TW200837212A - Technique for atomic layer deposition - Google Patents

Technique for atomic layer deposition Download PDF

Info

Publication number
TW200837212A
TW200837212A TW96107981A TW96107981A TW200837212A TW 200837212 A TW200837212 A TW 200837212A TW 96107981 A TW96107981 A TW 96107981A TW 96107981 A TW96107981 A TW 96107981A TW 200837212 A TW200837212 A TW 200837212A
Authority
TW
Taiwan
Prior art keywords
substrate
atomic layer
species
layer deposition
precursor
Prior art date
Application number
TW96107981A
Other languages
Chinese (zh)
Inventor
Vikram Singh
Harold M Persing
Edmund J Winder
Jeffrey A Hopwood
Anthony Renau
Original Assignee
Varian Semiconductor Equipment
Univ Northeastern
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Semiconductor Equipment, Univ Northeastern filed Critical Varian Semiconductor Equipment
Priority to TW96107981A priority Critical patent/TW200837212A/en
Publication of TW200837212A publication Critical patent/TW200837212A/en

Links

Abstract

A technique for atomic layer deposition is disclosed. In one particular exemplary embodiment, the technique may be realized by an apparatus for atomic layer deposition. The apparatus may comprise a process chamber having a substrate platform to hold at least one substrate. The apparatus may also comprise a supply of a precursor substance, wherein the precursor substance comprises atoms of at least one first species and atoms of at least one second species, and wherein the supply provides the precursor substance to saturate a surface of the at least one substrate. The apparatus may further comprise a plasma source of metastable atoms of at least one third species, wherein the metabstable atoms are capable of desorbing the atoms of the at least one second species from the saturated surface of the at least one substrate to form one or more atomic layers of the at least one first species.

Description

200837212 23812pif 九、發明說明: 【發明所屬之技術領域】 本揭露内容大體是關於半導體製造,且更特定言之關 於原子層沈積技術。 【先前技術】 現代半導體製造已建立起對高品質薄膜結構之精確原 子級沈積的需要。回應於此需要,近年來已開發出共同稱 為原子層沈積(atomic layer deposition) ” (ALD)戋 原子層磊晶(atomic layer epitaxy) ” (ALE)之大量膜 生長技術。A L D技術能夠沈積具有原子層精度之均一且保 形膜。典型ALD過程使用連續自限表面反應來達成單層 厚度狀態中之膜生長的控制。歸因於其用於膜一致性以及 均一性之優良電位,ALD已成為用於高級應用之選擇技 術,老如咼介電常數(高k)閘氧化物、儲存電容器介電 體以及微電子設備中之銅擴散障壁。實際上,ALD技術可 能對於自奈米(nm)或次奈米標度上之薄膜結構之精確控 I, 制獲益的任何南級應用是有用的。 然而,迄今為止,大多數現有沈積技術遭遇固有之缺 陷且尚未可靠地應用於半導體工業中之大量生產。舉例而 s ’ 稱為分子束蟲晶(molecular beam epitaxy ),,( ΜΒΕ ) 之沈積技術使用擋板控制之個別瀉流室來將不同種類之原 子導向至一基板表面,此等原子在此表面上相互反應以形 成一所要單層。在一固體源MBE過程中,需將瀉流室 (effusion cell)加熱至相當高的溫度以用於成份原子之熱離 7 200837212 23812pif =之;須保持極高真空以確保在成份原子到達基 板表面之刖在其之間不發生碰撞。 j迓土 真空要求’MBE薄膜生長速率 溫以及向 低的。 跃手對於大罝生產之目的是相當 為溫度調節軒衫晶(ALE)。為 的相對低溫下在—基板表面上沈物完(& Ο 早層。Mi,。將基板溫度勻速提昇至大致5抓以脫附氣 原子㊄下②單層。雖然此技術未達成受控的逐層膜生長, 但對於重複的溫度♦值的要求使得難以保持較大晶圓上之 ,-性m層與層之間的可重複性。此外,將基板加熱至 同溫可能抽告或毀壞先前處理步驟中形成於基板上之精細 結構。 、 一種現有ALD技術使用離子轟擊來脫附過多的氫原 子。根據此技術,可使用二矽烷(Si2H6)氣體在基板表面 上形成二矽烷單層。隨後以氦離子或氬離子轟擊基板表面 以自二矽烷單層脫附過多氳原子用以形成矽單層。或許歸 因於過度的高能離子轟擊(〜50 eV離子能量),膜生長速 率相當低(小於每週期〇·15單層),且高能離子流實質上 疋視線過程(line_〇f_sight process),其因此可包括用於高 度保形沈積之原子層沈積電位。此外,高能離子亦可導致 可能需要沈積後退火之結晶缺陷。 此外’用於經ALD沈積之薄膜之保形捧雜(conformal d叩ing)(尤其在3-D結構中(例如FinFET))對於製程工 200837212 ^812pif 成柊噌铷t形覆蓋結構而言是不當的,不僅因A:摻雜物 性’一-¾ 及缺===-種克服上述不軸- 【發明内容】 Ο200837212 23812pif IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present disclosure relates generally to semiconductor fabrication and, more particularly, to atomic layer deposition techniques. [Prior Art] Modern semiconductor manufacturing has established a need for accurate atomic deposition of high quality thin film structures. In response to this demand, in recent years, a large number of film growth techniques collectively referred to as atomic layer deposition (ALD) ato atomic layer epitaxy (ALE) have been developed. The A L D technology is capable of depositing a uniform and conformal film with atomic layer accuracy. A typical ALD process uses a continuous self-limiting surface reaction to achieve control of film growth in a single layer thickness state. Due to its excellent potential for film uniformity and uniformity, ALD has become the technology of choice for advanced applications such as 咼 dielectric constant (high-k) gate oxides, storage capacitor dielectrics, and microelectronic devices. The copper in the diffusion barrier. In fact, ALD technology may be useful for any south-level application that benefits from the precise control of the film structure on the nanometer (nm) or sub-nano scale. However, to date, most existing deposition techniques suffer from inherent drawbacks and have not been reliably applied to mass production in the semiconductor industry. For example, s 'molecular beam epitaxy, ( ΜΒΕ ) deposition technique uses a separate effusion cell controlled by a baffle to direct different types of atoms to a substrate surface on which the atoms are The upper ones react to form a desired single layer. In a solid source MBE process, the effusion cell is heated to a relatively high temperature for the thermal separation of the constituent atoms. 7200837212 23812pif =; a very high vacuum must be maintained to ensure that the constituent atoms reach the substrate surface. There is no collision between them. j bauxite vacuum requirements 'MBE film growth rate temperature and low. The purpose of the leap for the production of Otsuka is quite the temperature adjustment of the enamel crystal (ALE). For the relatively low temperature, the substrate is deposited on the surface of the substrate (& 早 early layer. Mi, the substrate temperature is raised uniformly to roughly 5 to remove the gas atom five sub-layers. Although this technology is not controlled The layer-by-layer film growth, but the requirement for repeated temperature ♦ values makes it difficult to maintain repeatability between the layer and the layer on the larger wafer. In addition, heating the substrate to the same temperature may sue or The fine structure formed on the substrate in the previous processing step is destroyed. A prior art ALD technique uses ion bombardment to desorb excessive hydrogen atoms. According to this technique, a dioxane monolayer can be formed on the surface of the substrate using dioxane (Si2H6) gas. The substrate surface is then bombarded with helium or argon ions to desorb excess helium atoms from the dioxane monolayer to form a monolayer. Perhaps due to excessive high energy ion bombardment (~50 eV ion energy), the membrane growth rate is comparable. Low (less than a single layer per cycle ,·15), and the high-energy ion current is essentially a line-of-sight process (line_〇f_sight process), which can therefore include atomic layer deposition potentials for highly conformal deposition In addition, high-energy ions can also cause crystalline defects that may require post-deposition annealing. In addition, 'conformal d叩ing for ALD-deposited films (especially in 3-D structures (eg, FinFET)) Processman 200837212 ^812pif is not suitable for the t-shaped cover structure, not only because of A: dopant properties '--3⁄4 and lack ===- species to overcome the above-mentioned non-axis - [Summary]

Cj 實施層沈積技術。在-個特定例示性 所述裝置可包二=:===技術。 匕基板平臺。所述裝置亦、可包括一用==二 括至少-種第-種類之原子以及至Ϊ 少-個美板且其中供應源提供前驅物質以使至 们基板之表面飽和。所述裝置可更包括至少 種類之介穩態原子之電襞源,其中介穩態原子能夠自^ -個基板之飽和表面脫随少—種第二種類之原子以形成 至少一種第一種類之一或多個原子層。 在另-特疋例不性實施例中,此技術可經實現為用於 原子層沈積之方法。所述方法可包括用具有至少一種第一 種類之原子以及至少-種第二種類之原子㈣驅物質來使 一基板表面飽和,藉此在基板表面上形成前驅物質之一單 層。所述方法亦可包括將基板表面暴露於第三種類之電漿 產生之介穩態原子,其中介穩態原子自基板表面脫附至少 一種第二種類之原子以形成至少一種第一種類之原子層。 9 200837212 23812ριί 原子層沈積方法可包括多個沈積週期以形成第一種類之多 個原子層,其中每一沈積週期重複上文所述之步驟以形成 第一種類之一個原子層。 在又一特定例示性實施例中’可藉由用於原子層沈積 之裝置來實現此技術。所述裝置可包括一處理腔室,其具 有一用以固持至少一個基板之基板平臺。所述裝置亦可包 括二矽烷(ShH6)供應源(其中供應源用以供應足量之二Cj implements layer deposition techniques. In a particular example, the device may include two =: === technology.匕Base platform. The apparatus may also include a source of == two at least one type and at least one of the plates and wherein the supply source provides a precursor to saturate the surface of the substrate. The device may further comprise an electrical enthalpy source of at least one type of metastable atom, wherein the metastable atom is capable of detaching from a saturated surface of the substrate - a second type of atom to form at least one first species One or more atomic layers. In a further exemplary embodiment, this technique can be implemented as a method for atomic layer deposition. The method can include saturating a substrate surface with at least one atom of the first species and at least a second species of atomic species, thereby forming a single layer of precursor material on the surface of the substrate. The method can also include exposing the surface of the substrate to a metastable atom produced by a third type of plasma, wherein the metastable atom desorbs at least one atom of the second species from the surface of the substrate to form at least one atom of the first species Floor. 9 200837212 23812ριί Atomic layer deposition method can include a plurality of deposition cycles to form a plurality of atomic layers of a first species, wherein each deposition cycle repeats the steps described above to form an atomic layer of the first species. In yet another particular exemplary embodiment, this technique can be implemented by means for atomic layer deposition. The apparatus can include a processing chamber having a substrate platform for holding at least one substrate. The device may also include a source of dioxane (ShH6) (wherein the supply source is used to supply a sufficient amount of

石夕烧以使至少一個基板之表面飽和)、氦供應源。所述裝置 可更包括一麵接至處理腔室之電漿腔室,電漿腔室用以自 由氦供應源供應之氦產生氦介穩態原子。介穩態原子可能 夠自至少一個基板之飽和表面脫附氫原子,藉此形成一或 多個石夕原子層。 '在另一特定例示性實施例中,此技術可經實現為保形 摻雜方法。所述方法可包括在—❹個沈積週射在-基 板表面上形成—相,其中’在—或多個沈積週期之每一 貝,期中’供應具有至少—種第—種類之原子以及至少 二種第二種類之原子的前驅物質以使基板表面飽和,且隨 =飽=基板表面脫附至少—種第二種類之原子以形成至 ^-種第-種類之—❹個原子層。所述方法亦可包括在 :積週期之—或多者中以摻雜物前驅體替代前驅物質 :應源之至少—部分,藉此摻雜至少—種類之一 或多個原子層。 A ^見將⑤考如附圖中所示之本揭露内容之例示性實施例 乂砰細描述本揭露内容。雖然下文參考例示性實施例描 10 200837212 23812pif 述本揭露内容,但應瞭解本揭露内容並不限於此。可理解 本文之教示之普通熟習此項技術者將認識到在本文所述之 本揭露内容之範疇内的額外建構、修改以及實施例,以及 其他使用領域,且就其而言本揭露内容可能具有顯著效用。 【實施方式】 為解決W述與現有原子層沈積技術相關之問題,本揭 露内容之實施例引入一種ALD以及原位摻雜⑼J如 doping)技術。可使用介穩態原子(metastaWe at〇m)以脫附 (desorb)過多原子。介穩態原子可產生於(例如)電漿腔室 中。為說明之目的,以下描述將集中於用於使用氦介穩態 原子來沈積經摻雜或未經摻雜之矽之方法以及裝置。應瞭 解,藉由相同或類似技術,亦可使用氦或其他介穩態原子 來生長其他種類之薄膜。 參看圖1,其展示說明根據本揭露内容之一實施例之 例示性原子層沈積週期100的方塊圖。例示性原子層沈積 週期100可包括兩個階段:飽和階段10以及脫附階段12。 在飽和階段10中,基板102可暴露於二矽烷(Si2H6) ^體。對於销生長而言,基板表面可包括(例如)石夕、 、、巴、、彖物上石夕(SOI)及/或二氧化石夕。二石夕烧氣體充當石夕前 驅體’且以足夠高之劑量供應以使基板表面飽和,使其上 ,成二魏單I 1()4。然而,在本減内容全文中,使用 字,,飽和並不排除基板表面僅被用以使得此表面“飽 矛之物貝邛分覆盍的情況。基板102以及處理環境可保 持在-仔細選定之溫度下以防止前驅氣财基板表面上冷 200837212 ^Jisizpir 凝或分解。在此實施例中,將基板102加熱至且維持在18〇 QC與400°C之間的溫度,然而在本揭露内容之範疇内,也 可將基板102加熱且維持在其他溫度範圍内。 在脫附階段12中,基板102可暴露於具有足夠能量之 )丨系€、悲原子用以自别驅早層脫附過多原子。根據此實施 例,氦介穩態原子可用以自形成於飽和階段10中之二石夕炫 單層104部分地或完全地脫附過多氫原子。可由(例如) 感應耦合電漿中之氦氣來建立氦介穩態原子。每一氦介穩 ^ 態原子可具有大致20 eV之内能,其可用以破壞石夕原子與 鼠原子之間的鍵結。根據一些實施例,惰性氣體(氣、氮 等)之介穩態以及其他激發態趨於發射亦可在基板表面間 接地驅動脫附反應之光子。在已移除過多氫原子之後,石夕 單層106可形成於基板表面上。根據一些實施例,並非可 移除所有過多氳原子。因此,在脫附階段12之末端,矽單 層106之表面可為懸空鍵與氫終止矽原子 (hydrogen-terminated silicon atom)之混合物。 〇 在飽和階段10與脫附階段12之間,可使用一或多種 情性氣體(例如乱或氬)淨化基板表面以去除過多反應氣 體以及副產物(例如氫)。經過飽和階段1Q以及脫附階段 12之完整週期(包括兩種階段之間的“淨化,,(purge)步 驟)可稱為一個沈積週期”。可重複沈積週期1〇〇以同 時形成一純矽薄膜(例如,結晶類型、多晶類型、非晶類 型等)、一個單層(或部分單層)。 根據本揭露内容之實施例,使用介穩態原子而非離子 12 200837212 23812pit 自經前驅物質飽和之基板表面脫附過多原子θ 在-電漿中產生介穩態原子用於脫附目的,右 止電漿中產生之帶電粒子(例如電子以及離子)至1=防 表面,以使得可將歸因於此等帶電粒子之各向里 2 減少或最小化。可採取許多措施來防止帶電粒子影塑t生 於基板表面上之ALD膜。舉例而言,可在電浆= 之間插入一或多個設備(例如擔板 f c (screen))。此等設備可經進—步經偏壓以濾出非所 電粒子。或者,可建立電磁場以偏轉帶電粒子。 : 貫施例,可調整基板表面之定向以將帶電粒子之二 最小化。舉例而言’可將基板平臺倒置或相反將其自= ,之視線中移開。或者,電漿源可經定位於距基板 处,以致於導致帶電粒子之相當大的部 撞而未能到達基板表面。 爾政射或石亚 之似1圖2 ’其展示說明根據本揭露内容之另—實施例 ^不性料層沈積職綱的方塊圖 施 =文圖1中所說明之ALD過程可不僅用以^ 或六、秩ί亦可用以將雜㈣人薄膜或用以形成多種類及/ 除未經摻雜J二:式來進订。舉例而言, ALD過程而生#H #雜矽膜亦可基於經略微修改之 個沈積_ 改之⑽過程,可用—或多 4 00來g換一或多個沈積週期1〇〇。 或鱼週期之飽和階段2G中,可替代砂前 〆、/、3知存在而提供摻雜物前驅氣體。在圖2中所二= 200837212 ζ^δϊζρη 以开π ι κ- 1S〇rb))至基板102之表面 部分地或完全地覆蓋層。二w層綱可 週期200之脫附階段22中,基板m 所述暴蕗於氦介穩態原子。 文 綱脫附過多氫原子,留烧單層 目,===積週期綱替換之沈積職⑽之數 可達成爾體之劑量, 技術依賴於摻雜物原子°由於此原位接雜 在諸如臟丁之=:开 非離子植入,故其可 ί. 物分佈。此外,不需要雜t面上達成均一的推雜 積後高溫擴散過程:物原子所要求之沈 火,其導致摻雜物種類要退火或僅需要低溫退 “盒形,,)之摻雜The stone is burned to saturate the surface of at least one of the substrates. The apparatus may further include a plasma chamber connected to the processing chamber on one side, the plasma chamber being configured to generate a metastable steady state atom from a helium supply source. The metastable atoms may be capable of desorbing hydrogen atoms from the saturated surface of at least one of the substrates, thereby forming one or more layers of the atoms. In another particular exemplary embodiment, this technique can be implemented as a conformal doping method. The method may include forming a phase on the surface of the substrate on a deposition surface, wherein 'in each of the plurality of deposition cycles, in the middle, supplying at least one of the atoms of the first type and at least two A precursor of a second type of atom is used to saturate the surface of the substrate, and at least one atom of the second species is desorbed with the surface of the substrate to form a layer of atoms of the first type. The method may also include replacing the precursor material with a dopant precursor in at least one or more of the product cycles: at least a portion of the source, thereby doping at least one or more atomic layers of the species. A ^ See the exemplary embodiment of the present disclosure as shown in the drawings, and the disclosure is described in detail. Although the disclosure of the present invention is described below with reference to the exemplary embodiments, it should be understood that the disclosure is not limited thereto. It will be appreciated that those skilled in the art will recognize additional construction, modifications, and embodiments, and other fields of use within the scope of the present disclosure as described herein, and as such, the disclosure may have Significant utility. [Embodiment] To solve the problems associated with existing atomic layer deposition techniques, embodiments of the present disclosure introduce an ALD and in-situ doping (9) J such as doping technique. Metastable atoms (metastaWe at 〇m) can be used to desorb too many atoms. Metastable atoms can be produced, for example, in a plasma chamber. For purposes of illustration, the following description will focus on methods and apparatus for depositing doped or undoped germanium using germanium metastable atoms. It should be understood that other types of films may be grown using ruthenium or other metastable atoms by the same or similar techniques. Referring to Figure 1, there is shown a block diagram illustrating an exemplary atomic layer deposition cycle 100 in accordance with an embodiment of the present disclosure. The exemplary atomic layer deposition cycle 100 can include two phases: a saturation phase 10 and a desorption phase 12. In the saturation phase 10, the substrate 102 can be exposed to a dioxane (Si2H6) body. For pin growth, the surface of the substrate may include, for example, Shixia, Ba, Ba, SOI, and/or sulphur dioxide. The two-stone gas is used as a pre-existing body' and is supplied at a sufficiently high dose to saturate the surface of the substrate to form a disulfide I 1 () 4 . However, in the text of the entire text, the use of words, saturation does not preclude the case where the surface of the substrate is only used to make the surface "filled with a spoiled object. The substrate 102 and the processing environment can be kept - carefully selected At the temperature to prevent the front surface of the precursor gas substrate from freezing or decomposing. In this embodiment, the substrate 102 is heated to and maintained at a temperature between 18 〇 QC and 400 ° C, however, the disclosure is In the scope of the substrate 102, the substrate 102 can also be heated and maintained in other temperature ranges. In the desorption phase 12, the substrate 102 can be exposed to a sufficient amount of energy, and the sorrowful atoms are used to desorb from the early layer. Too many atoms. According to this embodiment, the ruthenium metastable atoms can be used to partially or completely desorb excess hydrogen atoms from the two singular monolayers 104 formed in the saturation phase 10. This can be, for example, inductively coupled to a plasma. The helium gas is used to establish a metastable steady state atom. Each of the metastable atoms can have an internal energy of approximately 20 eV, which can be used to destroy the bond between the daylight atom and the mouse atom. According to some embodiments, inertia gas( The metastable state of nitrogen, etc., and other excited states tend to emit photons that can also indirectly drive the desorption reaction on the surface of the substrate. After the excess hydrogen atoms have been removed, the single layer 106 can be formed on the surface of the substrate. According to some embodiments, not all of the excess erbium atoms may be removed. Thus, at the end of the desorption stage 12, the surface of the ruthenium monolayer 106 may be a mixture of dangling bonds and hydrogen-terminated silicon atoms. Between the saturation stage 10 and the desorption stage 12, one or more inert gases (eg, chaotic or argon) may be used to purify the substrate surface to remove excess reactive gases and by-products (eg, hydrogen). After the saturation phase 1Q and the desorption phase The complete cycle of 12 (including the "purge step" between the two phases can be referred to as a deposition cycle". The deposition cycle can be repeated 1 〇〇 to simultaneously form a pure tantalum film (eg, crystalline type, multiple Crystal type, amorphous type, etc.), a single layer (or a partial monolayer). According to an embodiment of the present disclosure, a metastable atom is used instead of an ion 12 200837212 23812pit The surface of the substrate saturated by the precursor material desorbs too many atoms θ. The metastable atoms are generated in the plasma for desorption purposes, and the charged particles (such as electrons and ions) generated in the plasma are stopped to the surface of the surface. This makes it possible to reduce or minimize the inward direction 2 attributed to the charged particles. Many measures can be taken to prevent the charged particles from being patterned into the ALD film on the surface of the substrate. For example, in the plasma = Insert one or more devices (such as a plate fc (screen)). These devices can be biased to filter out non-electric particles. Alternatively, an electromagnetic field can be established to deflect the charged particles. The orientation of the substrate surface can be adjusted to minimize two of the charged particles. For example, the substrate platform can be inverted or reversed from the line of sight of =. Alternatively, the plasma source can be positioned at a distance from the substrate such that a substantial portion of the charged particles collide and fails to reach the surface of the substrate.尔政射 or 石亚之如1 Figure 2 'There is a description of another embodiment of the present disclosure. The ALD process described in Figure 1 can be used not only for the ALD process described in Figure 1 ^ or 6. Rank ί can also be used to order a heterogeneous (four) human film or to form a plurality of types and / or undoped J 2: formula. For example, the #H #stack film produced by the ALD process may also be based on a slightly modified deposition (10) process, which may be used - or more than 20,000 g for one or more deposition cycles. Or in the saturation phase 2G of the fish cycle, a dopant precursor gas may be provided instead of the sand front 〆, /, 3. In Fig. 2, two = 200837212 ζ^δϊζρη to π ι κ - 1S 〇 rb)) to the surface of the substrate 102 partially or completely cover the layer. In the desorption phase 22 of the cycle 200, the substrate m is violent to the 氦-stable steady-state atom. The genus desorbs too many hydrogen atoms, leaving a single layer of the film, === the number of depositions (10) of the product cycle can be achieved, the technology depends on the dopant atoms. Dirty Ding =: Open non-ion implant, so it can be distributed. In addition, there is no need for a uniform high-diffusion process after the homogenization of the impurity surface: the ignition required for the atom of the atom, which results in the doping of the dopant species or the doping of the low-temperature retreat "box shape,"

Uhermal budget) ”内是良好的。 業’,、、預介 根據本揭露内容之實施例之原子層 板表面組合物之選擇性過程 、2取於基 =Γ::Γ:於㈣面或⑽:面:而非 基板表面可將二氧化简遮蔽層以屏蔽 14 200837212 2J»IZpiiUhermal budget) "is good. Industry", the preselection of the selective process of the atomic layer surface composition according to the embodiment of the present disclosure, 2 taken from the base = Γ:: Γ: on the (four) face or (10) : face: instead of the surface of the substrate, the oxidized shielding layer can be shielded 14 200837212 2J»IZpii

應瞭解,雖然在上述實例中僅使用了氦介穩態原子, 但亦可選擇其他賴之原子㈣脫附過程。此等種類之選 擇可基於其介穩態或激發態之壽命以及能量來進行。表J 提供候選種類之清單,所述種類之介穩態原子可用於aLD 過程之脫附階段中。 表1 ^______5_命(s) 能量(e\〇 19T ~_24 17 ~~ .— 12 __30 ------ 10 'μ' 種類 〇 ~Ue~ ~αΓ "κΓ —Xe 二亦應瞭解,除二硼烷氣體之外,亦可使用其他摻雜物 w驅體以將所要摻雜物原子引入ALD形成之薄膜。用於 引入諸如硼(B)、砷(As)、磷(p)、銦(迅)以及銻(叫 之摻雜物原子之適當摻雜物前驅體可包括(但不限於)以 下化合物類別:南化物(例如B6)、烷醇鹽(例如 B(OCH3)3)、烷基(例如In(CH3)3)、氫化物(例如AsH” PH〇、環戊二烯基、烷基醯亞胺(alkylimide)、烷基酿胺 (例如 P[N(CH3)2]3 )以及脒基(amidinate)。 " 此外,藉由類ALD過程來沈積含摻雜物之單層之 位摻雜技術並不限於電漿加強型A£D過程。此原^摻雜 技術亦不需要使用介穩態原子。舉例而言,熱ald ;二 亦可用以賴含摻雜物單層。實際上,此原位摻雜 用於任何ALD過程,其中可用—或多個沈積含摻雜= 15 200837212 23812pif 單層之沈積週期來替換一或多傭沈積待摻雜的薄膜單層的It should be understood that although only the ruthenium metastable atoms are used in the above examples, other atomic (four) desorption processes may also be selected. These types of choices can be made based on the lifetime and energy of their metastable or excited states. Table J provides a list of candidate species that can be used in the desorption phase of the aLD process. Table 1 ^______5_Life (s) Energy (e\〇19T ~_24 17 ~~ .— 12 __30 ------ 10 'μ' Type 〇~Ue~ ~αΓ "κΓ —Xe II should also understand In addition to the diborane gas, other dopants w precursors may be used to introduce the desired dopant atoms into the ALD-formed film for introduction of such as boron (B), arsenic (As), phosphorus (p). Suitable dopant precursors for indium (Xin) and ytterbium (referred to as dopant atoms may include, but are not limited to, the following class of compounds: a southern compound (eg, B6), an alkoxide (eg, B(OCH3)3) , an alkyl group (for example, In(CH3)3), a hydride (for example, AsH", PH, a cyclopentadienyl group, an alkylimide, an alkylamine (for example, P[N(CH3)2] 3) and amidinate. " In addition, the doping technique of depositing a single layer containing dopants by an ALD-like process is not limited to the plasma-reinforced A£D process. It is also not necessary to use a metastable atom. For example, the thermal ald can also be used to separate a monolayer of dopants. In fact, this in-situ doping is used in any ALD process, where available - or multiple depositions Blended = 15 200837212 23812pif deposition cycles to replace one or more monolayers commission deposited film to be doped monolayer

沈積週期,或其中待摻雜之薄膜可在與含摻雜物之單^無 質上相同的時間中沈積。 曰K 圖3展示說明根據本揭露内容之一實施例之用於原子 層沈積的例示性系統3〇〇的方塊圖。 - 系統300可包括一處理腔室3〇2,其通常能夠使用(例 .如)渦輪泵306、機械泵308以及其他必要之真空密封部 件來獲得高真空基礎壓力(例如1(Γ7- 10·6托(t〇rr))。在處 理腔室302内,可能存在用以固持至少一個基板3〇之基板 平臺310。基板平臺31〇可裝備一或多個溫度管理設^用 以調整且維持基板3〇之溫度。亦可調節基板平臺3〇之傾 斜或旋轉。處理腔室302可進一步裝備一或多個膜生長監 視設備,諸如石英晶體微量天平及/或RHEED (反射高能 電子繞射(reflection high energy electron diffraction))儀 系統300亦可包括一電漿腔室3〇4,其可耦接至處理 t/ 腔室3〇2或·為處理腔室302之一部分。可使用射頻(rF) 電源在電漿腔室304内產生感應耦合電漿32。舉例而 了,可藉由RF功率來激發以適當壓力供應之氦氣以產生 氦電漿,此氦電漿又產生氦介穩態原子。 系統3〇〇可更包括許多氣體供應源,諸如二矽烷供應 源、二硼烷供應源316、氬供應源318以及氦供應源 320。每一氣體供應源可包括一流量控制閥用以根據需要設 定個別流動速率。或者,可藉由將(例如)一閥門、一固 16 200837212 23812pif οThe deposition cycle, or the film to be doped therein, can be deposited in the same time as the dopant-containing monolayer. FIG. 3 shows a block diagram illustrating an exemplary system 3A for atomic layer deposition in accordance with an embodiment of the present disclosure. - System 300 can include a processing chamber 3〇2 that can typically be used to obtain high vacuum base pressure (e.g., 1 (Γ7-10) using, for example, turbo pump 306, mechanical pump 308, and other necessary vacuum sealing components. 6 Torr (t〇rr). Within the processing chamber 302, there may be a substrate platform 310 for holding at least one substrate 3. The substrate platform 31 may be equipped with one or more temperature management devices for adjustment and maintenance. The temperature of the substrate 3 can also adjust the tilt or rotation of the substrate platform 3. The processing chamber 302 can be further equipped with one or more membrane growth monitoring devices, such as quartz crystal microbalances and/or RHEED (reflective high energy electron diffraction ( The reflection system can also include a plasma chamber 3〇4 that can be coupled to the processing t/chamber 3〇2 or to be part of the processing chamber 302. Radio frequency (rF can be used) The power source generates an inductively coupled plasma 32 in the plasma chamber 304. For example, the helium gas supplied at an appropriate pressure can be excited by the RF power to generate a tantalum plasma, which in turn generates a helium-state steady state. Atom. System 3 can be more packaged A plurality of gas supply sources, such as a dioxane supply source, a diborane supply source 316, an argon supply source 318, and a helium supply source 320. Each gas supply source can include a flow control valve for setting individual flow rates as desired. Can be by, for example, a valve, a solid 16 200837212 23812pif ο

C 定體積之小腔室以及一弟一閥門串聯連接來使氣體計量進 入系統中。藉由打開第一閥門,首先將小腔室填充至所要 壓力。在關閉第,閥門之後,藉由打開第二閥門將固定體 積之氣體釋放入腔室中。二矽烷供應源314以及二硼燒供 應源316可經由第一入口 322輕接至處理腔室302,且可 分別供應足量之矽前驅氣體以及硼前驅氣體以使得基板 30飽和。氬供應源318以及氦供應源320可經由第二入口 324耦接至電漿腔室304。氬供應源318可提供氬(或其他 惰性氣體)以淨化系統300。氦供應源32〇可供應氦氣用 於氦介穩態原子之電漿產生。視需要,電漿腔室3〇4與處 理腔室302之間可能存在屏幕或擋板設備326。屏幕或撞 板5又備326 (經偏壓或未經偏壓)可用以防止電漿腔室go# 中產生之帶電粒子之至少一部分到達基板3()。 圖4展示說明根據本揭露内容之一實施例之用於原子 層沈積的例示性方法的流程圖。 ' >在步驟402中,可將諸如圖3中所示之沈積系統抽空 至高真空(HV)狀態。可使用現在已知或在以後開發之任 何真空技術來達成衫條件。真妓備可包括(例如)機 械泵、渦輪泵以及低溫泵(Cry〇Fmmp)中之—或者。直 空度較佳為至少1()·7_1()·6托’雖'然在本揭露内容之範缚内 其他壓力處。舉例而言’若要求較高之膜 需要甚至較高之基礎真空。對於低純度膜而 &,較低真工可能是可接受的。 在步驟404中,可將基板預加熱至—所要溫度。可基 17 200837212 23812pif 於基板*員型、ALD反應物、所要生長速率等來判定基板溫 度。 、a在步驟406中,諸如二矽烷之矽前驅氣體(以及其運 載氣體,若存在)可流入基板所在之處理腔室中。可在足 以使得基板表面飽和之流動速率或壓力下供應矽前驅氣 體。二矽烷之流動可持續(例如)數秒或多達數十秒。二 • 矽烷之單層可部分地或完全地覆蓋基板表面。 p 在步驟408中,在表面飽和之後,可將矽前驅體斷開, ^ 且可用一或多種惰性氣體來淨化沈積系統以移除過多矽前 驅體。 —在步驟410中,可接入氦電漿。亦即,氦氣可自電漿 腔室流動至處理腔室。氦電漿可為感應耦合電漿(lGp) 或許多其他電漿類型中之任一種,其向氦原子提供足夠激 赉以產生氦介穩態原子。處理腔室中之基板可暴露於氦介 fe悲原子以使得其可與基板上所吸附之矽前驅體反應以脫 附非矽原子。舉例而言,對於二矽烷單層而言,氦介穩態 〇 原子可幫助移除過多氫原子以形成所要之矽單層。基板^ 面向介穩態原子之暴露可持續(例如)數秒或多達數i十秒: 在步驟412中,可斷開(turn off)氦電漿,且可用一 多種惰性氣體再次淨化沈積系統。 3 在步驟414中,可判定是否要求矽模之任何摻雜。若 要求摻雜且弓丨入摻雜物之時間是適當的,則過裎可轉移= 步驟416。否則,過程可返回至步驟4〇6以開始沈^石=之 下一單層及/或結束沈積矽之一部分單層。 、 18 200837212A small chamber of constant volume and a valve are connected in series to allow gas to be metered into the system. By opening the first valve, the small chamber is first filled to the desired pressure. After closing the valve, the fixed volume of gas is released into the chamber by opening the second valve. The dioxane supply source 314 and the diboron supply source 316 can be lightly coupled to the processing chamber 302 via the first inlet 322 and can supply a sufficient amount of the ruthenium precursor gas and the boron precursor gas, respectively, to saturate the substrate 30. The argon supply source 318 and the helium supply source 320 can be coupled to the plasma chamber 304 via the second inlet 324. Argon supply source 318 can provide argon (or other inert gas) to purge system 300. The helium supply source 32〇 can supply helium gas for the plasma generation of the helium steady state atom. A screen or baffle device 326 may be present between the plasma chamber 3〇4 and the processing chamber 302, as desired. The screen or pad 5 is further provided 326 (biased or unbiased) to prevent at least a portion of the charged particles generated in the plasma chamber go# from reaching the substrate 3(). 4 shows a flow chart illustrating an exemplary method for atomic layer deposition in accordance with an embodiment of the present disclosure. > In step 402, a deposition system such as that shown in Figure 3 can be evacuated to a high vacuum (HV) state. Any vacuum technique now known or later developed can be used to achieve the shirt condition. True equipment can include, for example, mechanical pumps, turbo pumps, and cryogenic pumps (Cry〇Fmmp). The straightness is preferably at least 1 () · 7_1 () · 6 Torr' although it is within the pressure of the disclosure. For example, if a higher film is required, an even higher base vacuum is required. For low purity membranes, & lower work may be acceptable. In step 404, the substrate can be preheated to a desired temperature. Keki 17 200837212 23812pif The substrate temperature is determined based on the substrate* type, the ALD reactant, the desired growth rate, and the like. a In step 406, a helium precursor gas such as dioxane (and its carrier gas, if present) may flow into the processing chamber in which the substrate is located. The ruthenium precursor gas can be supplied at a flow rate or pressure sufficient to saturate the surface of the substrate. The flow of dioxane can last for a few seconds or up to tens of seconds. A single layer of decane may partially or completely cover the surface of the substrate. p In step 408, after the surface is saturated, the hafnium precursor can be broken, and the deposition system can be purged with one or more inert gases to remove excess hafnium precursor. - In step 410, the tantalum plasma can be accessed. That is, helium gas can flow from the plasma chamber to the processing chamber. The tantalum plasma can be either inductively coupled plasma (lGp) or any of a number of other plasma types that provide sufficient enthalpy to the helium atom to produce a helium metastable atom. The substrate in the processing chamber can be exposed to the erbium atom so that it can react with the ruthenium precursor adsorbed on the substrate to desorb non-deuterium atoms. For example, for a dioxane monolayer, the ruthenium-stable 〇 atom can help remove excess hydrogen atoms to form the desired ruthenium monolayer. Substrate ^ exposure to metastable atoms may last (for example) for a few seconds or as many as ten seconds: In step 412, the ruthenium plasma may be turned off and the deposition system may be re-purified with a plurality of inert gases. . 3 In step 414, it may be determined if any doping of the dies is required. If the time required for doping and bowing into the dopant is appropriate, then the transition can be transferred = step 416. Otherwise, the process can return to step 4〇6 to begin the next single layer of the sink stone and/or the end of the deposition layer. , 18 200837212

ZJSIZpiI 豆、軍驟416中’諸如二硼烷之摻雜物前驅氣體(以及 ”載虱體,若存在)可流入處理腔室。可在足以徒其招 之流動速率或壓力下供應摻雜物前驅氣體。:石夕 層了。卩刀地或完全地覆蓋基板表面。 f' ti 斷開在2面飽和之後’可將摻雜物前驅體 多換雜物:體或夕種惰性氣體來淨化沈積系統以移除過 =上所吸㈣ ===== :二=:於二,炫單層而言,氣介穩態原= 二入/^原子以形成所要之部分或完整硼單層。其4 ς。”1穩態原子之暴露可持續(例如)數秒或多達= 在步驟422中,可斷開氦且 氣體再次淨化沈積系統。χ 3夕重惰性 422, = Γt驟4〇6至412及/或過程步驟416至 之所要=有—❹個單層(其具有所要掺雜物分佈) 雜,==露=:^^實施例僅描㈣膜之沈積及/或換 谷之貝施例可易於用以積或摻雜其他鉍刺 f二之?膜。舉例而言,亦可沈積細包括二= 錢·錯(Ge)、碳⑹、鎵(Ga)、石申(句、、 19 200837212 ZJ»J2plf 銦(In)、銘(Al)或碌(P)。所得薄膜可包括諸如碳或鍺 之單種類,或諸如III-V族化合物之化合物(例如GaAs、 ΙηΑΙΡ) 〇為此,可利用包括相應種類之前驅物質。用於前 驅物質之候選者可包括但不限於:氫化物(例如SiH4、 ShH6、GeH4)或鹵化氫化物(例如SiHCl3 )、鹵化碳氫化 合物(諸如CHF3)、烧基(例如三曱基鋁ai(cH3)3或二甲 基乙基鋁CHbCHrAKCH3)2),或鹵化物(諸如cci4或 CC12F2)。ZJSIZpiI Bean, 420, 'The dopant precursor gas such as diborane (and the carrier, if present) can flow into the processing chamber. The dopant can be supplied at a flow rate or pressure sufficient to avoid it. Precursor gas: The stone layer is layered. The surface of the substrate is covered or completely covered. f' ti Disconnected after being saturated on both sides 'The dopant precursor can be replaced by a multi-body: a body or an inert gas to purify Deposition system to remove over = upper suction (four) ===== : two =: in two, dazzle single layer, gas metastable original = two in / ^ atom to form the desired part or complete boron monolayer It is 4 ς." 1 The exposure of the steady-state atom can last (for example) a few seconds or as much as = In step 422, the helium can be disconnected and the gas purifies the deposition system again. χ 3 惰性 inert 422, = Γt 4 〇 6 to 412 and / or process step 416 to = = have a single layer (which has the desired dopant distribution), == dew =: ^ ^ implementation For example, only the deposition of the film and/or the change of the grain can be easily used to accumulate or dope other thorns. membrane. For example, it is also possible to deposit fines including two = money, wrong (Ge), carbon (6), gallium (Ga), Shishen (sentence, 19 200837212 ZJ»J2plf indium (In), Ming (Al) or 碌 (P The resulting film may include a single species such as carbon or germanium, or a compound such as a group III-V compound (e.g., GaAs, ΙηΑΙΡ). For this purpose, a precursor species including a corresponding species may be utilized. A candidate for a precursor may be used. Including but not limited to: hydride (such as SiH4, ShH6, GeH4) or halogenated hydride (such as SiHCl3), halogenated hydrocarbons (such as CHF3), alkyl (such as tridecyl aluminum ai (cH3) 3 or dimethyl Ethyl aluminum CHbCHrAKCH3) 2), or a halide such as cci4 or CC12F2.

本揭露内谷之範臂不受本文所述之特定實施例限制。 事實上,除本文所述之内容外,熟習此項技術者將自前述 描述以及附圖而顯而易見本揭露内容之其他各種實施例以 及修改。因此,此等其他實施例以及修改將屬於本揭露内 容之範嚀。此外,雖然本文已在用於特定目的之特定環境 中之特定建構的情形中描述本揭露内容,但普通熟習此項 技術者將認識到其效用不限於此且本揭露内容可在用於許 多目的之許多環境中有益地實施。因此,應鑒於本文所述 之本揭露岐之充分外延以縣解釋下讀述之 專利範圍。 【圖式簡單說明】 為”揭露内容之較充分理解, 來指代相同元件。此等圖式不應被解温為 _本揭μ容’而意欲僅用於例示性目的。 子層本揭露内容之-實施例之例示性原 20 200837212 ZJiSIZpit 圖2展示說明根據本揭露内容之一實施例之例示性原 子層沈積週期的方塊圖。 圖3展示說明根據本揭露内容之一實施例之用於原子 層沈積的例示性系統的方塊圖。 圖4展示說明根據本揭露内容之一實施例之用於原子 層沈積的例示性方法的流程圖。 【主要元件符號說明】 10 :飽和階段 12 :脫附階段 20 :飽和階段 22 :脫附階段 30 ··基板 32 :感應耦合電漿 100 :原子層沈積週期 102 :基板 104 :二矽烷單層 106 :矽單層 200 :原子層沈積週期 204 ·•二硼烷單層 206 :硼單層 300 :系統 302 :處理腔室 304 ··電漿腔室 306 :滿輪泵 21 200837212The present disclosure is not limited by the specific embodiments described herein. In addition, other embodiments and modifications of the present disclosure will be apparent from the foregoing description and drawings. Accordingly, such other embodiments and modifications are intended to be within the scope of the disclosure. In addition, although the disclosure has been described in the context of a particular construction in a particular context for a particular purpose, those skilled in the art will recognize that the utility is not limited thereto and that the disclosure may be used for many purposes. Many environments are beneficially implemented. Therefore, the full scope of this disclosure should be interpreted in the context of the patent interpretation of the scope of the patent. [Simple description of the schema] For the sake of a fuller understanding of the content, the same elements are referred to. These drawings should not be deconstructed to the extent that they are intended to be used for illustrative purposes only. Sub-layer disclosure Illustrative primitives of an embodiment 20 200837212 ZJiSIZpit Figure 2 shows a block diagram illustrating an exemplary atomic layer deposition cycle in accordance with one embodiment of the present disclosure. Figure 3 illustrates an embodiment for illustrating an embodiment in accordance with the present disclosure. A block diagram of an exemplary system for atomic layer deposition.Figure 4 shows a flow chart illustrating an exemplary method for atomic layer deposition in accordance with an embodiment of the present disclosure. [Major component symbol description] 10: Saturation phase 12: off Stage 20: Saturation Stage 22: Desorption Stage 30 • Substrate 32: Inductively Coupled Plasma 100: Atomic Layer Deposition Period 102: Substrate 104: Dioxane Monolayer 106: 矽 Monolayer 200: Atomic Layer Deposition Cycle 204 • Diborane monolayer 206: boron monolayer 300: system 302: processing chamber 304 · plasma chamber 306: full wheel pump 21 200837212

ZJ61ZpiT 308 310 312 314 316 - 318 . 320 322 324 326 機械泵 基板平臺 射頻(RF)電源 二矽烷供應源 二硼烷供應源 氬供應源 氦供應源 第一入口 第二入口 屏幕或撞板設備 22ZJ61ZpiT 308 310 312 314 316 - 318 . 320 322 324 326 Mechanical pump Substrate platform Radio frequency (RF) power supply Dioxane supply source Diborane supply source Argon supply source 氦Supply source First inlet Second inlet Screen or collision device 22

Claims (1)

200837212 2J8I2pif 申請專利範圍: 1·一種用於原子層沈積之裝置,所述裝置包括: 臺 處理腔室,其具有用以固持直少一個基板之基板平 箣驅物貝之供應源,其中所述前驅物質包括至少一 種第-種類之原子以及至少—種第二種類之原子,且其 f) 中所述供應源提供所述前驅物質以使所述至少一個基板 之表面飽和;以及 至少一種第三種類之介穩態原子之電漿源,其 返介穩態料㈣自所虹少—減板 脫附所述至少一種第-插相4仏、+,店7 衣曲 n _ 所遂原子以形成所述至少 —種弟一種頬之一或多個原子層。 置,其更包括用於 積之裝 少-=所述基板表面粒子之至 置,其;之用於原子層沈積之裝 生之圍:r達;'中產 •々曱明利乾圍弟i項所 置,其更包括_物前驅體之^之驗原子層沈積之f 驅體之所述供應源經組離以在〜二源,其中所述摻雜物前 述前驅物質之所述供應;,藉:【多個沈積週期中 替代所 類之所述一或多個原子層。 所述至少一種第一種 5·如申請專利範圍第丨項 、吓延之用於原子層沈積之裝 23 200837212 f 置,其更包括掺雜=前驅體之供應源,其中在4多個沈 積週期中’虽所述4驅物質之所述供應源供鹿所述前驅物 質時,戶斤述摻雜物前驅體之所述供應源經_在實質上 同〆時間供應所述摻雜物前驅體,藉此飾所述至少一種 第/種類之所述一或多個原子層。 1 _述之用於原子層沈積之裝 =類之所述介穩態原子關M產生所述至少一種第 7·如申請專利範圍第6項所汗 置,其中所述轉腔室自感應;於原子層沈積之裝 第三種類之所述介穩態原子Γ $水產生所述至少一種 8.如申請專利範圍第1項 置,其中所述前驅物質包括選I 於原子層沈積之裴 或多種種類:由以下各者組成之群之— u 矽; 石農; 鎵; 石今; 銦; 铭;以及 磷。 9.如申讀專利園第 頁所述之用於原子層沈積之裝 200837212 Ζό^ΙΖριί 置,其中所述基板表面包括選自由以下各者組成之群之一 或多種材料: 石夕; 絕緣物上矽(SOI); 二氧化矽; 金剛石; $夕錯; 碳化矽; III-V族化合物; 平板材料, 聚合物;以及 可撓性基板材料。 10. 如申請專利範圍第1項所述之用於原子層沈積之 裝置,其中所述至少一種第三種類包括選自由以下各者組 成之群之一或多種種類: 氦(He); 氖(Ne); 氬(Ar ); 氪(Kr); 氡(Rn);以及 氙(Xe)。 11. 如申請專利範圍第1項所述之用於原子層沈積之裝 置,其中所述至少一個基板保持在低於500°C之溫度。 12 · —種用於原子層沈積之方法,所述方法包括以下步 25 200837212 23812pif 驟: 用具有至少一種第一種類之原子以及至少一種第二 種類之原子的前驅物質來使基板表面飽和,藉此在所述 基板表面上形成所述前驅物質之早層’以及200837212 2J8I2pif Patent Application Range: 1. A device for atomic layer deposition, the device comprising: a processing chamber having a supply source for holding a substrate of a substrate, wherein The precursor material includes at least one atom of the first species and at least one atom of the second species, and wherein the source of the f) provides the precursor to saturate the surface of the at least one substrate; and at least one third a plasma source of a type of metastable atom, which is returned to the steady state material (4) from the rainbow to the lesser - the plate is desorbed by the at least one of the first phase-inserted phase 4, +, shop 7 clothing n _ Forming one or more atomic layers of the at least one kind of cockroach. And it further comprises: for the accumulation of the product - the surface of the substrate surface of the substrate, which is used for the atomic layer deposition of the enclosure: r up; 'middle production · 々曱明利干围弟i And the supply source further comprising: the precursor of the atomic layer deposition, wherein the supply source is separated from the source of the dopant, wherein the dopant is supplied by the precursor material; Borrow: [Substituting one or more atomic layers of the type in a plurality of deposition cycles. The at least one first type is as claimed in the second paragraph of the patent application, and the device for atomic layer deposition is included in the invention, which further includes a supply source of doping = precursor, wherein more than 4 depositions In the cycle, when the supply source of the 4-wheeling substance is supplied to the precursor of the deer, the supply source of the dopant precursor is supplied to the dopant precursor at substantially the same time. a body whereby the one or more atomic layers of the at least one of the types/types are decorated. 1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The at least one type of the metastable atomic Γ 水 水 水 水 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生 产生A variety of species: a group consisting of - u 矽; stone farmers; gallium; stone today; indium; Ming; and phosphorus. 9. The apparatus for atomic layer deposition described in the above-mentioned patent garden, 200837212, wherein the substrate surface comprises one or more materials selected from the group consisting of: Shi Xi; Upper crucible (SOI); cerium oxide; diamond; $ eve; strontium carbide; III-V compound; flat material, polymer; and flexible substrate material. 10. The apparatus for atomic layer deposition according to claim 1, wherein the at least one third species comprises one or more species selected from the group consisting of: 氦(He); 氖( Ne); Argon (Ar); 氪 (Kr); 氡 (Rn); and 氙 (Xe). 11. The apparatus for atomic layer deposition of claim 1, wherein the at least one substrate is maintained at a temperature below 500 °C. 12. A method for atomic layer deposition, the method comprising the following step 25: 200837212 23812 pif: using a precursor having at least one atom of the first species and at least one atom of the second species to saturate the surface of the substrate, This forms an early layer of the precursor on the surface of the substrate' and 將所述基板表面暴露於第三種類之電漿產生之介穩 態原子,其中所述介穩態原子自所述基板表面脫附所述 至少一種第二種類之所述原子以形成所述至少一種第一 種類之原子層。 13·—種原子層沈積方法,其包括多個沈積週期以形成 所述第一種類之多個原子層,其中每一沈積週期重複如申 請專利範圍第12項中所述之步驟以形成所述第一種類之 一個原子層。 方、 14.如申請專利範圍第 其更包括: 13項所述之原子層沈積方法, 在所述沈積週期中之一$ $ 應同時向基板表面供應摻雜=:,細驅物質之供 種第-種社所述多個原子=驅體轉雜所述至少一 其更請專利範圍第13項所述之原子層沈積方法, 體替代所述前驅物質以摻.〜—或多者中以摻雜物前驅 述多個原子層。 所述至少一種第一種類之所 I6·如申請專利範圍第13 其更包括: 員所述之原子層沈積方法, 在所述多個沈積週期中 26 200837212 23812pif 防止介穩態原子之電漿源中產生之帶電粒子的至少 一部分到達所述基板表面。 17. 如申請專利範圍第13項所述之原子層沈積方法, 其更包括: 在低於500°C之溫度下退火所述基板表面。 18. 如申請專利範圍第13項所述之原子層沈積方法, 其中: 所述前驅物質包括二石夕炫(Si2H6); 所述至少一種第一種類包括石夕; 所述至少一種第二種類包括氫;以及 所述第三種類包括氦。 19. 如申請專利範圍第18項所述之原子層沈積方法, 其更包括: 用二氧化石夕(Si〇2)遮蔽所述基板表面之一或多個 選定部分。 20. 如申請專利範圍第13項所述之原子層沈積方法, I,, 其中所述前驅物質包括選自由以下各者組成之群之一或多 種種類: 石夕; 7:山 · 々厌, 鍺; 蘇; 砷; 銦; 27 200837212 23812pif 鋁;以及 石粦。 21. 如申請專利範圍第13項所述之原子層沈積方法, 其中所述基板表面包括選自由以下各者組成之群之一或多 種材料· 矽; 絕緣物上矽(SOI); 二氧化矽; (丨 金剛石; 矽鍺; # 碳化矽; III-V族化合物; 平板材料, 聚合物;以及 可撓性基板材料。 22. 如申請專利範圍第13項所述之原子層沈積方法, G 其中所述至少一種第三種類包括選自由以下各者組成之群 之一或多種種類: 氦(He); 氖(Ne); 氬(Ar); 氪(Kr); 氡(Rn );以及 氙(Xe)。 28 200837212 Ζό^ΙΖριΐ 23.—種用於原子層沈積之裝置,所述裝置包括: 處理腔至’其具有用以固持至少一個基板之基板平 臺; 二矽烷(SkH6)供應源,其中所述供應源用以供應 足量之二矽烷以使所述至少一個基板之表面飽和; 氦供應源;以及Exposing the surface of the substrate to a metastable atom produced by a third type of plasma, wherein the metastable atom desorbs the at least one atom of the at least one second species from the surface of the substrate to form the at least A first type of atomic layer. 13. An atomic layer deposition method comprising a plurality of deposition cycles to form a plurality of atomic layers of the first species, wherein each deposition cycle repeats the steps as described in claim 12 of the patent application to form the An atomic layer of the first species. 14. The method as claimed in claim 14, further comprising: the atomic layer deposition method of claim 13, wherein one of the deposition periods is simultaneously supplied with doping =:, a seed for the fine drive substance The atomic layer deposition method described in claim 13 of the first embodiment of the present invention, wherein the precursor is substituted for the precursor material to be doped. The dopant precursor describes a plurality of atomic layers. The at least one first type of I6 is as claimed in claim 13 which further includes: the atomic layer deposition method described in the above, in the plurality of deposition cycles 26 200837212 23812pif preventing the plasma source of the metastable atom At least a portion of the charged particles produced in the substrate reach the surface of the substrate. 17. The atomic layer deposition method of claim 13, further comprising: annealing the surface of the substrate at a temperature below 500 °C. 18. The atomic layer deposition method of claim 13, wherein: the precursor material comprises a smectite (Si2H6); the at least one first species comprises a stone eve; the at least one second species Included in hydrogen; and the third species includes hydrazine. 19. The atomic layer deposition method of claim 18, further comprising: masking one or more selected portions of the substrate surface with SiO2. 20. The atomic layer deposition method of claim 13, wherein the precursor material comprises one or more species selected from the group consisting of: Shi Xi; 7: Mountain·々,锗; s; arsenic; indium; 27 200837212 23812pif aluminum; and sarcophagus. 21. The atomic layer deposition method of claim 13, wherein the substrate surface comprises one or more materials selected from the group consisting of: 绝缘; SOS; cerium oxide (丨 ;; 矽锗; # 碳 矽; III-V compound; slab material, polymer; and flexible substrate material. 22. The atomic layer deposition method according to claim 13, wherein The at least one third species includes one or more species selected from the group consisting of: 氦 (He); 氖 (Ne); argon (Ar); 氪 (Kr); 氡 (Rn ); X 2008) 28 200837212 Ζό^ΙΖριΐ 23. A device for atomic layer deposition, the device comprising: a processing chamber to 'the substrate platform with which to hold at least one substrate; a source of dioxane (SkH6), wherein The supply source is for supplying a sufficient amount of dioxane to saturate the surface of the at least one substrate; 耦接呈所述處理腔室之電漿腔室,所述電漿腔室用 以自由所述乱供應源供應之氦而產生氦介穩態原子; 其中所述介穩態原子能夠自所述至少一個基板之所 述飽和表面脫附氫原子,藉此形成一或多個矽原子層。 24·如申請專利範圍第23項所述之用於原子層沈積之 裝置,其更 >包括二硼烷(¾¾)供應源,其中所述二硼烷 供應源經組態以在一或多個沈積週期中替代所述二矽烷供 應源之至少一部分,藉此將硼原子引入至所述一或多個矽 原子層。 25·—種保形摻雜方法,其包括: _在一或多個沈積週期中在基板表面上形成薄膜,i 中’在所述-或多個沈積週期中之每—沈積週期中,供 應具有至少-種第-種類之原子以及至少—種第二種類 之原子的W驅物質以使所述基板表面飽和,且隨後自所 述飽和基板表面脫_述至少—種第二_之所述 以形成所述至少-種第—種類之—❹個原子層,·以及 在所«個沈積週期之—或多者中用摻雜物前驅體 替代所前,_質之所述供應狀至少—部分 29 200837212 23812pif 雜所述至少一種望 2“令直種類之所述-或多個原子層。 中用至少-種^ ^圍第25^所述之保形摻雜方法,其 第二種類之所述&子類之"域'原子來脫附所述至少一種 汰如申請專利範 匕種類之所述介穩態原子。 f)Coupled in a plasma chamber of the processing chamber, the plasma chamber is configured to generate a helium metastable atom freely from the supply of the disordered supply source; wherein the metastable atom can be from the The saturated surface of at least one of the substrates desorbs hydrogen atoms, thereby forming one or more layers of germanium atoms. 24. The apparatus for atomic layer deposition according to claim 23, further comprising: a diborane (3⁄4⁄4) supply source, wherein the diborane supply source is configured to be one or more At least a portion of the dioxane supply source is replaced in one deposition cycle whereby boron atoms are introduced into the one or more germanium atomic layers. 25. A conformal doping method comprising: forming a thin film on a surface of a substrate in one or more deposition cycles, i in each of said deposition cycles or during a deposition cycle a W-driven substance having at least a first-type atom and at least a second-type atom to saturate the surface of the substrate, and then de-sparing from the surface of the saturated substrate to at least In order to form the at least one type--one atomic layer, and to replace the dopant precursor in the - or more deposition cycles, the supply is at least - Part 29 200837212 23812pif Miscellaneous said at least one of said 2" straight type of said - or a plurality of atomic layers. The at least one type of ^ ^ ^ ^ 25 ^ ^ the conformal doping method, the second type The "domain' atom of the & subclass desorbs the at least one metastable atom of the type of the patent application. f) 中防止帶電粒子之至少—hi之保形摻雜方法,其 中所述至少j第利m7項所述之保形摻雜方法,其 —或多種_: 選自由以下各者組成之群之 氦(He); 氖(Ne); 氬(Ar); 氪(Kr ); 氡(Rn);以及 ^ C Xe ^ 〇 法,其 或多種 j申μ專利範圍第25項所述之保 中所述前驅物質肖Α 〜 初貝包括遠自由以下各者組成之 矽; 碳; 鍺; 鎵; 30 200837212 23mZpii 砷; 銦; 鋁;以及 石粦。 31.如申請專利範圍第25項所述之保升 中所述基板表面包括選自由以下各者袓成雜方法,其 材料: 、 群之一或多種 石夕; 絕緣物上石夕(SOI); 二氧化矽; 金剛石; 矽鍺; 碳化矽; III-V族化合物; 平板材料; 聚合物;以及 可撓性基板材料。 32·如申請專利範圍第25項所述之保形摻 中將所述基板表面保持在低於5〇(rCi溫度。/ ,其 33·如申請專利範圍第25項所述之保形摻雜方法, 中所述基板表面不經受諸分配所述摻雜物前 ^其 之進一步熱處理。 原子 34·如申請專利範圍第25項所述之保形摻雜方法,其 中所述基板表面具有三維拓撲,且其上保形地形成且保形 31 200837212 238I2pif 地摻雜所述薄膜。 35.如申請專利範圍第34項所述之保形掺雜方法,其 中所述薄膜是FinFET結構之部分。 32A conformal doping method for preventing at least -hi of charged particles, wherein the conformal doping method described in at least the j-th m7 item, or a plurality of _: is selected from the group consisting of: He); 氖(Ne); argon (Ar); 氪(Kr); 氡(Rn); and ^ C Xe ^ 〇 method, or a plurality of precursors described in the above-mentioned patent scope Substance Xiao Xiao ~ The first shell consists of a group consisting of far below free; carbon; niobium; gallium; 30 200837212 23mZpii arsenic; indium; aluminum; 31. The surface of the substrate as claimed in claim 25, comprising: a method selected from the group consisting of: one, one or more groups of stones; and an insulator (SOI) ; ruthenium dioxide; diamond; ruthenium; ruthenium carbide; III-V compound; flat material; polymer; and flexible substrate material. 32. The conformal doping described in claim 25, wherein the surface of the substrate is maintained at less than 5 〇 (rCi temperature. /, 33) conformal doping as described in claim 25 of the patent application. In the method, the surface of the substrate is not subjected to further heat treatment before the doping of the dopant. The atomic doping method of claim 25, wherein the substrate surface has a three-dimensional topology. The conformal doping method of claim 34, wherein the film is part of a FinFET structure. 32. The conformal doping method of claim 34, wherein the film is part of a FinFET structure.
TW96107981A 2007-03-08 2007-03-08 Technique for atomic layer deposition TW200837212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96107981A TW200837212A (en) 2007-03-08 2007-03-08 Technique for atomic layer deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96107981A TW200837212A (en) 2007-03-08 2007-03-08 Technique for atomic layer deposition

Publications (1)

Publication Number Publication Date
TW200837212A true TW200837212A (en) 2008-09-16

Family

ID=44820125

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96107981A TW200837212A (en) 2007-03-08 2007-03-08 Technique for atomic layer deposition

Country Status (1)

Country Link
TW (1) TW200837212A (en)

Similar Documents

Publication Publication Date Title
US20070065576A1 (en) Technique for atomic layer deposition
WO2008108754A1 (en) Technique for atomic layer deposition
KR20090085695A (en) Technique for atomic layer deposition
JP6437962B2 (en) Method for depositing nitride film of group 13 metal or metalloid
JP6761028B2 (en) A method for depositing a conformal metal or metalloid silicon nitride film and the resulting film
CN106471154B (en) Fluorine-containing conductive film
KR102013927B1 (en) Deposition of smooth metal nitride films
US20080085610A1 (en) Ald of metal silicate films
JP2004525509A (en) Manufacturing method using dopant precursor
TW201337028A (en) Method of depositing metals using high frequency plasma
US9177783B2 (en) Substituted silacyclopropane precursors and their use for the deposition of silicon-containing films
JP2005533390A (en) Molecular layer deposition of thin films with mixed components.
CN109415385A (en) For depositing the lanthanum predecessor of lanthanum, lanthanum-oxides and lanthanum nitride film
JP2020133002A (en) Method for depositing hafnium lanthanum oxide film on substrate by circulation deposition process in reaction chamber
CN113316835A (en) Method for forming silicon-boron-containing films with low leakage current
KR20170108429A (en) Method and apparatus for manufacturing large scaled single crystal monoatomic layer hexagonal boron nitride and single crystal monoatomic substrate growing graphene using the same
US20140299056A1 (en) Low temperature migration enhanced Si-Ge epitaxy with plasma assisted surface activation
KR20240008929A (en) Stable bis(alkyl-arene) transition metal complex and film deposition method using the same
CN104718314B (en) The deposition of the film with high aluminium content comprising aluminium alloy
JP6947863B2 (en) Thin film formation method
CN113330141A (en) Method for depositing silicon nitride
TW200837212A (en) Technique for atomic layer deposition
Sprenger Electron Enhanced Atomic Layer Deposition (EE-ALD) for Room Temperature Growth of Gallium Nitride, Silicon, and Boron Nitride Films
US20220076996A1 (en) Methods for depositing gap filing fluids and related systems and devices
JP6797068B2 (en) Method for manufacturing titanium carbide-containing thin film by atomic layer deposition method