TW200835003A - Structure of thin-film acoustic-wave component and radio-frequency communication component and their manufacturing method thereof - Google Patents

Structure of thin-film acoustic-wave component and radio-frequency communication component and their manufacturing method thereof Download PDF

Info

Publication number
TW200835003A
TW200835003A TW96103747A TW96103747A TW200835003A TW 200835003 A TW200835003 A TW 200835003A TW 96103747 A TW96103747 A TW 96103747A TW 96103747 A TW96103747 A TW 96103747A TW 200835003 A TW200835003 A TW 200835003A
Authority
TW
Taiwan
Prior art keywords
acoustic wave
metal layer
component
bulk acoustic
film bulk
Prior art date
Application number
TW96103747A
Other languages
Chinese (zh)
Inventor
Bo-Xun Song
Yung-Chung Chin
Pei-Yen Chen
Pei-Zen Chang
Chi-Ming Fang
jun-li Hou
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW96103747A priority Critical patent/TW200835003A/en
Publication of TW200835003A publication Critical patent/TW200835003A/en

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

The present invention is related to a structure of thin-film acoustic-wave components and radio-frequency communication components and their manufacturing method thereof, which is composed of at least a thin-film acoustic-wave component and a radio- frequency communication component electrically connected with the thin-film acoustic-wave component on a chip. The thin-film acoustic-wave component has a positive-temperature-coefficient piezoelectric layer and a negative-temperature-coefficient piezoelectric layer. The manufacturing method has the following steps: manufacturing a radio-frequency communication component on a chip by using a CMOS process, and then manufacturing at least a thin-film acoustic-wave component on a chip by using a MEMS process, which is electrically connected to the radio-frequency communication component to form the disclosed structure, so that this invention can integrate an acoustic-wave passive component with a radio-frequency active component on a CMOS chip, which will favorably accelerate the system design and decrease procedures of the integrated testis.

Description

200835003 九、發明說明: 【發明所屬之技術領域】 本發明1 細於薄膜體聲波元件與射頻通訊元件之整合技術,係特別指 一種薄膜體聲波元件卿舰訊元件之結構及其製造方法,其可應用於整 合聲波被動元件與棚絲元件至互補式錄轉體之單_晶片上。 【先前技術】 隨著無線通訊的蓬勃發展,射頻微波元件成為目前發展之關鍵。其中, 諸多通訊被動元件中,如雙工器、濾波器、功率放大器等。因其元件特性, 則需以單顆元件的方式與射頻通訊電路結合。其缺點在於拉線部分,會因 射頻喊纽的寄纽應,而增加魏整合賴誠。如us 6285866所揭 示「將高鎌動元件及其它域動元件直接整合於單晶片上,達成加速系 、'先。又计、減少整合測试程序之功效」。然而誠如此專利中所說明,「A也h or thick piezoelectric crystal wafer is bonded on a silicon substrate」,其所採用的方法,乃是將含有主動元件的石夕晶片與壓電材料 晶片以晶片接合的方式結合,此時壓電材料晶片的厚度必須達到數百微米 方能操作。而本發明所提出的方法是將厚度小於2微米的壓電材料薄膜直接 成長於含有主動元件的矽晶片上,並不需要使用壓電材料晶片,而且其中 部分通訊被動元件的製程可與矽晶片上通訊主動元件的半導體製程整合。 X^us 5260596 Monolithic circuit with integrated bulk structure resonator”中採用體型微機電技術,係在原有的微波電路晶片上另外找 一個區域形成壓電諧振腔的懸浮結構,如第一圖所示,在半導體基體以上 先完成積體電路區17的製作,利用體型微機電技術在晶片上形成一空腔區 11,同時將諧振器13懸浮在空腔區π上,導線16連接於積體電路區i?並延 伸至空腔區11,並利用負載體14調整共振頻率。然而本發明所採用的方式 為面型微機電技術,其能節省晶片面積,並利用互補式金氧半導體 (Complementary Metal-Oxide- Semiconductor,簡稱CMOS)的製程,來達 200835003 到整合薄賴聲波元件與義通訊電路於互補式錄半導體之單一晶片 之目的 上 互補式金氧半導體(刪)標準製程主要是用崎作積體電路晶片 於標準化的雜,故鄕絲序轉_是映的,也 半導雜_鮮雜讀·麵和紐制__序轉度 ^ ^CMOS 0.5 二程的薄膜沉積層中含有兩層多晶石夕㈣仙⑽盘 兩層金屬層(她卜Α1) ’而製程料最小職敵5州 _ 即標準製程的薄膜沉積層中含有—層多晶飾。 =金屬層toal,A1),而製程容許最小線寬為G 6鄉。娜標準製程的^ =不同材料層之間,都以氧化石夕層(〇xide)隔開,而氧化石夕層主要的目的是 料絕緣層轉幕(mask)U。互補式錢半導體最頂層為 ===),其錢切(_4),线魏切餅制素傷害到 :參閱第二圖’在互補式金氧半導體積體電路晶片2上設有 ===該保護下設有複數金屬·,23, 25,取四,該複數金屬層 3:;";1ΙΓ 24 26,28 5 =鑑=«知技狀可改善,故本發明提供—轉舰聲波元件與 射頻通喊紅組合賴及錄造松,該義 2械她、於_,_面_f_獅=== ==金=導體_製程’來達到整合薄膜體聲波元件與射頻通 目的,如此可使薄膜體聲波元件,如據波器、雙工器 可與射頻通訊電路同步設計,而能達到加速系統設計、減少整 口測h私序之目的。 【發明内容】 本發明之主要目的,在於提供-種薄麵聲波元件與_通訊元件之 200835003 转,其_互赋錢轉鮮觀面型《電技術將 址構2=麵目的,在練供—_顯聲波元倾=通訊元件之 舞H方法,其能加速統設計及減少整合賴程序。 灶滋ίΐΓϊ另一目的’在於提供一種薄膜體聲波元件與射頻通訊元件之 ,該薄顏聲波树(如薄賴聲波紐幻具有正溫度 m\及貞溫度係數麼電層之堆疊結構,該堆疊結構能避免薄膜體聲 渡/慮波器之%作頻率因溫度的變化而改變。 之又—目的’在於提供—種薄贿聲波元件與射頻通訊元件之 ^雷^方法’该薄膜體聲波元件(如薄膜體聲波據波器)具有較薄的 壓電層、洁構(厚度小於2微米)。 本發明提供—種薄膜體聲波元件與射頻通訊元件之結構及盆製造方 法。該薄膜體聲波元件與射頻通訊元件之結構包括:—薄膜體聲波元件; 及射頻通Λτ〇件和該薄膜體聲波元件電性連接形成該薄膜體聲波元件與 =頻通訊70件之結構,其巾該薄膜體聲波元件為—薄賴聲波紐器,該 j膜體聲麟波^之結構包括:— f極金屬層;—正溫度係數壓電層 叹於β亥^雜金屬層上,—貞溫麟數壓電層設於該正溫度係數壓電層 上;-第二電極金屬層設於該負溫度係數壓電層上;及一頻率調變金屬層 設於該第二電極金屬層上;其中該薄膜體聲波元件與射頻通訊耕之結^ 係設於-晶片上。該薄賴聲波元件與射紐訊元件之結構之製造方法, 其步驟包括:_-互補式金氧半導體製程製作—射頻通訊藉於一晶片 上;及利用-面型微機電製程在該晶片上製作至少—薄膜體聲波元件,盆 和該射頻通訊祕電性連接,形成該薄膜體聲以件與射頻通訊元件之結 構0 【實施方式】 兹為使貴審查委員對本發明薄膜體聲波元件與射頻通訊元件之結構 200835003 及其製造方法之特徵及步驟有更進_步之瞭解與認識,現續佳之實 " 說明如後。 ' • 請參閲第三圖’其為本發明較佳實施例之薄膜體聲波元件與射頻通訊 兀件之結構於組合前和組合躺電路示_,其巾區域51為-互補式金氧 半導體(CMOS)射頻通訊電路區域,其包含一個低雜訊放大器(i〇w_n〇ise amplifier,簡稱LNA) 41,一混波器(組咖)42,一電壓控制震盪器 (v〇ltage-contr〇lled oscillat〇r ’簡稱 vc〇)奶、一個鎖相迴路元件 (Phase^k L师’簡稱_44及_功率放AMpQwer -Η·,簡稱 W45 f性輯形成該卿軌電路,該麵軌電路目前能透過互補式金 瞻氧轉雜程而整合在互補式金氧半導體之單—晶片上L本發明能 將目蛛能整合_麵聲波元件’如—賴體雙卫器46,二薄膜體聲波 濾波器47及-薄膜體聲波譜振器48等,利用標準互補式金氧半導翻⑹ 製程與面型微機電_程技術,將該射頻通訊元件和該薄膜體聲波元件電 性連接並整合於互補式金氧半導體之單一晶片上,而形成一薄膜體聲波元 件與射頻通訊電路之組合結構的區域52。 其中’該薄膜體聲波元件中的薄膜體聲波遽波器47(如第四圖所示), 其包含了二個並聯諧振器471及二個串聯請振器472,該薄膜體聲波渡波器 • 47為一體聲波階梯級⑽加卜咖)濾波器,利用此種設計,主要的目的 是可避免電㈣道的使用,可齡元件的複雜度,使得輸人與輸出端之接 點等高’以增加量測的便利性。而薄膜體雙工器幾二個濾波器構成,薄 膜體聲波濾波器由三至九個諧振器構成。200835003 IX. Description of the Invention: [Technical Field] The present invention relates to an integrated technology of a thin film bulk acoustic wave component and a radio frequency communication component, and particularly relates to a structure of a film bulk acoustic wave component and a manufacturing method thereof. It can be applied to integrate the acoustic passive component and the wire component to the single-chip of the complementary recording body. [Prior Art] With the rapid development of wireless communication, RF microwave components have become the key to the current development. Among them, many communication passive components, such as duplexers, filters, power amplifiers, etc. Due to its component characteristics, it needs to be combined with a radio frequency communication circuit in a single component. The shortcoming is that the cable part will increase the Wei integration by relying on the RF address. As disclosed in us 6285866, "the high-motion components and other domain-moving components are directly integrated on a single wafer to achieve an acceleration system, and the efficiency of the integration test program is reduced." However, as described in the patent, "A or h or thick piezoelectric crystal wafer is bonded on a silicon substrate", which is a method in which a silicon wafer containing an active device and a piezoelectric material wafer are wafer bonded. In combination, the thickness of the piezoelectric material wafer must be several hundred microns to operate. The method proposed by the present invention is to directly grow a piezoelectric material film having a thickness of less than 2 μm on a germanium wafer containing an active device, and does not need to use a piezoelectric material wafer, and a part of the communication passive component can be processed with a germanium wafer. Semiconductor process integration of communication active components. X^us 5260596 Monolithic circuit with integrated bulk structure resonator" adopts the bulk MEMS technology, which is to find another region on the original microwave circuit wafer to form a suspension structure of the piezoelectric cavity, as shown in the first figure, in the semiconductor substrate First, the fabrication of the integrated circuit region 17 is completed, and a cavity region 11 is formed on the wafer by the bulk MEMS technology, while the resonator 13 is suspended in the cavity region π, and the wire 16 is connected to the integrated circuit region i? To the cavity region 11, and the resonant frequency is adjusted by the carrier 14. However, the method adopted by the present invention is a surface type microelectromechanical technology, which can save the wafer area and utilize a complementary metal-oxide semiconductor (Complementary Metal-Oxide-Semiconductor, The process of CMOS), up to 200835003, to the purpose of integrating the thin Lai acoustic wave component and the communication circuit on the single chip of the complementary recording semiconductor, the complementary metal oxide semiconductor (deletion) standard process is mainly used to form the integrated circuit chip. Standardized miscellaneous, so the silk thread turns _ is the reflection, but also semi-conductive miscellaneous _ fresh miscellaneous reading surface and new system __ sequence rotation ^ ^ CMOS 0.5 two-way The film deposition layer contains two layers of polycrystalline stone (four) celestial (10) disk two layers of metal layer (she di Α 1) 'and the process material minimum enemy 5 states _ that is, the standard process of the film deposition layer contains - layer polycrystalline decoration. Metal layer toal, A1), and the process allows the minimum line width to be G 6 township. Na is standard process ^ = different material layers are separated by oxidized stone layer (〇xide), while oxidized stone layer is mainly The purpose is to feed the insulation layer mask U. The top layer of the complementary money semiconductor is ===), its money cut (_4), the line Wei cut cake is damaged: see the second picture 'in the complementary MOS The integrated circuit wafer 2 is provided with === the protection is provided with a plurality of metals, 23, 25, and four, the plurality of metal layers 3:; ";1ΙΓ 24 26,28 5 =鉴=«知技It can be improved, so the present invention provides that the combination of the transshipment acoustic wave component and the radio frequency yoke red depends on recording the pine, the meaning of the 2 weapon her, in _, _ face _f_ lion === == gold = conductor _ process ' To achieve the purpose of integrating the film bulk acoustic wave component with the RF, so that the bulk acoustic wave component, such as the wave device and the duplexer, can be designed synchronously with the RF communication circuit, and can achieve the addition. The system is designed to reduce the purpose of measuring the private sequence of the whole port. [SUMMARY OF THE INVENTION] The main object of the present invention is to provide a thin-surface acoustic wave component and a communication component of 200835003, which is a mutual benefit of the money. The electric technology will construct 2 = the purpose, in the practice of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The acoustic wave component and the radio frequency communication component, the thin acoustic sound wave tree (such as the thin Lai Sonic New Magic has a positive temperature m\ and a temperature coefficient of the stacking structure of the electric layer, the stacked structure can avoid the film body sound / wave filter The frequency of % changes due to changes in temperature. The purpose of the purpose is to provide a thin bribe acoustic wave component and a radio frequency communication component. The film bulk acoustic wave component (such as a film bulk acoustic wave device) has a thin piezoelectric layer and a clean structure (thickness is less than 2 microns). The present invention provides a structure of a film bulk acoustic wave component and a radio frequency communication component and a pot manufacturing method. The structure of the film bulk acoustic wave component and the radio frequency communication component comprises: a film bulk acoustic wave component; and an RF via 〇 component and the film bulk acoustic wave component are electrically connected to form a structure of the film bulk acoustic wave component and the 70 frequency communication component, The film bulk acoustic wave component is a thin ray sound wave damper, and the structure of the j film sound lining wave ^ includes: - f polar metal layer; - positive temperature coefficient piezoelectric layer sighs on the β hai metal layer, a piezoelectric layer of 贞Wenlin is disposed on the piezoelectric layer of positive temperature coefficient; a second electrode metal layer is disposed on the piezoelectric layer of negative temperature coefficient; and a frequency modulation metal layer is disposed on the second electrode metal layer Above; wherein the film bulk acoustic wave component and the radio frequency communication tiller are disposed on the wafer. The manufacturing method of the structure of the thin acoustic wave component and the radiation signal component comprises the steps of: _-complementary MOS process fabrication - radio frequency communication on a wafer; and using a surface-type MEMS process on the wafer Producing at least a film bulk acoustic wave component, a basin and the radio frequency communication, and forming a structure of the film body acoustic component and the radio frequency communication component. [Embodiment] For the examination of the film bulk acoustic wave component and the radio frequency of the present invention The structure and steps of the structure of the communication component 200835003 and its manufacturing method have further understanding and understanding, and the current practice is good. 'Please refer to the third figure, which is a structure of a film bulk acoustic wave device and a radio frequency communication device according to a preferred embodiment of the present invention, before and in combination with a combination circuit, and the towel region 51 is a complementary MOS semiconductor. (CMOS) RF communication circuit area, which includes a low noise amplifier (i〇w_n〇ise amplifier, LNA for short) 41, a mixer (group coffee) 42, a voltage controlled oscillator (v〇ltage-contr〇 Lled oscillat〇r 'referred to as vc 〇) milk, a phase-locked loop component (Phase ^ k L division 'abbreviation _44 and _ power amplifier AMpQwer - Η ·, referred to as W45 f-series to form the Qing rail circuit, the surface rail circuit At present, it can be integrated on a single-wafer of a complementary MOS by a complementary kinetic oxygen-transfer process. The invention can integrate a snail wave device, such as a singular body, a double film body. The acoustic wave filter 47 and the film bulk acoustic wave oscillator 48 are electrically connected to the RF communication component and the film bulk acoustic wave component by using a standard complementary MOS (6) process and a surface MEMS technology. Integrated on a single wafer of complementary MOS, and shaped A region 52 of a combined structure of a film bulk acoustic wave element and a radio frequency communication circuit. wherein the film bulk acoustic wave chopper 47 (shown in the fourth figure) of the film bulk acoustic wave element comprises two parallel resonators 471 And two series of vibrators 472, the film bulk acoustic wave waver • 47 is an integrated sound wave step (10) plus coffee) filter, with this design, the main purpose is to avoid the use of electric (four) channels, ageing components The complexity makes the input and output junctions equal to each other to increase the convenience of measurement. The thin film bulk duplexer is composed of two filters, and the thin film bulk acoustic wave filter is composed of three to nine resonators.

—本發明雛實關之_體聲波元件(如薄題聲波紐器)與射頻通 訊元件之結構在互補式金氧轉體單一晶片上的製程結構剖視圖(如第五A 圖到弟五D圖)’其步驟(如第六圖所示)包括: S1在-具有射頻通訊元件(低雜訊放大器41和混波器42)的互補式金氧半 導體晶片7上預先開啟-保護層71(低雜訊放大器41和混波器处中 開啟該保護層71),並將一第一金屬層?2及一第二金屬層乃當作侧 200835003 的犧牲層; S2將一第一電極金屬層74鍍在該第一金屬層72上; S3將一正溫度係數壓電層75成長於該第一電極金屬層%上; S4將一負溫度係數壓電層76成長於該正溫度係數壓電層75上; S5將-第二電極金屬層Τ7絲於該貞溫度係細電層76上並延伸和側邊 的麵通訊元件(如低雜訊放大器41和/或混波器42)上的第一電極金屬 層74電性連接; 及 S6將一頻率調變金屬層78設於該第二電極金屬層77上 S7雜該第-金屬層72及該第二金屬層73,產生—空腔區韻,即得至, 該懸浮薄膜體聲波濾波器47與低雜訊放大器41和/或混波器42的組合 結構。 其中,步驟S2中該第-電極金屬層74之材料相較於該第一金屬層72 其不會被則液雜,且該第—雜金屬層74和該f —金屬層72有適名 的晶格匹配。步驟S3的正溫度係數壓電層75,係指溫度上升,而壓電^ 共麵率會上升’該正溫錢數壓騎75的材料可域化鋅(_。^ S4的負溫度係顧電層76 ,係指溫度上升,壓電層的共振頻率會下降,該 負溫度係數壓電層76的材料可為氮她⑽),其具有良好之⑽優選晶 格方向纏電特性。該正溫度係數壓電層75及負溫度係數壓電層Μ形成 =^之細# 2 «,爾纖細糧驗器之共 電層76 而飄移或變化,且該正溫度係數壓電層75和負溫度係數壓 "4之厚度比為h4。因工作頻寬為驗器之重要特性,故兩於+ 層73,違1 在步驟幻腐健第一金屬層72及該第二金屬 該空腔區域80之步驟前,更包括設—蝴孔79,1貫空負球 謝6、肖越繼_ 75 屬層二 刻第-i屬之5_孔79之步驟,透過該敍刻孔79,以濕式银刻方式韻 屬曰72及弟二金屬層73,而產生該空腔區域8〇,使該薄膜體聲 200835003 波濾波器47懸浮,且該薄膜體聲波濾波器47透過第二電 可和射頻通訊元件之第-金屬層72上之第1極金屬層Ί層77,即 整合薄膜體聲波濾波器與射頻通訊元件於互補式金氧半^,到 之目的。 .之單—晶片上 該懸浮薄膜體聲波濾波器47之結構包括(如第五D 示):該第-電極金屬層74;該正溫度係數壓電層75設於部分所 層了4上;該負溫度係數壓電層π設於該正溫度係數壓電層π 極金屬 電極金屬層77設於該負溫度係數壓電層76上;及該頻率^全屬該^ 於該第二電極金屬層77上。 金屬層78故 該低雜訊放大器41之結構包括(如第五Α圖之左側部分所示)· -基板81; -介電結構87設於該基板81上及一導電結構82連 ^反81上的侧邊;-第三金屬層83設於該導電結構82之側邊並料電= :二=金屬層84位於該第三金屬層83之上方,該第四金屬層料和 μ弟一i屬層83間具有該介電結構,並藉由一第一導通孔郎讓該第四金 屬層84和該第三金屬層83電性連接;該第一金屬層72位於該第四金屬層 2之上5 ’該第一金屬層72和該第四金屬層84間具有該介電結構87二 猎由:第二導通孔86讓該第_金屬層72和該第四金屬層84電性連接;及 該保護層71言免於該介電結構87 ±,並位於該第一金屬層72上之側邊。 該混波器42和低雜訊放大器41有相似的層結構,該混波器犯之結構 包括(如第五A圖之右側部分所示): 一基板81 ·’ -介電結構87設於該基板81上及一導電結構82連接於該 基板81上的側邊;一第三金屬層泊設於該導電結構犯之側邊並和其電性 連接弟四金屬層以位於该第三金屬層83之上方,該第四金屬層g4和 違第二金屬層83間具有該介電結構,並藉由—第—導通孔85讓該第四金 屬層84和.亥第二金屬層83電性連接;該第一金屬層^位於該第四金屬層 84之上方’該第一金屬層72和該第四金屬層間具有該介電結構π,並 藉由一第二導通孔86讓該第一金屬層72和該第四金屬層84電性連接;及 200835003 及該^護層71設於該介電結構87上,餘於該第_金屬層72上之側邊。 紅上所述,本發明薄膜體聲波元件(如薄膜體聲波遽波器 元件之結構及其製造方法具有下述之優點: 貝u 技術將薄膜體聲波元件與 成利用互補式金氧轉體製程及面型微機電 射頻通訊元件整合於單一晶片上。 2· 3.- The cross-sectional view of the process structure of the structure of the body acoustic wave component (such as the thin sound wave wave device) and the RF communication component on the complementary metal oxide single wafer (such as the fifth A figure to the younger five D diagram) The steps (as shown in the sixth figure) include: S1 pre-opening-protective layer 71 on the complementary MOS wafer 7 having the RF communication component (low noise amplifier 41 and mixer 42) (low) The protective layer 71) is turned on in the noise amplifier 41 and the mixer, and a first metal layer is provided? 2 and a second metal layer is used as a sacrificial layer of side 200835003; S2 is plated with a first electrode metal layer 74 on the first metal layer 72; S3 grows a positive temperature coefficient piezoelectric layer 75 to the first On the electrode metal layer%; S4 grows a negative temperature coefficient piezoelectric layer 76 on the positive temperature coefficient piezoelectric layer 75; S5-the second electrode metal layer Τ7 is filamented on the 贞 temperature-based fine electric layer 76 and extends The first electrode metal layer 74 is electrically connected to the side surface communication component (such as the low noise amplifier 41 and/or the mixer 42); and S6 is provided with a frequency modulation metal layer 78 on the second electrode. The metal layer 77 is mixed with the first metal layer 72 and the second metal layer 73 to generate a cavity, that is, the suspended film bulk acoustic wave filter 47 and the low noise amplifier 41 and/or the mixed wave The combined structure of the unit 42. The material of the first electrode metal layer 74 in step S2 is not liquid mixed with the first metal layer 72, and the first impurity metal layer 74 and the f metal layer 72 are well-named. Lattice matching. The positive temperature coefficient piezoelectric layer 75 of step S3 means that the temperature rises, and the piezoelectric ^ coplanarity rate rises. The material of the positive temperature money number 75 can be localized zinc (_.^ S4 negative temperature system) The electrical layer 76 means that the temperature rises and the resonant frequency of the piezoelectric layer decreases. The material of the negative temperature coefficient piezoelectric layer 76 may be nitrogen (10), which has a good (10) preferred lattice direction winding characteristics. The positive temperature coefficient piezoelectric layer 75 and the negative temperature coefficient piezoelectric layer Μ form =^细# 2 «, the common layer 76 of the fine grain detector is drifted or changed, and the positive temperature coefficient piezoelectric layer 75 and The negative temperature coefficient pressure " 4 thickness ratio is h4. Since the working bandwidth is an important characteristic of the detector, the two layers are in the + layer 73, and the step 1 is included in the step of the first metal layer 72 and the second metal layer 80. 79,1 空空负球谢6, 肖越继_ 75 The genus of the genus--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- a second metal layer 73, the cavity region 8 is generated to suspend the film body sound 200835003 wave filter 47, and the film bulk acoustic wave filter 47 is transmitted through the second metal layer 72 of the second electrical and RF communication component The first pole metal layer Ί layer 77, that is, the integrated film bulk acoustic wave filter and the radio frequency communication component in the complementary gold oxide half, to the purpose. The structure of the suspension film bulk acoustic wave filter 47 on the wafer includes (as shown in FIG. 5D): the first electrode metal layer 74; the positive temperature coefficient piezoelectric layer 75 is disposed on a portion of the layer 4; The negative temperature coefficient piezoelectric layer π is disposed on the positive temperature coefficient piezoelectric layer π-electrode metal electrode metal layer 77 is disposed on the negative temperature coefficient piezoelectric layer 76; and the frequency ^ belongs to the second electrode metal On layer 77. The metal layer 78 is such that the structure of the low noise amplifier 41 includes (as shown in the left part of the fifth drawing) - the substrate 81; the dielectric structure 87 is disposed on the substrate 81 and a conductive structure 82 is connected to the reverse 81 The upper side; the third metal layer 83 is disposed on the side of the conductive structure 82 and is electrically charged: two = metal layer 84 is located above the third metal layer 83, the fourth metal layer and the second brother The i-type layer 83 has the dielectric structure, and the fourth metal layer 84 and the third metal layer 83 are electrically connected by a first via hole; the first metal layer 72 is located at the fourth metal layer 2 above 5' between the first metal layer 72 and the fourth metal layer 84 has the dielectric structure 87. The second via hole 86 allows the first metal layer 72 and the fourth metal layer 84 to be electrically connected. The protective layer 71 is exempt from the dielectric structure 87± and is located on the side of the first metal layer 72. The mixer 42 and the low noise amplifier 41 have a similar layer structure, and the structure of the mixer includes (as shown in the right part of FIG. A): a substrate 81 · ' - dielectric structure 87 is provided The substrate 81 and a conductive structure 82 are connected to the side of the substrate 81; a third metal layer is berthed on the side of the conductive structure and electrically connected to the fourth metal layer to be located on the third metal Above the layer 83, the fourth metal layer g4 and the second metal layer 83 have the dielectric structure therebetween, and the fourth metal layer 84 and the second metal layer 83 are electrically connected by the first via hole 85. The first metal layer is located above the fourth metal layer 84. The first metal layer 72 and the fourth metal layer have the dielectric structure π, and the second via hole 86 is used to make the first A metal layer 72 and the fourth metal layer 84 are electrically connected; and 200835003 and the protective layer 71 are disposed on the dielectric structure 87 to remain on the side of the first metal layer 72. Red, the film bulk acoustic wave component of the present invention (such as the structure of the bulk acoustic wave chopper component and the manufacturing method thereof have the following advantages: the shell u technology uses the complementary bulk metal oxygen transfer process The surface-type MEMS RF communication components are integrated on a single chip.

4. 能加速系統設計及減少整合測試程序。 =薄膜體聲波元件(如薄職聲波濾波it)具有正溫度係數壓電層及負 溫度係數壓電層之堆#結構’該結構能避免薄膜體聲波濾波器之操作頻 率因溫度的變化而改變。 、 薄麵^波元件(如薄臈體聲波濾波器)具有較薄的壓電層結構(厚度 小於2微米)。 /隹以上所述者’僅為本發明細體聲波元件與射頻通訊元件之結構及 其製造方权麵實施_已,並_祕林發明實紅顧,舉凡依 本發明中請專利細所述之構造、特徵及精神所為之均冬變化與修飾,均 應包括於本發明之申請專利範圍内。 ' " 【圖式簡單說明】4. Accelerate system design and reduce integration test procedures. = film bulk acoustic wave component (such as thin-sound acoustic wave filter it) has a positive temperature coefficient piezoelectric layer and a negative temperature coefficient piezoelectric layer stack #structure' This structure can avoid the operating frequency of the film bulk acoustic wave filter changes due to temperature changes . Thin-faced wave components (such as thin-body acoustic wave filters) have a thin piezoelectric layer structure (thickness less than 2 microns). / 隹 隹 隹 ' ' ' ' ' ' ' ' ' ' ' ' ' ' 细 细 细 细 细 细 ' ' ' ' ' ' ' ' ' ' ' ' ' 细 细 细 细 细 细 细 细 细 细 细The structural changes, modifications, and modifications of the structure, features, and spirits are all included in the scope of the present invention. ' " [Simple description]

第圖知利用體型微機電技術在晶片部分區域开》成空腔區及利用導線 連接諧振器與積體電路之結合示意圖。 第二圖為習知互補式金氧半導體(CM0S)標準製程之積體電路晶片之結構側 視圖。 第一圖本發明較佳實施例t薄膜體聲波元件與射頻通訊元件之結構於組合 前和組合後的電路示意圖。 第四圖為本發明階梯型(Ladder—type)軸崎波濾波器之電路示意圖。 第以圖至第划圖為本發日月薄膜體聲波濾波器與射麵訊元件整合在互補 200835003 式金氧半導體之單一晶片上的製程結構剖視圖。 第六圖為本發明薄膜體聲波元件(如薄膜體聲波濾波器)與射頻通訊元件之 結構之製造方法之步驟流程圖。 【主要元件符號說明】 〈習知〉 11空腔區 12半導體基體 13諧振器 14負載體 16導線 17積體電路區 2互補式金氧半導體積體電路晶片 20保護層 ’ 21,23,25,27,29 金屬層 22,24,26,28,30 氧化矽層 31射頻通訊電路區域 32半導體基體 〈本發明〉 41低雜訊放大器 42混波器 43電壓控制震盪器 44鎖相迴路元件 45功率放大器 ’ 46薄膜體雙工器 47薄膜體聲波濾波器 200835003 48薄膜體聲波諧振器 51區域 52薄膜體聲波元件與射頻通訊元件之結構的區域 471並聯諧振器 472串聯諧振器 7互補式金氧半導體晶片 71保護層 72第一金屬層 73第二金屬層 74第一電極金屬層 75正溫度係數壓電層 76負溫度係數壓電層 77第二電極金屬層 78頻率調變金屬層 79蝕刻孔 80空腔區域 81基板 82導電結構 83第三金屬層 84第四金屬層 85第一導通孔 86第二導通孔 87介電結構 13The figure shows a schematic diagram of the combination of a resonator and an integrated circuit by using a bulk MEMS technology in a portion of the wafer to form a cavity region. The second figure is a structural side view of an integrated circuit chip of a conventional complementary metal oxide semiconductor (CMOS) standard process. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a circuit diagram showing the structure of a film bulk acoustic wave device and a radio frequency communication device before and after combination in a preferred embodiment of the present invention. The fourth figure is a circuit diagram of a ladder type wave-saw wave filter of the present invention. The first to the first drawing is a cross-sectional view of the process structure of the single-chip wafer of the 200835003 type MOS semiconductor integrated with the film body acoustic wave filter and the surface-emitting element. Fig. 6 is a flow chart showing the steps of a method for fabricating a structure of a film bulk acoustic wave device (e.g., a film bulk acoustic wave filter) and a radio frequency communication device. [Major component symbol description] <Practical> 11 cavity region 12 semiconductor substrate 13 resonator 14 carrier 16 wire 17 integrated circuit region 2 complementary MOS semiconductor integrated circuit chip 20 protective layer '21, 23, 25, 27,29 metal layer 22,24,26,28,30 yttrium oxide layer 31 RF communication circuit area 32 semiconductor substrate <present invention> 41 low noise amplifier 42 mixer 43 voltage control oscillator 44 phase-locked loop component 45 power Amplifier '46 film bulk duplexer 47 film bulk acoustic wave filter 200835003 48 film bulk acoustic resonator 51 region 52 film bulk acoustic wave component and RF communication component structure region 471 parallel resonator 472 series resonator 7 complementary MOS semiconductor Wafer 71 protective layer 72 first metal layer 73 second metal layer 74 first electrode metal layer 75 positive temperature coefficient piezoelectric layer 76 negative temperature coefficient piezoelectric layer 77 second electrode metal layer 78 frequency modulation metal layer 79 etching hole 80 Cavity region 81 substrate 82 conductive structure 83 third metal layer 84 fourth metal layer 85 first via hole 86 second via hole 87 dielectric structure 13

Claims (1)

200835003 十、申請專利範圍: 1. 一種薄膜體聲波元件與射頻通訊元件之結構,其包括: 一薄膜體聲波元件;及 -射頻通訊元件和_題躲元件電輯接碱猶膜體聲波 元件與射頻通訊元件之結構; 其中該薄題聲波元件為-薄舰聲魏波器,該薄賴聲波據波 器之結構包括: 一第一電極金屬層; 一正溫度係數壓電層設於該第一電極金屬層上; 一負溫度係數壓電層設於該正溫度係數壓電層上; 一第二電極金屬層設於該負溫度係數壓電層上;及 一頻率調變金屬層設於該第二電極金屬層上; 其中該薄膜體聲波元件與射頻通訊元件之結構係設於一晶片上。 2. 如申請專利範圍第1項所述之薄膜體聲波元件與射頻通訊元件之結 構’其中该薄膜體聲波元件更和另一射頻通訊元件電性連接。 3·如申請專利範圍第1項所述之薄膜體聲波元件與射頻通訊元件之結 構,其中該薄膜體聲波元件更為一薄膜體雙工器及一薄膜體聲波諧 振器。 W 4·如申清專利範圍第1項所述之薄膜體聲波元件與射頻通訊元件之結 構,其中該射頻通訊元件之結構包括: 一基板; 一介電結構設於該基板上; 一導電結構設於該基板上的側邊; 一第三金屬層和該導電結構電性連接; 一第四金屬層設於該第三金屬層之上方,且該第四金屬層和該第三 金屬層間具有該介電結構; 一第一導通孔和該第四金屬層和該第三金屬層電性連接; 14 2o〇835〇〇3 第一金屬層設於該第四金屬層之上方,且該第一金屬層和該第四 金屬層間具有該介電結構; 第二導通孔和該第一金屬層72和該第四金屬層84電性連接;及 —保護層設於該介電結構上,並設於該第一金屬層上之侧邊。 其中該射頻通訊元件可為一低雜訊放大器或一混波器之任一。 •如申請專利範圍第1項所述之薄膜體聲波元件與射頻通訊元件之結 構’其中該射頻通訊元件更包括一電壓控制振盪器、一鎖相迴路元 件或一功率放大器之任一。 6·如申請專利範圍第1項所述之薄膜體聲波元件與射頻通訊元件之結 構’其中該薄膜體聲波濾波器為一懸浮薄膜體聲波濾波器。 7·如申請專利範圍第1項所述之薄膜體聲波元件與射頻通訊元件之結 構,其中該正溫度係數壓電層和負溫度係數壓電層之厚度比為1:4。 8·如申請專利範圍第1項所述之薄膜體聲波元件與射頻通訊元件之結 構,其中該正溫度係數壓電層和負溫度係數壓電層形成之一堆疊結 構’該堆疊結構之厚度小於2微米。 9·如申請專利範圍第丨項所述之薄膜體聲波元件與射頻通訊元件之結 構,其中該懸浮薄膜體聲波濾波器之該第二電極金屬層和該射頻通 訊元件電性連接。 10·如申請專利範圍第1項所述之薄膜體聲波元件與射頻通訊元件之結 構’其中該薄膜體聲波濾波器為一體聲波階梯級⑽der-typ雜波 器。 〜 11.如申請專觀圍第10項所述之薄㈣聲波元件無頻軌元件之結 構,其中該體聲波階梯級(Ladder-type)濾波器包括二個並聯驗器 及二個串聯諧振器。 12·如申請專利範圍第3項所述之__波元件與射頻通訊元件之結 構,其中該薄膜體雙工器具有二個濾波器。 13·如申請專利範圍第1項所述之_體聲波树與射頻通訊元件之結 15 200835003 14二體聲波濾波器由三個至九個譜振器構成。 .1項所述之薄麟聲波元件舆射頻通訊元件之結 冓,、中該正溫度係數壓電層的材料為氧化鋅。 第1項所述之薄膜體聲波元件與射頻通訊元件之結 構其中该負溫度係數壓電層的材料為氮化銘。 結構之製造方法,其步驟包 利用一互補式金氧轉體製程製作-射頻軌元件於-晶片上.及200835003 X. The scope of application for patents: 1. The structure of a film bulk acoustic wave component and a radio frequency communication component, comprising: a film bulk acoustic wave component; and - an RF communication component and a _ problem hiding component, an alkaline cation membrane acoustic wave component and The structure of the radio frequency communication component; wherein the thin acoustic wave component is a thin ship acoustic wave device, the structure of the thin acoustic wave wave data device comprises: a first electrode metal layer; a positive temperature coefficient piezoelectric layer is disposed in the first An electrode metal layer; a negative temperature coefficient piezoelectric layer is disposed on the positive temperature coefficient piezoelectric layer; a second electrode metal layer is disposed on the negative temperature coefficient piezoelectric layer; and a frequency modulation metal layer is disposed on The second electrode metal layer; wherein the structure of the film bulk acoustic wave component and the radio frequency communication component is disposed on a wafer. 2. The structure of the film bulk acoustic wave component and the radio frequency communication component according to claim 1, wherein the film bulk acoustic wave component is electrically connected to another RF communication component. 3. The structure of the film bulk acoustic wave component and the radio frequency communication component according to claim 1, wherein the film bulk acoustic wave component is further a film body duplexer and a film bulk acoustic resonator. The structure of the film bulk acoustic wave component and the radio frequency communication component according to claim 1, wherein the structure of the radio frequency communication component comprises: a substrate; a dielectric structure is disposed on the substrate; a third metal layer and the conductive structure are electrically connected; a fourth metal layer is disposed above the third metal layer, and the fourth metal layer and the third metal layer have a dielectric structure; a first via hole and the fourth metal layer and the third metal layer are electrically connected; 14 2o 〇 835 〇〇 3 a first metal layer is disposed above the fourth metal layer, and the first a dielectric structure is formed between a metal layer and the fourth metal layer; the second via hole and the first metal layer 72 and the fourth metal layer 84 are electrically connected; and a protective layer is disposed on the dielectric structure, and Provided on the side of the first metal layer. The RF communication component can be any of a low noise amplifier or a mixer. The structure of the film bulk acoustic wave component and the radio frequency communication component as described in claim 1 wherein the RF communication component further comprises any one of a voltage controlled oscillator, a phase locked loop component or a power amplifier. 6. The structure of the film bulk acoustic wave component and the radio frequency communication component according to claim 1, wherein the film bulk acoustic wave filter is a suspended film bulk acoustic wave filter. 7. The structure of the film bulk acoustic wave component and the radio frequency communication component according to claim 1, wherein the positive temperature coefficient piezoelectric layer and the negative temperature coefficient piezoelectric layer have a thickness ratio of 1:4. 8. The structure of the film bulk acoustic wave component and the radio frequency communication component according to claim 1, wherein the positive temperature coefficient piezoelectric layer and the negative temperature coefficient piezoelectric layer form a stacked structure 'the thickness of the stacked structure is smaller than 2 microns. 9. The structure of the film bulk acoustic wave component and the radio frequency communication component according to the invention of claim 2, wherein the second electrode metal layer of the suspended film bulk acoustic wave filter is electrically connected to the RF communication component. 10. The structure of the film bulk acoustic wave component and the radio frequency communication component according to claim 1 wherein the film bulk acoustic wave filter is an integrated acoustic step (10) der-typ clutter. ~ 11. For example, the application of the thin (four) acoustic wave component without the frequency rail component described in Item 10, wherein the bulk acoustic wave ladder type filter includes two parallel detectors and two series resonators . 12. The structure of the __wave component and the radio frequency communication component as described in claim 3, wherein the thin film duplexer has two filters. 13. The junction of the bulk acoustic wave tree and the RF communication component as described in claim 1 of the patent scope 15 200835003 14 The two-body acoustic wave filter is composed of three to nine spectral oscillators. The thin-sound acoustic wave component of the item 1 is a junction of the RF communication component, and the material of the positive temperature coefficient piezoelectric layer is zinc oxide. The structure of the film bulk acoustic wave component and the radio frequency communication component according to Item 1, wherein the material of the negative temperature coefficient piezoelectric layer is nitrided. The manufacturing method of the structure, the step package is fabricated by using a complementary metal-oxygen conversion process - the RF rail component is on the wafer. 1用-面型微機電製程在該晶片上製作至少—薄題聲波元件,A :該,職元件躲連接,形親__波元倾射頻通訊^ 件之結構, 包括 Π.如申輸咖第16項所述之薄麵聲波元件與射頻通訊元件之社 構’其中該義贿波元件為i浮薄麟聲波據波卜 18.如料專利範圍第16項所述之薄膜體聲波元件與射頻通訊元件之灶 構之製造方法’其中該餅義體聲魏波器之製造方法,盆步驟 在具有該射頻通訊元件之該晶片上絲開啟_保護層,將一第一金 屬層及一第二金屬層當作鍅刻的犧牲層; “ 將一第一電極金屬層設於該第一金屬層上; 將一正溫度係數壓電層設於該第一電極金屬上; 將一負溫度係數壓電層設於該正溫度係數壓電層上; 將一第二電極金屬層設於該負溫度係數壓電層上,且該第二電極金 屬層延伸和該射頻通訊元件電性連接; 將一頻率調變金展層設於該第二電極金屬層上;及 腐㈣第-金屬層及該第二金屬層,產生一空腔區域,即得到該懸 浮薄膜體聲波濾波器。 ”… 19·如申請專利範圍第18項所述之薄膜體聲波元件與射頻通訊元件之結 16 200835003 ’其中二金屬層設於該負溫度魏壓電層 中,更包括層延伸和該射頻通訊元件電性連接之步驟 20. 二4第一電極金屬層設於該負溫度係數壓電層上, 且該=第—電極金屬層和另一射頻通訊元件電性連接之步驟。 如申:專利軸第18項所述之賴體聲波元件與射頻通訊元件之結 構之製造方法,其中腐蝕該第一金屬層及該第二金屬層,產生該空 腔區域之步驟前更包括-設-侧孔,其貫穿負溫度係數壓電層、 正溫度係數壓電層及第一電極金屬層,並將一蝕刻液注入該蝕刻孔 之步驟。 171 using a - surface type MEMS process to make at least - thin questioning acoustic wave component on the wafer, A: the structure of the component to avoid connection, the shape of the parent __ wave element tilting RF communication ^, including Π. The social organization of the thin-face acoustic wave component and the radio frequency communication component described in Item 16 wherein the bribe wave component is a floating acoustic wave wave wave. 18. The film bulk acoustic wave component and the radio frequency according to claim 16 of the patent scope. The manufacturing method of the device for the communication device, wherein the method of manufacturing the cake body sound wave device, the basin step on the wafer having the RF communication component, the wire opening _ protection layer, a first metal layer and a second The metal layer serves as a sacrificial layer of engraving; "a first electrode metal layer is disposed on the first metal layer; a positive temperature coefficient piezoelectric layer is disposed on the first electrode metal; and a negative temperature coefficient is pressed An electric layer is disposed on the positive temperature coefficient piezoelectric layer; a second electrode metal layer is disposed on the negative temperature coefficient piezoelectric layer, and the second electrode metal layer extends electrically connected to the radio frequency communication component; a frequency modulation gold layer is disposed on the second electrode gold And the etched (four) first-metal layer and the second metal layer, a cavity region is obtained, that is, the suspended film bulk acoustic wave filter is obtained. 19... The film bulk acoustic wave component according to claim 18 The junction with the RF communication component 16 200835003 'The two metal layers are disposed in the negative temperature Wei piezoelectric layer, and further includes a step extension and a step of electrically connecting the RF communication component. 20. The first electrode metal layer is disposed in the The step of negatively coupling the piezoelectric layer on the piezoelectric layer and electrically connecting the first electrode metal layer to another RF communication component. For example, the manufacturing method of the structure of the acoustic wave component and the radio frequency communication component described in claim 18, wherein the first metal layer and the second metal layer are etched, and the step of generating the cavity region further includes - And a side hole penetrating through the negative temperature coefficient piezoelectric layer, the positive temperature coefficient piezoelectric layer and the first electrode metal layer, and an etching liquid is injected into the etching hole. 17
TW96103747A 2007-02-01 2007-02-01 Structure of thin-film acoustic-wave component and radio-frequency communication component and their manufacturing method thereof TW200835003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96103747A TW200835003A (en) 2007-02-01 2007-02-01 Structure of thin-film acoustic-wave component and radio-frequency communication component and their manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96103747A TW200835003A (en) 2007-02-01 2007-02-01 Structure of thin-film acoustic-wave component and radio-frequency communication component and their manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW200835003A true TW200835003A (en) 2008-08-16

Family

ID=44819594

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96103747A TW200835003A (en) 2007-02-01 2007-02-01 Structure of thin-film acoustic-wave component and radio-frequency communication component and their manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW200835003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632772B (en) * 2016-10-17 2018-08-11 穩懋半導體股份有限公司 A bulk acoustic wave resonator with a mass adjustment structure and its application to bulk acoustic wave filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632772B (en) * 2016-10-17 2018-08-11 穩懋半導體股份有限公司 A bulk acoustic wave resonator with a mass adjustment structure and its application to bulk acoustic wave filter

Similar Documents

Publication Publication Date Title
CN112532195B (en) Passive cavity type single crystal film bulk acoustic resonator structure and preparation method thereof
WO2021219050A1 (en) Resonator assembly and method for manufacturing same, semiconductor device, and electronic device
CN104202010B (en) Hollow cavity-type film bulk acoustic resonator and production method for same
CN103929149B (en) Flexible piezoelectric film bulk acoustic wave resonator and manufacturing method thereof
JP3703773B2 (en) Manufacturing method of crystal unit
CN104716925B (en) Piezoelectric thin film vibrator and its manufacture method, wave filter and duplexer
WO2022143286A1 (en) Single-crystal acoustic resonator, filter, and electronic device
WO2021114556A1 (en) Bulk acoustic wave resonator having gap layer on electrode and manufacturing method therefor, filter, and electronic device
CN109150127A (en) Thin film bulk acoustic wave resonator and preparation method thereof, filter
CN111654258B (en) Film bulk acoustic resonator manufacturing method, film bulk acoustic resonator and filter
WO2022134861A1 (en) Frequency-tunable film bulk acoustic resonator and preparation method therefor
CN112350679A (en) Bulk acoustic wave resonator based on silicon piezoelectric film structure and preparation method thereof
US11942916B2 (en) Fabricating method of film bulk acoustic resonator
WO2022052915A1 (en) Filter assembly and manufacturing method therefor, and electronic device
WO2022062910A1 (en) Bulk acoustic resonator and assembly, method for adjusting electromechanical coupling coefficient difference, and filter and electronic device
WO2024061051A1 (en) Laterally excited bulk acoustic resonator with phononic crystals, and preparation method for same
US9160305B1 (en) Capacitively and piezoelectrically transduced micromechanical resonators
TW200835003A (en) Structure of thin-film acoustic-wave component and radio-frequency communication component and their manufacturing method thereof
WO2023030359A1 (en) Bulk acoustic resonator comprising gap electrode, filter and electronic device
WO2022228385A1 (en) Bulk acoustic wave resonator having thickened electrode, filter, and electronic device
CN112688658B (en) Piezoelectric substrate, preparation method and electronic component
CN116131798A (en) Solid-state bulk acoustic wave resonator and manufacturing method thereof
CN114584096A (en) High-bandwidth silicon reverse side etching type film bulk acoustic resonator and preparation method thereof
US11601111B2 (en) Piezoelectric MEMS resonators based on porous silicon technologies
CN109802645A (en) A kind of heterogeneous integrated approach of air-gap type piezoelectric sound wave device and the device