TW200836366A - Light emitting diode device and manufacturing method thereof - Google Patents

Light emitting diode device and manufacturing method thereof Download PDF

Info

Publication number
TW200836366A
TW200836366A TW96106163A TW96106163A TW200836366A TW 200836366 A TW200836366 A TW 200836366A TW 96106163 A TW96106163 A TW 96106163A TW 96106163 A TW96106163 A TW 96106163A TW 200836366 A TW200836366 A TW 200836366A
Authority
TW
Taiwan
Prior art keywords
layer
electrical
light
emitting diode
cladding layer
Prior art date
Application number
TW96106163A
Other languages
Chinese (zh)
Other versions
TWI323520B (en
Inventor
Schang-Jing Hon
Yu-Chih Yang
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW96106163A priority Critical patent/TWI323520B/en
Publication of TW200836366A publication Critical patent/TW200836366A/en
Application granted granted Critical
Publication of TWI323520B publication Critical patent/TWI323520B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light emitting diode (LED) device and manufacturing methods thereof are provided, wherein the LED device comprises a metal substrate, an epitaxy structure and an electrode with a first conductivity type. The epitaxy structure formed on the metal substrate has a contact layer, a second cladding layer, a first cladding layer with a second conductivity type, an active layer, and a cladding layer and a semiconductor layer with the first conductivity type subsequently stacked on the metal substrate. The electrode is formed on the semiconductor layer.

Description

200836366 :^m%%^: ,:;v:t:«,-v;:':/? : g. ^ : 【發明所屬之技術領域】 本發明是有關於一種發光二極體元件及其製造方 法,且特別是有關於一種具有粗化表面之磊晶結構的發光 二極體元件及其製造方法。 【先前技術】 發光二極體元件Light Emitting diode ; LED)具有低 耗電量、低發熱量、操作壽命長、耐撞擊、體積小、反應 速度快、以及可發出穩定波長的色光等良好光電特性,因 此常應用於家電、儀表之指示燈、光電產品之應用。隨著 光電科技的進步,固態發光元件在提升發光效率、使用壽 命以及亮度等方面已有長足的進步,在不久的將來將成為 未來發光元件的主流。 以一般氮化物(Ill-Nitride)發光二極體元件為例,請參 照第1A圖至第1B圖,第1A圖至第1B圖係根據習知方 法所繪示之氮化物發光二極體元件100的製程結構剖面 圖。首先在藍寶石(Sapphire)基板101上依序磊晶成長氮 化鋁(A1N)或氮化鎵(GaN)低溫緩衝層 102、氮化鋁鎵銦 ((AlxGaHhliibyN ; OSxSl ; 〇SySl)N 型半導體層 103、氮 化鋁鎵銦N型包覆層(Cladding Layer) 104、含氮化鋁鎵銦 雙異質或量子井結構的主動層105、氮化鋁鎵銦P型包覆 層106、氮化鋁鎵銦高摻雜P型接觸層1〇7(如第1A圖所 繪示)。接著在P型接觸層107上貼合一金屬基板108, 200836366 同時進行暫時基板剝除製程,移除藍寶石基板1〇1及低溫 緩衝層102(如第1B圖所繪示),形成氮化物發光二極體 凡件1 0 0。 然而’由於金屬基板108與P型接觸層107分屬不同 的兩種材質,具有相異的膨脹係數,容易因貼合接著力不 足’而造成後續暫時基板剝除製程的良率欠佳。因此,有 需要提供一種具有粗化表面之磊晶結構構的發光二極體 兀件及其製造方法,藉以改善發光二極體元件與金屬基板 接著力’來增製程良率。 【發明内容】 有需要提供一種發光二極體元件以及其製造方法, 使其具有粗化表面之磊晶結構,藉以增進發光二極體元件 與金屬基板的接著力,並同時提高發光二極體元件的亮 本發明的一實施例係提供一種發光二極體元件,包 括:金屬基板、發光磊晶結構以及第一電性電極。其中發 光蠢晶結構,位於金屬基板上。200836366 :^m%%^: ,:;v:t:«,-v;:':/? : g. ^ : [Technical Field] The present invention relates to a light-emitting diode element and A manufacturing method, and particularly relates to a light emitting diode element having an epitaxial structure having a roughened surface and a method of manufacturing the same. [Prior Art] Light Emitting Diodes (LEDs) have good photoelectric characteristics such as low power consumption, low heat generation, long operating life, impact resistance, small volume, fast response, and color light that emits stable wavelengths. Therefore, it is often used in the application of home appliances, instrument indicators, and optoelectronic products. With the advancement of optoelectronic technology, solid-state light-emitting components have made great progress in improving luminous efficiency, life and brightness, and will become the mainstream of future light-emitting components in the near future. Taking a general nitride (Ill-Nitride) light-emitting diode element as an example, please refer to FIGS. 1A to 1B, and FIGS. 1A to 1B are nitride light-emitting diode elements according to a conventional method. A cross-sectional view of the process structure of 100. First, an aluminum nitride (A1N) or gallium nitride (GaN) low temperature buffer layer 102, an aluminum gallium indium nitride ((AlxGaHhliibyN; OSxSl; 〇SySl) N type semiconductor layer is sequentially epitaxially grown on a sapphire substrate 101. 103, aluminum gallium indium N-type cladding layer (Cladding Layer) 104, aluminum nitride gallium indium double hetero or quantum well structure active layer 105, aluminum gallium indium nitride P type cladding layer 106, aluminum nitride Gallium-indium highly doped P-type contact layer 1〇7 (as shown in Fig. 1A). Next, a metal substrate 108 is bonded to the P-type contact layer 107, and 200836366 is simultaneously subjected to a temporary substrate stripping process to remove the sapphire substrate. 1〇1 and the low temperature buffer layer 102 (as shown in FIG. 1B) form a nitride light emitting diode body 100. However, 'the metal substrate 108 and the P type contact layer 107 are different materials. , having a different expansion coefficient, which is liable to cause a defect in the subsequent temporary substrate stripping process due to insufficient adhesion and adhesion. Therefore, it is desirable to provide a light-emitting diode having an epitaxial structure with a roughened surface. A component and a manufacturing method thereof for improving a light-emitting diode element and a metal base Then, the force is used to increase the process yield. SUMMARY OF THE INVENTION There is a need to provide a light-emitting diode element and a method of fabricating the same, which has an epitaxial structure of a roughened surface, thereby enhancing the subsequent formation of the light-emitting diode element and the metal substrate. And improving the brightness of the light-emitting diode element. An embodiment of the invention provides a light-emitting diode element, comprising: a metal substrate, a light-emitting epitaxial structure, and a first electrical electrode. On a metal substrate.

電性接觸層上, s ’位於金屬基板上,其中第二電性接 粗糙化表面。第二電性第二包覆層位於第二 ’其中第二電性第二包覆層具有第一粗糙化 200836366 表面。第二電性第一包覆層位於第二電性第二包覆層上D 主動層位於第二電性第一包覆層上。第一電性包覆層位於 主動層上。第一電性半導體層位於第一電性包覆層上。第 一電性電極位於第一電性半導體層上。 本發明的另一實施例係提供一種發光二極體元件 的製造方法,至少包括下述步驟:On the electrical contact layer, s ' is on the metal substrate, wherein the second electrical connection roughens the surface. The second electrically conductive second cladding layer is located in the second ' wherein the second electrically conductive second cladding layer has a first roughened 200836366 surface. The second electrical first cladding layer is on the second electrical second cladding layer and the D active layer is on the second electrical first cladding layer. The first electrical cladding is on the active layer. The first electrical semiconductor layer is on the first electrical cladding layer. The first electrical electrode is on the first electrical semiconductor layer. Another embodiment of the present invention provides a method of fabricating a light emitting diode element, comprising at least the following steps:

首先提供一磊晶基板,並於磊晶基板上形成一緩衝 2。接著,進行磊晶成長步驟,於緩衝層上,此依序成長 第電丨生半‘體層、第一電性包覆層、主動層、第二電性 第匕覆層、第一電性第二包覆層以及第二電性接觸層, 以形成發光蟲晶結構。並且使第二電性第二包覆層具有第 -粗糙化表面’使第二電性接觸層具有第二粗糙化表面。 …Η於發光蠢晶結構上形成金屬基板,再移除蠢晶 板及緩衝層’以暴露出第—電性半導體層。並於第一電 半導體層暴露於外之-侧,形成至少—個第—電性電極 _ 1據上述實施例’本發明的特徵係在成長發光二極 =之磊晶結構的步驟中,於磊晶結構的包覆層上形成 匕表面,以增進發光二極體㈣之以結構與後續. =金屬基板的接合力,降低後續蟲晶基板剝除製程的 广另外,由於發光二極體元件蠢晶結構具有粗糙化 =可增加發光二極體元件的量子效率提升光取出率 件的外部光取出率,同:提Λί有同時兼顧固態發光; 的雙重效果。 訏美呵猫日日結構與金屬基板接合; 200836366 【實施方式】 本發明係提供^一種南受度發光二極體元件以及期製 作方法,可在確保發光二極體元件磊晶結構在剝除磊晶 (暫時)基板時,不致影響發光二極體元件磊晶結構與金屬 基板接合力,而又可達到大幅提升發光二極體元件之發光 亮度的目的。 • 請參照第2圖,第2圖係依照本發明一較佳實施例所 繪示的一楂發光二極體元件2〇〇之製程剖面圖。 發光二極體元件,包括:金屬基板211、金屬反射鏡 210、透明導電層2〇9、發光磊晶結構214以及一第一電 性電極215。 其中金屬反射鏡210位於金屬基板211之上。金屬基 板211的材料較佳係包括銅、_ (m〇)、鎳(犯)、金(au)、 銀(Ag)、鈾(pt)、鍚(Sn)和辞(Zn)或上述任意組合之合金。 鲁金屬反射鏡210係由铭(A1)、銀(Ag)、鈷(Pt)、金(au)、 鎳(Ni)、鈦(Ti)、銅(Cu)、銦(In)、錫(sn)、辞(zn)、鉛 和把(Pd)或上述金屬之任意合金所組成。 透明導電層209位於金反射鏡210之上,在本實施例 • 中’透明導電層209則係由鎳、金或鎳金合金所構成之單 層或多層金屬結構。但在其他實施例之中,透明導電層 209也可以由氧化銦鍚、氧化編錫、氧化鋅、氧化銦、氧 化錫、氧化銅鋁、氧化銅鎵、氧化勰銅或上述任意組合之 所構成。 200836366 發光磊晶結構214位於透明導電層2〇9之上,其中發 光磊晶結構214至少包括:第二電性接觸層2〇8、第二電 性第二包覆層207、第二電性第一包覆層2〇6、主動層 ‘ 205、第一電性包覆層204以及第一電性半導體層加。 . 在本發明的較佳實施例中,第一電性半導體層2〇3與第一 電性包覆層204係由摻雜有第一電性(例如^^型電性)摻質 之氮化鋁銦鎵或氮化鎵所組成。而主動層2〇5則係氮化鋁 鲁銦鎵以及氮化鎵所組成之多重量子井(MQW)結構。第二 電性第一包覆層206、第二電性第二包覆層2〇7以及第二 電性接觸層208係由摻雜有第二電性(例如1>型電性)換質 之氮化铭銦鎵或氮化鎵所纟且成。 其中位於金屬基板211上的第二電性接觸層2〇8具有 第二粗糙化表面216。位於第二電性接觸層2〇8上的第二 電性第一包覆層207具有第一粗糙化表面217。第二電性 第一包覆層206位於第二電性第二包覆層2〇7上。主動層 癱205位於第二電性第一包覆層2〇6上。第一電性包覆層 位於主動層205上。第一電性半導體層2〇3位於苐一電性 包覆層204上。在本發明的實施例之中,第一粗糙化表面 217包括至少一個平台突起(Mesa mil〇ck),例如平台突起 • 219或至少一個凹洞(pits),例如凹洞22〇;第二粗糙化表 面216包括至少一個平台突起,例如平台突起Μ〗或至少 一個凹洞’例如凹洞222,藉以分別在第二電性第二包覆 層207和第二電性接觸層2〇8上形成立體圖案。 第一電性電極215則位於發光磊晶結構214上。在本 200836366 發明的較佳實施例中,第一電性電極215係位於發光磊晶 結構214的第-電性半導體層2()3上,且係—種由欽、銘、 金或上述之任意合金所構成之單層或多層金屬結構。例 如’第-電性電極215包括:依序形成在第—電性半導體 層203上的金屬電極212以及钉線電極。An epitaxial substrate is first provided and a buffer 2 is formed on the epitaxial substrate. Next, an epitaxial growth step is performed on the buffer layer, and the second electric body layer, the first electrical cladding layer, the active layer, the second electrical third cladding layer, and the first electrical first layer are sequentially grown. The second cladding layer and the second electrical contact layer form a luminescent crystal structure. And the second electrically conductive second cladding layer has a first roughened surface ' such that the second electrically conductive contact layer has a second roughened surface. The metal substrate is formed on the light emitting crystal structure, and the stray crystal plate and the buffer layer are removed to expose the first electrical semiconductor layer. And exposing the first electrical semiconductor layer to the outer side to form at least one first electrical electrode _ 1 according to the above embodiment, the feature of the present invention is in the step of growing the light emitting diode = the epitaxial structure, A germanium surface is formed on the cladding layer of the epitaxial structure to enhance the bonding structure of the light-emitting diode (4) and the subsequent metal substrate, and to reduce the subsequent stripping process of the silicon wafer substrate, in addition to the light-emitting diode component The stupid crystal structure has roughening = the quantum efficiency of the light-emitting diode element can be increased, and the external light extraction rate of the light extraction rate member can be increased, and the double effect of the solid-state light emission can be improved at the same time.訏美呵猫日日结构与金属基板 joined; 200836366 [Embodiment] The present invention provides a south-receiving LED component and a method of fabrication, which can ensure the epitaxial structure of the LED component is stripped When the epitaxial (temporary) substrate is used, the epitaxial structure of the light-emitting diode element and the bonding force of the metal substrate are not affected, and the purpose of greatly improving the luminance of the light-emitting diode element can be achieved. Please refer to FIG. 2, which is a cross-sectional view showing a process of a germanium LED device 2 according to a preferred embodiment of the present invention. The light emitting diode element includes a metal substrate 211, a metal mirror 210, a transparent conductive layer 2〇9, a light emitting epitaxial structure 214, and a first electrical electrode 215. The metal mirror 210 is located above the metal substrate 211. The material of the metal substrate 211 preferably includes copper, _(m〇), nickel (off), gold (au), silver (Ag), uranium (pt), strontium (Sn), and Zn (Zn) or any combination thereof. Alloy. Lu metal mirror 210 is made of Ming (A1), silver (Ag), cobalt (Pt), gold (au), nickel (Ni), titanium (Ti), copper (Cu), indium (In), tin (sn ), (zn), lead, and (Pd) or any alloy of the above metals. The transparent conductive layer 209 is located on the gold mirror 210. In the present embodiment, the transparent conductive layer 209 is a single layer or a multilayer metal structure composed of nickel, gold or a nickel gold alloy. However, in other embodiments, the transparent conductive layer 209 may also be composed of indium lanthanum oxide, oxidized copper, zinc oxide, indium oxide, tin oxide, copper aluminum oxide, copper gallium oxide, copper beryllium oxide or any combination thereof. . The light-emitting epitaxial structure 214 is located on the transparent conductive layer 2〇9, wherein the light-emitting epitaxial structure 214 includes at least: a second electrical contact layer 2〇8, a second electrical second cladding layer 207, and a second electrical property. The first cladding layer 2〇6, the active layer '205, the first electrical cladding layer 204, and the first electrical semiconductor layer are added. In a preferred embodiment of the present invention, the first electrical semiconductor layer 2〇3 and the first electrical cladding layer 204 are doped with nitrogen doped with a first electrical (eg, electrical conductivity) dopant. Made up of aluminum indium gallium or gallium nitride. The active layer 2〇5 is a multiple quantum well (MQW) structure composed of aluminum nitride, gallium indium gallium and gallium nitride. The second electrical first cladding layer 206, the second electrical second cladding layer 2〇7, and the second electrical contact layer 208 are doped with a second electrical (eg, 1> type electrical) Nitride indium gallium or gallium nitride is formed. The second electrical contact layer 2〇8 on the metal substrate 211 has a second roughened surface 216. The second electrically conductive first cladding layer 207 on the second electrical contact layer 2A has a first roughened surface 217. The second electrical first cladding layer 206 is located on the second electrical second cladding layer 2〇7. The active layer 205 is located on the second electrical first cladding layer 2〇6. The first electrical cladding is on the active layer 205. The first electrical semiconductor layer 2〇3 is located on the first electrical cap layer 204. In an embodiment of the invention, the first roughened surface 217 comprises at least one platform protrusion, such as a platform protrusion 219 or at least one pit, such as a pocket 22; a second roughness The surface 216 includes at least one platform protrusion, such as a platform protrusion or at least one cavity, such as a cavity 222, for forming on the second electrical second cladding layer 207 and the second electrical contact layer 2〇8, respectively. Three-dimensional pattern. The first electrical electrode 215 is then located on the luminescent epitaxial structure 214. In the preferred embodiment of the invention of 200836366, the first electrical electrode 215 is located on the first electrical semiconductor layer 2() 3 of the light-emitting epitaxial structure 214, and is a type of Qin, Ming, Jin or the above. A single or multiple layer metal structure of any alloy. For example, the 'electro-electrode electrode 215' includes a metal electrode 212 and a nail wire electrode which are sequentially formed on the first-electroconductive semiconductor layer 203.

另外發光二極體元件200還包括至少一介電層226, 位於發光县晶結構2丨4之側壁2 2 5上,且由第二電性接觸 層纖往第一電性半導體層2〇3延伸,以覆蓋發光遙晶結 構2"之側壁225。其中介電層以之材料係選自於由含 石夕之氧化物、切1化物以及有機介電材料所組成之一族 值得注意的是,第-電性與第二電性係一相對概令 例如本發明的實施例中,當第一電性為卩型電性時,第· 電性為N型電性;反之當第一電性為電性時,第-電性則為P型電性。 ^讓本發明之上述和其他目的、特徵、和優點能更, 』易Μ,特舉下述實施例以詳述製造第2圖所繪示之發 一極體元件200的製作方法。 " 請參照第第3圖至第5圖,第3圖至第5圖係依照 較佳實施例所繪示的一種I化物發光二極體元 焱程剖面圖。發光二極體元件2〇〇可為ιπ族 ^發光二極體元件,較佳可為氮化鎵系列之發光二極體 製作發光二極體元件200時,先提供磊晶基板 200836366 磊晶基板201之材質可例如為藍寶石(A12〇3)、矽(Si)碳化 矽(SiC)或砷化鎵(GaAs)等。接下來,可先利用例如沉積 方式,於磊晶基板201上形成形成一缓衝層2〇2。在本發 明的較佳實施例之中,缓衝層202之材質為氮化鋁(ain) 或氮化鎵(GaN)所形成的一低溫緩衝層。 然後利用例如有機金屬化學氣相沉積技術,緩衝層 202上磊晶成長N型(第一電性)半導體層2〇3。其中,^ 型半導體層303之材質較佳可例如為N型氮化鋁銦鎵或nIn addition, the LED component 200 further includes at least one dielectric layer 226 located on the sidewall 2 2 5 of the light-emitting crystal structure 2丨4, and the second electrical contact layer is bonded to the first electrical semiconductor layer 2〇3. Extending to cover the sidewall 225 of the luminescent crystal structure 2". Wherein the material of the dielectric layer is selected from the group consisting of oxides containing shi, oxides, and organic dielectric materials, and it is noted that the first electrical property is opposite to the second electrical electrical system. For example, in the embodiment of the present invention, when the first electrical property is 卩-type electrical property, the electrical property is N-type electrical property; when the first electrical property is electrical, the first electrical property is P-type electrical power. Sex. The above and other objects, features, and advantages of the present invention will become more apparent. The following embodiments will be described in detail to detail the method of making the polar body element 200 illustrated in Fig. 2. " Please refer to Figures 3 to 5, and Figures 3 to 5 are cross-sectional views of an I-emitting diode body according to a preferred embodiment. The light emitting diode element 2 can be an ιπ family light emitting diode element, and preferably the gallium nitride series light emitting diode is used to fabricate the light emitting diode element 200, and the epitaxial substrate 200836366 epitaxial substrate is first provided. The material of 201 may be, for example, sapphire (A12〇3), bismuth (Si) tantalum carbide (SiC), or gallium arsenide (GaAs). Next, a buffer layer 2〇2 is formed on the epitaxial substrate 201 by, for example, deposition. In a preferred embodiment of the invention, the buffer layer 202 is made of a low temperature buffer layer formed of aluminum nitride (ain) or gallium nitride (GaN). The N-type (first electrical) semiconductor layer 2〇3 is then epitaxially grown on the buffer layer 202 by, for example, an organometallic chemical vapor deposition technique. The material of the semiconductor layer 303 is preferably N-type aluminum indium gallium nitride or n.

型氮化鎵。再利用例如有機金屬化學氣相沉積技術,於N 型半導體層203上成長N型包覆層2〇4。其中,N型包覆 層204之材質較佳可例如為N型摻雜之氮化鋁銦= (AlGalnN)或N型摻雜之氮化鎵。接著,村用例如有機金 屬化學氣相沉積方式,於N型包覆層2〇4上,磊晶成長 主動層205,其中主動層205較佳可例如為由氮化銘鋼蘇 (AIGdnN)以及氮化鎵所組成之多重量子井(mqw)結構。 待主動層205形成後,即可利用例如有機金屬化學氣 相沉積方式,成長P型第一包覆結構2〇6。首先,進行p 型材料膜之第一階段的成長步驟,例如使用三甲基鎵 (Trimethylgallium ; TMGa)、三甲基銘(tmai)、三甲基銦 (ΤΜΙη)、氨氣或上述氣體之任意組合作為反應氣體,且加 入Ρ型摻質,例如鎂(Mg)等,以形成?型第一包覆層施 於主動層205上。Type gallium nitride. The N-type cladding layer 2〇4 is grown on the N-type semiconductor layer 203 by, for example, an organometallic chemical vapor deposition technique. The material of the N-type cladding layer 204 is preferably, for example, an N-type doped aluminum nitride indium = (AlGalnN) or an N-type doped gallium nitride. Then, the village is epitaxially grown on the N-type cladding layer 2〇4 by, for example, organometallic chemical vapor deposition, wherein the active layer 205 is preferably made of, for example, AIGdnN. A multiple quantum well (mqw) structure composed of gallium nitride. After the active layer 205 is formed, the P-type first cladding structure 2〇6 can be grown by, for example, organometallic chemical vapor deposition. First, a growth step of the first stage of the p-type material film is performed, for example, using trimethylgallium (TMGa), trimethyl (tmai), trimethylindium (ΤΜΙη), ammonia, or any of the above gases. Combined as a reaction gas, and adding a cerium type dopant such as magnesium (Mg) or the like to form? A first cladding layer is applied to the active layer 205.

Interrupted 在本發明之 接下來,進行中斷成長步驟(Gr〇wth Step),以中斷p型第一包覆層2〇6的成長。 11 200836366 一較佳實施例中,於中斷成長步驟時,係停止供應三甲基 鎵、三甲基鋁及三甲基銦。此外,進行中斷成長步驟時, 所使用之反應氣體可為氨氣、氮氣或氫氣。在此中斷成長 步驟期間,導入觸媒,此觸媒包括至少一種觸媒元素,藉 以在P型第一包覆層206之表面上形成密集分佈之成核點 (Nuclei Site)(未繪示)。其中,觸媒元素可以是作為半導 體摻雜用的一般雜質元素,觸媒元素可例如為鎂、辞 (Zn)、錫(Sn)、鉛(Pb)、鈹(Be)、鈣(Ca)、鋇(Ba)、矽(Si)、 碳(C)、鍺(Ge)、填(P)、珅(As)、蹄(Te)、石西(Se)、删(B)、 鉍(Bi)、硫(s)、鈦(Ti)、鉻(Ci*)、鎢(W)、金(An)、鉑(pt)、 在呂(A1)、銦(in)、或錄(g a)。且觸媒元素之導入至少可由 二茂鎮(CP2Mg)、二乙基鋅(DEZn)、二曱基鋅(DMZn)、錫、 錯、鈹、鈣、鋇、矽甲烷(SiH4)、乙矽烷(Si2H6)、四氯化 碳(cci4)、四溴化破(CBr4)、鍺烷(GeH4)、磷、磷化氮 (PUS)、石中化鼠(asjj3)、碑、硒、棚、銀、硫、欽、絡、 鎢、金、翻、TMA卜DEAb TMIn、以及TMGa所組成之 一族群參與反應獲得。 值得注意的一點是,若形成p型第一包覆層2〇6所使 用之P型掺質與所導入之觸媒元素為同一元素,則在中斷 成長步驟期間無須停止p型摻質的導入,亦無須另外導入 觸媒元素,此時的P型摻質轉而作為觸媒。而當形成p 型第一包覆層206所使用之p型摻質與所導入之觸媒元素 為非同一種元素,則停止供應p型摻質,再導入觸媒元 素。也就是說,在本發明之較佳實施例中,中斷成長步驟 12 200836366 使用氨作為反應氣體,並同時導入觸媒。 在中斷成長步驟中,藉由控制中斷成長步驟之時間、 反應氣體流量及成反應腔壓力,可調整成核點之分佈密度 與尺寸,進而可調控後續之發光二極體元件晶片表面之二 糙度,亦即可控制後續形成之平台突起219(凹洞22〇)的 鬲度(深度)、大小及斜面角度。 、Interrupted Next, in the present invention, an interrupt growth step (Gr〇wth Step) is performed to interrupt the growth of the p-type first cladding layer 2〇6. 11 200836366 In a preferred embodiment, the supply of trimethylgallium, trimethylaluminum, and trimethylindium is stopped when the growth step is interrupted. Further, when the interrupt growth step is performed, the reaction gas used may be ammonia gas, nitrogen gas or hydrogen gas. During the interrupt growth step, the catalyst is introduced, and the catalyst includes at least one catalyst element, thereby forming a densely distributed nucleation site (not shown) on the surface of the P-type first cladding layer 206 (not shown). . Wherein, the catalyst element may be a general impurity element for doping semiconductor, and the catalyst element may be, for example, magnesium, Zn, Sn, lead (Pb), bismuth (Be), calcium (Ca), Ba (Ba), Si (Si), Carbon (C), Ge (Ge), Fill (P), As (As), Hoof (Te), Shixi (Se), Deletion (B), Bi (Bi) Sulfur (s), titanium (Ti), chromium (Ci*), tungsten (W), gold (An), platinum (pt), in Lu (A1), indium (in), or recorded (ga). And the introduction of the catalyst element can be at least from the town of Simao (CP2Mg), diethyl zinc (DEZn), zinc dimethyl hydride (DMZn), tin, samarium, strontium, calcium, strontium, strontium methane (SiH4), acetane ( Si2H6), carbon tetrachloride (cci4), tetrabrominated (CBr4), decane (GeH4), phosphorus, phosphating nitrogen (PUS), stone squirrel (asjj3), monument, selenium, shed, silver, A group consisting of sulfur, chin, complex, tungsten, gold, turn, TMA, DEAb TMIn, and TMGa is involved in the reaction. It is worth noting that if the P-type dopant used to form the p-type first cladding layer 2〇6 is the same element as the introduced catalyst element, it is not necessary to stop the introduction of the p-type dopant during the interruption growth step. There is no need to introduce a catalyst element separately, and the P-type dopant is used as a catalyst at this time. When the p-type dopant used to form the p-type first cladding layer 206 is not the same as the introduced catalyst element, the supply of the p-type dopant is stopped and the catalytic element is introduced. That is, in the preferred embodiment of the invention, the interrupt growth step 12 200836366 uses ammonia as the reactive gas and simultaneously introduces the catalyst. In the interrupt growth step, by controlling the time during which the growth step is interrupted, the flow rate of the reaction gas, and the pressure of the reaction chamber, the distribution density and size of the nucleation point can be adjusted, and then the surface of the subsequent LED surface of the LED device can be controlled. The degree of depth (depth), size, and bevel angle of the subsequently formed platform protrusion 219 (cavity 22〇) can also be controlled. ,

待中斷成長步驟完成後,以例如有機金屬化學氣相沉 積方式,進行P型第二包覆層207和p型接觸層2〇8的 成長步驟,可利用分佈在p型第一包覆層2〇6上之成核 點,並例如使用三甲基鎵、三曱基鋁、三甲基銦' 氨氣或 上述氣體之任意組合作為反應氣體,且加入p型摻質,例 如鎂等,來形成P型第二包覆層207和p型接觸層2〇8 於P型第一包覆層206上。也就是說,將原先在中斷成長 步驟期間停止供應之反應氣體,例如三甲基鎵,予以開 啟’再次回復供應。在此第二階段成長步驟中,由於磊晶 表面即p型苐一包覆層表面上散佈有成核點,因此 P型第二包覆層2〇7和p型接觸層2〇8的磊晶可以這些成 核點為基準來進行成長,換句話說,利用上述步驟形成之 成核點目的,是在加速局部位置的縱向成長速率,達到具 有高低起伏之表面狀態,亦即在p型第二包覆層2〇7上形 成多個平台突起219(凹洞220),並在P型接觸層208上 形成多個平台狀突起221(凹洞222),如第3圖所示。至 此完成發光磊晶結構214的磊晶成長步驟。 其中’這些平台狀突起219和221之形狀可例如為梯 13 200836366 形。在本發明之另一較佳實施例中,平台狀突起219和 221之側面係垂直於基板表面,亦即這些平台狀突起21 & 和221可為正方體。如此一來,即可使p型第二包覆声 , 207和P型接觸層2〇8分別獲得由眾多平台狀突起所構^ 之粗糙表面217和216。 在元成蠢晶成長步驟之後,藉由乾式蝕刻、濕式蝕刻 或機械切割,在發光蠢晶結構214中形成複數個溝槽 瞻 223。其中每一條溝槽223皆由第二電性接觸層2〇8延伸 至第一電性半導體層203,藉以定義出複數個發光磊晶單 224。接著再沉積含矽之氧化物、含矽氮化物以及有機 介電材料在每一條溝槽223的側壁225上,以形成一介電 層226覆蓋溝槽223的側壁225。After the completion of the growth step, the growth step of the P-type second cladding layer 207 and the p-type contact layer 2〇8 is performed by, for example, organometallic chemical vapor deposition, and may be distributed in the p-type first cladding layer 2 a nucleation point on 〇6, and for example, using trimethylgallium, trimethylaluminum, trimethylindium ammonia or any combination of the above gases as a reaction gas, and adding a p-type dopant such as magnesium, etc. A P-type second cladding layer 207 and a p-type contact layer 2〇8 are formed on the P-type first cladding layer 206. That is to say, the reaction gas that was originally stopped during the interruption of the growth step, such as trimethylgallium, is turned on and returned again. In the second-stage growth step, since the epitaxial surface, that is, the surface of the p-type germanium-clad layer is dispersed with nucleation sites, the P-type second cladding layer 2〇7 and the p-type contact layer 2〇8 are exposed. The crystal can be grown on the basis of these nucleation points. In other words, the nucleation point formed by the above steps is to accelerate the longitudinal growth rate of the local position to reach a surface state with high and low fluctuations, that is, in the p-type A plurality of land protrusions 219 (pits 220) are formed on the second cladding layer 2, and a plurality of plate-like protrusions 221 (pits 222) are formed on the P-type contact layer 208 as shown in FIG. The epitaxial growth step of the luminescent epitaxial structure 214 is thus completed. The shape of the 'platform protrusions 219 and 221' may be, for example, the shape of the ladder 13 200836366. In another preferred embodiment of the invention, the sides of the platform-like projections 219 and 221 are perpendicular to the surface of the substrate, i.e., the platform-like projections 21 & 221 may be square. In this way, the p-type second cladding sound, 207 and P-type contact layer 2〇8 can be respectively obtained as rough surfaces 217 and 216 composed of a plurality of plate-like protrusions. After the amorphous growth step, a plurality of trenches 223 are formed in the light emitting structure 214 by dry etching, wet etching, or mechanical cutting. Each of the trenches 223 extends from the second electrical contact layer 2〇8 to the first electrical semiconductor layer 203, thereby defining a plurality of luminescent epitaxial wafers 224. A tantalum-containing oxide, a germanium-containing nitride, and an organic dielectric material are then deposited over the sidewall 225 of each trench 223 to form a dielectric layer 226 covering the sidewall 225 of the trench 223.

接著,利用例如蒸鍍等技術,於p型接觸層2〇8上形 成透明導電層209,而可做為發光二極體元件之陽極,所 形成之結構如第4圖所示。其中,透明導電層2〇9可為N • 型掺雜材料或P型摻雜材料,端賴與透明導電層2〇9連接 之接觸層208的電性而定。其中透明專電層2〇9具有舆揍 觸層208相同之電性。意即是在本發明的另外一些實施例 中,發光磊晶結構214各層的電性可與前述實施例相反。 透明導電層209之材質較佳可例如為氧化銦錫 ^ (Indium Tin 〇xide ; IT〇)、氧化鎘錫(Cadmium Tin 〇xide ; • CT〇)、氧化鋅錫(IZ0)、摻雜銘之氧化鋅(ZnO:Al)、氧化 鋅鎵(ZnGhO4)、摻雜銻之氡化錫(Sn〇2:Sb)、摻雜錫之氧 化鎵(GazO’Sn)、摻雜錫之氧化銀銦、摻雜辞 200836366 之氧化銦(Ιη203:Ζη)、氧化銅鋁(CuA102)、鑭銅氧硫化物 (LaCuOS)、氧化錄(NiO)、氧化銅嫁(CuGa〇2)、氧化在思銅 (SrCii2〇2)、或極薄之金屬。在本發明之較佳實施例中, 透明導電層209係共同地形成於p型接觸層208的第二粗 糙表面216,故透明導電層209也具有一第三粗糙表面 227。 接著又藉由熱蒸著(Thermal Evaporation)、離子束蒸 ⑩ 鍍或離子蒸鍍法,在透明導電層209上共同地形成金屬反 射鏡210,其中金屬反射鏡21〇也具有一第四粗糙表面 228。再藉由電鍍、蒸鍍與沉積法於金屬反射鏡21〇上, 沉積銅、姐(Mo)、錄(Ni)、金(Au)、銀(Ag>、鉑(pt)、錫 (Sn)和鋅(Zn)或上述任意組合之合金,以形成金屬基板 211 〇 (俊讀參照如第 晶基板201與緩衝層202同時移除,並將Ν型半導體 203暴露於外。並於Ν型半導體層2()3層暴露於外之 側,形成N型電極。在本實施例中,N型電形 係在N型半導體層脈暴露於外之—側依序形成複數 金屬電極212以及複數個釘線電極213,以 値發光磊晶單元224。然後藉由雷射 赫】對應母 ^ % - 对4機械切割,沿著 槽223進仃一分割步驟,以使每— 分離。 货九W晶早7G 2: Ρ型 的第 耩由p i弟一包覆層207之第一 m λα ^ 祖糙表面21: 接觸層208的弟二粗糙表面216 衣回216以及透明導電層2< 15 200836366 三粗糙表面223,可有效地增加發光磊晶結構214與金屬 基板211的結合應力,同時可減少主動層2〇5所發出之光 產生全反射的數量。不僅可以確保磊晶基板剝除製成的良 . 率,也可同時降低發光磊晶單元224的光耗損率,進而可 • 大幅提升發光二極體元件224的發光亮度與製程良率。 雖然本發明已以上述較佳實施例揭露如上,然其並非 用以限定本發明,任何所屬技術領域中具有通常知識者, • 在不脫離本發明之精神和範圍内,當可作各種之更動與潤 飾,因此本發明之保護範圍當視後附之申請專利範圍所界 定者為準。 1 【圖式簡單說明】 根據以上所述之輕伟每# / 罕乂仏貝鈿例,並配合所附圖式說明, 吞買者當能對本發明之目的 姑:^ I目的、特徵、和優點有更深入的理 解0但值得注意的是,Α τ、、主枯i 疋馮了 β楚描述起見,本說明書所 之圖式並未按照比例尺加以繪示。、 圖式簡單說明如下: 第1Α圖至第1 β圖传轵姑羽a + 口係根據習知方法所繪示之氮仆 "圖係依妝本發明—較佳實施例所繪示的一種 光二極體元件200之製程剖面圖。 種 錄第3圖至第5圖係依照本發明一 一種氮化物發光二極體元件_之製程剖面圖。的 發光二極體元件⑽的製程結構剖面圖 乳化物 發 16 200836366 【主要元件符號說明】 100 :發光二極體元件 102 :低溫缓衝層 104 : N型包覆層 106 : P型包覆層 108 :金屬基板 201 :磊晶基板 203 :第一電性半導體層 205 :主動層 207 :第二電性第二包覆層 209 ··透明導電層 211 :金屬基板 213 ·軒線電極 215 :第一電性電極 217 :第一粗糙表面 220 :凹洞 222 :凹洞 224 :發光磊晶單元 2 2 6 :介電層 2 2 8 :第四粗链表面 101 :基板 103 : N型半導體層 105 :主動層 107 : P型接觸層 200 :發光二極體元件 202 :缓衝層 204 :第一電性包覆層 206:第二電性第一包覆層 208 :第二電性接觸層 210 :金屬反射鏡 212 :金屬電極 214 :發光磊晶結構 216 :第二粗糙表面 219 :平台突起 221 :平台突起 223 :溝槽 225 :側壁 227 ··第三粗糙表面 17Next, a transparent conductive layer 209 is formed on the p-type contact layer 2A8 by a technique such as vapor deposition, and can be used as an anode of the light-emitting diode element, and the structure is as shown in Fig. 4. The transparent conductive layer 2〇9 may be an N• type doping material or a P type doping material, depending on the electrical properties of the contact layer 208 connected to the transparent conductive layer 2〇9. The transparent electric layer 2〇9 has the same electrical properties as the contact layer 208. That is, in other embodiments of the invention, the electrical properties of the layers of luminescent epitaxial structure 214 may be opposite to those of the previous embodiments. The material of the transparent conductive layer 209 is preferably, for example, Indium Tin 〇xide (IT〇), cadmium tin oxide (Cadmium Tin 〇xide; CT 〇), zinc tin oxide (IZ0), doping Zinc oxide (ZnO: Al), zinc gallium oxide (ZnGhO4), antimony-doped antimony tin (Sn〇2: Sb), tin-doped gallium oxide (GazO'Sn), tin-doped silver indium oxide, Indium oxide (Ιη203:Ζη), copper aluminide (CuA102), beryllium copper oxysulfide (LaCuOS), oxidation record (NiO), copper oxide (CuGa〇2), oxidized in copper (SrCii2) 〇 2), or very thin metal. In a preferred embodiment of the invention, the transparent conductive layer 209 is commonly formed on the second rough surface 216 of the p-type contact layer 208, so that the transparent conductive layer 209 also has a third rough surface 227. Then, the metal mirror 210 is collectively formed on the transparent conductive layer 209 by thermal evaporation, ion beam evaporation, or ion evaporation, wherein the metal mirror 21 also has a fourth rough surface. 228. Then, by electroplating, vapor deposition and deposition on the metal mirror 21, copper, sister (Mo), Ni (Ni), gold (Au), silver (Ag), platinum (pt), tin (Sn) are deposited. And zinc (Zn) or an alloy of any combination thereof to form a metal substrate 211 〇 (for reference, the first crystal substrate 201 and the buffer layer 202 are simultaneously removed, and the germanium semiconductor 203 is exposed to the outside. The layer 2() 3 is exposed on the outer side to form an N-type electrode. In this embodiment, the N-type electric system forms a plurality of metal electrodes 212 and a plurality of sequentially in the N-type semiconductor layer pulse exposed to the outside side. The wire electrode 213 is used to illuminate the epitaxial unit 224. Then, the laser is cut by the laser corresponding to the parent ^ % - 4, and a step is divided along the groove 223 to separate each of the particles. Early 7G 2: Ρ type of 耩 耩 pi 一 一 一 一 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 207 208 接触 接触 接触 接触 接触 粗糙 粗糙 粗糙 216 216 216 216 216 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 15 15 15 15 15 The surface 223 can effectively increase the bonding stress of the luminescent epitaxial structure 214 and the metal substrate 211, and can reduce the emission of the active layer 2〇5. The amount of total reflection produced by the light is not only ensured the yield of the epitaxial substrate stripping, but also reduces the light loss rate of the luminescent epitaxial unit 224, thereby greatly increasing the light-emitting diode element 224. Luminous Luminance and Process Yield. The present invention has been disclosed above in the above-described preferred embodiments, and is not intended to limit the invention, and any one of ordinary skill in the art, without departing from the spirit and scope of the present invention. The scope of protection of the present invention is subject to the definition of the scope of the appended patent application. 1 [Simple description of the diagram] According to the above, the lighter per # / 乂仏In addition to the description of the drawings, the purchaser can have a deeper understanding of the purpose, characteristics, and advantages of the present invention. However, it is worth noting that Ατ,疋冯了β楚 description, the schema of this specification is not shown according to the scale. The simple description of the schema is as follows: 1st to 1st β 轵 轵 轵 羽 a a + 口 according to the conventional method Drawn The invention is a cross-sectional view of a photodiode element 200 according to the preferred embodiment of the present invention. The third to fifth figures of the invention are based on a nitride light-emitting diode according to the present invention. Process diagram of the polar body component _. Process diagram of the light-emitting diode component (10). Emulsion hair 16 200836366 [Explanation of main component symbols] 100 : Light-emitting diode component 102 : Low-temperature buffer layer 104 : N-type package Coating 106: P-type cladding layer 108: metal substrate 201: epitaxial substrate 203: first electrical semiconductor layer 205: active layer 207: second electrical second cladding layer 209 · transparent conductive layer 211: metal Substrate 213 · 线 line electrode 215 : first electric electrode 217 : first rough surface 220 : cavity 222 : cavity 224 : luminescent epitaxial unit 2 2 6 : dielectric layer 2 2 8 : fourth thick chain surface 101 : substrate 103 : N-type semiconductor layer 105 : active layer 107 : P-type contact layer 200 : light-emitting diode element 202 : buffer layer 204 : first electrical cladding layer 206 : second electrical first cladding layer 208: second electrical contact layer 210: metal mirror 212: metal electrode 214: light emitting epitaxial structure 21 6: second rough surface 219: platform protrusion 221: platform protrusion 223: groove 225: side wall 227 · · third rough surface 17

Claims (1)

200836366 ':、歲薄鼻翁_爵巧:〇'::#$ 1. 一種發光二極體元件,包括: 一金屬基板; 一發光磊晶結構,位於該金屬基板上,其中該發光磊晶 結構至少包括: 一第二電性接觸層,位於該金屬基板上,其中該第 二電性接觸層具有一第二粗糙化表面;200836366 ':, 薄薄鼻翁_爵巧:〇'::#$ 1. A light-emitting diode component comprising: a metal substrate; a luminescent epitaxial structure on the metal substrate, wherein the luminescent epitaxial The structure includes at least: a second electrical contact layer on the metal substrate, wherein the second electrical contact layer has a second roughened surface; 一第二電性第二包覆層,位於該第二電性接觸層 上,其中該第二電性第二包覆層具有一第一粗糙化表 面; 一第二電性第一包覆層,位於該第二電性第二包覆 層上; 一主動層,位於該第二電性第一包覆層上; 一第一電性包覆層,位於該主動層上;以及 一第一電性半導體層,位於該第一電性包覆層上; 以及 一第一電性電極,位於該第一電性半導體層上。 2.如申請專利範圍第1項所述之發光二極體元件,更 包括: 一金屬反射鏡,位於該金屬基板與該發光磊晶結構之 間;以及 一透明導電層,位於該金屬反射鏡與該發光磊晶結構之 18 200836366 3·如申請專利範圍第2項所述之發光二極體元件,其 中該金屬反射鏡材料係選自於由銘、銀、始、金、鎳、鈦、 銅、銦、錫、鋅、鉛和鈀及其合金所組成之一族群。 4·如申請專利範圍第2項所述之發光二極體元件,其 中該透明導電層係由鎳、金或鎳金合金所構成之一單層或一 多層金屬結構。 5·如申請專利範圍第2項所述之發光二極體元件,其 中該透明導電層材料係選自於由氧化銦錫、氧化鎘錫、氧化 鋅、氧化銦、氧化錫、氧化銅鋁、氧化銅鎵、氧化锶銅以及 上述任意組合所組成之一族群。 6. 如申請專利範圍第2項所述之發光二極體元件,其 中該第一電性電極係由鈦、鋁、金或上述之任意合金所構成 _ 之一單層或_多層金屬結構。 7, 如申睛專利範圍第1項所述之發光二極體元件,其中 該金屬基板材料係選自由銅、鉬、鎳、金、銀、鉑、錫和鋅 , 及上述任意紐合所組成之一族群。 8·如申請專利範圍第1項所述之發光二極體元件,更 包括一介電層,位於該發光磊晶結構之至少一側壁上,且由 該第二電性接觸層往該第一電性半導體層延伸。 200836366 9·如中請專利範圍第8項所述之發光二極體元件,复 中該介電層之材料係選自於由—含石夕之氧化物、 : 物以及一有機介電材料所組成之—族 虱化 其 平 10·如申請專利範圍第i項所述之發光二極體元件 中:弟-粗糙化表面與該第二粗糙化表面皆包括至少 台突起(Mesa Hillock)或至少—凹洞(pits)。 H. -種發光二極體元件的製造方法,至少包括. 提供一磊晶基板; 形成一緩衝層,於該磊晶基板上; 主酋進m成長步驟,於該緩衝層上依序為—第一電性 ^體層、-第—電性包覆層、—主動層、—第二電性第— 層、一弟一電性第二包覆層以及一第二電性接觸層,以 :成-發光蠢晶結構,並且使該第二電性第二包覆層具 粗糙化表面,使㈣二電性接觸層具有―第二㈣化表 =該發光磊晶結構上形成—金屬基板; 心除該m板以及該緩衝層,以暴露出該第—電 導體層·,以及 電 於該第-電性半導體層暴露於外之一側形成一第 性電極。 12.如申請專利範圍第11項所述之發光二極體元 20 200836366 製造方法,其中該磊晶基板之材質係選自於由藍寶石 (Al2〇3)、矽(Si)、碳化矽(Sic)以及砷化鎵(GaAs)所組成之一 族群。 13.如申請專利範圍第11項所述之發光二極體元件的 製造方法,其中該緩衝層之材質係選自於由氮化鋁(A1N) 或氮化鎵(GaN)所形成的一低溫缓衝層。 14·如申請專利範圍第11項所述之發光二極體元件的 製造方法,其中該第一電性半導體層與該第一電性包覆層之 材質係選自於由具有一第一電性之氮化鋁銦鎵(A1GaInN)以 及氮化鎵所組成之一族群。 15·如申請專利範圍第n項所述之發光二極體元件的 製造方法,其中該主動層係一氮化鋁銦鎵以及氮化鎵所組成 之多重量子井(MQW)绪構。a second electrical second cladding layer on the second electrical contact layer, wherein the second electrical second cladding layer has a first roughened surface; and a second electrical first cladding layer On the second electrical second cladding layer; an active layer on the second electrical first cladding layer; a first electrical cladding layer on the active layer; and a first An electrical semiconductor layer is disposed on the first electrical cladding layer; and a first electrical electrode is disposed on the first electrical semiconductor layer. 2. The luminescent diode component of claim 1, further comprising: a metal mirror between the metal substrate and the luminescent epitaxial structure; and a transparent conductive layer located at the metal mirror The light-emitting diode element according to the invention of claim 2, wherein the metal mirror material is selected from the group consisting of: Ming, silver, beginning, gold, nickel, titanium, A group of copper, indium, tin, zinc, lead, and palladium and their alloys. 4. The light-emitting diode element according to claim 2, wherein the transparent conductive layer is a single layer or a multilayer metal structure composed of nickel, gold or a nickel gold alloy. 5. The light-emitting diode component according to claim 2, wherein the transparent conductive layer material is selected from the group consisting of indium tin oxide, cadmium tin oxide, zinc oxide, indium oxide, tin oxide, copper aluminum oxide, A group consisting of copper gallium oxide, copper beryllium oxide, and any combination of the above. 6. The light-emitting diode element according to claim 2, wherein the first electrical electrode is composed of titanium, aluminum, gold or any of the above alloys, a single layer or a multi-layer metal structure. 7. The light-emitting diode component according to claim 1, wherein the metal substrate material is selected from the group consisting of copper, molybdenum, nickel, gold, silver, platinum, tin, and zinc, and any of the above-mentioned combinations. One group. The light-emitting diode component of claim 1, further comprising a dielectric layer on at least one sidewall of the light-emitting epitaxial structure, and the first electrical contact layer is toward the first The electrical semiconductor layer extends. The light-emitting diode element according to Item 8 of the patent application, wherein the material of the dielectric layer is selected from the group consisting of: an oxide containing a stone, an object, and an organic dielectric material. The composition of the light-emitting diode element as described in claim i: the younger-roughened surface and the second roughened surface both include at least a protrusion (Mesa Hillock) or at least - pits. H. A method for fabricating a light-emitting diode element, comprising at least: providing an epitaxial substrate; forming a buffer layer on the epitaxial substrate; and forming a growth step of the main Emirates, sequentially on the buffer layer - a first electrical layer, a first electrical cladding layer, an active layer, a second electrical first layer, a second electrical first cladding layer, and a second electrical contact layer to: Forming a light-emitting structure, and causing the second electrical second cladding layer to have a roughened surface, so that the (four) two-electron contact layer has a "second (four) chemical table = formed on the light-emitting epitaxial structure - a metal substrate; The m-plate and the buffer layer are removed to expose the first electrical conductor layer, and a first electrode is formed on the outer side of the first electrical semiconductor layer. 12. The method of manufacturing the light-emitting diode element 20 200836366 according to claim 11, wherein the material of the epitaxial substrate is selected from the group consisting of sapphire (Al2〇3), bismuth (Si), and tantalum carbide (Sic). ) and a group of gallium arsenide (GaAs). The method for manufacturing a light-emitting diode element according to claim 11, wherein the material of the buffer layer is selected from a low temperature formed by aluminum nitride (A1N) or gallium nitride (GaN). The buffer layer. The method for manufacturing a light-emitting diode device according to claim 11, wherein the material of the first electrical semiconductor layer and the first electrical cladding layer is selected from the group consisting of A group of aluminum nitride indium gallium (A1GaInN) and gallium nitride. 15. The method of fabricating a light-emitting diode element according to claim n, wherein the active layer is a multiple quantum well (MQW) composed of aluminum indium gallium nitride and gallium nitride. W I赞尤二極體元 裝la方法’其中該第二電性第一包覆層、該第二電性第 覆層以及該第二電性接觸層之材質係選自於由具有_ 電性之氮化鋁銦鎵以及氮化鎵所組成之一族群。 尤二極體元 製造方法’其中形成該第二電性第一包覆層、該第二電 二包覆層以及該第二電性接觸層之步驟,至少包括使用 21 200836366 基鎵(Trimethylgallium ; TMGa)、三甲基銘(TMAl)、三甲基 銦(TMIn)、氨或上述之任意組合作為一反應氣體。 18.如申請專利範圍第I?項所述之發光二極體元件的 . 製造方法,其中在成長該第二電性第二包覆層之前,更包括 • 進行一中斷成長步驟包括: 停止導入該反應氣體;以及 導入一觸媒(Catalyst),藉以在該第二電性第一包覆層 • 之表面上形成複數個成核點(Nuclei Site)。 19·如申請專利範圍第ι7項所述之發光二極體元件的 製造方法’其中談中斷成長步驟更包括降低磊晶溫度。 2〇·如申請專利範圍第17項所述之發光二極體元件的 製造方法,其中該觸媒包括至少一觸媒元素,且該觸媒元素 係選自於由鎂(Mg)、鋅、錫、鉛、鈹(Be)、鈣(Ca)、鋇(Ba)、 鲁石夕(si)、碳(〇、鍺(Ge)、磷(P)、砷(As)、碲(Te)、砸(Se)、 爛(B)、M(Bi)、硫(S)、鈦、鉻(Cr)、鎢(w)、金、鉑、鋁、 銦、鎵(Ga)以及上述任意組合所組成之一族群。 , 21.如申請專利範圍第I?項所述之高亮度發光二極體 70件之製作方法,其中該觸媒係選自於由氨氣、氮氣以及氫 ’ 氣所組成之一族群。 22·如申凊專利範圍第17項所述之發光二極體元件的 22 200836366 製造方法,其巾在該巾斷成 長,藉以在該第二電性第_包覆後·,進行蠢晶成 粗韃化表面之第二電性第二包覆層,其 弟一 有,一平 口犬起(Mesa HiU〇ck)或—凹洞(pits)。 23.如申請專利範圍第22項所述之發 製造方法,JL中在哕中齡士、且本疏 胺疋件的 、f在該中斷成長步驟之後’繼續進行蟲晶成 :’以在該第二電性第二包覆層之表面上形成具有該第二粗 糙化表面之第二電性接觸層’其中該第二編匕表面具有 至乂平台突起(Mesa Hillock)或一凹洞(pits)。 24·如申凊專利範圍第U項所述之發光二極體元件的 製k方法其中在元成該蠢晶成長步驟之後,以及形成該金 屬基板之前,更包括: 於该第二電性接觸層上形成一透明導電層;以及 於該透明導電層上形成一金屬反射層。 25·如申請專利範圍第24項所述之發光二極體元件的 製造方法,其中該金屬反射層係藉由蒸鍍、電鍍或沉積方式 形成於該透明導電層上。 26·如申請專科範圍第n項所述之發光二極體元件的 製造方法,其中在完成該蠢晶成長步驟之後,以及形成該金 屬基板之前,更包括·· 形成複數個溝槽深入該發光磊晶結構,藉以定義出複數 23 200836366 個發光蠢晶單元;以及 於每一該些溝槽之侧壁上覆蓋一介電層。 27·如申請專利範圍第26項所述之發光二極體元件、 製,方法,其中該些溝槽係藉由乾式蝕刻'濕式蝕刻=機二 切割’由該第二電性接觸層深入至一部分之該第— m m,. 丨王十導 28·如申請專利範圍第27項所述之發光二極體元件的 製造方法,其中該介電層係藉由沉積或塗佈方式形成巷 槽之侧壁上。 、顽溝 29·如申請專利範圍第27項所述之發光二極體元 製造方法,其中每一該些第一電性電極的形成,係在該第二 電^半導體層暴露於外之_側依序形成複數個金屬電極以 及禝數個釘線電極,以分別對應每一該些發光磊晶單元。 3〇’如申請專利範圍第29項所述之發光二極體 製造方法,直中 兀件的 、 ,、甲在形成該弟一電性電極之後,更包括沿 二溝槽進仃一分割步驟,以分離該些發光磊晶單元。 24The WI Zanyou diode package method includes a material of the second electrical first cladding layer, the second electrical first cladding layer and the second electrical contact layer selected from the group consisting of A group consisting of aluminum indium gallium nitride and gallium nitride. The second diode body manufacturing method 'the step of forming the second electrical first cladding layer, the second electrical second cladding layer and the second electrical contact layer comprises at least 21 200836366-based gallium (Trimethylgallium; TMGa), trimethylamine (TMAl), trimethylindium (TMIn), ammonia or any combination of the above is used as a reactive gas. 18. The method of manufacturing a light emitting diode device according to claim 1, wherein before the growing the second electrical second cladding layer, the method further comprises: performing an interrupt growth step comprising: stopping the import The reaction gas; and a catalyst (Catalyst) to form a plurality of Nuclee Sites on the surface of the second electrical first cladding layer. 19. A method of fabricating a light-emitting diode element as claimed in claim 1 wherein the interrupting growth step further comprises reducing the epitaxial temperature. The method for producing a light-emitting diode element according to claim 17, wherein the catalyst comprises at least one catalyst element, and the catalyst element is selected from the group consisting of magnesium (Mg), zinc, Tin, lead, beryllium (Be), calcium (Ca), barium (Ba), ruthenium (si), carbon (germanium, germanium (Ge), phosphorus (P), arsenic (As), germanium (Te),砸(Se), rot (B), M(Bi), sulfur (S), titanium, chromium (Cr), tungsten (w), gold, platinum, aluminum, indium, gallium (Ga), and any combination thereof A method of fabricating a high-intensity light-emitting diode 70 according to claim 1, wherein the catalyst is selected from the group consisting of ammonia, nitrogen, and hydrogen gas. 22. The manufacturing method of the light-emitting diode element according to claim 17, wherein the towel is grown in the towel, whereby the second electrical coating is carried out. The second electrical second coating layer of the roughened surface is formed by a younger one, a Mesa HiU〇ck or a pit. 23. As claimed in the 22nd item Said hair In the method of JL, in the middle of the 哕 龄 、 且 且 且 且 本 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' a second electrical contact layer having the second roughened surface, wherein the second braided surface has a Mesa Hillock or a pit. 24 · As claimed in claim U The method for fabricating a light-emitting diode element, after the step of growing the amorphous crystal and before forming the metal substrate, further comprising: forming a transparent conductive layer on the second electrical contact layer; A method of manufacturing a light-emitting diode element according to claim 24, wherein the metal reflective layer is formed by evaporation, plating or deposition on the transparent layer. The method for manufacturing a light-emitting diode element according to item n of the application specification, wherein after the completion of the stray crystal growth step and before forming the metal substrate, a plurality of grooves are formed. groove Extending the luminescent epitaxial structure to define a plurality of illuminating cells of 200836366; and covering a sidewall of each of the trenches with a dielectric layer. 27· illuminating as described in claim 26 A diode device, a method, and a method, wherein the trenches are wet-etched by a dry etching, and the second electrical contact layer penetrates to a portion of the first-millimeter. The method of manufacturing a light-emitting diode element according to claim 27, wherein the dielectric layer is formed on the sidewall of the channel by deposition or coating. The method for manufacturing a light-emitting diode according to claim 27, wherein each of the first electrical electrodes is formed by exposing the second semiconductor layer to the outside A plurality of metal electrodes and a plurality of stud electrodes are sequentially formed on the side to respectively correspond to each of the luminescent epitaxial units. 3. The method for manufacturing a light-emitting diode according to claim 29, wherein after forming the electrical electrode, the method further comprises the step of dividing along the two trenches. To separate the luminescent epitaxial units. twenty four
TW96106163A 2007-02-16 2007-02-16 Light emitting diode device and manufacturing method thereof TWI323520B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96106163A TWI323520B (en) 2007-02-16 2007-02-16 Light emitting diode device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96106163A TWI323520B (en) 2007-02-16 2007-02-16 Light emitting diode device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200836366A true TW200836366A (en) 2008-09-01
TWI323520B TWI323520B (en) 2010-04-11

Family

ID=44819905

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96106163A TWI323520B (en) 2007-02-16 2007-02-16 Light emitting diode device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI323520B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490392B2 (en) 2011-09-29 2016-11-08 Toshiba Corporation P-type doping layers for use with light emitting devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490392B2 (en) 2011-09-29 2016-11-08 Toshiba Corporation P-type doping layers for use with light emitting devices
TWI557937B (en) * 2011-09-29 2016-11-11 東芝股份有限公司 P-type doping layers for use with light emitting devices

Also Published As

Publication number Publication date
TWI323520B (en) 2010-04-11

Similar Documents

Publication Publication Date Title
TWI528577B (en) Contact for a semiconductor light emitting device
EP2763192B1 (en) Nitride semiconductor element and method for producing same
JP5802835B2 (en) Method for manufacturing light emitting device
JP2007053383A (en) Top surface light-emitting type light emitting element and manufacturing method thereof
JP2008288248A (en) Semiconductor light-emitting element
JP2002368263A (en) Iii nitride compound semiconductor light-emitting device
CN103489969B (en) Semiconductor light-emitting elements and light-emitting device
TW200810151A (en) Process for producing gallium nitride type compound semiconductor light emitting element, gallium nitride type compound semiconductor light emitting element, and lamp using the same
KR100832102B1 (en) Structure for light emitting devices and Method of fabricating light emitting devices
KR20100103866A (en) High-performance heterostructure light emitting devices and methods
TWI447954B (en) Light-emitting diode, light-emitting diode lamp and lighting apparatus
JP2006156590A (en) Light emitting diode
CN102208513B (en) Luminous semiconductor device and manufacture method thereof
US7022550B2 (en) Methods for forming aluminum-containing p-contacts for group III-nitride light emitting diodes
KR100872276B1 (en) Vertical nitride semiconductor light emitting device and manufacturing method of the same
CN105122477A (en) Semiconductor light emitting element and method for manufacturing same
TWI528586B (en) P-contact layer for a iii-p semiconductor light emitting device
TWI466324B (en) Light-emitting diode, light-emitting diode lamp and lighting apparatus
JP2010074182A (en) Nitride semiconductor light-emitting device
TWI269463B (en) Method for manufacturing high brightness light-emitting diode
KR101231118B1 (en) Supporting substrates for semiconductor light emitting device and high-performance vertical structured semiconductor light emitting devices using supporting substrates
KR20070081482A (en) Advanced p-side down structured vertical light emitting devices with edge n-type ohmic contact electrode structures
TW200836366A (en) Light emitting diode device and manufacturing method thereof
KR101459770B1 (en) group 3 nitride-based semiconductor devices
KR100787939B1 (en) Structure for light emitting device and method of fabricating light emitting device using the same