200834959200834959
:费,r,'c—】 r、VCvpr#:y':…?/1,…:v . 匕二二kij^^u:二心i^mwa:: ' 【發明所屬之技術領域】 本發明是有關於一種光電元件及其製作,且特別是有關 於一種發光二極體(LED)及其製造方法。 【先前技術】 目前,覆晶(Flip-chip)封裝技術已廣泛地應用在發光二 極體元件之製作上,以提高發光二極體元件之發光效率。除 了可提升發光效率外,覆晶式發光二極體亦具有免打線 (Wire Bonding)製程,以及發光磊晶結構可直接與子基座 (Sub-mount)結合的優勢。此外,更可藉由選用高導熱係數 及導電.之子基座,可使發光二極體元件進一步具有高功率操 作特性。 對於氮化鎵系列(GaN-based)發光二極體而言,由於目 前大都以藍寶石作為磊晶基板,而藍寶石基板在可見光範圍 内具有絕佳的透明度,因此覆晶式氮化鎵發光二極體元件的 製作過程中,無需將磊晶基板移除。 另一方面,對於砷化鎵系列(GaAs-based)發光二極體而 言,由於大都係以砷化鎵基板來作為磊晶基板,而砷化鎵基 板係一吸光基板,因此要製作覆晶式發光二極體元件時,則 需將此吸光基板予以全部移除或部分移除。而由於發光磊晶 結構之厚度相當薄,因此需再搭配晶圓鍵結(Wafer Bonding) 技術,來將發光磊晶結構與一子基板結合,藉以支撐磊晶基 板移除後所留下之發光磊晶結構。 目前,發光二極體的晶圓鍵結技術通常是利用黏著介質 200834959 來進行發光蠢晶結構與子基板之接合,或者利用加壓加熱的 方式使二晶片互相鍵绪而接合。然而,利用黏著介質接合發 光磊晶結構與子基板時,在貼合過程中相當容易在貼合介面 中產生氣泡,而氣泡的存在會導致接合強度下降,嚴重影響 接合製程的可靠度與良率。此外,利用加壓加熱的晶圓鍵結 方式,需考慮二鍵結表面之晶格排列,因此不僅會增加接合 製程的複雜度與困難度,且接合強度常無法滿足元件需求' 進而嚴重影響接合製程之可靠度與良率。 【發明内容】 因此,本發明之目的就是在提供一種發光二極體,其透 明永久基板係直接成長在窗戶層之表面上,因此可大大地增 進透明永久基板與發光磊晶結構之結合力。 本發明之另一目的是在提供一種發光二極體之製造方 法’其係直接在窗戶層之表面上成長透明基板,而非利用晶 圓鍵結方式,因此可簡化製程,更可提高製程良率。 根據本發明之上述目的,提出一種發光二極體,至少包 括·一窗戶層,具有相對之第一表面與第二表面;一發光磊 晶結構,設於窗戶層之第一表面之第一部分,並暴露出窗戶 層之第一表面之第二部分,其中發光磊晶結構至少包括依序 堆疊在窗戶層之第二電性半導體層、主動層以及第一電性半 導體層,且第一電性半導體層與第二電性半導體層具有不同 迅〖生’透明基板,直接成長在窗戶層之第二表面;一第二 電極,叹於窗戶層之第一表面之第二部分;一第一電極,設 於部分之第一電性半導體層上;以及一子基座,其中子基座 200834959 透過二導電介質而分別與第一電極和第二電極電性接合。 依照本發明一較佳實施例,上述透明基板係旋塗透明臭 板。 根據本發明之目的,提出一種發光二極體之製造方法, 至乂匕括· &供一原生基板(Gr〇wth Substrate);形成一反射 層於原生基板上,形成一發光蠢晶結構於反射層上,其中發 光磊晶結構至少包括依序堆疊在反射層上之第一電性半導 體層、主動層以及第二電性半導體層;形成一窗戶層於第二 電性半導體層上;成長一透明基板於窗戶層上;移除原生基 板之部分厚度;移除部分之原生基板、部分之反射層與部分 之發光磊晶結構,直至暴露出部分之窗戶層;形成一第一電 極以及一第二電極分別位於部分之原生基板與窗戶層之暴 露部分上;以及接合一子基座與發光磊晶結構。 依照本發明一較佳實施例,上述之原生基板可完全移 除。 依照本發明之另一較佳實施例,上述成長透明基板之步 驟包括進行複數個旋塗玻璃(Spin 〇n_glass ; s〇g)製程。 【實施方式】 本發月揭路種發光二極體及其製造方法,可簡化接合 衣私並大巾田提叼接合製程的良率與可靠度。為了使本發明 之敛述更加痒盡與完備,开安 街了參知下列描述並配合第1A圖至 第2G圖之圖式。 請參照第1A圖至第m闰 甘y a 口主弟1G圖,其係繪示依照本發明一較 佳實施例的一種發先二搞骑+制# ^ 體之I私剖面圖。在本示範實施例 200834959 中,主要係提供砷化鎵系列之發光二極體及其製作。首先, 提供原生基板咖,其中原生基板議之材料可例如為碎化 鎵。再利用例如有機金屬化學氣相沉積法(M〇cvd),於原 生基板100之表面上磊晶成長發光磊晶結構1〇2,其中發光 蠢晶結構1G2可為雙異質接面(加浙__“如)結 構。發光磊晶結構102至少包括第一電性半導體層ι〇4、主 動層106以及第二電性半導體層1〇8,其中第一電性半導體 層104覆盍在原生基板1〇〇之表面上,主動層哪覆蓋堆疊 在第一電性半導體層104上,而第二電性半導體層⑽覆蓋 堆疊在主㈣106上。第一電性半導體層1〇4與第二電性半 ^體^ ! 08具有不同電性。舉例而言,當第一電性為n型 %,第一電性為p型;而當第一電性為p型時,第二電性 為N型。在本示範實施例中,第一電性為”型,且第二電 性為P型。此外’第—電性半導體層1G4之材料可例如為^ 型摻雜之磷化鋁鎵銦(AJGaInP);而第二電性半導體層丨⑽ 之材料可例如為P型摻雜之磷化鋁鎵銦。主動層ι〇6較佳 可為磷化鋁鎵銦多重量子井(Multiquantum m,mqw)結 接下來,利用例如有機金屬化學氣相沉積法,於發光磊 =結構102之第二電性半導體層1〇8上形成窗戶層11〇,如 第1A圖所不。其中,窗戶層11〇之材料可例如為磷化鎵 (GaP)。窗戶層11〇之設置有助於分散電流。 f耆’直接在窗戶層110之表面112上成長透明基板 U4來作為永久基板,如此一來透明基板114與發光磊晶結 構102位於囱戶層11〇之相對兩侧,如第13圖所示。在本 示範實施例中,可利用旋塗玻璃法來成長透明基板114,因 200834959 此透明基板114可為旋塗透明基板。成長透明基板ιΐ4時, 可進行多次的旋塗玻璃製程形成多層透明薄膜,而由這些透 明薄膜層疊出具有所需厚度之透明基板114。在本示範實施 例中透明基板114之材料可例如為二氧化石夕⑻⑹、氮化 矽(S!NX)、乳化鎂(Mg〇)、氮化鋁(A1N)、環氧樹酯、二氧化 敛(⑽)、氧化辞(Zn0)或五氧化二组(Ta2〇5)等能隙大於主 動層106所發出之光的能量的材料。 由透明基板114係直接製作成長在窗戶層110之表 面112’ *非直接提供另—基板㈣用晶圓鍵結方式來進行 晶板與發光蟲晶層的結合。因此,透明基板ιΐ4與窗戶層 110及發光蟲晶結構102的結合無需再透過黏著介質,亦無 需考慮基板材料與欲接合表面之晶格匹關題,不僅可簡化 製程’有效降低製程難度’而可大幅提升製程的良率,且透 明基板114對窗戶層U〇具有較強之結合力,而可提高發光 二極體元件的可靠度。 完成透明基板m之製作後,利用例如濕絲刻的方 j,移除會吸光之原生基板100,如第1(:圖所示。在本示 範實施例中’完全移除原峰其^;】Λ 原生基板100,直至暴露出原本成長 在原生基板⑽表面上之發光磊晶結構1〇2的第一電性半導 體層104,如第1D圖所示。 接下來’如第1Ε圖所示暴露出窗戶層11〇之一部分表 之方=如義可利用微影與餘刻方式來進行發光蠢晶結 構102之圖木疋義,而移除部分之發光蟲晶結構⑽,直至 暴露出窗戶層m之一部分表面116,以利後續形成之電極 此與窗戶層m形成接觸,進而可與第二電性半導體層 108 9 200834959 產生電性連接。 完成發光蟲晶結構102之圖案定義後,利用例如基卜 11〇 的-部分上。同時,並制例如蒸鍍沉積等技術形成第― 極=部分之第一電性半導體層1〇4上,如第if圖心 “後’即可進行發光二極體之覆晶封裝製程。先提供 基座126’其中手美庙+ u 、宁子基座126之材料較佳可選用高導熱且導雷 材料’例如發。接著,透過導電介質,例如銲球m盘銲球 124’將透明基板114連同窗戶層11G與發m结構⑽ 覆蓋並接合在子基座126上,其中子基座126透過鲜球⑵ 與辉球124而分別與第二電極118及第-電極12〇電性接 口。至此,已大致完成發光二極體128之製作而形成如第 1Θ圖所示之結構。 請參照第2A圖至第扣圖’其係繪示依照本發明另― 較佳實施例的-種發光二極體之製程剖面圖:在本示範實施 例中’相同地,主要係提㈣化鎵㈣之發光:極體及其製 作。首先’提供原生基板_,其中原生基板之材料可 例如為坤化鎵。再於原生基板2〇〇上形成反射層2〇2,其中 反射層202可例如為分散式布拉格反射(Distributed b叫: fee, r, 'c—] r, VCvpr#:y':...? /1,...:v. 匕二二kij^^u: 二心i^mwa:: ' [Technical Field of the Invention] The present invention relates to a photovoltaic element and its fabrication, and in particular to a light-emitting two Polar body (LED) and its manufacturing method. [Prior Art] At present, Flip-chip packaging technology has been widely used in the fabrication of light-emitting diode elements to improve the luminous efficiency of light-emitting diode elements. In addition to improving luminous efficiency, flip-chip LEDs also have a Wire Bonding process and the advantage of a luminescent epitaxial structure that can be directly bonded to a sub-mount. In addition, the light-emitting diode element can further have high power operation characteristics by using a sub-base with high thermal conductivity and conductivity. For GaN-based light-emitting diodes, since sapphire is mostly used as an epitaxial substrate, and sapphire substrates have excellent transparency in the visible range, flip-chip GaN light-emitting diodes It is not necessary to remove the epitaxial substrate during the fabrication of the bulk component. On the other hand, for a gallium arsenide-based (GaAs-based) light-emitting diode, since a gallium arsenide substrate is used as an epitaxial substrate, and a gallium arsenide substrate is a light-absorbing substrate, a flip chip is required. In the case of a light-emitting diode component, all of the light-absorbing substrate needs to be removed or partially removed. Since the thickness of the luminescent epitaxial structure is relatively thin, it is necessary to use Wafer Bonding technology to combine the luminescent epitaxial structure with a sub-substrate to support the luminescence left after the epitaxial substrate is removed. Epitaxial structure. At present, the wafer bonding technology of a light-emitting diode usually uses an adhesive medium 200834959 to bond the light-emitting amorphous structure to the sub-substrate, or press-bonded to bond the two wafers to each other. However, when the luminescent epitaxial structure and the sub-substrate are bonded by the adhesive medium, bubbles are easily generated in the bonding interface during the bonding process, and the presence of the bubbles may cause the bonding strength to decrease, which seriously affects the reliability and yield of the bonding process. . In addition, the use of pressure-heated wafer bonding method requires consideration of the lattice arrangement of the two-bonded surface, so that not only the complexity and difficulty of the bonding process are increased, but also the bonding strength often fails to meet the component requirements', thereby seriously affecting the bonding. Process reliability and yield. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a light-emitting diode in which a transparent permanent substrate is directly grown on the surface of a window layer, thereby greatly enhancing the bonding force between the transparent permanent substrate and the luminescent epitaxial structure. Another object of the present invention is to provide a method for fabricating a light-emitting diode which directly grows a transparent substrate on the surface of a window layer instead of using a wafer bonding method, thereby simplifying the process and improving the process. rate. According to the above object of the present invention, a light emitting diode is provided, comprising at least a window layer having opposite first and second surfaces; and a light emitting epitaxial structure disposed on the first portion of the first surface of the window layer, And exposing a second portion of the first surface of the window layer, wherein the luminescent epitaxial structure comprises at least a second electrical semiconductor layer, an active layer, and a first electrical semiconductor layer sequentially stacked on the window layer, and the first electrical property The semiconductor layer and the second electrical semiconductor layer have different fast transparent substrates, which directly grow on the second surface of the window layer; a second electrode sighs the second portion of the first surface of the window layer; a first electrode And disposed on a portion of the first electrical semiconductor layer; and a sub-mount, wherein the sub-mount 200834959 is electrically coupled to the first electrode and the second electrode respectively through the two conductive medium. According to a preferred embodiment of the present invention, the transparent substrate is a spin-coated transparent odor board. According to an object of the present invention, a method for fabricating a light-emitting diode is provided, wherein a substrate is provided for a native substrate (Gr〇wth Substrate); a reflective layer is formed on the native substrate to form a light-emitting amorphous structure. On the reflective layer, wherein the luminescent epitaxial structure comprises at least a first electrical semiconductor layer, an active layer and a second electrical semiconductor layer sequentially stacked on the reflective layer; forming a window layer on the second electrical semiconductor layer; growing a transparent substrate on the window layer; removing a portion of the thickness of the native substrate; removing a portion of the native substrate, a portion of the reflective layer and a portion of the luminescent epitaxial structure until a portion of the window layer is exposed; forming a first electrode and a The second electrode is respectively located on a portion of the exposed portion of the native substrate and the window layer; and a sub-base and a light-emitting epitaxial structure are bonded. In accordance with a preferred embodiment of the present invention, the native substrate described above can be completely removed. In accordance with another preferred embodiment of the present invention, the step of growing the transparent substrate includes performing a plurality of spin-on glass (spin 〇n_glass; s〇g) processes. [Embodiment] This invention discloses a light-emitting diode and a method for manufacturing the same, which can simplify the yield and reliability of the bonding process and the bonding process of the large towel field. In order to make the convergence of the present invention more itch and complete, Kaian Street has learned the following description and cooperates with the drawings of Figs. 1A to 2G. Please refer to the 1G diagram of the 1A to the m闰 y a mouth, which is a private section of the first embodiment of the present invention. In the exemplary embodiment 200834959, a gallium arsenide series light-emitting diode is mainly provided and its fabrication. First, a native substrate coffee is provided, wherein the material of the primary substrate can be, for example, gallium hydride. Further, for example, an organic metal chemical vapor deposition method (M〇cvd) is used to epitaxially grow a light-emitting epitaxial structure 1〇2 on the surface of the native substrate 100, wherein the light-emitting crystal structure 1G2 may be a double heterojunction (Zhejiang _ The structure of the light-emitting epitaxial structure 102 includes at least a first electrical semiconductor layer ι 4, an active layer 106, and a second electrical semiconductor layer 〇8, wherein the first electrical semiconductor layer 104 is overlying the native substrate On the surface of the first layer, the active layer is stacked on the first electrical semiconductor layer 104, and the second electrical semiconductor layer (10) is overlaid on the main (four) 106. The first electrical semiconductor layer 1〇4 and the second electricity 08 has different electrical properties. For example, when the first electrical property is n-type %, the first electrical property is p-type; and when the first electrical property is p-type, the second electrical property is N. In the exemplary embodiment, the first electrical property is "type" and the second electrical property is P-type. In addition, the material of the first electrical semiconductor layer 1G4 may be, for example, a doped aluminum gallium indium phosphide (AJGaInP); and the material of the second electrical semiconductor layer 10 (10) may be, for example, a P-doped aluminum phosphide. Gallium indium. The active layer ι 6 may preferably be an aluminum gallium indium multi-quantum methane (mqw) junction, followed by, for example, an organometallic chemical vapor deposition method, in the second electrical semiconductor layer of the light-emitting layer = structure 102 The window layer 11〇 is formed on 1〇8, as shown in Fig. 1A. The material of the window layer 11 can be, for example, gallium phosphide (GaP). The setting of the window layer 11 有助于 helps to disperse the current. f耆' directly grows the transparent substrate U4 on the surface 112 of the window layer 110 as a permanent substrate, such that the transparent substrate 114 and the luminescent epitaxial structure 102 are located on opposite sides of the layer 11 of the layer, as shown in FIG. . In the exemplary embodiment, the transparent substrate 114 may be grown by a spin-on glass method, which may be a spin-on transparent substrate as in 200834959. When the transparent substrate ι 4 is grown, a plurality of spin-on-glass processes can be performed to form a plurality of transparent films, and the transparent films 114 having a desired thickness are laminated from the transparent films. In the exemplary embodiment, the material of the transparent substrate 114 may be, for example, dioxide (8) (6), tantalum nitride (S! NX), emulsified magnesium (Mg 〇), aluminum nitride (A1N), epoxy resin, dioxide. A material having a larger energy gap than the light emitted by the active layer 106, such as a converging ((10)), an oxidized (Zn0) or a pentoxide group (Ta2〇5). The transparent substrate 114 is directly formed and grown on the surface 112' of the window layer 110. * The substrate is bonded directly to the substrate (4) by wafer bonding to bond the crystal plate to the luminescent layer. Therefore, the combination of the transparent substrate ΐ4 and the window layer 110 and the luminescent crystal structure 102 does not need to pass through the adhesive medium, and the crystal lattice of the substrate material and the surface to be bonded need not be considered, which not only simplifies the process, but also effectively reduces the process difficulty. The process yield can be greatly improved, and the transparent substrate 114 has a strong bonding force to the window layer U〇, and the reliability of the light emitting diode element can be improved. After the fabrication of the transparent substrate m is completed, the native substrate 100 that absorbs light is removed by, for example, a wet-zipped square j, as shown in FIG. 1 (in the present exemplary embodiment, 'the original peak is completely removed>; Λ The primary substrate 100 is exposed to the first electrical semiconductor layer 104 of the luminescent epitaxial structure 1〇2 originally grown on the surface of the native substrate (10) as shown in FIG. 1D. Next, as shown in FIG. Exposing the surface of one of the window layers 11============================================================================================ a portion of the surface 116 of the layer m, so that the subsequently formed electrode is in contact with the window layer m, and can be electrically connected to the second electrical semiconductor layer 108 9 200834959. After the pattern definition of the luminescent crystal structure 102 is completed, the For example, on the - part of the base 12, at the same time, a technique such as vapor deposition or the like is formed to form the first electric semiconductor layer 1〇4 of the first pole portion, and the light can be emitted as the “after” of the if figure. Dilithic flip chip packaging process. First available The material of the seat 126' wherein the hand temple + u and the lining base 126 are preferably made of a high thermal conductivity and a lightning-guide material 'for example. The transparent substrate 114 is then passed through a conductive medium such as a solder ball m-plated ball 124'. The sub-base 126 is electrically connected to the second electrode 118 and the first electrode 12 through the fresh ball (2) and the glow ball 124, respectively, together with the window layer 11G and the m structure (10). The structure of the light-emitting diode 128 has been substantially completed to form a structure as shown in Fig. 1. Referring to Fig. 2A to Fig. 2, there is shown a light-emitting diode according to another preferred embodiment of the present invention. Process profile of the polar body: In the present exemplary embodiment, 'samely, the main light is the (4) gallium (4) luminescence: the polar body and its fabrication. First, 'provide the original substrate _, wherein the material of the primary substrate can be, for example, Kunhua Gallium. A reflective layer 2〇2 is formed on the native substrate 2〇〇, wherein the reflective layer 202 can be, for example, a distributed Bragg reflection (Distributed b
Reflector ; DBR)層。接下桊,毛i ro ,, ^ 接T A 利用例如有機金屬化學氣相 沉積法,於原生基之表面上蟲晶成長發光蟲晶結構 204 ’其中發光蟲晶結構2〇4可為雙異質接面結構。發光蟲 晶結構綱至少包括第-電性半導體層裏、主動層2〇8以 及第二電性半導體層21G,其中第_電性半導體層雇覆蓋 在反射層202上,主動層期覆蓋堆疊在第―電性半導體層 10 200834959 206上’而第二雷 上。第一電性半導體·-二210覆蓋堆疊在主動層208 同電性,1中者第曰〇6與第二電性半導體層210具有不 當第-電性為P型時,第二電為弟-电性為p型;而 中,第-電性為W,且^ ^為1型。在本示範實施例 性半導體層2〇6之_ 性為?型。此外,第一電 鋁鎵銦。主動爲f 可例如為p型摻雜之磷化Reflector; DBR) layer. Next, the hair i ro , , ^ is connected to the TA by, for example, organometallic chemical vapor deposition, on the surface of the original substrate, the crystal growth of the luminescent crystal structure 204 'where the luminescent crystal structure 2 〇 4 can be double heterogeneous Surface structure. The luminescent crystal structure includes at least a first electrical semiconductor layer, an active layer 2〇8, and a second electrical semiconductor layer 21G, wherein the first electrical semiconductor layer is covered on the reflective layer 202, and the active layer covers the stack. The first electrical semiconductor layer 10 on 200834959 206 is on the second thunder. The first electrical semiconductor--two 210 covers the same polarity in the active layer 208, and the second and second electrical semiconductor layers 210 have an improper first-electricity P-type, and the second electric - The electrical property is p-type; and in the middle, the first electrical property is W, and ^^ is type 1. In the exemplary embodiment of the semiconductor layer 2〇6, what is the property? type. In addition, the first electric aluminum gallium indium. Active f can be, for example, p-type doped phosphating
接著,利用^較佳可為麟化銘鎵銦多重量子井結構。 204之第:有機金屬化學氣相沉積法’於發光磊晶結構 弟一%性半導體層21〇上形成窗戶層212,以利分散 ς 了而形成如第2A圖所示之結構。其中,窗戶層川之 材#可例如為磷化鎵。 接著,直接在窗戶層212之表面214上成長透明基板 216以作為發光二極體元件之永久基板,如此一來透明基 板216與發光磊晶結構2〇4位於窗戶層212之相對兩侧如 第2B圖所示。在本示範實施例中,可利用旋塗玻璃法來成 長透明基板216,因此透明基板216可為旋塗透明基板。成 長透明基板216時’可進行多次的旋塗玻璃製程形成多層透 明薄膜,而由這些透明薄膜層疊出具有所需厚度之透明基板 216。在本示範實施例中,透明基板216之材料可例如為二 氧化矽、氮化矽(SiNx)、氧化鎂(Mg〇)、氮化鋁(ΑιΝ)、環氧 樹酯、二氧化鈦、氧化鋒或五氧化二钽等能隙大於主動層 208所發出之光的能量的材料。 由於透明基板216係直接製作成長在窗戶層212之表面 214,因此透明基板216與窗戶層212及發光磊晶結構ι〇2 η 200834959 的結合無需再透過黏著介質,亦無需考慮基板材料與欲接合 表面之晶格匹配問題,不僅可簡化製程、降低製程難度,因 而了大升製程的良率。此外,透明基板216對窗戶層 Π0之結合力亦可獲得顯著提升,進一步可提高發光二極體 元件的可靠度。 完成透明基板216之成長後,由於原生基板200與發光 蠢晶結構204之間設有反射層202,因此原生基板200無須 完全移除’而利甩例如濕式蝕刻的方式移除吸光之原生基板 _ 200之部分厚度即可。但是,值得注意的一點是,原生基板 200仍可完全移除。在本示範實施例中,僅移除具有部分厚 度之原生基板200a,而留下具有另一部分厚度之原生基板 200b,如第2C圖所示。留下之原生基板200b可提供發光 磊晶結構204結構支撐。如第2D圖所示,有了殘留原生基 板2〇Ob所提供之結構強度,可不需太大厚度之透明基板 216,如此一來可縮減透明基板216之成長製程的時間。 接著,如第2E圖所示暴露出窗戶層212之一部分表面 218,方法例如可利用微影與蝕刻方式來進行發光磊晶結構 204之圖案定義,而移除部分之原生基板2〇〇b、反射層2〇2 以及發光磊晶結構204,直至暴露出窗戶層212之一部分表 面218,以利後續形成之電極能與窗戶層212形成接觸,進 一步可與第二電性半導體層210產生電性連接。 完成發光蠢晶結構204之圖案定義後,利用例如蒸鍍沉 * 積等技術,形成第二電極220於窗戶層212之暴露表面218 的一部分上,並形成第一電極222於部分之原生基板2〇〇b 上,如第2F圖所示。 12 200834959 然後,可選擇性地先利用例如沉積方式形成保護層 ’以覆蓋在原生基板上,以及夯1 、曰 以及先則經圖案定義後所 *路出之反射層202側面與發光磊晶結構2〇4之側面上。其 2 ’保護層224之材料可例如為二氧切、氮化邦况)、 '氧化鎂(Mg0)、氮化鋁(娜)、環氧樹醋、二氧化鈦、』化 鋅或五乳化二叙。接著,即可進行發^二極體之覆晶封裝製 ^先提供子基座㈣’其中子基座23g之材料較佳可選用 兩導熱且導電材料,例如矽。再透過導電介質,例如銲球 # ^26與銲球228,將透明基板216連同窗戶層212、發光蟲 晶結構204、反射層202與留下之原生基板2嶋覆蓋並接 合在子基座㈣上’其中子基座23〇透過銲球以與鲜球 228而分別與第二電極22〇及第一電極222電性接合,而大 致凡成發光二極體232之製作,如第2(3圖所示。 、由上述本發明較佳實施例可知,/本發明之一優點就是因 為本發明之發光二極體的透明永久基板係直接成長在窗戶 層之表面上,因此可增強透明永久基板與發光磊晶結構之结 赢 合力。 由上述本發明較佳實施例可知,本發明之另一優點就是 因為本發明之發光二極體之製邊方法傣直接在窗戶層之表 面上成長透明基板,而非利用晶圓鍵結方式,因此可簡化製 _ 程,更可提高製程良率。 雖然本發明已以一較佳實施例揭露如上,然其並非用以 限定本發明,任何在此技術領域中具有通常知識者,在不脫 離本發明之精神和範圍内,當可作各種之更動與潤飾,因此 本發明之保護範圍當視後附之申請專利範圍所界定者為準。 200834959 【圖式簡單說明】 第1A圖至第1G圖係繪示依照本發明一較佳實施例的 一種發光二極體之製程剖面圖。 第2A圖至第20圖係繪示依照本發明另一較佳實施例 的一種發光二極體之製程剖面圖。 【主要元件符號說明】 100 :原生基板 102 :發光磊晶結構 104 :第-電性半導體層 106 :主動層 108 :第二電性半導體層 110 :窗戶層 112 :表面 114 :透明基板 116 :表面 118 :第二電極 120 :第一電極 122 :銲球 124 :銲球 126 :子基座 128 :發光二極體 200 :原生基板 200a :原生基板 20Gb :原生基板 • 202 :反射層 204 :發光磊晶結構 206 :第一電性半導體層 208 :主動層 210 :第二電性半導體層 212 :窗戶層 214 :表面 21 6 :透明基板 218 :表面 220 :第二電極 - 222 :第一電極 224 :保護層 226 ··銲球 228 :銲球 230 :子基座 232 :發光二極體 14Next, the use of ^ can be a Linquan Ming gallium indium multiple quantum well structure. 204: Organic Metal Chemical Vapor Deposition Method A window layer 212 is formed on the luminescent-emitting epitaxial structure to form a structure as shown in FIG. 2A. Among them, the window layer material # can be, for example, gallium phosphide. Next, the transparent substrate 216 is grown directly on the surface 214 of the window layer 212 as a permanent substrate of the light emitting diode element, such that the transparent substrate 216 and the light emitting epitaxial structure 2〇4 are located on opposite sides of the window layer 212. Figure 2B shows. In the present exemplary embodiment, the transparent substrate 216 can be grown by a spin-on glass method, and thus the transparent substrate 216 can be a spin-on transparent substrate. When the transparent substrate 216 is grown, a plurality of spin-on-glass processes can be performed to form a plurality of transparent films, and a transparent substrate 216 having a desired thickness is laminated from the transparent films. In the exemplary embodiment, the material of the transparent substrate 216 may be, for example, hafnium oxide, tantalum nitride (SiNx), magnesium oxide (Mg〇), aluminum nitride (ΑιΝ), epoxy resin, titanium dioxide, oxidation front or A material such as tantalum pentoxide having a larger energy gap than the light emitted by the active layer 208. Since the transparent substrate 216 is directly formed on the surface 214 of the window layer 212, the combination of the transparent substrate 216 and the window layer 212 and the luminescent epitaxial structure ι〇2 η 200834959 does not need to pass through the adhesive medium, and the substrate material is not required to be bonded. The problem of lattice matching on the surface not only simplifies the process and reduces the difficulty of the process, thus the yield of the process. In addition, the bonding force of the transparent substrate 216 to the window layer Π0 can be significantly improved, and the reliability of the light-emitting diode element can be further improved. After the growth of the transparent substrate 216 is completed, since the reflective layer 202 is disposed between the native substrate 200 and the light emitting dormant structure 204, the native substrate 200 does not need to be completely removed, and the light-absorbing primary substrate is removed by, for example, wet etching. _ 200 part of the thickness can be. However, it is worth noting that the native substrate 200 can still be completely removed. In the present exemplary embodiment, only the native substrate 200a having a partial thickness is removed, leaving the native substrate 200b having another partial thickness as shown in Fig. 2C. The remaining native substrate 200b can provide structural support for the luminescent epitaxial structure 204. As shown in Fig. 2D, with the structural strength provided by the residual native substrate 2〇Ob, the transparent substrate 216 of too large a thickness is not required, so that the growth process of the transparent substrate 216 can be reduced. Then, as shown in FIG. 2E, a portion of the surface 218 of the window layer 212 is exposed. For example, the pattern definition of the light-emitting epitaxial structure 204 can be performed by using lithography and etching, and a portion of the native substrate 2〇〇b is removed. The reflective layer 2〇2 and the luminescent epitaxial structure 204 are exposed until a portion of the surface 218 of the window layer 212 is exposed, so that the subsequently formed electrode can make contact with the window layer 212, and further can generate electrical properties with the second electrical semiconductor layer 210. connection. After the pattern definition of the light emitting crystal structure 204 is completed, the second electrode 220 is formed on a portion of the exposed surface 218 of the window layer 212 by a technique such as vapor deposition, and the first electrode 222 is formed on the portion of the native substrate 2 〇〇b, as shown in Figure 2F. 12 200834959 Then, the protective layer can be selectively formed by, for example, deposition to cover the native substrate, and the side of the reflective layer 202 and the luminescent epitaxial structure are formed after the 夯1, 曰, and the pattern are defined. On the side of 2〇4. The material of the 2 'protective layer 224 can be, for example, dioxo, nitriding state, 'magnesium oxide (Mg0), aluminum nitride (na), epoxy vinegar, titanium dioxide, zinc or five emulsions . Then, the flip-chip package of the diode can be performed. First, the sub-mount (four) is provided. The material of the sub-mount 23g is preferably made of two thermally conductive and electrically conductive materials, such as germanium. The transparent substrate 216 is further covered and bonded to the sub-base (4) through a conductive medium, such as solder balls #^26 and solder balls 228, together with the window layer 212, the luminescent crystal structure 204, the reflective layer 202 and the remaining native substrate 2 The upper sub-base 23 is electrically connected to the second electrode 22 and the first electrode 222 through the solder ball to the fresh ball 228, and is substantially formed into the light-emitting diode 232, such as the second (3). As shown in the above preferred embodiment of the present invention, an advantage of the present invention is that since the transparent permanent substrate of the light-emitting diode of the present invention directly grows on the surface of the window layer, the transparent permanent substrate can be reinforced. According to the preferred embodiment of the present invention, another advantage of the present invention is that the edge-forming method of the light-emitting diode of the present invention directly grows a transparent substrate on the surface of the window layer. Rather than using the wafer bonding method, the process can be simplified, and the process yield can be improved. Although the invention has been disclosed in a preferred embodiment as above, it is not intended to limit the invention, any of the techniques herein. field The scope of the present invention is defined by the scope of the appended claims, and the invention is intended to be limited by the scope of the appended claims. 1A to 1G are cross-sectional views showing a process of a light emitting diode according to a preferred embodiment of the present invention. Figs. 2A to 20 are diagrams showing another preferred embodiment of the present invention. Process diagram of a light-emitting diode. [Description of main components] 100: Native substrate 102: Light-emitting epitaxial structure 104: First-electric semiconductor layer 106: Active layer 108: Second electrical semiconductor layer 110: Window Layer 112: surface 114: transparent substrate 116: surface 118: second electrode 120: first electrode 122: solder ball 124: solder ball 126: sub-mount 128: light-emitting diode 200: native substrate 200a: native substrate 20Gb: Native substrate • 202 : reflective layer 204 : luminescent epitaxial structure 206 : first electrical semiconductor layer 208 : active layer 210 : second electrical semiconductor layer 212 : window layer 214 : surface 21 6 : transparent substrate 218 : surface 220 : Two Electrode - 222: first electrode 224: 226 · solder protective layer 228: solder ball 230: submount 232: light emitting diode 14