200836291 九、發明説明: 【發明所屬之技術領域】 本發明之實施例大體上係有關於一種用以處理半導體 基板之設備與方法。更特別地,本發明之實施例係有關於 一種用在電漿腔室中之靜電夾具(electrostatic chuck)。 【先前技術】 電漿增強製程,例如電漿增強化學氣相沉積(PECVD) 製程、高密度電漿化學氣相沉積(HDPCVD)製程、電漿沈 浸離子植入(plasma immersion ion implantation,P3I)製 程、以及電漿蝕刻製程,在半導體處理中已經變得重要β 電漿對於製造半導體元件提供了許多優點。例如,使 用電漿可因低處理溫度而擁有大範圍的應用,電槳增強沉 積對於高深寬比間隙具有良好的填隙能力及高沉積速率。 電漿處理期間發生的一問題即是正被處理之基板(特 別是一元件基板,即經圖案化之基板)的變形。半導體元 件是藉由堆疊特定圖案之材料層於半導體基板上來形成。 經圖案化之基板在製程期間可能會因為在具有不同材料之 層次之間的熱膨脹差異而「彎曲(b〇 W)」,尤其是當基板正 被加熱時。基板之彎曲會導致製程表面之非均勻性。弯曲 基板之側面與背面會被處理成使得不僅浪費處理材料(用 於電漿處理之前驅物通常是非常昂貴)且對於後續製程步 驟造成了污染及其他問題。 第1圖(習知技術)係繪示在電漿製程期間之一基板 6 200836291 考曲狀況。電襞反應器1〇包含一電極12,電極12經由 阻抗匹配電路16連接至一射頻(RF)電源17。一接地電 U被建構以支撐在其上之基板13。電極12與接地電極 形成一電容式電漿產生器。當適當的RF功率施加至電 12時,可以從電極12與接地電極u之間供應之任何前 物氣體產生一電漿15,以處理基板13。基板13可以被 在接地電極11中之加熱器18所加熱。電黎15在製程 間也會加熱基板13。電漿處理溫度可以介於約25〇它至 450°C之間。隨著溫度上升,基板13會彎曲。在一些情 中’ 300亳米基板之邊緣會彎曲高達〇·4亳米。彎曲之 板有時候被稱為具有高曲率之基板。 基板之考曲對於在基板1 3之元件側1 4上的製程均 性呈現了挑戰性,其隨著特徵結構尺寸縮小會變得更加 鍵。外部裝置(例如靜電夾具或真空夾具)用來在處理 間保持基板平坦。然而,經夾固之基板在電漿製程期間 會因為電漿散發的熱而變形。 因此,需要一種用以夾持基板且同時在電漿製程期 能維持基板平坦度的設備與方法。 【發明内容】 本發明大致上提供用以監測與維持一電漿反應器中 板之平坦度的方法與設備。 本發明之特定實施例係提供一種用以處理一基板之 法,其至少包含·將該基板定位在一靜電夾具上;施加 極 11 極 驅 内 期 約 況 基 勻 關 期 仍 間 基 方 7 200836291 RF功率於該靜電夾具中之一電極以及一反向電極之間,其 中該反向電極係設置成平行於該靜電夾具;施加一 DC偏 壓至該靜電夾具中之該電極,以夾持該靜電夾具上之該基 板;以及測量該靜電夾具之一虛擬阻抗。200836291 IX. Description of the Invention: [Technical Field of the Invention] Embodiments of the present invention generally relate to an apparatus and method for processing a semiconductor substrate. More particularly, embodiments of the invention relate to an electrostatic chuck for use in a plasma chamber. [Prior Art] Plasma enhanced processes, such as plasma enhanced chemical vapor deposition (PECVD) processes, high density plasma chemical vapor deposition (HDPCVD) processes, plasma immersion ion implantation (P3I) processes And plasma etching processes have become important in semiconductor processing. Beta plasma offers many advantages for fabricating semiconductor components. For example, the use of plasma can have a wide range of applications due to low processing temperatures, and enhanced paddle deposition has good interstitial capacity and high deposition rates for high aspect ratio gaps. One problem that occurs during plasma processing is the deformation of the substrate being processed (especially a component substrate, i.e., a patterned substrate). The semiconductor component is formed by stacking a material layer of a specific pattern on a semiconductor substrate. The patterned substrate may "bend" during processing during the process due to differences in thermal expansion between layers having different materials, especially when the substrate is being heated. Bending of the substrate can result in non-uniformity of the process surface. The sides and back of the curved substrate are treated such that not only is the processing material was wasted (the drive is typically very expensive for plasma processing) and contamination and other problems are caused for subsequent processing steps. Figure 1 (Prior Art) shows the test condition of one of the substrates 6 200836291 during the plasma process. The electro-hydraulic reactor 1A includes an electrode 12 connected to a radio frequency (RF) power source 17 via an impedance matching circuit 16. A grounding electrode U is constructed to support the substrate 13 thereon. The electrode 12 and the ground electrode form a capacitive plasma generator. When appropriate RF power is applied to the electricity 12, a plasma 15 can be generated from any precursor gas supplied between the electrode 12 and the ground electrode u to process the substrate 13. The substrate 13 can be heated by the heater 18 in the ground electrode 11. The battery 15 also heats the substrate 13 during the process. The plasma treatment temperature can range from about 25 Torr to 450 °C. As the temperature rises, the substrate 13 bends. In some cases, the edge of the '300-millimeter substrate will bend up to 〇4亳. Curved plates are sometimes referred to as substrates with high curvature. The test of the substrate presents a challenge to the process uniformity on the component side 14 of the substrate 13, which becomes more key as the feature size shrinks. An external device, such as an electrostatic or vacuum clamp, is used to keep the substrate flat between treatments. However, the clamped substrate may be deformed by the heat emitted by the plasma during the plasma process. Accordingly, there is a need for an apparatus and method for holding a substrate while maintaining the flatness of the substrate during the plasma process. SUMMARY OF THE INVENTION The present invention generally provides methods and apparatus for monitoring and maintaining the flatness of a plate in a plasma reactor. A specific embodiment of the present invention provides a method for processing a substrate, which comprises at least: positioning the substrate on an electrostatic chuck; applying a pole 11 to the internal phase of the substrate during the period of the base period; Between one of the electrodes in the electrostatic chuck and a counter electrode, wherein the counter electrode is disposed parallel to the electrostatic chuck; applying a DC bias to the electrode in the electrostatic chuck to clamp the electrostatic chuck The substrate; and measuring a virtual impedance of the electrostatic chuck.
本發明之特定實施例係提供一種用以在一電漿製程期 間監測一基板之方法,其至少包含:將該基板定位在具有 第一與第二平行電極之一電漿產生器中,其中該基板被定 位在該第一與第二平行電極之間且實質上平行於該第一與 第二平行電極;施加一 RF功率於該電漿產生器之該第一 與第二平行電極之間;以及藉由測量該電漿產生器之一特 性來監測該基板。 本發明之特定實施例係提供一種用以處理一基板之設 備,其至少包含:一靜電夾具,其包含一第一電極,該第 一電極與一 DC電源供應器連接,其中該靜電夾具具有一 支撐表面用以支撐其上之基板;一反向電極,其設置成實 質上平行於該靜電夾具之該支撐表面,其中該反向電極隔 開該靜電夾具一距離,該基板被定位在該靜電夾具與該反 向電極之間;一 RF電源供應器,其用以施加一 RF功率於 該第一電極與該反向電極之間;以及一感測器,其用以測 量該靜電夾具之一特性。 【實施方式】 本發明大體上提供了用以在電漿反應器中監測且維持 正被處理基板之足夠平坦度的方法與設備,其中該電漿反 8 200836291 應器具有一具平行電極的電漿產生器。 第2圖係繪示根據本發明之一 PECVD系統i〇〇的截 面圖。類似的 P E C V D 糸統係被描述在美國專利 US5,855,68 1、US6,495,233 與 US6,364,954 中。 PECVD系統100大致上包含一腔室本體i〇2,腔室本 體102支撐一腔室蓋104,腔室蓋104可以藉由樞紐接附 至腔室本體102。腔室本體102包含界定一處理區域12〇 之側壁112與底壁116。腔室蓋104包含一或多個穿過其 間之氣體散佈系統108,以輸送反應物及清潔氣體進入處 理區域120。一周圍唧筒抽吸溝槽125係形成在側壁112 中且連接至一 σ即筒抽吸系統1 6 4,用以從處理區域1 2 〇排 出氣體且控制處理區域120内的壓力。兩個通道122、124 形成在底壁116中。靜電夾具之一桿126穿過通道122。 一棒130穿過通道124,用以啟動基板升降梢ι61。 一腔室襯裡127 (較佳是由陶瓷或類似物製成)設置 在處理區域120中,以保護側壁112免於腐蝕性處理環境。 腔至襯裡127被一突部129支撐,其中該突部129形成在 側壁112中。複數個排出埠131形成在腔室襯裡127中。 該複數個排出埠1 3 1係被建構以將處理區域丨2 〇連接至唧 筒抽吸溝槽1 2 5。 氣體散佈系統1 08係被建構以輸送反應物與清潔氣 體’並且被設置成穿過腔室蓋1〇4以輸送氣體進入處理區 域120。氣體散佈系統108包括一氣體入口通道140,氣體 入口通遒1 40將氣體輸送至一喷灑頭組件i 42内。喷灑頭 9 200836291 組件142由一環狀基部板148組成,環狀基部板148具有 一擋板I44 '而位在環狀基部板148與一面板146之間。 一冷卻溝槽147形成在氣體散佈系統1〇8之基部板 148中,以在操作期間冷卻基部板148。一冷卻入口 148 係將冷卻劑流體(例如水或類似物)輸送至冷卻溝槽147 内。冷卻劑流體經由一冷卻劑出口 1 4 9離開冷卻溝槽1 4 7。 腔室蓋104具有多個匹配通道,以將氣體從一或多個 氣體入口 168、163、169經由一遠端電漿源162輸送至一 氣體入口岐管167,其中該氣體入口岐管167設置在腔室 蓋1 04之頂部上。PECVD系統1 00可以包含一或多個液體 輸送源150與一或多個氣體輸送源ι72,其用以提供載氣 與/或前驅物氣體。 靜電夾具128用以支撐且固持正被處理之基板。在一 實施例中’靜電夾具128包含至少一電極123,其中電壓 被施加至電極123以靜電地固定住其上基板。電極丨23由 一直流(DC)電源供應器176提供電力,其中該直流(DC)電 源供應器1 76經由一低通濾波器(i〇w pass filter) 1 77連接 至電極123。 雖然下文係描述且討論一單極性的DC夾具,可以使 用任何型式之電極結構及驅動電壓組合(其允許靜電夾具 阻抗之測量)來操作本發明。靜電夾具t 28可以是雙極性 的、二極性的、DC的、叉合的(interdigitated)、帶狀的(z〇nal) 等等。 在一實施例中,靜電夾具1 28係可移動地設置在處理 10 200836291 區域1 2 0中’而被連接至桿1 2 6的驅動系統1 〇 3所驅動。 靜電夾具1 2 8可以包含多個加熱構件(例如電阻式構件), 以將其上基板加熱至希望的製程溫度。替代性地,靜電夾 具12 8可以被一外部加熱構件(例如燈組件)加熱。驅動 系統1 03可以包括多個線性致動器,或馬達及縮化傳動裝 置組件(reduction gearing assembly),以下降或上升處理區 域120内之靜電夾具128。A particular embodiment of the present invention provides a method for monitoring a substrate during a plasma process, the method comprising: positioning the substrate in a plasma generator having one of first and second parallel electrodes, wherein a substrate positioned between the first and second parallel electrodes and substantially parallel to the first and second parallel electrodes; applying an RF power between the first and second parallel electrodes of the plasma generator; And monitoring the substrate by measuring the characteristics of one of the plasma generators. A specific embodiment of the present invention provides an apparatus for processing a substrate, comprising: an electrostatic chuck comprising a first electrode, the first electrode being coupled to a DC power supply, wherein the electrostatic chuck has a a support surface for supporting the substrate thereon; a reverse electrode disposed substantially parallel to the support surface of the electrostatic chuck, wherein the reverse electrode is spaced apart from the electrostatic chuck by a distance at which the substrate is positioned Between the fixture and the counter electrode; an RF power supply for applying an RF power between the first electrode and the counter electrode; and a sensor for measuring one of the electrostatic chucks characteristic. [Embodiment] The present invention generally provides a method and apparatus for monitoring and maintaining sufficient flatness of a substrate being processed in a plasma reactor, wherein the plasma counter 8 200836291 has a plasma with parallel electrodes Generator. Figure 2 is a cross-sectional view showing a PECVD system according to one embodiment of the present invention. A similar P E C V D system is described in U.S. Patent Nos. 5,855,68, 6, 6,495,233 and 6,364,954. The PECVD system 100 generally includes a chamber body i2, which supports a chamber cover 104 that can be attached to the chamber body 102 by a pivot. The chamber body 102 includes a sidewall 112 and a bottom wall 116 that define a processing region 12A. The chamber cover 104 includes one or more gas distribution systems 108 therethrough for transporting reactants and cleaning gases into the treatment zone 120. A peripheral ram suction channel 125 is formed in the side wall 112 and is coupled to a sigma, i.e., cartridge suction system 164 for venting gas from the processing zone 1 2 且 and controlling the pressure within the processing zone 120. Two channels 122, 124 are formed in the bottom wall 116. One of the rods 126 of the electrostatic chuck passes through the passage 122. A rod 130 passes through the passage 124 for actuating the substrate lifting trip ι 61. A chamber liner 127 (preferably made of ceramic or the like) is disposed in the processing region 120 to protect the sidewalls 112 from corrosive processing environments. The cavity to liner 127 is supported by a projection 129 formed in the sidewall 112. A plurality of discharge ports 131 are formed in the chamber liner 127. The plurality of discharge ports 13 1 are constructed to connect the processing region 丨2 〇 to the cylinder suction groove 1 25 . A gas distribution system 108 is constructed to deliver reactants and cleaning gas' and is disposed through chamber cover 1〇4 to deliver gas into processing zone 120. The gas distribution system 108 includes a gas inlet passage 140 that delivers gas into a showerhead assembly i 42. Sprinkler Head 9 200836291 Assembly 142 is comprised of an annular base plate 148 having a baffle I44' positioned between annular base plate 148 and a panel 146. A cooling channel 147 is formed in the base plate 148 of the gas distribution system 1 〇 8 to cool the base plate 148 during operation. A cooling inlet 148 delivers a coolant fluid (e.g., water or the like) into the cooling channel 147. The coolant fluid exits the cooling trenches 14 7 via a coolant outlet 1 4 9 . The chamber cover 104 has a plurality of mating passages for delivering gas from one or more gas inlets 168, 163, 169 to a gas inlet manifold 167 via a remote plasma source 162, wherein the gas inlet manifold 167 is disposed On top of the chamber cover 104. The PECVD system 100 can include one or more liquid delivery sources 150 and one or more gas delivery sources ι 72 for providing carrier gas and/or precursor gases. The electrostatic chuck 128 is used to support and hold the substrate being processed. In one embodiment, the electrostatic chuck 128 includes at least one electrode 123, wherein a voltage is applied to the electrode 123 to electrostatically hold the upper substrate thereon. The electrode port 23 is powered by a direct current (DC) power supply 176, which is connected to the electrode 123 via a low pass filter 1 77. Although a unipolar DC clamp is described and discussed below, any type of electrode structure and drive voltage combination that allows measurement of electrostatic clamp impedance can be used to operate the present invention. The electrostatic chuck t 28 can be bipolar, bipolar, DC, interdigitated, ribbon, and the like. In one embodiment, the electrostatic chuck 1 28 is movably disposed in the process 10 200836291 region 1 2 0 and is driven by the drive system 1 〇 3 connected to the rod 1 26 . The electrostatic chuck 1 2 8 may include a plurality of heating members (eg, resistive members) to heat the upper substrate thereto to a desired process temperature. Alternatively, the electrostatic chuck 128 can be heated by an external heating member, such as a lamp assembly. The drive system 103 can include a plurality of linear actuators, or a motor and a reduction gearing assembly to lower or raise the electrostatic chuck 128 within the processing region 120.
一 RF源165經由一阻抗匹配電路173連接至喷灑頭 組件142。喷灑頭組件142之面板146與電極123 (其可以 經由一高通濾波器(high pass niter),譬如電容178,接地) 形成了一電容式電漿產生器。RF源165係提供RF能量至 喷灑頭組件1 42,以在噴灑頭組件142之面板1 46與靜電 夾具128之間促進電容式電漿的產生。因此,電極i 23提 供了用於RF源1 65之接地路徑,以及來自DC源1 76之電 氣偏壓以能夠靜電地夾持基板。 RF源 165可以包含一高頻率射頻(high frequency radio frequency,HFRF)功率源(例如 13.56 MHz RF 產生 器)以及一低頻率射頻(low frequency radio frequency, LFRF)功率源(例如300 kHz RF產生器)。LFRF功率源提 供了低頻率產生以及固定的匹配構件。HFRF功率源係被 設計以與固定的匹配一起使用,並且控制輸送至負載的功 率’去除了有關前饋及反射之功率的顧慮。 在特定實施例中,可以在電漿製程期間監測被固定在 靜電夾具1 2 8上之基板的性質。在特定實施例中,可以在 11 200836291 電漿製程期間監測被固定在靜雷 心隹静電失具128上之基板的平坦 度。在一實施例中,可葬 藉由測量具有基板固定其上之靜 電炎具128之特性,以監測被 U疋在靜電夾具128上之基 板的平坦度。在一實施例中, 了以測篁靜電夾具1 2 8之阻 抗,以監測被固定在其上夕冀此^ 上之基板的平坦度。 在一實施例中,靜雷办1 , 爽/、128之阻抗是由一感測器174 測1,其中該感測器1 74速 連接至面板146。在一實施例中,An RF source 165 is coupled to the showerhead assembly 142 via an impedance matching circuit 173. The face plate 146 of the showerhead assembly 142 and the electrode 123 (which may be grounded via a high pass niter, such as capacitor 178, ground) form a capacitive plasma generator. RF source 165 provides RF energy to sprinkler head assembly 1 42 to facilitate the generation of capacitive plasma between panel 1 46 of sprinkler head assembly 142 and electrostatic chuck 128. Thus, electrode i 23 provides a ground path for RF source 165 and an electrical bias from DC source 176 to electrostatically clamp the substrate. The RF source 165 can include a high frequency radio frequency (HFRF) power source (eg, a 13.56 MHz RF generator) and a low frequency radio frequency (LFRF) power source (eg, a 300 kHz RF generator). . The LFRF power source provides low frequency generation and fixed matching components. The HFRF power source is designed to be used with a fixed match, and controlling the power delivered to the load' removes concerns about feedforward and reflected power. In a particular embodiment, the properties of the substrate that is secured to the electrostatic chuck 128 can be monitored during the plasma process. In a particular embodiment, the flatness of the substrate that is secured to the static thunder core electrostatic dislocation 128 can be monitored during the 11 200836291 plasma process. In one embodiment, the flatness of the substrate that is U 疋 on the electrostatic chuck 128 can be monitored by measuring the characteristics of the electrostatic device 128 having the substrate secured thereto. In one embodiment, the impedance of the electrostatic chuck 1 28 is measured to monitor the flatness of the substrate that is attached to it. In one embodiment, the impedance of the static lightning, 1, and 128 is measured by a sensor 174, wherein the sensor 1 is 74-speed connected to the panel 146. In an embodiment,
感測器174可以是連接左而&,〇 在面板146與阻抗匹配電路173之 間的vi探針。感測器ι74 用以藉由測s由面板146與電 極123形成之電容的雷龎B带 塾及電流’以測量靜電夾具128之 阻抗。 已、、’工觀察到的疋’面板146與電極123之間的電容是 由面板146與電極123之間的基才反121的平坦度來實現。 ^靜電炎具(例如靜電夾具128 )在當設置其上的基板變 仟較不平坦時具有增加的電容。當基板不平坦時(例如因 為電漿之熱每成變形)’基板與靜電夾具128之間的氣隙係 非均勻地分佈。所以,靜電夾具中基板的平坦度變動會造 成電裝反應器的電容變動,其可以由靜電夾具之虛擬阻抗 (imaginary impedance)變動來測量。 在電漿製程期間,設置在靜電夾具上之基板會因為加 熱、經沉積的臈所增加的厚度、夾持功率的損失、或其組 口而導致的變形而增加曲率。基板的變形會增加製程的非 均句性。在一實施例中,正被處理的基板的平坦度可以藉 由測1固定住基板之靜電夾具的虛擬阻抗來監測。在一實 12 200836291 施例中,靜電夾具的夾持電壓可以被調整,以修正基板變 形。 如第2圖所示,感測器丨74可以連接至一系統控制器 175。系統控制器175用以計算且調整PECVD系統1〇〇中 正被處理之基板1 2 1的平坦度。在一實施例中,系統控制 器1 75可以藉由監測靜電夾具1 28之虛擬阻抗來計算基板 121的平坦度或夾持狀態。當虛擬阻抗之測量值顯示基板 121的平坦度減少時,系統控制器175會藉由調整源 1 76來增加夾持功率。在一實施例中,減少的基板12丨平 坦度可以由靜電夾具128之負向增加的虛擬阻抗來顯示。 第3圖為根據本發明之一實施例的電漿處理腔室2〇〇 的側面圖,其中該電漿處理腔室200具有一基板支撐件 210 〇 電漿處理腔室200包含多個側壁202、一底部203、以 及一蓋204,以界定一内部容積220。内部容積220係流體 連通於一真空系統264。用以支撐基板221之一基板支撐 件210以及用以供應製程氣體之一面板246或喷灑頭係設 置在内部容積220中。 一 RF源265經由一阻抗匹配電路273連接至面板 246。面板246與電極223 (其可以經由一高通濾波器(high pass filter),譬如電容,接地)形成了一電容式電漿產生 器。RF源265係提供rf能量至面板246,以在面板246 與基板支撐件210之間促進電容式電漿的產生。 RF源265可以包含一高頻率射頻(high frequency 13 200836291 radio frequency,HFRF)功率源(例如 13.56 MHz RF 產生 器)以及一低頻率射頻(low frequency radio frequency, LFRF)功率源(例如300 kHz RF產生器)。LFRF功率源提 供了低頻率產生以及固定的匹配構件。HFRF功率源係被 設計以與固定的匹配一起使用,並且控制輸送至負載的功 率,去除了有關前饋及反射之功率的顧慮。 在此實施例中,基板支撐件2 1 0為在處理期間提供支 撐且夾持基板220的靜電夾具,並且在一實施例中,靜電 夾具為單極性的靜電夾具。基板支撐件210包含一本體 228,本體228耦接至一支撐桿226。本體228可以包含一 陶瓷材料,例如氧化鋁(Ah〇3)、氮化鋁(A1N)、二氧化矽 (Si〇2)、或其他陶瓷材料。在一實施例中,基板支撐件21〇 之本體228係被用在介於約-20°C至約700°C範園内的溫 度。 笨體228也可以設置在一介電層222之中,或被塗覆 有介電層2 2 2。本體228也包括一内嵌電極288,該内嵌電 極288可以是一電阻式加熱器、匣加熱器(cartridge heater)、或類似物,以提供熱至本體228。來自加熱器288 之熱接著被傳送至基板2 2 1,以促進製造製程(例如沉積 製程)。加熱窃288經由桿226連接至一功率源283,以供 應功率至加熱器288。加熱器288可以是一網篩(瓜以…或 一穿孔片,其由鉬(Mo)、鎢(W)、或其他材料(其具有實 質上類似於構成本體228之陶瓷材料的膨脹係數)的材料 製成。一溫度感測器28$内嵌在本體228中。在一實施例 14 200836291 中,溫度感測器285可以是一熱電耦。溫度感測器285可 以連接至一溫度控制器284,其中該溫度控制器284係提 供控制訊號至功率源283以控制本體228的溫度。 基板支撐件210之本體228更包含一電極223,電極 223至少對於射頻(RF)功率提供一接地路徑。一些商業上 使用的基板支撐#具有一偏壓電極(纟示出),m戈設 • 4在基板支稽件的本體中。偏壓電極係用讀供電氣偏壓 • 至基板,以促進或提升基板的靜電夾持。如同下文將詳細 地解釋者,偏壓電極被電極223取代,其中電^⑶係對 於RF功率提供了一接地路徑,以及提供一電氣偏壓至基 , 板22 1以能夠靜電地夾持基板。 " 雖然圖上顯示加熱器288位在電極223下方,電極可 以沿者與加熱器288相同的平面來設置,或位在加熱器288 下方電極223可以是一網篩(mesh)或一穿孔片,其由鉬 (Mo)鎢(w)、或其他材料(其具有實質上類似於構成本 體228之陶瓷材料的膨脹係數)的材料製成。 籲 電極22 3連接至-導電元件286。導電元# 286可以 疋棒&、線、或類似物,並且可以由鉬(Mo)、鎢(W)、 _ ^他材料(其具有f質上類似於構成基板支樓件210之 其他材料的膨脹係數)的材料製成。類似於第2圖之電極 ^3,電極223係提供^源]“之一接地路徑,以及一電 氣偏麗以能多句靜電地夾持基板。為了提供電氣偏廢至基板 221 ’電極223係電氣地連通於一電源供應系統28〇,其中 ι電源供應系統280提供偏壓至電極223。Dc電源供應器 15 200836291 2 80包栝一功率源276,其可以是一直流(DC)功率源以供 應DC訊號至電極223。在一實施例中,功率源276為之4 伏特DC電源,且電氣訊號可以提供正或負偏壓。 功率源276可以連接至一放大器279,以將來自功率 源276之電氣訊號放大。經放大的電氣訊號係經由一連接 件282行進至導電元件286,並且可以行進通過一澹器 (filter)277以過濾經放大的訊號而移除來自電源供應系統 2 8 0之偏壓之雜訊及/或任何rf流。提供經放大且經過渡 的電氣訊號至電極223與基板221,以能夠靜電地失持基 板22卜 電極223也作為一 rF接地件,其中rf功率藉由一連 接件281連接至接地件。一電容278也連接至接地路經, 以避免偏壓行進至接地件。在一實施例中,電容2 7 8可以 在約2000伏特為〇·〇54微法拉第(μΡ)、1〇-15安培。依此 方式’電極223係用作為一基板偏壓電極以及一 返回 電極。 在一實施例中,腔室阻抗係被求值且被監測,以監測 基板至基板支撐件210之正夾持。阻抗可以使用Z_SCANtm 商品名之探針、電流/電壓探針或類似物而藉由RF偵測法 來監測’例如監測RF匹配。在一實施例中,腔室之阻抗 是由一感測器274來測量,其中該感測器274與面板246 連接。在一實施例中,感測器274可以是一 VI探針,其 達:接在面板146與阻抗匹配電路273之間。感測器274可 以被建構以藉由測量由面板246與電極223形成的電容的 16 200836291 電壓與電流,以測量靜電失具2丨〇之阻抗。 已經觀察到的是,面板246與電極223之間的電容是 由面板246與電極223之間的基板221的平坦度來實現。 一靜電夾具(例如基板支料21G)在當設置其上的基板 變得較不平坦時具有增加的電容。當基板不平坦時(例如 因為電漿之熱造成變形),基板與基板支撐件2〗〇之間的氣 隙係非均勻地分佈。所以,靜電夾具中基板的平坦度變動 會造成電漿反應器的電容變動,其可以由靜電夾具之虛鍵 阻抗變動來測量。 感測器274可以連接至一系統控制器27^系統控制 1§ 275用以計算且調整電漿處理腔室200中正被處理之我 板221的平坦度。在一實施例中,系統控制器275可以雜 由監測虛擬阻抗來計算基板22 1的平坦度或夾持狀態^當 虛擬阻抗之測量值顯示基板22 1的平坦度減少時,系统控 制器275會藉由調整電源276來增加夾持功率。在一實施 例中,減少的基板221平坦度可以由基板支撐件210之負 向增加的虛擬阻抗來顯示。 第4圖係繪示根據本發明之一實施例之靜電夾具失持 設計的爆炸圖。如第3圖所述,基板支撐件21 0之電極223 連接至接地件以對於RF源265 (其提供用於電漿產生之 RF能量)提供返回路徑’並且也連接至電源供應系統2 8 0 以提供偏壓以靜電地爽持基板221。電極223連接至導電 元件286,其中該導電元件286係延伸穿過支撐桿226。一 延伸夾具291被夾固到導電元件286。一多接觸連接件292 17 292 200836291 連接至延伸夾具291。在一實施例中,多接觸連接件 為銀,其被以黃銅焊接至延伸夾具291。多接觸連接件 插入一 RF條293,其中該RF條293被建構以提供一 個電子連接。示範性的多接觸連接件292可以由瑞 Basel之Multi-Contact AG獲得。在一實施例中,連 281、282 (其係分別地電子連通於rf源265與電源 系統280之返回路徑)可以經由RF條293連接至導 件 286。 第5圖為顯示腔室之虛擬阻抗的圖表,而第6圖 示當使用電極223與電源供應系統280時之真實腔 抗。對於繪示的結果,使用一裸矽基板晶圓,以及使 上設置有膜或層材料(其使得晶圓變得不平坦或彎曲 離平坦約10微米、距離平坦约3〇〇微米、以及距離平 400微米)的晶圓。圖表顯示藉由隨著時間增加偏壓 圓的正夾持與平坦化。晶圓的夾持是藉由監測腔室阻 觀察。當腔室之阻抗為恆定時,可以觀察到晶圓的正次 具有電極223之基板支撐件21〇以及電源供應 2 80使得半導體基板之電漿處理具有許多優點。功率 與正夾持可以藉由消除或減少由非平坦基板產生之不 應而增加產能。例如,當提供一非平坦基板(諸如下 上凸基板)至基板支撐件210時,來自功率源276之 訊號可以依需要而緩慢地增加,以使基板之中心或邊 觸基板支撐件之接收表面。當中心嗅邊 w T 次逯緣破夾持住時 板係被平坦化且更加均勻地與基板支撐件溝通(其可 292 或多 士之 接件 供應 電元 係顯 室阻 用其 至距 坦約 之晶 抗來 :持。 系統 調整 利效 凹或 電氣 緣接 ,基 以增 18 200836291 加所沉積材料之整體厚度均勻性)。當基板從腔 腔室而具有變化的彎曲程度時,也可以加強腔 規化(normalization)。由電極223提供的基板 藉由改善基板與加熱器288之間的熱溝通而增 定性。 第7圖係繪示一圖表,其顯示靜電夾具之 及定位在靜電夾具上之基板之平坦度之間的座 之X軸代表時間。第7圖之y軸代表電漿反應 具之虛擬阻抗,其中靜電夾具係作為電漿反應 電漿產生器的一電極。當施加RF功率至電容 器時,靜電夾具之虛擬阻抗可以藉由V][探針 探針可以測量電壓與電流,由此可以利用歐姆 Law)來計算阻抗。 第7圖之曲線1係繪示當定位在靜電夾具 平坦時靜電夾具之虛擬阻抗測量值。基板之平 在處理期間會改變,除非基板為一裸矽晶圓或 夾具足夠地夾持住。曲線1之虛擬阻抗具有一 率。 第7圖之曲線2係繪示當定位在靜電夾具 弧狀(curved)且沒有施加靜電夾持到基板時靜 擬阻抗測量值。曲線2之虛擬阻抗具有一整體 第7圖之曲線3係繪示當定位在靜電夾具 弧狀(curved)時靜電夾具之虛擬阻抗測量值。 施加到基板直到時間T。在時間τ,基板被脫 室被傳送至 室之間的正 的正夾持也 加了電漿穩 虛擬阻抗以 標。第7圖 器中靜電夾 器之電容式 式電漿產生 來測量。VI 定律(Ohm’s 上之基板為 坦度典型地 基板被靜電 整體的正斜 上之基板為 電夾具之虛 的負斜率。 上之基板為 靜電夾持被 離爽持。曲 19 200836291 線3之虛擬阻抗在當基板被夾持住時的時間τ之前具有_ 正斜率。當基板被脫離夾持時,曲線3具有一負斜率。 第7圖之曲線4係繪示當定位在靜電夾具上之基板為 弧狀(curved)時靜電夾具之虛擬阻抗測量值。時間τ之前, 沒有靜電夾持被施加到基板。在時間Τ,基板被夾持。曲 線4之虛擬阻抗在當基板沒有被夾持住時的時間τ之前| 有一負斜率。當基板被夾持之後不久時,曲線4具有—正 斜率。 在一實施例中,在電漿製程期間定位在靜電夾具上之 基板的平坦度可以藉由計算靜電夾具之虛擬阻抗的斜率來 監測。 第8圖係繪示一圖表’其顯示靜電夾具之虛擬阻抗測 量值以及估算之虛擬阻抗斜率之間的座標。如第7圖所 示’靜電夾具之虛擬阻抗係與在電漿製程期間被夾持在# 電夾具上之基板的平坦度相關。 第8圖之曲線Ml、M2、M3係繪示一靜電夾具之虛擬 阻抗的感測器測量值。在一實施例中,虛擬阻抗可以週期 性地測量,並且可以從歷經一時段的測量值來計算出一斜 率以減少測量值雜訊。在一實施例中,可以使用斜率線性 回歸法(Slop Linear Regression)來計算斜率。如第8圖所 示,曲線Ml、M2、M3之測量值可以被線性回歸成直線 SI、S2、S3。直線SI、S2、S3之斜率大致上提供了設置 在靜電夾具上之基板的平坦度。線S1具有一正斜率,其 顯示基板可能因為適當地夾持而相當平坦。線S2具有一 20 200836291 小的負斜率,其顯示基板的平坦度處於邊界(borderline)。 大概需要增加夾持電壓來減少基板變形。線S3具有一相 當大的負斜率,其顯示基板可能因為靜電夾具之不足的夾 持而成孤狀(curved)。 應當注意的是,可以使用任何適當的方法(包括其他 數值方法)以及適當的濾器來獲得虛擬阻抗之斜率。 雖然本文描述之靜電夾具係作為係以作為電漿產生器 之一接地電極,也可以應用在其他配線(circuiting)。熟習 此技藝之人士可以調整濾器之電路、阻抗匹配網路、與/ 或感測器,以測量靜電夾具之電氣特性。 雖然本文係描述一 PECVD系統,本發明之設備與方 法可以應用到任何適當的電漿製程。 縱然則述說明係著重在本發明之實施例,在不脫離本 發明基本範圍下,可以構想出本發明之其他與進一步實施 例,並且本發明範園係由隨附申請專利範圍來決定。 【圖式簡單說明】 -為了能詳細瞭解本發明之特徵,透過參照在附圖中所 不出之本發明實施例對本發明進行更詳細的描述與總 結。然而,應該注意,1圖僅出示本發明的典型實施例, :應用以限定本發明的範圍,因為本發明還有其他等效的 實施方式。 ⑯第ί圖(習知技術)係緣示在電漿製程期間之一基板 彎曲狀況。 21 200836291 第2圖係繪示根據本發明之一實施例之PECVD系統 的截面圖。 第3圖為根據本發明之一實施例的電漿處理腔室的側 面圖,其中該電漿處理腔室具有一靜電夾具。 第4圖係繪示根據本發明之一實施例之靜電夾具夾持 設計的爆炸圖。 第5圖為顯示虛擬腔室阻抗的圖表。The sensor 174 can be a vi probe that connects the left and &, 面板 between the panel 146 and the impedance matching circuit 173. The sensor ι74 is used to measure the impedance of the electrostatic chuck 128 by measuring the Thunder B band and current ' of the capacitance formed by the panel 146 and the electrode 123. The capacitance between the panel 146 and the electrode 123, which has been observed, is achieved by the flatness of the substrate 121 between the panel 146 and the electrode 123. Electrostatic devices (e.g., electrostatic chuck 128) have an increased capacitance when the substrate on which the substrate is disposed is less flat. When the substrate is not flat (e.g., due to the heat of the plasma), the air gap between the substrate and the electrostatic chuck 128 is non-uniformly distributed. Therefore, variations in the flatness of the substrate in the electrostatic chuck cause a change in the capacitance of the electrical reactor, which can be measured by fluctuations in the imaginary impedance of the electrostatic chuck. During the plasma process, the substrate disposed on the electrostatic chuck increases the curvature due to heat, increased thickness of the deposited crucible, loss of clamping power, or deformation caused by its composition. Deformation of the substrate increases the non-uniformity of the process. In one embodiment, the flatness of the substrate being processed can be monitored by the virtual impedance of the electrostatic chuck that holds the substrate. In the case of a real 12 200836291, the clamping voltage of the electrostatic chuck can be adjusted to correct the substrate deformation. As shown in FIG. 2, the sensor 丨 74 can be coupled to a system controller 175. The system controller 175 is used to calculate and adjust the flatness of the substrate 1 2 1 being processed in the PECVD system 1 . In one embodiment, system controller 175 can calculate the flatness or clamping state of substrate 121 by monitoring the virtual impedance of electrostatic chuck 128. When the measured value of the virtual impedance indicates that the flatness of the substrate 121 is reduced, the system controller 175 increases the clamping power by adjusting the source 1 76. In one embodiment, the reduced substrate 12 flatness can be displayed by the negative virtual impedance of the electrostatic chuck 128. 3 is a side elevational view of a plasma processing chamber 2 in accordance with an embodiment of the present invention, wherein the plasma processing chamber 200 has a substrate support 210. The plasma processing chamber 200 includes a plurality of sidewalls 202. A bottom 203 and a cover 204 define an interior volume 220. The internal volume 220 is in fluid communication with a vacuum system 264. A substrate support member 210 for supporting the substrate 221 and a panel 246 or a shower head for supplying a process gas are disposed in the internal volume 220. An RF source 265 is coupled to panel 246 via an impedance matching circuit 273. Panel 246 and electrode 223 (which may be connected via a high pass filter, such as a capacitor, ground) to form a capacitive plasma generator. The RF source 265 provides rf energy to the panel 246 to facilitate the generation of capacitive plasma between the panel 246 and the substrate support 210. The RF source 265 can include a high frequency 13 (200816291 radio frequency, HFRF) power source (eg, a 13.56 MHz RF generator) and a low frequency radio frequency (LFRF) power source (eg, 300 kHz RF generation). Device). The LFRF power source provides low frequency generation and fixed matching components. The HFRF power source is designed to be used with a fixed match and to control the power delivered to the load, removing concerns about feedforward and reflected power. In this embodiment, the substrate support 210 is an electrostatic chuck that provides support during handling and holds the substrate 220, and in one embodiment, the electrostatic chuck is a unipolar electrostatic chuck. The substrate support 210 includes a body 228 coupled to a support rod 226. Body 228 may comprise a ceramic material such as alumina (Ah〇3), aluminum nitride (A1N), cerium oxide (Si〇2), or other ceramic materials. In one embodiment, the body 228 of the substrate support member 21 is used at a temperature ranging from about -20 ° C to about 700 ° C. The bulk 228 may also be disposed in a dielectric layer 222 or coated with a dielectric layer 2 2 2 . Body 228 also includes an inset electrode 288, which may be a resistive heater, a cartridge heater, or the like to provide heat to body 228. Heat from heater 288 is then transferred to substrate 2 1 1 to facilitate a fabrication process (e.g., a deposition process). The heat shield 288 is coupled via rod 226 to a power source 283 to supply power to the heater 288. The heater 288 can be a mesh screen or a perforated sheet of molybdenum (Mo), tungsten (W), or other material having a coefficient of expansion substantially similar to the ceramic material constituting the body 228. A temperature sensor 28$ is embedded in the body 228. In an embodiment 14 200836291, the temperature sensor 285 can be a thermocouple. The temperature sensor 285 can be coupled to a temperature controller 284. The temperature controller 284 provides a control signal to the power source 283 to control the temperature of the body 228. The body 228 of the substrate support 210 further includes an electrode 223 that provides a ground path for at least radio frequency (RF) power. The commercially available substrate support # has a biasing electrode (shown in 纟), which is in the body of the substrate holder. The biasing electrode is biased with a read supply gas to the substrate to facilitate or enhance Electrostatic clamping of the substrate. As will be explained in more detail below, the bias electrode is replaced by an electrode 223, wherein the electrical circuit provides a ground path for the RF power and provides an electrical bias to the substrate, the board 22 1 is capable of Quiet The substrate is clamped. " Although the figure shows that the heater 288 is below the electrode 223, the electrode can be disposed along the same plane as the heater 288, or the electrode 223 under the heater 288 can be a mesh (mesh) Or a perforated sheet made of molybdenum (Mo) tungsten (w), or other material having a coefficient of expansion substantially similar to that of the ceramic material constituting the body 228. The electrode 22 3 is connected to - conductive Element 286. Conductive element #286 can be a rod & wire, or the like, and can be made of molybdenum (Mo), tungsten (W), _ ^ other material (which has a quality similar to that of the substrate support member 210 The expansion coefficient of other materials is made of material. Similar to the electrode ^3 of Fig. 2, the electrode 223 provides a source path, and an electrical bias to electrostatically hold the substrate in multiple sentences. In order to provide electrical waste to the substrate 221 'electrode 223 is electrically connected to a power supply system 28 〇, wherein the ι power supply system 280 provides a bias voltage to the electrode 223. The Dc power supply 15 200836291 2 80 includes a power source 276, It can be a direct current (DC) power source The DC signal is supplied to the electrode 223. In one embodiment, the power source 276 is a 4 volt DC power source and the electrical signal can provide a positive or negative bias voltage. The power source 276 can be coupled to an amplifier 279 to be sourced from the power source 276. The electrical signal is amplified. The amplified electrical signal travels through a connector 282 to the conductive element 286 and can travel through a filter 277 to filter the amplified signal to remove the power supply system. Biased noise and / or any rf flow. An amplified and transitioned electrical signal is provided to the electrode 223 and the substrate 221 to electrostatically dislodge the substrate 22. The electrode 223 also acts as an rF grounding member, wherein the rf power is coupled to the grounding member by a connector 281. A capacitor 278 is also connected to the ground path to avoid biasing to the ground. In one embodiment, the capacitance 2 7 8 may be approximately 2,000 volts 微·〇 54 microfarads (μΡ), 1 〇-15 amps. In this manner, the electrode 223 is used as a substrate bias electrode and a return electrode. In one embodiment, the chamber impedance is evaluated and monitored to monitor the positive clamping of the substrate to substrate support 210. The impedance can be monitored by RF detection using a probe of the Z_SCANtm trade name, a current/voltage probe or the like, e.g., monitoring RF matching. In one embodiment, the impedance of the chamber is measured by a sensor 274 that is coupled to the panel 246. In one embodiment, the sensor 274 can be a VI probe that is coupled between the panel 146 and the impedance matching circuit 273. The sensor 274 can be configured to measure the impedance of the electrostatic dislocation 2 by measuring the voltage and current of the 16 200836291 capacitance formed by the panel 246 and the electrode 223. It has been observed that the capacitance between the panel 246 and the electrode 223 is achieved by the flatness of the substrate 221 between the panel 246 and the electrode 223. An electrostatic chuck (e.g., substrate support 21G) has an increased capacitance when the substrate disposed thereon becomes less flat. When the substrate is not flat (e.g., due to heat of the plasma), the air gap between the substrate and the substrate support 2 is non-uniformly distributed. Therefore, variations in the flatness of the substrate in the electrostatic chuck cause a change in the capacitance of the plasma reactor, which can be measured by the change in the virtual bond impedance of the electrostatic chuck. The sensor 274 can be coupled to a system controller 27 system control 1 § 275 for calculating and adjusting the flatness of the board 221 being processed in the plasma processing chamber 200. In an embodiment, the system controller 275 can calculate the flatness or the clamping state of the substrate 22 1 by monitoring the virtual impedance. When the measured value of the virtual impedance indicates that the flatness of the substrate 22 1 is reduced, the system controller 275 The clamping power is increased by adjusting the power supply 276. In one embodiment, the reduced flatness of the substrate 221 can be displayed by the negative virtual impedance of the substrate support 210. Fig. 4 is an exploded view showing the design of the electrostatic chuck lost in accordance with an embodiment of the present invention. As shown in FIG. 3, the electrode 223 of the substrate support 210 is connected to the ground to provide a return path for the RF source 265 (which provides RF energy for plasma generation) and is also connected to the power supply system 2 800 The substrate 221 is electrostatically held to provide a bias voltage. Electrode 223 is coupled to conductive element 286, wherein the conductive element 286 extends through support rod 226. An extension clamp 291 is clamped to the conductive member 286. A multi-contact connector 292 17 292 200836291 is connected to the extension clamp 291. In one embodiment, the multi-contact connector is silver, which is brazed to the extension fixture 291. The multi-contact connector is inserted into an RF strip 293 which is constructed to provide an electrical connection. An exemplary multi-contact connector 292 is available from Ray-Basel's Multi-Contact AG. In one embodiment, connections 281, 282 (which are electrically coupled to the return path of rf source 265 and power system 280, respectively) may be coupled to lead 286 via RF strip 293. Figure 5 is a graph showing the virtual impedance of the chamber, and Figure 6 is a graph showing the true cavity reactance when the electrode 223 and the power supply system 280 are used. For the results shown, a bare-die substrate wafer is used, and a film or layer material is disposed thereon (which causes the wafer to become uneven or curved about 10 microns flat, a distance of about 3 microns, and a distance) Flat 400 micron) wafer. The graph shows the positive clamping and flattening of the circle by increasing the bias over time. Wafer clamping is observed by monitoring the chamber resistance. When the impedance of the chamber is constant, it can be observed that the wafer support 21 〇 having the electrode 223 and the power supply 280 have a number of advantages in the plasma processing of the semiconductor substrate. Power and positive clamping can increase throughput by eliminating or reducing the inefficiencies generated by non-flat substrates. For example, when an uneven substrate (such as a lower convex substrate) is provided to the substrate support 210, the signal from the power source 276 can be slowly increased as needed so that the center or edge of the substrate touches the receiving surface of the substrate support. . When the center sniffing edge w T times the edge is broken, the plate is flattened and communicates more evenly with the substrate support (it can be used for the supply of 292 or toasts.) The crystal is resistant to: hold. The system adjusts the effect of concave or electrical edge connection, and the base is increased by 18 200836291 to increase the overall thickness uniformity of the deposited material). Normalization can also be enhanced when the substrate has varying degrees of curvature from the chamber. The substrate provided by the electrode 223 is enhanced by improving thermal communication between the substrate and the heater 288. Figure 7 is a diagram showing the X-axis of the seat between the electrostatic chuck and the flatness of the substrate positioned on the electrostatic chuck. The y-axis of Figure 7 represents the virtual impedance of the plasma reactor, with the electrostatic chuck acting as an electrode of the plasma-reactive plasma generator. When RF power is applied to the capacitor, the virtual impedance of the electrostatic fixture can be calculated by V] [probe probe can measure voltage and current, and thus ohm law can be used). Curve 1 of Fig. 7 shows the virtual impedance measurement of the electrostatic chuck when positioned on the flat of the electrostatic chuck. The flatness of the substrate changes during processing unless the substrate is sufficiently held by a bare wafer or jig. The virtual impedance of curve 1 has a rate. Curve 2 of Fig. 7 shows the static impedance measurement when positioned in an electrostatic chuck curved and without electrostatic clamping to the substrate. The virtual impedance of curve 2 has a whole. Curve 3 of Fig. 7 shows the virtual impedance measurement of the electrostatic fixture when positioned in the electrostatic clamp. Applied to the substrate until time T. At time τ, the positive positive clamping between the substrate being transferred to the chamber is also added to the plasma to stabilize the virtual impedance. Figure 7 shows the capacitive plasma generated by the electrostatic clamp to measure. VI law (the substrate on Ohm's is a typical negative substrate on the positive slope of the substrate as the virtual negative slope of the electrical fixture. The substrate on the substrate is electrostatically clamped and held away. Song 19 200836291 Virtual of line 3 The impedance has a positive slope before the time τ when the substrate is clamped. When the substrate is detached, the curve 3 has a negative slope. The curve 4 of Fig. 7 shows the substrate when positioned on the electrostatic chuck. The virtual impedance measurement of the electrostatic fixture when it is curved. No electrostatic clamping is applied to the substrate before time τ. During the time Τ, the substrate is clamped. The virtual impedance of curve 4 is not clamped when the substrate is clamped. The time before the time τ | has a negative slope. When the substrate is clamped shortly, the curve 4 has a positive slope. In an embodiment, the flatness of the substrate positioned on the electrostatic chuck during the plasma process can be Calculate the slope of the virtual impedance of the electrostatic fixture to monitor. Figure 8 shows a graph showing the coordinates between the virtual impedance measurement of the electrostatic fixture and the estimated virtual impedance slope. The virtual impedance of the electrostatic chuck is related to the flatness of the substrate clamped on the #electric fixture during the plasma process. The curves M1, M2, and M3 of Fig. 8 show the virtual impedance of the electrostatic fixture. Measured values. In one embodiment, the virtual impedance can be measured periodically, and a slope can be calculated from measurements over a period of time to reduce measured noise. In one embodiment, slope linearity can be used. The slope is calculated by the Slop Linear Regression. As shown in Fig. 8, the measured values of the curves M1, M2, and M3 can be linearly regressed into straight lines SI, S2, and S3. The slopes of the straight lines SI, S2, and S3 are roughly provided. The flatness of the substrate disposed on the electrostatic chuck. The line S1 has a positive slope, which indicates that the substrate may be relatively flat due to proper clamping. The line S2 has a small negative slope of 20 200836291, which indicates that the flatness of the substrate is at Boundary line. It is necessary to increase the clamping voltage to reduce the deformation of the substrate. Line S3 has a relatively large negative slope, which indicates that the substrate may be clamped due to insufficient electrostatic chuck. It should be noted that any suitable method (including other numerical methods) and appropriate filters can be used to obtain the slope of the virtual impedance. Although the electrostatic fixture described herein is used as one of the plasma generators. Grounding electrodes can also be used in other circuits. Those skilled in the art can adjust the circuit of the filter, the impedance matching network, and/or the sensor to measure the electrical characteristics of the electrostatic chuck. Although this document describes a PECVD. The apparatus and method of the present invention can be applied to any suitable plasma process. While the description is directed to embodiments of the present invention, other and further implementations of the present invention can be devised without departing from the basic scope of the invention. For example, and the scope of the invention is determined by the scope of the accompanying claims. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be described and summarized in more detail with reference to the embodiments of the present invention which are not illustrated in the drawings. However, it should be noted that the drawings illustrate only typical embodiments of the invention, and are intended to limit the scope of the invention, since the invention also has other equivalent embodiments. The 16th figure (preferred technique) is shown in one of the bending conditions of the substrate during the plasma process. 21 200836291 Figure 2 is a cross-sectional view showing a PECVD system in accordance with an embodiment of the present invention. Figure 3 is a side elevational view of a plasma processing chamber in accordance with an embodiment of the present invention, wherein the plasma processing chamber has an electrostatic chuck. Fig. 4 is an exploded view showing the electrostatic chuck holding design according to an embodiment of the present invention. Figure 5 is a graph showing the impedance of the virtual chamber.
第6圖為顯示真實腔室阻抗的圖表。 第7圖係繪示一圖表,其顯示靜電夾具之虛擬阻抗以 及定位在靜電夾具上之基板之平坦度之間的座標。 第8圖係繪示一圖表,其顯示虛擬阻抗測量值以及經 計算之靜電夾具之虛擬阻抗斜率之間的座標。 為了幫助瞭解,圖式中相同的參照符號係盡可能地用 以代表相同的元件。可以暸解的是,實施例中的元件可有 效地運用在其他實施例中而無需進一步敘述。 【主要元件符號說明】 1-4 曲線 SI、S2、S3 直線 11 接地電極 13 基板 15 電漿 17 射頻(RF)電源 100 PECVD 系統Figure 6 is a graph showing the true chamber impedance. Figure 7 is a diagram showing the coordinates of the virtual impedance of the electrostatic chuck and the flatness of the substrate positioned on the electrostatic chuck. Figure 8 is a graph showing the coordinates between the virtual impedance measurements and the calculated virtual impedance slope of the electrostatic chuck. To help understand, the same reference symbols are used in the drawings to represent the same elements. It will be appreciated that the elements of the embodiments can be effectively utilized in other embodiments without further recitation. [Key component symbol description] 1-4 Curve SI, S2, S3 line 11 Ground electrode 13 Substrate 15 Plasma 17 Radio frequency (RF) power supply 100 PECVD system
Ml、M2、M3 曲線 10 電漿反應器 12 電極 14 元件側 16 阻抗匹配電路 18 加熱器 102 腔室本體 22 200836291Ml, M2, M3 Curve 10 Plasma Reactor 12 Electrode 14 Component Side 16 Impedance Matching Circuit 18 Heater 102 Chamber Body 22 200836291
103 驅動系統 104 108 氣體散佈系統 112 116 底壁 120 121 基板 122 123 電極 124 125 周圍唧筒抽吸溝槽 126 127 腔室襯裡 128 129 突部 130 131 排出埠 140 142 喷灑頭組件 144 146 面板 147 148 基部板 149 150 液體輸送源 161 162 遠端電漿源 163 164 唧筒抽吸系統 165 167 氣體入口岐管 168 169 氣體入口 172 173 阻抗匹配電路 174 175 系統控制器 176 177 低通濾、波器 178 200 電漿處理腔室 202 203 底部 204 210 基板支撐件 220 221 基板 222 腔室蓋 側壁 處理區域 通道 通道 桿 靜電夾具 棒 氣體入口通道 擋板 冷卻溝槽 冷卻劑出口 基板升降梢 氣體入口 RF源 氣體入口 氣體輸送源 感測器 DC源 電容 側壁 蓋 内部容積 介電層 23 200836291103 drive system 104 108 gas distribution system 112 116 bottom wall 120 121 substrate 122 123 electrode 124 125 surrounding cylinder suction groove 126 127 chamber liner 128 129 protrusion 130 131 discharge port 140 142 sprinkler head assembly 144 146 panel 147 148 Base plate 149 150 liquid delivery source 161 162 distal plasma source 163 164 cartridge suction system 165 167 gas inlet manifold 168 169 gas inlet 172 173 impedance matching circuit 174 175 system controller 176 177 low pass filter, wave 178 200 Plasma processing chamber 202 203 bottom 204 210 substrate support 220 221 substrate 222 chamber cover side wall treatment area channel channel rod electrostatic clamp bar gas inlet channel baffle cooling groove coolant outlet substrate lifting tip gas inlet RF source gas inlet gas Conveying source sensor DC source capacitor sidewall cover internal volume dielectric layer 23 200836291
223 電極 226 支撐桿 22S 本體 246 面板 264 真空系統 265 RF源 273 阻抗匹配電路 274 感測器 275 系統控制器 276 功率源 211 濾器(filter) 278 電容 279 放大器 280 電源供應系統 281 連接件 282 連接件 283 功率源 284 溫度控制器 285 溫度感測器 286 導電元件 288 加熱器 291 延伸夾具 292 多接觸連接件 293 RF條223 electrode 226 support rod 22S body 246 panel 264 vacuum system 265 RF source 273 impedance matching circuit 274 sensor 275 system controller 276 power source 211 filter 278 capacitor 279 amplifier 280 power supply system 281 connector 282 connector 283 Power Source 284 Temperature Controller 285 Temperature Sensor 286 Conductive Element 288 Heater 291 Extension Fixture 292 Multi-Contact Connector 293 RF Strip
24twenty four