) an aqueous dispersion of a dispersion medium containing (D) an oxidizing agent. (The fourth aspect of the present invention is a kit for preparing a chemical mechanical honing water-based dispersion, which is a mixture (I) and a liquid (11) for modulating the above-mentioned chemical mechanical honing water-based dispersion. a group, wherein the liquid (I) contains (A) colloidal cerium oxide particles having an average primary particle diameter of 5 to 55 nm and an association degree of 1.5 to 4.0, and (F) aqueous dispersion of a dispersion medium The liquid (11) contains (B) quinolinecarboxylic acid and/or pyridinic acid, (c) an organic acid other than the above (b), (D) an oxidizing agent, and (E) a nonionic having a triple bond. Surfactant. -13 - 200837822 The fifth aspect of the present invention is a kit for preparing a chemical mechanical honing water-based β-steroid, which is a mixed solution (I), a liquid (π), and a liquid (111). a kit for preparing the above-mentioned chemical mechanical honing water-based dispersion, wherein the liquid (I) contains colloidal dioxide having an average primary particle diameter of 5 to 55 nm and an association degree of 1.5 to 4.0. An aqueous dispersion of 硏 硏 abrasive grains and (F) dispersion medium, the liquid (Π) containing (B) quinolinecarboxylic acid and/or pyridine carboxylic acid, and (E) having a triple bond a non-ionic surfactant, and the liquid (III) contains (D) an oxidizing agent. The kit according to the fourth or fifth aspect, wherein the liquid (I) may further comprise (B) quinoline carboxylate. One or more types of components of an acid and/or a pyridine carboxylic acid, (C) an organic acid other than the above (B), (D) an oxidizing agent, and (E) a nonionic surfactant having a triple bond. By chemical mechanical honing of the insulating layer by using the above-mentioned chemical mechanical honing water-based dispersion, the chemical properties of the insulating layer are not changed when the chemical mechanical honing of the insulating layer, and no material is generated on the honed surface. Surface defects such as peeling or scratching, and high-accuracy honed surfaces can be obtained. For example, the chemical mechanical honing water-based dispersion is used to chemically honing an insulating layer having poor mechanical strength (for example, relative dielectric constant) When the insulating layer of 3.5 or less is used as the semiconductor substrate of the interlayer insulating layer, the physical properties of the insulating layer are not changed, surface defects such as peeling or scratching of the material are not generated on the surface to be honed, and high precision can be obtained. Being polished, Further, it is possible to sufficiently suppress the honing speed of the insulating layer. In particular, when the above-described metal damascene-14-200837822 method is subjected to the two-stage honing treatment, the above-described chemical mechanical honing water-based dispersion is used as the second honing step. Further, for example, when the conductive barrier layer provided on the insulating layer is honed, the first dielectric layer having a higher relative dielectric constant than the first insulating layer is provided. In the case of the insulating layer, the physical properties of the insulating layers are not changed, and the surface defects such as peeling or scratching of the material are not caused by the honing surface, and the honed surface with high precision can be obtained. Embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below, and various modifications may be made without departing from the scope of the invention. 1. Chemical mechanical honing water-based dispersion The chemical mechanical honing water-based dispersion system according to one embodiment of the present invention contains (A) honing abrasive particles, (B) quinolinecarboxylic acid and/or pyridinecarboxylic acid, (C) An organic acid other than the above (B), (D) an oxidizing agent, (E) a nonionic surfactant having a triple bond, and (F) a dispersion medium (hereinafter also referred to as "(A) to (F) components, respectively). ). Hereinafter, each component contained in the chemical mechanical honing water dispersion according to one embodiment of the present invention will be described in detail. 1·1. (A) honing granules (A) colloidal cerium oxide having an average primary particle diameter of 5 to 55 nm and an association degree of 1.5 to 4.0. (A) When the degree of association of the honing particles is less than 1.5, since the component (E) tends to adhere to the (A) honing particles, the honing is suppressed, so that the honing speed of the insulating layer tends to be slow. On the other hand, when (A) the degree of association of the honing particles is more than 4.0, the honing speed becomes too high, and it is impossible to obtain a good honed surface by -15-200837822. (A) The average primary particle diameter of the honing particles can be calculated from the average 値 of the particle diameters of 50 (A) honing particles obtained by observation by transmission electron microscopy. Further, the average secondary particle diameter of the (A) honing particles can be measured by a dynamic light scattering method or a laser scattering diffraction method. Among them, the measurement by the laser scattering diffraction method is relatively simple, and is preferable. Further, (A) the degree of association of the honing particles can be calculated by using the following calculation formula using the average primary particle diameter and the average secondary particle diameter of the (A) honing particles calculated by the above method. The degree of association = (average secondary particle diameter) / (average primary particle diameter) The colloidal cerium oxide can be obtained, for example, by an inorganic colloid method obtained by using a raw material purified in advance. The content of the impure metal of the (A) honing particles is preferably 1 ppm or less, more preferably 5 ppm or less, more preferably 3 ppm or less, and particularly preferably 1 p p or less, relative to the honing particles. Examples of the impurity metal include iron, nickel, and zinc. Further, (A) the degree of association of the honing particles is preferably from 1.9 to 3.8, more preferably from 2.2 to 3.5. Further, (A) the average primary particle diameter of the honing particles is preferably 10 to 45 nm, preferably 15 to 40 nm, more preferably 20 to 35 nm. Further, (A) the average secondary particle diameter of the honing particles is preferably from 60 to 170 nm, preferably from 6 5 to 140 nm, and from 7 to 1 200 nm. good. By using the (A) honing particles having the degree of association, the average primary particle diameter, and the average secondary particle diameter in this range, it is possible to achieve a good balance between the honed surface and the honing speed. Colloidal silica sand with (A) honing particles having an average primary particle size of 5 to 55 nm and an association degree of 1.5 to 4.0 '-16 - 200837822 in honing of honed objects (especially conductive barriers) When the layer and/or the insulating layer are used, a good honed surface and a honing speed can be obtained at the same time. The amount of the (A) honing particles is 0.05 to 10% by mass, preferably 2 to 7% by mass, based on the total amount of the chemical mechanical honing water dispersion. The chemical mechanical honing water-based dispersion of the embodiment is adjusted, for example, by a pH of 7 to 12 (preferably 7.5 to 11), an average primary particle diameter of 5 to 55 nm, and an association degree of 1.5 to 4.0. The (A) honing particles of the colloidal cerium oxide can improve the honing speed of the conductive barrier layer. 1.2. (B) Quinolinecarboxylic acid and/or pyridinecarboxylic acid as quinoline carboxylic acid used as (B) quinoline residual acid and/or pyridyl residual acid (hereinafter also referred to as component (B)) For example, an unsubstituted quinolinecarboxylic acid or a substituted quinolinecarboxylic acid obtained by substituting one or a plurality of hydrogen atoms with a hydroxyl group, a halogen atom or the like at a site other than the carboxylic acid group of D-quinolinecarboxylic acid. The pyridine carboxylic acid may, for example, be an unsubstituted pyridine carboxylic acid or a substituted pyridine carboxylic acid obtained by substituting a hydroxyl group, a halogen atom or the like at a site other than the carboxylic acid group of the pyridine residual acid. Among these, unsubstituted quinolinecarboxylic acid and unsubstituted pyridinic acid are preferred, and 2-quinolinecarboxylic acid (quinolinecarboxylic acid) and 2,3-pyridinedicarboxylic acid (quinoline acid) are used. It is better. Further, the quinolinecarboxylic acid and the pyridinecarboxylic acid may be a residual acid salt obtained by mixing a salt such as a sulfonium salt or an ammonium salt. The compounding amount of the component (B) is preferably 0.001 to 2% by mass, more preferably 0.005 % by mass, based on the total amount of the chemical mechanical honing water-based dispersion of the present embodiment, to 〇·〇1 to 0. · 5 mass% is particularly good. When the amount of the component (B) is less than 0.001% by mass, there is a possibility that a sufficient copper film honing rate cannot be obtained -17-200837822. On the other hand, when the compounding amount of the component (B) is more than 2% by mass, it is not possible to contain other components in accordance with the required blending amount. In the chemical mechanical honing aqueous dispersion of the present embodiment, for example, by adjusting the pH to 7 to 12 (preferably 7.5 to 11) and containing the component (B), the metal layer (especially the copper layer) can be used. The honing speed is controlled to an appropriate range. (C) The organic acid other than the above (B) (C) The organic acid other than the above (B) is preferably an aliphatic organic acid having 4 or more carbon atoms. An aliphatic organic acid having a carbon number of 4 or more is, for example, a carbon number of 4

I 以上的脂肪族多元羧酸、及碳數4以上的羥基酸爲佳。上 述碳數4以上的脂肪族多元羧酸的具體例,可舉出例如順 丁烯二酸、琥珀酸、反丁烯二酸、戊二酸、及己二酸等。 上述碳數4以上的羥基酸之具體例,可舉出例如檸檬酸、 蘋果酸、及酒石酸等。此等之中,以碳數4〜8的脂肪族有 機酸爲較佳,以碳數4〜6的脂肪族有機酸爲更佳,以順丁 烯二酸、檸檬酸、及蘋果酸爲特佳。 & 相對於化學機械硏磨用水系分散體的總量,(C)前述(B) 以外的有機酸的量以0.005〜3質量%爲佳,以0.0 5〜2質量% 爲較佳,以0 . 1〜1質量%爲更佳。 1.4 (D)氧化劑 (D) 氧化劑可舉出例如過硫酸鹽、過氧化氫、無機酸、 有機過氧化物、及多價金屬鹽。過硫酸鹽可舉出例如過硫 酸銨、及過硫酸鉀等。無機酸可舉出硝酸、及硫酸等。有 機過氧化物可舉出例如過乙酸、過苯甲酸、及第三丁基過 氧化氫等。多價金屬鹽可舉出過錳酸化合物、及重鉻酸化 -18- 200837822 合物等,具體上過錳酸化合物可舉出過錳酸鉀等,重鉻酸 化合物可舉出重鉻酸鉀等。此等之中’以過氧化氫、過硫 酸鹽、及無機酸爲佳,以過氧化氫爲特佳。 相對於化學機械硏磨用水系分散體的總量,(D)氧化劑 的量以〇· 〇 1〜5質量%爲佳,以 0 · 0 5〜3質量%爲較佳,以 0.0 5〜1 . 5質量%爲更佳。 1 . 5 . (E)具有三鍵之非離子性界面活性劑 (E)具有三鍵之非離子性界面活性劑(以下,亦稱爲(E) Γ: 成分),可舉出例如下述通式(1 )所示之化合物。The aliphatic polycarboxylic acid having 1 or more and the hydroxy acid having 4 or more carbon atoms are preferred. Specific examples of the aliphatic polyvalent carboxylic acid having 4 or more carbon atoms include maleic acid, succinic acid, fumaric acid, glutaric acid, and adipic acid. Specific examples of the hydroxy acid having 4 or more carbon atoms include citric acid, malic acid, and tartaric acid. Among them, an aliphatic organic acid having 4 to 8 carbon atoms is preferred, and an aliphatic organic acid having 4 to 6 carbon atoms is more preferred, and maleic acid, citric acid, and malic acid are preferred. good. & The amount of the organic acid other than the above (B) is preferably 0.005 to 3% by mass, more preferably 0.05 to 2% by mass, based on the total amount of the chemical mechanical honing aqueous dispersion. 0. 1 to 1% by mass is more preferable. 1.4 (D) Oxidizing agent (D) Examples of the oxidizing agent include persulfate, hydrogen peroxide, inorganic acid, organic peroxide, and polyvalent metal salt. Examples of the persulfate include ammonium persulfate and potassium persulfate. Examples of the inorganic acid include nitric acid, sulfuric acid, and the like. The organic peroxide may, for example, be peracetic acid, perbenzoic acid, or t-butyl hydroperoxide. Examples of the polyvalent metal salt include a permanganic acid compound and a dichromated -18-200837822 compound. Specific examples of the permanganic acid compound include potassium permanganate, and the dichromic acid compound may be potassium dichromate. Wait. Among these, 'hydrogen peroxide, persulfate, and inorganic acid are preferred, and hydrogen peroxide is particularly preferred. The amount of the (D) oxidizing agent is preferably 1-5 % by mass based on the total amount of the chemical mechanical honing water-based dispersion, and is preferably 0. 5 to 3 % by mass, preferably 0.0 5 to 1% by mass. 5 mass% is more preferred. 1. (E) A nonionic surfactant (E) having a triple bond, and a nonionic surfactant (hereinafter also referred to as (E) Γ: component) having a triple bond, and examples thereof include the following A compound represented by the formula (1).

H3C—CH—CH2—c-—CEC——c—CH2——CH—CH3 〇-(~CH2CH2〇4—H 〇4cH2CH2〇4-H m x / n i, ····(!) (式中,n及m係各自獨立之1以上的整數,且滿足n + 5 0) 在上述通式(1)’以n + m$40爲佳,以n + mS30爲更佳。 (E)成分之市售品可舉出例如 SARFINOL 440(HLB値 = 8)、SARFINOL 465(2,4,7,9-四甲基-5-癸炔- 4,7-二醇-二聚 氧乙烯醚、HLB 値=13)、SARFINOL 485(2,4,7,9-四甲基- 5-癸炔-4,7-二醇-二聚氧乙烯醚、HLB値=17)(以下、AIR PRODUCTS(股)製)。 相對於化學機械硏磨用水系分散體的總量,上述的通式 -19- 200837822 (1)所示之(E)成分的量以0.001〜4質量%爲佳,以0.01〜2質 量%爲更佳。 又’在本發明的一個實施形態的化學機械硏磨用水系分 散體’相對於(E)成分之調配量,成分(B)的調配量比例以 0 · 1〜5爲佳。藉此,不會對絕緣層的物理性質造成缺陷、且 能夠得到良好平坦化之高精確度的被硏磨面。 1.6· (F)分散介質 (F) 分散介質可舉出例如水、水及醇的混合介質、及含 f 有水及與水具有相溶性的有機溶劑之混合介質等。此等之 中,以使用水或水與醇的混合介質爲佳,以使用水爲特佳。 1 . 7 .其他成分 本發明的一個實施形態的化學機械硏磨用水系分散體 係含有以上述的(A)〜(F)成分作爲必要成分,亦可按照必要 含有(G)防腐蝕劑、及(H) pH調整劑。 (G) 防腐蝕劑可舉出苯并三唑及其衍生物。在此,苯并 I 三唑的衍生物係指苯并三唑所具有的1個或2個以上的氫 原子被例如羧基、甲基、胺基、及羥基等取代而成之物。 苯并三唑的衍生物可舉出4 -羧基苯并三唑及其鹽、7 -羧基 苯并三唑及其鹽、苯并三唑丁酯、1-羥基甲基苯并三唑或 1-羥基苯并三唑等。 相對於化學機械硏磨用水系分散體的總量,(G)防腐蝕 劑的量較佳爲〇 · 〇 〇 5〜〇 · 1質量% ’以0 · 0 1〜〇 · 〇 5質量%爲更 佳。 (H) pH調整劑可舉出有機鹼、及無機鹼或無機酸。有 -20- 200837822 機鹼可舉出例如氫氧化四甲銨、及三乙胺等。無機鹼可舉 出氨、氫氧化鉀、氫氧化鈉、氫氧化鈣、及氫氧化鎂等。 無機酸可舉出硝酸、硫酸、鹽酸、及乙酸等。 本發明的一個實施形態的化學機械硏磨用水系分散體 的pH爲7〜12,以7.5〜11爲佳,以7.5〜10爲更佳。藉由在 此範圍的pH,能夠謀求良好的被硏磨面與硏磨速度的平 衡。 相對於化學機械硏磨用水系分散體的總量,(H)pH調整 C' 、 劑的量以0.005〜5質量%爲佳,以0.01〜3.5質量%爲更佳。 1 . 8 ·爲調製化學機械硏磨用水系分散體之套組 上述化學機械硏磨用水系分散體在調製後,可直接以能 夠作爲硏磨用組成物的狀態供給。或是,預先準備以高濃 度含有上述化學機械硏磨用水系分散體的各成分之硏磨用 組成物(亦即已濃縮的硏磨用組成物),在使用時將該已濃 縮的硏磨用組成物稀釋而得到需要的化學機械硏磨用水系 分散體。 I j 例如,可將上述化學機械硏磨用水系分散體分開成複數 種液體(例如,2種或3種液體)而預先準備,在使用時將該 等複數種液體混合使用。例如,使用以下所示之第丨〜第3 套組’藉由混合複數種液體能夠調製上述化學機械硏磨用 水系分散體。 1 · 8 · 1第1套組 第1套組係混合液(I)及液(II)用以調製上述化學機械硏 磨用水系分散體之套組。在第i套組,液⑴係含有(A)硏磨 -21 - 200837822 粒(平均一次粒徑爲5〜55奈米且締合度爲1.5〜4·0之膠體二 氧化矽)、(Β)喹啉羧酸及/或吡啶羧酸、(C)前述(Β)以外的有 機酸、(D)氧化劑、(Ε)具有三鍵之非離子性界面活性劑、及 (F)含有分散介質之水系分散體,液(II)係含有(D)氧化劑。 調製構成第1套組之液(I)及液(II)時,必須決定在液(I) 及液(II)所含有的各成分的濃度,來使在混合液(I)及液(II) 所得到的水系分散體中,以前述的濃度範圍含有前述的各 f 成分。又,液(I )及液(11)亦能夠以高濃度來含有各自各成 ί 分(亦即可以是濃縮而成之物),此時,使用時加以稀釋能 夠得到液(I)及液(11)。第1套組時藉由預先分開液(I)及液 (II),特別是能夠提高(D)氧化劑的保存安定性。 使用第1套組來調製上述化學機械硏磨用水系分散體 時,若是各別準備、供給液(I)及液(11 )、且在硏磨時成爲 一體時即可,該混合方法及時序沒有特別限定。 例如’亦可將液(I)及液(II)分別供給至硏磨裝置,並使 I 用轉盤混合,亦可在供給至硏磨裝置之前進行混合,亦可 在硏磨裝置內進行管線混合,或者,亦可設置混合槽而在 §亥混合槽內混合。又,在管線混合時爲了得到更均勻的水 系分散體,亦能夠使用管線用攪拌器。 1·8·2·第2套組 第2套組係混合液(I)及液(II)用以調製上述化學機械硏 磨用水系分散體之套組。在第2套組,液(係含有(Α )硏磨 粒(平均一次粒徑爲5〜55奈米且締合度爲ι·5〜4〇之膠體二 氧化砂)、及(F)分散介質之水系分散體,液(ί〗)係含有(β) -22- 200837822 喹啉羧酸及/或吡啶羧酸、(C)前述(B)以外的有機酸、(D) 氧化劑、及(E)具有三鍵之非離子性界面活性劑。 調製構成第2套組之液(I)及液(II)時,必須決定在液⑴ 及液(Π)所含有的各成分的濃度,來使在混合液(I)及液(II) 所得到的水系分散體中,以前述的濃度範圍含有前述的各 成分。又’液(I)及液(II)亦能夠以高濃度來含有各自各成 分(亦即可以是濃縮而成之物),此時,使用時加以稀釋能 夠得到液(I)及液(II)。第2套組時藉由預先分開液(I)及液 (Π) ’特別是能夠提高水系分散體的保存安定性。 使用第2套組來調製本發明的一個實施形態的化學機 械硏磨用水系分散體時,若是各別準備、供給液(I)及液 (II)、且在硏磨時成爲一體時即可,該混合方法及時序沒有 特別限定。 例如’亦可將液(I)及液(II)分別供給至硏磨裝置,並使 用轉盤混合’亦可在供給至硏磨裝置之前進行混合,亦可 在硏磨裝置內進行管線混合,或者,亦可設置混合槽而在 該混合槽內混合。又,在管線混合時爲了得到更均勻的水 系分散體,亦能夠使用管線用攪拌器。 1 . 8.3 .第3套組 第3套組係混合液(I)、液(11)、及液(III),用以調製本 發明的一個實施形態的化學機械硏磨用水系分散體之套 組。在第3套組’液(I)係含有(a )硏磨粒(平均一次粒徑爲 5〜55奈米且締合度爲1.5〜4.〇之膠體二氧化矽)' 及(F)分散 介質之水系分散體,液(II)係含有(B)喹啉羧酸及/或吡啶羧 -23- 200837822 酸、及(E )具有二鍵之非離子性界面活性劑,而液(z〗)係含 有(D)氧化劑。 調製構成第3套組之液(1)、液(π)、及液(111)時,必須 決定在液(I)、液(II)、及液(111)所含有的各成分的濃度,來 使在混合液(I)、液(H)、及液(111)所得到的水系分散體中, 以前述的濃度範圍含有前述的各成分。又,液(][)、(〗〗)、 及液(111)亦能夠以高濃度來含有各自各成分(亦即可以是 ^ 濃縮而成之物),此時,使用時加以稀釋能夠得到液(〗)、液 (II)、及液(III)。第3套組時藉由預先分開液(I)、液(11)、 及液(Π) ’特別是能夠提高水系分散體的保存安定性。 使用第3套組來調製本發明的一個實施形態的化學機 械硏磨用水系分散體時,若是各別準備、供給液(1)、液 (11 )、及液(I Π )、且在硏磨時成爲一體時即可,該混合方法 及時序沒有特別限定。 例如,亦可將液(I)、液(II)、及液(III)分別供給至硏磨 r 裝置’並使用轉盤混合’亦可在供給至硏磨裝置之前進行 混合,亦可在硏磨裝置內進行管線混合,或者,亦可設置 混合槽而在該混合槽內混合。又,在管線混合時爲了得到 更均勻的水系分散體,亦能夠使用管線用攪拌器。 又,在第2套組及第3套組’液(I)可以更含有選自(B) 喹啉羧酸及/或吡啶羧酸、(C)前述(B)以外的有機酸、(D) 氧化劑、及(E)具有三鍵之非離子性界面活性劑之1種類以 上的成分。 1.9.用途 -24- 200837822 ## B月@ -個實施形態的化學機械硏磨用水系分散 it ’能夠作爲硏磨材使用,用以化學機械硏磨在半導體裝 置所含有的絕緣層。例如本發明的一個實施形態的化學機 丰戒研1 jg $水系分散體在藉由化學機械硏磨來形成銅(或銅 合金)金屬鑲嵌配線時,能夠使用作爲硏磨材。此時,使用 化學機械硏磨來形成銅(或銅合金)金屬鑲嵌配線之步驟係 由第1硏磨步驟及第2硏磨步驟所構成,該第1硏磨步驟 係主要進行除去銅(或銅合金);而該第2硏磨步驟係主要 除去形成於銅(或銅合金)的下部之導電性阻障層。該第2 硏磨步驟有時不只是除去導電性阻障層,且亦有同時硏磨 在導電性阻障層下所存在的層間絕緣層之情形,藉此,能 夠得到充分平坦化之高精確度的加工完成面。在此,本發 明的一個實施形態的化學機械硏磨用水系分散體在第2硏 磨步驟適合使用作爲硏磨材。藉由使用化學機械硏磨用水 系分散體在第2硏磨步驟作爲硏磨材,能夠發揮更優良的 硏磨特性、及對絕緣層(特別是相對介電常數爲3 · 5以下的 絕緣層)的低損傷性。 上述絕緣層可舉出砂酸鹽類(silsesquioxane)(相對介電 常數:約2.6〜3.0)、加氟Si02(相對介電常數:約3. 3〜3.5)、 聚醯亞胺系樹脂(相對介電常數:約2.4〜3.6)、苯并環丁烯 (相對介電常數:約 2.7)、含氫 SOG(相對介電常數:約 2.5〜3.5)、及有機SOG(相對介電常數:約2.9)等。此等之 中,以矽酸鹽類作爲主成分之層間絕緣層,可舉出膜厚度 爲0,2〜20微米、密度爲〇.3〜1.85克/立方公分,且係具有 -25- 200837822 孔徑1 ο 0奈米以下的微細空穴之多孔質的絕緣層等。 上述相對介電常數爲3 . 5以下的絕緣層之彈性模數 2 0GPa以下,以lOGPa以下爲佳,以5GPa以下爲更佳。 緣層的彈性模數能夠藉由將 BERKOVICH型壓頭安裝 MTS公司製超微小硬度計(Nanoindentator XP),藉由連 剛性測定法來測定。本發明的一個實施形態之化學機械 磨用水系分散體能夠適合用於此種脆的絕緣層之硏磨。 又,上述絕緣層能夠使用作爲後述第1絕緣層2 1 (參 Γ 第2圖(a)〜第2圖(C)。 使用本發明的一個實施形態的化學機械硏磨用水系 散體、及含有非水溶性基質材(含交聯聚合物)及分散在 非水溶性基質材中而成的水溶性粒子之硏磨墊,來化學 械硏磨藉由連續剛性測定法所測得的彈性模數爲20 GP a 下之絕緣層時,因爲能夠抑制在被硏磨面所產生的擦傷 5個以下,乃是特佳。 ^ 雖然能夠藉由目視觀察有無擦傷,但是其大小、個數 \ 定量性的測定能夠藉由光學顯微鏡、及掃描型電子顯微 等來觀察,並解析拍攝得到的照片等之方法來進行。又 亦能夠使用檢查表面狀態之特定裝置,能夠計測在被硏 面所產生的擦傷的總數。 本實施形態之化學機械硏磨用水系分散體在同一條 進行化學機械硏磨導電性阻障層及絕緣層時,導電性阻 層的硏磨速度(RB)與絕緣層的硏磨速度(Rm)之硏磨速 比(RB/RIn-i)可以是1.2〜4.0。藉此,在例如後述之第2圖 爲 絕 在 續 硏 眧 y \ \n 分 該 機 以 爲 等 鏡 5 磨 件 障 度 (b) -26- 200837822 及第2圖(c)所示之硏磨時,因爲能夠將被硏磨面的凹凸降 低至最小限,所以能夠得到優良的平坦性、且能夠得到良 好的被硏磨面及硏磨速度。例如,使用本發明之化學機械 硏磨用水系分散體來形成含有上層配線部及下層配線部之 多層配線時,上層配線部含有絕緣層、導電性阻障層(用以 覆蓋設置在該絕緣層的凹部表面)、及導電層(埋入該設置 在該絕緣層的凹部表面)時,能夠抑制上層配線部的變形。 又’本實施形態之化學機械硏磨用水系分散體,以同一 條件化學機械硏磨銅層、導電性阻障層、第1絕緣層、及 介電常數比該第1絕緣層高的第2絕緣層的各層時,導電 性阻障層的硏磨速度(R b )與銅層的硏磨速度(R M)之硏磨速 度比(Rb/Rm)爲1.5以上,前述第2絕緣層的硏磨速度(RIn2) 與前述銅層的硏磨速度(RM)之硏磨速度比(RIn_2/RM)爲 〇·9〜2.5,且前述第2絕緣層的硏磨速度(RIn_2)與前述第1 絕緣層(Rln-l)硏磨速度之硏磨速度比(Rin_2/ Rin-1)爲 〇· 5〜5。藉此’在例如後述之第2圖(a)至第2圖(C)所示之 硏磨時,能夠得到良好的被硏磨面及硏磨速度。 而且,本實施形態之化學機械硏磨用水系分散體使用含 有非水溶性基質材(含有交聯聚合物)及分散在該非水溶性 基質材而成的水溶性粒子之硏磨墊,以同一條件化學機械 硏磨銅層、導電性阻障層、第1絕緣層、及介電常數比該 第1絕緣層高的第2絕緣層的各層時,前述第1絕緣層的 硏磨速度(Ri^i)、前述導電性阻障層的硏磨速度(RB)、前述 銅層的硏磨速度(Rm)、及前述第2絕緣層的硏磨速度(Rln_2) -27- 200837822 能夠滿足R I η - 2〉R B〉R Μ > R I η · 1。藉此,在例如後述之第2圖 (b)及第2圖(C)所示之硏磨時,能夠極力抑制第1絕緣層的 硏磨,並能夠選擇性地除去銅層、導電性阻障層、及第2 絕緣層,且能夠得到良好的被硏磨面及硏磨速度。 2 .化學硏磨方法 本發明的一個實施形態之化學機械硏磨方法包含以下 步驟:第1硏磨步驟,其係化學機械硏磨透過中止層而設 置在具有凹部的絕緣層上且埋設於該凹部之金屬層,至該 中止層露出爲止;及第2硏磨步驟,其係使用本發明的一 個實施形態之化學機械硏磨用水系分散體,來化學機械硏 磨前述金屬層及前述中止層至該絕緣層露出爲止。以下, 參照第1圖〜第3圖說明本發明的一個實施形態的化學機械 硏磨方法,但是未限定於此等。 2.1.第1具體例 第1圖(a)〜第1圖(c)係模式性顯示本發明的一個實施形 態的化學機械硏磨方法的一個具體例(第1具體例)之剖面 圖。 如第1圖(a)所示,硏磨對象物la包含基板11、設置於 基板11上且含有凹部20之絕緣層12、及透過中止層13 設置於絕緣層1 2上而成之金屬層1 4。又,金屬層1 4係埋 設在凹部2 0。在此,基板1 1係例如矽基板,絕緣層1 2可 以是無機材料或有機材料任一者,中止層1 3與金屬層1 4 係對硏磨材具有不同蝕刻速度的層,金屬層1 4能夠由通常 使用作爲配線的金屬材料所構成。絕緣層1 2能夠由例如 -28- 200837822 PE TEOS膜、或相對介電常數爲3.5以下的絕緣層等構成, 相對介電常數爲3 · 5以下的絕緣層爲佳,以3 · 0以下的絕緣 層爲更佳。又’中間層1 3係例如以由導電性阻障層所構成 爲佳。而且’金屬層1 4能夠由通常作爲配線的金屬(例如, 鋁、銅、金等金屬、或前述金屬的合金)所構成,以銅或銅 合金爲佳。 中間層1 3係由導電性阻障層所構成時,例如能夠由金 屬、金屬合金、及金屬氮化物(例如,Ti、TiN、Ta、TaN、 及TaNb)所構成。在此,中止層i 3的材質以Ta及/或TaN 爲特佳。中止層1 3亦可具有2層結構。 首先,在第1硏磨步驟,係將金屬層1 4之中除了埋設 在凹部20的部分以外,化學機械硏磨至露出中止層13(參 第1圖(b))。在此,硏磨材可使用上述的化學機械硏磨用水 系分散體、亦可使用後述之第1硏磨用水系分散體。 接著,在第2硏磨步驟,係使用上述本發明的一個實施 形態的化學機械硏磨用水系分散體,將殘餘的金屬層1 4及 中止層1 3化學機械硏磨至露出絕緣層1 2爲止(參照第1圖 (Ο)。藉此’能夠除去中間層1 3之中除了位於凹部2 0的底 部及內壁面以外的部分。藉此,能夠得到第1圖(c)所示之 配線結構體。 依照本具體例時,在第2硏磨步驟,藉由使用上述的化 學機械硏磨用水系分散體,來化學機械硏磨絕緣層1 2,不 會改變絕緣層1 2的物理性質、在被硏磨面不會產生材料剝 落或擦傷等的表面缺陷,且能夠得到高精確度的被硏磨 -29- 200837822 面。特別是絕緣層1 2係由相對介電常數爲3 . 5以下的絕緣 層所構成時,就不會改變絕緣層1 2的物理性質、且能夠防 止在被硏磨面產生前述表面缺陷而言,係極爲有用的。 2.2 ·第2具體例 第2圖(a)〜第2圖(c)係模式性顯示本發明的一個實施形 態的化學機械硏磨方法的另外一個具體例(第2具體例)之 剖面圖。 ^. 第2圖(a)係表示第2具體例的化學機械硏磨方法的硏 磨對象物2a。在第2圖(a),除了絕緣層1 12係含有第1 絕緣層2 1、及相對介電常數比第1絕緣層2 1高的第2絕 緣層22之積層體以外,與第1圖(a)所示結構同樣的結構, 且與第1圖(a)所示之構成要素相同構成要素係附加相 同的記號。在此,第2絕緣層2 2係具有作爲覆蓋層的 功會g 。 第2絕緣層2 2亦可以是例如在氧化矽膜、氧化矽添加 ( 少量的硼及磷而成的硼磷矽玻璃膜(B P S G膜)、在氧化矽摻 \ / 雜氟而成之稱爲 FSG(摻雜氟矽玻璃;Fluorine-doped silicate glass)之氧化矽系絕緣層。氧化矽系絕緣層可舉出 例如熱氧化膜、Ρ Ε Τ Ε Ο S (電漿增強-Τ Ε Ο S 膜;P 1 a s m a Enhaced-TEOS膜)、HDP膜(高密度電漿增強- TE0S膜;High Density Plasma Enhaced-TEOS 膜)、藉由熱 CVD 法所得到 的氧化矽膜等。亦即,第2絕緣層22係由氧化矽等所構成 之比較具有親水性的表面爲佳。H3C—CH—CH2-—C——CEC—c—CH2—CH—CH3 〇-(~CH2CH2〇4—H 〇4cH2CH2〇4-H mx / ni, ····(!) (where, n and m are each an integer of 1 or more, and satisfy n + 5 0). In the above formula (1)', n + m$40 is preferable, and n + mS30 is more preferable. (E) component is commercially available. For example, SARFINOL 440 (HLB値=8), SARFINOL 465 (2,4,7,9-tetramethyl-5-decyne-4,7-diol-dipolyoxyethylene ether, HLB 値= 13), SARFINOL 485 (2,4,7,9-tetramethyl- 5-decyne-4,7-diol-diallyl ether, HLB値=17) (hereinafter, AIR PRODUCTS) The amount of the component (E) represented by the above formula -19-200837822 (1) is preferably 0.001 to 4% by mass, and 0.01 to 2 by mass, based on the total amount of the chemical mechanical honing water-based dispersion. % is more preferably. In the chemical mechanical honing water-based dispersion of one embodiment of the present invention, the ratio of the component (B) is preferably from 0 to 1 to 5, based on the amount of the component (E). Thereby, a high-precision honed surface which does not cause defects in the physical properties of the insulating layer and which can be well flattened can be obtained. (6) Dispersion medium (F) The dispersion medium may, for example, be a mixed medium of water, water and alcohol, and a mixed medium containing an organic solvent containing water and water-compatible with water. It is preferred to use water or a mixed medium of water and alcohol, and it is particularly preferable to use water. 1. Other components The chemical mechanical honing water-based dispersion system according to one embodiment of the present invention contains the above (A) to (() The component F) may contain (G) an anticorrosive agent and (H) a pH adjuster as necessary. (G) The anticorrosive agent may be benzotriazole or a derivative thereof. Here, benzotrien III The azole derivative is one in which one or two or more hydrogen atoms of the benzotriazole are substituted with, for example, a carboxyl group, a methyl group, an amine group, a hydroxyl group or the like. 4-carboxybenzotriazole and its salts, 7-carboxybenzotriazole and its salts, benzotriazole butyl ester, 1-hydroxymethylbenzotriazole or 1-hydroxybenzotriazole, etc. In the total amount of the chemical mechanical honing water-based dispersion, the amount of the (G) anti-corrosion agent is preferably 〇·〇〇5~〇·1% by mass' 0 · 0 1 〇 〇 〇 5 % by mass is more preferable. (H) The pH adjusting agent may, for example, be an organic base or an inorganic or inorganic acid. -20- 200837822 The base may be, for example, tetramethylammonium hydroxide. And triethylamine, etc. The inorganic base may, for example, be ammonia, potassium hydroxide, sodium hydroxide, calcium hydroxide, or magnesium hydroxide. Examples of the inorganic acid include nitric acid, sulfuric acid, hydrochloric acid, and acetic acid. The pH of the chemical mechanical honing aqueous dispersion according to one embodiment of the present invention is preferably 7 to 12, more preferably 7.5 to 11, and even more preferably 7.5 to 10. By the pH in this range, a good balance between the honed surface and the honing speed can be achieved. The amount of the (H) pH adjustment C' and the amount of the agent is preferably 0.005 to 5% by mass, more preferably 0.01 to 3.5% by mass, based on the total amount of the chemical mechanical honing aqueous dispersion. 1 . 8 . A set for dissolving a chemical mechanical honing water-based dispersion The above-described chemical mechanical honing water-based dispersion can be directly supplied in a state capable of being used as a honing composition after preparation. Alternatively, a honing composition (that is, a concentrated honing composition) containing the components of the above-described chemical mechanical honing aqueous dispersion at a high concentration is prepared in advance, and the concentrated honing is used at the time of use. The composition was diluted to obtain the desired chemical mechanical honing aqueous dispersion. I j For example, the above-described chemical mechanical honing water-based dispersion may be separately prepared into a plurality of liquids (for example, two or three kinds of liquids) and prepared in advance, and these plural liquids may be used in combination at the time of use. For example, the above-described third to third sets of groups can be used to prepare the aqueous dispersion for chemical mechanical honing by mixing a plurality of liquids. 1 · 8 · 1 Group 1 The first set of the mixture (I) and liquid (II) is used to prepare the above-mentioned chemical mechanical honing water dispersion. In the i-th set, the liquid (1) contains (A) honing-21 - 200837822 granules (colloidal cerium oxide having an average primary particle diameter of 5 to 55 nm and an association degree of 1.5 to 4.0), (Β) Quinolinecarboxylic acid and/or pyridinecarboxylic acid, (C) an organic acid other than the above (()), (D) an oxidizing agent, a nonionic surfactant having a triple bond, and (F) a dispersion medium The aqueous dispersion, liquid (II) contains (D) an oxidizing agent. When the liquid (I) and the liquid (II) constituting the first set are prepared, the concentration of each component contained in the liquid (I) and the liquid (II) must be determined so that the mixed liquid (I) and the liquid (II) In the obtained aqueous dispersion, each of the above f components is contained in the above concentration range. Further, the liquid (I) and the liquid (11) can also be contained in a high concentration (i.e., can be concentrated), and at this time, the liquid (I) and the liquid can be obtained by dilution. (11). In the first set, the storage stability of the oxidizing agent (D) can be improved by, in particular, separating the liquid (I) and the liquid (II) in advance. When the above-mentioned chemical mechanical honing water-based dispersion is prepared by using the first set, it is sufficient to prepare the liquid (I) and the liquid (11) separately, and to integrate them at the time of honing, the mixing method and the timing. There is no particular limitation. For example, the liquid (I) and the liquid (II) may be separately supplied to the honing device, and the I may be mixed by the turntable, or may be mixed before being supplied to the honing device, or may be mixed in the honing device. Alternatively, a mixing tank may be provided and mixed in the mixing tank. Further, in order to obtain a more uniform aqueous dispersion during mixing of the pipeline, a mixer for the pipeline can also be used. 1·8·2·Second Set The second set of the mixture (I) and the liquid (II) is used to prepare the above-mentioned chemical mechanical honing water dispersion. In the second set, the liquid contains (Α) 硏 abrasive grains (colloidal silica sand with an average primary particle size of 5 to 55 nm and an association degree of ι·5 to 4 )), and (F) dispersion medium. The aqueous dispersion, the liquid (ί) contains (β) -22- 200837822 quinolinecarboxylic acid and/or pyridine carboxylic acid, (C) organic acid other than the above (B), (D) oxidizing agent, and (E) a nonionic surfactant having a triple bond. When preparing the liquid (I) and the liquid (II) constituting the second set, it is necessary to determine the concentration of each component contained in the liquid (1) and the liquid (Π). In the aqueous dispersion obtained in the mixed liquid (I) and the liquid (II), the above-mentioned respective components are contained in the above-mentioned concentration range. Further, the liquid (I) and the liquid (II) can be contained in a high concentration. The component (that is, it can be a concentrated product), in this case, it can be diluted to obtain the liquid (I) and the liquid (II). When the second set is separated, the liquid (I) and the liquid (Π) are separated in advance. 'In particular, it is possible to improve the storage stability of the aqueous dispersion. When the second set of the chemical mechanical honing water dispersion according to one embodiment of the present invention is prepared, In the case of preparing the liquid (I) and the liquid (II) separately, and integrating them during honing, the mixing method and timing are not particularly limited. For example, liquid (I) and liquid (II) may be used. They are separately supplied to the honing device and mixed by the turntable. 'The mixture may be mixed before being supplied to the honing device, or may be mixed in the honing device, or a mixing tank may be provided and mixed in the mixing tank. Further, in order to obtain a more uniform aqueous dispersion during the mixing of the pipeline, a mixer for the pipeline can also be used. 1. 8.3. The third set of the third set is a mixed liquid (I), a liquid (11), and a liquid ( III) A kit for preparing a chemical mechanical honing aqueous dispersion according to an embodiment of the present invention. In the third set 'liquid (I), (a) honing abrasive particles (average primary particle diameter 5 An aqueous dispersion of ~55 nm with an association degree of 1.5 to 4. 胶 colloidal cerium oxide) and (F) dispersion medium, and liquid (II) containing (B) quinolinecarboxylic acid and/or pyridine carboxy- 23- 200837822 Acid, and (E) a nonionic surfactant with a two bond, and liquid (z) contains (D) Oxidizer. When preparing the liquid (1), liquid (π), and liquid (111) of the third set, it is necessary to determine the components contained in the liquid (I), the liquid (II), and the liquid (111). In the aqueous dispersion obtained in the mixed liquid (I), the liquid (H), and the liquid (111), the above-mentioned respective components are contained in the above-mentioned concentration range. Further, the liquid (][), ( 〖), and the liquid (111) can also contain each component at a high concentration (that is, it can be concentrated), and at this time, it can be diluted to obtain a liquid (〗), a liquid (II), And liquid (III). In the third set, the preservation stability of the aqueous dispersion can be improved by separating the liquid (I), the liquid (11), and the liquid (Π) in advance. When the chemical mechanical honing aqueous dispersion according to one embodiment of the present invention is prepared by using the third set, the liquid (1), the liquid (11), and the liquid (I Π ) are separately prepared and supplied. The grinding method may be integrated, and the mixing method and timing are not particularly limited. For example, the liquid (I), the liquid (II), and the liquid (III) may be separately supplied to the honing r device 'and mixed using the turntable', or may be mixed before being supplied to the honing device, or may be honed. The line is mixed in the apparatus, or a mixing tank may be provided and mixed in the mixing tank. Further, in order to obtain a more uniform aqueous dispersion during mixing of the pipeline, a mixer for the pipeline can also be used. Further, the liquid (I) in the second set and the third set may further contain an organic acid selected from the group consisting of (B) quinolinecarboxylic acid and/or pyridinecarboxylic acid, (C) (B), and (D). An oxidizing agent and (E) one or more types of components having a three-bond nonionic surfactant. 1.9. Uses -24- 200837822 ## B月@ - The chemical mechanical honing water dispersion of the embodiment is used as a honing material for chemical mechanical honing of the insulating layer contained in the semiconductor device. For example, in the chemical machine according to one embodiment of the present invention, the 1 jg $ water-based dispersion can be used as a honing material when forming a copper (or copper alloy) damascene wiring by chemical mechanical honing. At this time, the step of forming a copper (or copper alloy) damascene wiring using chemical mechanical honing is constituted by a first honing step and a second honing step, the first honing step is mainly to remove copper (or The second honing step mainly removes the conductive barrier layer formed on the lower portion of the copper (or copper alloy). The second honing step may be performed not only by removing the conductive barrier layer but also by honing the interlayer insulating layer existing under the conductive barrier layer, whereby high precision of sufficient planarization can be obtained. Degree of processing finish. Here, the chemical mechanical honing aqueous dispersion according to one embodiment of the present invention is suitably used as a honing material in the second honing step. By using the chemical mechanical honing water-based dispersion as the honing material in the second honing step, it is possible to exhibit more excellent honing characteristics and an insulating layer (especially an insulating layer having a relative dielectric constant of 3.4 or less). ) low damage. The insulating layer may be a silsesquioxane (relative dielectric constant: about 2.6 to 3.0), a fluorinated SiO 2 (relative dielectric constant: about 3. 3 to 3.5), and a polyfluorene-based resin (relative) Dielectric constant: about 2.4 to 3.6), benzocyclobutene (relative dielectric constant: about 2.7), hydrogen-containing SOG (relative dielectric constant: about 2.5 to 3.5), and organic SOG (relative dielectric constant: about 2.9) Wait. Among these, the interlayer insulating layer containing a bismuth salt as a main component may have a film thickness of 0, 2 to 20 μm, a density of 〇.3 to 1.85 g/cm 3 , and a -25-200837822 A porous insulating layer having fine pores having a pore diameter of 1 ο 0 nm or less. The above-mentioned insulating layer having a relative dielectric constant of 3.5 or less has an elastic modulus of 20 GPa or less, preferably 10 GPa or less, more preferably 5 GPa or less. The elastic modulus of the edge layer can be measured by a rigid measurement method by attaching a BERKOVICH type indenter to a Nanoindentator XP manufactured by MTS Corporation. The chemical mechanical mill aqueous dispersion according to one embodiment of the present invention can be suitably used for the honing of such a brittle insulating layer. Further, the insulating layer can be used as the first insulating layer 2 1 to be described later (see FIGS. 2(a) to 2(C). The chemical mechanical honing water-dispersing body according to an embodiment of the present invention, and the like a non-water-soluble matrix material (containing a cross-linked polymer) and a lining pad of water-soluble particles dispersed in a water-insoluble matrix material to chemically honing the elastic modulus measured by a continuous rigidity measurement method When it is an insulating layer of 20 GP a, it is particularly preferable because it can suppress 5 or less scratches on the surface to be honed. ^ Although it is possible to visually observe the presence or absence of scratches, its size, number, and quantitative The measurement can be performed by observing an image obtained by an optical microscope, a scanning electron microscope, or the like, and analyzing the photographed photograph or the like. It is also possible to measure the surface state by using a specific device for inspecting the surface state. The total number of scratches. In the chemical mechanical honing water-based dispersion of the present embodiment, when the chemical mechanical honing of the conductive barrier layer and the insulating layer is performed in the same strip, the honing speed (RB) of the conductive resist layer and the 绝缘 of the insulating layer The speed (Rm) honing speed ratio (RB/RIn-i) may be 1.2 to 4.0. Thus, for example, the second figure described later is a continuation of 硏眧 y \ \n, the machine is considered to be an equal mirror 5 In the honing shown in (b) -26-200837822 and Fig. 2(c), since the unevenness of the surface to be honed can be minimized, excellent flatness can be obtained and good results can be obtained. For example, when the multilayer wiring including the upper wiring portion and the lower wiring portion is formed by using the chemical mechanical honing aqueous dispersion of the present invention, the upper wiring portion contains an insulating layer and a conductive barrier. When the layer (to cover the surface of the recess provided in the insulating layer) and the conductive layer (the surface of the recess provided in the insulating layer) are embedded, deformation of the upper wiring portion can be suppressed. Further, the chemical mechanical structure of the present embodiment When the water-based dispersion is chemically honed under the same conditions, the copper layer, the conductive barrier layer, the first insulating layer, and the second insulating layer having a higher dielectric constant than the first insulating layer are electrically resistive. Damping speed (R b ) and copper layer The honing speed ratio (Rb/Rm) of the honing speed (RM) is 1.5 or more, and the honing speed ratio (RIn2) of the second insulating layer to the honing speed (RM) of the copper layer (RIn_2) /RM) is 〇·9 to 2.5, and the honing speed ratio (Rin_2/Rin-1) of the honing speed (RIn_2) of the second insulating layer to the honing speed of the first insulating layer (Rln-1) is 〇·5 to 5. By this, for example, in the honing shown in Figs. 2(a) to 2(C) which will be described later, a good honed surface and a honing speed can be obtained. The chemical mechanical honing water-based dispersion of the form is chemically mechanically honed under the same conditions using a lining pad containing a water-insoluble matrix material (containing a cross-linked polymer) and water-soluble particles dispersed in the water-insoluble matrix material. When the copper layer, the conductive barrier layer, the first insulating layer, and each layer of the second insulating layer having a higher dielectric constant than the first insulating layer, the honing speed (Ri^i) of the first insulating layer and the The honing speed (RB) of the conductive barrier layer, the honing speed (Rm) of the copper layer, and the honing speed of the second insulating layer (Rln_2) -27-2008378 22 can satisfy R I η - 2 > R B > R Μ > R I η · 1. Thereby, for example, in the honing shown in FIGS. 2(b) and 2(C) to be described later, the honing of the first insulating layer can be suppressed as much as possible, and the copper layer and the conductive resistance can be selectively removed. The barrier layer and the second insulating layer can obtain a good honed surface and a honing speed. 2. Chemical honing method The chemical mechanical honing method according to an embodiment of the present invention includes the following steps: a first honing step of chemical mechanical honing through a stop layer and an insulating layer having a recess and being embedded in the a metal layer of the recessed portion until the stop layer is exposed; and a second honing step of chemically mechanically honing the metal layer and the stop layer by using the chemical mechanical honing water-based dispersion of one embodiment of the present invention Until the insulating layer is exposed. Hereinafter, a chemical mechanical honing method according to an embodiment of the present invention will be described with reference to Figs. 1 to 3, but is not limited thereto. 2.1. First specific example Fig. 1 (a) to Fig. 1 (c) are schematic cross-sectional views showing a specific example (first specific example) of a chemical mechanical honing method according to an embodiment of the present invention. As shown in Fig. 1(a), the object to be honed la includes a substrate 11, an insulating layer 12 provided on the substrate 11 and including the recess 20, and a metal layer formed by the transmission stop layer 13 being provided on the insulating layer 12. 1 4. Further, the metal layer 14 is buried in the recess 20. Here, the substrate 11 is, for example, a germanium substrate, and the insulating layer 12 may be either an inorganic material or an organic material, and the stop layer 13 and the metal layer 14 are layers having different etching speeds for the honing material, and the metal layer 1 4 can be composed of a metal material that is generally used as a wiring. The insulating layer 12 can be composed of, for example, a -28-200837822 PE TEOS film or an insulating layer having a relative dielectric constant of 3.5 or less, and an insulating layer having a relative dielectric constant of 5.3 or less is preferably 3 or less. The insulating layer is better. Further, the intermediate layer 13 is preferably made of, for example, a conductive barrier layer. Further, the metal layer 14 can be composed of a metal (for example, a metal such as aluminum, copper or gold or an alloy of the above-mentioned metal) which is usually used as a wiring, and copper or a copper alloy is preferable. When the intermediate layer 13 is composed of a conductive barrier layer, it can be composed of, for example, a metal, a metal alloy, and a metal nitride (for example, Ti, TiN, Ta, TaN, and TaNb). Here, the material of the stop layer i 3 is particularly preferably Ta and/or TaN. The stop layer 13 may also have a two-layer structure. First, in the first honing step, the metal layer 14 is chemically honed to the exposed stop layer 13 except for the portion embedded in the concave portion 20 (see Fig. 1(b)). Here, as the honing material, the above-described chemical mechanical honing water-based dispersion may be used, and the first honing water-based dispersion described later may be used. Next, in the second honing step, the chemical mechanical honing aqueous dispersion according to one embodiment of the present invention described above is used, and the residual metal layer 14 and the stop layer 13 are chemically honed to the exposed insulating layer 1 2 . In the above, the portion of the intermediate layer 13 other than the bottom portion and the inner wall surface of the concave portion 20 can be removed. Thereby, the wiring shown in Fig. 1(c) can be obtained. According to this specific example, in the second honing step, the insulating layer 12 is chemically mechanically honed by using the above-described chemical mechanical honing aqueous dispersion, without changing the physical properties of the insulating layer 12. Surface defects such as peeling or scratching of the material are not generated on the surface to be honed, and high-precision honed -29-200837822 surface can be obtained. In particular, the insulating layer 12 is composed of a relative dielectric constant of 3.5. When the following insulating layer is formed, it is extremely useful to prevent the physical properties of the insulating layer 12 from being changed and to prevent the occurrence of the surface defects on the surface to be honed. 2.2. Second Specific Example FIG. 2 ( a) ~ Figure 2 (c) shows the invention modematically A cross-sectional view of another specific example (second specific example) of the chemical mechanical honing method of one embodiment. ^. Fig. 2(a) shows a honing object 2a of the chemical mechanical honing method of the second specific example. In Fig. 2(a), the insulating layer 1 12 includes the first insulating layer 21 and the second insulating layer 22 having a higher dielectric constant than the first insulating layer 21, and the first layer. The structure shown in Fig. (a) has the same structure, and the same components as those of the components shown in Fig. 1(a) are denoted by the same reference numerals. Here, the second insulating layer 2 2 has a function as a cover layer. g. The second insulating layer 2 2 may be, for example, a yttrium oxide film or a yttrium oxide (a boron phosphide glass film (BPSG film) made of a small amount of boron and phosphorus, and a cerium oxide doped with / fluorinated fluorine). A yttria-based insulating layer called FSG (Fluorine-doped silicate glass). The yttrium oxide-based insulating layer may, for example, be a thermal oxide film, Ρ Τ Ε Ο S (plasma enhanced - Τ Ε Ο S film; P 1 asma Enhaced-TEOS film), HDP film (high density plasma reinforced - TE0S film; High Density Plasma Enhace The d-TEOS film), the ruthenium oxide film obtained by the thermal CVD method, etc., that is, the second insulating layer 22 is preferably a hydrophilic surface composed of ruthenium oxide or the like.

第1絕緣層2 1係例如以三乙氧基矽烷作爲原料之HSQ -30- 200837822 月旲(含氫砂酸鹽類;Hydrogen Silsesquioxane膜)、以四乙氧 基矽烷及少量的甲基三甲氧基矽烷作爲原料之M S Q膜(甲 基砂酸鹽類;Methyl Silsesquioxane膜)、及其他的砂院化 合物作爲原料之膜所構成。又,第1絕緣層2 1亦可在原料 混合適當的有機聚合物粒子等,藉由該聚合物在加熱步驟 燒掉而形成空穴,來謀求更低介電常數化的膜。或者,第 1絕緣層2 1亦可以是聚伸芳基系聚合物、聚伸芳基醚系聚 合物、聚醯亞胺系聚合物、及苯并環丁烯聚合物等有機聚 合物。第1絕緣層2 1以相對介電常數係3 . 5以下的絕緣層 爲佳,以3 · 0以下的絕緣層爲更佳。亦即,爲了使第1絕 緣層2 1的相對介電常數下降,亦能夠是含有以烷基(甲基 等)的疏水基官能基作爲主鏈之層。 首先,在第1硏磨步驟,係將金屬層1 4之中除了埋設 在凹部20的部分以外,化學機械硏磨至露出中止層13(參 第2圖(b)。在此,硏磨材可使用上述的化學機械硏磨用水 系分散體、或者亦可使用後述之第1硏磨用水系分散體。 接著,在第2硏磨步驟,係使用上述本發明的一個實施 形態的化學機械硏磨用水系分散體(第2硏磨用水系分散 體),將殘餘的金屬層1 4、中止層1 3、及第2絕緣層2 2化 學機械硏磨至露出第1絕緣層21爲止(參照第2圖(c))。藉 此,能夠除去中間層1 3之中除了位於凹部2 0的底部及內 壁面以外的部分。藉此’能夠得到第2圖(c)所示之配線結 構體2。 依照本具體例時’具有與上述第1具體例同樣的作用效 -31 - 200837822 果。再加上依照本具體例時,因爲藉由化學機械硏磨選擇 性地除去第2絕緣層22,所以能夠減少化學機械硏磨對第 1絕緣層2 1所造成的損傷。 例如,第1絕緣層2 1係含有以疏水性官能基作爲主鏈 之層,而第2絕緣層22係具有由比較富於親水性的氧化砂 所構成的表面時,藉由用第2硏磨用水系分散體進行硏磨 第1絕緣層2 1,因爲第2硏磨用水系分散體所含有的(E) 界面活性劑係上述通式(1 )所示之界面活性劑,所以(E)界面 活性劑的疏水性部分與第1絕緣層2 1的疏水性表面具有高 親和性。因此,(E)界面活性劑會吸附於第1絕緣層2 1的 表面而保護該表面。藉此,能夠抑制(A)硏磨粒的直接硏磨 且能夠抑制硏磨速度的上升。 2.3 .第3具體例 第3圖(a)〜第3圖(c)係模式性顯示本發明的一個實施形 態的化學機械硏磨方法的另外一個具體例(第3具體例)之 剖面圖。 第3圖(a)係表示第3具體例的化學機械硏磨用水系分 散體的硏磨對象物3 a。在第3圖(a),除了在絕緣層1 2的 下部設置有第3絕緣層3 1及第4絕緣層3 2以外,與第1 圖(a)所示結構同樣的結構,且與第1圖(a)所示之構成要素 相同構成要素係附加相同的記號。在此,第3絕緣層3 1係 例如由矽氧化物等所構成,第4絕緣層3 2係例如由矽氮化 物等所構成。 本具體例的化學機械硏磨方法係與第1具體例的化學 -32- 200837822 機械硏磨方法同樣。又,依照本具體例’具有與上述第1 具體例同樣的作用效果。 2.4硏磨裝置及硏磨條件 在本發明的一個實施形態的化學機械硏磨方法’在第1 硏磨步驟及第2硏磨步驟的硏磨’能夠使用市售的化學機 械硏磨裝置(例如 ,LGP510 、 LGP 5 5 2 (以上, LAPMASTER-SFT(股)製)、EPO-112、EPO-222(以上,荏原 製作所(股)製)、Mirra(APPLIED MATERIALS 公司製)、 AVANTI-472(I-PEC公司製)等),並以已知的硏磨條件來進 行。 較佳硏磨條件應該依照所使用的化學機械硏磨裝置來 適當地設定,例如使用化學機械硏磨裝置係使用EP 0-1 12 時,第1硏磨步驟及第2硏磨步驟都能夠設定爲例如以下 的條件。 轉盤轉速:以30〜130rpm爲佳,以40〜130rpm爲更佳 , 轉頭轉速:以30〜130rpm爲佳,以40〜130rpm爲更佳 轉盤轉速/轉頭轉速比:以0.5〜2爲佳,以0.7〜1.5爲較佳 硏磨壓力:以0.5〜2.5psi爲佳,以1.0〜2.0psi爲更佳 化學機械硏磨用水系分散體供給速度:以50〜3 00毫升/ 分鐘爲佳,以100〜200毫升/分鐘爲更佳。 2.5.第1硏磨用水系分散體 在上述第1〜第3具體例,在第1硏磨步驟能夠使用的 第1硏磨水系分散體,在以相同條件化學機械硏磨金屬層 1 4及中止層1 3的各層的情況,能夠使用具有金屬層1 4的 -33- 200837822 硏磨速度(R μ )與中間層1 3的硏磨速度(R s )的硏磨速度比 (Rm/Rs)爲50以上的硏磨特性之化學機械硏磨用水系分散 體。在此,硏磨速度比(RM/RS)小於50時,在第i硏磨步 驟結束後,在應除去金屬層1 4的部分會殘存有過剩的金 屬’致使在第2硏磨步驟須要花費較多的時間,又,有需 要大量的加工液之虞。 上述第1硏磨用水系分散體的硏磨速度比(Rm/rs)以60 f、 以上爲佳,以70以上爲更佳。 如此的第1硏磨用水系分散體的硏磨速度比 上述範圍時,其組成沒有特別限定,例如,以在水系介質 中含有(A)硏磨粒、(C )前述(B )以外的有機酸、(D)氧化劑、 (F)分散介質、和選自由氨及銨離子所組成群組之至少1種 的氨成分爲佳。 第1硏磨用水系分散體所使用的(F)分散介質可舉出例 如在上述本實施形態的化學機械硏磨用水系分散體(第2硏 磨用水系分散體),所例示作爲(F)分散介質之物,此等之 中,以只有使用水作爲分散介質爲佳。 第1硏磨用水系分散體所使用的(A)硏磨粒可舉出無機 粒子。 上述無機粒子可舉出例如二氧化矽、氧化鋁、二氧化 鈦、氧化鉻、及鈽氧等的粒子,以二氧化矽、及鈽氧粒子 爲較佳,以二氧化矽爲更佳。二氧化矽可舉出藉由氣相法 二氧化矽、溶膠凝膠法所合成的二氧化矽、及膠體二氧化 矽等。氣相法二氧化矽能夠藉由在氣相中使氯化矽等與氧 -34- 200837822 及水反應來得到。藉由溶膠凝膠法所合成的二氧化砂能夠 使用烷氧基矽化合物作爲原料,並藉由加水分解及/或縮合 反應來得到。膠體二氧化矽能夠藉由例如使用預先精製的 原料之無機膠體法等來得到。 第1硏磨用水系分散體所使用之(C)前述(B)以外的有機 酸可舉出例如在第2硏磨用水系分散體中構成成分(C)之有 機酸,此等之中,就能夠得到更大的硏磨速度比(RM/Rs)而 / 言’以使用檸檬酸、及蘋果酸爲佳。 (. 又’第1硏磨用水系分散體能夠更含有(G)防腐蝕劑、 甘胺酸、及丙胺酸。第1硏磨用水系分散體所使用的(G) 防腐蝕劑可使用在第2硏磨用水系分散體中所例示作爲(G) 防腐蝕劑之物,可舉出例如羧基苯并三唑。 第1硏磨用水系分散體含有(G)防腐蝕劑時,相對於第 1硏磨用水系分散體的總量,其調配量以5質量%以下爲 佳,以0 · 0 0 1〜5質量%爲較佳,以〇 . 〇 〇 5〜1質量%爲更佳, I 以0.0 1〜0.5質量%爲特佳。 第1硏磨用水系分散體所使用的(D)氧化劑可舉出例如 在第2硏磨用水系分散體所例如作爲(D)氧化劑之物,能夠 使用選自此等之至少1種氧化劑。此等之中,以過氧化氫 或過硫酸鹽爲佳,以使用過硫酸銨爲特佳。 在第1硏磨用水系分散體所含有的氨成分能夠以氨的 形式存在’亦能夠以銨離子的形式存在,又,亦能夠將兩 者摻雜。銨離子能夠以游離狀態存在,亦能夠以酸的銨鹽 的方式存在,又,亦能夠將兩者摻雜而以此等的平衡狀態 -35 - 200837822 存在。如此的氨及銨離子能夠將氨水獨立地添加在第1硏 磨用水系分散體來使其生成,亦能夠從作爲上述有機酸的 錢鹽或氧化劑而添加的過硫酸銨等的無機酸的銨鹽生成, 或者,亦能夠作爲後述的陰離子性界面活性劑的相對陽離 子而添加。 第1硏磨用水系分散體之(A)硏磨粒、(C)前述(B)以外 的有機酸、(D)氧化劑、和選自由氨及銨離子所組成群組之 ζ .至少1種的氨成分,以各自含有下述比率爲佳。 相對於第1硏磨用水系分散體的總量,(Α)硏磨粒的調 配量通常爲0.0 〇 1〜3質量%,以〇 . 〇 1〜3質量%爲佳,以 0 · 0 1〜2 · 5質量%爲較佳,以〇 · 〇 1〜2質量。/。爲更佳。 相對於第1硏磨用水系分散體的總量,(C)前述(B)以外 的有機酸的調配量通常爲0.0 1〜1 0質量%,以〇 . 1〜5質量% 爲佳。 相對於第1硏磨用水系分散體的總量,(D)氧化劑的調 ( 配量通常爲〇·〇1〜10質量%,以0.02〜5質量%爲佳。 相對於1公升第1硏磨用水系分散體的總量,氨成分的 調配量通常爲0.005〜20莫耳,以0.01〜15莫耳爲佳,以 〇·〇3〜15莫耳爲更佳,以0.05〜10莫耳爲特佳。 弟1硏磨用水系分散體亦可按照必要更含有界面活性 劑、及消泡劑等添加物。 界面活性劑可舉出陽離子性界面活性劑、陰離子性界面 活性劑、兩性界面活性劑、非離子性界面活性劑、及水溶 性聚合物等。特別是以使用陰離子界面活性劑、及非離子 -36- 200837822 性界面活性劑或水溶性聚合物爲佳。 陰離子界面活性劑可舉出羧酸鹽、磺酸鹽、硫酸酯鹽、 磷酸酯鹽等。羧酸鹽可舉出例如脂肪酸肥皂、及烷基醚羧 酸鹽等,磺酸鹽可舉出例如烷基苯磺酸鹽、烷基萘磺酸鹽、 α -烯烴磺酸鹽等,硫酸酯鹽可舉出例如高級醇硫酸酯鹽、 烷基醚硫酸鹽、聚氧乙烯烷基苯基醚硫酸鹽等’磷酯鹽可 舉出例如烷基磷酸酯鹽等。此等之中,以使用磺酸鹽爲佳, 以烷基苯磺酸鹽爲更佳,以十二烷基苯磺酸鹽爲特佳。 非離子性界面活性劑可舉出例如聚乙二醇型界面活性 劑、炔二醇、炔二醇的環氧乙烷加成物、炔醇等的非離子 性界面活性劑。 水溶性聚合物可舉出例如陰離子聚合物、陽離子性聚合 物、兩性聚合物、及非離子性聚合物等。陰離子聚合物可 舉出例如聚丙烯酸及其鹽、聚甲基丙烯酸及其鹽、聚乙烯 醇等,陽離子性聚合物可舉出例如聚伸乙亞胺、聚乙烯基 吡略啶酮等,兩性聚合物可舉出例如聚丙烯醯胺等,非離 子性聚合物可舉出例如聚環氧乙烷、及聚環氧丙烷等。 相對於第1硏磨用水系分散體的總量,界面活性劑的調 配量以20質量%以下爲佳,以o.ooi〜20質量%爲較佳,以 0.0 1〜1 〇質量%爲更佳,以0 · 0 5〜5質量%爲特佳。 第1硏磨用水系分散體的ρ Η可設定爲酸性區域、中性 附近區域(弱酸性區域至弱鹼性區域)、及鹼性區域的任何 値。酸性區域的pH以2〜4爲佳,中性附近區域的ρΗ以6〜8 爲佳,鹼性區域的Ρ Η以8〜1 2爲佳。此等之中,以中性附 -37- 200837822 近至鹼性區域的pH,亦即6〜12爲佳。 在本發明,能夠在第1硏磨步驟及第2硏磨步驟使用同 一裝置,在安裝有硏磨對象物的狀態,依照順序切換至所 供給的硏磨用水系分散體並連續地進行,又’亦可以使用 同一硏磨裝置,在第1硏磨步驟結束後暫時取出硏磨對象 物,並切換成供給的硏磨用水系分散體後,將已取出的重 新安裝而進行第2硏磨步驟。 r ; 又,亦可使用各自的硏磨裝置來進行第1硏磨步驟及第 2硏磨步驟。而且,若使用具備複數種硏磨墊之硏磨裝置 時,可在第1硏磨步驟及第2硏磨步驟使用不同種類的硏 磨墊,亦可在第1硏磨步驟及第2硏磨步驟使用同種的硏 磨墊。 本實施形態化學機械硏磨用水系分散體例如使用含有 非水溶性基質材(含有交聯聚合物)及分散在該非水溶性基 質材而成的水溶性粒子之硏磨墊,來硏磨被硏磨物時,能 - 夠得到更良好的被硏磨面及硏磨速度之雙方,特別是硏磨 導電性阻障層或絕緣層時,能夠得到非常良好的硏磨速 度。此時,就能夠防止疲乏及過度的磨耗,且能夠安定地 維持硏磨性能而言,以使用已交聯的1,2-聚丁二烯等交聯 橡膠作爲非水溶性基質材、且使用以Θ -環糊精作爲水溶性 粒子而成的硏磨墊爲佳。此種硏磨墊可舉出例如J S R (股) 製、商品號碼「F P 8 0 0 0」。 3 .實施例 以下,藉由實施例來說明本發明,但是本發明完全未限 定於此等實施例。在本實施例,係藉由雷射繞射法來測定 -38- / 200837822 粒子的平均一次粒徑及平均二次粒徑(測定裝置··堀場製作 所製之動態光散射式粒子分布測定裝置、商品號碼 「HORIBA LB 5 5 0」)。 3 . 1 .含無機粒子之水分散體的調製 3 · 1 · 1 ·含氣相二氧化矽之水分散體的調製 在6公斤離子交換水中,使用行星式混煉機(商品名TK HABISTISUPERMIX、HDM-3D-20 型、特殊機化工業(股) 製),邊使主旋轉軸以1 〇 r p m及使副旋轉軸以3 0 r p m旋轉扭 ( 轉葉片來進行混煉、邊以3 0分鐘連續地添加6公斤氣相法 二氧化矽(日本AEROSIL (股)製、商品名「AEROSIL#90」。 而且,使扭轉葉片的副旋轉軸以3 Orpm旋轉之混煉操作、 使直徑 80毫米的 COREX型高速旋轉翼的副旋轉軸以 20 0 Orpm旋轉之處理、及使主旋轉軸以l〇rpm旋轉之處理 繼續1小時。 隨後,將添加〇 · 4 5公斤2 0質量%的氫氧化鉀水溶液而 得到的水分散體使用離子交換水稀釋,得到二氧化砂含有 Ci 量爲3 0質量%的水分散體。使用孔徑爲5微米的深過濾筒 (depth cartridge filter)過濾該水分散體,得到含有氣相二 氧化矽粒子H1之水分散體R3。 3·1·2·含膠體二氧化矽粒子之水分散體的調製 3.1.2a·含膠體二氧化矽粒子C1之水分散體的調製 使用膠體二氧化矽粒子C1 (扶桑化學工業(股)製、型名 「膠體二氧化矽PL-3H」),來調製含25質量%膠體二氧化 矽粒C 1之水分散體S 1。 在該水分散體S 1所含有的膠體二氧化矽粒子C 1的平 -39- 200837822 均一次粒徑爲3 2奈米,平均二次粒徑爲8 3奈米,平均締 合度爲2.6。 3.1.2b.各自含有膠體二氧化矽粒子C2至C11之水分 散體S2〜S9 、 Rl 、 R2的調製 藉由下述方法,來各自調製表1所示之含有膠體二氧化 矽粒子C2至C11之水分散體S2〜S9、Rl、R2,且各自在 實施例2〜9及比較例1、2使用。 混合3容量的四乙氧基矽烷、及1容量的乙醇而得到原 ^ 料溶液。在反應槽加入預先混合乙醇、水、及氨而成的反 應溶劑。使反應溶劑中的水濃度固定爲1 5重量%,氨濃度 係各自如表1所示之値。又,乙醇的濃度係除去水及氨後 的殘餘値。邊冷卻來維持反應溶劑的溫度爲2 0 °C,邊將每 9容量反應溶劑爲1容量的原料溶液以下表所示之滴加速 度滴加至反應槽,得到膠體二氧化矽C2〜C 1 1的醇分散液。 接著’使用旋轉式蒸發器,並重複數次在邊將所得到的 醇分散體的溫度維持在8 0 °C、邊添加離子交換水之同時除 去醇之操作。藉此操作,來各自調製得到含有25質量%膠 體二氧化矽粒子C2至C11之水分散體S2〜S9、Rl、R2。 -40^ 200837822 [表l] 膠體二氧化矽 ~氨濃度(重量%) 滴加速度(克/分) C2 0.8 3 0 C3 0.8 50 C4 0.8 45 C5 0.8 55 C6 1.0 5 5 C7 1.0 20 C8 0.6 3 5 C9 0.6 3 5 C10 0.8 80 C 1 1 1 .3 50 3 . 2 .第1硏磨用水系分散體的調製及其硏磨性能的§平價 3.2 . 1 .第1硏磨用水系分散體的調製 在6.7公斤離子交換水中,將2公斤氣相二氧化矽粒子 (曰本AEROSIL(股)製、商品名「AEROSIL#90」、平均一次 粒徑爲2 0奈米)使用超音波分散機分散。將其藉由孔徑爲5 微米的過濾器過濾,得到含有2 3質量%氣相二氧化矽粒子 之水分散體。在該水分散體所含有氣相二氧化砂粒子的平 均二次粒徑爲2 2 0奈米。 將含有相當於1質量% (換算二氧化矽)的量之氣相二氧 化矽粒子之水分散體裝入聚乙烯製的瓶中’對此’依照順序 加入0.5質量%之2-喹啉甲酸、0.05質量%之2,4,7,9 -四甲基 _5·癸炔-4,7-二醇-二聚氧乙烯醚(AIR PRO DUCTS(股)製、商 品名「SARFINOL 465」)、及換算過氧化氫相當於〇·1質量 %之3 0質量%過氧化氫水,並攪拌1 5分鐘。隨後,藉由1 當量的氫氧化鉀水溶液整爲pH9.5後,使用孔徑爲5微米 -41 - 200837822 的過濾器過濾,來得到第1硏磨用水系分散體。 3 · 2.2 .第1硏磨用水系分散體的硏磨性能的評價 在化學機械硏磨裝置(APPLIED MATERIALS公司製、 型式「Mirra」)’安裝發泡聚胺基甲酸酯製硏磨墊(NITta · HASS (股)製、商品號碼「ic 1〇〇〇」),邊供給上述化學機械 硏磨用水系分散體,邊對下述的各種硏磨速度測定用基 板,以下述硏磨條件進行化學機械硏磨處理1分鐘,並藉 由下述方法算出硏磨速度。 I. 硏磨速度測定用基板 •層積膜厚度1 5 0 0 〇 A的銅膜(相當於本發明的金屬層) 而成之8英吋覆熱氧化膜矽基板(atdf公司製、「15000A覆 銅膜晶圓」) •層積膜厚度3 0 0 〇 A的氮化鉅膜(相當於本發明的中止 層(導電性阻障層))而成之 8英吋覆熱氧化膜矽基板 (WAFERNET公司製、「3 000A覆氮化鉅膜晶圓」) •層積膜厚度1 0 000A的BD膜(相當於本發明的第1絕 緣層)而成之8英吋矽基板(atdf公司製、「1000〇人覆bd膜 晶圓」) •層積膜厚度1 0000人的PETE0S膜(相當於本發明的第 2絕緣層)而成之8英吋砂基板(atdf公司製、「1 0000A覆 TEOS膜晶圓」) II. 硏磨條件 •轉頭轉數:13Q]:Pm •壓板轉數:13Gfpm -42- 200837822 •轉頭負荷:1.5psi •化學機械硏磨用水系分散體的供給速度:200毫升/分鐘 III. 硏磨速度算出方法 對銅膜及氮化鉅膜,使用電傳導式膜厚度測定器 (KLA-TENCOR(股)製、形式「OMNIMAPRS75」)測定硏磨 處理後的膜厚度,從化學機械硏磨所減少的膜厚度及硏磨 時間算出硏磨速度。 對 PETEOS 膜,使用光干擾式膜厚度測定器 (NANOMETRICS JAPAN(股)製、型式「Nanospec 6100」), 來測定硏磨處理後的膜厚度,從化學機械硏磨所減少的膜 厚度及硏磨時間算出硏磨速度。 IV. 硏磨速度 •金屬層(銅)硏磨速度(Rm): 5 5 00A/分鐘 •導電性阻障層(氮化鉅層)的硏磨速度(RB) : 30 A/分鐘 •絕緣層(PETEOS膜)的硏磨速度(RIn) : 40 A/分鐘 3 . 3 .實施例1 3.3.1.第 2硏磨用水系分散體(本發明的化學機械硏磨 用水系分散體)的調製 將換算二氧化矽相當於4質量%之上述「3.1.2a.含膠 體二氧化矽粒子之水分散體的調製」所調製得到之含有膠 體二氧化矽粒子C 1的水分散體,加入聚乙烯瓶中,對其依 照順序加入(E)非離子性界面活性劑(2,4,7,9-四甲基-5-癸 炔-4,7-二醇-二聚氧乙烯醚(11 + 111=1〇)(八111?11〇〇1;(:丁8 JAPAN(股)製、商品名「S ARFINOL 4 6 5」))、(B)喹吡啶羧 -43 - 200837822 酸(2,3 -吡啶二羧酸)、(C )前述(b )以外的有機酸(順丁烯二 酸)、(D)氧化劑(換算過氧化氫相當於〇.3質量%之30質量 %過氧化氫水),並攪拌 1 5分鐘。隨後,加入 0.9 8質量 %(H)pH調整劑(氫氧化鉀),並調整水系分散體爲pH9.0。 接著’以總構成成分的合計量爲1 00質量%的方式添加離 子交換水後,藉由孔徑5微米的過濾器過濾,得到第2硏 磨用水系分散體S 1。第2硏磨用水系分散體S 1中的各成 分的調配量係如表2所示。 r k 3·3 ·2·第2硏磨用水系分散體的硏磨性能的評價 在化學機械硏磨裝置(APPLIED MATERIALS公司製、 型式「Mirra」)’安裝使水溶性粒子($ -環糊精)分散在已 交聯的非水溶性基質(1,2-聚丁二烯)而成的硏磨墊(JSR(股) 製、商品號碼「FP 8000」),並邊供給上述化學機械硏磨用 水系分散體、邊對下述的各種硏磨速度測定用基板,以下 述硏磨條件進行化學機械硏磨1分鐘,且藉由以下方法來 算出硏磨速度。 ^ I·硏磨速度測定用基板 •層積膜厚度1 5 000A的銅膜(相當於本發明的金屬層) 而成之8英吋覆熱氧化膜矽基板 •層積膜厚度20 00人的氮化鉬膜(相當於本發明的中止 層(導電性阻障層))而成之8英吋覆熱氧化膜矽基板 •層積膜厚度1 0000A的PETEOS膜(相當於本發明的第 2絕緣層)而成之8英吋矽基板 •藉由APPLIED MATERIALS JAPAN股份公司開發的 -44- 200837822 黑金剛石製程(black diamond process),層積膜厚度4000A 的第1絕緣層(BD膜)(相對介電常數k = 2.8)而成之8英吋矽 基板 •層積JSR股份公司所開發之MSQ型的膜厚度5000A 的第1絕緣層(LKD膜)(相對介電常數k = 2.3)而成之8英吋 矽基板 II. 硏磨條件 •轉頭轉數:1 3 0 r p m •壓板轉數:1 30rpm •轉頭負荷:1 .5psi •化學機械硏磨用水系分散體的供給速度:200毫升/分鐘 III. 硏磨速度算出方法 對銅膜及氮化鉬膜,使用電傳導式膜厚度測定器 (KLA-TENCOR(股)製、形式「Ο Μ N IM A P R S 7 5」)測定硏磨 處理後的膜厚度,從化學機械硏磨所減少的膜厚度及硏磨 時間算出硏磨速度。 對PETEOS膜、BD膜及LKD膜,使用光干擾式膜厚度 測定器(NANOMETRICS JAPAN(股)製、型式「Nanospec 6 1 00」),來測定硏磨處理後的膜厚度,從化學機械硏磨所 減少的膜厚度及硏磨時間算出硏磨速度。 IV. 硏磨速度 •金屬層(銅)硏磨速度(Rm) : 2 5 0A/分鐘 •導電性阻障層(氮化鉅層)的硏磨速度(RB) : 8 00A/分鐘 •第2絕緣層(PETEOS膜)的硏磨速度(RIn_2) : 3 8 0A/分鐘 -45- 200837822 •第1絕緣層(BD膜)的硏磨速度(Rmn) : 170 A/分鐘 •第1絕緣層(LKD膜)的硏磨速度(Rm-O : 190A/分鐘 V.第1絕緣層的擦傷數的評價方法 使用目視及光學顯微鏡觀察硏磨後的第1絕緣層的外 周部是否有剝落。又,使用無圖案晶圓缺陷檢查裝置 (KLA-TENCOR公司製、形式「KLA23 5 1」),計測被硏磨 面全面平均的缺陷數來計算擦傷數。將結果作爲「第1絕 緣層的擦傷數」並如表2所示。又,晶圓缺陷檢查裝置以 作爲缺陷的方式計算之物,其中並非擦傷之物可舉出例如 黏附的灰塵、晶圓製造所產生的斑點等。 在上述「V.第1絕緣層的擦傷數的評價方法」,缺陷檢 查裝置的檢查參數係如下所示。 •檢查視野:明亮視野 •檢查波長:可見光 •像素尺寸:〇 . 3 9 •臨界値(缺陷檢測敏感度):5 0 VI·凹狀扭曲硏磨(dishing)及擦傷的評價 . (i)形成有銅配線之被硏磨用基板的製造 在矽所構成的基板表面,層積具有由複數條深度1微 米的槽所構成的圖案之 5000A絕緣層(PETEOS膜(厚度 5〇〇A)與BD膜(4 5 00A)的複合膜)。接著,在絕緣層的表面 形成厚度25 0A的導電性阻障層(TaN膜),隨後,在被TaN 膜所覆蓋的槽內,使用濺鍍及鍍敷法來堆積厚度1 . 1微米 的金屬層(C u層)。 -46- 200837822 (ii) 第1硏磨步驟後的評價 對上述(i)所製造的晶圓,使用在「3.2.1 ·第1硏磨用 水系分散體的調製」所調製的第1硏磨用水系分散體,以 硏磨速度5500A硏磨2.25分鐘。 第1硏磨步驟結束後,使用觸針式段差計(KLA-TENCOR(股)製、形式「HRP240」)來評價被硏磨面中寬度 爲1〇〇微米配線的凹狀扭曲硏磨時,爲400人。 又,在此,「凹狀扭曲硏磨」係指晶圓的上面(由絕緣層 或導電性阻障層所形成的平面)與配線部分的最低部位之 距離(高低差)。 (iii) 第2硏磨步驟後的評價 對上述(ii)所製造的晶圓,使用實施例1〜9及比較例1〜3 的水系分散體,依照下述式所算出的時間進行硏磨。 硏磨時間(分鐘)= {(阻障層的厚度(A) + (在上述「3.3.2. 第2硏磨用水系分散體的硏磨性能的評價」所算出之阻障 I 層(氮化鉅)的硏磨速度)+ (第1絕緣層的厚度(50〇A)) + (在上 述「3 · 3 · 2 ·第2硏磨用水系分散體的硏磨性能的評價」所算 出之第1絕緣層(PETEOS))的硏磨速度)+ (第2絕緣層的厚 度(200人))+ (在上述「3.3.2.第2硏磨用水系分散體的硏磨 性能的評價」所算出之第2絕緣層(BD)的硏磨速度)} 對被硏磨面,使用觸針式段差計(K L A - T E N C 0 R (股) 製、形式「HRP240」)來評價被硏磨面中寬度10()微米配線 的凹狀扭曲硏磨。結果如表2所示。 又,在此,「凹狀扭曲硏磨」係指晶圓的上面(由絕緣層 -47- 200837822 或導電性阻障層所形成的平面)與配線部分的最低部位之 距離(高低差)。 又,在無圖案的場區域(比120微米X120微米更大的 場區域)的絕緣膜硏磨量,係使用光干擾式膜厚度測定器 (NANOMETRICS JAPAN(股)製、型式「Nanospec 6100」), 來測定硏磨處理後的膜厚度,並算出從初期膜厚度5 0 0 0人 減少的膜厚量時,實施例1〜5及比較例1及2的水系分散 體之任一者都是7 5 0〜900A。 而且,使用光學顯微鏡在黑暗視野對銅配線部分以區 域120微米xl 20微米作爲單位區域,並無規則地觀察200 個位置,測定發生擦傷的單位區域數作爲「銅配線的擦傷 數」。結果如表2所示。 VII.第1絕緣層的彈性模數 在 MTS.公司製超微小硬度計(Nanoindentator XP)安 裝BERKOVICH型壓頭,藉由連續剛性測定法來測定第1 絕緣層的彈性模數。結果如下。 •第1絕緣層(BD膜)的彈性模數:4.5 GP a •第1絕緣層(LKD膜)的彈性模數:3.0GPa 3.4.實施例2至9及比較例1〜3 在實施例1,除了化學機械硏磨用水系分散體之各成 分的種類及添加量、水系分散體的p Η、及所使用的硏磨 墊係如表2所述以外,其他係與實施例1同樣進行硏磨。 又’實施例5〜7所使用的硏磨墊係硬質發泡聚胺基甲酸酯 製硏磨墊(ΝΙΤΤΑ· HASS(股)製、商名號碼「IC1000」,實 -48- 200837822 施例 8及 9所使用的硏磨墊 (NITTA· HASS(股)製、商名號碼 亦即除了化學機械硏磨用; 合成的各水系分散體S2至S9及 係與實施例1同樣地進行評價。 系聚胺基甲酸酯製硏磨墊 「Politex」)。 欠系分散體係使用上述所 R1至R3代替S 1以外, 結果如表2所示。 -49- 200837822 i 〔CN« 鎰 CO 氣相二氧化 矽(HI) 1 o (N • ΓΟ 2,3吡啶 二羧酸 ο 順丁烯 二酸 〇 過氧化 氫水 〇 SARFINOL 485 o i; 祕 Ο 〇< I FP8000 1 in m m rs o ON o m oo o o IT) g tr> (N m 鎰 ΛΛ (N 膠體二氧化 矽(C11) U^) <N Os csi m 2,3吡啶 二羧酸 s d 順丁烯 二酸 〇\ 〇 過氧化 氫水 m ο SARFINOL 485 (N o s 安 ΙΙϋ FP8000 | 00 (N 寸 卜 g p (N 〇\ o m 'O ΓΟ g rn iT) S m i 鎰 Jj S 膠體二氧化 矽(C10) yn m On VO uo (N 2,3吡啶 二羧酸 ο ο 順丁烯 二酸 On 〇 過氧化 氫水 m ο SARFINOL 485 (N o 截 m os | FP8000 | 卜 On <N 寸 00 菩 Co 卜 OO S r- o oo o 00 i〇 o g o (N 卜 wo <N os 辑 m a 膠體二氧化 矽(C9) ^r> 00 <N On (N 2,3吡啶 二羧酸 s ο 順丁烯 二酸 ο 過氧化 氫水 m ο SARFINOL 485 (N 〇 ft 安 m _ On Politex (N δ m oo m s 二 oo tr> o On cn G\ rn ^sO o § ΓΠ rn o — 〇 (N 實施例8 i 00 CO 膠體二氧化 矽(C8) ΓΛ P; oo (N 寸 2-喹啉 羧酸 s ο 琥珀酸 ο 過氧化 氫水 m ο SARFINOL 485 CN d 祕 _ oo 00 Politex 1 On S vo m m m g oo o CN Os fN g rn § o o rn 二 rn — — 〇 <N (N 卜 U 00 膠體二氧化 矽(C7) in 寸 卜 〇0 〇s 2-喹啉 羧酸 s ο 順丁烯 二酸 ΟΝ ο 過氧化 氫永 m ο SARFINOL 485 s o 祕 00 1 iciooo | fN m 〇 <N U^) U-) (N 3 (N 寸 寸 s <N o <n (N oo <N m 辑 s 膠體二氧化 矽(C6) (X oo 卜 cn 寸 2-喹啉 羧酸 s ο 戊二酸 yn ο 過氧化 氫水 <N SARFINOL 465 (N 跋 Jii _ ON I iciooo 1 卜 <N m ON <N 寸 o 宕 (N S A OS 〇 oo m <N rs CN (N 卜 m 握 K in oo 膠體二氧化 矽(C5) (N m o rn (N 2,3吡啶 二羧酸 oo 反丁烯 二酸 ο 過氧化 氫水 O SARFINOL 485 | 卜 o 駄 嘁 ιέ Q\ | ICIOOO s m oo 寸 V"» s <N A \〇\ vq oo IT) On ? rn uo m 寸 m 辑 W 膠體二氧化 矽(C4) i/Ί cn IT) ON t> rs 2,3吡啶 二羧酸 s ο 琥珀酸 οο ο 過氧化 氫水 m o SARFINOL 485 o 跋 m 寸 On I FP8000 | o a O JO 〇s cs £ cs yr> K (N MD oo m vq rN — § m m 辑 U Ώ 膠體二氧化 矽(C3) (N - oo m 2,3吡啶 二羧酸 ο 檸檬酸 U-) ο 過氧化 氫水 呀 o SARFINOL 465 s o m CN Os I FP8000 | (N 'sO oo m ON m $ CN in S S S 等 o CO o (N (N IK 膠體二氧化 矽(C2) ON (N m <N m 2,3吡啶 二羧酸 s ο 蘋果酸 Ό Ο 過氧化 氫水 o SARFINOL 485 o m oo oo FP8000 〇 m Os CN 寸 S (N 寸· OO oo r4 (N o CN m (N - — oo (N ί 魏 ΟΊ 膠體二氧化 矽(C1) <N m ΓΟ oo 'O (N 寸 2,3吡啶 二羧酸 s ο 順丁烯 二酸 Ον Ο 過氧化 1氫水 m o SARFINOL 485 CN o δ Jiff FP8000 s; <N 吁 寸 (N (N 寸 On 寸 On r- r4 - <N 奴 s Φ * 名稱 i 张 g s 1 来 g 11 4〇 fil _ » g « 種類 1» m 種類 S Μ m 種類 冬 h ft m m 種類 ft m m 種類 騷 .0 m m K 霜 m m m m s m 滕 m ω & m 變 Q DQ 滕 議 § 1 • 0 2 :i :§ .S ά s PQ ί s ;S r—H > csi ώ '2 ’S m g 幽 、S x—^ i _ 避 :S ;1 < c 瘛 [Ο :〇 (A)硏磨粒 趦愁 荽畜 mu a (C洧機酸 ⑼氧化劑 4±ti 礙— 我s fe HlB nn](2n g (Η)ΡΗ調整劑 儘 a $ ί 丨g • s i $ < £ a | s ά 2 1 ί 2 ά e a S CN 1 征 、超 mm ;^1¾ 丨07 .200837822 依照表2時,得知藉由使用實施例1〜9的化學機械硏磨 用水系分散體’對形成於半導體基板的絕緣層進行化學機 械硏磨時’能夠大幅度地抑制在被硏磨面之擦傷及凹狀扭 曲硏磨’且未大幅度地變化前述絕緣層的相對介電常數、 亦不會過度地硏磨前述絕緣層,而且能夠充分地被平坦化 而具有筒精確度的被硏磨面。 相對地,使用比較例1〜3的化學機械硏磨用水系分散 體時,硏磨後會產生大的凹狀扭曲硏磨。 / 【圖式簡單說明】 第1圖(a)〜第1圖(c)係本發明的化學機械硏磨方法之 一個具體例之槪略圖。 第2圖(a)〜第2圖(〇係本發明的化學機械硏磨方法之 另外一個具體例之槪略圖。 第3圖(a)〜第3圖(〇係本發明的化學機械硏磨方法之 另外一個具體例之槪略圖。 【元件符號說明】 1、2、3 配線結構體 la、2a、3 a 硏磨對象物 11 基板(例如矽) 12 絕緣層(例如PETEOS膜、或相對介電常數爲 3.5以下的絕緣層) 13 中止層(例如阻障層) 14 金屬層 20 凹部 -51- 200837822 21 第1絕緣層(例如相對介電常數爲3.5以下 的絕緣層) 2 2 第2絕緣層 3 1 第3絕緣層(例如矽氧化物) 32 第4絕緣層(例如矽氮化物) 112 絕緣層The first insulating layer 2 1 is, for example, HSQ -30-200837822 旲 (hydrogen silicate type; Hydrogen Silsesquioxane film) using triethoxy decane as a raw material, tetraethoxy decane and a small amount of methyltrimethoxy A MSQ film (methyl sulphate; Methyl Silsesquioxane film) containing quinone as a raw material, and other sand compound as a raw material film. Further, the first insulating layer 2 1 may be formed by mixing an appropriate organic polymer particle or the like with a raw material, and burning the polymer in a heating step to form a cavity to obtain a film having a lower dielectric constant. Alternatively, the first insulating layer 21 may be an organic polymer such as a polycondensation aryl polymer, a poly(arylene ether) polymer, a polyamidene polymer, or a benzocyclobutene polymer. The first insulating layer 2 1 is preferably an insulating layer having a relative dielectric constant of 3.5 or less, and more preferably an insulating layer of 3.0 or less. In other words, in order to lower the relative dielectric constant of the first insulating layer 21, a layer containing a hydrophobic group functional group such as an alkyl group (methyl group or the like) as a main chain may be used. First, in the first honing step, the metal layer 14 is chemically mechanically honed to the exposed stop layer 13 except for the portion embedded in the concave portion 20 (see Fig. 2(b). Here, the honing material is used. The above-described chemical mechanical honing water-based dispersion or the first honing water-based dispersion described later may be used. Next, in the second honing step, the chemical mechanical raft according to one embodiment of the present invention described above is used. Grinding water dispersion (second honing water dispersion), chemically honing the remaining metal layer 14 , the stop layer 13 , and the second insulating layer 2 2 until the first insulating layer 21 is exposed (refer to Fig. 2(c)) By this, it is possible to remove a portion other than the bottom portion and the inner wall surface of the concave portion 20 in the intermediate layer 13. Thus, the wiring structure shown in Fig. 2(c) can be obtained. 2. According to this specific example, the effect is the same as that of the first specific example described above - 31 - 200837822. In addition, according to this specific example, the second insulating layer 22 is selectively removed by chemical mechanical honing. Therefore, it is possible to reduce the chemical mechanical honing to the first insulating layer 2 1 For example, when the first insulating layer 2 1 contains a layer having a hydrophobic functional group as a main chain, and the second insulating layer 22 has a surface composed of relatively rich hydrophilic sand oxide, The second honing aqueous dispersion honing the first insulating layer 2 1 because the (E) surfactant contained in the second honing aqueous dispersion is a surfactant represented by the above formula (1). Therefore, the hydrophobic portion of the (E) surfactant has a high affinity with the hydrophobic surface of the first insulating layer 21. Therefore, (E) the surfactant is adsorbed on the surface of the first insulating layer 21 to protect the surface. Thereby, it is possible to suppress (A) direct honing of the honing abrasive particles and suppress an increase in the honing speed. 2.3. Third Specific Example FIGS. 3(a) to 3(c) schematically show the present invention A cross-sectional view of another specific example (third specific example) of the chemical mechanical honing method according to one embodiment. Fig. 3(a) shows a honing object of the chemical mechanical honing water-based dispersion of the third specific example. 3a. In Fig. 3(a), a third insulating layer 3 1 is provided in addition to the lower portion of the insulating layer 12. Other than the fourth insulating layer 3 2, the same configuration as the configuration shown in Fig. 1(a), and the same constituent elements as those shown in Fig. 1(a) are denoted by the same reference numerals. The insulating layer 31 is made of, for example, tantalum oxide or the like, and the fourth insulating layer 32 is made of, for example, tantalum nitride. The chemical mechanical honing method of the specific example is the chemical-32- of the first specific example. 200837822 The mechanical honing method is the same. The honing device and the honing condition are the chemical mechanical honing method according to the first embodiment of the present invention. 1 The honing step and the second honing step can be performed using a commercially available chemical mechanical honing device (for example, LGP510, LGP 5 5 2 (above, LAPMASTER-SFT), EPO-112, EPO -222 (above, manufactured by Ebara Seisakusho Co., Ltd.), Mirra (manufactured by APPLIED MATERIALS Co., Ltd.), AVANTI-472 (manufactured by I-PEC Co., Ltd.), etc., and carried out under known honing conditions. Preferably, the honing condition should be appropriately set according to the chemical mechanical honing device used. For example, when the chemical mechanical honing device is used with EP 0-1 12, both the first honing step and the second honing step can be set. For example, the following conditions. Turntable speed: 30~130rpm is better, 40~130rpm is better, rotor speed: 30~130rpm is better, 40~130rpm is better turntable speed/rotor speed ratio: 0.5~2 is better Preferably, the honing pressure is 0.7 to 1.5, preferably 0.5 to 2.5 psi, and 1.0 to 2.0 psi is the preferred chemical mechanical honing water dispersion supply speed: preferably 50 to 300 cc / min. It is preferably 100 to 200 ml/min. 2.5. First honing water-based dispersion, in the first honing water-based dispersion which can be used in the first honing step, in the first to third specific examples, chemically honing the metal layer 14 and under the same conditions In the case of stopping each layer of the layer 13, the honing speed ratio (Rm/Rs) of the honing speed (R s ) of the -33-200837822 having the metal layer 14 and the honing speed (R s ) of the intermediate layer 13 can be used. A chemical mechanical honing water dispersion having a honing characteristic of 50 or more. Here, when the honing speed ratio (RM/RS) is less than 50, after the ith honing step is finished, excess metal remains in the portion where the metal layer 14 should be removed, so that it takes a second honing step. More time, and there is a need for a large amount of processing fluid. The honing speed ratio (Rm/rs) of the first honing water-based dispersion is preferably 60 f or more, more preferably 70 or more. When the honing speed of the first honing water-based dispersion is in the above range, the composition thereof is not particularly limited. For example, the organic medium contains (A) honing particles and (C) organic substances other than the above (B). The acid, the (D) oxidizing agent, the (F) dispersion medium, and the ammonia component selected from at least one of the group consisting of ammonia and ammonium ions are preferred. The (F) dispersion medium used in the first honing water-based dispersion is, for example, the chemical mechanical honing water-based dispersion (second honing water-based dispersion) of the present embodiment described above, and is exemplified as (F) In the case of dispersing a medium, it is preferred to use only water as a dispersion medium. The (A) honing particles used in the first honing aqueous dispersion may be inorganic particles. Examples of the inorganic particles include particles of cerium oxide, aluminum oxide, titanium oxide, chromium oxide, and xenon. The cerium oxide and the cerium oxide particles are preferably used, and cerium oxide is more preferable. Examples of the cerium oxide include cerium oxide synthesized by a vapor phase method of cerium oxide or a sol-gel method, and colloidal cerium oxide. The gas phase ruthenium dioxide can be obtained by reacting ruthenium chloride or the like with oxygen-34-200837822 and water in the gas phase. The silica sand synthesized by the sol-gel method can be obtained by using alkoxy ruthenium compound as a raw material and hydrolyzing and/or condensing. The colloidal cerium oxide can be obtained, for example, by an inorganic colloid method using a pre-refined raw material or the like. (C) The organic acid other than the above-mentioned (B) used in the first honing water-based dispersion, for example, an organic acid which constitutes the component (C) in the second honing water-based dispersion, among these, It is possible to obtain a larger honing speed ratio (RM/Rs) or better than using citric acid and malic acid. (1) The first honing water-based dispersion can further contain (G) an anticorrosive agent, glycine, and alanine. The (G) anticorrosive agent used in the first honing aqueous dispersion can be used in the second Examples of the (G) anticorrosive agent exemplified in the honing water-based dispersion include carboxybenzotriazole. When the first honing aqueous dispersion contains (G) an anticorrosive agent, the first honing is performed. The total amount of the aqueous dispersion is preferably 5% by mass or less, preferably 0. 0.001 to 5% by mass, more preferably 〇〇5 to 1% by mass, and I is 0.0. The (D) oxidizing agent used in the first honing water-based dispersion may, for example, be used as the (D) oxidizing agent in the second honing water-based dispersion, and can be used. At least one type of oxidizing agent, etc., among which hydrogen peroxide or persulfate is preferred, and ammonium persulfate is particularly preferred. The ammonia component contained in the first honing aqueous dispersion can be The presence of ammonia can also be present in the form of ammonium ions, and it is also possible to dope the two. Ammonium ions can The free state exists, and it can also exist as an ammonium salt of an acid, and it can also be doped, and exists in the equilibrium state of -35 - 200837822. Such ammonia and ammonium ion can add ammonia water independently. The first honing water-based dispersion is formed, and it can also be produced from an ammonium salt of an inorganic acid such as ammonium persulfate added as a money salt or an oxidizing agent of the organic acid, or can be used as an anionic interface to be described later. The first honing aqueous dispersion is (A) honing abrasive, (C) an organic acid other than the above (B), (D) an oxidizing agent, and selected from the group consisting of ammonia and ammonium ions.群组 群组 ζ 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 氨 氨 氨 氨 氨 氨 氨 氨 氨 氨 氨 氨 氨 氨 氨 氨 氨3% by mass, preferably 〇1 to 3 mass%, preferably 0·0 1 to 2 · 5 mass%, and 〇· 〇1 to 2 mass. /. is better. Relative to the first Honing the total amount of water dispersion, (C) blending of organic acids other than (B) above It is usually from 0.01 to 10% by mass, preferably from 1 to 5% by mass. Relative to the total amount of the first honing water-based dispersion, (D) the oxidizing agent is adjusted (the amount is usually 〇·〇1) ~10% by mass, preferably 0.02 to 5% by mass. The amount of the ammonia component is usually 0.005 to 20 m, and 0.01 to 15 mol, based on the total amount of the 1 liter first honing aqueous dispersion. Preferably, it is better to use 〇·〇3~15 mol, and it is especially good for 0.05~10 mol. Brother 1 honing water dispersion can also contain additives such as surfactant and defoamer as necessary. Examples of the surfactant include a cationic surfactant, an anionic surfactant, an amphoteric surfactant, a nonionic surfactant, and a water-soluble polymer. In particular, it is preferred to use an anionic surfactant, and a nonionic-36-200837822 surfactant or a water-soluble polymer. The anionic surfactant may, for example, be a carboxylate, a sulfonate, a sulfate or a phosphate. Examples of the carboxylate include a fatty acid soap and an alkyl ether carboxylate. Examples of the sulfonate include an alkylbenzenesulfonate, an alkylnaphthalenesulfonate, and an α-olefinsulfonate. Examples of the salt include, for example, a higher alcohol sulfate ester salt, an alkyl ether sulfate, and a polyoxyethylene alkylphenyl ether sulfate. Examples of the phosphonium salt include an alkyl phosphate salt. Among these, a sulfonate is preferred, an alkylbenzenesulfonate is more preferred, and a dodecylbenzenesulfonate is particularly preferred. The nonionic surfactant may, for example, be a polyethylene glycol type surfactant, an acetylene glycol, an ethylene oxide adduct of an acetylene glycol, or a nonionic surfactant such as an alkyne alcohol. The water-soluble polymer may, for example, be an anionic polymer, a cationic polymer, an amphoteric polymer or a nonionic polymer. Examples of the anionic polymer include polyacrylic acid and salts thereof, polymethacrylic acid and salts thereof, and polyvinyl alcohol. Examples of the cationic polymer include polyethylenimine and polyvinylpyrrolidone. Examples of the polymer include polypropylene decylamine, and examples of the nonionic polymer include polyethylene oxide and polypropylene oxide. The amount of the surfactant to be added is preferably 20% by mass or less based on the total amount of the first honing aqueous dispersion, and is preferably from 0.oo to 20% by mass, and more preferably from 0.01 to 1% by mass. Good, with 0. 0 5~5 mass% is especially good. The ρ Η of the first honing water-based dispersion can be set to an acidic region, a neutral vicinity region (weakly acidic region to a weakly alkaline region), and any enthalpy of the alkaline region. The pH of the acidic region is preferably 2 to 4, and the ρ 中 in the vicinity of the neutral region is preferably 6 to 8 and the Ρ 碱性 in the alkaline region is preferably 8 to 12 2 . Among these, the pH of the alkaline region is preferably from -37 to 200837822, that is, 6 to 12 is preferred. In the present invention, the same apparatus can be used in the first honing step and the second honing step, and the honing water-based dispersion can be continuously switched in the state in which the object to be honed is attached, and the honing water-based dispersion can be continuously performed. 'The same honing device may be used, and after the first honing step is completed, the object to be honed is temporarily taken out, and the honing water-based dispersion is supplied, and then the removed retanning step is performed to perform the second honing step. . r; Further, the first honing step and the second honing step may be performed using respective honing devices. Further, when a honing device having a plurality of honing pads is used, different types of honing pads can be used in the first honing step and the second honing step, and the first honing step and the second honing step can be used. The procedure uses the same type of honing pad. In the chemical mechanical honing water-based dispersion of the present embodiment, for example, a lining pad containing a water-insoluble matrix material (containing a cross-linked polymer) and water-soluble particles dispersed in the water-insoluble matrix material is used to honing the bedding. When grinding, it is possible to obtain a better honing surface and honing speed, especially when honing the conductive barrier layer or the insulating layer, a very good honing speed can be obtained. In this case, it is possible to prevent fatigue and excessive abrasion, and to use a crosslinked rubber such as 1,2-polybutadiene which has been crosslinked as a water-insoluble matrix material and to use it in order to stably maintain the honing performance. A honing pad made of hydrazine-cyclodextrin as a water-soluble particle is preferred. Such a honing pad may be, for example, a J S R (stock) system or a product number "F P 8 0 0 0". 3. EXAMPLES Hereinafter, the present invention will be described by way of Examples, but the present invention is not limited to the Examples. In the present embodiment, the average primary particle diameter and the average secondary particle diameter of the -38- / 200837822 particles are measured by a laser diffraction method (measurement device, dynamic light scattering type particle distribution measuring device manufactured by Horiba, Ltd.) Product number "HORIBA LB 5 5 0"). 3.1. Preparation of aqueous dispersion containing inorganic particles 3 · 1 · 1 · Preparation of aqueous dispersion containing gas phase cerium oxide In 6 kg of ion-exchanged water, a planetary mixer (trade name TK HABISTISUPERMIX, HDM-3D-20 type, special machine industry (manufactured by the company), while rotating the main rotating shaft at 1 〇 rpm and rotating the auxiliary rotating shaft at 30 rpm (turning blades for mixing, 30 minutes) 6 kg of gas phase ruthenium dioxide (manufactured by Japan AEROSIL Co., Ltd., trade name "AEROSIL #90") was continuously added. Further, the sub-rotation shaft of the torsion blade was rotated at 3 O rpm to make a diameter of 80 mm. The secondary rotating shaft of the COREX type high-speed rotating blade is rotated at 200 rpm, and the main rotating shaft is rotated at 1 rpm for 1 hour. Subsequently, 〇·45 kg of 20% by mass of potassium hydroxide is added. The aqueous dispersion obtained by the aqueous solution was diluted with ion-exchanged water to obtain an aqueous dispersion of silica sand containing a Ci amount of 30% by mass. The aqueous dispersion was filtered using a depth cartridge filter having a pore size of 5 μm. Obtained gas phase cerium oxide Water dispersion of sub-H1 R3. Preparation of aqueous dispersion containing colloidal cerium oxide particles 3.1.2a·Preparation of aqueous dispersion containing colloidal cerium oxide particles C1 Colloidal cerium oxide particles C1 (made by Fuso Chemical Industry Co., Ltd., under the name "colloidal cerium oxide PL-3H") to prepare an aqueous dispersion S 1 containing 25% by mass of colloidal cerium oxide particles C 1 . The colloidal ceria particle C 1 containing the flat-39-200837822 has a primary primary particle diameter of 32 nm, an average secondary particle diameter of 83 nm, and an average degree of association of 2.6. 3.1.2b. Each contains a colloidal The aqueous dispersions S2 to S9, R1 and R2 of the cerium oxide particles C2 to C11 are prepared by the following methods to prepare the aqueous dispersions S2 to S9 containing the colloidal cerium oxide particles C2 to C11 shown in Table 1, R1 and R2 were each used in Examples 2 to 9 and Comparative Examples 1 and 2. A three-capacity tetraethoxysilane and a 1-volume ethanol were mixed to obtain a raw material solution, and pre-mixed ethanol was added to the reaction vessel. A reaction solvent of water and ammonia to fix the water concentration in the reaction solvent to 15% by weight, ammonia concentration Each of them is as shown in Table 1. Further, the concentration of ethanol is the residual enthalpy after removal of water and ammonia, and the temperature of the reaction solvent is kept at 20 ° C while cooling, and the reaction solvent per vol. The solution was added dropwise to the reaction tank at the dropping rate shown in the following table to obtain an alcohol dispersion of colloidal ceria C2 to C1 1. Next, 'the rotary alcohol was used, and the obtained alcohol dispersion was repeated several times. The temperature was maintained at 80 ° C, and the operation of removing the alcohol while adding ion-exchanged water was carried out. By this operation, aqueous dispersions S2 to S9, R1, and R2 containing 25% by mass of the colloidal cerium oxide particles C2 to C11 were prepared. -40^ 200837822 [Table l] Colloidal cerium oxide~Ammonia concentration (% by weight) Drop rate (g/min) C2 0.8 3 0 C3 0.8 50 C4 0.8 45 C5 0.8 55 C6 1.0 5 5 C7 1.0 20 C8 0.6 3 5 C9 0.6 3 5 C10 0.8 80 C 1 1 1 .3 50 3 . 2 . Modification of the first honing aqueous dispersion and its honing performance § 3.2.1. Modification of the first honing water dispersion In 6.7 kg of ion-exchanged water, 2 kg of gas phase cerium oxide particles (manufactured by E. AEROSIL Co., Ltd., trade name "AEROSIL #90", average primary particle diameter of 20 nm) were dispersed using an ultrasonic disperser. This was filtered through a filter having a pore size of 5 μm to obtain an aqueous dispersion containing 23 mass% of gas phase cerium oxide particles. The average secondary particle diameter of the gas phase silica sand particles contained in the aqueous dispersion was 2,200 nm. An aqueous dispersion containing gas phase cerium oxide particles in an amount equivalent to 1% by mass (in terms of cerium oxide) was placed in a polyethylene bottle. This was added in an order of 0.5% by mass of 2-quinolinecarboxylic acid. 0.05% by mass of 2,4,7,9-tetramethyl-5-decyne-4,7-diol-diallyl oxide (manufactured by AIR PRO DUCTS (trade name "SARFINOL 465") And converting hydrogen peroxide to 30% by mass of hydrogen peroxide water of 〇·1 mass%, and stirring for 15 minutes. Subsequently, the first honing aqueous dispersion was obtained by filtering to pH 9.5 with 1 equivalent of an aqueous potassium hydroxide solution, followed by filtration using a filter having a pore size of 5 μm -41 - 200837822. 3 · 2.2. Evaluation of the honing performance of the first honing water-based dispersion The ramming pad made of foamed polyurethane was installed in a chemical mechanical honing device (manufactured by APPLIED MATERIALS, "Mirra") NITta, HASS (manufacturing system, product number "ic 1"), while supplying the chemical mechanical honing water-based dispersion, the following honing speed measuring substrates are subjected to the following honing conditions. The chemical mechanical honing treatment was carried out for 1 minute, and the honing speed was calculated by the following method. I. 硏 速度 速度 • • 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 Copper-clad film wafer"): 8-inch thermal-coated oxide substrate made of a nitride film (corresponding to the stop layer (conductive barrier layer) of the present invention) having a thickness of 300 Å ("3 000A Nitrided Giant Film Wafer" manufactured by WAFERNET Co., Ltd.) - 8 inch substrate made of BD film (corresponding to the first insulating layer of the present invention) having a thickness of 1 000 A (atdf company) "1000 〇 覆 覆 b 」 」 」 」 」 」 」 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 0000A coated TEOS film wafer") II. Honing conditions • Turning revolutions: 13Q]: Pm • Platen revolutions: 13Gfpm -42- 200837822 • Rotor load: 1.5psi • Chemical mechanical honing water dispersion Feeding speed: 200 ml/min III. Calculation of honing speed For the copper film and the nitriding giant film, an electrically conductive film thickness measuring device (KLA-T) was used. The ENCOR (stock) system, the form "OMNIMAPRS75") measures the film thickness after honing, and calculates the honing speed from the film thickness and honing time reduced by chemical mechanical honing. For the PETEOS film, the film thickness after honing treatment was measured using a light interference film thickness measuring device (NANOMETRICS JAPAN, model "Nanospec 6100"), and the film thickness and honing reduced from chemical mechanical honing. Time to calculate the honing speed. IV. Honing speed • Metal layer (copper) honing speed (Rm): 5 5 00 A/min • Honing speed (RB) of conductive barrier layer (titanium nitride layer): 30 A/min • Insulation Honing speed (RIn) of (PETEOS film): 40 A/min 3.3. Example 1. 3.3.1 Preparation of the second honing water-based dispersion (the chemical mechanical honing water-based dispersion of the present invention) An aqueous dispersion containing colloidal cerium oxide particles C 1 prepared by converting the above-mentioned "3.1.2 a. Preparation of an aqueous dispersion containing colloidal cerium oxide particles" of cerium oxide equivalent to 4% by mass, and adding polyethylene In the bottle, (E) a nonionic surfactant (2,4,7,9-tetramethyl-5-decyne-4,7-diol-diallyl vinyl ether (11 +) was added in order. 111=1〇) (eight 111?11〇〇1; (: Ding 8 JAPAN (share) system, trade name "S ARFINOL 4 6 5")), (B) quetiapyridine carboxy-43 - 200837822 acid (2, 3 -pyridinedicarboxylic acid), (C) an organic acid (maleic acid) other than the above (b), and (D) an oxidizing agent (30% by mass of hydrogen peroxide equivalent to 3 mass% of hydrogen peroxide) Water) and stir for 15 minutes Then, 0.98 mass% (H) of a pH adjuster (potassium hydroxide) was added, and the aqueous dispersion was adjusted to pH 9.0. Then, ion exchange water was added in such a manner that the total amount of the total constituents was 100% by mass. Thereafter, the second honing aqueous dispersion S 1 was obtained by filtration through a filter having a pore size of 5 μm. The blending amount of each component in the second honing aqueous dispersion S 1 is shown in Table 2. rk 3 ·3·2·Evaluation of the honing performance of the second honing water-based dispersion. The chemical mechanical honing device (manufactured by APPLIED MATERIALS, type "Mirra") was installed to disperse water-soluble particles ($-cyclodextrin). A honing pad (JSR (stock system, product number "FP 8000") made of a water-insoluble matrix (1,2-polybutadiene) which has been crosslinked, and supplied to the above-mentioned chemical mechanical honing water system The dispersion was subjected to chemical mechanical honing for the following various honing conditions for one minute, and the honing speed was calculated by the following method. ^ I·Thining speed measuring substrate • a copper film having a thickness of 15,000 A (corresponding to the metal layer of the present invention) 8 inch thermal-coated oxide substrate • substrate; laminated film with a thickness of 200,000 molybdenum nitride film (corresponding to the stop layer (conductive barrier layer) of the present invention)矽Substrate • 8 Å substrate made of PETEOS film (corresponding to the second insulating layer of the present invention) having a thickness of 1 0000 A. • 44-200837822 Black Diamond process developed by APPLIED MATERIALS JAPAN AG (black) Diamond process), a first insulating layer (BD film) with a laminated film thickness of 4000 A (relative dielectric constant k = 2.8); 8 mm substrate; laminated film thickness of MSQ type developed by JSR AG 5000A The first insulating layer (LKD film) (relative dielectric constant k = 2.3) is made up of 8 inches of substrate II. Honing conditions • Number of revolutions: 1 3 0 rpm • Platen revolutions: 1 30 rpm • Turn Head load: 1.5 psi • Supply rate of chemical mechanical honing water dispersion: 200 ml/min III. Calculation of honing speed For copper film and molybdenum nitride film, an electrically conductive film thickness measuring device (KLA- TENCOR (share) system, the form "Ο Μ N IM APRS 7 5") after the honing treatment The film thickness, polishing rate was calculated from the chemical WH WH mechanical grinding to reduce the film thickness and the grinding time WH. For the PETEOS film, the BD film, and the LKD film, the film thickness after the honing treatment was measured using a light interference film thickness measuring device (NANOMETRICS JAPAN, model "Nanospec 6 1 00"), and chemical mechanical honing was performed. The honing speed was calculated from the reduced film thickness and honing time. IV. Honing speed • Metal layer (copper) honing speed (Rm): 2 5 0A/min • Honing speed (RB) of conductive barrier layer (nitride layer): 8 00A/min • 2nd Honing speed (RIn_2) of insulating layer (PETEOS film): 3 8 0A/min -45- 200837822 • Honing speed (Rmn) of the first insulating layer (BD film): 170 A/min • 1st insulating layer ( Honing speed of LKD film (Rm-O: 190 A/min V. Method for evaluating the number of scratches of the first insulating layer) The outer peripheral portion of the first insulating layer after honing was observed by a visual observation and an optical microscope. Using the unpatterned wafer defect inspection device (KLA-TENCOR Co., Ltd., format "KLA23 5 1"), the number of defects averaged by the honing surface was measured to calculate the number of scratches. The result was referred to as "the number of scratches of the first insulating layer". Further, as shown in Table 2. Further, the wafer defect inspection device calculates the object as a defect, and examples of the scratched object include, for example, adhered dust, spots generated by wafer fabrication, and the like. "Method for evaluating the number of scratches in the first insulating layer", the inspection parameters of the defect inspection device are as follows • Check field of view: Bright field of view • Check wavelength: visible light • Pixel size: 〇. 3 9 • Critical 値 (defect detection sensitivity): 5 0 VI· concave distortion honing (dishing) and evaluation of scratches. (i) In the manufacture of the substrate for honing in which the copper wiring is formed, a 5000A insulating layer (PETEOS film (thickness 5 〇〇 A)) having a pattern of a plurality of grooves having a depth of 1 μm is laminated on the surface of the substrate formed of ruthenium. a composite film of BD film (45 00A). Next, a conductive barrier layer (TaN film) having a thickness of 25 A was formed on the surface of the insulating layer, and then, in the groove covered by the TaN film, sputtering and sputtering were used. Plating method to deposit a metal layer (C u layer) having a thickness of 1.1 μm. -46- 200837822 (ii) Evaluation after the first honing step For the wafer manufactured by the above (i), use "3.2. 1) The first honing water-based dispersion prepared by the preparation of the first honing water-based dispersion was honed at a honing speed of 5,500 Å for 2.25 minutes. After the first honing step, a stylus type differential meter was used ( KLA-TENCOR (share) system, the form "HRP240") to evaluate the width of the honed surface is 1〇〇 In the case of the concave twist honing of the micro-wiring, it is 400. Here, the "concave twist honing" means the upper surface of the wafer (the plane formed by the insulating layer or the conductive barrier layer) and the wiring portion. The distance between the lowest part (the height difference). (iii) Evaluation after the second honing step The aqueous dispersions of Examples 1 to 9 and Comparative Examples 1 to 3 were used for the wafer produced in the above (ii), in accordance with The time calculated by the following formula is honed. Honing time (minutes) = {(thickness of barrier layer (A) + (Immediate barrier layer I calculated in "3.3.2. Evaluation of honing performance of second honing water dispersion" The honing speed of the chemical giant) + (the thickness of the first insulating layer (50 〇 A)) + (calculated in the above "3 · 3 · 2 · evaluation of the honing performance of the second honing water-based dispersion" The honing speed of the first insulating layer (PETEOS)) + (the thickness of the second insulating layer (200 persons)) + (In the above-mentioned "3.3.2. Evaluation of the honing performance of the second honing water-based dispersion" The honing speed of the second insulating layer (BD) is calculated.} The honed surface is evaluated by a stylus type differential meter (KLA - TENC 0 R (form) "HRP240"). A concave twist honing of the width of the 10 () micron wire in the face. The results are shown in Table 2. Here, "concave twist honing" means the distance (height difference) between the upper surface of the wafer (the plane formed by the insulating layer -47-200837822 or the conductive barrier layer) and the lowest portion of the wiring portion. In addition, in the field of the unpatterned field (field area larger than 120 micrometers by 120 micrometers), a light interference type film thickness measuring device (NANOMETRICS JAPAN, type "Nanospec 6100") is used. When the film thickness after the honing treatment was measured and the film thickness decreased from the initial film thickness of 50,000, the water dispersions of Examples 1 to 5 and Comparative Examples 1 and 2 were all 7 5 0 to 900A. Further, an optical microscope was used to observe 200 portions of the copper wiring portion in a dark field with a region of 120 μm x 20 μm, and the number of unit regions where scratches occurred was measured as "the number of scratches of the copper wiring". The results are shown in Table 2. VII. Elastic modulus of the first insulating layer The BERKOVICH type indenter was mounted on a Nanoindentator XP manufactured by MTS Co., Ltd., and the elastic modulus of the first insulating layer was measured by a continuous rigidity measurement method. The results are as follows. • Elastic modulus of the first insulating layer (BD film): 4.5 GP a • Elastic modulus of the first insulating layer (LKD film): 3.0 GPa 3.4. Examples 2 to 9 and Comparative Examples 1 to 3 In Example 1 The same procedure as in Example 1 was carried out except that the type and amount of each component of the chemical mechanical honing water-based dispersion, the p Η of the aqueous dispersion, and the honing pad used were as described in Table 2. mill. Further, the honing pad used in Examples 5 to 7 is a hard foaming polyurethane honing pad (ΝΙΤΤΑ·HASS (shares), trade name number "IC1000", Shi-48-200837822 Example The honing mats used in 8 and 9 (manufactured by NITTA, HASS, and the trade name number, except for chemical mechanical honing; the respective aqueous dispersions S2 to S9 and the system were evaluated in the same manner as in Example 1. The urethane pad "Politex" is used. The under-dispersion system uses the above-mentioned R1 to R3 instead of S1, and the results are shown in Table 2. -49- 200837822 i [CN« 镒CO gas phase Germanium dioxide (HI) 1 o (N • ΓΟ 2,3 pyridine dicarboxylic acid ο maleic acid hydrazine hydroperoxide 〇 SARFINOL 485 oi; secret Ο < I FP8000 1 in m m rs o ON o m oo o o IT) g tr> (N m 镒 ΛΛ (N colloidal cerium oxide (C11) U^) <N Os csi m 2,3 pyridine dicarboxylic acid sd maleic acid 〇 \ 〇 hydrogen peroxide water m ο SARFINOL 485 (N os ampoule FP8000 | 00 (N inch 卜gp (N 〇\ om 'O ΓΟ g rn iT) S mi 镒Jj S Colloidal cerium oxide (C10) yn m On VO uo (N 2,3 pyridine dicarboxylic acid ο ο succinic acid On 〇 hydrogen peroxide water m ο SARFINOL 485 (N o cut m os | FP8000 | <N inch 00 Bo Bo Co OO S r- o oo o 00 i〇 o g o (N 卜 wo <N os series m a colloidal cerium oxide (C9) ^r> 00 <N On (N 2,3 pyridine dicarboxylic acid s ο maleic acid ο hydrogen peroxide water m ο SARFINOL 485 (N mft an m _ On Politex (N δ m oo ms two oo tr> o On Cn G\ rn ^sO o § ΓΠ rn o — 〇 (N Example 8 i 00 CO colloidal cerium oxide (C8) ΓΛ P; oo (N-inch 2-quinolinecarboxylic acid s ο succinic acid ο hydrogen peroxide water m ο SARFINOL 485 CN d Secret _ oo 00 Politex 1 On S vo mmmg oo o CN Os fN g rn § oo rn two rn — — 〇 <N (N ub U 00 colloidal cerium oxide (C7) in 〇 〇 0 〇 s 2-quinoline carboxylic acid s ο maleic acid ΟΝ ο hydrogen peroxide 永 m ο SARFINOL 485 so secret 00 1 iciooo | fN m 〇 <N U^) U-) (N 3 (N inch inch s <N o <n (N oo <N m series s colloidal cerium oxide (C6) (X oo 卜 cn 2-quinoline carboxylic acid s ο glutaric acid yn ο hydrogen peroxide water <N SARFINOL 465 (N 跋 Jii _ ON I iciooo 1 Bu <N m ON <N inch o 宕 (N S A OS 〇 oo m <N rs CN (N 卜m grip K in oo colloidal cerium oxide (C5) (N mo rn (N 2,3 pyridine dicarboxylic acid oo fumaric acid ο hydrogen peroxide water O SARFINOL 485 |駄嘁ιέ Q\ | ICIOOO sm oo inch V"» s <NA \〇\ vq oo IT) On ? rn uo m inch m series W colloidal cerium oxide (C4) i/Ί cn IT) ON t> rs 2,3 pyridine dicarboxylic acid s ο succinic acid οο ο Hydrogen peroxide water mo SARFINOL 485 o 跋m inch On I FP8000 | oa O JO 〇s cs £ cs yr> K (N MD oo m vq rN — § mm series U Ώ colloidal cerium oxide (C3) (N - oo m 2,3 pyridine dicarboxylic acid ο citric acid U-) ο hydrogen peroxide water o SARFINOL 465 som CN Os I FP8000 | (N 'sO oo m ON m $ CN in SSS et o CO o (N (N IK colloid) Cerium oxide (C2) ON (N m <N m 2,3 pyridine dicarboxylic acid s ο malate 苹果 Ο hydrogen peroxide water o SARFINOL 485 om oo oo FP8000 〇m Os CN inch S (N inch · OO oo r4 (N o CN m (N - — Oo (N ί Wei Wei colloidal cerium oxide (C1) <N m ΓΟ oo 'O (N inch 2,3 pyridine dicarboxylic acid s ο maleic acid Ον Ο peroxidation 1 hydrogen water m o SARFINOL 485 CN o δ Jiff FP8000 s; <N call inch (N (N inch On inch On r- r4 - <N slave s Φ * name i piece gs 1 to g 11 4〇fil _ » g « type 1» m type S Μ m type winter h ft mm type ft mm type Sao.0 mm K frost mmmmsm teng m ω &amp m variable Q DQ § 1 • 0 2 : i : § .S ά s PQ ί s ; S r — H > csi ώ '2 'S mg 幽 , S x — ^ i _ Avoid : S ; < c 瘛 [Ο : 〇 (A) 硏 趦愁荽 趦愁荽 mu mu a (C 洧 acid (9) oxidant 4 ± ti barrier - I s fe HlB nn] (2n g (Η) ΡΗ adjust agent to do a $ ί 丨g • si $ < £ a | s ά 2 1 ί 2 ά ea S CN 1 征, 超mm; ^13⁄4 丨 07 .200837822 According to Table 2, it is known that the chemical mechanical honing water dispersion is used by using Examples 1 to 9. When the body is subjected to chemical mechanical honing of the insulating layer formed on the semiconductor substrate, the abrasion and concave distortion of the honed surface can be greatly suppressed, and the relative dielectric constant of the insulating layer is not greatly changed. Moreover, the above-mentioned insulating layer is not excessively honed, and the honed surface having the accuracy of the cylinder can be sufficiently flattened. In contrast, when the chemical mechanical honing aqueous dispersions of Comparative Examples 1 to 3 were used, large concave distortion honing occurred after honing. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 (a) to Fig. 1 (c) are schematic views showing a specific example of the chemical mechanical honing method of the present invention. Fig. 2 (a) to Fig. 2 (a schematic view showing another specific example of the chemical mechanical honing method of the present invention. Fig. 3 (a) to Fig. 3 (the chemical mechanical honing of the present invention) A schematic diagram of another specific example of the method. [Description of component symbols] 1, 2, 3 wiring structure la, 2a, 3 a honing object 11 substrate (for example, 矽) 12 insulating layer (for example, PETEOS film, or relative media Insulation layer having an electric constant of 3.5 or less) 13 Stop layer (for example, barrier layer) 14 Metal layer 20 Concave portion - 51 - 200837822 21 First insulating layer (for example, insulating layer having a relative dielectric constant of 3.5 or less) 2 2 Second insulating layer Layer 3 1 third insulating layer (for example, tantalum oxide) 32 fourth insulating layer (for example, tantalum nitride) 112 insulating layer

-52 --52 -

Claims (1)

200837822 十、申請專利範圍: 1.一種化學機械硏磨用水系分散體,含有(A)硏磨粒、(B) 喹啉羧酸及/或吡啶羧酸、(C)前述(B)以外的有機酸、(D) 氧化劑、(E)具有三鍵之非離子性界面活性劑、及(F)分 散介質,其中 該(A)硏磨粒之平均一次粒徑爲5〜55奈米且締合度爲 1 .5〜4.0之膠體二氧化矽。 2 .如申請專利範圍第1項之化學機械硏磨用水系分散體, Γ 其中該(D)氧化劑係過氧化氫。 3 .如申請專利範圍第1項之化學機械硏磨用水系分散體, 其中該(E)非離子性界面活性劑係以下述通式(1 )來表 示0 ch3 ch3 ch3 ch3 h3c—ch—ch2—ς—c 三 c—c—ch2—ch—ch3200837822 X. Patent application scope: 1. A chemical mechanical honing water dispersion containing (A) honing abrasive particles, (B) quinoline carboxylic acid and/or pyridine carboxylic acid, (C) other than the above (B) An organic acid, (D) an oxidizing agent, (E) a nonionic surfactant having a triple bond, and (F) a dispersion medium, wherein the (A) honing particles have an average primary particle diameter of 5 to 55 nm and are associated with each other. A colloidal cerium oxide having a degree of combination of 1.5 to 4.0. 2. The chemical mechanical honing water dispersion according to claim 1 of the patent scope, wherein the (D) oxidant is hydrogen peroxide. 3. The chemical mechanical honing water-based dispersion according to claim 1, wherein the (E) nonionic surfactant is represented by the following general formula (1): 0 ch3 ch3 ch3 ch3 h3c-ch-ch2 —ς—c three c—c—ch2—ch—ch3 〇-fcH2CH2〇)^-H 0加2〇120七11 (l) (式中,n及m係各自獨立之1以上的整數,且滿足n + m $ 50)。 4 .如申請專利範圍第1項之化學機械硏磨用水系分散體, 其中相對於該(E)非離子性界面活性劑的調配量,該(B) 喹啉羧酸及/或吡啶羧酸的調配量比例(B/E)係0.01〜5。 -53 - 200837822 5 ·如申請專利範圍第1至4項中任一項之化學機械硏磨用 水系分散體,其中以同一條件化學機械硏磨導電性阻障 層及絕緣層時,該導電性阻障層的硏磨速度(Rb)與絕緣 層的硏磨速度之硏磨速度比(RB/(Rin i)爲 1 · 2 〜4 · 0 〇 6 ·如申請專利範圍第1至4項中任一項之化學機械硏磨用 水系分散體’其中以同一條件化學機械硏磨銅層、導電 性阻障層、第1絕緣層、及介電常數比該第1絕緣層高 的第2絕緣層的各層時,該導電性阻障層的硏磨速度(rb) 與銅層的硏磨速度(Rm)之硏磨速度比(rb/Rm)爲1.5以 上,該第2絕緣層的硏磨速度(R ! n _ 2 )與該銅層的硏磨速 度(1^)之硏磨速度比(11111_2/111^)爲0.9〜2.5,且該第2絕 緣層的硏磨速度(RIn_2)與該第1絕緣層硏磨速度(RIn-0 之硏磨速度比(Rin_2/ RIn-1)爲0.5〜5。 7 ·如申請專利範圍第1至4項中任一項之化學機械硏磨用 水系分散體,其中使用包括含有交聯聚合物的非水溶性 基質材及分散在該非水溶性基質材而成的水溶性粒子 之硏磨墊,以同一條件化學機械硏磨銅層、導電性阻障 層、第1絕緣層、及介電常數比該第1絕緣層高的第2 絕緣層的各層時,該第1絕緣層的硏磨速度(Rln_l}、該 導電性阻障層的硏磨速度(RB)、該銅層的硏磨速度 (Rm)、及該第 2絕緣層的硏磨速度(Rm·2)係、滿$ RlnjSRBSRMSRln-l。 8 · —種化學機械硏磨方法,包含以下步驟: -54- ,200837822 第1硏磨步驟,其係化學機械硏磨透 在具有凹部的絕緣層上且埋設於該凹部 中止層露出爲止;及 第2硏磨步驟,其係使用如申請專利 中任一項之化學機械硏磨用水系分散體 磨該金屬層及該中止層至該絕緣層露出 9 .如申請專利範圍第8項之化學機械硏磨 該絕緣層係含有第1絕緣層、及介電 € 緣層高的第2絕緣層之積層體,且 該第 2硏磨步驟係化學機械硏磨該 層、及該第2絕緣層。 1 0 .如申請專利範圍第9項之化學機械硏磨 1絕緣層的相對介電常數係3 . 5以下。 1 1 .如申請專利範圍第8至1 0項中任一項 方法’其中該中止層係導電性阻障層。 1 2 · 一種用以調製化學機械硏磨用水系分散 ( 合液(I)及液(II),用以調製如申請專利 項中任一項之化學機械硏磨用水系分散 言亥 '液(I)係含有(A)平均一次粒徑爲5 度爲1.5〜4.0的膠體二氧化矽之硏磨粒 /或卩比啶羧酸、(C)該(B)以外的有機酸 非離子性界面活性劑、及(F)分散介質5 胃 '液(II)係含有(D)氧化劑。 1 3 · —種用以調製化學機械硏磨用水系分散 過中止層而設置 之金屬層,至該 範圍第1至7項 ,來化學機械硏 爲止。 方法,其中 常數比該第1絕 金屬層、該中止 方法,其中該第 之化學機械硏磨 體之套組,係混 範圍第1項至7 體之套組,其中 〜5 5奈米且締合 ' (B)喹啉羧酸及 、(E)具有三鍵之 二水系分散體, 體之套組,係混 -55 - .200837822 合液(I)及液(II),用以調製如申請專利範圍第1項至7 項中任一項之化學機械硏磨用水系分散體之套組,其中 該液(I)係含有(A)平均一次粒徑爲5〜55奈米且締合 度爲1.5〜4.0的膠體二氧化矽之硏磨粒、及(F)分散介質 之水系分散體, 該液(Π)係含有(B)喹啉羧酸及/或吡啶羧酸、(C)該(B) 以外的有機酸、(D)氧化劑、及(E)具有三鍵之非離子性 界面活性劑。 C: 1 4 . 一種用以調製化學機械硏磨用水系分散體之套組,係混 合液(I)、液(II)及液(ΙΠ),用以調製如申請專利範圍用 第1至7項中任一項之化學機械硏磨用水系分散體之套 組,其中 該液(I)係含有(A)平均一次粒徑爲5〜55奈米且締合 度爲1.5〜4_0的膠體二氧化矽之硏磨粒、及(F)分散介質 之水系分散體, ^ 該液(II)係含有(B)喹啉羧酸及/或吡啶羧酸、及(E)具 ; 有三鍵之非離子性界面活性劑,而 該液(ΠΙ)係含有(D)氧化劑。 1 5 .如申請專利範圍第1 3或丨4項之用以調製化學機械硏磨 用水性分散體之套組,其中 該液(I)更含有選自(B)喹啉羧酸及/或毗啶羧酸、(C) 該(B)以外的有機酸、(D)氧化劑、及(E)具有三鍵之非離 子性界面活性劑之1種類以上的成分。 -56 -〇-fcH2CH2〇)^-H 0 plus 2〇120七11 (l) (where n and m are each an integer of 1 or more, and satisfy n + m $ 50). 4. The chemical mechanical honing water-based dispersion according to claim 1, wherein the (B) quinolinecarboxylic acid and/or pyridinecarboxylic acid is relative to the (E) nonionic surfactant. The ratio of the blending amount (B/E) is 0.01 to 5. -53 - 200837822 5 - The chemical mechanical honing water-based dispersion according to any one of claims 1 to 4, wherein the conductive property is honed by the chemical mechanical honing of the conductive barrier layer and the insulating layer under the same conditions The ratio of the honing speed (Rb) of the barrier layer to the honing speed of the insulating layer (RB/(Rin i) is 1 · 2 〜 4 · 0 〇 6 · as in the scope of claims 1 to 4 Any one of the chemical mechanical honing water-based dispersions wherein the chemical layer honing the copper layer, the conductive barrier layer, the first insulating layer, and the second insulating layer having a higher dielectric constant than the first insulating layer In each layer of the layer, the honing speed (rb) of the conductive barrier layer and the honing speed ratio (rb/Rm) of the honing speed (Rm) of the copper layer are 1.5 or more, and the second insulating layer is honed The honing speed ratio (11111_2/111^) of the speed (R ! n _ 2 ) to the honing speed (1^) of the copper layer is 0.9 to 2.5, and the honing speed (RIn_2) of the second insulating layer is The honing speed ratio (Rin_2/RIn-1) of the first insulating layer is 0.5 to 5. 7 - The chemical machine according to any one of claims 1 to 4 A water-based dispersion in which a copper layer including a water-insoluble matrix material containing a cross-linked polymer and water-soluble particles dispersed in the water-insoluble matrix material is used to chemically honing a copper layer and conduct electricity under the same conditions. When the barrier layer, the first insulating layer, and each layer of the second insulating layer having a higher dielectric constant than the first insulating layer, the honing speed (Rln_l} of the first insulating layer, and the conductive barrier layer The honing speed (RB), the honing speed (Rm) of the copper layer, and the honing speed (Rm·2) of the second insulating layer are over $ RlnjSRBSRMSRln-l. 8 · A chemical mechanical honing method The method includes the following steps: -54-, 200837822 a first honing step, wherein the chemical mechanical honing is performed on the insulating layer having the concave portion and embedded in the recessed portion of the concave portion; and the second honing step is performed The chemical mechanical honing water dispersion according to any one of the patent applications, the metal layer and the suspension layer are exposed to the insulating layer. 9. The chemical mechanical honing of the eighth aspect of the patent application includes the first layer. Insulating layer, and second insulating layer with high dielectric layer The layered body, and the second honing step is chemical mechanical honing of the layer and the second insulating layer. 10. The relative dielectric constant of the chemical mechanical honing 1 insulating layer according to claim 9 5.3 or less. 1 1. The method of any one of claims 8 to 10 wherein the suspension layer is a conductive barrier layer. 1 2 · A method for modulating chemical mechanical honing water dispersion ( Liquid (I) and liquid (II) for modulating the chemical mechanical honing water according to any one of the patent applications. Dispersing Yanhai's liquid (I) contains (A) an average primary particle size of 5 degrees 1.5 to 4.0 colloidal cerium oxide cerium abrasive grains or ceramide carboxylic acid, (C) organic acid nonionic surfactant other than (B), and (F) dispersion medium 5 stomach 'liquid (II ) contains (D) an oxidizing agent. 1 3 · A metal layer used to modulate the chemical mechanical honing water to disperse the discontinuous layer, up to the first to seventh ranges of this range, to chemical mechanical 硏. The method, wherein the constant is greater than the first semi-metal layer, the suspension method, wherein the first chemical mechanical honing body set is a set of the first to seventh body, wherein ~5 5 nm and a mixture of (B) quinoline carboxylic acid and (E) a two-component dispersion having a triple bond, a mixture of -55 - .200837822 combined liquid (I) and liquid (II), used to prepare The chemical mechanical honing water dispersion according to any one of claims 1 to 7, wherein the liquid (I) contains (A) an average primary particle diameter of 5 to 55 nm and an association degree An aqueous dispersion of colloidal cerium oxide of 1.5 to 4.0 and (F) an aqueous dispersion of a dispersion medium containing (B) quinolinecarboxylic acid and/or pyridinecarboxylic acid, (C) An organic acid other than (B), (D) an oxidizing agent, and (E) a nonionic surfactant having a triple bond. C: 1 4 . A kit for preparing a chemical mechanical honing water dispersion, which is a mixture (I), a liquid (II) and a liquid (ΙΠ) for modulating the first to seventh ranges as claimed in the patent application. The chemical mechanical honing water-based dispersion of any one of the items, wherein the liquid (I) contains (A) colloidal dioxide having an average primary particle diameter of 5 to 55 nm and an association degree of 1.5 to 4_0. An aqueous dispersion of cerium lanthanum and (F) dispersion medium, ^ This liquid (II) contains (B) quinolinecarboxylic acid and/or pyridinecarboxylic acid, and (E); a surfactant, and the liquid (ΠΙ) contains (D) an oxidizing agent. 1 5 . The kit for modulating the aqueous dispersion of chemical mechanical honing according to claim 13 or 4, wherein the liquid (I) further comprises (B) quinolinecarboxylic acid and/or a pyridinium carboxylic acid, (C) an organic acid other than the (B), (D) an oxidizing agent, and (E) a component having one or more types of a triple bond nonionic surfactant. -56 -
TW96142941A 2006-11-15 2007-11-14 Water-based dispersion for chemical mechanical grinding, chemical mechanical grinding method and kit used for preparing water-based dispersion for chemical mechanical grinding TW200837822A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006309157A JP2008124377A (en) 2006-11-15 2006-11-15 Aqueous dispersant for chemical-mechanical polishing, chemical-mechanical polishing method, and kit for preparing aqueous dispersant for chemical-mechanical polishing

Publications (1)

Publication Number Publication Date
TW200837822A true TW200837822A (en) 2008-09-16

Family

ID=39508784

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96142941A TW200837822A (en) 2006-11-15 2007-11-14 Water-based dispersion for chemical mechanical grinding, chemical mechanical grinding method and kit used for preparing water-based dispersion for chemical mechanical grinding

Country Status (2)

Country Link
JP (1) JP2008124377A (en)
TW (1) TW200837822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883031B2 (en) 2009-08-19 2014-11-11 Hitachi Chemical Company, Ltd. CMP polishing liquid and polishing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804986B2 (en) * 2006-03-30 2011-11-02 富士フイルム株式会社 Cleaning device for semiconductor device substrate and cleaning method using the same
JP5459466B2 (en) * 2008-06-05 2014-04-02 Jsr株式会社 Chemical mechanical polishing aqueous dispersion for use in circuit board production, circuit board production method, circuit board, and multilayer circuit board
JP5459467B2 (en) * 2008-06-13 2014-04-02 Jsr株式会社 Chemical mechanical polishing aqueous dispersion for use in circuit board production, circuit board production method, circuit board, and multilayer circuit board
JP5132820B2 (en) * 2010-02-03 2013-01-30 ニッタ・ハース株式会社 Polishing composition
TWI568541B (en) * 2010-12-22 2017-02-01 Jsr Corp Chemical mechanical grinding method
JP2012146938A (en) * 2010-12-22 2012-08-02 Jsr Corp Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method using it
JP5927806B2 (en) * 2011-08-16 2016-06-01 Jsr株式会社 Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method using the same
JP6589622B2 (en) * 2015-12-22 2019-10-16 日立化成株式会社 Polishing liquid, polishing method, semiconductor substrate and electronic device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3971075B2 (en) * 2000-01-18 2007-09-05 株式会社Tmp Finishing lapping oil composition
JP3849091B2 (en) * 2001-02-28 2006-11-22 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing
JP2003077920A (en) * 2001-09-04 2003-03-14 Nec Corp Method for forming metal wiring
JP3841164B2 (en) * 2002-02-28 2006-11-01 日信化学工業株式会社 Water-soluble surfactant composition
JP2005045229A (en) * 2003-07-04 2005-02-17 Jsr Corp Water dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP2005340755A (en) * 2003-11-14 2005-12-08 Showa Denko Kk Abrasive compound and polishing method
JP2005302973A (en) * 2004-04-12 2005-10-27 Jsr Corp Aqueous dispersant for chemical mechanical polishing, and method for the chemical mechanical polishing
JP4776269B2 (en) * 2005-04-28 2011-09-21 株式会社東芝 Metal film CMP slurry and method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883031B2 (en) 2009-08-19 2014-11-11 Hitachi Chemical Company, Ltd. CMP polishing liquid and polishing method
TWI481700B (en) * 2009-08-19 2015-04-21 Hitachi Chemical Co Ltd Cmp polishing slurry and polishing method
US9318346B2 (en) 2009-08-19 2016-04-19 Hitachi Chemical Company, Ltd. CMP polishing liquid and polishing method

Also Published As

Publication number Publication date
JP2008124377A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
KR101406642B1 (en) Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersion for chemical mechanical polishing
KR100704690B1 (en) Polishing fluid and polishing method
TW200837822A (en) Water-based dispersion for chemical mechanical grinding, chemical mechanical grinding method and kit used for preparing water-based dispersion for chemical mechanical grinding
KR101330960B1 (en) Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, kit for chemical mechanical polishing, and kit for preparing aqueous dispersion for chemical mechanical polishing
EP1724317B1 (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
US8262435B2 (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and chemical mechanical polishing aqueous dispersion preparation kit
WO2007029465A1 (en) Polishing agent, method for polishing surface to be polished, and method for manufacturing semiconductor integrated circuit device
JPWO2007060869A1 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
EP1909312A1 (en) Abrasive and process for producing semiconductor integrated-circuit unit
TW201412907A (en) Polishing solution, preservation solution and polishing method for cmp
JP5333744B2 (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and chemical mechanical polishing aqueous dispersion manufacturing method
KR102322420B1 (en) Low defect chemical mechanical polishing composition
TWI500749B (en) Method of chemical mechanical polishing a substrate with polishing composition adapted to enhance silicon oxide removal
US20080171441A1 (en) Polishing compound and method for producing semiconductor integrated circuit device
JP5110244B2 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
JP2005158867A (en) Set for adjusting water-based dispersing element for chemical-mechanical polishing
JP2006352096A (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
JP2005064285A (en) Polishing solution and polishing method for cmp
JP4850167B2 (en) Polishing liquid and polishing method
JP2009224771A (en) Aqueous dispersion for chemical mechanical polishing and method of manufacturing the same, and chemical mechanical polishing method
JP2013065858A (en) Aqueous dispersing element for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersing element for chemical mechanical polishing
JP4984032B2 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
JP5333743B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP2009302551A (en) Set for manufacturing water-based dispersing element for chemical-mechanical polishing
JP2010028078A (en) Aqueous dispersion for chemical mechanical polishing, manufacturing method of the same, and chemical mechanical polishing method