TW200831887A - Image processing apparatus, data processing apparatus, parameter adjusting method and record medium - Google Patents

Image processing apparatus, data processing apparatus, parameter adjusting method and record medium Download PDF

Info

Publication number
TW200831887A
TW200831887A TW096132773A TW96132773A TW200831887A TW 200831887 A TW200831887 A TW 200831887A TW 096132773 A TW096132773 A TW 096132773A TW 96132773 A TW96132773 A TW 96132773A TW 200831887 A TW200831887 A TW 200831887A
Authority
TW
Taiwan
Prior art keywords
parameter
value
data
image
adjustment
Prior art date
Application number
TW096132773A
Other languages
Chinese (zh)
Inventor
Itaru Furukawa
Kiyotada Amenomori
Kazuki Fukui
Original Assignee
Dainippon Screen Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Mfg filed Critical Dainippon Screen Mfg
Publication of TW200831887A publication Critical patent/TW200831887A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1201Dedicated interfaces to print systems
    • G06F3/1202Dedicated interfaces to print systems specifically adapted to achieve a particular effect
    • G06F3/1203Improving or facilitating administration, e.g. print management
    • G06F3/1205Improving or facilitating administration, e.g. print management resulting in increased flexibility in print job configuration, e.g. job settings, print requirements, job tickets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1201Dedicated interfaces to print systems
    • G06F3/1202Dedicated interfaces to print systems specifically adapted to achieve a particular effect
    • G06F3/121Facilitating exception or error detection and recovery, e.g. fault, media or consumables depleted
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1201Dedicated interfaces to print systems
    • G06F3/1223Dedicated interfaces to print systems specifically adapted to use a particular technique
    • G06F3/1237Print job management
    • G06F3/1253Configuration of print job parameters, e.g. using UI at the client
    • G06F3/1256User feedback, e.g. print preview, test print, proofing, pre-flight checks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Quality & Reliability (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

To provide a data processor, an image processor, a parameter adjustment method, and a program which can adjust parameters concerning data processing accurately with an easy manipulation. For making the adjustment of parameter values concerning image processing, a target data creating part 140 receives a correction directive to result data D2 from an operator and creates target data D3, then, a parameter adjustment making part 170 detects a parameter value which can make result data D2 agreed with the target data D3 within a predetermined tolerance and determines the value for an adjustment value.

Description

200831887 九、發明說明: 【發明所屬之技術領域】 貝料處理(例如,圖像處 理之參數)之技術。 本發明係關於一種調整與各種 理)相關之參數(例如,缺陷檢測處 【先前技術】 於印刷工作流程中,檢查所製 铷笠φ s不姦分土 2 之氣版膜、印版、印刷 物4中疋否產生未予期之缺陷等 下稱為檢版/印刷物 f 檢查」)。該檢版/印刷物檢查係藉 曰田將成為檢查對象之圖 像(具體而言’對作為檢查對象 丁豕之印刷物等進行掃描所取 得之圖像資料)與作為其製作诉 是邗,原之基準之圖像資料加以比 較,且將其不同方面檢測為缺陷而進行者。 於檢版/印刷物檢查時’經各錄卢 τ 、乂合禋處理(例如,模糊處理、 晃動處理、比較處理、孤立點去除處理等)檢測於作為檢 查對象之圖像中所產生之缺陷,缺陷之檢職敏度依各處 理之環境參數值而改變。即,為了以適當靈敏度進行缺陷 檢測,必須預先適當地調整參數值。 該參數調整之作業,先前係各使用者根據經驗進行修正 並用試誤法進行者。 再者,作為檢版檢查處理之先行技術,例如,考慮有如 下技術··根據圖像特徵對作為檢版對象之印刷資料進行區 域分割,於每個區域使用對應於該圖像區域之屬性之參數 進行檢版處理(參照專利文獻1)。於此情形時,為了於各圖 像區域進行適當之缺陷檢測,亦必須適當地調整參數值。 [專利文獻1]日本專利特開2004-258470號公報 124049.doc 200831887 【發明内容】 [發明所欲解決之問題] 然而,於檢版/印刷物檢查時,綜合進行如上所述之多 处應調正之參數之種類亦較多。由此,參數調整時 須耗費較多之時間與勞動力。 又,即使於設法調整好參數之情形下,於必須急速變更 缺陷檢測靈敏度之情形等時’亦因無充裕之時間來重新調 、 整參數值,最終只能用目視確認進行檢查。 本發明係#於上述問題而完成者,其目的在於提供一種 可用簡單之操作準確地調整與資料處理(例如,圖像處理) 相關之一個以上參數之資料處理裝置、圖像處理裝置、參 數之調整方法及程式。 乂 [解決問題之技術手段] 請求項1之發明包括:圖像處理機構,其進行指定之圖 像處理;目標圖像製作機構,其接受對作為上述圖像處理 之結果而製作之結果圖像的修正指示,製作使上述修正指 示反映於上述結果圖像後之目標圖像;及參數調整機構, 其調整上述圖像處理之參數之值,以使作為上述圖像處理 之結果而製作的結果圖像與上述目標圖像一致。 請求項2之發明係如請求項1之圖像處理裝置,其中上述 圖像處理機構進行如下圖像處理:將基準圖像與輸出今美 準圖像而獲得之檢查對象圖像加以比較,檢測上述檢杳胃 象圖像中所產生之缺陷部分,製作將該檢測出之缺陷部分 以與非缺陷部分不同之顯示形態加以顯示的結果圖像,且 124049.doc -7- 200831887 述圖像處理之參數規定上述缺陷部分之檢測靈敏度。 ^月求項3之發明係如請求項丨或請求項2之圖像處理裝 置查其中上述目標圖像製作機構將上述結果圖像顯示於顯 :旦面上,自上述顯示晝面上接受對該結果圖像之修正指 示之輸入。 咕求項4之發明係如請求項3之圖像處理裝置,其中上述 參數調整機構_面使上述參數值變化,—面判斷於各參數 值下所獲得之結果圖像是否與上述目標圖像—致,將上述 參數之調整值決定為獲得與上述目標圖像—致之結果圖像 的參數值。 明求項5之發明係如請求項4之圖像處理裝置,其中上述 多數凋整機構將上述參數之調整值決定為由獲得與上述目 枯圖像一致之結果圖像之參數值構成之集合的中位數。 明求項6之發明係如請求項4之圖像處理裝置,其中上述 ^數凋整機構將上述參數之調整值決定為於使上述參數值 文4之過秩中最初獲得與上述目標圖像一致之結果圖像時 的參數值。 "月求項7之發明係如請求項4之圖像處理裝置,其中更包 調1範圍特定機構,其根據已輸入之設定值,特定出 使上述參數值變化之範圍。 叫求項8之發明係如請求項4之圖像處理裝置,其中更包 括:、變卜旦,. 夂1匕ϊ特定機構,其根據已輸入之設定值,特定出使 上述參數值變化時之變化量。 月托項9之發明係如請求項3之圖像處理裝置,其中上述 124049.doc 200831887 參數調整機構自一個以上參數值之組合中,利用遺傳演算 法擷取賦予與上述目標圖像一致之結果圖像之組合,將上 述參數之調整值決定為構成該擷取之組合的各值。、 請求項10之發明係如請求項9之圖像處理裝置,其中更 包括:調整範圍特定機構,其根據已輸入之設定值^特定 出使上述參數值變化之範圍。 請求項11之發明係如請求項9之圖像處理裝置,其中更 包括:變化量特定機構,其根據已輸入之設定值,特定出 使上述參數值變化時之變化量。 請求項12之發明係如請求項丨或2之圖像處理裝置,其中 包括:調整對象參數特定機構,其根據自上述修正指2所 取得之指定之特徵量,自上述圖像處理之參數中特定出成 為调整對象之參數。 請求項13之發明包括:目標圖像製作步驟,其從操作者 接受對作為被進行過圖像處理之結果而製作之結果圖像的 修正指不,製作使上述修正指示反映於上述結果圖像之目 標圖像;及參數調整步驟,其調整上述圖像處理之參數 值,以便作為被進行過上述圖像處理之結果而製作之結果 圖像與上述目標圖像一致。 請求項14之發明係藉由用電腦執行而可於上述電腦中實 現如下功能··圖像處理功能,其進行指定圖像處理;目標 圖像製作功能’其接受對作為上述圖像處理之結果而製作 之結果圖像之修正指示,製作使上述修正指示反映於上述 結果圖像之目標圖像;及參數調整功能,其調整上述圖像 124049.doc 200831887 處理之參數值,以便作為上述圖像處理之結果而製士 果圖像與上述目標圖像一致。 、、、° 凊求項15之發明包括:f料處理機構,其進行 料目標資料製作機構,其接受對作為上述資料處二 之、..口果而取得之結果資料的修正指示,製作使上述修 不反映於上述結果資料之目標資料;及參數調整機構,: 調整上述資料處理之參數值,以便作為上述資料處理之: 果而取得之資料與上述目標資料一致。 、請求項16之發明係如請求項15之資料處理裝置,其中上 述資料處理機槿逸& ‘ T ^ + 拭稱進仃如下圖像處理:將基準圖像與輸出該 基準圖像而獲得之檢查對象圖像加以比較’檢測上述檢查 對象圖像中所產生之缺陷部分,製作將該檢測出之缺陷部 分以與非缺陷部分不同之顯示形態加以顯示的圖像資料並 作為上述結果資料而取得,上述資料處理之參數規定上述 缺陷部分之檢測靈敏度。 口月求項17之發明係如請求項15或請求項16之資料處理裝 —/、中上述目;^貝料製作機構將上述結果資料顯示於顯 :畫面上’自上述顯示晝面上接受對該結果資料之修正指 示之輸入。 月求項18之發明係如請求項17之資料處理裝置’其中上 述參數調整機構-面使上述參數值變化,一面判斷於各參 數值下所獲得之結果資料是否與上述目標資料一致,將上 述參數之㈣值決定為獲得與上述目標資料一致之結果資 料之參數值。 124049.doc 200831887 請求項19之發明係如請求項18之資料處理裝置,其中上 述參數調整機構將上述參數之調整值決定為由獲得與上述 目標資料一致之結果資料之參數值構成之集合的中位數。 請求項20之發明係如請求項18之資料處理裝置,其中上 述參數調整機構將上述參數之調整值決定為於使上述參數 值變化之過程中最初獲得與上述目標資料一致之結果資料 時的參數值。 請求項2 1之發明係如請求項丨8之資料處理裝置,其中更 包括:調整範圍特定機構,其根據已輸入之設定值,特定 出使上述參數值變化之範圍。 請求項22之發明係如請求項18之資料處理裝置,其中更 包括:變化量特定機構,其根據已輸入之設定值,特定出 使上述參數值變化時之變化量。 請求項23之發明係如請求項17之資料處理裝置,其中上 述參數調整機構自一個以上參數值之組合中,利用遺傳演 算法擷取賦予與上述目標資料一致之結果資料之組合,將 上述參數之調整值決定為構成該擷取之組合之各值。 請求項24之發明係如請求項23之資料處理裝置,其中更 包括:調整範圍特定機構,其根據已輸入之設定值,特定 出使上述參數值變化之範圍。 請求項25之發明係如請求項23之資料處理裝置,其中更 包括:變化量特定機構,其根據已輸入之設定值,特定出 使上述參數值變化時之變化量。 凊求項26之發明係如請求項1 5或請求項1 6之資料處理裝 124049.doc -11 - 200831887 置,其中包括:調整對象參數特定機構,其根據自上述修 正指示所取得之指定之特徵量,自上述資料處理之參數中 特定出成為調整對象之參數。 ’ 請求項27之發明包括:目標資料製作步驟,其㈣作者 接受對作為被進行過資料處理之結果而取得之結果資料的 修正指示,製作使上述修正指示反映於上述結果資:之目 標資料;及參數調整步驟’其調整上述資料處理之參數 值,以便作為被進行過上述資料處理之結果而取得之資料 與上述目標資料一致。 、 請求項28之發明係藉由用電腦執行而可於上述電腦實現 ^功能:f料處理功能’其進行指定之資料處理;目標 賢料製作功能,其接受對作免卜、+、-欠 又^作為上述貧料處理之結果而取得 之結果資料的修正指示,製作 欠 使上述修正指示反映於上述 、、、口果貪料之目標資料;及參數 〃敎^整功能,其調整上述資料 二理之參數值,以便作為上述詩處理之結㈣取得之資 料與上述目標資料一致。 、 [發明之效果] 根據請求項卜13、14之發明’操作者不直接輸入參數 可猎!ί供對結果圖像之修正指示而進行參數調整。 I7,可用簡單之操作調整與圖 抽私、 豕蜒理相關之參數。又,因 吞。正為圖像處理之結果 獲侍之圖像與目標圖像一致之泉 故而獲得帶來操作者所 伯 斤J望之圖像處理結果之參數 值。即,可準確地調整圖像處理之參數。 根據請求項2、16之發明,可銪w 乃 了間早且準確地調整決定檢 124049.doc • 12. 200831887 查對象圖像中所產生之缺陷部分之檢測靈敏度的參數。 根據請求項3之發明,自顯示畫面上接受對結果圖像之 修正指示之輸入,故而操作者可簡單且準確地輸入對結果 圖像之修正指示。其結果為,可更簡單且準確地調整參 數。 根據請求項4之發明,一面使參數值變化—面檢測適當 _ 之參數值(即,於該參數值所獲得之結果圖像與目標圖像 ^ 一致之參數值)’故而可準確地檢測適當之參數值。 根據請求項5之發明,將參數之調整值決定為獲得與目 標圖像一致之結果圖像之參數值所構成之集合的中位數, 故而亦可於適當之參數值中將最佳值決定為參數之調整 值。 W正 根據請求項6之發明,將參數之調整值決定為於使參數 值艾化之過程中最初獲得與目標圖像一致之結果圖像時的 參數值,故而可迅速地進行參數調整。 C- 根據請求項9、23之發明,使用遺傳演算法擷取最佳參 數值之組合,故而可迅速地進行參數調整。 根據請求項7、10、21、24之發明,根據已輸入之設定 值特定使參數值變化之範圍,故而可縮小參數之調整範 ’ 圍。藉此,可迅速地進行參數調整。 根據請求項8、U、22、25之發明,根據已輸入之設定 值特定使參數值變化時之變化量,故而可縮小參數調整範 圍中可取得之參數值。藉此,可迅速地進行參數調整。 根據請求項12之發明,根據自修正指示所取得之指定之 124049.doc -13- 200831887 特彳政蓋特疋調整對象參數,故而A 了從> 致之处罢FI你 為了獲得與目標圖像一 可迅速且準確地調整參數。…數種類。藉此’ 根據請求項15、27、28之發明,操作者 ΐ可=供對結果資料之修正指示而進行參數調整。 "’早之刼作調整與資料處理相關之表數。又,因 ::為::料處理之結果所獲得之資料與目標資:一致之參 故而可獲得帶來操作者所期望之資料處理結果之參 數值。即,可準確地調整資料處理之參數。 根據凊求項1 7之發明,自顯干金 .τ . A β自心畫面上接受對結果資料之 :料曰Γ之輸人’故而操作者可簡單且準確地輸人對結果 指示。其結果,可更容易且準確地調整參數。 8之發明’-面使參數值變化,-面檢測適 田值(即’於該參數值下所獲得之結果資料與目標 貧料-致之參數值),故而可準確地檢測適當之參數值。 根據請求項19之發明,將參數之調整值決定為由獲得與 目標資料-致之結果資料之參數值所構成之集合的中位 數,故而亦可於適當參數值中將最佳值決定為參數之調整 值。 根據請求項20之發明’將參數調整值決定為於使參數值 變化之過程中最初獲得與目標資料一致之結果資料時的參 數值,故而可迅速地進行參數調整。 根據請求項26之發明,根據自修正指示所取得之指定之 特徵量’特定調整對象參數,故而為了獲得與目標資料一 124049.doc 200831887 致之結果資料,可適當地選擇應調整之參數之種類。藉 此,可迅速且準確地調整參數。 【實施方式】 [第1實施形態] < 1.構成> 圖1係表示包含作為本發明第1實施形態之資料處理裝置 之一態樣的缺陷檢查裝置1之印刷系統100之構成圖。缺陷 檢查裝置1如以下具體說明般,係檢測所製作之印刷物等 中產生之缺陷的裝置,具有調整與該缺陷檢測處理相關之 圖像處理參數之功能。 <1-1.印刷系統構成> 印刷系統100係缺陷檢查裝置1、印刷資料製作裳置2、 製版裝置3、輸出裝置4及影像掃描器5經由LAN(L〇cal Area Network,區域網路)等網路1^彼此電性連接之系統。 於印刷系統100中,進行自印刷資料之製作直至製版、輸 出為止之印刷的一系列工作流程。 缺陷檢查裝置1係進行檢測於輸出基準圖像而獲得之印 刷物或製版膜、印版等中所產生之缺陷之檢版/印刷物檢 查的裝置。再者,以下將作為檢版/印刷物檢查之檢查對 象之印刷物或製版膜、印版等總稱為r檢查對象物」。所 謂檢版/印刷物檢查係指將檢查對象物之圖像資料(以下稱 為「檢查對象資料D1」)、與作為製作該檢查對象物之基 準之圖像資料(以下稱為「基準資料D〇」)的差異檢測為缺 陷之處理。 124049.doc •15· 200831887 ▲印刷資料製作裝置2係製作印刷資料之裝置。更具體而 言’進行印刷圖像之圖像酉己置等布局處理製作布局資料, 、、,藉由RIP(Raster Image Process,光柵圖像處理)處理 (光栅處理)將已製作之布局資料轉換為多灰階圖像資料。 再者亦可设為如下構成,即於不同於印刷資料製作裝置 2之獨立裝置進行RIP處理。 印刷身料製作裝置2可由相同布局資料產生對應於使用 ζ 目的之各種析像度之圖像資料。例如,產生2400 dpi左右 同析像度之網點化圖像資料作為用於輸出用之圖像資料, 另方面,可產生300 dpi左右低析像度之多灰階圖像資料 作為用於檢查之基準資料D〇。其中,較理想的是基準資料 D〇之析像度根據檢查對象資料〇1進行決定,於該實施形 態中,將基準資料D0之析像度設定為與檢查對象資料m 相同位準。例如’於用300 dpi析像度之數位攝影機攝影印 刷物取得檢查對象資料01之情形時,印刷資料製作裝置2 C 以3〇〇 dpi析像度對布局資料進行RIP展開製作基準資料 D0。已製作之基準資料D0經由網路N傳送至缺陷檢查裝置 1,用於檢版/印刷物檢查。 製版裝置3係根據網點化圖像資料而輸出印版之裝置(所 - MCTP(ComPuter t0 Mnt,計算機直接印刷)裝置)。更具 體而言,藉由雷射曝光將基於網點化圖像資料之印刷圖像 形成於版材上,由此製作印版。再者,亦可為如下態樣: 利用影像排版機製作基於網點化圖像資料之製版膜,使用 已製作之製版膜製作印版。於此情形時,製版裝置3中勺 124049.doc -16· 200831887 含影像排版機。 輸出裝置4係使用製版裝置3所製作之印版,對印刷用紙 進行印刷之裝置。再者,亦可為如下態樣:不經由印版而 直接自網點化圖像資料對印刷用紙進行數位輸出。 〜像掃描器5係讀取檢版/印刷物檢查之檢查對象物,取 得檢查對象資料⑴之裝置。所取得之檢查對象資料⑴經 由網路N而傳送至缺陷檢查裝置丨,用於檢版/印刷物檢 查〇 c <1-2·缺陷檢查裝置之構成> 缺卩曰仏查裝置1藉由電腦而實現。更具體而言,缺陷檢 查裝置1主要具備:控制部U,其包括cpu(Central Processing Unit,中央處理單元)Ua、R〇M(Read 〇nly200831887 IX. Description of the invention: [Technical field to which the invention pertains] The technology of bedding processing (for example, parameters of image processing). The present invention relates to a parameter related to various adjustments (for example, a defect detection department [previous technique] in a printing workflow, inspecting a film, a plate, a printed matter of a 铷笠 不 分 分 土 2 2 (4) If there is a defect that is not expected, etc., it is called a check/printed matter f check"). The inspection/printed matter inspection is an image to be inspected by Putian (specifically, 'image data obtained by scanning a printed matter such as Ding Hao as a test object'), and as a result of its production, the original The image data of the benchmark is compared and the different aspects are detected as defects. In the inspection/printing inspection, the defects generated in the image to be inspected are detected by the processing of each recording, such as blurring, shaking, comparison processing, and isolation point removal processing. The job sensitivity of defects varies according to the environmental parameter values of each process. That is, in order to perform defect detection with appropriate sensitivity, it is necessary to appropriately adjust the parameter values in advance. The operation of this parameter adjustment was previously performed by each user based on experience and conducted by trial and error. Further, as a prior art of the inspection and inspection process, for example, a technique is considered in which the printed material to be examined is subjected to region division based on the image feature, and the attribute corresponding to the image region is used for each region. The parameter is subjected to the inspection process (refer to Patent Document 1). In this case, in order to perform appropriate defect detection for each image area, the parameter values must be appropriately adjusted. [Patent Document 1] Japanese Patent Laid-Open No. 2004-258470 No. 124049.doc 200831887 [Summary of the Invention] [Problems to be Solved by the Invention] However, in the inspection/printing inspection, a plurality of adjustments as described above are comprehensively performed. There are also many types of positive parameters. As a result, parameter adjustments require more time and labor. In addition, even when it is tried to adjust the parameters, when it is necessary to change the defect detection sensitivity rapidly, etc., there is no time to re-adjust and adjust the parameter values, and finally the inspection can be performed only by visual confirmation. The present invention has been completed in view of the above problems, and an object thereof is to provide a data processing device, an image processing device, and a parameter which can accurately adjust one or more parameters related to data processing (for example, image processing) with a simple operation. Adjustment methods and programs.乂 [Technical means for solving the problem] The invention of claim 1 includes: an image processing mechanism that performs specified image processing; and a target image producing unit that accepts a result image produced as a result of the image processing described above a correction instruction for producing a target image in which the correction instruction is reflected in the result image; and a parameter adjustment mechanism that adjusts a value of the parameter of the image processing to produce a result as a result of the image processing The image is identical to the above target image. The invention of claim 2 is the image processing apparatus of claim 1, wherein the image processing means performs image processing for comparing the reference image with the inspection target image obtained by outputting the current aesthetic image, and detecting Performing the above-mentioned defect portion generated in the image of the stomach image, and producing a result image in which the detected defective portion is displayed in a display form different from the non-defective portion, and 124049.doc -7- 200831887 describes image processing The parameters specify the detection sensitivity of the above defective portion. The invention of claim 3 is the image processing apparatus of the request item or the request item 2, wherein the target image producing unit displays the result image on the display surface, and receives the pair from the display surface. The input of the correction indication of the result image. The invention of claim 3 is the image processing device of claim 3, wherein the parameter adjustment mechanism _ surface causes the parameter value to change, and the surface image is determined whether the result image obtained under each parameter value is different from the target image. Therefore, the adjustment value of the above parameters is determined as the parameter value of the resultant image obtained by the target image. The invention of claim 5 is the image processing device of claim 4, wherein the plurality of gesturing means determines the adjustment value of the parameter as a set of parameter values obtained by obtaining a result image consistent with the image of the image The median. The invention of claim 4, wherein the image processing device of claim 4, wherein the parameterizing means determines the adjustment value of the parameter to obtain the target image in the over-rank of the parameter value 4 The value of the parameter when the result of the image is consistent. The invention of claim 7 is the image processing apparatus of claim 4, wherein the range specific mechanism is further included, and the range in which the parameter value is changed is specified based on the input set value. The invention of claim 8 is the image processing device of claim 4, further comprising: a variable, a specific mechanism, wherein the parameter value is changed according to the input setting value. The amount of change. The invention of claim 9 is the image processing apparatus of claim 3, wherein the 124049.doc 200831887 parameter adjustment mechanism uses a genetic algorithm to obtain a result consistent with the target image from a combination of more than one parameter value. The combination of the images determines the adjustment value of the above parameters as the values constituting the combination of the captures. The invention of claim 10, wherein the image processing device of claim 9, further comprising: an adjustment range specifying means for specifying a range in which the parameter value is changed based on the input set value. The invention of claim 11 is the image processing device of claim 9, further comprising: a change amount specifying means that specifies the amount of change when the parameter value is changed based on the input set value. The invention of claim 12 is the image processing apparatus of claim 2 or 2, further comprising: an adjustment target parameter specifying means, based on the specified feature amount obtained from the correction finger 2, from the parameter of the image processing The parameters that are the object of adjustment are specified. The invention of claim 13 includes a target image creation step of accepting, from the operator, a correction indication of the result image created as a result of the image processing, and causing the correction instruction to be reflected in the result image. a target image; and a parameter adjustment step of adjusting the parameter value of the image processing so that the resulting image produced as a result of the image processing is consistent with the target image. The invention of claim 14 is capable of realizing the following functions in the above computer by performing a computer image processing function for performing specified image processing; the target image creation function 'accepting the pair as the result of the image processing described above And a correction instruction of the produced result image, a target image for causing the correction instruction to be reflected in the result image; and a parameter adjustment function for adjusting a parameter value processed by the image 124049.doc 200831887 as the image The result of the processing is the same as the target image. The invention of the item 15 includes: a f-processing mechanism that performs a target data producing unit that accepts an instruction to correct the result obtained as a result of the above-mentioned information, and produces The above-mentioned repairs are not reflected in the target data of the above-mentioned results data; and the parameter adjustment mechanism: adjusts the parameter values of the above data processing to be processed as the above data: The data obtained is consistent with the above target data. The invention of claim 16 is the data processing device of claim 15, wherein the data processor 槿 && 'T ^ + wipes the image processing as follows: obtaining the reference image and outputting the reference image The inspection target image is compared with 'detecting the defective portion generated in the inspection target image, and image data for displaying the detected defective portion in a display form different from the non-defective portion is created and used as the result data. Obtained, the parameter of the above data processing defines the detection sensitivity of the above defect portion. The invention of the month-to-month item 17 is as in the request processing item 15 or the data processing device of the request item 16-/, the above-mentioned item; the beetle production organization displays the above-mentioned result data on the display: on the screen, 'accepted from the above display surface Input of correction instructions for the results data. The invention of claim 18 is the data processing device of claim 17, wherein the parameter adjustment mechanism-surface changes the parameter value, and determines whether the result data obtained under each parameter value is consistent with the target data, The value of (4) of the parameter is determined as the parameter value of the result data that is consistent with the above target data. The invention of claim 19, wherein the parameter adjustment means determines the adjustment value of the parameter as a set of parameter values obtained by obtaining result data consistent with the target data. Number of digits. The invention of claim 18 is the data processing device of claim 18, wherein the parameter adjustment unit determines the adjustment value of the parameter as a parameter when the result data in the process of changing the parameter value is initially obtained in accordance with the target data. value. The invention of claim 2 is the data processing device of claim 8, further comprising: an adjustment range specifying means for specifying a range in which the parameter value is changed based on the input set value. The invention of claim 22 is the data processing device of claim 18, further comprising: a change amount specifying means that specifies the amount of change when the parameter value is changed based on the input set value. The invention of claim 17 is the data processing device of claim 17, wherein the parameter adjustment mechanism uses a genetic algorithm to extract a combination of result data that is consistent with the target data from a combination of more than one parameter value. The adjustment value is determined to be the value of the combination that constitutes the capture. The invention of claim 24 is the data processing device of claim 23, further comprising: an adjustment range specifying means for specifying a range in which said parameter value is changed based on the input set value. The invention of claim 25 is the data processing device of claim 23, further comprising: a change amount specifying means that specifies the amount of change when the parameter value is changed based on the input set value. The invention of claim 26 is as set forth in claim 15 or claim 16 of the data processing apparatus 124049.doc -11 - 200831887, which includes an adjustment object parameter specific mechanism based on the designation obtained from the above correction instruction The feature quantity specifies a parameter that becomes an adjustment target from the parameters of the above data processing. The invention of claim 27 includes: a target data creation step, wherein (4) the author accepts an instruction to correct the result obtained as a result of the data processing, and produces a target data for reflecting the correction instruction in the result: And the parameter adjustment step 'which adjusts the parameter values of the above data processing so that the data obtained as a result of the above data processing is consistent with the above target data. The invention of claim 28 is implemented by the computer by means of a computer to implement the function of the above-mentioned computer: the f-processing function 'which performs the specified data processing; the target material production function, which accepts the contradictory, +, and Further, as a result of the correction of the result data obtained as a result of the above-mentioned poor material processing, the production of the above-mentioned correction instruction is reflected in the target data of the above-mentioned, and the fruit and the greed; and the parameter adjustment function is adjusted. The parameter values of the second rationale are such that the information obtained as the result of the above-mentioned poem processing (4) is consistent with the above target data. [Effects of the Invention] According to the invention of the request item 13, 14, the operator does not directly input the parameters to hunt! ί Parameter adjustment for the correction indication of the resulting image. I7, you can adjust the parameters related to the drawing and processing with simple operation. Also, because of swallowing. As a result of image processing, the image of the image that is served is consistent with the target image, so that the parameter value of the image processing result brought by the operator is obtained. That is, the parameters of the image processing can be accurately adjusted. According to the inventions of claims 2 and 16, it is possible to adjust the parameters of the detection sensitivity of the defective portion generated in the image of the inspection target 124049.doc • 12. 200831887 early and accurately. According to the invention of claim 3, the input of the correction instruction to the result image is accepted from the display screen, so that the operator can input the correction instruction for the result image simply and accurately. As a result, the parameters can be adjusted more easily and accurately. According to the invention of claim 4, the parameter value is changed - the parameter value of the face detection is appropriate (that is, the parameter image obtained by the parameter value is consistent with the target image ^), so that the appropriate detection can be accurately performed. The parameter value. According to the invention of claim 5, the adjustment value of the parameter is determined as the median of the set of parameter values of the resulting image that is consistent with the target image, and thus the optimum value can be determined from the appropriate parameter values. Adjust the value for the parameter. W. According to the invention of claim 6, the parameter adjustment value is determined as the parameter value when the result image matching the target image is first obtained in the process of making the parameter value in the process of activating the parameter value, so that the parameter adjustment can be quickly performed. C- According to the invention of claims 9 and 23, the genetic algorithm is used to extract the combination of the best parameter values, so that the parameter adjustment can be performed quickly. According to the invention of claims 7, 10, 21, and 24, the range in which the parameter value is changed is specified based on the input set value, so that the parameter adjustment range can be narrowed. Thereby, the parameter adjustment can be performed quickly. According to the invention of claim 8, U, 22, and 25, the amount of change when the parameter value is changed is specified based on the input set value, so that the parameter value obtainable in the parameter adjustment range can be reduced. Thereby, the parameter adjustment can be performed quickly. According to the invention of claim 12, according to the specification of the self-correction instruction, 124049.doc -13-200831887, the special government of the government, adjusts the object parameters, and therefore A has gone from the point where you are in order to obtain the target map. Like one, the parameters can be adjusted quickly and accurately. ...numbers. According to the invention of claims 15, 27, and 28, the operator can perform parameter adjustment for the correction instruction of the result data. "’ The number of tables related to data processing and adjustment. In addition, the data obtained from the results of :::: material processing is in accordance with the target: the reference value of the data processing result expected by the operator is obtained. That is, the parameters of the data processing can be accurately adjusted. According to the invention of claim 17, the self-displaying dry gold .τ . A β accepts the result data from the self-image screen: the operator can simply and accurately input the result indication. As a result, the parameters can be adjusted more easily and accurately. In the invention of 8, the surface value is changed, and the surface value is detected (ie, the result data obtained under the parameter value and the target lean material-induced parameter value), so that the appropriate parameter value can be accurately detected. . According to the invention of claim 19, the adjustment value of the parameter is determined as the median of the set of parameter values obtained by obtaining the result data with the target data, and therefore the optimum value may be determined as the optimum value in the appropriate parameter value. The adjustment value of the parameter. According to the invention of claim 20, the parameter adjustment value is determined as the parameter value when the result data matching the target data is initially obtained in the process of changing the parameter value, so that the parameter adjustment can be quickly performed. According to the invention of claim 26, the specified feature quantity 'specified adjustment target parameter obtained from the self-correction instruction is selected, so that the type of the parameter to be adjusted can be appropriately selected in order to obtain the result data related to the target data 124049.doc 200831887 . This allows the parameters to be adjusted quickly and accurately. [Embodiment] [First Embodiment] Fig. 1 is a view showing a configuration of a printing system 100 including a defect inspection device 1 as an aspect of a data processing device according to a first embodiment of the present invention. The defect inspection device 1 is a device that detects defects generated in a printed matter or the like produced as described below, and has a function of adjusting image processing parameters related to the defect detection process. <1-1. Printing system configuration> The printing system 100 is a defect inspection device 1, a printed material production shelf 2, a plate-making device 3, an output device 4, and an image scanner 5 via a LAN (L〇cal Area Network) A system in which the network 1 is electrically connected to each other. In the printing system 100, a series of workflows from the production of printed materials to the printing of plates and outputs are carried out. The defect inspection device 1 is a device for detecting a check/printed matter of a defect generated in a printed matter, a plate-making film, a printing plate, or the like obtained by outputting a reference image. In the following, the printed matter, the plate-making film, the printing plate, and the like which are the inspection objects for the inspection/printed matter inspection are collectively referred to as the "r inspection object". The inspection/printing inspection refers to the image data of the inspection object (hereinafter referred to as "inspection target data D1") and the image data which is the basis for the inspection object (hereinafter referred to as "reference data D". The difference is detected as a defect. 124049.doc •15· 200831887 ▲Printed data production device 2 is a device for producing printed materials. More specifically, 'the image of the printed image is placed in a layout process to create layout data, and the RIP (Raster Image Process) processing (raster processing) is used to convert the created layout data. For multi-gray image data. Further, it is also possible to adopt a configuration in which RIP processing is performed on an independent device different from the printed material producing device 2. The print body making device 2 can generate image data corresponding to various resolutions for use by the same layout material. For example, a dot image image having a resolution of about 2400 dpi is generated as image data for output, and on the other hand, a plurality of grayscale image data having a low resolution of about 300 dpi can be generated for inspection. Benchmark data D〇. Preferably, the resolution of the reference data D〇 is determined based on the inspection target data ,1, and in this embodiment, the resolution of the reference data D0 is set to the same level as the inspection target data m. For example, when the inspection target document 01 is obtained by the digital camera photographic print having a resolution of 300 dpi, the printed material creation device 2 C performs RIP development on the layout data with a resolution of 3 〇〇 dpi to create the reference material D0. The prepared reference data D0 is transmitted via the network N to the defect inspection device 1 for inspection/printing inspection. The plate making apparatus 3 is a device for outputting a printing plate based on the dot image data (MCTP (ComPuter t0 Mnt)). More specifically, a printed image based on dot-spot image data is formed on the plate by laser exposure, thereby producing a printing plate. Furthermore, it is also possible to use the image typesetting machine to make a plate-making film based on the dot image data, and to make a plate using the prepared plate film. In this case, the spoon 124049.doc -16· 200831887 in the plate making apparatus 3 includes an image typesetting machine. The output device 4 is a device that prints printing paper using a printing plate produced by the plate making device 3. Further, it is also possible to digitally output the printing paper directly from the dot-coded image without passing through the printing plate. ~ The scanner 5 is a device that reads the inspection object/printed matter inspection object and obtains the inspection target data (1). The acquired inspection target data (1) is transmitted to the defect inspection device 经由 via the network N, and is used for pattern inspection/printed matter inspection 〇c <1-2·construction of the defect inspection device> Realized by the computer. More specifically, the defect inspection apparatus 1 mainly includes a control unit U including a CPU (Central Processing Unit) Ua and R〇M (Read 〇nly).

Memory ’ 唯獨記憶體)llb、及 RAM(Rand〇in AccessMemory ‘only memory】llb, and RAM (Rand〇in Access

Memory,隨機存取記憶體)Uc,實現下述之各功能;記憶 部12 ’其用以儲存使該電腦作為缺陷檢查裝置1發揮功能 I 之程式P等;操作部13,其包含用以操作者輸入各種指示 之滑鼠或鍵盤等;顯示器等顯示部14 ;以/…部15,其包括 硬碟等,且用於通過媒體讀寫器151與記錄媒體Μ間進行 資料之讀寫;以及作為介面之通訊部丨6,其用於與網路ν ' 上之其他裝置之間進行資料之傳遞。 再者,於缺陷檢查裝置1中,可一面將經由操作部丨3之 操作内容、或各種處理之處理狀況等顯示於顯示部i 4 一面 進行處理之所謂GUI(Graphical User Interface,圖形使用 者介面)101(參照圖2),藉由控制部11、操作部13、顯示部 124049.doc -17· 200831887 14之功能而實現。藉此 操作者可一面參照顯示 之畫面一面使用操作部13 ♦ ‘,員不# 提供指示。 才曰疋之刼作,藉此對電腦 <1-3·與參數之調整相關之構成> 缺陷檢查裝置!具有調整檢版/印刷物檢查之圖像處理夫 數之功能。圖2係說明與參數調整功能相關之構成之圖。 缺查裝置1作為與參數調整相關之構成,具備:基準 貝料取得部110、檢查對象資料取得部12()、缺陷檢測處理 部130、目標資料製作部140、調整對象參數特定部15〇、 调整常數決定部16〇、及參數調整處理部17〇。該等各部係 精由控制部11實行記憶於記憶部12之特定程式p而實現之 構成要素。 基準資料取得部1 根據經由操作部13接受到之操作者 之私不,取得基準資料D0。更具體而言,經由網路N自印 刷資料製作裝置2取得基準資料D〇。又,如圖丨所示,亦可 由包含M〇驅動器或CD-R/RW驅動器等之媒體讀寫器151讀 取記錄於可攜性記錄媒體M(例如,MO(magnetic optical disC’ 磁光碟)或 CD-R(recordable compact disk,可記錄之 壓縮光碟)/RW(Rewritable compact disk,可重寫之壓縮光 碟)等)之基準資料D0而取得基準資料D〇。基準資料取得部 110將所取得之基準資料D〇儲存於記憶部12。 檢查對象資料取得部12〇根據經由操作部13接受之操作 者之指示,取得檢查對象資料D1。更具體而言,經由網路 N自影像掃描器5取得檢查對象資料D1。又,亦可將記錄 124049.doc •18- 200831887 有用數位攝影機等攝影檢查對象物而獲得之檢查對象資料 D1之記錄媒體M,由媒體讀寫器151讀取而取得檢查對象 資料D1。檢查對象資料取得部120將所取得之檢查對象資 料D1儲存於記憶部12。 圖3(a)中例示基準資料D0。又,圖3(b)中例示根據圖 3 (a)所例示之基準資料DO製作之檢查對象物的檢查對象資 - 料D1。如上所述,基準資料DO係成為製作印刷物之基準 ( 之圖像資料,檢查對象資料D1係檢查對象物之圖像資料。 最理想的是,檢查對象資料D1與基準資料D0完全一致。 然而,由於印刷步驟中所可能產生之各種主要原因(例如 混入灰塵、或位置偏移),如圖3所示,有可能於檢查對象 資料D1中產生與基準資料D0不同之部分(缺陷)。下述缺陷 檢測處理部13 0藉由實行下述缺陷檢測演算法而檢測該缺 陷。 缺陷檢測處理部130進行如下圖像處理:將儲存於記憶 ◎ 部12之基準資料D〇,與輸出該基準資料DO而獲得之檢查 對象資料D1加以比較,對檢查對象資料D1中所產生之缺 陷部分進行檢測,製作以與非缺陷部分不同之顯示形態顯 示該所檢測之缺陷部分的結果資料D2。更具體而言,對儲 存於A憶部12之基準資料DO與檢查對象資料D丨實行特定 之缺陷檢測以檢測檢查對象資料〇1中所產生之缺陷。所謂 缺陷檢測圖像處理,更具體而言係指模糊處理、晃動處 理、比較處理、孤立點去除處理,該等圖像處理係於用於 檢測缺陷之-系列演算法(以下稱為「缺陷檢測演算法」) 124049.doc -19· 200831887 中以特定順序而實行者。 缺陷檢測處理部13〇具備作為進行缺陷檢測圖像處理之 處理邛之杈糊處理部13丨、晃動處理部Η〕、比較處理部 33及孤立點去除處理部134。又,具備反映檢測結果製作 結果資料D2之結果圖像製作部135。 模糊處理邛13 1根據模糊處理之參數(模糊參數p 1)而實 行模糊處理。所謂模糊處理係對基準資料D0與檢查對象資 料D1貝;模糊之處理,更具體而言,藉由如下而進行模糊 處理·計算出處理對象之像素與位於其附近之特定個數之 像素的平均值,將計算出之值設為該像素之輸出值。此 處,模糊程度係由計算平均值時所算入之像素範圍(更具 體而σ為模糊半徑)決定,將該模糊半徑設定為模糊參 數Ρ1。藉由將模糊處理組入缺陷檢測演算法並實行模糊處 理而可以相同程度之模糊情況適當地比較兩圖像資料。 晃動處理部132根據晃動處理之參數(晃動參數Ρ2)而實 行晃動處理。所謂晃動處理係指使基準資料D〇 '檢查對象 資料D1中任一者之圖像資料之配置位置假設性地偏移並比 較兩圖像之處理,將晃動像素之範圍(更具體而言,規定 无動像素範圍之晃動半徑)設定為比較參數P2。藉由將晃 動處理組入缺陷檢測演算法並實行晃動處理,而即使於檢 查對象資料D1之線圖或圖樣之配置位置自基準資料〇〇之 配置位置偏移的情形(所謂產生像素偏移之情形)時,亦可 消除像素偏移而檢測原來之差分值。 比較處理部133根據比較處理之參數(比較參數p3)實行 124049.doc -20- 200831887 比車乂處理。所§胃比較處理係將基準資料训與檢查對象資料 1所產生之灰階差作為缺陷進行檢測的處理。更具體 而。對對基準身料D0與檢查對象資料D1,以每個對應 之像素為單位計算出灰階差之差分值,於所計算出之差分 =大於特定臨限值之情形時,將該像素判斷為缺陷。將決 定應檢測為缺陷之灰階差之臨限值(即,灰階邊緣)設定為 比較參數P3。 孤立點去除處理部134根據孤立點去除處理之參數(孤立 點去除參數P4)實行孤立點去除處理。所謂孤立點去除處 理係扣於基準資料D〇與檢查對象資料D丨之間產生差分之 像素孤立存在於較小之像素範圍的情形時,將其作為多餘 之孤立點去除之處理。此處,將判斷為孤立點之像素範圍 (更具體而言,規定形成孤立點之像素之數的孤立點去除 像素數)設定為孤立點去除參數P4。 再者,該實施形態之缺陷檢測演算法係該等各處理部 131〜134對由記憶部12讀出之基準資料!^、檢查對象資料 D1實行特定之圖像處理者,更具體而言,例如以如下流程 進行。 首先,模糊處理部131對基準資料do與檢查對象資料〇1 實行模糊處理。藉由實行模糊處理,而將作為RIp展開所 獲得之圖像資料之基準資料D0與照相機等攝像而獲得之檢 查對象資料D1修正為相同程度之模糊情況。 繼而,晃動處理部132對檢查對象資料〇1實行晃動處 理,比較處理部133對已進行晃動處理之檢查對象資料 124049.doc -21 · 200831887 與基準資料DO實行比較處理,藉此,消除像素偏移後,檢 測有意義之灰階差。 進而,孤立點去除處理部134實行孤立點去除處理,去 除比較處理之結果中所產生之多餘孤立點。藉此,避免將 並非應檢測為缺陷之小孤立點亦檢測為缺陷。 再次參照圖2。結果圖像製作部135製作結果資料D:2。結 果資料D2係以與非缺陷部分(即,作為缺陷而擷取之部分 以外之部分)不同之顯示形態特徵性地顯示檢查對象資料 D1中之缺陷部分(即,對基準資料〇〇及檢查對象資料⑴實 行缺陷檢測演算法之結果,檢查對象資料叫中擷取為缺陷 之部分)的圖像資料。 圖4(a)中例示藉由對圖3所例示之基準資料及檢查對 象資料D1實行缺陷檢測演算法而獲得之結果資料D2。結 果資料D2中,較淡地顯示非缺陷部分,即於檢查對象資料 D1中判斷為未與基準資料D 〇之間產生有意義之差分的區 域(適當區域SI、S2、S3),且缺陷部分,即判斷為與基準 育料D〇之間產生有意義之差分之區域(缺陷區域T1、T2), 藉由豐滿處理而變豐滿後,用特定之顏色(例如洋紅色)顯 示。 目標資料製作部140接受操作者對結果資料〇2之修正指 示’且製作將該指㈣減映於結I資料D2之圖像資料 (以下稱為「目標資料D3」)。 β )中彳】示接受操作者對圖4(a)所例示之結果資料D2 之修正指示製作之目標資料D3。例如,於接受到將圖4⑷ 124049.doc -22- 200831887 二:果資料D2之缺陷區域T1、T2中之缺陷區域丁2修 如3=域的操作者之㈣之情料,目標資料製作部 標資料^3所示製作將缺陷區域Τ2修正為適當區域之目 。更具體而言,修正為將結果資料D2之缺陷區 者可广作為適當區域較淡地顯示之狀態。再者,操作 修^顯*有、纟#果資_之畫面上提供對結果資料〇2之 ^調二不€參照圖7)。對此於下文進一步具體說明。Memory, random access memory) Uc, which realizes the following functions; the memory unit 12' stores a program P for causing the computer to function as the defect inspection device 1, and the like; the operation unit 13 includes operations for operating a mouse or keyboard for inputting various instructions, a display portion 14 such as a display, and a portion 15 including a hard disk or the like for reading and writing data between the media reader 151 and the recording medium; As an interface communication unit 丨6, it is used for data transfer between other devices on the network ν'. Further, in the defect inspection device 1, a so-called GUI (Graphical User Interface) that can be processed while the operation content of the operation unit 、3 or the processing status of various processes is displayed on the display unit i4 can be performed. 101 (see FIG. 2) is realized by the functions of the control unit 11, the operation unit 13, and the display unit 124049.doc -17·200831887 14. Thereby, the operator can use the operation unit 13 ♦ ‘, 员不# to provide an instruction while referring to the displayed screen. The trick is to make a computer <1-3·related to the adjustment of the parameters> defect inspection device! It has the function of adjusting the image processing number of the check/print check. Fig. 2 is a diagram for explaining the configuration related to the parameter adjustment function. The configuration device 1 includes a reference beetle acquisition unit 110, an inspection target data acquisition unit 12 (), a defect detection processing unit 130, a target data creation unit 140, and an adjustment target parameter identification unit 15A. The adjustment constant determination unit 16A and the parameter adjustment processing unit 17A. The components are implemented by the control unit 11 by the specific program p stored in the storage unit 12. The reference data acquisition unit 1 acquires the reference material D0 based on the privacy of the operator received via the operation unit 13. More specifically, the reference material D is acquired from the printing material creation device 2 via the network N. Further, as shown in FIG. ,, it can also be read and recorded on the portable recording medium M by a media reader 151 including an M〇 driver or a CD-R/RW drive (for example, MO (magnetic optical disC'). The reference data D〇 is obtained from the reference data D0 of CD-R (recordable compact disk)/RW (Rewritable compact disk). The reference data acquisition unit 110 stores the acquired reference data D〇 in the storage unit 12. The inspection target data acquisition unit 12 receives the inspection target data D1 based on the instruction received from the operator via the operation unit 13. More specifically, the inspection target data D1 is acquired from the image scanner 5 via the network N. In addition, the recording medium M of the inspection target data D1 obtained by the photographing object to be photographed by a digital camera such as a digital camera can be read by the media reader/writer 151 to obtain the inspection target data D1. The inspection target data acquisition unit 120 stores the acquired inspection target data D1 in the storage unit 12. The reference data D0 is illustrated in Fig. 3(a). Further, in Fig. 3(b), the inspection target material D1 of the inspection object produced based on the reference data DO illustrated in Fig. 3(a) is exemplified. As described above, the reference data DO is the reference for the production of the printed matter (the image data, and the inspection target data D1 is the image data of the inspection object. Preferably, the inspection target data D1 and the reference data D0 are completely identical. Due to various factors (such as dust or misalignment) which may occur in the printing step, as shown in FIG. 3, it is possible to generate a portion (defect) different from the reference material D0 in the inspection target data D1. The defect detection processing unit 130 detects the defect by executing the following defect detection algorithm. The defect detection processing unit 130 performs image processing for storing the reference data D〇 stored in the memory unit 12 and outputting the reference data DO. The obtained inspection target data D1 is compared, and the defective portion generated in the inspection target data D1 is detected, and the result data D2 indicating the detected defective portion is displayed in a display form different from the non-defective portion. More specifically, , the defect data stored in the reference data DO and the inspection target data D stored in the A memory department 12 is tested to detect the inspection object Defects generated in 〇1. The so-called defect detection image processing, more specifically refers to blur processing, sloshing processing, comparison processing, and isolated point removal processing, which are used for detecting defects-series calculus The method (hereinafter referred to as "defect detection algorithm") 124049.doc -19·200831887 is performed in a specific order. The defect detection processing unit 13A is provided with a paste processing unit 13 as a process for performing defect detection image processing. The 丨, sway processing unit 、, the comparison processing unit 33, and the isolated point removal processing unit 134. The result is a result image creation unit 135 that reflects the detection result creation result data D2. The blur processing 邛13 1 is based on the parameters of the blur processing (blurring) The blur processing is performed on the parameter p 1). The blur processing is performed on the reference data D0 and the inspection target data D1; the processing of the blur, more specifically, the blur processing is performed as follows: the pixel of the processing target and the pixel located therein are calculated The average value of the pixels in a specific number nearby, and the calculated value is set as the output value of the pixel. Here, the degree of blur is calculated by the average value. The pixel range (more specifically, σ is the blur radius) is determined, and the blur radius is set as the fuzzy parameter Ρ 1. By combining the blur processing into the defect detection algorithm and performing the blurring process, the blur conditions of the same degree can be appropriately compared. The sway processing unit 132 performs a swaying process based on the parameter of the swaying process (the swaying parameter Ρ2). The swaying process refers to the assumption of the arrangement position of the image data of any one of the reference data D〇' inspection target data D1. The process of shifting and comparing the two images is performed, and the range of the swaying pixels (more specifically, the sway radius of the non-moving pixel range) is set as the comparison parameter P2. By swaying the sway processing into the defect detection algorithm and The sloshing process is performed, and even when the arrangement position of the line image or the pattern of the inspection target data D1 is shifted from the arrangement position of the reference data ( (the case where the pixel shift occurs), the pixel shift can be eliminated and detected. The original difference value. The comparison processing unit 133 performs 124049.doc -20-200831887 than the rutting process based on the parameter of the comparison processing (comparison parameter p3). The § stomach comparison processing is a process of detecting the gray level difference generated by the reference data training and the inspection target data 1 as a defect. More specific yet. For the reference body material D0 and the inspection target data D1, the difference value of the gray level difference is calculated in units of each corresponding pixel, and when the calculated difference = greater than a certain threshold value, the pixel is determined as defect. The threshold (i.e., grayscale edge) that determines the grayscale difference that should be detected as a defect is set to the comparison parameter P3. The isolated point removal processing unit 134 performs the isolated point removal processing based on the parameter of the isolated point removal processing (the isolated point removal parameter P4). The so-called outlier removal processing is performed by removing the isolated point from the reference data D〇 and the inspection target data D丨 when the pixel is isolated in a small pixel range. Here, the pixel range determined to be an isolated point (more specifically, the number of isolated point removal pixels defining the number of pixels forming the isolated point) is set as the isolated point removal parameter P4. Further, in the defect detection algorithm of the embodiment, the processing units 131 to 134 perform specific image processing on the reference data and the inspection target data D1 read by the storage unit 12, and more specifically, For example, the following procedure is performed. First, the blur processing unit 131 performs blurring processing on the reference material do and the inspection target data 〇1. By performing the blurring process, the reference data D0 of the image data obtained by the RIp expansion and the inspection target data D1 obtained by the camera or the like are corrected to the same degree of blur. Then, the sway processing unit 132 performs sway processing on the inspection target data 〇1, and the comparison processing unit 133 performs comparison processing on the inspection target data 124049.doc-21/200831887 that has been swayed, and the reference data DO, thereby eliminating the pixel deviation. After the shift, a meaningful grayscale difference is detected. Further, the isolated point removal processing unit 134 performs an isolated point removal process to remove redundant isolated points generated in the result of the comparison processing. In this way, it is avoided that small isolated points that are not to be detected as defects are also detected as defects. Referring again to Figure 2. The result image creation unit 135 creates the result data D:2. The result data D2 characteristically displays the defective portion in the inspection target data D1 in a display form different from the non-defective portion (that is, the portion other than the portion captured as the defect) (that is, the reference data 〇〇 and the inspection object) The data (1) is the result of the defect detection algorithm, and the image data of the object data is referred to as the defect. The result data D2 obtained by performing the defect detection algorithm on the reference data and the inspection object data D1 illustrated in Fig. 3 is illustrated in Fig. 4(a). In the result data D2, the non-defective portion is displayed lightly, that is, the region (appropriate region SI, S2, S3) which is determined not to have a meaningful difference from the reference data D 中 in the inspection target data D1, and the defective portion, That is, the region (defective regions T1, T2) which is determined to have a meaningful difference from the reference feedstock D〇 is displayed in a specific color (for example, magenta) after being fulled by the fullness processing. The target data creating unit 140 accepts the operator's correction instruction for the result data ’ 2 and creates image data (hereinafter referred to as "target data D3") which is reduced to the index I data D2. β) 中彳] indicates the target data D3 produced by the operator instructing the correction of the result data D2 illustrated in Fig. 4(a). For example, in the case of the operator (4) who received the defect area in the defect area T1, T2 of Fig. 4(4) 124049.doc -22- 200831887 2: fruit data D2, the target data production department The production shown in the standard data ^3 corrects the defect area Τ2 to the appropriate area. More specifically, it is corrected that the defect area of the result data D2 can be widely displayed as a state in which the appropriate area is displayed lightly. In addition, the operation of the repair and display *Yes, 纟#果资_ on the screen provides the result data 〇2 调2不不€€ Figure 7). This is further specified below.

C PI 對象參數特定部150自缺陷檢測圖像處理之參數 敫對中特疋成為調整對象之一個以上參數(以下稱為「調 Γ 參數」)。調整對象參數之特定,更具體而言,係 猎由接受由操作者選擇輸入之於參數IM〜P4中所期望調整 之參數而進行。 正 凋i⑦數決定部160決定各調整對象參數之「調整寬 f」j「分割數」。調整寬度及分割數之決定,更具體而 Z稭由接党由操作者輸人之調整寬度及分割數值而進 行。其中’所II「調整寬度」係指調整對象參數之調整範 圍(即Μ吏下述之參數調整處理部170發生變化之參數值範 圍I藉由參數值之最小值與最大值而規定。又,所謂 刀。彳數」係指參數值之變化寬度(即,參數調整處理部 170使參數值發生變化時之變化量)。 「例如,於將模糊參數^之調整寬度設定為「最大值=8 pix」 S J值1 pix」,將分割數設定為「1 pix」之情形(參照 圖9)時,參數调整處理部丨7〇 一面使模糊參數p丨之值自「^ P1X」直至「8 Pix」以「丨Pix」為單位發生變化,一面決 124049.doc -23- 200831887 2中最佳之模糊參數P1之值。再者,以下將以分割數所 規疋之變化寬度使調整寬度所決^之調整範圍發生變化時 可取得之參數值稱為「試行值」。即,參數之調整值由試 行值中之任一者決定。 再者,於將「〇」設定為最小值之情形時,參數之調敕 ::亦有可能決定為「°」。於此情形時,實質上於缺陷檢測 續异法中並未進行將參數值設定為「G」之調整處理。The parameter of the C PI target parameter specifying unit 150 from the defect detection image processing 敫 the centering characteristic becomes one or more parameters of the adjustment target (hereinafter referred to as "tuning parameter"). The specificity of the object parameters is adjusted, and more specifically, the hunting is performed by accepting parameters that are selected by the operator to be input in the parameters IM to P4. The positive derivation i7 number determining unit 160 determines the "adjustment width f" j "the number of divisions" of each adjustment target parameter. The decision to adjust the width and the number of divisions is more specific and the Z straw is carried out by the adjustment width and the division value of the operator input by the operator. The term "adjustment width" refers to the adjustment range of the adjustment target parameter (that is, the parameter value range I in which the parameter adjustment processing unit 170 described below changes) is defined by the minimum value and the maximum value of the parameter value. The "knife number" refers to the change width of the parameter value (that is, the amount of change when the parameter adjustment processing unit 170 changes the parameter value). "For example, the adjustment width of the blur parameter ^ is set to "maximum value = 8" Pix "SJ value 1 pix", when the number of divisions is set to "1 pix" (see Fig. 9), the parameter adjustment processing unit 使7〇 sets the value of the blur parameter p丨 from "^ P1X" to "8" Pix" changes in the unit of "丨Pix", and the value of the fuzzy parameter P1 is best determined by 124049.doc -23- 200831887 2. In addition, the width of the adjustment is adjusted by the width of the division number. The parameter value that can be obtained when the adjustment range of the control is changed is called the "trial value". That is, the adjustment value of the parameter is determined by any one of the trial values. Furthermore, when "〇" is set to the minimum value When the parameters are adjusted:: It is also possible to decide Is "°". This case, in a substantially continuous defect detection method is not exclusive for the parameter value is set to adjust a "G" of the process.

C/ 參數調整處理部170決定調整對象參數之調整值。參數The C/parameter adjustment processing unit 170 determines an adjustment value of the adjustment target parameter. parameter

調整處理部17G具備參數值適#與否判斷部Μ及參數值決 定部172。 N 參數值適當與否判斷部171一面依序使參數值發生變化 (更具體而言’ 一面以由分割數決定之變化寬度使由調整 寬度決定參數值之調整範圍發生變化(進而換言之,於由 缺陷檢測圖像處理之參數P丨〜P 4各值構成之參數值群0工、 P2、P3、P4)(即’參數^,各值之組合)中,使調整對象 參數值依序發生變化)),一面於判斷各參數值所獲得之結 果資料D2是否與目標資料D3一致。即,對參數卩丨〜以之各 武行值之所有組合而言’判斷各組合是否為提供與目標資 料D3 —致之結果資料D2之參數值組合。其中,目標資料 D3是否與結果資料D2 一致之判斷,更具體而言係藉由判 斷兩圖像資料之缺陷區域部分是否一致而進行。再者,以 下將獲得參數值適當與否判斷部171判斷為與目標資料如 一致之結果資料D2之參數值稱為「適當值」。又, 八 u下將 提供與目標資料D3 —致之結果資料D2之參數值群稱為 124049.doc -24- 200831887 「適當參數值群」。即,構成適#參 「_^,於參數_4中調整對象參數=1 之情形時,設為於調整對象參數P3之值為「n」之1數值 群實行缺陷檢測演算法。由此,於所獲得之結果㈣= ^陷區域部分與目標資料⑴之缺陷區域部分-致之情形 ▲了 :=:數值群稱為適當參數值群。X,對參數P3而 5可將參數值n」稱為適當值。 :數值ΆΚΠ72決定作為調整對象參數之調整結果而 輸出之值(即調整值)。更具體而言,將調整值決定為由適 當參數值群構成之集合之中位數。即 /為由適 =之適當值構成之集合之中位數並將其決定為調整值象 對象參數為1種之情形時’如圖11⑷所示, == a構成之集合Q1之中位數之試行值b 並將其決疋為调整值。 <2·處理> 其次,對缺陷檢查裝置!之參數調整處理進行說明。 <參數調整處理整體之流程> a圖5係表示缺陷檢查裝置1之參數調整處理(更具體而 言,為缺陷檢測圖像處理之參^〜P4之調整處理)之整體 流程圖。 首先’基準資料取得部110與檢查對象資料取得部120分 別取得基準資料DG(參㈣3⑷)與檢查對象f細(參照圖 3(b))並將該等儲存於記憶部12(步驟s”。 繼而,缺陷檢測處理部13〇對步驟S1中所取得之基準資 124049.doc •25- 200831887The adjustment processing unit 17G includes a parameter value-adjusting factor determination unit and a parameter value determining unit 172. The N parameter value appropriateness determining unit 171 sequentially changes the parameter value (more specifically, the change width determined by the number of divisions is changed by the adjustment width to determine the adjustment range of the parameter value (in other words, The parameter value group 0, P2, P3, P4) of the parameter P丨~P 4 of the defect detection image processing (ie, 'parameter^, combination of values) causes the parameter values of the adjustment object to change sequentially. )), whether the result data D2 obtained by judging each parameter value is consistent with the target data D3. That is, it is judged whether or not each combination is a combination of parameter values of the result data D2 which is provided in association with the target material D3 for all combinations of the parameter 卩丨~ each of the values. Among them, the judgment as to whether or not the target data D3 coincides with the result data D2 is more specifically determined by judging whether or not the defective area portions of the two image data are identical. In addition, the parameter value of the result data D2 determined by the parameter value appropriateness determination unit 171 to be identical to the target data is referred to as "appropriate value". In addition, the parameter value group which provides the result data D2 which is the result of the target data D3 is called 124049.doc -24- 200831887 "appropriate parameter value group". In other words, when the parameter parameter "1" is adjusted in the parameter_4, the value of the adjustment target parameter P3 is set to "1". The defect detection algorithm is executed. Thus, the result obtained in the (4) = ^ trap region portion and the defect region portion of the target data (1) - ▲ : : : The value group is called the appropriate parameter value group. X, for parameter P3 and 5, the parameter value n" can be referred to as an appropriate value. : The value ΆΚΠ 72 determines the value (that is, the adjustment value) that is output as the adjustment result of the adjustment target parameter. More specifically, the adjustment value is determined as the set median of the appropriate parameter value group. That is, when the median of the set consisting of the appropriate values is appropriate and is determined as the adjustment value, if the object parameter is one type, as shown in Fig. 11 (4), == a constitutes the median of the set Q1. The trial value b is determined and determined as the adjustment value. <2·Processing> Next, the defect inspection device! The parameter adjustment processing will be described. <Flow of the entire parameter adjustment processing> a Fig. 5 is a flowchart showing the overall adjustment of the parameter adjustment processing of the defect inspection apparatus 1 (more specifically, the adjustment processing of the defect detection image processing). First, the reference data acquisition unit 110 and the inspection target data acquisition unit 120 respectively acquire the reference data DG (see (4) 3 (4)) and the inspection target f (see FIG. 3(b)) and store the information in the storage unit 12 (step s). Then, the defect detection processing unit 13 refers to the reference resource obtained in step S1 124049.doc •25- 200831887

料DO與檢查對象資料D 斜參-欠實仃缺陷檢測演算法,檢測檢查 f象貝料m之缺陷,且製作反映檢測 D2(參照圖4(a))(步驟S2)e '、、°禾貝 繼二,目標資料製作部14。接受操作者對結果資料肌 日示,並且製作使該指示内容反映於結果資細之目 標貝料D3(參照圖4(b))(步驟S3)。 Ο 繼而’調整對象參數特定部15〇自缺陷檢測圖像處理 參數P1〜P4中特定調整對象參數,並且決$各_ 之 數之調整寬度與分割數(步驟S4)。 I、象參 繼而,參數調整處理部170決定調整對象 (步驟S5)。 之调整值 繼而,參數調整處理部170將步驟85中所決定上 值、步驟S3中所製作之目標資料的、及於所決定6周整 實行缺陷檢測演算法時所獲得之結果資料1)2顯^之參數值 14(步驟S6)。 、於顯示部 參數調整處理部m於接受到如下主旨之指示 驟S7中為YES(是))時,將調整對象來 小(步 乂双值〇又疋為步 所決定之調整值(步驟S8),上述指示係觀 5中 夕鄉S 6之為s 示結果之操作者,指示將調整對象參數值設定為所4 調整值。由此結束參數值之調整處理。 頌不之 對步驟S3 S4、S5各處理加以更具體地說明。 、 <2-1·目標資料D3之製作處理> 對步驟S3之處理加以更具體地說明。圖6係表 之處理流程圖。 v驟83 124049.doc -26- 200831887 首先,目標資枓製作部140將對結果資料D2之修正指示 之接受畫面G顯示於顯示部14(步驟su)。圖了係表示接受 畫面G之構成例之圖。接受畫面G包括:區域y,其顯示 成為修正對象之整個結果資料D2;區域g2,其將結果資料 D2中成為修正對象之區域加以放大顯示;以及區域,其 顯示決定修正内容之選擇面板。 首先’目標資料製作部140接受區域以中成為修正對象 之區域之指定(步驟Sl2)。即,操作者觀察顯示於區域gl 中整個結果資❹2,且判斷結果資料D2中是否存在欲修 正之部分,於觀察到欲修正之部分之情形時,藉由滑鼠之 拖良操作而指定成為修正對象之區域。目標資料製作部 140接受該區域指$。再者,亦可利m以外之各種指 2裝置(例如’執跡球、觸控墊、輸入板等)進行區域指 定。Material DO and inspection object data D oblique parameter-under-defect defect detection algorithm, detecting and detecting defects of f-like material m, and making reflection detection D2 (refer to FIG. 4(a)) (step S2) e ', , ° He Beiji, the target data production department 14. The operator receives the result data and shows the target content, and produces the target content D3 (see Fig. 4(b)) (step S3). Then, the adjustment target parameter specifying unit 15 selects the specific adjustment target parameter from the defect detection image processing parameters P1 to P4, and determines the adjustment width and the number of divisions of each _ (step S4). I. The parameter adjustment processing unit 170 determines the adjustment target (step S5). The adjustment value is then the parameter adjustment processing unit 170, which determines the upper value determined in step 85, the target data created in step S3, and the result data obtained when the defect detection algorithm is executed for the determined 6 weeks. The parameter value 14 is displayed (step S6). When the display unit parameter adjustment processing unit m receives YES in the instruction step S7 (hereinafter), the adjustment target is small (step 乂 double value 〇 is determined as the adjustment value determined by the step (step S8). The above indication indicates that the operator of the result of the shovel S 6 is the result of setting the adjustment target parameter value to the adjusted value of 4, thereby ending the adjustment processing of the parameter value. Otherwise, step S3 S4 Further, the processing of step S3 will be described more specifically. The processing of step S3 will be described more specifically. Fig. 6 is a flowchart of the processing of the table. Doc -26-200831887 First, the target asset creation unit 140 displays the acceptance screen G of the correction instruction of the result data D2 on the display unit 14 (step su). The figure shows a configuration example of the acceptance screen G. The acceptance screen G includes: a region y which displays the entire result data D2 to be the correction target; a region g2 which enlarges and displays the region to be corrected in the result data D2; and an area which displays a selection panel for determining the correction content. Data system The portion 140 accepts the designation of the region to be corrected in the region (step S12). That is, the operator observes the entire result asset 2 displayed in the region gl, and judges whether or not there is a portion to be corrected in the result data D2. In the case of the correction, the region to be corrected is designated by the drag operation of the mouse. The target data creation unit 140 accepts the region finger $. Further, it is also possible to use various finger devices other than m (for example, ' Execution of the ball, touch pad, input board, etc.) for area designation.

C —於區域gl中接受到成為修正對象之區域之^後,目標 資料製作部140繼而將哕所A 。,止 @將°亥所’曰疋之區域内放大顯示於區域 g2(步驟S13)。例如,如岡7俗一 J如如圖7所不,於操作者於顯示於區域 :之結果資料D2中指定區域u〇之情形時, 部140接受區域训之指 私疋將E域U0内放大顯示於區域 g2 ° =’目標資料製作部14〇接受區域以中實行修正指示 g⑺下稱為「修正對象區域U」)之指定(步驟S14)。 P,由操作者藉由滑鼠之拖矣 g2中結果資料〃 ㈣作4而更清楚地指定區域 、"之欲修正之部分,目標資料製作部140接 124049.doc -27- 200831887 受該所指定之區域作為修正對象區域υ。 示有結果:_之一部分區域,故而操作 中之區域指^:而進行更清楚之區域指定。 ”呂 接受到修正區_之區域指定後,目標資 而接受對修正對象區域U實行之修正内容之J _ ΓC - After receiving the area to be corrected in the area gl, the target data creating unit 140 will continue to use the location A. Then, the area of the "Haohai" area is enlarged and displayed in the area g2 (step S13). For example, if the operator does not specify the area u〇 in the result data D2 displayed in the area: as shown in FIG. 7, the part 140 accepts the regional training and the private area will be within the E field U0. The enlargement is displayed in the area g2 ° = 'the target data creation unit 14 〇 the acceptance area, and the designation correction instruction g (7) is referred to as "correction target area U") (step S14). P, by the operator dragging the result data in the g2 (4) as 4 to more clearly specify the area, "the part to be corrected, the target data production department 140 is connected to 124049.doc -27- 200831887 The specified area is used as the correction target area. The result is shown as: _ a part of the area, so the area in operation refers to ^: and the clearer area designation is made. After receiving the designation of the correction area _, the target accepts the amendments to the correction target area U. _ Γ

s15)。更具體而言’藉由操作者選擇並點擊顯示於區域㈡ 之選擇面板中輸入修正内容之面板「追加」「删除J中之 任一者而進行該輸入操作。 —接受到修正内容之輸入後,目標資料製作部"0對 資料D2實行所指示之内容之修正(步驟S16)。例如,:操 作者選擇「刪除」面板之情料,目標資料製作部MO將 修正對象區域U内所含缺陷區域修正為適當區域。於操作 者選擇「追加」面板之情形時,目標資料製作部⑽將修 正對象區域U内所含適當區域修正為缺陷區域。以下將修 正對象區域U中成為實際上變更為缺陷區域或適當區域之 對象之區域稱為「差異區域V」。 再者於上述中,一旦接受到區域g2中修正對象區域!^ 之指定(步驟S14)便對其中所包含之差異區域乂實行修正 (步驟S16),亦可於區域g2令直接接受差異區域¥之指定。 於此h Φ時,操作者可提供例如將區域g2中所顯示之適當 區域或缺陷區域之一部分修正為缺陷區域或適當區域的指 示(例如’參照圖〗3之修正指示E3)。 繼而,目標資料製作部14〇將結果資料D2中反映有步驟 1 5中所接叉到之修正内容者顯示於區域g〗(步驟s〗7)。 124049.doc -28- 200831887 即’變更差異區域v之顯示態樣顯示於區域§1S15). More specifically, the input operation is performed by the operator selecting and clicking the panel "Add" or "Delete J" to input the correction content in the selection panel displayed in the area (2). - After receiving the input of the correction content The target data creation unit "0 corrects the content indicated in the data D2 (step S16). For example, the operator selects the "deletion" panel, and the target data creation unit MO includes the correction target area U. The defect area is corrected to the appropriate area. When the operator selects the "Add" panel, the target data creation unit (10) corrects the appropriate area included in the correction target area U to the defective area. Hereinafter, an area in the correction target area U that is actually changed to a defect area or an appropriate area is referred to as a "differential area V". Further, in the above, upon receiving the designation of the correction target area !^ in the region g2 (step S14), the difference region 乂 included therein is corrected (step S16), and the difference region can be directly accepted in the region g2. Designation. At this h Φ, the operator can provide, for example, an indication of correcting one of the appropriate areas or defective areas displayed in the area g2 to the defective area or the appropriate area (e.g., the correction instruction E3 of the reference picture 3). Then, the target data creating unit 14 displays the result of the correction in step (5) reflected in the result data D2 in the area g (step s7). 124049.doc -28- 200831887 ie the display of the change difference area v is shown in the area §1

C 對象之區域^於此情形時,目標f料製作部刚再次進行 步驟S12〜S17之處理且接受對結果資料D2之修正指示。另 一方面,操作者於判斷出已結束對所有修正部位之指示輪 入之情形時,選擇「詳細内容」面板且輸入修正指示結束 之指示。 繼而,目標資料製作部i40等待修正結束之指示輸入(步 驟該指示輸入操作更具體而言係藉由如下而進行·· 操作者選擇並點擊顯示於區域g3之選擇面板中輸入如下主 旨之指示之面i「詳細内容」’該指示之主旨係結束修正 指示後,移行至用以設定應調整參數之詳細内容之晝面。 核作者觀察區域g丨巾所顯*之圖像後賴是否存在欲進— 步修正之部分’於觀察到欲進—步修正之部分之情形時, 不選擇「詳細内容」面板而是再次指定區_中成為修正 接文到修正指示結束之輸入(步驟Sl8中為γΕ8)後,目標 貧料製作部140完成目標資料D3之製作,且將所製作之目 標資料D3儲存於記憶部12(步驟S19)。由此結束步驟“之 處理。 <2-2·調整對象參數之特定處理> 對步驟S4之處理加以更具體地說明。圖8係表示步驟μ 之處理流程圖。 若完成步驟S3之處理(即,接受晝面〇中接受到「詳細内 容」面板之操作)後,調整對象參數特定部15〇將對參數調 整之設定輸入之接受晝面Η顯示於顯示部14(步驟S2〇。圖 124049.doc -29- 200831887 9係表示接受晝面Η之構成例之圖。接受畫面η包括接受調 整對象參數之選擇輸入之區域hi,接受調整寬度與分割數 之輸入之區域h2 ’及顯示設定輸入之決定、消除之選擇面 板之區域h3。In the case of the C object area, the target f material creation unit has just performed the processing of steps S12 to S17 again and accepts the correction instruction for the result data D2. On the other hand, when the operator judges that the instruction to turn on all the correction parts has been completed, the "Details" panel is selected and an instruction to end the correction instruction is input. Then, the target data creating unit i40 waits for the instruction input of the correction completion (the step of the instruction input operation is more specifically performed by the following: • The operator selects and clicks on the selection panel displayed in the area g3 to input the following instruction. Face i "Details" 'The main purpose of this instruction is to end the correction instruction, and then move to the page for setting the details of the parameter to be adjusted. The nuclear author observes whether the image of the area g In the case of the step-correction part, when the part to be corrected is observed, the "details" panel is not selected, but the input of the correction area to the end of the correction instruction is again designated in the area _ (in step S18) After γΕ8), the target poor material preparation unit 140 completes the creation of the target material D3, and stores the created target data D3 in the storage unit 12 (step S19), thereby ending the processing of the step “2-2·Adjustment Specific Processing of Object Parameters> The processing of step S4 will be more specifically described. Fig. 8 is a flowchart showing the processing of step μ. If the processing of step S3 is completed (i.e., the acceptance is performed) After receiving the operation of the "Details" panel, the adjustment target parameter specifying unit 15 displays the acceptance information of the setting input of the parameter adjustment on the display unit 14 (step S2). Fig. 124049.doc -29-200831887 9 A diagram showing a configuration example of accepting a facet. The acceptance screen η includes a region hi for accepting selection input parameters, a region h2 for accepting an input of the adjustment width and the number of divisions, and a selection panel for determining and eliminating the display setting input. Area h3.

調整對象參數特定部150首先於區域hl中接受成為調整 對象之參數的選擇(步驟S22)。更具體而言,於區域“中 顯示缺陷檢測圖像處理之參數!^〜“之種類,並且顯示各 參數P1〜P4之核對框。操作者可藉由操作滑鼠對核對框進 行核對而自參數p 1〜P4中選擇所期望調整之參數。 於圖9之例中,區域hl中顯示有表示模糊參數…之「模 糊半徑」項目、表示晃動參數P2i「晃動半徑」項目、及 表不孤立點去除參數P4之「孤立點去除像素數」項目。 又,於圖9中雖處於隱藏狀態,但若拖复顯示於區域“之 右侧部分之桿,則進而顯示表示比較參數?3之「灰階邊 緣」之項目。操作者可藉由對所期望之參數之核對框〇進 行核對而選擇所期望調整之參數。 上於操作者對任—核對框進行核對且選擇參數之情形時, 調整對象參數特;t部150於區域h2接受㈣S22巾所選擇之 2數之調整寬度與分割數的輸入(步驟S23)。更具體而 :,於區域h2中顯示調整寬度(即,調整範圍之最'大值盘 :值)之輸入框、分割數之輸入框。操作者可藉由對各 雨框輪入值而輸入所期望之調整寬度與分割數。 針ΓΓ如圖9所示,操作者對「模糊半徑°」項目進行核 、將模糊參數P1選為調整對象參數之情形時,調整對象 124049.doc • 30 - 200831887 參數特定部150對「模糊半徑」之顯示部分加上陰影,並 且於區域h2中顯示模糊參數^之調整寬度之輸入框、及分 割數之輸入框。於圖9中表示操作者輸入最大值 「8(Pix)」、最小值「1(pix)」作為模糊參數ρι之調整寬 度’輸入「l(pix)」作為分割數之情況。 繼而,調整對象參數特定部15〇等待輸入已完成調整對 象參數之選擇及各調整對象參數之調整寬度及分割數之設 定輸入的指示(步驟S24)。更具體而言藉由操作者於區域 h3所顯示之選擇面板中選擇並點擊輸入完成參數之詳細設 定之主旨之指示的面板r決定」而進行該指示輸入操作。 於操作者判斷尚有欲提供給調整對象之參數之情形時,不 選擇「決定」面板而是於區域!^中進一步選擇參數。於此 情形時,調整對象參數特定部150再次進行步驟S22〜S24之 處理且接受參數之詳細設定輸人。另_方面,於操作者判 斷完成參數之詳細設定之情形時,選擇「決定」面板且輸 入詳細設定結束之指示。 一凋正對象參數特定部丨5〇,接受到詳細設定結束之指示 輸入(於步驟S24中為YES)後,讀入核對框中所核對之參數 作為凋整對象參數(步驟S25),進而讀入對各調整對象參 數所"又疋之調整寬度及分割數(步驟S26)。 再者操作者若點擊操作區域h3中所顯示之取消面板, 則可重新選擇參數或輸入調整寬度及分割數。於操作取消 面板之h形時,調整對象參數特定部150使操作者之先前 操作無效。由此結束步驟S4之處理。 124049.doc •31· 200831887 <2_3.調整值之決定處理> 對步驟S5之處理加以更具體地說明。圖ΐ()係表示步驟^ 之處理流程圖。 完成步驟S4之處理(即,於接受畫面接受到「決定」 面板之操作)後’則再次將接受晝面〇顯示於顯示部;:。接 受晝面G中接受到「再運算」面板之操料,開始步驟Μ 之處理。 Γ 數P1〜P4之初始值(步驟S31)。更具體而古 首先,參數調整處理部170設 定缺陷檢測圖像處理之參 將參數P1〜P4 中調整對象參數值言交定為對該言周整對象參數所設定之調整 寬度之最小值。再者,對並非為調整對象參數之參數而 言,將當前設定之值設定為初始值。並非為調整對象之參 數值一直固定於該初始值。以下將由參數ρι〜ρ42各初始 值構成之參數值群稱為「初始參數值群」。 繼而,缺陷檢測處理部13〇將設定之參數值(即,初始參 ί. 數值群)設為判定對象參數值群,於該判定對象參數值 群,對步驟S1中所取得之基準資料〇〇與檢查對象資料以 實行缺陷檢測演算法,製作反映檢測結果之結果資料 D2(步驟 S32)。 、 繼而,將步驟S32中所製作之結果資料D2儲存於記憶部 12中(步驟S33)。 繼而,參數值適當與否判斷部171將步驟S32中所製作之 結果資料D2、與步驟S3中所製作之目標資料D3加以比 較,判斷結果資料D2之缺陷區域部分是否與目標資料叫 124049.doc -32· 200831887 之缺陷區八 A 4分一致(步驟S34)。更具體而言,於結果資 料D2中成jAt A.» 、 苟缺陷區域之部分為目標資料D3中之缺陷區 域’並且目;I;» :欠、, 知貝料D3中不存在此以外之缺陷區域之情形 (即,έ士^^ 欠立丨 、、Ό 貝料D2與目標資料D3所包含之缺陷區域完全一 致之h形)時’判斷結果資料D2與目標資料D3 —致,將此 以外之情形判斷為兩圖像資料不一致。 乂驟S34中’於判斷為兩圖像資料之缺陷區域部分一致 之情形時,參數值適當與否判斷部171將步驟S32所實行之 缺陷^測演算法中採用之參數值(於調整對象參數為複數 個之U形時,為該等缺陷檢測演算法中所採用之參數值之 組合)判斷為適當值,且將該參數值(於調整對象參數為複 數個之If形時’為該等參數值之組合)記憶於記憶部^ (步 驟S35)。換言之,將步驟S32所實行之缺陷檢測演算法中 採用之判定對象參數值群判斷為適當參數值群(即,將構 成判定對象參數值群之調整對象參數之各值判斷為適當 值),將判斷為適當值之調整對象參數之各值記憶於記憶 部12。 、另-方面’步驟S34中,於判斷為兩圖像資料之缺陷區 或4刀不致之炀形時,參數值適當與否判斷部丨7丨將步 驟S32所實行之缺陷檢測演算法中採用之參數值(於調整對 象參數為複數個之情形時,為該缺陷檢測演算法中採用之 參數值之組合)判斷為非適當值(步驟S36)。換言之,將步 驟S32所實行之缺陷檢測演算法中制之敎對象參數值 群判斷為非適當參數值群。 124049.doc -33- 200831887 繼而,判斷對各調 .If ^ ^ ^ ^ 正對象參數所設定之值(換言之,於 w疋對象參數值群中, 對各调整對象參數所設定之值)是 否為該參數之調整寬度之最大值(步驟S37)。 於判斷為存在至少一個以上並未設定為該 * 寬度之最大值之調整對象參數的情形時,變更參 數值(即,構成判定對象參數值群之參數值)之設定(步驟 S38)。更具體而言以如下方式進行該處理。 ,m對象參數為i種之情形時’將對該調整對象參數 當前:設定之值設定變更為增加了該調整對象參數之分割 數之私度的值,且作為新判定對象參數值群而取得。 :t右將對調整對象參數所設定之值設定為該參數之 調正i度之最大值’則於該參數值完成缺陷檢測演算法之 時間點,判斷為已結束對所有試行值之適當與否之判斷 (即步驟S37中為YES),不再進行參數之設定變更,移行 至步驟S39之處理。 於調整對象參數為2種之情形時,維持於固定調整對象 參數中之其中一個參數值(設為第2調整對象參數)之狀態, 將對另一個調整對象參數(設為第1調整對象參數)當前所設 定之值’設定變更為增加了調整對象參數之分割數之程度 的值’且作為新判定對象參數值群而取得。 於對第1調整對象參數所設定之值為該調整對象參數之 調整寬度之最大值的情形時,將對第2調整對象參數當前 所設定之值設定變更為增加了該調整對象參數之分割數之 程度的值,並且將第1調整對象參數值再次設定為該調整 124049.doc • 34- 200831887 對象參數之調整寬f π ' 最小值’作為新判定對象參數值群 而取得。 —了:右將對第1、第2各調整對象參數所設定之值均設 &為U數之調整見度之最大值’則於該參數值完成缺陷 檢測演算法之時間點’判斷為已結束對調整對象參數之試 卜 斤有、、且。之適當與否判斷(即,步驟S37中為YES), 不再進行參數之設定變更,移行至步_9之處理。 σ、子象芩數為3種以上之情形亦與調整對象參數為2種 =情形相Θ,依序設定變更參數值直至對調整對象參數之 忒订值至所有組合實行適當與否判斷為止。 再次參照圖1〇。步驟S37中,於判斷為對所有調整對象 多數所設定之值為該參數之調整寬度至最大值的情形 (即’已對調整對象參數之試行值至所有組合(即,可取得 μ有參數值群)實行缺陷檢測演算法之情形),繼而參數 :決定部m決定調整對象參數之調整值。更具體而言以 下方式進行該處理。 百先’判斷是否存在判斷為適當值之參數值(於調整對 數為複數個之情形時,判斷為適當值之參數值之組 =,S39)。更具體而言,判斷記憶部12中是否儲存有 d斷為適當值之參數值。 於判斷為適當值之參數值並未記憶於記憶部12之情形 t、,翏數值適當與否判斷部171將未發現適當參數值之主 曰通知給操作者(步驟S40)。例如,冑「參數調整失敗」 之戒息顯示於顯示部14。 124049.doc -35- 200831887 於判斷為適當值之參數 數值適當與否剌齡μ Α匕邛〗2之情形時,參 象參數為複數個=Γ二值,最佳參數值(於調整對 整值(步驟叫。更Γ體而二為取將佳參數值之組合)選為調 之中位數選為調整值吕’將判斷為適當值之試行值 心下方式進行該處理。於調 二::’如一㈣擇該調整對象參數之試行 值二由到斷為適當值之試行值㈣成的 了The adjustment target parameter specifying unit 150 first accepts the selection of the parameter to be adjusted in the region hl (step S22). More specifically, the type of the parameter of the defect detection image processing is displayed in the area ", and the check box of each parameter P1 to P4 is displayed. The operator can select the desired adjustment parameters from the parameters p 1 to P4 by operating the mouse to check the check box. In the example of FIG. 9, the "blur radius" item indicating the blur parameter..., the "shake radius" item indicating the sloshing parameter P2i, and the "number of isolated pixels removed" parameter of the isolated point removal parameter P4 are displayed in the area hl. . Further, although it is in a hidden state in Fig. 9, if the lever displayed on the right side of the area " is dragged, an item indicating the "gray edge" of the comparison parameter ?3 is displayed. The operator can select the parameters of the desired adjustment by checking the check box of the desired parameters. When the operator checks the arbitrarily-check box and selects a parameter, the object parameter is adjusted; the t unit 150 accepts the input of the adjustment width and the number of divisions selected by the (4) S22 in the region h2 (step S23). More specifically, the input box of the adjustment width (that is, the most 'large value disc: value of the adjustment range>) and the input box of the division number are displayed in the area h2. The operator can input the desired adjustment width and the number of divisions by rounding the values for each rain frame. As shown in Fig. 9, when the operator nucleates the "blur radius °" item and selects the fuzzy parameter P1 as the adjustment target parameter, the adjustment object 124049.doc • 30 - 200831887 parameter specific part 150 pairs "blur radius" The display portion is shaded, and an input box for adjusting the width of the blur parameter ^ and an input box for the number of divisions are displayed in the area h2. In Fig. 9, the operator inputs the maximum value "8 (Pix)" and the minimum value "1 (pix)" as the adjustment width of the blur parameter ρι and inputs "l(pix)" as the division number. Then, the adjustment target parameter specifying unit 15 waits for input of the selection of the completed adjustment target parameter and the instruction of the adjustment width of each adjustment target parameter and the setting input of the division number (step S24). More specifically, the instruction input operation is performed by the operator selecting and clicking the panel r of the instruction to input the detailed setting of the parameter setting in the selection panel displayed on the area h3. When the operator judges that there is still a parameter to be supplied to the adjustment target, the parameter is further selected in the area !^ without selecting the "Decision" panel. In this case, the adjustment target parameter specifying unit 150 performs the processing of steps S22 to S24 again and accepts the detailed setting of the input. On the other hand, when the operator decides to complete the detailed setting of the parameters, select the "Decision" panel and enter the instruction to end the detailed setting. After the target parameter specific unit 丨5〇 receives the instruction input of the detailed setting end (YES in step S24), the parameter checked in the check box is read as the parameter of the rounding object (step S25), and then read. The adjustment width and the number of divisions of the adjustment target parameters are entered (step S26). Furthermore, if the operator clicks the cancel panel displayed in the operation area h3, the parameter can be reselected or the adjustment width and the number of divisions can be input. When the operation cancels the h-shape of the panel, the adjustment object parameter specifying portion 150 invalidates the previous operation of the operator. This completes the processing of step S4. 124049.doc • 31· 200831887 <2_3. Decision processing of adjustment value> The processing of step S5 will be more specifically described. Figure ΐ() shows the processing flow of step ^. After the processing of step S4 is completed (that is, after the acceptance screen accepts the operation of the "decision" panel), the acceptance panel is displayed again on the display portion; After receiving the operation of the "Recalculation" panel in the face G, the process of the step Μ is started. The initial values of the numbers P1 to P4 are obtained (step S31). More specifically, the parameter adjustment processing unit 170 sets the parameter of the defect detection image processing. The parameter value of the adjustment target parameter in the parameters P1 to P4 is set as the minimum value of the adjustment width set for the parameter of the surrounding object. Furthermore, the value of the current setting is set to the initial value for the parameter that is not the parameter to be adjusted. The value of the parameter that is not the adjustment object is always fixed at the initial value. Hereinafter, the parameter value group composed of the initial values of the parameters ρι to ρ42 will be referred to as "initial parameter value group". Then, the defect detection processing unit 13 sets the set parameter value (that is, the initial parameter value group) as the determination target parameter value group, and the reference data acquired in step S1 in the determination target parameter value group. The inspection target data is executed to execute the defect detection algorithm, and the result data D2 reflecting the detection result is created (step S32). Then, the result data D2 created in step S32 is stored in the storage unit 12 (step S33). Then, the parameter value appropriateness determining unit 171 compares the result data D2 created in step S32 with the target data D3 created in step S3, and determines whether the defective area portion of the result data D2 is related to the target data 124049.doc -32· 200831887 The defect area VIII A 4 points are consistent (step S34). More specifically, in the result data D2, the part of the jAt A.», 苟 defect area is the defect area in the target data D3 and the target; I;»: owe, the knowledge of the material D3 does not exist. In the case of the defect area (ie, the gentleman ^^ 丨立丨, the Ό 料 material D2 and the defect area contained in the target data D3 are exactly the same h-shaped), the judgment result data D2 is consistent with the target data D3. In other cases, it is judged that the two image data are inconsistent. In step S34, when it is determined that the defective area portions of the two image data are identical, the parameter value appropriateness determining unit 171 sets the parameter value used in the defect ^ algorithm performed in step S32 (in the adjustment target parameter) In the case of a plurality of U-shapes, a combination of parameter values used in the defect detection algorithms is determined to be an appropriate value, and the parameter value (when the adjustment target parameter is a plurality of If-forms) is such The combination of the parameter values is stored in the memory unit ^ (step S35). In other words, the determination target parameter value group used in the defect detection algorithm executed in step S32 is determined as an appropriate parameter value group (that is, each value of the adjustment target parameter constituting the determination target parameter value group is determined to be an appropriate value), Each value of the adjustment target parameter determined to be an appropriate value is stored in the memory unit 12. In the other aspect, in the step S34, when it is determined that the defective area of the two image data or the four-knife shape is not formed, the parameter value appropriateness determining unit 丨7丨 adopts the defect detecting algorithm executed in step S32. The parameter value (when the adjustment target parameter is plural, the combination of the parameter values used in the defect detection algorithm) is determined to be an inappropriate value (step S36). In other words, the target parameter value group created in the defect detection algorithm executed in step S32 is determined as an inappropriate parameter value group. 124049.doc -33- 200831887 Then, it is judged whether or not the value set for each of the .If ^ ^ ^ ^ positive object parameters (in other words, the value set for each adjustment object parameter in the w疋 object parameter value group) is The maximum value of the adjustment width of the parameter (step S37). When it is determined that there is at least one adjustment target parameter which is not set to the maximum value of the * width, the parameter value (i.e., the parameter value constituting the determination target parameter value group) is changed (step S38). More specifically, this processing is performed in the following manner. When the m object parameter is i, the current setting value of the adjustment target parameter is changed to a value in which the degree of division of the adjustment target parameter is increased, and is obtained as a new determination target parameter value group. . :t right will set the value set by the adjustment object parameter to the maximum value of the adjustment i degree of the parameter'. At the time point when the parameter value completes the defect detection algorithm, it is judged that the appropriate value for all trial values has been completed. If it is judged (YES in step S37), the parameter setting change is not performed, and the process proceeds to step S39. When the adjustment target parameter is two types, the state of one of the fixed adjustment target parameters (set to the second adjustment target parameter) is maintained, and the other adjustment target parameter is set to the first adjustment target parameter. The currently set value 'setting is changed to a value that increases the degree of division of the adjustment target parameter' and is acquired as a new determination target parameter value group. When the value set for the first adjustment target parameter is the maximum value of the adjustment width of the adjustment target parameter, the value set currently set for the second adjustment target parameter is changed to the number of divisions of the adjustment target parameter. The value of the degree, and the first adjustment target parameter value is set to the adjustment again. 124049.doc • 34- 200831887 The adjustment width of the object parameter f π 'minimum value' is obtained as a new judgment target parameter value group. -: Right, the value set for each of the first and second adjustment target parameters is set to & is the maximum value of the adjustment of the U number, and then the time point at which the defect detection algorithm is completed is judged as The test of adjusting the parameters of the object has been completed. If it is judged whether it is appropriate or not (that is, YES in step S37), the parameter setting change is not performed, and the process proceeds to step _9. When the number of σ and sub-images is three or more, the parameter of the adjustment target is two types. The situation is changed. The parameter value is changed in order until the adjustment value of the parameter to be adjusted is determined to be appropriate for all combinations. Referring again to Figure 1〇. In step S37, it is determined that the value set for the majority of all adjustment targets is the adjustment width to the maximum value of the parameter (ie, the trial value of the adjustment target parameter has been added to all combinations (ie, the μ value can be obtained) Group) In the case of performing a defect detection algorithm), then the parameter: decision unit m determines the adjustment value of the adjustment target parameter. More specifically, the processing is performed in the following manner. The "hundredness" judges whether or not there is a parameter value judged to be an appropriate value (in the case where the adjusted logarithm is plural, the group of parameter values judged to be an appropriate value =, S39). More specifically, it is judged whether or not the parameter value in which the d is broken to an appropriate value is stored in the storage unit 12. When the parameter value determined to be an appropriate value is not stored in the memory unit 12, the 翏 value appropriateness determining unit 171 notifies the operator of the fact that the appropriate parameter value is not found (step S40). For example, the warning of "parameter adjustment failure" is displayed on the display unit 14. 124049.doc -35- 200831887 When the value of the parameter judged to be appropriate is appropriate or not, the parameter parameter is plural = Γ binary value, the optimal parameter value (in adjustment The value (step is called. More scorpion and the second is to take the combination of the good parameter values) is selected as the median value selected as the adjustment value L' will be judged as the appropriate value of the trial value under the heart of the way to do the processing. ::'If one (four) chooses the trial value of the adjustment object parameter from the trial value (four) to the appropriate value

Ta〇且決定為調整值。 1数 Μ於調整對象參數為2種之情形時,如圖11(b)所示,選擇 =調整對象參數與第2調整對象參數之試行值組Μ中由 之參數值組之^構成的集合似中位數Tao 且決疋為調整值。 調整對象參數為3種以上之情形,亦與調整對象參數為2 種之情形相同,選擇調整對象參數之試行值之組合中由判 斷為適s值之參數值之組合構成的集合之中位數且決定為 調整值。由此結束步驟S5之處理。 &lt;3.效果&gt; 本發明第1實施形態之缺陷檢查裝置丨中,於進行與圖像 處理相關之參數值之調整時,目標資料製作部140接受操 作者對結果資料D2之修正指示後製作目標資料D3,參數 調整處理部170將獲得與目標資料D3一致之結果資料〇2之 參數值決定為調整值。藉此,操作者即使不直接設定輸入 參數值(即,即使不用試誤法嘗試性地設定輸入所期望之 124049.doc • 36 - 200831887 參數值),亦可僅對結果資料D2提供修正指示便容易地獲 得所期望之參數值。又,參數調整處理部17〇將調整值決 定為獲得與目標資料D3 —致之結果資料D2之值,由此可 準確地進行參數調整。 又,可容易地進行適當之參數調整,故而可將先前常常 以技術服務人員任務之方式進行之參數調整變更為使用者 任務。藉此,可削減維護費用。 ζ, 尤其,於缺陷檢查裝置1中,可簡單且準確地調整決定 缺陷之檢測靈敏度之參數Ρ1〜Ρ4,故而於缺陷檢查裝置1中 可以操作者所期望之檢測靈敏度檢測缺陷。 尤其,目標資料製作部140將檢查對象資料01顯示於顯 示部14,自顯示晝面上接受對結果資料〇2之修正指示之輸 入故而操作者可簡單且準確地輸入對結果資料D2之修正 指示。其結果為,可更簡單且準確地進行參數調整。 尤八參數值適當與否判斷部1 71 —面依序使調整對象 〇 參數值發生變化一面判斷參數值是否為適當值(更具體而 I,藉由判斷於各參數值所獲得之結果資料02是否與目標 2料D3一致,而判斷該參數值是否為適當值),參數值決 $部172將調整對象參數之調整值決定為適當值,故而可 確刀也地;^測獲得與目標資料一致之結果資料之泉 數值。 多 尤八參數值決定部1 72選擇由判斷為適當值之參數值 構成之集。的中位數並將決定為調整對象參數之調整值, 文而可將適當值中最佳值(即,最確切地地獲得與目標資 124049.doc -37- 200831887 料D3—致之結果資料D2之參數值)決定為參數之調整值。 尤其’調整常數決定部160根據操作者之輸入規定調整 對象參數之調整寬度,故而可縮小參數之調整範圍。藉 此,可迅速地進行參數調整。 又’調整常數決定部160根據操作者之輸入規定調整對 象參數之分割數,故而可縮小調整範圍中可取得之參數 值。藉此,可更迅速地進行參數調整。 尤其,調整對象參數特定部150根據操作者之輸入,自 與缺陷檢測圖像處理相關之參數中特定成為調整對象之參 數’故而可縮小調整對象之參數之種類。藉此,可迅速地 進行參數調整。 [弟2實施形態] &lt; 1 •構成〉 作為本發明第2實施形態之資料處理裝置之一態樣之缺 陷檢查裝置係由與第1實施形態所說明之缺陷檢查裝置1相 同之裝置構成而實現’故而省略其說明。又,以下,盘表 示第2實施形態之缺陷檢查裝置之構成要素時,對與第1實 施形態之缺陷檢查裝置1相同之構成要素,使用第1實施形 態之說明中所使用之參照符號。 &lt;1-1·與參數調整相關之構成&gt; 該實施形態之缺陷檢查裝置具有調整檢版/印刷物檢查 之圖像處理之參數的功能。圖12係說明與參數調整功能相 關之構成圖。 該實施形態之缺陷檢查裝置具備調整對象參數判定部 124049.doc -38- 200831887 250而代替調整對象 正對象參數特定部150之方面,與 態之缺陷檢查裝置丨不同1下,僅對^實二:广形 明。又,…广加以說明’並省略相同方面之說 、目同構成要素附上相同符號進行表示。Ta〇 and decided to adjust the value. When the number of adjustment target parameters is two, as shown in FIG. 11(b), the set of the parameter value group selected by the adjustment target parameter and the trial value group of the second adjustment target parameter is selected. It seems to be the median Tao and is the adjustment value. The case where the adjustment target parameter is three or more types is the same as the case where the adjustment target parameter is two types, and the median of the set of the combination of the parameter values determined to be the appropriate s value among the combinations of the trial value of the adjustment target parameter is selected. And decided to adjust the value. Thereby, the processing of step S5 is ended. &lt;3. Effect&gt; In the defect inspection device according to the first embodiment of the present invention, when the parameter value related to the image processing is adjusted, the target data creation unit 140 receives the operator's instruction to correct the result data D2. The target data D3 is created, and the parameter adjustment processing unit 170 determines the parameter value of the result data 〇2 that matches the target data D3 as the adjustment value. Thereby, even if the operator does not directly set the input parameter value (that is, even if the trial and error method is used to tentatively set the desired 124049.doc • 36 - 200831887 parameter value), the correction information can be provided only for the result data D2. The desired parameter values are easily obtained. Further, the parameter adjustment processing unit 17 determines the adjustment value as the value of the result data D2 which is obtained in accordance with the target data D3, whereby the parameter adjustment can be accurately performed. Moreover, appropriate parameter adjustments can be easily made, so that parameter adjustments that were previously performed in the manner of a technician service task can be changed to user tasks. This can reduce maintenance costs. In particular, in the defect inspection apparatus 1, the parameters Ρ1 to Ρ4 for determining the detection sensitivity of the defect can be easily and accurately adjusted, so that the defect inspection device 1 can detect the defect by the detection sensitivity desired by the operator. In particular, the target data creation unit 140 displays the inspection target data 01 on the display unit 14, and receives an input of the correction instruction for the result data 自2 from the display surface, so that the operator can easily and accurately input the correction instruction for the result data D2. . As a result, parameter adjustment can be performed more simply and accurately. The eighth parameter value appropriateness determining unit 1 71 determines whether the parameter value is an appropriate value while changing the parameter value of the adjustment target (more specifically I, by judging the result data obtained by each parameter value 02 Whether it is consistent with the target material D3 and determining whether the parameter value is an appropriate value), the parameter value determination unit 172 determines the adjustment value of the adjustment object parameter to an appropriate value, so that the tool can be confirmed; The result of consistent data is the spring value. The multi-eight-eight parameter value determining unit 1 72 selects an episode consisting of parameter values determined to be appropriate values. The median will be determined as the adjustment value of the adjustment target parameter, and the best value of the appropriate value can be obtained (ie, the result data obtained with the target resource 124049.doc -37-200831887 material D3 is obtained most accurately). The parameter value of D2 is determined as the adjustment value of the parameter. In particular, the adjustment constant determining unit 160 adjusts the adjustment width of the object parameter according to the input of the operator, so that the adjustment range of the parameter can be narrowed. As a result, parameter adjustments can be made quickly. Further, the adjustment constant determining unit 160 adjusts the number of divisions of the object parameters in accordance with the operator's input specification, so that the parameter values obtainable in the adjustment range can be reduced. Thereby, the parameter adjustment can be performed more quickly. In particular, the adjustment target parameter specifying unit 150 specifies the parameter of the adjustment target from among the parameters related to the defect detection image processing based on the input of the operator. This allows parameter adjustments to be made quickly. [Embodiment 2] <1> Configuration> The defect inspection apparatus which is one aspect of the data processing apparatus according to the second embodiment of the present invention is configured by the same apparatus as the defect inspection apparatus 1 described in the first embodiment. Implementation 'The description is omitted. When the components of the defect inspection device of the second embodiment are shown in the following, the same components as those of the defect inspection device 1 of the first embodiment are denoted by the reference numerals used in the description of the first embodiment. &lt;1-1·Configuration relating to parameter adjustment&gt; The defect inspection apparatus of this embodiment has a function of adjusting parameters of image processing of the pattern inspection/printed matter inspection. Fig. 12 is a view showing the configuration of the parameter adjustment function. The defect inspection device of the embodiment includes the adjustment target parameter determination unit 124049.doc -38 - 200831887 250 instead of the adjustment target positive object parameter specifying unit 150, and is different from the state defect inspection device. : Guangming Ming. In addition, the description of the same aspects is omitted, and the same components are denoted by the same reference numerals.

同調象參數判定部250 ’與調整對象參數特定部15〇相 缺陷檢測圖像處理之參數Ρ1〜Ρ4中特定調整對象失 調整'象參數判定部25〇並非是藉由接受操作 k〗人而特定調整對象參數,而是根據Μ票資料製 作。p 14G所接χ到之操作者對結果資料之修正指示 定調整對象參數。 調整對象參數判定部25〇具備特徵量取得部251、相應參 數判定部252及調整對象參數決定部 253。 特徵量取得部251分別自目標資料製作部14〇接受之操作 者對結果育料D2之修正指示(以下僅稱為「修正指示」)取 得特定之特徵量。 μ此處,一面參照圖13〜圖15 一面對特徵量加以更具體地 °兒月其中,圖13(a)中例示結果資料D2,圖13(b)中例示 接受操作者對圖3(a)中所例示之結果資料D2之修正指示 E1〜E3而製作之目標資料d3。 此處,設修正指示E1為將位於修正對象區域⑴内之一 個孤立點(差異區域VI)自適當區域修正為缺陷區域之指 示又’没修正指示E2為將位於修正對象區域U2内之複 數個孤立點(差異區域V2a、V2b、V2c、V2d)自適當區域 修正為缺陷區域之指示。又,設修正指示e3為將差異區域 124〇49.doc -39- 200831887 V3自適當區域修正為缺陷區域之指示。 所謂修正指示之特徵量係指用於特定為了製作與該修正 指示内容相應之結果資料〇2而應調整之參數種類的判斷要 素之值。特徵量取得部251根據各修正指示取得面積S、個 數A、亮度分佈Η之3個資訊作為特徵量。 面積s係與一個修正指示相關之差異區域ν之總面積。 例如,根據修正指示Ε2取得之面積s成為修正對象區域υ2 所包含之各差異區域V2a〜V2k面積總和。又,例如,根 據修正指示E3取得之面積s成為差異區域¥3之面積。 個數A係與一個修正指示相關之差異區域v之個數。例 如,如修正指示E2所示,於修正對象區域m内存在4個獨 立之差異區域VU〜V2d之情形時,個數a為「4」。另一方 面’如修正指示E1所示,於修正對象區域⑴内僅存在一 個獨立之差異區域V1之情形時’個數A為…。又,如修The homology image parameter determination unit 250' and the adjustment target parameter specifying unit 15 are different in the parameters Ρ1 to Ρ4 of the phase defect detection image processing, and the specific adjustment target misalignment 'image parameter determination unit 25' is not specified by accepting the operation k. The object parameters are adjusted, but are made based on the ticket data. The operator who is connected to p 14G indicates the correction target parameter for the correction of the result data. The adjustment target parameter determination unit 25A includes a feature amount acquisition unit 251, a corresponding parameter determination unit 252, and an adjustment target parameter determination unit 253. The feature amount acquisition unit 251 obtains a specific feature amount from the operator's acceptance instruction for the result feed D2 (hereinafter simply referred to as "correction instruction"), which is received by the target data creation unit 14A. μ here, with reference to FIG. 13 to FIG. 15 , a more specific aspect of the feature, wherein the result data D2 is illustrated in FIG. 13( a ), and the operator is illustrated in FIG. 13 ( b ) a) The target data d3 produced by the correction instructions E1 to E3 of the result data D2 exemplified in a). Here, it is assumed that the correction instruction E1 is an instruction to correct an isolated point (differential area VI) located in the correction target area (1) from the appropriate area to the defective area, and the 'no correction indication E2' is a plurality of pieces to be located in the correction target area U2. The isolated points (differential regions V2a, V2b, V2c, V2d) are corrected from the appropriate regions to an indication of the defective regions. Further, it is assumed that the correction instruction e3 is an instruction to correct the difference area 124 〇 49. doc - 39 - 2008 31 887 V3 from the appropriate area to the defective area. The feature quantity of the correction instruction is a value for determining a parameter element to be adjusted in order to create a result data 相应2 corresponding to the correction instruction content. The feature amount acquisition unit 251 acquires three pieces of information of the area S, the number A, and the brightness distribution 作为 as feature amounts based on the respective correction instructions. The area s is the total area of the difference area ν associated with a correction indication. For example, the area s obtained from the correction instruction Ε2 is the sum of the areas of the different difference areas V2a to V2k included in the correction target area υ2. Further, for example, the area s obtained based on the correction instruction E3 becomes the area of the difference area ¥3. The number A is the number of difference regions v associated with a correction indication. For example, when there are four independent difference regions VU to V2d in the correction target region m as indicated by the correction instruction E2, the number a is "4". On the other hand, as shown in the correction instruction E1, when there is only one independent difference region V1 in the correction target region (1), the number A is .... Again, such as repair

U 正才曰不E3所$ ’於直接指定差異區域ν之情形 為「1」。 亮度分佈Η係檢查對象資料m之特定區域(即,為自差 二區,V中U開始佔有特定範圍之區域’以下稱為「亮度 量取得區域W」)之亮度分佈。 &gt;此處’冑亮度分佈Η之取得加以更具體地說明。於取得 儿度刀佈,膽對象參數判定部㈣首先 得區域w。更具體而言,首先,特定差異區❹二取。 (於存在複數個與—個修正指示相關之差異區域V之情形, 所有差異區域V之中心),規定以特定之中心V。為中心之亮 124049.doc 200831887 度量取得區域w。 繼而,调整對象參數判定部25〇取得檢查對象資料⑴之 亮度量取得區域贾之亮度分佈。例如,於修正指示ei之情 形時,亮度量取得區域W1之中心與差異區域νι之中心v〇 一致(參照圖l4(a))。此處,於檢查對象資料⑴中,如圖Μ ⑷所示,ϋ異區域…為存在於白背景中之點,作為亮度 量取得區域w之亮度分佈’取得例如如圖15⑷所示之柱形 圖。 又,例如於修正指示Ε3之情形時,亮度量取得區域w之 中心與差異區域V3之中心Vo 一致(參照圖14(1?))。此處,差 異區域V3於檢查對象資料〇1中,如圖14(b)所示位於圖樣 與背景之邊界部分之情形時,作為亮度量取得區域1之亮 度分佈,取得例如如圖15(1))所示之柱形圖。 另一方面,差異區域V3於檢查對象資料⑴中,如圖Η (〇所示位於灰階變化之區域部分之情形 得區域W之亮度分佈,例如取得如叫)所示之^ 再次參照圖12。相應參數判定部252根據特徵量取得部 251所取得之各特徵量,判定應調整之參數種類。 此處,對判定方法加以更具體地說明。以如下方式進行 基於面積S之判定。首先,於判斷面積s之值是否大於特定 值si。此處,於判斷為面積8之值大於特定值以之情形 時’判斷為應調整比較參數p 3。 於判斷面積S之值並不大於特定值81之情形時,繼而, 判斷面積S之值是否大於特定值s2(其中,sl&gt;s2)。此處, 124049.doc -41 - 200831887 於判斷為面積s之值大於特定值以 整模糊參數P1。 疋為應6周 — 另方面,於判斷為面積S之值並不大於 特疋值s2之情形時’判定為應調整孤立點絲參數P4。U is just not E3. $' is the case of directly specifying the difference area ν as "1". The luminance distribution Η is a luminance distribution of a specific region of the inspection target data m (i.e., a region in which V is in the self-difference region, and U in the V starts to occupy a specific range, hereinafter referred to as "luminance amount acquisition region W"). &gt; Here, the acquisition of the luminance distribution is more specifically described. In order to obtain the knives, the biliary object parameter determining unit (4) first obtains the region w. More specifically, first, the specific difference zone is taken. (In the case where there are a plurality of difference regions V associated with the correction indication, the center of all the difference regions V), the center V is specified. For the center of the light 124049.doc 200831887 Measure the acquisition area w. Then, the adjustment target parameter determination unit 25 obtains the luminance distribution of the luminance amount acquisition area Jia of the inspection target data (1). For example, when the situation of the indication ei is corrected, the center of the luminance amount acquisition region W1 coincides with the center v〇 of the difference region νι (refer to Fig. 14(a)). Here, in the inspection target data (1), as shown in Fig. ( (4), the different region... is a point existing in the white background, and the luminance distribution of the luminance amount acquisition region w is obtained, for example, as shown in Fig. 15 (4). Figure. Further, for example, when the indication Ε3 is corrected, the center of the luminance amount acquisition region w coincides with the center Vo of the difference region V3 (see Fig. 14 (1?)). Here, when the difference region V3 is located in the inspection target data 〇1 as shown in FIG. 14(b) at the boundary portion between the pattern and the background, as the luminance distribution of the luminance amount acquisition region 1, for example, as shown in FIG. 15 (1) )) The column chart shown. On the other hand, the difference area V3 is in the inspection target data (1), as shown in Fig. Η (where the 灰 is located in the region of the gray-scale change region, the brightness distribution of the region W is obtained, for example, as shown). Referring again to Fig. 12 . The corresponding parameter determination unit 252 determines the type of the parameter to be adjusted based on each feature amount acquired by the feature amount acquisition unit 251. Here, the determination method will be more specifically described. The determination based on the area S is performed in the following manner. First, it is judged whether the value of the area s is larger than a specific value si. Here, when it is judged that the value of the area 8 is larger than the specific value, it is judged that the comparison parameter p 3 should be adjusted. When it is judged that the value of the area S is not larger than the specific value 81, it is judged whether or not the value of the area S is larger than the specific value s2 (where sl> s2). Here, 124049.doc -41 - 200831887 determines that the value of the area s is greater than a specific value to adjust the parameter P1.疋 is 6 weeks. On the other hand, when it is judged that the value of the area S is not larger than the value s2, it is determined that the isolated point parameter P4 should be adjusted.

以如下方式進行基於個數A之判定。首先,判斷個數A 之值是否大於特定值nl。此處,於個數A大於特定值心之 十月形日守’判定為應調整晃動參數以。另一方面,於個數A 並不大於特定值nk情形時,判定為應調整孤立 Γ 數P4 。 ” &gt; 以如下方式進行基於亮度分佈叹敎。首先,調整對 象ί數判定部250判定所取得之亮度資訊之柱形圖形狀為 弟1分佈形狀hl」、「第2分佈形狀h2」及「第3分佈形狀 h3」十之何者。 其結果分別為,於判定柱形圖形狀為第^佈形狀^之 it形時’判定為應調整孤立點去除參數P4 ’於判定柱形圖 形狀為第2分佈形㈣之情形時,判定應調整模糊來數 P1 ’於判定柱形圖形狀為第3分佈形狀以情形時,判定 應調整比較參數P3。 此處,一面參照圖15、圖16一面說明判定柱形圖形狀為 哪一分佈形狀hi〜h3之方法。其中,圖16係表示判定柱形 圖形狀之種類之流程圖。 首先,取得柱形圖分佈中最大亮度之值(最大值m)(步驟 S101) 〇 繼而,計算出基準值N(步驟S102)。其中,基準值N為最 大值Μ之一半之值(N=M/2)。 124049.doc -42- 200831887 ::,判斷亮度值為基準值N時之分佈寬度是否 G驟SH)3)。其中,如圖15(b)所示,*亮度值進 值N時出現兩個以上獨立之 ’·、、土準 之分佈寬度是否大於特定值。戈之^時’判斷最寬 步::。3中,於判斷分佈寬度大於特定值之 卜存在大於特定寬度之分佈寬度之情形),判定柱心 刀佈為第3分佈形狀!^(步驟sl〇4)。 夕圖 步驟S1〇3令,判斷分佈寬度並不大於 (即’不存在大於特定寬度之分佈寬度之情形),繼::時 是否出現兩個以上分佈區域(步驟S105)。 、 斷 判’於Γ斷出現兩個以上分佈形狀之情形時, 疋 &gt; 圖分佈為第2分佈形狀h2(步驟si〇6)。 步㈣中’於判斷並未出現兩個以上分佈區域之情妒 ^柱形圖分佈為第1分佈形狀h1(步驟S107)。 ^ 對圖Μ⑷〜⑷之柱形圖形狀進行上述判定處理之 =去=15⑷之柱形圖為第1分佈形狀…應調整 =去除參數P4…判定_⑻之柱形圖為 =二模糊參數Pl。又,判定圖15(C)之柱形圖為 弟3刀佈形狀h3,應調整比較參數p3。 〜,人’照圖12。調整對象參數決定部253對相應參數判 疋部252所輸出之判定姓 來數。更且… 综合,最終特定調整對象 ^ 更/、體而吕,計算出儲存之判定結果中各參數所占 彳依比例由低至兩之順序將兩個參數決定為 象參數。 τ 124049.doc -43- 200831887 &lt;2.處理&gt; 對第2實施形態之缺陷檢查裝置1之參數調整處理加以說 明。參數調整處理之整體流程如圖5所示。其中,該實施 形態中,以如下方式進行調整對象參數之特定處理(即, 相當於步驟S4之處理)。 &lt;2-1 ·調整對象參數之特定處理&gt;The determination based on the number A is performed in the following manner. First, it is judged whether the value of the number A is larger than a specific value nl. Here, the swaying parameter is determined to be the swaying parameter when the number A is greater than the specific value of the heart. On the other hand, when the number A is not larger than the specific value nk, it is determined that the isolated number P4 should be adjusted. &gt; The sigh based on the luminance distribution is performed as follows. First, the adjustment target γ determination unit 250 determines that the histogram shape of the acquired luminance information is the brother 1 distribution shape hl", the "second distribution shape h2", and " The third distribution shape h3" is the tenth. The result is that when it is determined that the shape of the histogram is the shape of the ^^ shape ^, it is determined that the isolated point removal parameter P4 should be adjusted to determine that the shape of the histogram is the second distribution (4). When the fuzzy number P1' is adjusted to determine that the shape of the histogram is the third distribution shape, it is determined that the comparison parameter P3 should be adjusted. Here, a method of determining which of the distribution shapes hi to h3 in the shape of the histogram will be described with reference to Figs. 15 and 16 . Here, Fig. 16 is a flow chart showing the type of the shape of the column chart. First, the value (maximum value m) of the maximum luminance in the histogram distribution is obtained (step S101). Then, the reference value N is calculated (step S102). The reference value N is the value of one-half of the maximum value (N = M/2). 124049.doc -42- 200831887::, determine whether the distribution width when the brightness value is the reference value N is G (SH) 3). Here, as shown in Fig. 15 (b), when the luminance value enters the value N, two or more independent '··, the distribution width of the soil is larger than a specific value. Ge Zhi ^ when 'judge the widest step::. In the case where it is judged that the distribution width is larger than the specific value and the distribution width is larger than the specific width, it is determined that the core knives are the third distribution shape! (Step s1 〇 4). In the case of the step S1〇3, it is judged that the distribution width is not larger than (i.e., there is no case where the distribution width is larger than the specific width), and two or more distribution regions are present at the following: (step S105). When the two or more distributed shapes appear in the break, the 疋 &gt; map is distributed as the second distributed shape h2 (step si 〇 6). In step (4), it is judged that two or more distribution regions do not appear. The column profile distribution is the first distribution shape h1 (step S107). ^ The above-described determination processing is performed on the shape of the histograms of the graphs (4) to (4) = the graph of the de = 15 (4) is the first distribution shape... the adjustment should be performed = the parameter P4 is removed... the column diagram of the judgment _ (8) is = two fuzzy parameters Pl . Further, it is determined that the histogram of Fig. 15(C) is the shape 3 of the knife 3, and the comparison parameter p3 should be adjusted. ~, people' as shown in Figure 12. The adjustment target parameter determination unit 253 counts the number of determinations of the last name outputted by the corresponding parameter determination unit 252. More... Synthesis, the final specific adjustment object ^ More /, body and Lu, calculate the storage decision results in the proportion of each parameter in the order of the two parameters are determined as the parameters. τ 124049.doc -43- 200831887 &lt;2. Processing&gt; The parameter adjustment processing of the defect inspection device 1 of the second embodiment will be described. The overall process of parameter adjustment processing is shown in Figure 5. In this embodiment, the specific processing of the adjustment target parameter is performed as follows (that is, the processing corresponding to step S4). &lt;2-1 - Specific processing of adjusting object parameters &gt;

(: 圖17係表不該實施形態所執行之調整對象參數之特定處 理之流程圖。 首先,特徵量取得部25 1分別根據對步驟S3中目標資料 製作部140所接受之結果資料D2之修正指示,取得特定之 特徵量(即,面積s、個數A、亮度分步驟Slu)。 例如製作目標資料D3時’如圖13所示,於接受3個修正 指示E1〜E3之情形時,特徵量取得部251對各修正指示 E1〜E3分別取得面積S、個數a、亮度分佈η。 繼而,相應參數判定部252根據步驟S111中所取得之各 個特徵量判定應調整之參數之種類(步驟SU2)。再者,將 判定結果依次自相應參數判定部252傳送至調整對象參數 決定部253,調整對象參數決定部253儲存判定結果。 完成對相應參數判定部2 5 2所取得之所有特徵量之判 定,判斷調整對象參數決定部253已取得對所有特徵量之 判定結果(步驟S113中為YES)後,調整對象參數決定$部&quot;253 對儲存之判定結果加以综合且特定成為調整對象之參數 (步驟SU4)。更具體而言,計算出储存之判定結果中各參 數所佔比例’㈣狀由低至高之順序將兩個參數決定為 124049.dc -44- 200831887 調整對象參數。 例如,於步㈣u中特徵量取得部251對修正指示£ 分別取得各個面積S、個數A、亮度分佈Η之情形時,於步 驟SH2中相應參數判定部252根據所取得之9個特徵量分別 依次判定應調整之參數種類。將該判定結果傳送至調敕對 象參數決定部253,如圖18所示’調整對象參數決定部253 儲存9個判定結果。於圖18之例中,調整對象參數決定部 253將儲存之判定結果中作為所佔比例最多之參數之孤立 點去除參數Ρ4,及比例第二多之模糊參數叫定為調 象參數。 再次參照圖17。於步驟S114中決定兩個調整對象參數 後,調整對象參數判定部25〇將對參數調整之設定輸入之 接文畫面H(參照圖9)顯示於顯示部i4(步驟si 15)。再者, 於該實施形態中,接受晝面之區域hll非為用於接受 凋正對象參數之選擇輸入之區域,而是作為用於顯示調整 對象參數之決定結果之區域發揮功能。即,此處,調整對 象參數判定部250顯示對區域hi所顯示之核對框中之、於 步驟S114決定為調整對象參數之參數的核對框進行核對之 狀態之接受晝面Η。區域h2、區域h3與第1實施形態相同。 繼而,調整對象參數判定部250接受各調整對象參數之 調整寬度與分割數之輸入(步驟S116)。該處理與此前說明 之步驟S23(圖8)之處理相同。 繼而’於完成各調整對象參數之調整寬度與分割數之輸 入,接受到決定面板之操作之情形(步驟S 117中為YES) 124049.doc •45- 200831887 時,調整對象參數判定部250讀入對各調整對象參數所嗖 定之調整寬度與分割數(步驟S118)。由此結束調整對象^ 數之特定處理。 ^ &lt;3·效果〉 於本發明第2實施形態之缺陷檢查裝置ψ, ' 兀具,調整 對象參數判定部250根據來自操作者之佟$社_ ^ 、正扣不,自缺陷 檢測圖像處理之參數中決定成為調整對 7豕之參數,故而為 了獲得與目標資料D3-致之結果資料的可適當地選擇應 調整之參數種類。藉此,可迅速且準確地進行參數調整。 [第3實施形態] &lt;1 ·構成&gt; 作為本發明第3實施形態之資料處理裝置之一態樣的缺 陷檢查裝置,由與第丨實施形態所說明之缺陷檢查裝置1相 同之裝置構成而實現,故而省略其說明。又,於以下表示 第j實施形態之缺陷檢查裝置之構成要素時,使用第丨實施 L) 形態之說明中所使用之參照符號。 該實施形態之缺陷檢查裝置與第丨實施形態之缺陷檢查 • f置1相同,具備調整常數決定部丨7〇。但是,於該實施形 態中,調整常數決定部170並非藉由選擇適當值構成之集 口之中位數而決定調整值,而是首先將檢測出之適當值決 定為調整值。 &lt;2 ·處理&gt; 對第3實施形態之缺陷檢查裝置丨之參數調整處理加以說 明。參數調整處理之整體流程如圖5所示。其中,該實施 124049.doc •46- 200831887 形恶中,以如下方式進行參數之調整值之決定處理(即, 相當於步驟S5之處理)。 &lt;2-1_調整值之決定處理〉 圖19係表示該實施形態所實行之調整對象參數之調整值 之決定處理的流程圖。 首先,進行與此箣所說明之步驟S31〜步驟S34(圖1〇)相 同之處理(步驟S211〜步驟S214)。 步驟S214中,於判斷兩圖像資料之缺陷區域部分一致之 情形時,參數值適當與否判斷部171將步驟8212中實行之 缺陷檢測演算法中所採用之參數值(於調整對象參數為複 數個之情形時,為該缺陷檢測演算法中所採用之參數值之 組合)判斷為適當值。於此情形時,將判斷為該適當值之 參數值決定為調整對象參數之調整值(步驟S215)。即,如 第1實施形態所述,不必對各調整對象參數之試行值之所 有組合實行缺陷檢測演算法,可於發現適當參數值之時 刻,將該參數值決定為調整值。即,首先將檢測出之適當 值決定為調整值。 另一方面,步驟S214中,於判斷兩圖像資料之缺陷區域 部分並不一致之情形時,參數值適當與否判斷部171將步 驟S212中實行之缺陷檢測演算法中所採用之參數值(於調 整對象參數為複數個之情形時,為缺陷檢測演算法中所採 用之參數值之組合)判斷為非適當值(步驟S216)。 於此情形時,繼而,判斷對各調整對象參數所設定之值 疋否為該參數之調整寬度之最大值(步驟S217)。 124049.doc -47· 200831887 於步驟S217中,於判斷為至少存在一個以上並非設定為 該參數之調整寬度之最大值之調整對象參數的情形時,進 行參數值之設定變更(步驟咖)。該處理與此前說明之井 驟S38(圖1〇)之處理相同。 夕 f v驟2 1 7中,於將對所有調整冑象參數所設定之值判斷 為該參數之調整寬度之最大值的情形(即,對調整對象參 數之武打值之所有組合實行缺陷檢測演算法之情形)時, 參數值適當與否判斷部171將未發現適當參數值之主旨通 ^给操作者(步驟S219)。即,即使對各調整對象參數之試 /亍值之所有、、’且σ Λ行缺陷檢測演算法,於未發現適當參數 值之情形時’亦進行步驟S219之處理。由此結束調整對象 參數之調整值之決定處理。 〈3 ·效果&gt; 於本發明第3實施形態之缺陷檢查裝置中,對於調整對 象參數之調整值而言’將首先判斷為適當值之參數值決定 為調整值’故而可迅速地進行參數調整。 [第4實施形態] &lt;1.構成&gt; 作為本發明第4實施形態之資料處理裝置之—態樣的缺 陷檢查裝置,由與第1實施形態所說明之缺陷檢查裝置_ 同之裝置構成而實現,故而省略其說明。X,以下,表示 第二實施形態之缺陷檢查裝置之構成要素時,使用第1實施 形態之說明中所使用之參照符號。 &lt;1-1·與參數調整相關之構成&gt; 124049.doc -48· 200831887 該實施形悲之缺陷檢查裝置具有調整與檢版/印刷物檢 查相關之圖像處理參數之功能。圖2 0係說明與參數調整功 能相關之構成之圖。 該實施形態之缺陷檢查裝置中,決定參數之調整值之態 樣不同於第1實施形態之缺陷檢查裝置1。以下,僅說明與 第1實施形態之缺陷檢查裝置1不同之方面,對相同方面省 • 略說明。又,對相同構成要素附上相同符號而表示。 該實施形態之缺陷檢查裝置具有調整與檢版/印刷物檢 查相關之圖像處理參數之功能。圖20係說明與參數調整功 能相關之構成之圖。再者,以下適當參照圖2丨、圖22。圖 2 1、圖22係說明使用遺傳演算法之調整值決定態樣之概念 圖。 該實施形態之缺陷檢查裝置具備參數調整處理部47()。 參數調整處理部470使用遺傳演算法決定調整對象參數之 调整值。更具體而言,利用遺傳演算法自與調整對象參數 (: 之各試行值之所有組合對應的複數個參數值群中,擷取提 供與目標資料D3—致之結果資料D2之參數值群。而且, 將構成擷取之參數值群之值決定為調整對象參數之調整 值。 , 如圖20所示,參數調整處理部470具備第1代個體群產生 部471、適應值取得部472、對產生部473、交又處理部 474、突變執行部475及最佳參數值決定部476。 第1代個體群產生部471產生特定數n個(其中,N為特定 之自然數’其值可任意設定。又,於圖2 1之例中n=4)個體 124049.doc -49- 200831887 群且作為第!代之個體群而取得。各個體具有由Μ個基 構成之染色體°《中’所謂基因更具體而言係指0·0〜1.0 範圍内之任—數值,第1代各個體所具有之基因之數值分 別隨機選擇。又,&amp; $ ^ ^ A ^ 木色體所包含之基因之個數M(圖2丨之例 中’ Μ)與缺陷檢測圖像處理之參數個數-致,如圖22所 不,各基因1、2、…7對應於與缺陷檢測圖像處理相關之 參數之任一者。即,各染色體對應於參數值群。 再者,將自缺陷檢測圖像處理之參數中選擇之一個以上 參數設為調整對象參數之情料,使各基因對應於調整對 象參數之任一者。即,於此情形時,基因之個數與調整對 象參數之個數一致。 適應值取得部472取得個體之適應值。適應值取得部472 精由對構成各代之N個個體分別實行下述處理而取得^^個 個體各自之適應值。而且,使所取得之適應值對應於各個 體而記憶於記憶部12。 一面參照圖22—面對取得適應值之處理加以說明。取得 適應值時,首先,分別解釋個體中所包含之Μ個(圖22之例 中,Μ=7)基因,取得]^個參數值。即,自一個染色體取得 一個參數值群。解釋基因取得參數值之處理係藉由實行以 下(式1)所示運算處理而進行。其中,於(式丨)中,「Gi」係 土口之值’「Pi」係與該基因對應之參數的值(丨=1、 2、···、Μ)。又,「min」及r max」分別係對該參數所設 定之調整寬度之最小值及最大值。又,「div」係對該參數 所設定之分割數。又,rint { }」表示捨棄小數點以下值之 124049.doc -50- 200831887 運算處理。(Fig. 17 is a flowchart showing the specific processing of the adjustment target parameter executed in the embodiment. First, the feature amount acquisition unit 25 1 corrects the result data D2 accepted by the target data creation unit 140 in step S3, respectively. Instructed to obtain a specific feature quantity (ie, area s, number A, and brightness sub-step Slu). For example, when the target data D3 is created, as shown in FIG. 13, when three correction instructions E1 to E3 are accepted, the feature The quantity acquisition unit 251 acquires the area S, the number a, and the brightness distribution η for each of the correction instructions E1 to E3. Then, the corresponding parameter determination unit 252 determines the type of the parameter to be adjusted based on each feature quantity acquired in step S111 (step Further, the determination result is sequentially transmitted from the corresponding parameter determination unit 252 to the adjustment target parameter determination unit 253, and the adjustment target parameter determination unit 253 stores the determination result. All the feature quantities obtained by the corresponding parameter determination unit 252 are completed. When it is determined that the adjustment target parameter determination unit 253 has obtained the determination result for all the feature amounts (YES in step S113), the adjustment target parameter determines the $section&quot;253 The result of the determination is integrated and specified as the parameter of the adjustment target (step SU4). More specifically, the proportion of each parameter in the determination result of the storage is calculated, and the two parameters are determined to be 124049 in descending order. In the step (4), the feature amount acquisition unit 251 acquires the area S, the number A, and the brightness distribution 对 for each of the correction indications, and the corresponding parameter determination unit in step SH2. 252, the types of the parameters to be adjusted are sequentially determined based on the obtained nine feature amounts, and the result of the determination is transmitted to the tuning target parameter determining unit 253, and the adjustment target parameter determining unit 253 stores the nine determination results as shown in Fig. 18 . In the example of FIG. 18, the adjustment target parameter determination unit 253 refers to the isolated point removal parameter Ρ4 which is the parameter having the largest proportion among the stored determination results, and the fuzzy parameter whose ratio is the second largest is called the modulating parameter. 17. After the two adjustment target parameters are determined in step S114, the adjustment target parameter determination unit 25 inputs the setting screen for inputting the parameter adjustment (see FIG. 9). The display unit i4 is displayed on the display unit i4 (step si 15). Further, in the embodiment, the area h11 in which the face is received is not the area for receiving the selection input of the parameter of the object of the object, but is used as the display adjustment target. In this case, the adjustment target parameter determination unit 250 displays a check state of the check box of the parameter determined as the adjustment target parameter in the check box displayed in the region hi. The area h2 and the area h3 are the same as in the first embodiment. Then, the adjustment target parameter determination unit 250 receives the adjustment width and the number of divisions of each adjustment target parameter (step S116). This processing is the same as the processing of step S23 (Fig. 8) described earlier. Then, when the input of the adjustment width and the number of divisions of each adjustment target parameter is completed, and the operation of the decision panel is accepted (YES in step S117) 124049.doc •45-200831887, the adjustment target parameter determination unit 250 reads in The adjustment width and the number of divisions determined for each adjustment target parameter (step S118). This ends the specific processing of the adjustment target number. ^3·Effects> In the defect inspection device according to the second embodiment of the present invention, the cookware and adjustment target parameter determination unit 250 detects the image from the defect based on the operator's _$社_^ and the positive deduction. The parameters of the processing are determined to be the parameters of the adjustment pair, and therefore, the types of parameters to be adjusted can be appropriately selected in order to obtain the result data with the target data D3. Thereby, parameter adjustment can be performed quickly and accurately. [Third Embodiment] &lt;1. Configuration&gt; The defect inspection device which is one aspect of the data processing device according to the third embodiment of the present invention is constituted by the same device as the defect inspection device 1 described in the third embodiment. The implementation is omitted, and the description thereof is omitted. In the following, when the components of the defect inspection device of the jth embodiment are shown below, the reference symbols used in the description of the embodiment of L) are used. The defect inspection device of this embodiment is the same as the defect inspection of the second embodiment, and includes an adjustment constant determining unit 丨7〇. However, in this embodiment, the adjustment constant determining unit 170 does not determine the adjustment value by selecting the median number of the clusters formed by the appropriate values, but first determines the appropriate value to be detected as the adjustment value. &lt;2. Processing&gt; The parameter adjustment processing of the defect inspection device 第 according to the third embodiment will be described. The overall process of parameter adjustment processing is shown in Figure 5. Among them, in the implementation of 124049.doc • 46-200831887, the determination of the adjustment value of the parameter is performed in the following manner (that is, equivalent to the processing of step S5). &lt;2-1_ Determination of Adjustment Values> Fig. 19 is a flowchart showing the process of determining the adjustment value of the adjustment target parameter executed in the embodiment. First, the same processing (steps S211 to S214) as the steps S31 to S34 (Fig. 1A) described herein will be performed. In step S214, when it is determined that the defective area portions of the two image data are identical, the parameter value appropriateness determining unit 171 sets the parameter value used in the defect detecting algorithm executed in step 8212 (the adjustment target parameter is plural) In the case of a case, a combination of parameter values used in the defect detection algorithm is judged to be an appropriate value. In this case, the parameter value determined to be the appropriate value is determined as the adjustment value of the adjustment target parameter (step S215). That is, as described in the first embodiment, it is not necessary to perform a defect detection algorithm for all combinations of the trial values of the respective adjustment target parameters, and the parameter value can be determined as the adjustment value when an appropriate parameter value is found. That is, first, the detected appropriate value is determined as the adjustment value. On the other hand, in step S214, when it is determined that the defective area portions of the two image data do not coincide, the parameter value appropriateness determining unit 171 sets the parameter value used in the defect detecting algorithm executed in step S212 (in When the object parameter is adjusted to be plural, the combination of the parameter values used in the defect detection algorithm is determined to be an inappropriate value (step S216). In this case, it is then determined whether the value set for each adjustment target parameter is the maximum value of the adjustment width of the parameter (step S217). 124049.doc -47· 200831887 In the case where it is determined that there is at least one adjustment target parameter which is not set to the maximum value of the adjustment width of the parameter in step S217, the setting of the parameter value is changed (step coffee). This processing is the same as the processing of the above-described well S38 (Fig. 1A). In the case of eve fv 2 1 7 , the value set for all the adjustment artifact parameters is determined as the maximum value of the adjustment width of the parameter (ie, the defect detection algorithm is implemented for all combinations of the martial values of the adjustment target parameters). In the case of the case, the parameter value appropriateness determining unit 171 passes the subject matter in which the appropriate parameter value is not found to the operator (step S219). That is, even if all of the trial/depreciation values of the respective adjustment target parameters, and the σ Λ defect detection algorithm, when the appropriate parameter value is not found, the processing of step S219 is performed. This completes the decision processing of the adjustment value of the adjustment target parameter. <3>Effects> In the defect inspection device according to the third embodiment of the present invention, the parameter value of the adjustment target parameter is determined as the adjustment value by first determining the appropriate value, so that the parameter adjustment can be quickly performed. . [Fourth Embodiment] &lt;1. Configuration&gt; The defect inspection device of the data processing device according to the fourth embodiment of the present invention is constituted by the same device as the defect inspection device described in the first embodiment. The implementation is omitted, and the description thereof is omitted. In the following, when the components of the defect inspection device of the second embodiment are shown, the reference symbols used in the description of the first embodiment are used. &lt;1-1·Configuration relating to parameter adjustment&gt; 124049.doc -48· 200831887 This embodiment of the defect inspection apparatus has a function of adjusting image processing parameters related to the pattern/printed matter inspection. Figure 20 is a diagram illustrating the composition of the parameter adjustment function. In the defect inspection apparatus of this embodiment, the state in which the parameter adjustment value is determined is different from that of the defect inspection device 1 of the first embodiment. Hereinafter, only the differences from the defect inspection device 1 of the first embodiment will be described, and the same points will be omitted. Further, the same components are denoted by the same reference numerals. The defect inspection apparatus of this embodiment has a function of adjusting image processing parameters related to the pattern/printed matter inspection. Fig. 20 is a view for explaining the configuration relating to the parameter adjustment function. In addition, the following is referred to FIG. 2 and FIG. 22 as appropriate. Figure 2 1 and Figure 22 illustrate the conceptual diagrams of the adjustment values using the genetic algorithm. The defect inspection device of this embodiment includes a parameter adjustment processing unit 47 (). The parameter adjustment processing unit 470 determines the adjustment value of the adjustment target parameter using the genetic algorithm. More specifically, the genetic algorithm is used to extract a parameter value group that provides the result data D2 from the target data D3 from a plurality of parameter value groups corresponding to all combinations of the adjustment target parameters (the trial values). Further, the value of the parameter value group constituting the captured parameter is determined as the adjustment value of the adjustment target parameter. As shown in FIG. 20, the parameter adjustment processing unit 470 includes the first generation individual group generation unit 471, the fitness value acquisition unit 472, and the pair. The generation unit 473, the intersection processing unit 474, the mutation execution unit 475, and the optimal parameter value determination unit 476. The first generation individual group generation unit 471 generates a specific number n (where N is a specific natural number), and the value can be arbitrary. In addition, in the example of Fig. 21, n=4) individual 124049.doc -49-200831887 group and obtained as the first generation of the individual group. Each body has a chromosome composed of a single base. More specifically, the gene refers to any value in the range of 0·0 to 1.0, and the values of the genes of the first generation of each body are randomly selected. Also, &amp; $ ^ ^ A ^ The gene contained in the chromoplast The number M (in the case of Figure 2丨 'Μ) and defect detection Like the number of parameters of the processing, as shown in Fig. 22, each of the genes 1, 2, ... 7 corresponds to any one of the parameters related to the defect detection image processing. That is, each chromosome corresponds to the parameter value group. One or more parameters selected from the parameters of the defect detection image processing are set as the adjustment target parameters, so that each gene corresponds to any one of the adjustment target parameters. That is, in this case, the number of genes The fitness value acquisition unit 472 obtains an individual's fitness value. The fitness value acquisition unit 472 performs the following processing on each of the N individuals constituting each generation to obtain individual adaptations. In addition, the acquired adaptive value is stored in the memory unit 12 in accordance with each body. The process of obtaining the adaptive value will be described with reference to Fig. 22. When the adaptive value is obtained, first, the individual included in the individual is explained. One (in the example of Fig. 22, Μ=7) gene obtains a parameter value. That is, a parameter value group is obtained from a chromosome. The process of interpreting the gene to obtain the parameter value is performed by the following (Formula 1) Show In the case of (丨), the value of the "Gi" soil mouth 'Pi' is the value of the parameter corresponding to the gene (丨=1, 2,···, Μ). "min" and rmax" are the minimum and maximum values of the adjustment width set for this parameter. Also, "div" is the number of divisions set for this parameter. Also, rint { }" means discarding the decimal point. The following values are processed by 124049.doc -50- 200831887.

Pi=min+(max-min)*int{Gi*div}/div·.·(式 1) 繼而,於所取得之參數值群實行缺陷檢測演算法,取得 結果資料D3。並且,將所取得之結果資料D2與目標資料 D3加以比較,計异出個體之適應值。其中,所謂該「適應 值」係指結果資料D2與目標圖像資料D3 一致之部分之面 積率(一致部分之面積與圖像整體面積之比率)。即,個體 之適應值係表示對應於該個體(染色體)之參數值群所提供 之結果資料D2與目標資料D3一致程度的&amp;,可知該值愈 大個體愈優異(提供與目標資料D3高度一致之結果資料D2 之參數值群所對應之個體)。其中,適應值可取〇〜丨範圍之 f值。例如,可以說適應值為「1」之個體為提供與目標 資料㈣全—狀結果請D3之參數值群所對應之最優 個體。 對產生部473自同代之N個個體中產生[(n/uj組(其 中,N為偶數之情形。N為奇數之情形時為組)對。 更具體而t ’首先,自同代^個個體群中,根據使用適 應值之自m原理,選擇(N_2)個(N為奇數之情形時為 (N-1)個)個體。此處所選擇之個體成為產生下—世代個體 之母體。所謂自然淘汰原理係指優秀個體(即,此處為適 應值高之個體)之基因㈣由下—世代繼承之原理,藉由 於同世代之N個個體中愈優秀之個體選為母體之機率愈高 、^見例如,將適應值設為選為母體之選擇機率。又, 亦可設為如下構成:依適應值由小至大之順序對個體進行 124049.doc -51 - 200831887 排序,自咼順位個體依序分配較高值之選擇機率。對產生 部473,將根據上述原理選擇之(N-2)個⑼為奇數之情形時 為(N-1)個)個體中之彼此不同的兩個個體設為對,產生 [(^72)-1]組(1^為奇數之情形時為(1^1)/2組)對。 再者,藉由進行下述之交叉、突變而產生下一世代個 體,調整個體數以使所產生之下一世代個體數與上一世代 個體數相同(即,即使經過世代個體數亦不會變化上述 f月形下,父又所使用之個體數(即,如下所述,藉由交又 而產生之個體數),為偶數之情形時為(N_2)個,於n為 奇數之情形時為(N-D個,故而若一直如此則所產生之^ 一世代之個體數減少。由此,進行補充該減少之調整處 理。Pi=min+(max-min)*int{Gi*div}/div·. (Expression 1) Then, the defect detection algorithm is executed on the obtained parameter value group, and the result data D3 is obtained. Further, the obtained result data D2 is compared with the target data D3, and the individual fitness value is calculated. Here, the "adaptive value" refers to the area ratio of the portion of the result data D2 that coincides with the target image data D3 (the ratio of the area of the coincident portion to the entire area of the image). That is, the fitness value of the individual indicates that the result data D2 corresponding to the parameter value group of the individual (chromosome) is consistent with the target data D3, and the larger the value, the better the individual (providing the height of the target data D3) The result of the consistent result data D2 corresponds to the individual of the parameter group). Among them, the fitness value can take the f value of the range of 〇~丨. For example, it can be said that the individual with the fitness value of "1" is the best individual corresponding to the parameter value group of D3 which is the full-form result of the target data (4). The generating unit 473 generates [from the n individuals of the same generation [(n/uj group (where N is an even number. When N is an odd number, it is a group). More specifically, t 'first, since the same generation ^ In the individual groups, according to the principle of m from the adaptation value, (N_2) individuals (N-1 in the case of N odd numbers) are selected. The individuals selected here become the mothers of the next-generation individuals. The so-called natural elimination principle refers to the principle that the superior individual (that is, the individual with high fitness value) is inherited from the next generation to the generation, and the probability that the better individual among the N individuals of the same generation is selected as the mother is more and more For example, the fitness value is set to the probability of selection as the parent. Alternatively, it may be configured as follows: the individuals are ranked in the order of small to large, 124049.doc -51 - 200831887, self-proclaimed The order individuals assign the selection probability of the higher value in order. The generation unit 473 selects (N-1) (9) which are odd according to the above principle, and (N-1) are different from each other. Individuals are set to pairs, resulting in [(^72)-1] group (when 1^ is odd) (1 ^ 1) / 2 group) pair. Furthermore, by making the following crossovers and mutations, the next generation of individuals is generated, and the number of individuals is adjusted so that the number of generations of the next generation is the same as that of the previous generation (ie, even after generations of individuals) The number of individuals used by the father in the above-mentioned f-month shape (that is, the number of individuals generated by the intersection as described below) is (N_2) when the number is even, and when n is an odd number. It is (ND, and if so, the number of individuals generated in one generation is reduced. Thus, the adjustment processing to supplement the reduction is performed.

於Ν為偶數之情形時’減少兩個個體。於此情形時,例 如利用精夬戰略(直接將適應值高之個體保留為下一世 代個體之方法)補充—個個體,並且補充—個具備隨機選 擇之基因之個體。另—方面,於⑽奇數之情形時,減少 一個個體。於此情形時,例如制精英戰略補充一個個 再者,亦可設此處所產生之對之數為(Ν/2)組(其中,Ν ^偶數之情形。Ν為奇數之情形時為[(Ν+1)/2]組)。於此 情形時,交又所使用之個體數於ν為偶數之情形時為Ν 個’於Ν為奇數之情形時為(Ν+1)個,故而於Ν為奇數之 情形時所產生之下-世代個體數增加。由此,此情形下, 於Ν為奇數之情形時,交叉處理後自所產生之下_世代個 124049.doc -52- 200831887 體中隨機選擇並刪除一個個體,進行個體數之調整。 交又處理部474使成對之兩個個體交又,產生下一世代 個體。更具體而言,如圖21所示,替換為位於較特定之交 叉位置Q(其中,將交叉位置設為自染色體上隨機選擇之位 置)更靠近後半部分之基因,產生新個體。藉此,由各對 產生兩個下一世代個體。如圖21所示,很有可能是藉由自 上世代選擇之優秀母體之交叉而新產生之個體的適應值, 較母體之適應值更良好。即,报有可能是隨著世代前進, 自然淘汰適應值低之個體,產生適應值高之優秀個體。其 中,圖21中用陰影所示之基因表示對應於適應值之基因。 此處,例示於第2代中產生有適應值為「〇5」之個體2,之 情形。 再者,如上所述,此處進行個體數調整以使所產生之下 一世代個體數與上一世代個體數相同。即,於交叉所使用 之個體數為(Ν-2)個之情形時,以使所產生之個體數為N個 之方式’#㈣英戰略及隨齡因選擇而叫固一個地補充 減少之個體。又,於交叉所使用之個體數為個之情 形時,藉由精英戰略而補充一個減少之個體。進而,又, 於交又所使用之個體數為(Ν+1)個之情形時,自所產生之 下一世代個體中隨機選擇並刪除一個個體。 突變執行部475,於藉由交叉而產生新個體群時,以特 定機率使該所產生之新個體群基因產生突變。所謂突變係 指變更新產生之Ν個個體之基因值。藉由以特定機率使基 因突變(即,以特定機率隨機變更基因值),而消除基因= 124049.doc -53- 200831887 之偏離,從而可避免最佳化處理中陷入局部最小值之危 險。 最佳參數值決定部476決定調整對象參數之調整值(作為 調整結果而輸出之值)。更具體而言,產生特定世代(例如 第T代(其中,τ為任意設定之2以上之自然數))之個體後, 將該世代個體中具有最高適應值之個體作為最佳個體擷取 出。而且,判斷對應於所擷取之最佳個體染色體之參數值 群為最佳參數值群,將構成該最佳參數值群之Μ個參數值 決定為各參數之調整值。換言之,將解釋最佳個體染色體 所包含之Μ個基因所取得之Μ個參數值決定為各參數之調 整值。再者,亦可設為如下構成,即與世代數無關,於產 生具有高於特定值之適應值之個體之時間點,擷取該個體 作為最佳個體。 &lt;2.處理&gt; 對第4實施形態之缺陷檢查裝置之參數調整處理加以說 明。參數調整處理之整體流程如圖5所示。其中,於該實 施形態中,以如下方式進行調整值之決定處理(即,相當 於步驟S5之處理)。 &lt;2-1.調整值之決定處理&gt; 圖23係表示該實施形態中所實行之調整值之決定處理之 流程圖。再者,以下亦適當地參照圖2丨、圖22。 完成步驟S4(圖5)之處理後,再次將接受畫面⑽示於顯 示部Μ。於接受晝面G中接$「再運算」面板之操作後, 開始步驟S5之處理。 124049.doc -54- 200831887 首先,第丨世代個體群產生部471產生構成第丨世代之^^個 個體(於圖21之例中,為個體卜^^步驟⑶十此 處,所產生之各個體如上所述,具有由隨機選擇之M個基 因構成之染色體。 繼而,適應值取得部472取得構成第i世代之N個個體各 自之適應值,將所取得之適應值對應於各個體而記憶於記 憶部12(步驟S312)。 •而,對產生部473自第1世代n個個體中產生[(^2)4] 組(N為奇數之情形時,為對(步驟S313)。更具 體而言,自第1世代N個個體群中,根據使用適應值之自然 淘汰原理,選擇(N-2)個(N為奇數之情形時,為(Ν_υ個)) 個體,使所選擇之(Ν-2)個(Ν為奇數之情形時,為(Ν-1)個) 個體中之彼此不同之兩個個體成對,產生[(Ν/2)_ι]組(ν為 奇數之情形時,為(N-l)/2組)對。 繼而,交叉處理部474,使步驟S3 13中所產生之各個對 中之成對之兩個個體交叉,產生新個體(步驟S314)。更具 體而言,如圖21所示,替換為位於較自染色體上隨機選擇 之特定交叉位置更靠近後半部分之基因,新產生(Ν_2)個 (於Ν為奇數之情形時,為(N_i)個)個體。進而,此處進行 個體數調整以使所產生之下一世代個體數與上一世代個體 數相同。即,於所產生之個體數為(N_2)個之情形時,利 用精英戰略補充一個個體,並且補充一個具備隨機選擇之 基因之個體。另一方面,於所產生之個體數為(N_丨)個之 情形時,利用精英戰略補充一個個體。 124049.doc -55- 200831887 繼而,突變執行部475以特定機率使步驟8314中所產生 之新個體產生基因突變(步驟S3 15)。 藉由步驟S314〜步驟S315之處理而新產生1^個個體,此 處所產生之N個個體(於圖21之例中為個體Γ、2,、3,、4,) 成為構成第2世代之個體群。 繼而,最佳參數值決定部476判斷是否產生有特定世代 (第Τ代(其中,τ為任意設定之自然數))之個體(步驟 S3 16)。換言之,判斷是否實行了特定次數π」次)之步驟 S312至步驟S315為止之處理。 步驟S3 16中判斷並未產生第τ代個體之情形時,再次返 回步驟S3 12之處理。例如,於τ=3之情形時,若於步驟 S3 15之處理中產生第2世代個體群,則再次返回步驟S3 i 2 之處理。於此情形時,藉由對第2世代個體群實行步驟 S3 12〜步驟S3 15之處理,而產生構成第3世代之個體群。 步驟S3 16中’判斷產生有第τ代個體之情形時,適應值 取得部472取得構成第T代之N個個體各自之適應值,最佳 參數值決定部476擷取第τ代個體中具有最高適應值之個體 作為最佳個體(步驟S3 17)。例如,於T=3之情形,若於步 驟S3 15之處理中產生第3世代個體群,則最佳參數值決定 部476操取第3世代個體中具有最高適應值之個體作為最佳 個體。 再者’亦可改變步驟S3 16之判斷處理,於步驟S3 12處理 後(即’取得各個體之適應值後),實行判定是否存在具有 南於特定值之適應值之個體的處理。此情形時,於判斷為 124049.doc -56- 200831887 存在如此般個體之時間點,操取該個體作為最佳個體。 、廬而’取佳參數值決定部476,解釋步驟S317中所擷取 之最佳個體染色體中所包含之Μ個基因而取得Μ個參數 值將為取彳寸之值決定為各參數之調整值(步驟S318)。由 此結束步驟S5(圖5)之處理。 再者,上述中,設為如下構成,即下一世代個體係自根 據使用適應值之自然淘汰原理選擇之個體中進行配對,且 f' 使忒對父叉而產生,但下一世代個體之產生方法並非限於 此。例如,亦可採用直接將適應值高之個體保留為下一世 代個體之方法(精英戰略)。又,亦可採用隨機產生下一世 代個體之方法。 &lt;3.效果&gt; 於本發明第4實施形態之缺陷檢查裝置中,使用遺傳演 #法取彳于调整對象參數之調整值,故而可迅速地取得最佳 參數值。 ϋ 又,於該實施形態之缺陷檢查裝置中,使各種參數分別 對應於染色體中所包含之複數個基因(即,使各個體對應 ;各參數值之組合)’使用这傳演鼻法取得適應值高之優 秀個體(即,提供目標資料D3之最佳調整值之組合)。由 '此,即使調整對象參數之種類增多亦可迅速地獲得最佳調 整值。 [變形例] &lt;第1變形例&gt; 於上述各實施形態中,利用缺陷檢測演算法以特定順序 124049.doc -57· 200831887 實仃模糊處理、晃動處理、比較處理、孤立點去除處理, 仁缺1^仏查裝置1所實行之缺陷檢測演算法並不限於該態 樣。例如,可改變或併用上述各圖像處理,將核心指定模 糊處理、或豐滿處理組入缺陷檢測演算法。而且,可利用 上述態樣調整所組入之各種處理所需之參數。即,於上述 實施形態中,作為缺陷檢測圖像處理之複數個參數,可列 舉模糊參數P1、晃動參數P2、比較參數P3、孤立點去除參 數P4 ’但缺陷檢測圖像處理之參數並非限於此。 例如,可將過濾處理之過濾半徑值、特定色範圍之擷取 處理中應擷取之色範圍(例如,Lab色空間之L值、a值及b 值各範圍)、豐滿處理之豐滿寬度、細化處理之細化寬 度、邊緣成分之檢測處理中之過濾半徑值及過濾1£)值、決 定是否實行遮罩合成處理或比較處理等各種處理之旗標 值、面積判定處理之面積範圍(最小面積值及最大面積值 之各值)、特徵量擷取處理之最大輪廓長度值等各種參數 設為調整對象參數。 又,並非僅限於缺陷檢測圖像處理之參數,取得檢查對 象資料D1時之各種參數(例如,影像掃描器5之照明角度、 光源色、光學倍率、圖像讀取或雜訊去除等處理相關之各 種調整變數等)亦可包含於調整對象參數中。 又,亦可包含是否實行缺陷檢測演算法處理(演算法處 理功能本身之ΟΝ/OFF(開/關))作為一個調整對象參數。 &lt;第2變形例&gt; 於上述各實施形態中,對作為資料處理裝置之_態樣之 124049.doc -58- 200831887 Γ 缺陷檢查裝置1進行缺陷檢測圖像處理相關之參數之調整 的情形加以說明,但並非限於缺陷檢測圖像處理,亦可將 上述態樣應用於進行各種圖像處理(例如,圖像之變形處 理、雜訊去除處理、圖像轉換處理、對比度調整處理等) 之裝置中,⑽整裝置所實行之圖像處理相關之參數值。 作為一例,對將上述態樣應用於檢查液晶圖案中所產生之 不均之裝置(不均檢查裝置)中之情形加以說明。其中,所 謂液晶圖案之「不均」係指例如於作為液晶顯示部之彩色 濾光片巾,應於整個表面上形成均勻濃度之汉(紅)、 G(、、’彔)、B(藍)各色中產生之濃度不均部分。 〜於不均檢查裝置中’藉由實行特定不均檢測處理而特定 衫色遽光片等檢查對象物中所產生之有意義不均部分。盆 中,不均檢測處理例如以如下方式實行。首先,對檢查對 象物之圖像資料進行資料解析㈣取檢查對象物中所產生 :不均(例如藉由實行組入有濃度分析、過濾處理、對比 F又^處理、高速傅立葉轉換_ F晴^ τ_〇Γιη, )及-值化處理等之不均掏取演算法而進行該處理)。 立而且’^所掏取之不均部分進行評價且檢測有意義之不均 二::比如糈由實行組入有豐滿處理’細化處理,與圖像 不均判6面積、位置㈣論值之比較判定判定處理等的 …法而進行該處理此處,不均之操取精 之檢測靈敏度係藉由與各處理相關之參數而規 如使用者所f 了以適當精度擷取不均,進而以適當(即, U望之)靈敏度檢測不均,必須預先適當地調 124049.doc -59- 200831887 整與處理相關之參數值。 /文形例之不均檢查裝 當於缺陷檢測處理部130(S2、广錢理部作為相 理。該處理部進行如下圖:象圖處^ 像資料實行特^ 稭由對檢查對象物之圖 “ 不均檢測處理而檢測該圖像資料… 生之不均部分,且製作特徵性地:枓中所產 之資料(即,結果資料D2)。…、H収不均部分 ΓWhen Yu is an even number, reduce two individuals. In this case, for example, an individual is supplemented with a refined strategy (a method of directly retaining individuals with high fitness values as individuals of the next generation), and is supplemented with an individual with a randomly selected gene. On the other hand, in the case of (10) odd numbers, one individual is reduced. In this case, for example, the elite strategy can be supplemented by one or more. The number of pairs generated here can also be (Ν/2) group (where Ν ^ even number is used. When Ν is odd, it is [( Ν+1)/2] group). In this case, the number of individuals used in the transaction is Ν when ν is even, and ' is '(Ν+1) when Ν is odd, so it is generated when Ν is odd - The number of generations has increased. Therefore, in this case, when the Ν is an odd number, after the cross processing, an individual is randomly selected and deleted from the generated generations 124049.doc -52-200831887, and the number of individuals is adjusted. The intersection processing unit 474 causes the two pairs of individuals to be handed over to produce the next generation of individuals. More specifically, as shown in Fig. 21, a new individual is generated by replacing the gene located closer to the second half at a more specific intersection position Q (where the intersection position is set to a position randomly selected from the chromosome). In this way, two next generation individuals are created by each pair. As shown in Fig. 21, it is very likely that the fitness value of the newly generated individual by the intersection of the superior maternal selected by the previous generation is better than the maternal fitness value. That is to say, it is possible that the newspaper will advance with the generations, naturally eliminate individuals with low fitness values, and produce excellent individuals with high fitness values. Here, the gene shown by hatching in Fig. 21 indicates a gene corresponding to an adaptive value. Here, the case where the individual 2 having the fitness value "〇5" is generated in the second generation is exemplified. Further, as described above, the number of individuals is adjusted here so that the number of generations of the next generation is the same as the number of individuals of the previous generation. That is, when the number of individuals used for the intersection is (Ν-2), the number of individuals generated is N. '(4) The British strategy and the selection of the age are called a fixed reduction. individual. Moreover, when the number of individuals used in the intersection is a situation, a reduced individual is supplemented by an elite strategy. Further, in the case where the number of individuals used in the transaction is (Ν+1), an individual is randomly selected and deleted from the next generation of the generated individuals. The mutation executing unit 475 mutates the generated new individual group gene at a specific probability when a new individual group is generated by the intersection. The term "mutation" refers to the genetic value of each individual resulting from a change in regeneration. By mutating the gene at a specific probability (i.e., randomly changing the gene value at a specific probability), the deviation of the gene = 124049.doc -53 - 200831887 is eliminated, thereby avoiding the risk of falling into a local minimum in the optimization process. The optimum parameter value determining unit 476 determines an adjustment value (a value to be output as an adjustment result) of the adjustment target parameter. More specifically, after an individual of a specific generation (e.g., the Tth generation (where τ is an arbitrary number of 2 or more natural numbers)) is generated, the individual having the highest fitness value among the generations is taken as the best individual. Further, it is judged that the parameter value group corresponding to the best individual chromosome obtained is the optimal parameter value group, and the parameter values constituting the optimal parameter value group are determined as the adjustment values of the respective parameters. In other words, the parameter values obtained by interpreting the genes contained in the best individual chromosome are determined as the adjustment values of the respective parameters. Furthermore, it is also possible to adopt a configuration in which, regardless of the number of generations, the individual is taken as the best individual at a time point of producing an individual having an adaptation value higher than a specific value. &lt;2. Processing&gt; The parameter adjustment processing of the defect inspection device of the fourth embodiment will be described. The overall process of parameter adjustment processing is shown in Figure 5. Here, in this embodiment, the determination processing of the adjustment value is performed as follows (that is, it corresponds to the processing of step S5). &lt;2-1. Decision Process of Adjustment Value&gt; Fig. 23 is a flowchart showing the process of determining the adjustment value executed in the embodiment. In addition, FIG. 2A and FIG. 22 are also referred to below as appropriate. After the processing of step S4 (Fig. 5) is completed, the acceptance screen (10) is again displayed on the display unit Μ. After receiving the operation of the "recalculation" panel in the face G, the process of step S5 is started. 124049.doc -54- 200831887 First, the third generation generation group generation unit 471 generates ^^ individuals constituting the third generation (in the example of Fig. 21, the individual is a step (3) ten here, each generated As described above, the individual has a chromosome composed of M genes that are randomly selected. Then, the fitness value acquisition unit 472 obtains an adaptive value of each of the N individuals constituting the i-th generation, and memorizes the acquired fitness value corresponding to each individual. In the memory unit 12 (step S312), the generation unit 473 generates a group of [(^2)4] from n individuals of the first generation (when N is an odd number, it is a pair (step S313). More specifically In the N generations of the first generation, according to the principle of natural elimination using the fitness value, (N-2) (when N is an odd number, (Ν_υ)) individuals are selected to make the selected ( Ν-2) (when the odd-numbered case is (Ν-1)) Two individuals different from each other are paired, resulting in the [(Ν/2)_ι] group (when ν is odd) , (Nl)/2 group). Then, the cross processing unit 474 causes the pair of pairs generated in step S3 13 to be paired The individual crosses to generate a new individual (step S314). More specifically, as shown in Fig. 21, the gene is replaced by a gene located closer to the second half than a specific intersection position randomly selected from the chromosome, and newly generated (Ν_2) In the case of an odd number, it is (N_i) individuals. Furthermore, the number of individuals is adjusted here so that the number of generations of the next generation is the same as that of the previous generation. That is, the number of individuals produced is In the case of (N_2), use an elite strategy to supplement an individual and supplement an individual with a randomly selected gene. On the other hand, use the elite strategy when the number of individuals produced is (N_丨) An individual is added. 124049.doc -55- 200831887 In turn, the mutation executing unit 475 generates a gene mutation in the new individual generated in step 8314 with a specific probability (step S3 15). Newly generated by the processing of steps S314 to S315 1 individual, the N individuals (in the case of Fig. 21, the individual Γ, 2, 3, 4, 4) are the individual groups constituting the second generation. Then, the optimal parameter value determining unit 476 Judge Whether or not an individual having a specific generation (the third generation (where τ is an arbitrary natural number)) is generated (step S3 16). In other words, it is judged whether or not the processing of steps S312 to S315 is performed for a certain number of times π" times) When it is determined in step S3 16 that the τ generation is not generated, the process returns to step S3 12. For example, in the case of τ=3, if the second generation individual group is generated in the process of step S3 15, Then, the process returns to step S3 i 2 again. In this case, the process of step S3 12 to step S3 15 is performed on the second generation individual group to generate the individual group constituting the third generation. When it is determined in step S3 16 that the τ generation is generated, the fitness value acquisition unit 472 acquires the fitness values of the N individuals constituting the Tth generation, and the optimal parameter value determination unit 476 has the τ generation The individual with the highest fitness value is the best individual (step S3 17). For example, in the case of T = 3, if the third generation individual group is generated in the processing of step S3 15, the optimal parameter value decision portion 476 manipulates the individual having the highest fitness value among the third generation individuals as the best individual. Further, the determination processing of step S3 16 may be changed, and after the processing of step S3 12 (i.e., after the adaptation values of the respective bodies are acquired), processing for determining whether or not there is an individual having an adaptation value of a certain value is performed. In this case, it is judged that 124049.doc -56- 200831887 has such an individual time point, and the individual is taken as the best individual. And taking the better parameter value determining unit 476, and interpreting the genes included in the best individual chromosome extracted in step S317 to obtain one parameter value, the value of the parameter is determined as the adjustment of each parameter. Value (step S318). Thereby, the processing of step S5 (Fig. 5) is ended. Furthermore, in the above, the following configuration is adopted, that is, the next generation system is paired from the individuals selected according to the natural elimination principle using the fitness value, and f' is generated for the parent fork, but the next generation individual The production method is not limited to this. For example, a method of directly retaining individuals with high fitness values as individuals of the next generation (elite strategy) can also be used. Also, a method of randomly generating an individual of the next generation can be employed. &lt;3. Effect&gt; In the defect inspection device according to the fourth embodiment of the present invention, the genetic value method is used to take the adjustment value of the adjustment target parameter, so that the optimum parameter value can be quickly obtained. Further, in the defect inspection apparatus of the embodiment, various parameters are respectively associated with a plurality of genes included in the chromosome (that is, each body is associated; a combination of each parameter value) is adapted to use the nasal expression method. A good individual with a high value (ie, a combination of the best adjustment values for the target data D3). By 'this, even if the type of the adjustment target parameter is increased, the optimal adjustment value can be quickly obtained. [Modifications] &lt;First Modifications&gt; In the above embodiments, the defect detection algorithm is used in a specific order 124049.doc -57· 200831887 to perform blurring processing, shaking processing, comparison processing, and isolated point removal processing. The defect detection algorithm implemented by the defective device 1 is not limited to this aspect. For example, each of the image processing described above may be changed or used in combination to incorporate a core specified blur processing or a full processing into the defect detection algorithm. Moreover, the parameters required for the various processes incorporated can be adjusted using the above-described aspects. That is, in the above-described embodiment, the plurality of parameters of the defect detection image processing include the blur parameter P1, the shake parameter P2, the comparison parameter P3, and the isolated point removal parameter P4', but the parameters of the defect detection image processing are not limited thereto. . For example, the filtering radius value of the filtering process and the color range that should be captured in the processing of the specific color range (for example, the L value of the Lab color space, the range of the a value and the b value), the full width of the full processing, The refinement width of the refinement processing, the filter radius value in the detection processing of the edge component, and the value of the filter 1), and whether or not to perform the mask value of the various processing such as mask synthesis processing or comparison processing, and the area range of the area determination processing ( Various parameters such as the minimum area value and the maximum area value), and the maximum contour length value of the feature amount extraction processing are set as adjustment target parameters. Further, it is not limited to the parameters of the defect detection image processing, and various parameters (for example, the illumination angle of the image scanner 5, the light source color, the optical magnification, the image reading, or the noise removal) are related to the processing of the inspection target data D1. Various adjustment variables, etc.) may also be included in the adjustment object parameters. Further, it is also possible to include whether or not the defect detection algorithm processing (ΟΝ/OFF (on/off) of the algorithm processing function itself) is performed as an adjustment target parameter. &lt;Second Modification&gt; In the above-described respective embodiments, the adjustment of the parameter related to the defect detection image processing is performed on the defect inspection device 1 as the data processing device. Although not limited to defect detection image processing, the above aspect may be applied to various image processing (for example, image deformation processing, noise removal processing, image conversion processing, contrast adjustment processing, etc.). In the device, (10) parameter values related to image processing performed by the entire device. As an example, a case where the above-described aspect is applied to a device (uneven inspection device) for detecting unevenness generated in a liquid crystal pattern will be described. Here, the "unevenness" of the liquid crystal pattern means, for example, a color filter cloth as a liquid crystal display portion, and a uniform concentration of Han (red), G (,, '彔), B (blue) should be formed on the entire surface. The uneven concentration of the color produced in each color. In the unevenness inspection device, a meaningful uneven portion generated in an inspection object such as a trousers is specified by performing a specific unevenness detection process. In the pot, the unevenness detecting process is carried out, for example, in the following manner. First, the image data of the inspection object is analyzed. (4) The object to be inspected is generated: unevenness (for example, by performing concentration analysis, filtering processing, contrast F and processing, high speed Fourier transform _ F ^ τ_〇Γιη, ) and - value processing, etc., are performed by an algorithm that performs the processing. And the unevenness of the '^ is evaluated and the meaning of the detection is uneven: for example, the implementation of the group has a full processing 'fine processing, and the image is unevenly judged 6 area, position (four) argument This processing is performed by comparing the determination determination processing and the like. Here, the detection sensitivity of the uneven operation is determined by the user, and the user is fetched with an appropriate accuracy. In order to detect the unevenness with the appropriate (ie, U-sight) sensitivity, the parameter values related to the processing must be adjusted in advance by 124049.doc -59- 200831887. The unevenness inspection of the text form is installed in the defect detection processing unit 130 (S2, Hiroyuki Department) as a phase. The processing unit performs the following diagram: the image is executed, and the image is processed by the object. The figure "detects the image data in the unevenness detection process... the uneven portion of the image, and produces the characteristic: the data produced in the sputum (ie, the result data D2)...., the uneven portion of H Γ

對與參數調整相關之其他功能部而言,與上 相同(參照圖2),々 ά m 資料t M4G接錢作者對該結果 料D2之^ 不’並且製作使該指*内容反映於結果資 =之^像資料(目標資料D3),進而,參數調整處理部 二調整對象參數之調整值。藉此,可調整與不均檢 /則處理相關之參數。 &lt;第3變形例&gt; 於上述各實施形態中’對進行與圖像處理相關之參數調 整之情形加以說明’亦可進行與圖像資料以外之資料(例 T向量資料)之各種處理相關之參數調整。作為進行與向 量資料之處理相關之參數調整之情形的例’對如下情形加 以說明:將上述態樣應用於自包含雜訊之測定資料中藉由 試誤而取得準確地特定被測定物之資料的作業。 例如,設測定資料為基板之膜厚測定資料(藉由用分光 式膜厚計測定於表面上形成有槽(圖案)之基板的膜厚而取 得之資料)。通常,測定資料中包含雜訊。該膜厚測定資 料亦仍包含雜訊之影響,難以自測定資料直接讀取實際槽 124049.doc -60- 200831887 之寬度或深度。由此,藉由使用如下所述之模擬之方法而 進行推測槽之寬度或深度之作業。 首先,產生規定適當寬度與深度之向量資料(即,表現 槽形狀之向量資料),對該向量資料進行分光模擬。即, 假設產生用分光式膜厚計測定由該向量資料表現之槽之情 形時所獲得的測定資料(以下將其稱為「假設資料」)。若 該假設資料與自測定資料除去雜訊之狀態一致,則可說提 供該假言免資料之向i資料為正確表現槽之寬度或深度之資 料。由此,操作者利用試誤探索提供如此假設資料之向量 資料(更具體而言,將所獲得之假設資料與測定資料加以 比較後,變更向量資料之形狀以消除兩資料間所產生之不 同部分。而且,一面重複進行自變更後之向量資料再次產 生假設資料,且將所獲得之假設資料與測定資料加以比較 之作業一面探索)。 可將上述參數之調整功能應用於該作業。於該變形例 中,具備實行向量資料之產生處理之處理部(向量資料產 生處理。卩)作為相當於缺陷檢測處理部丨3〇(圖2)之功能部。 該處理部產生表現具有特定寬度與深度之槽之向量資料。 其中,所表現之槽之寬度歧度由提供至該向量資料之產 生處理部之參數值規定,於該變形例中設該參數為調整對 象參數。藉由對向量資料產生處理部所產生之向量資料進 行特定分光模擬,而取得假設資料。於該變形例中,、此户 所獲得之假設資料為結果資料D2。 处 對與參數調整相關之其他功能部而言,與±述實__ 124049.doc -61 - 200831887 相同(參㈣〜即’目標f料製作部丨轉受操作者對結 果資料D2之修正指示並且製作使該指示内容反映於結果資 料D2之資料(目#資料D3)。於該變形例中,操作者對結果 資料D2進行修正以使所製作之目標資料的與自測定資料 除去雜訊之狀態一致。 而且,參數調整處理部170取得可提供與目標資料D3_ 致之結果資料D2之參數值作為調整值。即,㈣參數調整For other function parts related to parameter adjustment, the same as above (refer to Figure 2), 々ά m data t M4G accepts the author of the result material D2 and produces the content of the finger* in the result = image data (target data D3), and the parameter adjustment processing unit 2 adjusts the adjustment value of the target parameter. Thereby, the parameters related to the unevenness detection/processing can be adjusted. &lt;Third Modification&gt; In the above embodiments, the description of the case where the parameter adjustment relating to image processing is performed may be performed in association with various processes of data other than image data (for example, T vector data). Parameter adjustment. As an example of the case where the parameter adjustment relating to the processing of the vector data is performed, the following case will be described: the above-described aspect is applied to the measurement data of the self-contained noise, and the data of the specific object to be measured is accurately obtained by trial and error. Homework. For example, the measurement data is the film thickness measurement data of the substrate (the data obtained by measuring the film thickness of the substrate having the groove (pattern) formed on the surface by a spectroscopic film thickness meter). Usually, the measurement data contains noise. The film thickness measurement data still contains the influence of noise, and it is difficult to directly read the width or depth of the actual groove 124049.doc -60- 200831887 from the measurement data. Thus, the operation of estimating the width or depth of the groove is performed by using the simulation method as described below. First, vector data specifying the appropriate width and depth (i.e., vector data representing the shape of the groove) is generated, and the vector data is subjected to spectral simulation. In other words, it is assumed that measurement data obtained by measuring the shape of the groove represented by the vector data by a spectroscopic film thickness meter (hereinafter referred to as "hypothetical data") is generated. If the hypothetical data is consistent with the state in which the self-measurement data is removed from the noise, it can be said that the information provided by the hypothesis is free of information to correctly represent the width or depth of the groove. Therefore, the operator uses the trial and error to explore the vector data that provides such hypothesis data (more specifically, after comparing the obtained hypothesis data with the measured data, the shape of the vector data is changed to eliminate different parts generated between the two data. Moreover, while repeating the self-changing vector data, the hypothesis data is generated again, and the obtained hypothesis data is compared with the measurement data to explore. The adjustment function of the above parameters can be applied to the job. In this modification, a processing unit (vector data generation processing 卩) for performing generation processing of vector data is provided as a functional unit corresponding to the defect detection processing unit 图3〇 (Fig. 2). The processing portion generates vector data representing grooves having a specific width and depth. Here, the width ambiguity of the groove expressed is defined by the parameter value supplied to the generation processing unit of the vector data, and in the modification, the parameter is set as the adjustment object parameter. The hypothesis data is obtained by performing specific spectroscopic simulation on the vector data generated by the vector data generation processing unit. In this modification, the hypothetical data obtained by the household is the result data D2. For other function parts related to parameter adjustment, it is the same as ±Representation __ 124049.doc -61 - 200831887 (Refer to (4) ~ that is, 'target f material production department 丨 transfer operator's correction instruction for result data D2 Further, the data (the data #3) in which the instruction content is reflected in the result data D2 is created. In the modification, the operator corrects the result data D2 to remove the noise from the self-measurement data of the created target data. The parameter adjustment processing unit 170 obtains a parameter value that can provide the result data D2 with the target data D3_ as an adjustment value. That is, (4) parameter adjustment

處理部m取得可產生適當向量:㈣(即,可提供與自測定 資料除去雜訊之狀態一致之假設資料的向量資料)之參數 值。使用該參數值所產生之向量資料成為準確表現槽之寬 度或深度之資料。如此,可藉由使用參數之調整功能,而 簡單且確切地進行根據測定資料推測實際槽之寬度或深度 之作業。 &amp; &lt;第4變形例&gt; 上述各實施形態’亦如第3變形例所說明,係於使用模 擬之領域較為有效之技術。例如,於各種物品製造步驟 中,有時進行如下作㈣據加工前之素材形狀利用模擬 產生加工後之形狀,且確認加卫後之形狀以為作為目桿 可將上述參數之調整功能應用於該作業。於該變形例 中,具備實行表示加卫前素材形狀之形狀f料之產生處理 的處理部(素材形狀產生處理部)作為相當於缺陷檢測處理 部=圖取功能部。該處理部產生表料定素材形狀之 I狀貝料。其中’所表現之形狀由提供至該素材形狀產生 124049.doc •62- 200831887 處理部之參數值 參數n &amp; ’於該變形例中設該參數為調整對象 整對象失I亦可°又表現形狀之網目之粗密狀態為一個調 藉由對素材形狀產生處理部所產生之形狀資 行加工鴒《:工作業之模擬’而取得表示對該素材形狀進 之資°料二:狀之形狀資料。於該變形例中’此處所獲得 心貝抖為結果貧料D2。 相=參數調整相關之其他功能部而言,與上述實施形態 :一、圖2)。即’目標資料製作部140接受操作者對結 果貝料D2之修正指示並且製作使該指示内容反映於結果資 =2之資料(目標資料D3)。於該變形例中,操作者對結果 貝枓D2進行修正以使所製作之目標資料⑴表現出操作者 本人所期望之加工後之形狀。 並且,參數調整處理部170取得可提供與目標資料D3 一 致之結果資料D2之參數值作為調整值。即,取得可產生表 示適當素材形狀(即,可提供操作者所期望之加工形狀之 素材形狀)之資料之參數值。如此,#由使用參數之調整 功能而可簡單且確切地推測用於獲得所期望之加工形狀之 素材形狀。 &lt;第5變形例&gt; 進 作為調整上述各實施形態中所說明之參數之功能部,可 而設置有對所取得之調整值加以評價之構成(參數評價 部(省略圖示))。The processing unit m obtains a parameter value which can generate an appropriate vector: (4) (i.e., vector data which can provide a hypothetical data in accordance with the state in which the noise is removed from the measurement data). The vector data generated using this parameter value becomes the data that accurately represents the width or depth of the groove. Thus, the operation of estimating the width or depth of the actual groove based on the measurement data can be easily and accurately performed by using the parameter adjustment function. &lt;Fourth Modification&gt; The above embodiments are also described as a third modification, and are a technique that is effective in the field of simulation. For example, in various article manufacturing steps, the following operations may be performed as follows: (4) The shape of the material is processed by simulation according to the shape of the material before processing, and the shape after the reinforcement is confirmed, and the adjustment function of the above parameter can be applied to the target as the target. operation. In the modification, the processing unit (material shape generation processing unit) that performs the process of generating the shape f material indicating the shape of the material before the garnish is provided as the defect detection processing unit=image extraction function unit. The processing unit generates an I-shaped bead material having a shape of the material to be fixed. Wherein the shape represented by the shape is supplied to the shape of the material 124049.doc • 62- 200831887 The parameter value parameter of the processing part n & 'In this modification, the parameter is set to adjust the object, the object is lost, and the performance is also The coarse-grained state of the mesh of the shape is a shape obtained by processing the shape generated by the processing section of the material shape, "the simulation of the work industry", and obtaining the shape information of the shape of the material. . In this modification, the heartbeat obtained here is the result of the poor material D2. The other functional units related to phase=parameter adjustment are the same as the above-described embodiments: first, Fig. 2). In other words, the target data creation unit 140 accepts an operator's instruction to correct the result and the material D2, and creates a data (target data D3) in which the instruction content is reflected in the result value = 2. In this modification, the operator corrects the result Beckham D2 so that the created target material (1) exhibits the processed shape desired by the operator himself. Further, the parameter adjustment processing unit 170 obtains a parameter value which can provide the result data D2 in accordance with the target data D3 as an adjustment value. That is, a parameter value is obtained which can generate data indicating the shape of the appropriate material (i.e., the shape of the material that can provide the processing shape desired by the operator). Thus, the shape of the material used to obtain the desired processed shape can be easily and accurately estimated by using the parameter adjustment function. &lt;Fifth Modification&gt; The function unit for adjusting the parameters described in the above embodiments may be provided with a configuration (parameter evaluation unit (not shown)) for evaluating the acquired adjustment value.

參數評價部評價參數調整處理部丨70(圖2)所決定之調整 象參數之調整值是否為適當值。例如,將於所決定之5 124049.doc •63· 200831887 整值實行缺陷檢測演算法而獲得之資料(最終結果資料)與 目標資料D3加以比較,計算出兩資料一致部分之面積率, 且取得該值作為調整值之評價值。即,可以說評價值愈 回’則於所獲得之調整值獲得之資料與目標資料D3 一致之 程度愈高。亦可使所獲得之評價值例如顯示於顯示部14以 通知給操作者。又,於評價值低於特定值之情形時,可進 而⑺置有對參數值進行最終微調之構成,亦可使參數調整 p 處理部170再次實行調整值之計算出處理。 &lt;其他變形例&gt; 上述各實施形態中採用如下態樣,即於檢查對象資料m 中以洋紅色顯示缺陷區域T1、T2,藉此特徵性地顯示缺陷 區域之,但特徵性地顯示缺陷區域之態樣並非限於此。例 如,可採用較適當區域更濃地顯示缺陷區域之態樣,閃爍 顯示缺陷區域之態樣,及以特定色(例如淺灰色)顯示適當 區域之態樣等。 又,於上述各實施形態中,限於結果資料D2之缺陷區域 部分與目標資料D3之缺陷區域部分完全一致之情形,將製 • ㈣結果資料D2時所採用之試行值判斷為調整對象參數之 適當值,但即使結果資料D2之缺陷區域部分與目標資料 缺陷區域部分不完全_致,於不—致程度處於特定容 許範圍内之情形時亦可認為兩資料一致,將製作該結果資 料D2時所採用之試行值判斷為調整對象參數之適當值。例 如,於兩資料中不-致之缺陷區域之面積小於特定值之情 形時,亦可認為兩資料一致,將該試行值判斷為調整對象 124049.doc -64 - 200831887 參數之適當值。 Γ 又,於上述各實施形態中設為如下構成:於調整值之規 定處理中參數調整處理部17〇使參數值變化時,於由調整 寬度規定之調整範圍使參數值自最小值依序增加(圖1〇之 步驟S3 1),但使參數值變化之態樣並非限於此。例如,亦 可自調整範圍之最大值依序減少參數值,亦可自調整範圍 之中位數每次增減分割數來進行變化參數值。又,亦可使 调整别所設定之值作為初始值而變化。 又,於第1各實施形態中,將參數值適當與否判斷部171 判斷為適當值之試行值之中位數選為調整值(圖10之步驟 S4D,但根據適當值決定中位數之態樣並非限於此。例 如,可將判斷為適當值之試行值(調整對象參數為複數個 之情形時判斷為適當值之參數值之組合))—覽顯示於顯示 部14,操作者選擇任一適當值。 又,於第2實施形態中取得二個 τ — 1固貝汛(面積S、個數Α、亮 度分佈Η)作為特徵量,但亦The parameter evaluation unit evaluates whether or not the adjustment value of the adjustment parameter determined by the parameter adjustment processing unit 丨 70 (Fig. 2) is an appropriate value. For example, the data obtained by the defect detection algorithm (final result data) will be compared with the target data D3, and the area ratio of the two data consensus parts will be calculated and obtained. This value is used as an evaluation value of the adjustment value. That is, it can be said that the higher the evaluation value is, the higher the degree of the data obtained by the obtained adjustment value coincides with the target data D3. The evaluation value obtained may be displayed, for example, on the display unit 14 to notify the operator. Further, when the evaluation value is lower than the specific value, (7) the parameter value may be finally fine-tuned, and the parameter adjustment p processing unit 170 may perform the calculation processing of the adjustment value again. &lt;Other Modifications&gt; In each of the above-described embodiments, the defect regions T1 and T2 are displayed in magenta in the inspection target data m, whereby the defective regions are characteristically displayed, but the defects are characteristically displayed. The aspect of the area is not limited to this. For example, a pattern in which a defective area is displayed more densely in an appropriate area, a pattern in which a defective area is displayed in a blinking manner, and an appropriate area in a specific color (for example, a light gray) may be displayed. Further, in each of the above embodiments, the case where the defect region portion of the result data D2 and the defect region portion of the target data D3 are completely identical, the trial value used in the (4) result data D2 is determined as the appropriate adjustment parameter. Value, but even if the defect area of the result data D2 and the defect area of the target data are incomplete, the two data may be considered to be consistent when the degree of the defect is within the specified tolerance, and the result data D2 will be produced. The trial value used is judged to be an appropriate value of the adjustment target parameter. For example, if the area of the defect area that is not in the two data is less than a specific value, the two data may be considered to be consistent, and the trial value is judged to be an appropriate value of the adjustment object 124049.doc -64 - 200831887. Further, in the above-described respective embodiments, the parameter adjustment processing unit 17 causes the parameter value to be sequentially increased from the minimum value in the adjustment range defined by the adjustment width when the parameter value is changed in the predetermined processing of the adjustment value. (Step S3 1 of Fig. 1), but the aspect in which the parameter value is changed is not limited thereto. For example, the parameter value may be sequentially decreased from the maximum value of the adjustment range, or the parameter value may be changed by increasing or decreasing the number of divisions in the median of the adjustment range. Further, the value set by the adjustment may be changed as an initial value. In the first embodiment, the median value of the trial value determined by the parameter value appropriateness determination unit 171 as an appropriate value is selected as the adjustment value (step S4D in FIG. 10, but the median is determined based on the appropriate value. The aspect is not limited to this. For example, a trial value (a combination of parameter values determined to be appropriate values when the adjustment target parameter is plural) can be displayed on the display unit 14, and the operator selects any An appropriate value. Further, in the second embodiment, two τ - 1 solid shells (area S, number Α, and luminance distribution Η) are obtained as feature quantities, but

Jw又為取得該等特徵量中之至 :一個作為特徵量之構成。x,作為特徵量而取得之資訊Jw is also one of the feature quantities: one is formed as a feature quantity. x, information obtained as a feature quantity

時:::此。例如,亦可取得操作者指定修正對象區域U f之拖拽區域作為特徵量。 t 又,调整對象參數決定部253 對所儲存之判定結果加以综 砗,介n , 且特疋成為調整對象之參數 蚪瞀Φ夂冬批 所獲仔之判定結果進行加權, 。十异出各參數所佔之比例。 隹 又,於第2實施形態中設為如 之缺陷檢杳奘罢,Μ曰Μ 下構成·代替第1實施形態 心釈查裝置丨所具備之 對象參數特定部150,而具 124049.doc • 65 - 200831887 備調整對象參數判定部25〇,但 象參數特定部15。與調整對象參數二==調整對 情形時’可設為如下構成:操 。於此 夂叙企丨〜j選擇疋精由調整對象 多數判U 250㈣動進行調整對象參數 整對象參數特定部丨5 〇藉由接受 、运疋调 筏又知作者之選擇輸入而進行 5周整對象參數之特定。 又’於第2實施形態中,調整對急 乃正對象參數決定部253自判定Time::: This. For example, the operator can specify the drag area of the correction target area U f as the feature amount. Further, the adjustment target parameter determination unit 253 summarizes the stored determination result, and the feature of the adjustment target 蚪瞀Φ夂 winter batch is weighted. Ten different proportions of each parameter. Further, in the second embodiment, the defect is detected as a defect, and the target parameter specifying unit 150 included in the heartbeat device of the first embodiment is replaced by 124049.doc. 65 - 200831887 The adjustment target parameter determination unit 25 is, but like the parameter identification unit 15. When adjusting the object parameter 2 == adjusting the situation, ' can be set as follows: operation. In this case, the 丨 丨 j j j j j j j j j j j j j j j j j 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 The specificity of the object parameters. In the second embodiment, the adjustment is determined by the emergency target parameter determining unit 253.

、…所佔比例高之參數依序將兩個參數決定為調整對象 麥數,但亦可依所佔比例由低至高之順序選擇__個或兩個 以上參數並決定為調整對象參數。 【圖式簡單說明】 圖1係表示包含作為本發明第丨實施形態之圖像處理裝置 之一態樣的缺陷檢查裝置1之印刷系統i 〇〇之構成圖。 圖2係說明與參數調整功能相關之構成圖。 圖3(a)、(b)係例示基準資料D0與檢查對象資料Dl之 圖0 圖4(a)、(b)係例示結果資料D2與目標資料D3之圖。 圖5係表示缺陷檢查裝置1之參數調整處理之整體流程 圖0 圖6係表示目標資料D3之製作處理流程圖。 圖7係表示接受畫面G之構成例之圖。 圖8係表示調整對象參數之特定處理流程圖。 圖9係表示接受畫面Η之構成例之圖。 圖1〇係表示參數值之決定處理流程圖。 124049.doc -66- 200831887 圖11 (a)、( b)係用於說明將判斷為適當值之試行值之中 位數選擇為調整值之圖。 圖12係說明與參數調整功能相關之構成之圖。 圖13(a)、(b)係例示結果資料〇2與目標資料〇3之圖。 圖14(a)〜(c)係例示亮度量取得區域之圖。 圖15(a)〜(c)係例示党度分佈之柱形圖。 圖16係表示判定柱形圖形狀之種類之流程的圖。 圖17係表示調整對象參數之特定處理流程圖。 圖1 8係例示儲存於調整對象參數決定部253之判定結果 之圖。 圖19係表示參數值之決定處理流程圖。 圖20係說明與參數調整功能相關之構成圖。 圖21係說明使用遺傳演算法之調整值之決定態樣的概念 圖。 圖22係說明使用遺傳演算法之調整值之決定態樣的概念 圖。 圖23係表示調整值之決定處理流程圖。 【主要元件符號說明】 1 缺陷檢查裝置 130 缺陷檢測處理部 140 目標資料製作部 150 調整對象參數特定部 160 調整常數決定部 170 參數调整處理部 124049.doc •67- 200831887 250 調整對象參數判定部 DO 基準資料 D1 檢查對象資料 D2 結果資料 D3 目標資料 P 程式 124049.doc -68-The parameter with a high proportion is determined by adjusting the two parameters in order to adjust the number of wheat, but it is also possible to select __ or more parameters according to the proportion from low to high and determine the parameters to be adjusted. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a configuration of a printing system i of a defect inspection apparatus 1 as an aspect of an image processing apparatus according to a third embodiment of the present invention. Fig. 2 is a block diagram showing the configuration related to the parameter adjustment function. 3(a) and 3(b) are diagrams showing the reference data D0 and the inspection target data D1. Fig. 4 (a) and (b) are diagrams showing the result data D2 and the target data D3. Fig. 5 is a flowchart showing the overall process of the parameter adjustment processing of the defect inspection device 1. Fig. 0 Fig. 6 is a flowchart showing the process of creating the target data D3. Fig. 7 is a view showing an example of the configuration of the acceptance screen G. Fig. 8 is a flow chart showing a specific process of adjusting an object parameter. Fig. 9 is a view showing an example of the configuration of the acceptance screen Η. Fig. 1 is a flow chart showing the process of determining the parameter values. 124049.doc -66- 200831887 Figure 11 (a), (b) is a diagram for explaining the selection of the median value of the trial value determined to be an appropriate value as the adjustment value. Fig. 12 is a view for explaining the configuration related to the parameter adjustment function. 13(a) and (b) are diagrams showing the result data 〇2 and the target data 〇3. 14(a) to (c) are diagrams illustrating a luminance amount acquisition area. 15(a) to (c) are diagrams showing a histogram of the degree distribution. Fig. 16 is a view showing the flow of determining the kind of the shape of the histogram. Fig. 17 is a flowchart showing a specific process of adjusting an object parameter. FIG. 18 is a diagram showing the determination result stored in the adjustment target parameter determination unit 253. Fig. 19 is a flow chart showing the process of determining the parameter values. Fig. 20 is a block diagram showing the configuration related to the parameter adjustment function. Figure 21 is a conceptual diagram illustrating the deterministic aspects of the adjustment values using the genetic algorithm. Figure 22 is a conceptual diagram illustrating the deterministic aspect of the adjustment value using the genetic algorithm. Fig. 23 is a flow chart showing the process of determining the adjustment value. [Description of main component symbols] 1 Defect inspection device 130 Defect detection processing unit 140 Target data creation unit 150 Adjustment target parameter specifying unit 160 Adjustment constant determination unit 170 Parameter adjustment processing unit 124049.doc • 67- 200831887 250 Adjustment target parameter determination unit DO Reference data D1 Inspection target data D2 Result data D3 Target data P program 124049.doc -68-

Claims (1)

200831887 十、申請專利範圍: 1 · 一種圖像處理裝置,其特徵在於包括: 圖像處理機構,其進行特定之圖像處理; 目標圖像製作機構,其接受對作為上述圖像處理之結 果而製作之結果圖像的修正指示,製作上述修正指示反 映於上述結果圖像後之目標圖像;及 參數調整機構,其調整上述圖像處理之參數值,以使 作為上述圖像處理之結果而製作之結果圖像與上述目標 圖像一致。 2·如請求項1之圖像處理裝置,其中 上述圖像處理機構進行如下圖像處理··將基準圖像與 輸出該基準圖像而獲得之檢查對象圖像加以比較,檢測 上述檢查對象圖像中所產生之缺陷部分,製作將該檢測 出之缺陷部分以與非缺陷部分不同之顯示形態加以顯示 的結果圖像; 上述圖像處理之參數規定上述缺陷部分之檢測靈敏 度。 3 ·如明求項1或2之圖像處理裝置,直中 上述目標圖像製作機構將上述結果圖像顯示於顯示畫 面上,自上述顯示晝面上接受對該結果圖像之修正指示 的輸入。 4.如請求項3之圖像處理裝置,其中 上述餐數調整機構一面使上述參數之值變化,一面判 斷於各參數值下所獲得之結果圖像是否與上述目標圖像 124049.doc 200831887 致且將上述參數之調整值決定為獲得與上 像一致之結果圖像的參數值。 目軚圖 5 如請求項4之圖像處理裝置,其中 上述參數調整機構將上述參數之調整值決定為由計 與上述目標圖像一致之結果圖像的參數值所構成之:: 之中位數。 木&amp; 6. 如請求項4之圖像處理裝置,其中 、、上述參數調整機構將上述參數之調整值決定為於使上 述參數之值變化之過程中最初獲得與上述目標圖像一致 之結果圖像時的參數值。 7. 如請求項4之圖像處理裝置,其中更包括: 調整範圍特定機構,其根據輸入之設定值,特定出使 上述參數值變化之範圍。 8·如請求項4之圖像處理裝置,其中更包括: 變化量特定機構,其根據輸入之設定值,特定出使上 述參數值變化時之變化量。 9·如請求項3之圖像處理裝置,其中 上述參數調整機構自一個以上之參數之值之組合中, 利用遺傳演算法擷取賦予與上述目標圖像一致之結果圖 像之組合,決定上述參數之調整值為構成該擷取出之組 合之各值。 10·如請求項9之圖像處理裝置,其中更包括: 調整範圍特定機構,其根據輸入之設定值,特定出使 上述參數值變化之範圍。 124049.doc 200831887 11 ·如請求項9之圖像處理裝置,其中更包括: 變化量特定機構,其根據輸人之設定值,特定 述參數值變化時之變化量。 I 12.如請求項1或2之圖像處理裝置,其中包括 ,其根據自上述修正指示所取 述圖像處理之參數中特定成為 調整對象參數特定機構 得之指定之特徵量,自上 調整對象之參數。 f200831887 X. Patent application scope: 1 . An image processing apparatus, comprising: an image processing mechanism that performs specific image processing; and a target image producing mechanism that accepts a pair as a result of the image processing a correction instruction of the produced result image, a target image in which the correction instruction is reflected in the result image; and a parameter adjustment mechanism that adjusts a parameter value of the image processing so as to be a result of the image processing The resulting image is identical to the target image described above. 2. The image processing apparatus according to claim 1, wherein the image processing means performs image processing as follows: comparing the reference image with an inspection target image obtained by outputting the reference image, and detecting the inspection target image The defective portion generated in the image is subjected to a result image in which the detected defective portion is displayed in a display form different from the non-defective portion; and the parameter of the image processing defines the detection sensitivity of the defective portion. 3. The image processing apparatus according to claim 1 or 2, wherein the target image creating means displays the result image on the display screen, and receives an instruction to correct the result image from the display surface. Input. 4. The image processing apparatus of claim 3, wherein the meal number adjustment mechanism determines whether the result image obtained under each parameter value is related to the target image 124049.doc 200831887 while changing the value of the parameter. And the adjustment value of the above parameters is determined as the parameter value of the resulting image that is consistent with the upper image. The image processing device of claim 4, wherein the parameter adjustment unit determines the adjustment value of the parameter as a parameter value of a result image that matches the target image: number. 6. The image processing apparatus of claim 4, wherein the parameter adjustment means determines the adjustment value of the parameter as a result of initially matching the target image in the process of changing the value of the parameter. The parameter value at the time of the image. 7. The image processing apparatus of claim 4, further comprising: an adjustment range specific mechanism that specifies a range in which the parameter value is changed based on the input set value. 8. The image processing apparatus of claim 4, further comprising: a variation amount specifying means that specifies an amount of change when the parameter value is changed based on the input set value. 9. The image processing apparatus according to claim 3, wherein the parameter adjustment means selects a combination of the result images assigned to the target image by using a genetic algorithm from a combination of values of the one or more parameters. The adjustment values of the parameters are the values constituting the combination of the extractions. 10. The image processing apparatus of claim 9, further comprising: an adjustment range specifying means that specifies a range in which the parameter value is changed based on the input set value. The image processing device of claim 9, further comprising: a variation specific mechanism that specifies a variation amount when the parameter value changes according to the input value of the input. The image processing device of claim 1 or 2, wherein the image processing device according to claim 1 or 2 includes, according to the feature quantity specified by the image processing parameter selected from the correction instruction, the specified feature amount of the adjustment target parameter specific mechanism is adjusted from the top The parameters of the object. f 13. —種參數調整方法,其特徵在於包括·· 目標圖像製作步驟’其從操作者接受對作為經進行圖 像處理後之結果而製作之結果圖像的修正指示,製作^ 上述修正指示反映於上述結果圖像後之目標圖像,·及 參數調整步驟,其調整上述圖像處理之參數值,以使 作為經進行上述圖像處理後之結果而製作之結果圖像與 上述目標圖像一致。 〃 14· 一種電腦可讀取之記錄媒體,其收錄有程式,該程式係 藉由用電腦執行而可於上述電腦中實現如下功能: 圖像處理功能,其進行指定圖像處理; 目標圖像製作功能,其接受對作為上述圖像處理之結 果而製作之結果圖像之修正指示,製作使上述修正指示 反映於上述結果圖像後之目標圖像;及 參數調整功能,其調整上述圖像處理之參數值,以使 作為上述圖像處理之結果而製作之結果圖像與上述目標 圖像一致。 15· —種資料處理裝置,其特徵在於包括: 124049.doc 200831887 資料處理機構,其進行指定之資料處理; =資料製作機構,其接受對作為上述資料處理之处 結果資料之修正指示,製作使上述修正指: 、於上述結果資料後之目標資料;及 參數調整機構,豆調整上沭眘 作a上、f:… 處理之參數值,以使 •功 处理之結果而取得之資料與上述目標資料 一致0 16·如請求項15之資料處理裝置,其中 上述資料處理機構進行如下圖像處理:將基準圖像與 輸出該基準圖像而獲得之檢查對象圖像加以比較,檢洌 上述檢查對象圖像中所產生之缺陷部分,製作將該檢測 出之缺陷部分以與非缺陷部分不同之顯示形態加以顯示 的圖像資料並作為上述結果資料而取得; 上述資料處理之參數規定上述缺陷部分之檢測靈敏 度0 17·如請求項15或16之資料處理裝置,其中 上述目標資料製作機構將上述結果資料顯示於顯示畫 面上,自上述顯示晝面上接辱斜 丧又對該結果資料之修正指示 之輸入。 18.如請求項17之資料處理裝置,其中 上述參數調整機構一面使上沭炎叙 :u &amp; 從上連參數值變化,一面判斷 於各參數值下所獲得之結果資料县 i β讲-欠 不貝竹疋否與上述目標貧料一 致,而決定上述參數之調整值為饉π 描-欠L丨 J正值馮獲得與上述目標貧料一 致之結果資料的參數值。 124049.doc 200831887 19. 如請求項18之資料處理裝置,其中 為由獲得 之集合之 上述參數調整機構將上述參數之調整值決定 致之結果資料的參數值構成 中位數。 20·如睛求項18之資料處理褒置 上述參數調整機構將上述參數之調整值決定為13. A method for adjusting a parameter, comprising: a target image creation step of 'receiving an instruction to correct a result image produced as a result of image processing from an operator, and producing the correction instruction a target image reflected after the result image, and a parameter adjustment step of adjusting a parameter value of the image processing to obtain a result image and a target image which are produced as a result of performing the image processing Like the same. 〃 14· A computer-readable recording medium containing a program which can be implemented by a computer to implement the following functions in the computer: an image processing function for performing specified image processing; a target image a production function that receives a correction instruction for a result image produced as a result of the image processing, creates a target image in which the correction instruction is reflected in the result image, and a parameter adjustment function that adjusts the image The parameter values are processed such that the resulting image produced as a result of the image processing described above coincides with the target image. 15. A data processing apparatus, comprising: 124049.doc 200831887 a data processing organization that performs specified data processing; = a data production organization that accepts an instruction to correct the result of the processing of the data, and makes The above amendments refer to: the target data after the above-mentioned result data; and the parameter adjustment mechanism, the parameter value of the bean adjustment and the f:... processing, so that the data obtained by the result of the power treatment and the above target The data processing device of claim 15, wherein the data processing unit performs image processing of comparing the reference image with an inspection target image obtained by outputting the reference image, and checking the inspection object a portion of the defect generated in the image, and image data for displaying the detected defective portion in a display form different from the non-defective portion is prepared and obtained as the result data; the parameter of the data processing specifies the defect portion Detection sensitivity 0 17. The data processing device of claim 15 or 16, wherein the above item The standard data production organization displays the above-mentioned result data on the display screen, and inputs the correction indication of the result data from the above-mentioned display surface. 18. The data processing apparatus of claim 17, wherein the parameter adjustment mechanism causes the upper sputum yan: u &amp; changes from the value of the upper parameter, and judges the result obtained under each parameter value. If the 欠 贝 贝 疋 一致 一致 与 与 与 与 与 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋The data processing device of claim 18, wherein the parameter value of the result data determined by the parameter adjustment means of the obtained set is the median. 20. The data processing device of the item 18 is determined by the above parameter adjustment mechanism to determine the adjustment value of the above parameters as 述參數之值變化之過程中最初獲得與上述目標資料 之結果資料時的參數值。 .如請求項18之資料處理裝置,其中更包括: 調正範圍特疋機構,其根據輸入之設定值,特定出使 上述參數值變化之範圍。 22.如請求項18之資料處理裳置其中更包括: 支化里特定機構,其根據輸入之設定值,特定出使上 述參數值變化時之變化量。 23 ·如請求項17之資料處理裝置,其中 上述參數調整機構自一個以上參數值之組合中,利用 遺傳演算法擷取賦予與上述目標資料一致之結果資料之 組合’將上述參數之調整值決定為構成該榻取之組合之 各值。 24·如請求項23之資料處理裝置,其中更包括: 凋整耗圍特定機構,其根據輸入之設定值,特定出使 上述參數值變化之範圍。 25.如請求項23之資料處理裝置,其中更包括: 臭化里特疋機構’其根據輸入之設定值,特定出使上 124049.doc 200831887 述參數值變化時之變化量。 ⑼求項15或16之資料處理裝置,其中包括: :::象參數特定機構’其根據自上述修正指示所取 传之指定之縣料旦 , 、铽里,自上述資料處理之參數中 為調整對象之參數。 γ特疋出成 27. -種參數調整方法,其特徵在於包括: 目標資料製作步驟,复 4知作者接嗳對作為經進行資 地後之結果而取得之結果資料的修正指示,製作使 上述修,指示反映於上述結果資料後之目標資料;及 &gt;數凋整步驟,其調整上述資料處理之參數之值,以 使作為經進行域資料處理後之結果韓得 述目標資料一致。 -了腦可讀取之記錄媒體,其收錄有程式,該程式係 糟由用電腦執行而可於上述電腦中實現如下功能: 資料處理功能,其進行指定之資料處理; 目標資料製作功能,其接受對作為±述轉處理之姓 果而取得之結果資料之修正指示,製作使上述修正指示 反映於上述結果資料後之目標資料;及 參數調整功能,其調整上述資料處理之參數之值,以 使作為上述資料處理之結果而取得之資料與上述目標資 料一致0 ' 124049.docThe parameter value when the result data of the above target data is initially obtained in the process of changing the value of the parameter. The data processing device of claim 18, further comprising: a correction range characteristic mechanism that specifies a range in which the value of the parameter is changed based on the input set value. 22. The data processing apparatus of claim 18, further comprising: a specific mechanism in the branching, which specifies a change amount when the parameter value is changed according to the input set value. The data processing device of claim 17, wherein the parameter adjustment mechanism uses a genetic algorithm to obtain a combination of result data that is consistent with the target data from a combination of more than one parameter value, and determines an adjustment value of the parameter. To form the values of the combination of the couch. The data processing device of claim 23, further comprising: a depletion-specific mechanism that specifies a range in which the value of the parameter is changed based on the input set value. 25. The data processing apparatus of claim 23, further comprising: the odorizing ridge mechanism </ RTI> responsive to the input set value, the amount of change in the parameter value of the change 124049.doc 200831887 is specified. (9) The data processing device of claim 15 or 16, which comprises: ::: a parameter-specific mechanism 'in accordance with the designated data from the above-mentioned correction instruction, the county, Dan, and the parameters from the above data processing are Adjust the parameters of the object. γ 疋 疋 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 参数 目标 目标Repair, indicating the target data reflected in the above result data; and &gt; numbering step, adjusting the value of the parameter of the above data processing, so that the target data of the Han Dynasty as the result of the processed domain data is consistent. - a brain-readable recording medium containing a program that can be executed by a computer to implement the following functions in the computer: data processing function, which performs specified data processing; target data creation function, Accepting an instruction to correct the result obtained as a result of the processing of the result of the processing of the result, and generating a target data for reflecting the correction instruction in the result data; and a parameter adjustment function for adjusting the value of the parameter of the data processing to Make the information obtained as a result of the above data processing consistent with the above target data 0 ' 124049.doc
TW096132773A 2006-09-05 2007-09-03 Image processing apparatus, data processing apparatus, parameter adjusting method and record medium TW200831887A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006239820 2006-09-05
JP2007206694A JP2008089574A (en) 2006-09-05 2007-08-08 Image processor, data processor, parameter adjustment method, and program

Publications (1)

Publication Number Publication Date
TW200831887A true TW200831887A (en) 2008-08-01

Family

ID=39373868

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096132773A TW200831887A (en) 2006-09-05 2007-09-03 Image processing apparatus, data processing apparatus, parameter adjusting method and record medium

Country Status (3)

Country Link
JP (1) JP2008089574A (en)
KR (1) KR20080022049A (en)
TW (1) TW200831887A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI453616B (en) * 2008-08-22 2014-09-21 Hon Hai Prec Ind Co Ltd System and method for moving close drawings reversely
TWI494895B (en) * 2011-02-14 2015-08-01 Suretint Technologies Llc Blending color and control management system
TWI503738B (en) * 2012-12-11 2015-10-11 Inventec Corp Image adjustment system for application of handheld device and method thereof
US9877569B2 (en) 2011-02-24 2018-01-30 SureTint Technologies, LLC System and method for batch sizing hair dye mixtures
US9919278B2 (en) 2008-03-03 2018-03-20 SureTint Technologies, LLC Blending station apparatus and method for using the same
US10897979B1 (en) 2019-09-12 2021-01-26 SureTint Technologies, LLC System and method for hair dye color conversion
US11246395B2 (en) 2008-03-03 2022-02-15 SureTint Technologies, LLC Color conversion system and method
US11918964B2 (en) 2008-03-03 2024-03-05 SureTint Technologies, LLC Blending station apparatus and method for using the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010128795A (en) * 2008-11-27 2010-06-10 Aisin Seiki Co Ltd Obstacle detector
JP5509773B2 (en) 2009-01-21 2014-06-04 オムロン株式会社 Parameter determination support apparatus and parameter determination support program
JP5396977B2 (en) * 2009-04-09 2014-01-22 株式会社ニコン Data processing apparatus, data processing method and program
JP6196517B2 (en) * 2013-09-26 2017-09-13 株式会社Screenホールディングス Target image generation support apparatus, target image generation support method, and program
JP6416531B2 (en) * 2014-07-24 2018-10-31 株式会社プロスパークリエイティブ Image inspection apparatus and image inspection program
JP6192880B2 (en) * 2015-05-26 2017-09-06 三菱電機株式会社 Detection apparatus and detection method
JP6641195B2 (en) * 2016-03-08 2020-02-05 株式会社Screenホールディングス Optimization method, optimization device, program, and image processing device
JP6907621B2 (en) * 2017-03-16 2021-07-21 株式会社リコー Image processing equipment, image processing system, image processing method and program
JP7199974B2 (en) * 2019-01-16 2023-01-06 株式会社日立製作所 Parameter selection device, parameter selection method, and parameter selection program
JP7282551B2 (en) 2019-03-01 2023-05-29 キヤノン株式会社 Information processing device, information processing method and program
CN114113099A (en) * 2020-08-28 2022-03-01 致茂电子(苏州)有限公司 Method for automatically adjusting electronic equipment
CN113645457B (en) * 2021-10-14 2021-12-24 北京创米智汇物联科技有限公司 Method, device, equipment and storage medium for automatic debugging

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11246395B2 (en) 2008-03-03 2022-02-15 SureTint Technologies, LLC Color conversion system and method
US11950683B2 (en) 2008-03-03 2024-04-09 B&R Holdings, Llc Color conversion system and method
US9414665B2 (en) 2008-03-03 2016-08-16 SureTint Technologies, LLC Blending color and control management system
US9839278B2 (en) 2008-03-03 2017-12-12 SureTint Technologies, LLC Blending color and control management system
US11918964B2 (en) 2008-03-03 2024-03-05 SureTint Technologies, LLC Blending station apparatus and method for using the same
US9919278B2 (en) 2008-03-03 2018-03-20 SureTint Technologies, LLC Blending station apparatus and method for using the same
US10182638B2 (en) 2008-03-03 2019-01-22 SureTint Technologies, LLC Blending color and control management system
US10893740B2 (en) 2008-03-03 2021-01-19 SureTint Technologies, LLC Color conversion system and method
TWI453616B (en) * 2008-08-22 2014-09-21 Hon Hai Prec Ind Co Ltd System and method for moving close drawings reversely
TWI494895B (en) * 2011-02-14 2015-08-01 Suretint Technologies Llc Blending color and control management system
US10716386B2 (en) 2011-02-24 2020-07-21 SureTint Technologies, LLC System and method for batch sizing hair dye mixtures
US11375801B2 (en) 2011-02-24 2022-07-05 SureTint Technologies, LLC System and method for batch sizing hair dye mixtures
US9877569B2 (en) 2011-02-24 2018-01-30 SureTint Technologies, LLC System and method for batch sizing hair dye mixtures
TWI503738B (en) * 2012-12-11 2015-10-11 Inventec Corp Image adjustment system for application of handheld device and method thereof
US10897979B1 (en) 2019-09-12 2021-01-26 SureTint Technologies, LLC System and method for hair dye color conversion
US11344103B2 (en) 2019-09-12 2022-05-31 SureTint Technologies, LLC System and method for hair dye color conversion
US11925251B2 (en) 2019-09-12 2024-03-12 SureTint Technologies, LLC System and method for hair dye color conversion

Also Published As

Publication number Publication date
JP2008089574A (en) 2008-04-17
KR20080022049A (en) 2008-03-10

Similar Documents

Publication Publication Date Title
TW200831887A (en) Image processing apparatus, data processing apparatus, parameter adjusting method and record medium
CN110428475B (en) Medical image classification method, model training method and server
CN101079952B (en) Image processing method and image processing apparatus
Matthews et al. Modelling 3D craniofacial growth trajectories for population comparison and classification illustrated using sex-differences
JP5210615B2 (en) Medical image diagnosis support apparatus and medical image diagnosis support program
TW201106294A (en) Systems, methods, and apparatus for generation of reinforcement pattern and systems, methods, and apparatus for artifact evaluation
Shrestha et al. A quantitative approach to evaluate image quality of whole slide imaging scanners
US20220284580A1 (en) Image analysis in pathology
Westra et al. Reproducibility of quantitative flow ratio: the QREP study
Rasti et al. RetiFluidNet: a self-adaptive and multi-attention deep convolutional network for retinal OCT fluid segmentation
JP4383352B2 (en) Histological evaluation of nuclear polymorphism
WO2007013300A1 (en) Abnormal shade candidate detection method and abnormal shade candidate detection device
Stoleru et al. Automated detection of celiac disease using Machine Learning Algorithms
CN101140619A (en) Image processing device, data processing device and parameter adjusting method
JP2018045396A (en) Image processing apparatus, image processing method, and program
Ha et al. Deep-learning-based enhanced optic-disc photography
Zhang et al. Evaluation of a new dataset for visual detection of cervical precancerous lesions
König et al. Quality assessment of colour fundus and fluorescein angiography images using deep learning
JP5617841B2 (en) Image processing apparatus, image processing method, and image processing program
Thalengala et al. Computerized image understanding system for reliable estimation of spinal curvature in idiopathic scoliosis
Martínez-Domingo et al. Single image dehazing algorithm analysis with hyperspectral images in the visible range
Heckel Digital morphometric analysis of Upper Palaeolithic beads: Assessing artifact variability with user-friendly freeware
JP2004199391A (en) Method and device for deciding threshold in image analysis, binarizing device and image analyzing device and information processing method with learning function and image analyzing device with learning function and, recording medium for these methods
JP2019170881A (en) Computer program, classification device, classification method, image output device, and operation method of image output device
Bouris et al. A neural network for automated image quality assessment of optic disc photographs