TW200830688A - Motor control device, and its control method - Google Patents

Motor control device, and its control method Download PDF

Info

Publication number
TW200830688A
TW200830688A TW96141003A TW96141003A TW200830688A TW 200830688 A TW200830688 A TW 200830688A TW 96141003 A TW96141003 A TW 96141003A TW 96141003 A TW96141003 A TW 96141003A TW 200830688 A TW200830688 A TW 200830688A
Authority
TW
Taiwan
Prior art keywords
frequency
inertia
control device
motor control
frequency characteristic
Prior art date
Application number
TW96141003A
Other languages
Chinese (zh)
Inventor
Nobuhiro Umeda
Original Assignee
Yaskawa Denki Seisakusho Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Denki Seisakusho Kk filed Critical Yaskawa Denki Seisakusho Kk
Publication of TW200830688A publication Critical patent/TW200830688A/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42093Position and current, torque control loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

Provided are a motor control device, which can estimate an inertial moment highly precisely within a small working range and even in case the gradient of a low frequency is not fixed due to the influence of friction or control, and a control method for the device. The motor control device comprises a speed signal generating unit (2) for generating a speed signal from a position signal, and a current control unit (1) for controlling a motor current on the basis of a torque command. Further comprised are a test torque command generating unit (3) for generating a test torque command containing multiple frequency components, a frequency characteristic calculating unit (4) for calculating the frequency characteristics from a response of the speed signal to the test torque command, and a mechanical parameter calculating unit (6) for calculating a mechanical parameter from the frequency characteristics.

Description

200830688 九、發明說明 【發明所屬之技術領域】 本發明是關於可推定機械模型之馬達控制裝置。 【先前技術】 過去’確認機械的慣性力矩的情況,要實際地驅動規 定模式的動作程度的範圍,以這時所輸出的扭矩指令和速 • 度爲基準,求出慣性力矩(moment of inertia)(日本專 利文獻1 ) 〇 另外,還有以頻率特性之低頻的傾斜度爲基準,求忠 慣性力矩(日本專利文獻2、3 ) 可以利用該慣性力矩的値,最適地調整馬達控制裝置 的參數,還可以用於進行制振控制之前授控制器(feed forward controller)或觀察者的模型,以使機械的特性提 升。 Φ 專利文獻1 :日本專利特開平9 -1 8 2 4 7 9號公報 專利文獻2:日本專利特開2002-304219號公報 專利文獻3 :日本專利特開2003-79 1 74號公報 【發明內容】 <發明所欲解決之課題> 對於習知的機械模型推定裝置,日本專利文獻1中的 習知技術的情況,由於要實際地驅動規定模式的動作程度 的範圍,故會有當達不到機械的動作範圍時,無法實施確 -4- 200830688 認動作的情況。另外,對於日本專利文獻2、3的習知技 術,由於採用利用頻率特性之低頻的傾斜度來求出慣性力 矩的手法,故會有當受到摩擦或控制的影響導致低頻的傾 斜度不一定的情況,達不到充分的確認精度的情況。 本發明是鑑於以上的問題點而提案,其目的係提供即 使是在很少的運作範圍,受到摩擦或控制的影響導致低頻 的傾斜度不一定的情況,仍可以高精度地推定慣性力矩之 馬達控制裝置及其控制方法。 <用以解決課題之手段〉 爲了要解決上述問題,本發明包括以下各項。 本發明的申請專利範圍第1項之馬達控制裝置,是一 種具備有由位置訊號來產生速度訊號之速度訊號產生部、 及根據扭矩指令來控制馬達電流之電流控制部之馬達控制 裝置,其特徵爲,具備有:產生含有多數個頻率成分之測 試扭矩指令之測試扭矩指令產生部、及由前述速度訊號對 前述測試扭矩指令的反應,算出實機頻率特性之實機頻率 特性算出部、及依據前述實機頻率特性來產生機械參數之 機械部。 本發明的申請專利範圍第2項所述之馬達控制裝置, 如同本發明的申請專利範圍第1項,其中,具備有:由位 置指令及前述位置訊號來產生速度指令之位置控制部、及 由前述速度指令及前述速度訊號來產生前述扭矩指令之速 度控制部。 -5- 200830688 本發明的申請專利範圍第3項所述之馬達控制裝置, 如同本發明的申請專利範圍第1項,其中,前述實機頻率 特性包含有:共振頻率及其振幅、反共振頻率及其振幅。 本發明的申請專利範圍第4項所述之馬達控制裝置, 如同本發明的申請專利範圍第1或2項,其中,機械參數 產生部’係使二慣性系數學模型的總慣性力矩及制動係數 反覆微小變化,以使二慣性系數學模型頻率特性與實機頻200830688 IX. Description of the Invention [Technical Field] The present invention relates to a motor control device capable of estimating a mechanical model. [Prior Art] In the past, when the moment of inertia of the machine was confirmed, the range of the degree of operation of the predetermined mode was actually driven, and the moment of inertia (moment of inertia) was obtained based on the torque command and the speed of the output. In addition, the loyal moment of inertia is based on the inclination of the low frequency of the frequency characteristic (Japanese Patent Literatures 2 and 3). The parameters of the motor control device can be optimally adjusted by using the 惯性 of the moment of inertia. It can also be used to perform a model of the feed forward controller or observer before the vibration control to improve the mechanical characteristics. Φ Patent Document 1: Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. 2002-304219. <Problems to be Solved by the Invention> In the case of the conventional mechanical model estimating device, in the case of the conventional technique of Japanese Patent Literature 1, since the range of the degree of operation of the predetermined mode is actually driven, there is a case When the machine's operating range is not reached, it is not possible to perform the correct action. Further, in the prior art of Japanese Patent Publications 2 and 3, since the method of obtaining the moment of inertia by using the low-frequency inclination of the frequency characteristic is employed, there is a case where the inclination of the low frequency is not necessarily caused by the influence of friction or control. In the case, the accuracy of the confirmation is not obtained. The present invention has been made in view of the above problems, and an object thereof is to provide a motor capable of estimating a moment of inertia with high accuracy even in a case where the inclination of a low frequency is not necessarily affected by friction or control in a small operation range. Control device and its control method. <Means for Solving the Problem> In order to solve the above problems, the present invention includes the following items. The motor control device according to the first aspect of the invention is the motor control device including a speed signal generating unit that generates a speed signal by a position signal, and a current control unit that controls the motor current according to the torque command. A test torque command generation unit that generates a test torque command including a plurality of frequency components, and a real frequency characteristic calculation unit that calculates a real machine frequency characteristic by reacting the speed signal to the test torque command, and a basis The aforementioned machine frequency characteristics are used to generate mechanical parts of the mechanical parameters. The motor control device according to the second aspect of the present invention is the position control unit for generating a speed command by a position command and the position signal, and the motor control device according to the first aspect of the present invention. The speed command and the speed signal generate a speed control unit for the torque command. -5-200830688 The motor control device according to claim 3 of the present invention, as in the first claim of the present invention, wherein the actual frequency characteristic includes: a resonance frequency and an amplitude thereof, an anti-resonance frequency And its amplitude. The motor control device according to the fourth aspect of the present invention is as in the first or second aspect of the invention, wherein the mechanical parameter generating portion is configured to make the total moment of inertia and the braking coefficient of the two inertia coefficient models. Repeat small changes to make the frequency characteristics and real frequency of the two inertia coefficient model

率特性大致一致,決定前述總慣性力矩及前述制動係數, 作爲爹數。 本發明的申請專利範圍第5項所述之馬達控制裝置” 如同本發明的申請專利範圍第4項,其中,前述二慣性系 數學模型以式子(1)來表示,反共振頻率與共振頻率之 中間頻率的增益以式子(2 )來表示, [數1] 冰―丄,少+ 2㈤+岣2) mThe rate characteristics are approximately the same, and the total moment of inertia and the aforementioned braking coefficient are determined as the number of turns. The motor control device according to claim 5 of the present invention is as in the fourth aspect of the patent application scope of the present invention, wherein the aforementioned two inertia coefficient model is represented by the formula (1), the anti-resonance frequency and the resonance frequency. The gain of the intermediate frequency is expressed by the equation (2), [number 1] ice - 丄, less + 2 (five) + 岣 2) m

Js,l i?2+為 [數2]Js, l i?2+ is [number 2]

\ -2έό2ω^2 + 〇).HAf Αζ2ω^ω2 J 此處’ J :總慣性力矩,ω η :共振頻率,ω L :反共 振頻率,ω ··測試頻率,^ .:制動係數,s :.拉普拉斯運 算符。 本發明的申請專利範圍第6項所述之馬達控制裝置, 如同本發明的申請專利範圍第5項,其中,機械參數產生 -6 - 200830688 部’係將前述實機頻率特性及前述二慣性系數學模型頻率 特性的從反共振頻率至共振頻率爲止的範圍的增益予以比 較’前述實機頻率特性的增益若是很大的話,令二慣性系 數學模型的總慣性力矩微小增加,若是很小的話,令二慣 性系數學模型的總慣性力矩微小減小,直到大致一致爲止 反覆進行。 本發明的申請專利範圍第7項所述之馬達控制裝置, 如同本發明的申請專利範圍第6項,其中,前述增益的大 小’係將從反共振頻率至.共振頻率爲止的增益面積予以比 較來決定。 本發明的申請專利範圍第8項所述之馬達控制裝置, 如同本發明的申請專利範圍第6項,其中,前述總慣性力 矩的初始値分別爲式子(3 ), [數3] 細H) () 惟’ Yl.貫機頻率特性之反共振頻率的db換算增益 Yh :共振頻率的db換算增益。 本發明的申請專利範圍第9項所述之馬達控制裝置, 係如同本發明的申請專利範圍第6項,其中,前述總慣性 力矩的初始値爲式子(5 ), ⑷ J = ’Uh/c〇l)/(cvYm) 200830688 惟’ ΥΜ :實機頻率特性的Ο) =,( ω Η · Yl)時的增 益。 本發明的申請專利範圍第1 0項所述之馬達控制裝置 ’是一種具備有由位置訊號來產生速度訊號之速度訊號產 生部、及根據扭矩指令來控制馬達電流之電流控制部的馬 達控制裝置之控制方法,其特徵爲,包括有以下的步驟: 將含有多數個頻率成分之測試扭矩指令輸入到電流控制部 且整理實機頻率特性之步驟、及將前述實機頻率特性與前 述二慣性系數學模型頻率特性予以比較之步驟、及將總慣 性力矩及制動係數予以反覆微小修正,使前述實機頻率特 性與前述二慣性系數學模型頻率特性的增益一致之步驟、 及前述增益大致一致後,決定總慣性力矩及制動係數,作 爲參數之步驟。 [發明效果] 依據本發明的申請專利範圍第1項,可以提供:當應 用開路中的頻率解析結果來確認慣性力矩的情況,針對會 受到年性摩擦或控制器的影響,而降低低頻頻帶的頻率特 性之對象,也高精度地確認之馬達控制裝置。 依據本發明的申請專利範圍第2項,可以提供:當應 用經由控制器控制之閉路的構成中的頻率解析結果來確認 慣性力矩的情況,針對會受到黏性摩擦或控制器的影響, 而降低低頻頻帶的頻率特性之對象,也高精度地確認之馬 達控制裝置。 * 8 - 200830688 依據本發明的申請專利範圍第3至9項,可以提供: 在很少的運作範圍,即使受到摩擦或控制的影響導致低頻 的傾斜度不一定的情況,仍可以高精度地推定慣性力矩之 馬達控制裝置。 依據本發明的申請專利範圍第1 〇項,可以提供:在 很少的運作範圍,即使受到摩擦或控制的影響導致低頻的 傾斜度不一定的情況,仍可以高精度地推定慣性力矩之馬 達控制裝置的控制方法。 【實施方式】 以下,根據圖面來說明本發明的具體實施例。 實施例1 : 第1圖爲表示本發明的第1竇施例的構成之方塊圖& 圖中,圖號1爲電流控制部,圖號2爲速度訊號產生部, 圖號3爲測試扭矩指令產生部,圖號4爲頻率特性算出部 ’圖號5爲機械模型算出部,圖號6爲機械模型,圖號 1 1爲馬達’圖號12爲位置檢測器,圖號1 3爲機械。電 流控制部1係將扭矩指令變換成電流指令,電流指令與馬 達電流的電流偏差經過P ID控制處理,產生電壓指令,將 電壓指令予以PWM化來驅動電力變換器,將電力供應給 馬達。速度訊號產生部2係取得與馬達結合之位置檢測器 之位置訊號的時間差分,產生速度訊號。測試扭矩指令產 生部3係在馬達控制裝置不是通常運轉模式而是測試模式 200830688 時,產生含有多數個頻率成分的扭矩指令,並輸入到電流 控制部1。頻率特性算出部係測量測試扭矩指令輸入到電 流控制部1時的速度訊號,算出頻率特性。機械模型算出 部5係頻率特性之山谷的頻率推定爲共振頻率、反共振頻 率的組合,抽出幾個的候選,判別欲模型化的2慣性系。 第3圖中表示本發明方法的流程圖。如圖示,本發明 的方法係經過步驟1〜7的7個步驟來進行處理。步驟1係 將含有多數個頻率成分之測試扭矩指令輸入到電流控制部 ,測量速度訊號的反應。步驟2係以所輸入的測試扭矩指 令和所測量之速度訊號的反應爲基準,運算機械的頻率特 性。步驟3係針對頻率特性的運算結果,進行山谷的檢測 ,推定作爲二慣性系模型的共振頻率和反共振頻率的組合 ,抽出幾個的候選。步驟4係依照目的,判別欲模型化之 二慣性系的組。例如當要求出系統全體之剛體模式的慣性 力矩的情況,選擇最低的頻率。另外,當以制振控制對於 高頻震動的調整爲目的的情況,選擇造成問題的共振頻率 及與共振頻率相對應的反共振頻率。當有多數個共振頻率 而不容易自動判別的情祝、或欲設定直接成爲對象的頻率 的情況’經由步驟5以手動來選擇共振頻率和反共振頻率 。步驟6係對被選出的共振頻率和反共振頻率的組合,進 行二慣性系模型的曲線配適,以調整模型。步驟7細從該 評估後的模型,加上共振頻率、反共振頻率,來確認慣性 力矩和振動的衰減。此外,點線部8爲日本專利文獻6中 所屬的部分。 -10- 200830688 以下,詳細地說明步驟6和步驟7。 當設定爲共振頻率ω Η、反共振頻率ω L '衰減Γ、 總慣性力矩J時,從二慣性系模型的扭矩至速度爲止的傳 達函數則以式子(1 )來表示。\ -2έό2ω^2 + 〇).HAf Αζ2ω^ω2 J Here ' J : total moment of inertia, ω η : resonance frequency, ω L : anti-resonance frequency, ω ··test frequency, ^ .: braking coefficient, s : Laplace operator. The motor control device according to claim 6 of the present invention is as in the fifth aspect of the patent application scope of the present invention, wherein the mechanical parameter generation -6 - 200830688 section is based on the actual frequency characteristic and the aforementioned two inertia system The gain of the mathematical model frequency characteristic from the anti-resonance frequency to the range of the resonance frequency is compared. 'If the gain of the actual frequency characteristic is large, the total moment of inertia of the two inertia coefficient model is slightly increased, if it is small, Let the total moment of inertia of the two inertia coefficient model be slightly reduced until it is approximately the same. The motor control device according to claim 7 of the present invention is as in the sixth aspect of the invention, wherein the magnitude of the gain is compared from the anti-resonance frequency to the resonance frequency. To decide. The motor control device according to claim 8 of the present invention is the sixth item of the patent application scope of the present invention, wherein the initial enthalpy of the total moment of inertia is respectively expressed by the formula (3), [the number 3] () Only the db conversion gain Yh of the anti-resonance frequency of the Yl. frequency characteristic: the db conversion gain of the resonance frequency. The motor control device according to claim 9 of the present invention is the sixth item of the patent application scope of the present invention, wherein the initial 値 of the total moment of inertia is expressed by the formula (5), (4) J = 'Uh/ C〇l)/(cvYm) 200830688 Only 'ΥΜ: the real frequency characteristic Ο) =, (ω Η · Yl) gain. A motor control device according to claim 10 of the present invention is a motor control device including a speed signal generating unit that generates a speed signal by a position signal and a current control unit that controls a motor current according to a torque command. The control method includes the steps of: inputting a test torque command including a plurality of frequency components to a current control unit, and arranging the actual machine frequency characteristic; and the actual frequency characteristic and the two inertia system a step of comparing the frequency characteristics of the mathematical model, and repeatedly correcting the total moment of inertia and the braking coefficient, and correcting the step of the real frequency characteristic and the gain of the frequency characteristic of the two inertia coefficient model, and the gain substantially Determine the total moment of inertia and the braking coefficient as a parameter step. [Effect of the Invention] According to the first aspect of the invention, it is possible to provide a case where the inertia moment is confirmed by applying the frequency analysis result in the open circuit, and the low frequency band is lowered in response to the influence of the annual friction or the controller. The object of the frequency characteristic is also the motor control device that is confirmed with high precision. According to the second aspect of the patent application of the present invention, it is possible to provide a case where the inertia moment is confirmed when the frequency analysis result in the configuration of the closed circuit controlled by the controller is applied, and the effect is reduced by the influence of the viscous friction or the controller. The object of the frequency characteristics of the low frequency band is also the motor control device that is confirmed with high precision. * 8 - 200830688 According to the third to ninth aspects of the patent application of the present invention, it is possible to provide a high-precision estimation with high accuracy even if the inclination of the low frequency is not necessarily affected by friction or control. Motor control device for inertia moment. According to the first aspect of the patent application of the present invention, it is possible to provide a motor control capable of estimating the inertia moment with high accuracy even in a case where the inclination of the low frequency is not necessarily caused by friction or control. The method of control of the device. [Embodiment] Hereinafter, specific embodiments of the present invention will be described based on the drawings. Embodiment 1 FIG. 1 is a block diagram showing the configuration of a first sinus embodiment of the present invention. FIG. 1 is a current control unit, and FIG. 2 is a speed signal generating unit, and FIG. 3 is a test torque. Command generation unit, Fig. 4 is a frequency characteristic calculation unit 'Fig. 5 is a mechanical model calculation unit, Fig. 6 is a mechanical model, and Fig. 1 1 is a motor 'Fig. 12 is a position detector, and Fig. 13 is a machine. . The current control unit 1 converts the torque command into a current command, and the current deviation between the current command and the motor current is subjected to P ID control processing to generate a voltage command, and the voltage command is PWM-driven to drive the power converter to supply electric power to the motor. The speed signal generating unit 2 obtains a time difference between the position signals of the position detectors coupled to the motor, and generates a speed signal. The test torque command generating unit 3 generates a torque command including a plurality of frequency components when the motor control device is not in the normal operation mode but in the test mode 200830688, and inputs it to the current control unit 1. The frequency characteristic calculation unit measures the speed signal when the test torque command is input to the current control unit 1, and calculates the frequency characteristic. The frequency of the valley of the frequency characteristic of the mechanical model calculation unit 5 is estimated as a combination of the resonance frequency and the anti-resonance frequency, and several candidates are extracted, and the two inertia systems to be modeled are determined. A flow chart of the method of the invention is shown in Figure 3. As shown, the method of the present invention is processed through the seven steps of steps 1 through 7. Step 1 is to input a test torque command containing a plurality of frequency components to the current control unit to measure the response of the speed signal. Step 2 calculates the frequency characteristics of the machine based on the input test torque command and the response of the measured speed signal. Step 3 performs a valley detection on the result of the calculation of the frequency characteristic, and estimates a combination of the resonance frequency and the anti-resonance frequency as a two-inertia model, and extracts several candidates. Step 4 determines the set of two inertial systems to be modeled according to the purpose. For example, when the inertia moment of the rigid body mode of the entire system is required, the lowest frequency is selected. Further, in the case of the purpose of adjusting the high-frequency vibration by the vibration suppression control, the resonance frequency causing the problem and the anti-resonance frequency corresponding to the resonance frequency are selected. When there are a plurality of resonance frequencies, it is not easy to automatically discriminate, or if it is desired to set a frequency that is directly targeted, the resonance frequency and the anti-resonance frequency are manually selected via step 5. Step 6 is to adjust the model by performing a curve matching of the two inertial system models on the selected combination of the resonant frequency and the anti-resonant frequency. Step 7 carefully confirms the attenuation of the moment of inertia and vibration from the model after the evaluation, plus the resonance frequency and the anti-resonance frequency. Further, the dotted line portion 8 is a portion belonging to Japanese Patent Laid-Open Publication No. 6. -10- 200830688 Hereinafter, steps 6 and 7 will be described in detail. When the resonance frequency ω Η, the anti-resonance frequency ω L 'attenuation Γ, and the total moment of inertia J are set, the transmission function from the torque of the two inertia system models to the speed is expressed by the equation (1).

該傳達函數,若以db換算增益Η(ω)來表示頻帶 中的振幅的話,則作爲頻率ω的函數,以式2來表示。此 處,衰減Γ非常小的話,共振頻率ωΗ、反共振頻率0L 的中間點,則近似於地以式子5來表示。 [數4] 4^1 = 201cgL..W^^l- 1 <5) ^ 1 J {ω£ + ωΗ X&L + 3ωΗ)) 當經由頻率反應運算所求出之反共振頻率的增益爲 YL、共振頻率的增益爲YH的話,總慣性力矩J由式子( 3 )可以算出。增益採用周邊數點的平均値較佳。 、 將經由式子(5 )近似地求出的J和(二〇作爲初始 値’利用使用式子(2 )的模型與經由測定所獲得的頻率 反應運算結果之曲線配適來確認參數。曲線配適可以採用 最小平方法或遺傳演算法(genetic algorithms)等的各種 方法’不過此處則是針對第4圖所示的反共振頻率—共振 頻率間的面積比較和中間點比較進行說明。圖中顯示:經 由測定所獲得的實機頻率特性1、二慣性系數學模型頻率 特性2、g平估開始點3、評估結束點4。3爲對應於反共振 頻率’ 4爲對應於共振頻率。若表示調整條件的話,則如 以下所示。 200830688 首先,針對衰減係數r,當經由頻率特性運算所獲得 的增益爲Υ ( ω)的話,以式子(6)的條件來調整。 [數5] d+ j if ^r(&) ‘ p $-方 tf Σ,Φ) (6) 此處’(5爲任意的整數値,至於總慣性力矩j則是以This transfer function is expressed by Equation 2 as a function of the frequency ω when the gain in the frequency band is expressed by the db conversion gain ω (ω). Here, if the attenuation Γ is very small, the intermediate point between the resonance frequency ω Η and the anti-resonance frequency 0L is expressed by Equation 5. [Equation 4] 4^1 = 201cgL..W^^l- 1 <5) ^ 1 J {ω£ + ωΗ X&L + 3ωΗ)) Gain of anti-resonance frequency obtained by frequency response operation In the case of YL and the gain of the resonance frequency is YH, the total moment of inertia J can be calculated by the equation (3). The gain is preferably averaged around the number of points. The parameters which are approximated by the equation (5) and (the two are used as the initial 値' are matched by the curve of the model using the equation (2) and the frequency reaction calculation result obtained by the measurement. Various methods such as the least square method or the genetic algorithm can be used for the adaptation. However, the area comparison and the intermediate point comparison between the antiresonance frequency and the resonance frequency shown in FIG. 4 will be described. It is shown that the real frequency characteristic obtained by the measurement, the two inertia coefficient model frequency characteristic 2, the g-estimation starting point 3, and the evaluation end point 4. 3 correspond to the anti-resonance frequency '4 corresponding to the resonance frequency. When the adjustment condition is indicated, it is as follows. 200830688 First, for the attenuation coefficient r, when the gain obtained by the frequency characteristic calculation is Υ (ω), the condition is adjusted by the condition of equation (6). ] d+ j if ^r(&) ' p $-方tf Σ,Φ) (6) where '(5 is an arbitrary integer 値, as for the total moment of inertia j is

以下的條件來調整。 [數6] J - J + σ if J = σ ifThe following conditions are adjusted. [Number 6] J - J + σ if J = σ if

m 此處’ σ爲任意的整數値。當將模型限定在二慣性系 的情況,總慣性力矩利用式子(7 )的條件很容易求出, 故衰減係數經由判定模型與利用測定所獲得之頻率特性的 一致度,就可以求出。 將求出系統全體的剛體模式之慣性力矩的情況之具體 性的確認結果的例子顯示在第3、4圖中。第3圖爲表示 利用習知的手法所獲得的確認結果之圖。第6圖爲本發明 所獲得的確認結果之圖。對於測定的頻率特性1,經由曲 線配適所確認的模型,習知例子爲5,本發明的模型則爲 2。對於剛體模式之慣性力矩真實値60倍的機械,習知的 手法被確認爲低頻帶之傾斜的平均値至70倍,相對於此 ,利用本手法則確認値成爲55.5倍,得知比習知的手法 -12- ,200830688 還要更高精度地確認慣性力矩。 實施例2 : 第2圖爲表示本發明的第2實施例的構成之方塊圖。 在第1實施例中追加了位置控制部7及速度控制部8。 另外,爲了要確認總慣性力矩,也可以將共振頻率與 反共振頻率之中間點的頻率選定爲 。f = 〇時,頻率ω μ中之二慣性系模型的增益Η,( ω ) ,以式子(8 )來表示。 HJ (ω)= I GJ 〇ω) | =(1/]/ω ) /ω ) ⑻ L H L / 另外’實機頻率特性之中間點的增益設爲ΥΜ的話 總慣性力矩J則以式子(9 )來表示。 J = /"(ω /ω )/ω /Ύ ⑼m where ' σ is an arbitrary integer 値. When the model is limited to the two inertia system, the total moment of inertia can be easily obtained by using the condition of the equation (7). Therefore, the attenuation coefficient can be obtained by the degree of matching between the determination model and the frequency characteristics obtained by the measurement. An example of the result of confirming the specificity of the moment of inertia of the rigid body mode of the entire system is shown in Figs. 3 and 4. Fig. 3 is a view showing the result of confirmation obtained by a conventional technique. Fig. 6 is a view showing the result of confirmation obtained by the present invention. For the measured frequency characteristic 1, the model confirmed by the curve adaptation is 5, and the model of the present invention is 2. In the case of a machine in which the moment of inertia of the rigid body mode is exactly 60 times, the conventional method is confirmed to be an average of 70 times the inclination of the low frequency band. On the other hand, it is confirmed that the enthalpy is 55.5 times by using this method. The method of -12-, 200830688 also needs to confirm the moment of inertia with higher precision. Embodiment 2: Fig. 2 is a block diagram showing the configuration of a second embodiment of the present invention. In the first embodiment, the position control unit 7 and the speed control unit 8 are added. Further, in order to confirm the total moment of inertia, the frequency of the intermediate point between the resonance frequency and the anti-resonance frequency may be selected as . When f = 〇, the gain Η, ( ω ) of the two inertial system models in the frequency ω μ is expressed by the equation (8). HJ (ω)= I GJ 〇ω) | =(1/]/ω ) /ω ) (8) LHL / In addition, the gain of the midpoint of the actual frequency characteristic is set to ΥΜ, then the total moment of inertia J is given by (9) )To represent. J = /"(ω /ω )/ω /Ύ (9)

Η L L Μ Κ JΗ L L Μ Κ J

將此値作爲初始値來使用即可。 求出的慣性力矩係採用共振點和反共振點的頻率及增 益,所以即使對於多慣性結構的模型處理,仍會求出各別 彈簧要件的彈簧常數和慣性力矩,故可以應用於與此相對 應的濾波器的最適當設定 [產業上的可利用性] 本發明的馬達控制裝置,即使在很小的運作範圍,受 -13- 200830688 到摩擦或控制的影響導致低頻的傾斜度不一 一 次1 疋的情況,仍 可以高精度地推定慣性力矩,所以首推機器人或工作母機 ,可以期待應用於一般的產業機械。另外,本發明雖是以 組裝在馬達控制裝置的裡面爲前提,不過也能夠當作慣性 力矩推定裝置來應用。 【圖式簡單說明】 • 第1圖爲表示本發明的構成之方塊圖。 第2圖爲表示本發明的構成之方塊圖。 第3圖爲表示本發明的方法之流程圖。 第4圖爲表示本發明的曲線配適方法之圖。 第5圖爲習知方法的確認結果之圖。 第6圖爲本發明的確認結果之圖。 [主要元件符號說明】 • 1 :電流控制部 2 :速度訊號產生部 3 :測試扭矩指令產生部 4 :頻率特性算出部 5 :機械參數算出部 6 :機械參數 7 :位置控制部 8 :速度控制部 11 :馬達 -14- 200830688 12 : 13 : 21 : 22 : 23 : 24: 25 : 位置檢測部 機械 經由測定所獲得之頻率反應 二慣性系模型的頻率反應 評估開始點 評估結束點 剛體系模型的頻率特性Use this as an initial flaw. The obtained inertia moment adopts the frequency and gain of the resonance point and the anti-resonance point. Therefore, even for the model processing of the multi-inertial structure, the spring constant and the moment of inertia of the respective spring elements are obtained, so that it can be applied to this phase. The most appropriate setting of the corresponding filter [Industrial Applicability] The motor control device of the present invention, even in a small operating range, is affected by friction or control from -13 to 200830688, resulting in low frequency tilt. In the case of the first one, the inertia moment can be estimated with high accuracy. Therefore, the first robot or the working machine can be expected to be applied to general industrial machinery. Further, although the present invention is based on the assumption that it is incorporated in the motor control device, it can be applied as an inertia moment estimating device. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing the configuration of the present invention. Fig. 2 is a block diagram showing the configuration of the present invention. Figure 3 is a flow chart showing the method of the present invention. Fig. 4 is a view showing a method of fitting the curve of the present invention. Figure 5 is a graph showing the results of the confirmation of the conventional method. Figure 6 is a diagram showing the results of confirmation of the present invention. [Description of main component symbols] • 1 : Current control unit 2 : Speed signal generation unit 3 : Test torque command generation unit 4 : Frequency characteristic calculation unit 5 : Mechanical parameter calculation unit 6 : Mechanical parameter 7 : Position control unit 8 : Speed control Part 11: Motor-14- 200830688 12 : 13 : 21 : 22 : 23 : 24: 25 : The position detection unit mechanically obtains the frequency response obtained by the measurement. The frequency response evaluation of the two inertial frame model starts the point evaluation end point just the system model Frequency characteristics

-15 --15 -

Claims (1)

200830688 十、申請專利範圍 1 · 一種馬達控制裝置,是具備有由位置訊號來產生 速度訊號之速度訊號產生部、及根據扭矩指令來控制馬達 電流之電流控制部;其特徵爲具備有: 產生含有多數個頻率成分之測試扭矩指令之測試扭矩 指令產生部;及 由對前述測試扭矩指令之前述速度訊號的反應,算出 實機頻率特性之實機頻率特性算出部;及 依據前述實機頻率特性來產生機械參數之機械參數產 生部。 2 ·如申請專利範圍第1項所述之馬達控制裝置,其 中具備有:由位置指令及前述位置訊號來產生速度指令之 位置控制部、及由前述速度指令及前述速度訊號來產生前 述扭矩指令之速度控制部。 3、如申請專利範圍第1項所述之馬達控制裝置,其 中,前述實機頻率特性包含有:共振頻率及其振幅、反共 振頻率及其振幅。 4 ·如申請專利範圍第1或2項所述之馬達控制裝置 ,其中,機械參數產生部,係使二慣性系數學模型的總慣 性力矩及制動係數反覆微小變化,以使二慣性系數學模型 頻率特性與實機頻率特性大致一致,決定前述總慣性力矩 及前述制動係數,作爲參數。 5 ·如申請專利範圍第4項所述之馬達控制裝置,其 中’前述二慣性系數學模型以式子(1 )來表示,反共振 -16- 200830688 頻率與共振頻率之中間頻率的增益以式子(2)來表示 ω 2扣4‘- 2o^ml + fi>z4 + Αζ2ω^ώ2 ^ωΖ2ω^ωΑ — 2α>έα>^2 η> + Αζ^ω^ω2 ^ 此處,J :總慣性力矩,ω Η :共振頻率,ω L :反共 振頻率,:測試頻率,Γ :制動係數,S :拉普拉斯運 Φ 算符。 6.如申請專利範圍第5項所述之馬達控制裝置,其 中,機械參數產生部,係將前述實機頻率特性及前述二慣 性系數學模型頻率特性的從反共振頻率至共振頻率爲止的 範圍的增益予以比較,前述竇機頻率特性的增益若是爲大 的話,令二慣性系數學模型的總慣性力矩微小增加,若是 爲小的話,令二慣性系數學模型的總慣性力矩微小減小, 直到大致一致爲止反覆進行。 # 7.如申請專利範圍第6項所述之馬達控制裝置,其 中,前述增益的大小,係將從反共振頻率至共振頻率爲止 的增益面積予以比較來決定。 8 ·如申請專利範圍第6項所述之馬達控制裝置,其 中,前述總慣性力矩的初始値分別爲式子(3 ), τ— 2ω.Η2{3ωίή·ώΗ) … • ~nf,+v,- (?) e40 1 B ^L\wh ^·ω.Η f〇y^3wk). 惟,YL :實機頻率特性之反共振頻率的db換算增益 YH :共振頻率的db換算增益。 -17- 200830688 9 ·如申請專利範圍第6項所述之馬達控制裝置,其 中,前述總慣性力矩的初始値爲式子(5 ), ] = ^(ωΗ/ω^/(ω^ΥΜ) (4) 惟’ Υ Μ :貫機頻率特性的0 = \/~ ( ω Η · ω L )時的增 益。 1 〇 . 一種馬達控制裝置之控制方法,是具備有由位置 Φ 訊號來產生速度訊號之速度訊號產生部、及根據該扭矩指 令來控制馬達電流之電流控制部的馬達控制裝置之控制方 法,其特徵爲: 具備有以下的步驟: 將含有多數個頻率成分之測試扭矩指令輸入到電流控 制部且求出實機頻率特性之步驟;及 將前述實機頻率特性與前述二慣性系數學模型頻率特 性予以比較之步驟;及 # 將總慣性力矩及制動係數予以反覆微小修正,使前述 實機頻率特性與前述二慣性系數學模型頻率特性的增益一 致之步驟;及 前述增益大致一致後,決定總慣性力矩及制動係數, 作爲參數之步驟。 -18-200830688 X. Patent Application No. 1 A motor control device is provided with a speed signal generating unit that generates a speed signal from a position signal and a current control unit that controls a motor current according to a torque command, and is characterized in that: a test torque command generating unit for a test torque command of a plurality of frequency components; and a real machine frequency characteristic calculating unit that calculates a real machine frequency characteristic by a response to the speed signal of the test torque command; and based on the actual frequency characteristic A mechanical parameter generating unit that generates mechanical parameters. The motor control device according to claim 1, further comprising: a position control unit that generates a speed command by the position command and the position signal; and the torque command and the speed signal to generate the torque command Speed control unit. 3. The motor control device according to claim 1, wherein the real frequency characteristic includes: a resonance frequency and an amplitude thereof, an anti-resonance frequency, and an amplitude thereof. 4. The motor control device according to claim 1 or 2, wherein the mechanical parameter generating unit causes the total moment of inertia and the braking coefficient of the two inertia coefficient models to be slightly changed in order to make the two inertia coefficient model The frequency characteristics are substantially identical to the actual machine frequency characteristics, and the total inertia moment and the aforementioned braking coefficient are determined as parameters. 5. The motor control device according to claim 4, wherein the 'two inertia coefficient model is expressed by the formula (1), and the gain of the intermediate frequency of the anti-resonance-16-200830688 frequency and the resonance frequency is Sub (2) to represent ω 2 buckle 4'- 2o^ml + fi>z4 + Αζ2ω^ώ2 ^ωΖ2ω^ωΑ — 2α>έα>^2 η> + Αζ^ω^ω2 ^ Here, J: total inertia Torque, ω Η : resonance frequency, ω L : anti-resonance frequency,: test frequency, Γ: braking coefficient, S: Laplace Φ operator. 6. The motor control device according to claim 5, wherein the mechanical parameter generating unit ranges the anti-resonance frequency to the resonance frequency of the real frequency characteristic and the frequency characteristic of the two inertia coefficient model. The gain is compared. If the gain of the sinus machine frequency characteristic is large, the total moment of inertia of the two inertia coefficient model is slightly increased. If it is small, the total moment of inertia of the two inertia coefficient model is slightly reduced until Repeatedly as usual. The motor control device according to claim 6, wherein the magnitude of the gain is determined by comparing a gain area from an anti-resonance frequency to a resonance frequency. 8. The motor control device according to claim 6, wherein the initial enthalpy of the total moment of inertia is respectively expressed by equation (3), τ-2ω.Η2{3ωίή·ώΗ) ... • ~nf, +v , - (?) e40 1 B ^L\wh ^·ω.Η f〇y^3wk). YL: db conversion gain YH of the anti-resonance frequency of the real machine frequency characteristic: db conversion gain of the resonance frequency. -17- 200830688. The motor control device according to claim 6, wherein the initial 惯性 of the total moment of inertia is expressed by the formula (5), ] = ^(ωΗ/ω^/(ω^ΥΜ) (4) Only ' Υ Μ : Gain of 0 = \/~ ( ω Η · ω L ) of the frequency characteristic of the machine. 1 〇. A control method for the motor control device that has the speed generated by the position Φ signal A signal signal generating unit and a motor control device control method for controlling a motor current based on the torque command, wherein the method includes the following steps: inputting a test torque command including a plurality of frequency components to a step of obtaining a real machine frequency characteristic by the current control unit; and a step of comparing the actual frequency characteristic with the frequency characteristic of the two inertia coefficient model; and # repeating the total moment of inertia and the braking coefficient by a minor correction a step of matching the frequency characteristic of the real machine with the gain of the frequency characteristic of the two inertia coefficient model; and after the gains are substantially identical, determining the total moment of inertia and the braking coefficient as parameters Steps to number. -18-
TW96141003A 2006-11-01 2007-10-31 Motor control device, and its control method TW200830688A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006297628 2006-11-01

Publications (1)

Publication Number Publication Date
TW200830688A true TW200830688A (en) 2008-07-16

Family

ID=39344114

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96141003A TW200830688A (en) 2006-11-01 2007-10-31 Motor control device, and its control method

Country Status (4)

Country Link
JP (1) JPWO2008053772A1 (en)
CN (1) CN101536305A (en)
TW (1) TW200830688A (en)
WO (1) WO2008053772A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6177705B2 (en) * 2014-02-21 2017-08-09 三菱重工業株式会社 Control device of mechanical device and gain determination method for friction compensation
JP6409743B2 (en) 2015-10-30 2018-10-24 オムロン株式会社 Command generator
JP7000894B2 (en) * 2018-02-08 2022-01-19 株式会社明電舎 Physical parameter estimation method
JP7006471B2 (en) * 2018-04-12 2022-01-24 オムロン株式会社 State change detection device and state change detection method
KR20210020874A (en) 2018-06-15 2021-02-24 파나소닉 아이피 매니지먼트 가부시키가이샤 Motor drive device and servo adjustment method
JP7230707B2 (en) * 2019-06-26 2023-03-01 日本精工株式会社 Linear drive monitoring device and method for monitoring linear drive
CN114002803A (en) * 2020-07-28 2022-02-01 上海艾为电子技术股份有限公司 Driving chip and driving method of motor and electronic equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304219A (en) * 2001-04-04 2002-10-18 Yaskawa Electric Corp Motor controller and mechanism characteristic measuring method
JP4110358B2 (en) * 2001-09-04 2008-07-02 株式会社安川電機 Machine model estimation device for motor controller
JP4501368B2 (en) * 2003-06-27 2010-07-14 株式会社安川電機 Multi-inertia machine model estimation device for motor control device and motor control device
JP4594165B2 (en) * 2005-05-24 2010-12-08 株式会社日立産機システム Mechanical system parameter estimation method and system for motor controller

Also Published As

Publication number Publication date
JPWO2008053772A1 (en) 2010-02-25
CN101536305A (en) 2009-09-16
WO2008053772A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
TW200830688A (en) Motor control device, and its control method
JP5443764B2 (en) Adaptive drive system using current value of personal medicine
US10197986B2 (en) Control apparatus of an electric motor
JP6050865B1 (en) Servo control device with function to optimize control gain online with evaluation function
JP2016528997A5 (en)
WO2004049550A1 (en) Speed controller for motor
US7902786B2 (en) Motor controller
JP2016111897A (en) Servo controller having filter auto adjustment function using experimental mode analysis
TW201212518A (en) Motor controlling apparatus
JP3751606B2 (en) Method for estimating rotor inertia
JP2003079174A (en) Mechanical model estimating equipment of motor control equipment
WO2003017459A1 (en) Electric motor controller resonance frequency detection apparatus
JPWO2005064781A1 (en) Motor control device
TW566010B (en) Frequency characteristic identifying method and drive controlling apparatus
JP2008054448A5 (en)
JP2004227062A (en) Limit-cycle automatic tuning method and heat/cool control device
JP7081346B2 (en) Motor control device
JP4891885B2 (en) Resonance point tracking drive
WO2007122904A1 (en) Motor control device, and control parameter adjusting method
JPH07311124A (en) Vibration controller
JP7284386B2 (en) Control system design equipment and test equipment equipped with it
JP4378903B2 (en) PID adjustment device
JP4801134B2 (en) Vibration test apparatus and vibration test method
JP7348468B2 (en) Dead time estimation device and testing device equipped with the same
JP6555142B2 (en) Torque control value generation device and dynamo drive control device including the same