TW200834919A - Semiconductor device and method of fabricating the same - Google Patents

Semiconductor device and method of fabricating the same Download PDF

Info

Publication number
TW200834919A
TW200834919A TW96105245A TW96105245A TW200834919A TW 200834919 A TW200834919 A TW 200834919A TW 96105245 A TW96105245 A TW 96105245A TW 96105245 A TW96105245 A TW 96105245A TW 200834919 A TW200834919 A TW 200834919A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
semiconductor device
polysilicon layer
openings
Prior art date
Application number
TW96105245A
Other languages
Chinese (zh)
Other versions
TWI357155B (en
Inventor
Po-Lun Cheng
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW96105245A priority Critical patent/TWI357155B/en
Publication of TW200834919A publication Critical patent/TW200834919A/en
Application granted granted Critical
Publication of TWI357155B publication Critical patent/TWI357155B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A semiconductor device is provided. The semiconductor device comprises a substrate, a gate structure, a spacer, a first poly-SiGe layer being boron-doped and a second poly-SiGe layer being boron-doped. The substrate has two openings and the gate structure is disposed on the substrate between the openings. The spacer is disposed on the sidewalls of the gate structure and above a portion of the openings. The first poly-SiGe layer is disposed on the surface of the openings in the substrate. The second poly-SiGe layer is disposed on the first poly-SiGe layer, and the top of the second poly-SiGe layer is higher than the surface of the substrate. Moreover, the boron concentration in the first poly-SiGe layer is lower than that in the second poly-SiGe layer.

Description

200834919 UMCD-2006^0548 22784twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種積體雷欠一 有關於一種半導體元件及其製造方法兀、、力構,且特別是 【先前技術】 對於石夕金屬氧化物半導體電晶體元件而士,。 。 。 。 。 。 。 。 。 In particular, [Prior Art] For Shixia Metal Oxide Semiconductor Transistor Components,

度縮小至深次微米範圍時,由於 °自閘極! J縮短而減小,因此可得到較佳的元件效能通, 衣程發展在技術上仍有許多需克服之_。〜’此毛 目W,為得到較佳的元件效能,已正 的金屬氧化物半導體電:曰 ===:=區’且相對一 在個補技術所製作的_/祕區中會換^ 回蒎度的硼(boron),以降低其電阻率。而且,且右4 濃f瓣雜之多晶㈣層#侧極/汲極區的電晶體元: 而。,的浪度杈關可獲得較佳的元件電流增益。铁而 在多晶碎鍺層情摻人咖會不可職地向外擴散:若碎 摻質產生縱賴散,會使雜面較過深 而易,成電性擊穿(puneh th_gh)㈣制題;若硼掺, 產生橫向擴散,則易造成短通道效應,而影響元件效能^ 因此,如何利用矽鍺技術來製作電晶體元件中之源杰 /;及極區,且可避免上述的種種問題,已成為業界發展的^ 要課題之一。 200834919 UMCD-2006-0548 22784twf.doc/n 【發明内容】 有鑑於此,本發明的目的就是在提供一種半導體元件 及其製造方法,能夠抑制多晶矽鍺層中之硼摻質的擴散, 以避免因電性擊穿效應或短通道效應等問題,而影響元件 效能。When the degree is reduced to the deep sub-micron range, since the temperature is reduced from the gate! J, the better component performance can be obtained, and there are still many technical problems to be overcome in the development of the garment process. ~ 'This eye W, in order to get better component performance, the positive metal oxide semiconductor electricity: 曰 ===: = zone ' and will be changed in the _ / secret zone made by the complementary technology ^ The boron is turned back to reduce its resistivity. Moreover, and the right 4 thick f-petal polycrystalline (four) layer # side pole / drain region of the transistor element: and. The latitude of the wave can achieve better component current gain. Iron in the polycrystalline enamel layer mixed with people will be involuntarily spread out: if the broken dopants produce longitudinal dispersion, the surface will be deeper and easier, electrical breakdown (puneh th_gh) (four) system If boron is mixed and produces lateral diffusion, it will easily cause short channel effect and affect component efficiency. Therefore, how to use the germanium technology to make the source and the polar region in the transistor component, and avoid the above various The problem has become one of the key issues in the development of the industry. SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a semiconductor device and a method of fabricating the same that can inhibit the diffusion of boron dopants in a polysilicon layer to avoid Problems such as electrical breakdown or short-channel effects affect component performance.

本發明提出一種半導體元件,其包括基底、閘極結 構、間隙壁、具有畴雜的第—多晶補層與第二多晶石夕 鍺層。其中,基底中具有二開口,_結構配置在二開口 ^間的基底上。_魏置在祕結構的_,且位於部 分-開口上方。另外,第_多晶補層配置在基底之二開 口表面,而第二多晶石夕鍺層配置在第—多晶㈣層上,且 第二多晶矽鍺層的頂部高於基底的表面。其中,第一多晶 石夕鍺層義濃度低於第二多晶補層的赠度。 依照本發明的實施例所述之半導體元件,其可進一步 包括有至少-層具有轉雜的第三多晶雜層。此第三多 晶石夕鍺層配置於第-多晶㈣層與第二多晶補層之間, 且第三多晶補層的贿度介於第-多晶雜層與第二多 晶矽鍺層的硼濃度之間。 依照本發明的實施例所述之半導體元件,上述一 多晶石夕鍺層的鍺含量大於第二多㈣鍺層的鍺含量 L卜’第一多㈣鍺層的鍺含量等於第二多晶销層的鍺含 6 200834919 uivx^-zu06-0548 22784twf.doc/n i tV閘極結構配置在二開口之間的基底上。間隙 的側壁,且位於部分二開口上方。另外, ::芙广二!己置在基底之二開口中’而多晶矽鍺層的頂部 ==且多晶彻具有往基底方向遞減的漸 依照本發明的實施例所述之半導體元件,上述之多晶 石夕鍺層具摊基財向遞增的—較錯含纽。另外,多 晶矽鍺層中的鍺含量亦可為—固定值。 本發日狀提出—種半導體元件的製造方法。首先,在 基底上依剌彡賴氧化相射料體層 體層以及閘氧化層,以形成閘極紝描拉#俊疋義閘v 的側壁形成間隙壁。之後成==,在閘極結構 開"二開口延伸至底:形: 中依序ί成具有_雜的第—多㈣鍺層與第二鍺 層’而弟一多晶销層的頂部高於基底的表面 晶石夕錯層_濃度低於第二多晶销層_濃度 夕 =照本發明的實施例所述之半導體元件的 i、:可進:步在第一多晶矽鍺層與第二多晶矽鍺層之門 形成有至>、-層具_摻_第三多晶補 I二 三多晶雜層_濃度介於第-多晶魏層衫^石t 第二多晶_的錯含量。第次於 等於第二多晶魏層的鍺含量。承上述,第亦可 與第二多晶補層的形成方法例如是化學氣相鍺^ 200834919 ^vx^-^v)〇6-〇548 22784twf.doc/n 的方法例如是等向性蝕刻 還可對二開口進行一預清 間隙壁兩側之基底中形成二開口 法。另外,在二開口形成之後, 洗製程。The present invention provides a semiconductor device comprising a substrate, a gate structure, a spacer, a poly-poly layer having a domain impurity, and a second polycrystalline layer. Wherein, the substrate has two openings, and the structure is disposed on the substrate between the two openings. _ Wei is placed in the _ of the secret structure, and is located above the part-opening. In addition, the first polycrystalline layer is disposed on the open surface of the substrate, and the second polycrystalline layer is disposed on the first polycrystalline layer, and the top of the second polycrystalline layer is higher than the surface of the substrate . Wherein, the first polycrystalline layer has a lower layer concentration than the second polycrystalline layer. A semiconductor device according to an embodiment of the present invention may further include a third polycrystalline layer having at least a layer having a turn. The third polycrystalline stone layer is disposed between the first polycrystalline layer and the second polycrystalline layer, and the bribe of the third polycrystalline layer is between the first polycrystalline layer and the second polycrystalline layer Between the boron concentration of the ruthenium layer. According to the semiconductor device of the embodiment of the present invention, the germanium content of the polysilicon layer is greater than the germanium content of the second (four) germanium layer, and the germanium content of the first (four) germanium layer is equal to the second polycrystal. The pin layer contains 6 200834919 uivx^-zu06-0548 22784twf.doc/ni tV gate structure is arranged on the substrate between the two openings. The side wall of the gap is located above the partial two openings. In addition, :: Fu Guang Er! has been placed in the second opening of the substrate 'and the top of the polysilicon layer == and the polycrystal has a decreasing toward the substrate direction, according to the semiconductor device according to the embodiment of the invention, the above The polycrystalline stone 锗 锗 layer has a growing base of financial resources - the wrong one. Further, the content of ruthenium in the polycrystalline germanium layer may be a fixed value. The present invention proposes a method of manufacturing a semiconductor device. First, a spacer is formed on the substrate by means of the oxide phase body layer and the gate oxide layer to form a sidewall of the gate electrode. After the ==, in the gate structure open " two openings extend to the bottom: shape: in order to have a _ miscellaneous - multi (four) 锗 layer and the second 锗 layer 'and the top of a polycrystalline pin layer The surface of the surface of the substrate is lower than the second polycrystalline pin layer. The concentration of the semiconductor element according to the embodiment of the present invention is: i: the step is in the first polysilicon The layer and the gate of the second polysilicon layer are formed to >, - the layer has _ doped_the third polymorphic I tri-polycrystal impurity layer _ concentration between the first polycrystalline Wei layer shirt ^ stone t The wrong content of dipoly. The first time is equal to the bismuth content of the second polycrystalline Wei layer. According to the above method, the method of forming the second polycrystalline layer may be, for example, a method of chemical vaporization, such as chemical vaporization, 3496-〇548 22784 twf.doc/n, for example, isotropic etching. A two opening method can be formed in the substrate on both sides of the pre-clearing spacer for the two openings. In addition, after the formation of the two openings, the process is washed.

本發明再提出—種半導體元件的製造方法。首先,在 =上依序形賴氧化層以及料體層。然後,錢蘭導 體層以及閘氧化層,以形成閘極結構。接著,在閘極結構 的侧壁形成間隙壁。之後,在間隙壁兩侧之基底中形成二 開口,且部分二開口延伸至間隙壁下方。繼之,在二開口 中形成具有刪參雜的多晶石夕鍺層,而多晶石夕鍺層的頂部高 於基底的表面’且多㈣鍺層具有往基底方向遞減的/漸 變硼濃度值。 依照本發明的實施例所述之半導體元件的製造方 上述之多晶矽鍺層具有往基底方向遞增的一漸變鍺含 里值。而多晶矽鍺層中的鍺含量亦可為一固定值。承上述, 多晶矽鍺層的形成方法例如是化學氣相沈積法。在間隙壁 兩側之基底中形成一開口的方法例如是等向性敍刻法。此 外,在二開口形成之後,還可進一步對二開口進行一預清 洗製程。 本發明之半導體元件是以具有不同硼濃度之雙層或 甚至疋多層多晶石夕鍺層作為源極/汲極,且多晶石夕鍺層中與 基底接觸的部分具有較低的硼濃度。因此,本發明可有效 抑制蝴摻質向外擴散,以改善習知因硼摻質嚴重擴散而產 生的電性擊穿效應、短通道效應等問題。 為讓本發明之上述和其他目的、特徵和優點能更明顯 8 200834919 UMUJJ-2006-0548 22784twf.doc/n 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 圖1為依照本發明之一實施例所緣示之半導體元件的 剖面示意圖。 請參照圖1,本發明之半導體元件100包括基底101、 閘極結構102、間隙壁1〇4、具有硼摻雜的第一多晶矽鍺層 108以及第二多晶矽鍺層11〇。上述,基底1〇1例如是矽基 底或其他合適之半導體基底,且在基底1〇1中具有二開口 106。閘極結構102是配置於開口 1〇6之間的基底ι〇1上, 而閘極結構102例如是由閘介電層(未繪示)與閘導體層(未 繪示)所構成,且其材質為此領域之人員所熟知,所以於此 不再贅述。另外,間隙壁104是配置於閘極結構102的侧 壁,且位於部分開口 1〇6上方。間隙壁1〇4可例如是單層 間隙壁結構或多層間隙壁結構,其中多層間隙壁結構由至 少一層補償間隙壁(〇ffset Spacer)與間隙壁所構成。 本實施例之第一多晶矽鍺層1〇8是配置在開口 1〇6的 表面。第二多晶矽鍺層110是配置在第一多晶矽鍺層1〇8 上’且第二多晶矽鍺層11〇的頂部會高於基底1〇1的表面。 而且,第一多晶矽鍺層1〇8的硼濃度低於第二多晶矽鍺層 110的硼濃度。在本實施例中,第一多晶矽鍺層108的鍺 含里荨於苐一多晶石夕鍺層no的鍺含量。承上述,第一多 曰曰石夕鍺層108與第二多晶石夕鍺層11〇是用來作為半導體元 件100之源極/汲極,其可提供低的電阻,且可降低漏電流。 9 200834919 UMCD-2006-0548 22784twf.doc/n 特別要說明的是,第-多晶石夕鍺層1〇8具有較低的蝴 濃度,如此可抑制整個源極/汲極中的硼摻質向外擴散,以 改善習知因硼摻質嚴重擴散而產生的電性擊穿效應、短通 道效應等問題。詳言之,由於本實施例之半導體元件ι〇〇 的源極/汲極是由具有不同濃度硼摻雜的二層多晶矽鍺層 所組成,而與基底101接觸之第一多晶矽鍺層1〇8的硼濃 度較低,因此相對於習知僅用高濃度硼摻雜的多晶矽鍺層 源極/汲極而言,本實施例可有效抑制硼摻質的嚴重擴 散情形。 另外在貝施例中,弟一多晶石夕錯層108的鍺含量 可大於第一多晶石夕鍺層110的錯含量,如此亦有助於達到 抑制摻質嚴重擴散的目的。 ^在又一實施例中,於本實施例之半導體元件1〇〇中, ,可進一步包括至少一層第三多晶矽鍺層(未繪示)。第三 多晶矽鍺層可配置於第一多晶矽鍺層1〇8與第二多晶矽鍺 ,丄忉之間。而且,第三多晶矽鍺層的硼濃度可介於第— 夕曰曰夕錯層108與弟一多晶咬錯層11〇的爛濃度之間。 $本發明除了上述實施例之外,尚具有其他的實施型 恶二圖2為依照本發明之另一實施例所繪示之半導體元件 的^面示意圖。其中在圖2中與圖1相同之構件給予相同 之標號,並省略可能重複之說明。 請參照圖2,本發明之半導體元件200包括基底1〇1、 閘極結構1〇2、間隙壁1〇4以及具有硼摻雜的多晶矽鍺層 120。其中,閘極結構1〇2是配置於開口 ι〇6之間的基底 200834919 ^^^^^06-0548 22784twf.doc/n 101上。間隙壁104是配置於閘極結構102的侧壁,且位 於開口 106上方。另外,多晶矽鍺層120配置在開口 1〇6 中,多晶矽鍺層120的頂部高於基底101的表面,且多晶 石夕鍺層120具有往基底101方向遞減的一漸變硼濃度值。 在本實施例中,多晶矽鍺層120中的鍺含量可為一固定值。The present invention further proposes a method of manufacturing a semiconductor device. First, the oxide layer and the material layer are sequentially formed on =. Then, the Qianlan conductor layer and the gate oxide layer form a gate structure. Next, a spacer is formed on the sidewall of the gate structure. Thereafter, two openings are formed in the bases on both sides of the spacer, and a portion of the two openings extend below the spacer. Subsequently, a polycrystalline stone layer having a doped impurity is formed in the two openings, and the top of the polycrystalline stone layer is higher than the surface of the substrate and the multi-(tetra) layer has a decreasing/gradient boron concentration toward the substrate. value. The semiconductor device according to the embodiment of the present invention has a polysilicon layer having a gradient 锗 锗 value which increases in the direction of the substrate. The germanium content in the polycrystalline germanium layer can also be a fixed value. In view of the above, the method of forming the polysilicon layer is, for example, a chemical vapor deposition method. A method of forming an opening in the substrate on both sides of the spacer is, for example, an isotropic characterization. Further, after the formation of the two openings, a pre-cleaning process can be further performed on the two openings. The semiconductor device of the present invention is a double-layer or even a germanium multi-layer polycrystalline quartz layer having different boron concentrations as a source/drain, and a portion of the polycrystalline layer in contact with the substrate has a lower boron concentration. . Therefore, the present invention can effectively suppress the outdiffusion of the butterfly dopant, thereby improving the problems of the electrical breakdown effect and the short channel effect which are conventionally caused by the serious diffusion of the boron dopant. The above and other objects, features, and advantages of the present invention will become more apparent. 8 200834919 UMUJJ-2006-0548 22784 twf.doc/n is easy to understand, the preferred embodiments are described below, and the drawings are described in detail below. . [Embodiment] FIG. 1 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention. Referring to FIG. 1, a semiconductor device 100 of the present invention includes a substrate 101, a gate structure 102, a spacer 1〇4, a first polysilicon layer 108 having boron doping, and a second polysilicon layer 11A. In the above, the substrate 1〇1 is, for example, a germanium substrate or other suitable semiconductor substrate, and has two openings 106 in the substrate 1〇1. The gate structure 102 is disposed on the substrate ι1 between the openings 1 and 6, and the gate structure 102 is formed, for example, by a gate dielectric layer (not shown) and a gate conductor layer (not shown). The material is well known to those skilled in the art, so it will not be described here. Further, the spacer 104 is disposed on the side wall of the gate structure 102 and above the partial opening 1〇6. The spacers 1〇4 may be, for example, a single-layer spacer structure or a multi-layered spacer structure in which the multilayer spacer structure is composed of at least one layer of compensation spacers and spacers. The first polysilicon layer 1〇8 of this embodiment is disposed on the surface of the opening 1〇6. The second polysilicon layer 110 is disposed on the first polysilicon layer 1〇8 and the top of the second polysilicon layer 11〇 is higher than the surface of the substrate 1〇1. Moreover, the boron concentration of the first polysilicon layer 1〇8 is lower than the boron concentration of the second polysilicon layer 110. In the present embodiment, the enthalpy content of the first polysilicon layer 108 is in the cerium content of the monocrystalline polycrystalline layer. In the above, the first polysilicon layer 108 and the second polycrystalline layer 11 are used as the source/drain of the semiconductor device 100, which can provide low resistance and reduce leakage current. . 9 200834919 UMCD-2006-0548 22784twf.doc/n It is particularly important to note that the first-polycrystalline stone layer 1〇8 has a lower concentration of the butterfly, which suppresses the boron dopant in the entire source/drain. Outward diffusion to improve the electrical breakdown effects and short channel effects caused by the serious diffusion of boron dopants. In detail, since the source/drain of the semiconductor device ι of the present embodiment is composed of a two-layer polysilicon layer doped with boron at different concentrations, the first polysilicon layer in contact with the substrate 101 is formed. The boron concentration of 1〇8 is low, so this embodiment can effectively suppress the serious diffusion of boron dopants compared to the conventional polysilicon layer source/drain which is doped with only a high concentration of boron. In addition, in the case of Becker, the content of germanium in the polycrystalline spine layer 108 may be greater than the content of the first polycrystalline rock layer 110, which also helps to suppress the serious diffusion of the dopant. In still another embodiment, in the semiconductor device 1 of the embodiment, at least one layer of a third polysilicon layer (not shown) may be further included. The third polysilicon layer may be disposed between the first polysilicon layer 1〇8 and the second polysilicon layer, 丄忉. Moreover, the boron concentration of the third polysilicon layer may be between the smear concentration of the first sigma layer 108 and the polymorphic layer 11 〇. In addition to the above embodiments, the present invention has other embodiments. FIG. 2 is a schematic view of a semiconductor device according to another embodiment of the present invention. The same components as those in Fig. 1 are given the same reference numerals in Fig. 2, and the description thereof may be omitted. Referring to FIG. 2, the semiconductor device 200 of the present invention includes a substrate 1?, a gate structure 1?2, a spacer 1?4, and a polysilicon layer 120 having boron doping. The gate structure 1〇2 is disposed on the substrate 200834919 ^^^^^06-0548 22784twf.doc/n 101 between the openings ι6. The spacers 104 are disposed on the sidewalls of the gate structure 102 and above the openings 106. In addition, the polysilicon layer 120 is disposed in the opening 1〇6, the top of the polysilicon layer 120 is higher than the surface of the substrate 101, and the polycrystalline quartz layer 120 has a graded boron concentration value decreasing toward the substrate 101. In the present embodiment, the germanium content in the polysilicon layer 120 may be a fixed value.

同樣地,多晶矽鍺層120與基底101接觸之部分具有 車父低的濃度,如此可抑制硼摻質向外擴散,以避免習知 習知因硼摻質嚴重擴散而衍生的種種問題。 另外,在一實施例中,多晶矽鍺層12〇還可以是具有 往基底101方向遞增的一漸變鍺含量值,如此亦有助於達 到抑制獨摻質嚴重擴散的目的。 , ,1圖3至圖6詳細說明本發明之半導體元件的 衣k方法。圖3至圖6為依照本發明之實施例所繪示的半 導體元件的製造方法之流程剖面示意圖。 302 ί先:請參照圖3 ’在基底301上形成一層閘氧化層 曰層302的材質例如是氧切,其形成方法例如 3〇4 〇 304 ^ ^ 3;2a 是化學氣相沈積法。 疋W其形成方法例如Similarly, the portion of the polysilicon layer 120 that is in contact with the substrate 101 has a low concentration of the carrier, which inhibits the outward diffusion of the boron dopant, thereby avoiding the problems conventionally caused by the severe diffusion of boron dopants. In addition, in one embodiment, the polycrystalline germanium layer 12 can also have a graded germanium content value that increases in the direction toward the substrate 101, which also contributes to the purpose of suppressing the severe diffusion of the unique dopant. 1, 3 to 6 illustrate in detail the method of coating the semiconductor device of the present invention. 3 to 6 are schematic cross-sectional views showing a process of fabricating a semiconductor device in accordance with an embodiment of the present invention. 302 ί first: Please refer to FIG. 3' to form a gate oxide layer on the substrate 301. The material of the ruthenium layer 302 is, for example, oxygen dicing, and the formation method thereof is, for example, 3 〇 4 〇 304 ^ ^ 3; 2a is a chemical vapor deposition method.疋W its formation method, for example

接者,疋義閘導體層304鱼鬥〜R L ^ ,、閘軋化層302,以形成閘Receiver, 疋 闸 导体 conductor layer 304 fish bucket ~ R L ^, gate rolling layer 302 to form a gate

極結構306。上述,閘極結構 /人J pa Ά 再3ϋ6的形成方法例如是,在 閘V體層304上形成-圖案化 1㈣疋隹 罩幕層為罩幕,進行-钱刻二之後以圖案化之 與閘氧化層302,以形成之。 夕除精閘導體層304 11 200834919 ^ivxwx&gt;»-^j〇6-0548 22784twf. doc/n 然後’請參照圖4,在閘極結構306的側壁形成一間 隙壁308。間隙壁308可例如是單層間隙壁結構或多層間 隙壁結構。若間隙壁308為單層間隙壁結構,則其材質例 如是氮化矽;若間隙壁308為多層間隙壁結構,則其材質 例如是氧化矽/氮化矽。 之後’請參照圖5,在間隙壁308兩側之基底301中 形成一開口 310。開口31〇的形成方法例如是,進行一等 向性钱刻製程,移除間隙壁3〇8兩側的部分基底3〇1,以 形成之’而部分開口 310會延伸至間隙壁308下方。在本 實施例中,開口 310的深度可介於7〇〇 nm至800nm之間。 另外,在開口 310形成之後,通常會進行一預清洗 (pre-cleaning)製程以清潔開口 31〇底部之基底3〇1表面。 隨後’請參照圖6(a)與圖6(b),在開口 310中形成硼 濃度不同之多晶矽鍺層,以作為半導體元件之源極/汲極。 其中,圖6(a)之結構包括二層不同硼濃度之多晶矽鍺層 312、314,而圖6(b)之結構中的多晶矽鍺層32〇具有往基 底301方向遞減的一漸變硼濃度值。 若預形成如圖6(a)所示之結構,其形成方法例如是利 用化學氣相沈積法來製備。更詳細而言,先在開口 中 使用鍺烷(GeH4)、矽烷(Si2H6)當作反應氣體以及h2或n2 當作載氣,以沈積一層多晶石夕鍺材料層,之後再進行摻入 硼原子的摻雜製程,以形成多晶矽鍺層312。此多晶矽鍺 層312的厚度約為100腿左右,删摻質的濃度介於ιχ1〇!8 〜5χ1019個原子/每立方公分之間,而鍺含量約為22〇/〇左 12 200834919 uivil,u-z006-0548 22784twf.doc/n 右。然後’在多0a石夕鍺層312形成之後,接著以臨場(匕以加) 方式形成多晶石夕鍺層314 ’亦即是指多晶石夕鍺層η〕與多 晶砍錯層314的製備可以是在同一反應室或同一機台中完 成。多晶矽鍺層314的厚度約為i,i〇〇 nm左右,硼换質的 濃度介於5xl02()〜1X1021個原子/每立方公分之間,而鍺 含I約為22%左右。另外,亦可使所形成之多晶石夕鍺層312Pole structure 306. In the above, the gate structure/person J pa Ά 3 ϋ 6 is formed, for example, by forming a patterned 1 (four) 疋隹 mask layer on the gate V body layer 304 as a mask, and patterning the gate after the second etching Oxide layer 302 is formed to form. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> The spacer 308 can be, for example, a single layer spacer structure or a multilayer spacer wall structure. If the spacer 308 is a single-layer spacer structure, the material thereof is, for example, tantalum nitride; and if the spacer 308 is a multi-layer spacer structure, the material thereof is, for example, hafnium oxide/tantalum nitride. Thereafter, referring to Fig. 5, an opening 310 is formed in the base 301 on both sides of the spacer 308. The opening 31 is formed by, for example, performing an isotropic etching process to remove a portion of the substrate 3〇1 on both sides of the spacer 3〇8 to form a portion and the partial opening 310 extends below the spacer 308. In this embodiment, the depth of the opening 310 may be between 7 〇〇 nm and 800 nm. Additionally, after the opening 310 is formed, a pre-cleaning process is typically performed to clean the surface of the substrate 3〇1 at the bottom of the opening 31〇. Subsequently, referring to Figs. 6(a) and 6(b), a polysilicon layer having a different boron concentration is formed in the opening 310 as a source/drain of the semiconductor element. Wherein, the structure of FIG. 6(a) includes two layers of polysilicon layers 312 and 314 having different boron concentrations, and the polysilicon layer 32 of the structure of FIG. 6(b) has a gradient boron concentration value decreasing toward the substrate 301. . If the structure shown in Fig. 6(a) is preformed, the formation method is, for example, a chemical vapor deposition method. In more detail, cesane (GeH4), decane (Si2H6) is used as the reaction gas in the opening, and h2 or n2 is used as the carrier gas to deposit a layer of polycrystalline stone material, followed by boron doping. The doping process of the atoms forms a polysilicon layer 312. The polycrystalline germanium layer 312 has a thickness of about 100 legs, and the concentration of the dopant is between ιχ1〇!8 〜5χ1019 atoms/cm 3 , and the 锗 content is about 22 〇/〇 left 12 200834919 uivil,u -z006-0548 22784twf.doc/n Right. Then, after the formation of the poly-Oa stone layer 312, the polycrystalline stone layer 314', which is the polycrystalline stone layer η and the polycrystalline chopping layer 314, is formed in the presence of the field. The preparation can be done in the same reaction chamber or in the same machine. The polycrystalline germanium layer 314 has a thickness of about i, i 〇〇 nm, and the boron exchange concentration is between 5 x 10 2 () and 1 x 1021 atoms per cubic centimeter, and the enthalpy I contains about 22%. In addition, the formed polycrystalline stone layer 312 can also be formed.

的鍺含I約為27%左右,而多晶碎錯層314的鍺含量約為 22%左右。 ' 另外,若預形成如圖6(b)所示之多晶矽鍺層32(),其 形成方法例如是利用化學氣相沈積法,並藉由調整反應氣 體流量以及硼摻質濃度,而於開口 31〇中形成多晶矽鍺層 320,其中多晶矽鍺層320可具有往基底3〇1方向遞減的一 漸受硼/辰度值。在此多晶石夕鍺層320中,其鍺含量可為一 固定值。當然,多晶矽鍺層320亦可具有往基底3〇1方向 遞增的一漸變鍺含量值。 ”要注意的是,在圖3至圖6的製造流程中所列出的開 口深度以及乡晶補層的厚度、,濃度或鍺含量等數值皆 為舉,說明,其並非用⑽制本㈣,且熟知本領域之技 術人員可依縣發日狀麟舰,㈣㈣具體實施本發明。 ,了來,以圖7來更加詳細說明本發明之功效。 明芬知圖7 ’其顯不多晶石夕鍺層中蝴濃度與半導體元 件之源極/汲極的接合深度之_圖。其中,χ轴表示源極 及極的,σ深度(nm) ’ γ軸表示多晶⑦鍺層巾的,濃度 atom/cm )。如圖7所示,曲線72〇、73〇的棚濃度較曲線 13 200834919 ^ivx^-^006-0548 22784twf.doc/n 710的硼濃度低,且曲線72〇、73〇之擴散後的接合深度較 曲線710之擴散後的接合深度淺。所以,由圖7可以得到 硼濃度較低則擴散後之接合深度較淺的結果。因此,在本 發明之半導體元件中,與基底接觸之多晶矽鍺層的硼濃度 較低,如此確實可有效抑制硼摻質的嚴重擴散情形。 綜上所述,在本發明中,與基底接觸之多晶矽鍺層的 蝴/辰度幸父低,如此可抑制棚摻質向外擴散,以改善習知因 φ 硼彳夢質嚴重擴散而產生的電性擊穿效應、短通道效應等問 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内’當可作些許之更動與潤飾,因此本發明之保雙 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1為依照本發明之一實施例所繪示之半導體元件的 剖面示意圖。 圖2為依照本發明之另一實施例所、♦示之半導體元件 的剖面示意圖。 圖3至圖6為依照本發明之實施例所繪示的半導體元 件的製造方法之流程剖面示意圖。 圖7表示多晶矽鍺層中硼濃度與半導體元件之源極/ 汲極的接合深度之關係圖。 【主要元件符號說明】 100、200 :半導體元件 14 200834919 uiviv^jl/-z,006-0548 22784twf. doc/π 101、 301 :基底 102、 306 :閘極結構 104、308 :間隙壁 106、310 :開口 108 :第一多晶矽鍺層 110 :第二多晶矽鍺層 120、312、314、320 :多晶矽鍺層 302 :閘氧化層 304 ··閘導體層 710、720、730 :曲線The bismuth content I is about 27%, and the ruthenium content of the polycrystalline fracture layer 314 is about 22%. In addition, if the polysilicon layer 32 () as shown in FIG. 6(b) is preformed, the formation method is, for example, by chemical vapor deposition, and by adjusting the reaction gas flow rate and the boron dopant concentration, A polycrystalline germanium layer 320 is formed in 31 Å, wherein the polycrystalline germanium layer 320 may have a tapered boron/density value that decreases toward the substrate 3〇1. In this polycrystalline stone layer 320, the niobium content may be a fixed value. Of course, the polysilicon layer 320 may also have a graded germanium content value that increases in the direction of the substrate 3〇1. "It should be noted that the opening depths listed in the manufacturing flow of Figures 3 to 6 and the thickness, concentration or enthalpy content of the eutectic layer are all numerical values, indicating that it is not (10). And those skilled in the art can implement the invention according to the county, and (4) (4). The function of the invention will be described in more detail with reference to Fig. 7. Mingfen knows Fig. 7 'its polymorph The depth of the bond between the concentration of the butterfly and the source/drain of the semiconductor element, where the χ axis represents the source and the pole, and the σ depth (nm) γ axis represents the polycrystalline 7 锗 layer , concentration atom/cm). As shown in Fig. 7, the concentration of the sheds of the curves 72〇, 73〇 is lower than that of the curve 13 200834919 ^ivx^-^006-0548 22784twf.doc/n 710, and the curve 72〇, The bonding depth after the diffusion of 73 浅 is shallower than the diffusion depth after the diffusion of the curve 710. Therefore, the result of the fact that the boron concentration is low and the bonding depth after diffusion is shallow is obtained from Fig. 7. Therefore, in the semiconductor device of the present invention, The polycrystalline germanium layer in contact with the substrate has a low boron concentration, which is indeed effective. In view of the above, in the present invention, the polycrystalline germanium layer in contact with the substrate has a low butterfly/initiality, which can inhibit the outward diffusion of the shed dopant to improve the conventional factor φ. The present invention has been disclosed in the preferred embodiments as described above, but it is not intended to limit the present invention, and anyone skilled in the art does not deviate from the present invention. In the spirit and scope of the present invention, the scope of the present invention is defined by the scope of the appended claims. [FIG. 1 is a schematic diagram of the present invention. 1 is a schematic cross-sectional view of a semiconductor device according to another embodiment of the present invention. FIG. 3 to FIG. 6 are schematic views of an embodiment of the present invention. A schematic cross-sectional view showing a method of manufacturing a semiconductor device shown in Fig. 7. Fig. 7 is a view showing a relationship between a boron concentration in a polysilicon layer and a depth of bonding of a source/drain of a semiconductor element. 100, 200: semiconductor element 14 200834919 uiviv^jl/-z, 006-0548 22784twf. doc/π 101, 301: substrate 102, 306: gate structure 104, 308: spacer 106, 310: opening 108: first Polycrystalline germanium layer 110: second polysilicon layer 120, 312, 314, 320: polysilicon layer 302: gate oxide layer 304 · gate conductor layer 710, 720, 730: curve

1515

Claims (1)

200834919 i_&gt;ivx^jLy-z,J06-0548 22784twf. doc/n 十、申請專利範圍: 1·一種半導體元件,包括: 一基底,該基底中具有二開口; 一閘極結構,配置在該二開口之間的該基底上; 間隙壁’配置在該閘極結構的側壁,且位於部分該 二開口上方; 具有硼摻雜的一第一多晶矽鍺層,配置在該基底之該 ⑩ 二開口表面;以及 具有硼摻雜的一第二多晶矽鍺層,配置在該第一多晶 矽鍺層上,且該第二多晶矽鍺層的頂部高於該基底的表面, 其中該第一多晶矽鍺層的硼濃度低於該第二多晶石夕 鍺層的硼濃度。 2·如申請專利範圍第1項所述之半導體元件,更包括 至少一層具有硼摻雜的一第三多晶矽鍺層,其配置於該第 與該第二多晶矽鍺層之間,且該第三多晶矽鍺層的硼濃 魯度介於該第一與該第二多晶矽鍺層的硼濃度之間。 3·如申請專利範圍第1項所述之半導體元件,其中該 第一多晶矽鍺層的鍺含量大於該第二多晶矽鍺層的鍺 量。 4·如申請專利範圍第1項所述之半導體元件,其中該 第一多晶矽鍺層的鍺含量等於該第二多晶矽鍺層的鍺^ 量。 5·一種半導體元件,包括: 一基底,該基底中具有二開口; 16 200834919 )06-0548 22784twf.d〇c/n -閘極結構,配置在該二.之間的該基底上; 一間隙壁,配置在該閘極結構的側壁,且位於部分該 二開口上方;以及 具有硼摻雜的一多晶矽鍺層,配置在該基底之該二開 口中,而該多晶矽鍺層的頂部高於該基底的表面,且該多 晶矽鍺層具有往該基底方向遞減的一漸變硼濃度值。 6·如申請專利範圍第5項所述之半導體元件,其中該 多晶矽鍺層具有往該基底方向遞增的一漸變鍺含量值。 7·如申凊專利範圍第5項所述之半導體元件,其中該 多晶矽鍺層中的鍺含量為一固定值。 ^ 8·—種半導體元件的製造方法,包括: 在一基底上依序形成一閘氧化層以及一閘導體層; 疋義5亥閘導體層以及該閘氧化層,以形成一閘極結 構; 在該閘極結構的側壁形成一間隙壁; 在該間隙壁兩側之該基底中形成二開口,且部分該二 開口延伸至該間隙壁下方;以及 在該一開口中依序形成具有爛摻雜的一第一多晶石夕 鍺層與一第二多晶矽鍺層,而該第二多晶矽鍺層的頂部高 於该基底的表面,且該第一多晶矽鍺層的硼濃度低於該第 二多晶石夕鍺層的棚濃度。 9·如申請專利範圍第8項所述之半導體元件的製造方 法,更包括在該第一與該第二多晶石夕鍺層之間形成至少〆 層具有硼摻雜的一第三多晶矽鍺層,其中該第三多晶矽鍺 17 200834919 -0〇6-〇548 22784twf.doc/n 與該第二多晶矽鍺層的硼濃度之 層的侧濃度介於該第一 間。 方法1^如Π專補8項所述之铸體元件的製造 減/、+ 4第—乡晶魏層騎含4 Α㈣第二S晶石夕 鍺層的鍺含量。 曰’200834919 i_&gt;ivx^jLy-z, J06-0548 22784twf. doc/n X. Patent application scope: 1. A semiconductor component comprising: a substrate having two openings in the substrate; a gate structure disposed in the second a spacer between the openings; a spacer wall disposed on a sidewall of the gate structure and located above a portion of the two openings; a first polysilicon layer having boron doping, disposed on the substrate An opening surface; and a second polysilicon layer doped with boron, disposed on the first polysilicon layer, and a top of the second polysilicon layer is higher than a surface of the substrate, wherein the The boron concentration of the first polysilicon layer is lower than the boron concentration of the second polycrystalline layer. 2. The semiconductor device according to claim 1, further comprising at least one layer of a third polysilicon layer doped with boron, disposed between the first layer and the second polysilicon layer. And the boron concentration of the third polysilicon layer is between the boron concentration of the first and second polysilicon layers. 3. The semiconductor device according to claim 1, wherein the first polysilicon layer has a germanium content greater than that of the second polysilicon layer. 4. The semiconductor device of claim 1, wherein the first polysilicon layer has a germanium content equal to the second polysilicon layer. 5. A semiconductor device comprising: a substrate having two openings therein; 16 200834919) 06-0548 22784twf.d〇c/n - a gate structure disposed on the substrate between the two; a gap a wall disposed on a sidewall of the gate structure and located above a portion of the two openings; and a polysilicon layer having boron doping disposed in the two openings of the substrate, wherein a top of the polysilicon layer is higher than the a surface of the substrate, and the polysilicon layer has a graded boron concentration value that decreases toward the substrate. 6. The semiconductor device of claim 5, wherein the polysilicon layer has a graded 锗 content value that increases in the direction of the substrate. The semiconductor device according to claim 5, wherein the content of germanium in the polycrystalline germanium layer is a fixed value. A method for manufacturing a semiconductor device, comprising: sequentially forming a gate oxide layer and a gate conductor layer on a substrate; and forming a gate structure by forming a gate layer of the gate electrode and the gate oxide layer; Forming a gap wall on a sidewall of the gate structure; forming two openings in the substrate on both sides of the spacer wall, and partially extending the two openings below the spacer; and sequentially forming a ruin in the opening a first polycrystalline stone layer and a second polysilicon layer, wherein a top of the second polysilicon layer is higher than a surface of the substrate, and boron of the first polysilicon layer The concentration is lower than the concentration of the shed of the second polycrystalline stone layer. 9. The method of fabricating a semiconductor device according to claim 8, further comprising forming at least a third polycrystal having a boron doping layer between the first and the second polycrystalline stone layer. The ruthenium layer, wherein the third polysilicon 200817 200834919 -0〇6-〇548 22784twf.doc/n and the side concentration of the layer of boron concentration of the second polysilicon layer are between the first interval. Method 1^ The manufacture of the casting element as described in Item 8 of the Π Π 、 、 、 、 、 、 、 、 、 乡 乡 乡 乡 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。曰’ 、u.如ΐ請專利範圍第8項所述之半導體元件的製造 方法’其中該第-多晶補層的錯含量#於該第二 鍺層的鍺含量。 、I2·如申明專利範圍第8項戶斤述之半導體元件的製造 —/、中。亥弟與5亥苐二多晶石夕鍺層的形成方法包括化 學氣相沈積法。 、U.如中請專利範圍第8項所述之半導體元件的製造 方法’其巾在關畴賴之祕底巾形成該二開口的方 法包括等向性蝕刻法。 14·如申明專利範圍第8項所述之半導體元件的製造 方法,其中在該二開口形成之後,更包括對該二開口進行 一預清洗製程。 15·—種半導體元件的製造方法,包括: 在一基底上依序形成一閘氧化層以及一閘導體層; 定義該閘導體層以及該閘氧化層,以形成 構; 在該閘極結構的侧壁形成一間隙壁; 在該間隙壁兩側之該基底中形成二開口,且該二開口 延伸至部分該間隙壁下方;以及 18 2008349丄?_548 22784twf.d〇c/n 在該二開口中形成具有硼摻雜的一多晶矽鍺層,而该 多晶石夕鍺層的頂部咼於5亥基底的表面,且該多晶石夕鍺層異 有往該基底方向遞減的一漸變硼濃度值。 16·如申請專利範圍第15項所述之半導體元件的製造 方法,其中該多晶矽鍺層具有往該基底方向遞增的—漸變 錯含量值。 17·如申請專利範圍第15項所述之半導體元件的製造 •方法,其中該多晶矽鍺層中的鍺含量為一固定值。 18·如申請專利範圍第15項所述之半導體元件的製造 方法,其中該多晶矽鍺層的形成方法包括化學氣相沈積法。 19·如申請專利範圍第15項所述之半導體元件的@製造 方法,其中在該間隙壁兩侧之該基底中形成該二 法包括等向性敍刻法。 1 μ 20·如申請專利範圍第15項所述之半導體元件的製造 方法,其中在該二開口形成之後,更包括對該二開口=行 一預清洗製程。 19The method of manufacturing a semiconductor device as described in claim 8 wherein the error content of the first poly-compound layer is the germanium content of the second germanium layer. , I2 · As stated in the scope of patents, item 8 of the semiconductor components of the manufacture of the semiconductor components - /, medium. The formation method of the Haidi and 5 苐 多 多 polycrystalline stone 锗 layer includes chemical vapor deposition. U. The method for fabricating a semiconductor device according to the eighth aspect of the invention, wherein the method of forming the two openings in the towel of the diaper includes an isotropic etching method. 14. The method of fabricating a semiconductor device according to claim 8, wherein after the forming of the two openings, a pre-cleaning process is performed on the two openings. 15. A method of fabricating a semiconductor device, comprising: sequentially forming a gate oxide layer and a gate conductor layer on a substrate; defining the gate conductor layer and the gate oxide layer to form a structure; Forming a gap wall in the side wall; forming two openings in the base on both sides of the gap wall, and the two openings extending to a portion below the gap wall; and 18 2008349丄?_548 22784twf.d〇c/n at the two openings Forming a polysilicon layer doped with boron, and the top of the polycrystalline stone layer is on the surface of the 5 hai substrate, and the polycrystalline sap layer has a gradient boron concentration decreasing toward the substrate value. The method of fabricating a semiconductor device according to claim 15, wherein the polysilicon layer has an increasing value of the gradation error in the direction of the substrate. The method of manufacturing a semiconductor device according to claim 15, wherein the content of germanium in the polycrystalline germanium layer is a fixed value. The method of manufacturing a semiconductor device according to claim 15, wherein the method of forming the polysilicon layer comprises a chemical vapor deposition method. The method of manufacturing a semiconductor device according to claim 15, wherein the two methods of forming the substrate on both sides of the spacer include an isotropic characterization. The method of manufacturing a semiconductor device according to claim 15, wherein after the two openings are formed, the two openings are further included as a pre-cleaning process. 19
TW96105245A 2007-02-13 2007-02-13 Semiconductor device and method of fabricating the TWI357155B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96105245A TWI357155B (en) 2007-02-13 2007-02-13 Semiconductor device and method of fabricating the

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96105245A TWI357155B (en) 2007-02-13 2007-02-13 Semiconductor device and method of fabricating the

Publications (2)

Publication Number Publication Date
TW200834919A true TW200834919A (en) 2008-08-16
TWI357155B TWI357155B (en) 2012-01-21

Family

ID=44819569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96105245A TWI357155B (en) 2007-02-13 2007-02-13 Semiconductor device and method of fabricating the

Country Status (1)

Country Link
TW (1) TWI357155B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8614152B2 (en) 2011-05-25 2013-12-24 United Microelectronics Corp. Gate structure and a method for forming the same
CN105097437A (en) * 2014-05-22 2015-11-25 中芯国际集成电路制造(上海)有限公司 Method for forming strain silicon layer, manufacturing method for PMOS device and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8614152B2 (en) 2011-05-25 2013-12-24 United Microelectronics Corp. Gate structure and a method for forming the same
CN105097437A (en) * 2014-05-22 2015-11-25 中芯国际集成电路制造(上海)有限公司 Method for forming strain silicon layer, manufacturing method for PMOS device and semiconductor device

Also Published As

Publication number Publication date
TWI357155B (en) 2012-01-21

Similar Documents

Publication Publication Date Title
TWI342051B (en) Semiconductor device, metal oxide semiconductor device and method for forming metal oxide semiconductor device
TWI287875B (en) A method for forming a semiconductor device and an integrated circuit
TWI338367B (en) Mosfets incorporating nickel germanosilicided gate and methods of their formation
TWI275137B (en) Semiconductor device fabrication method
TWI270127B (en) Semiconductor device having carbon-containing metal silicide layer and method of fabricating the same
TWI329890B (en) Semiconductor device and method for fabricating the same
US7456087B2 (en) Semiconductor device and method of fabricating the same
TW201125124A (en) Method and structure for forming high-performance FETs with embedded stressors
TWI289928B (en) Bipolar junction transistor with improved extrinsic base region and method of fabrication
TWI224862B (en) Schottky barrier transistor and method of manufacturing the same
TWI313932B (en) Semiconductor device with increased channel area and decreased leakage current
TWI387010B (en) Method for fabricating a transistor
TW201017886A (en) (110)-oriented p-channel trench MOSFET having high-k gate dielectric
TW200931666A (en) High performance MOSFET
TWI251347B (en) LDMOS device and method of fabrication
TW200403731A (en) Nickel silicide with reduced interface roughness
TW200910467A (en) Strained channel transistor
TW201013753A (en) Epitaxy silicon wafer and fabricating method thereof
TW200945580A (en) Trench MOSFET and manufacturing method thereof
JP2012204841A (en) Method of forming self-aligned silicide, method of manufacturing semiconductor device, and semiconductor structure
TW200931590A (en) Semiconductor device and method of manufacturing the same
CN109755322A (en) Silicon carbide MOSFET device and preparation method thereof
JP3888330B2 (en) Method for manufacturing silicon carbide semiconductor device
TW200423292A (en) Semiconductor device and method of manufacturing the same
TWI305054B (en) Semiconductor device and fabricating method for thereof