TW200830046A - Negative resist composition for an electron beam and resist pattern formation method - Google Patents

Negative resist composition for an electron beam and resist pattern formation method Download PDF

Info

Publication number
TW200830046A
TW200830046A TW96129039A TW96129039A TW200830046A TW 200830046 A TW200830046 A TW 200830046A TW 96129039 A TW96129039 A TW 96129039A TW 96129039 A TW96129039 A TW 96129039A TW 200830046 A TW200830046 A TW 200830046A
Authority
TW
Taiwan
Prior art keywords
group
compound
electron beam
negative
alkyl group
Prior art date
Application number
TW96129039A
Other languages
Chinese (zh)
Inventor
Kiyoshi Ishikawa
Yoshinori Sakamoto
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Publication of TW200830046A publication Critical patent/TW200830046A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

A negative type resist composition for an electron beam comprising at least one member selected from the group consisting of the hydrolysate of alkoxysilane-compound represented by the following general formula (I) and the condensate of alkoxysilane-compound represented by the following general formula (I), and a nonionic acid generator component (B): wherein, R1 represents a hydrogen atom or a 1-valent organic group; R2 is 1-valent organic group; n is an integer of 1 to 3.

Description

200830046 九、發明說明 【發明所屬之技術領域】 本發明爲有關電子線用負型光阻組成物及光阻圖型之 形成方法。 本案爲基於2006年9月26日於日本提出申請之特願 2 006-2 60805號主張優先權,本說明書中係援用該內容。 【先前技術】 微影蝕刻技術中,例如於基板上形成由光阻材料所得 之光阻膜,並對於前述光阻膜,介由形成特定圖型之光罩 ’以光、電子線等放射線進行選擇性曝光,經施以顯影處 理’使前述光阻膜形成具有特定形狀之光阻圖型之方式進 行。 經曝光之部份變化爲具有溶解於顯影液之特性的光阻 材料稱爲正型,經曝光之部份變化爲具有不溶解於顯影液 之特性的光阻材料稱爲負型。 近年來,於半導體元件或液晶顯示元件之製造中,伴 隨微影鈾刻技術之進步而急速的推向圖型之微細化。 微細化之方法,一般而言,爲將曝光光源予以短波長 化之方式進行。具體而言爲,以往爲使用g線、i線爲代 表之紫外線。但現在則開始使用KrF準分子雷射、或ArF 準分子雷射以進行半導體元件之量產。 又’對於前述準分子雷射具有更短波長之F2準分子 雷射、電子線、EUV (極紫外線)或X線等亦已開始進行硏 200830046 究。 光阻材料,則尋求對於前述曝光光源具有感度,具有 可重現微細尺寸圖型之解析性等微影触刻特性。 可滿足前述要求之光阻材料,一般常用含有基於酸之 作用使鹼可溶性產生變化之基礎樹脂,與經由曝光產生酸 之酸產生劑之增強化學型光阻。 例如正型之增強化學型光阻,其爲含有作爲基礎樹脂 之基於酸之作用而增大鹼溶解性之樹脂,與酸產生劑成份 ,其於光阻圖型形成時,經由曝光使酸產生劑產生酸,而 使曝光部形成鹼可溶性。 又,負型之增強化學型光阻,例如含有具羧基之樹脂 成份、具有醇性羥基之交聯劑,及酸產生劑,而於光阻圖 型形成時,經由酸產生劑所發生之酸的作用,使樹脂成份 之羧基與交聯劑之醇性羥基產生反應,而使樹脂成份由鹼 可溶性變化爲不溶性。 目前,於ArF準分子雷射微影蝕刻等所使用之光阻的 基礎樹脂,就於1 9 3 nm附近具有優良透明性等觀點’一般 多使用主鏈具有(甲基)丙烯酸酯所衍生之構成單位之樹脂 (丙烯酸酯系樹脂)等(例如專利文獻1參照)。 [專利文獻1]特開2003 -24 1 3 85號公報 【發明內容】 因此,今後則尋求一種可提供對應高解析性等各種微 影蝕刻特性需求之新穎光阻材料。 -5- 200830046 特別是伴隨著近年來圖型急遽地微細化,急需尋求一 種對於波長較上述準分子雷射之波長爲短之電子線具有良 好感度之光阻材料。 本發明即是鑒於上述情事所提出者,而以提出一種新 穎之電子線用負型光阻組成物與使用前述電子線用負型光 阻組成物之光阻圖型之形成方法爲目的。 爲達上述之目的,本發明係採用以下之構成內容。 即,本發明之第一實施態樣(aspect)爲,一種電子線 用負型光阻組成物,其特徵爲含有由下述通式(I)所示之 烷氧基矽烷化合物之水解物與下述通式(I)所示之烷氧基 矽烷化合物之縮合物所形成之群所選出之至少1種的化合 物(A),與非離子性酸產生劑(B), 【化1】 R1-Si(OR2)4-n [式(I)中,R1爲氫原子或1價之有機基,R2爲1價之有機基 ,η爲1〜3之整數]。 又,本發明之第二實施態樣(aspect)爲,一種光阻圖 型之形成方法,其特徵爲包含,使用前述第一實施態樣 (aspect)之電子線用負型光阻組成物於基板上形成光阻膜 之步驟,使前述光阻膜曝光之步驟,與使前述光阻膜顯影 以形成光阻圖型之步驟。 本說明書與申請專利範圍中,「有機基」係指含碳原 -6 - 200830046 子之基’其亦可具有碳原子以外之原子(例如氫原子、氧 原子、氮原子、硫原子、鹵素原子(氟原子、氯原子等)等 )° 本說明書中,「烷基」,於無特別限定下,爲包含直 鏈、支鏈與環狀之1價飽和烴基。 「低級烷基」,係指碳原子數1〜5之烷基之意。 「曝光」,於無特別限定下,係指電子線照射之意。 本發明可提供一種新穎之電子線用負型光阻組成物與 使用前述電子線用負型光阻組成物之光阻圖型之形成方法 《電子線用負型光阻組成物》 本發明之電子線用負型光阻組成物,爲含有由前述通 式(I)所示之烷氧基矽烷化合物之水解物與下述通式(I)所 示之烷氧基矽烷化合物之縮合物所形成之群所選出之至少 1種的化合物(A)(以下稱爲(A)成份)與,非離子性酸產生劑 (B)(以下稱爲(B)成份)。 < (A)成份〉 本發明中,(A)成份爲前述通式(I)所示之烷氧基矽烷 化合物之水解物及/或縮合物。 前述通式(I)所示之烷氧基矽烷化合物,經由水解使 烷氧基形成羥基、醇。隨後,使前述醇之2分子縮合,以 形成Si-0-Si之網絡之方式而得(A)成份。 200830046 前述通式(I)中,R1爲氫原子或1價之有機基,R2爲1 價之有機基。 R1、R2中,1價之有機基,例如烷基、芳基、烯丙基 、縮水甘油基等。其中又以烷基、芳基爲佳。 該些烷基、芳基,可具有取代基。前述取代基,並未 有特別限定,例如可爲氟原子、碳數1〜6之直鏈、支鏈或 環狀之烷基等。 其中,本說明書中,「可具有取代基」係指例如烷基 或芳基之氫原子的一部份或全部被取代基所取代之意。 烷基,以碳數1〜5者(低級烷基)爲佳,例如,甲基、 乙基、丙基、丁基等。又’烷基,可爲直鏈狀或分支鏈狀 皆可,又如上所述般,例如氫原子被氟原子等所取代者亦 可。 芳基,以碳數6〜20者爲佳,例如苯基、萘基等。 前述通式(I)中,n爲1〜3之整數。 上述通式(I)所示之烷氧基矽烷化合物之具體例,例 如以下之化合物等。 (i)n = 1之情形,三甲氧矽烷化合物、三乙氧矽烷化合 物、三丙氧基矽烷化合物等之三烷氧基矽烷化合物(R1爲 氫原子之情形)= 單甲基三甲氧矽烷化合物、單甲基三乙氧矽烷化合物 、單甲基三丙氧基矽烷化合物、單乙基三甲氧矽烷化合物 、單乙基三乙氧矽烷化合物、單乙基三丙氧基矽烷化合物 、單丙基三甲氧矽烷化合物、單丙基三乙氧矽烷化合物等 -8- 200830046 之單烷基三烷氧基矽烷化合物; 單苯基三甲氧矽烷化合物、單苯基三乙氧矽烷化合物 等之單苯基三烷氧基矽烷化合物等。 (ii>n= 2之情形’二甲氧矽烷化合物、二乙氧基矽烷 化合物、二丙氧基@丨完化4合物等之一丨完氧基砂丨完化1合物 (R1爲氣原子之情形); 二甲基二甲氧矽烷化合物、二甲基二乙氧基矽烷化合 物、二甲基二丙氧基矽烷化合物、二乙基二甲氧矽烷化合 物、二乙基二乙氧基矽烷化合物、二乙基二丙氧基矽烷化 合物、二丙基二甲氧矽烷化合物、二丙基二乙氧基矽烷化 合物、二丙基二丙氧基矽烷化合物等二烷基二烷氧基矽烷 化合物; 二苯基二甲氧矽烷化合物、二苯基二乙氧基矽烷化合 物等之二苯基二院氧基砂院化合物等。 (iii)n二3之情形,甲氧基矽烷化合物、乙氧基矽烷化 合物、丙氧基政院化合物等之院氧基砂院化合物(R爲氨 原子之情形); 三甲基甲氧矽烷化合物、三甲基乙氧矽烷化合物、三 甲基丙氧基矽烷化合物、三乙基甲氧矽烷化合物、三乙基 乙氧矽烷化合物、三乙基丙氧基矽烷化合物、三丙基甲氧 矽烷化合物、三丙基乙氧矽烷化合物等三烷基烷氧基矽烷 化合物; 三苯基甲氧矽烷化合物、三苯基乙氧矽烷化合物等三 苯基烷氧基矽烷化合物等。 -9- 200830046 上述內容中,又以使用三甲氧矽烷化合物、三乙氧矽 烷化合物、三丙氧基矽烷化合物等三烷氧基矽烷化合物 (R1爲氫原子之情形);單甲基三甲氧矽烷化合物、單甲基 三乙氧矽烷化合物、單甲基三丙氧基矽烷化合物等之單甲 基三烷氧基矽烷化合物爲佳,又以三烷氧基矽烷化合物 (R1爲氫原子之情形)爲更佳。其中又以三乙氧矽烷化合物 爲最佳。 本發明之電子線用負型光阻組成物中,上述通式(I) 所示之烷氧基矽烷化合物,可單獨使用1種,或將2種以上 組合使用亦可。 又,本發明之電子線用負型光阻組成物中,含有上述 通式(I)所示之烷氧基矽烷化合物之縮合物的情形中,該 縮合物之質量平均分子量(Mw)(凝膠滲透色層分析法之聚 苯乙烯換算基準)以200〜50,000爲佳,以500〜1 0,000爲更 佳,以1,000〜3,000爲最佳。於該範圍內時,可提高電子 線用負型光阻組成物對基板等之塗佈性。又,存在縮合物 時,亦可提高電子線用負型光阻組成物所形成之光阻膜( 硬化膜)與基板之密著性。 上述通式(I)所不之院氧基砂院化合物之縮合物,爲 作爲聚合單體之烷氧基矽烷化合物,於有機溶劑中、酸觸 媒之存在下進行反應而可製得(以下,此處所得之含有烷 氧基矽烷化合物之縮合物溶液稱爲「矽烷系被膜形成用塗 佈液」)。 作爲聚合單體之烷氧基矽烷化合物,可單獨使用1種 -10- 200830046 ,或將2種以上組合後予以縮合亦可。 有機溶劑,例如就提昇矽烷系被膜形成用塗佈液之保 存安定性(例如,抗凝膠化之效果等)之觀點,以使用烷二 醇二烷基醚爲佳。 該烷二醇二烷基醚,例如乙二醇二甲基醚、乙二醇二 乙基醚、乙二醇二丙基醚、乙二醇二丁基醚、二乙二醇二 甲基醚、二乙二醇二乙基醚、二乙二醇二丙基醚、二乙二 醇二丁基醚、丙二醇二甲基醚、丙二醇二乙基醚、丙二醇 二丙基醚、丙二醇二丁基醚等。其中,較佳者爲丙二醇之 二烷基醚,最佳爲丙二醇二甲基醚。 該些有機溶劑可單獨使用亦可’或將2種以上組合使 用亦可。 其使用量,以相對於烷氧基矽烷化合物1莫耳’使用 1 0〜3 0莫耳倍量之比例。 作爲縮合前提之烷氧基矽烷化合物之水解的程度’可 依所添加之水的量進行調整’ 一般而言’爲相對於上述通 式(I)所示之院氧基砂院化合物之合計旲耳數’添加1〜 倍莫耳之比例爲佳,更佳爲1 · 5〜8倍莫耳之比例。水之添 加量爲1倍莫耳以上時’可使水解度提高’進而提昇烷氧 基矽烷化合物(上述之醇)相互間之縮合的反應性。又’爲 1 0倍莫耳以下時,因凝膠化受到抑制’而可提高矽烷系被 膜形成用塗佈液之保存安定性。 又,上述通式(1)所示之院氧基砂垸化合物之縮合中 所使用之酸觸媒,並未有特別限制’其可使用以往慣用的 -11 - 200830046 有機酸、無機酸等皆可使用。 有機酸,例如乙酸、丙酸、丁酸等之有機羧酸。無機 酸,例如,鹽酸、硝酸、硫酸、磷酸等。 酸觸媒,可直接添加於烷氧基矽烷化合物與水之混合 物中,或,可於添加於烷氧基矽烷化合物中之水的同時以 酸性水溶液方式添加。 水解反應,通常於5〜100小時左右結束。又,於不超 過室溫80 °C之加熱溫度中,於含有1種以上之上述通式(I) 所示之烷氧基矽烷化合物的有機溶劑中,滴下酸觸媒水溶 液使其產生反應,而可於較短反應時間內完成反應。水解 後之烷氧基矽烷化合物,其後,引起縮合反應,其結果, 可得到形成有Si-0_si網絡之(A)成份。又,(A)成份中, 於含有烷氧基矽烷化合物之縮合物的同時,亦可含有烷氧 基矽烷化合物之水解物亦可。 本發明之電子線用負型光阻組成物之製造中,(A)成 份,例如以上述之矽烷系被膜形成用塗佈液的狀態下較適 合使用。 該矽烷系被膜形成用塗佈液,例如可將上述通式(I) 所示之烷氧基矽烷化合物經水解、縮合後所得之溶液,經 由濃縮,或使用有機溶劑(較佳爲上述烷二醇二烷基醚等) 稀釋等方式,調整至所期待之固體成份濃度。 該固體成份濃度,例如可以重量乾燥法予以測定。 重量乾燥法,例如,首先測定分取後之矽烷系被膜形 成用塗佈液之質量(W 1 ),於5 0 0 °C下乾燥1小時,隨後求取 -12- 200830046 乾燥後之質量(W2) ’依下述數學式算出固體成份濃度之方 法。 數學式:固體成份濃度(質量%)=W2/Wlxl00 又’矽烷系被膜形成用塗佈液之濃度,可以(A)成份 之Si02換算濃度爲近似性表示。 該Si02換算濃度,可以上述數學式所算出之固體成 份濃度(質量%)爲基礎,由(A)成份之構造所求得。 本發明中,矽烷系被膜形成用塗佈液之Si02換算濃 度,可配合使用目的作適當調整,通常以2〜1 5質量%爲 佳,以5〜12質量%爲更佳。 < (B)成份〉 本發明中,(B)成份爲非離子性酸產生劑。該(B)成份 爲可感應電子線而發生酸之化合物。 含有(B)成份時,可經由顯影而得到光阻圖型。其推 測應爲經由電子線之照射而發生酸’而促進(A)成份相互 間形成S i - Ο - S i之網絡所造成者。 又,含有(B)成份時’可提升塗佈成膜後之膜安定性 (PCD · post coating delay)’而對驗顯影液具有良好之溶 解性。 該(B)成份,對顯影液(特別是驗顯影液)而言’具有 溶解性之變化較小,且具有安定性。 -13- 200830046 (B)成份,並未有特別限定,其可使用以往被提案作 爲增強化學型光阻用之酸產生劑所使用之成份。 該些非離子性酸產生劑’目前爲止’例如肟磺酸酯 (sulfonate)系酸產生劑;雙院基或雙芳基磺醯重氮甲院類 、聚(雙磺醯基)重氮甲烷類等之重氮甲烷系酸產生劑;乙 二肟系酸產生劑、雙颯系酸產生劑、/3 -酮颯系酸產生劑 、二颯系酸產生劑、硝基苄基磺酸酯系酸產生劑、磺酸酯 (sulfonic acid ester)系酸產生劑、N-羥醯亞胺化合物之磺 酸酯系酸產生劑、亞胺基磺酸酯(sulfonate)系酸產生劑等 多種已知物質。 本說明書與申請專利範圍中,肟磺酸酯系酸產生劑, 例如至少具有1個下述通式(II)所示之基的化合物(B-1), 其具有經電子線之照射產生酸之特性。該些肟磺酸酯系酸 產生劑(B-1 )多被使用於增強化學型光阻組成物,其可任 意選擇使用。 【化2】 -C=N—0一S〇2—R31 R32 …(II) [式(II)中,R31、R3 2各別獨立表示有機基]。 R31之有機基,以直鏈狀、支鏈狀或環狀烷基或芳基 胃{圭°前述烷基、芳基可具有取代基。該取代基並未有任 何限制’例如可爲氟原子、碳數1至6之直鏈狀、支鏈狀或 200830046 環狀烷基等。 烷基以碳數1至20爲佳,以碳數1至10爲較佳,以碳數 1至8爲更佳’以碳數1至6爲最佳,以碳數1至4爲特佳。烷 基,特別是以部份或全部鹵素化之烷基(以下亦稱爲鹵化 烷基)爲佳。 又,部份鹵化之烷基,係指氫原子之一部份被鹵素原 子取代之烷基之意,完全鹵化之烷基係指氫原子全部被鹵 素原子所取代之烷基之意。 鹵素原子,例如氟原子、氯原子、溴原子、碘原子等 ,特別是以原子爲佳。即,鹵化院基以氟化院基爲佳。 芳基以碳數4至20者爲佳,以碳數4至10者爲較佳,以 碳數6至10者爲更佳。 芳基特別是以部份或完全鹵化之芳基爲佳。又,部份 鹵化之芳基,係指氫原子之一部份鹵素原子所取代之芳基 之意,完全鹵化之芳基,係指氫原子全部被鹵素原子取代 所得之芳基之意。 R31特別是以不具有取代基之碳數1至4之烷基,或碳 數1至4之氟化烷基爲佳。 R32之有機基,以直鏈狀、支鏈狀或環狀之烷基、芳 基或氰基爲佳。R32之烷基、芳基,例如與前述R31所列舉 之烷基、芳基爲相同之內容。 R32特別是爲氰基、不具有取代基之碳數1至8之烷基 ,或碳數1至8之氟化院基爲佳。 婧肟磺酸酯系酸產生劑(B-1),更佳者例如下述式(B- -15- 200830046 2)或(B-3)所示化合物等。 【化3】 R34—C=N—Ο—S02—R35 R33 · · · (B-2) [式(B-2)中,R33爲氰基、不具有取代基之烷基或鹵化烷基 ;R34爲芳基;R3 5爲不具有取代基之烷基或鹵化烷基]。 【化4】 •C=N R36 ——Ο——S〇2——R38BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative resist composition for an electron beam and a method for forming a photoresist pattern. The present application claims priority based on Japanese Patent Application No. 2 006-2 60805 filed on Sep. 26, 2006, the disclosure of which is incorporated herein. [Prior Art] In the lithography technique, for example, a photoresist film obtained from a photoresist material is formed on a substrate, and for the photoresist film, a photomask of a specific pattern is formed by radiation such as light or electron lines. The selective exposure is carried out by applying a development process to form the photoresist film into a photoresist pattern having a specific shape. The portion of the exposure which is changed to have a characteristic of being dissolved in the developer is referred to as a positive type, and the portion of the photoresist which is exposed to have a property of not being dissolved in the developer is referred to as a negative type. In recent years, in the manufacture of semiconductor elements or liquid crystal display elements, with the advancement of the lithography technique, the pattern has been rapidly refined. The method of miniaturization is generally carried out in such a manner as to shorten the wavelength of the exposure light source. Specifically, ultraviolet rays which are represented by g-line and i-line are conventionally used. However, KrF excimer lasers or ArF excimer lasers are now being used for mass production of semiconductor components. Further, F2 excimer lasers, electron beams, EUV (extreme ultraviolet rays) or X-rays having shorter wavelengths for the aforementioned excimer lasers have also been started. In the case of a photoresist material, it is sought to have sensitivity to the aforementioned exposure light source, and has a lithographic characterization characteristic such as resolution of a reproducible fine-size pattern. The photoresist material which satisfies the above requirements is generally used to contain a base resin which changes the alkali solubility based on the action of an acid, and an enhanced chemical type resist which generates an acid generator by exposure to an acid. For example, a positive type enhanced chemical type photoresist, which is a resin containing an acid-based action as a base resin to increase alkali solubility, and an acid generator component which is formed by exposure to an acid when formed in a photoresist pattern The agent generates an acid and causes the exposed portion to form an alkali solubility. Further, a negative-type enhanced chemical type photoresist, for example, a resin component having a carboxyl group, a crosslinking agent having an alcoholic hydroxyl group, and an acid generator, and an acid generated by the acid generator when the photoresist pattern is formed The action is such that the carboxyl group of the resin component reacts with the alcoholic hydroxyl group of the crosslinking agent, and the resin component changes from alkali solubility to insolubility. At present, the base resin of the photoresist used in the ArF excimer laser lithography etching has excellent transparency in the vicinity of 193 nm. Generally, the main chain is derived from (meth) acrylate. A resin (acrylic resin) constituting the unit (for example, refer to Patent Document 1). [Patent Document 1] JP-A-2003-24 1 3 85 SUMMARY OF THE INVENTION Therefore, in the future, a novel photoresist material capable of providing various kinds of lithography etching characteristics such as high resolution is sought. -5- 200830046 In particular, with the recent gradual miniaturization of the pattern, it is urgent to seek a photoresist material having a good sensitivity to an electron beam having a wavelength shorter than that of the excimer laser. The present invention has been made in view of the above circumstances, and has been proposed to provide a novel negative-type photoresist composition for an electron beam and a method for forming a photoresist pattern using the negative-type photoresist composition for an electron beam. In order to achieve the above object, the present invention adopts the following constitutional contents. That is, the first aspect of the present invention is a negative-type photoresist composition for an electron beam, which is characterized by containing a hydrolyzate of an alkoxydecane compound represented by the following formula (I). At least one compound (A) selected from the group consisting of condensates of the alkoxydecane compound represented by the following formula (I), and a nonionic acid generator (B), R1 -Si(OR2)4-n [In the formula (I), R1 is a hydrogen atom or a monovalent organic group, R2 is a monovalent organic group, and η is an integer of 1 to 3]. Further, a second aspect of the present invention is a method for forming a photoresist pattern, comprising: using a negative photoresist composition for an electron beam of the first aspect; a step of forming a photoresist film on the substrate, a step of exposing the photoresist film, and a step of developing the photoresist film to form a photoresist pattern. In the scope of the present specification and the patent application, "organic group" means a group containing a carbonogen-6 - 200830046 "which may also have an atom other than a carbon atom (for example, a hydrogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a halogen atom). (A fluorine atom, a chlorine atom, etc.), etc. In the present specification, the "alkyl group" is a monovalent saturated hydrocarbon group containing a linear, branched or cyclic group, unless otherwise specified. The "lower alkyl group" means an alkyl group having 1 to 5 carbon atoms. "Exposure", unless otherwise specified, means the meaning of electron beam irradiation. The present invention can provide a novel negative-type photoresist composition for an electron beam and a method for forming a photoresist pattern using the negative-type photoresist composition for an electron beam, a negative-type photoresist composition for an electron beam. The negative-type photoresist composition for an electron beam is a condensate containing a hydrolyzate of the alkoxydecane compound represented by the above formula (I) and an alkoxydecane compound represented by the following formula (I). At least one compound (A) (hereinafter referred to as (A) component) and a nonionic acid generator (B) (hereinafter referred to as component (B)) selected from the group formed. <(A) Component> In the present invention, the component (A) is a hydrolyzate and/or a condensate of the alkoxydecane compound represented by the above formula (I). The alkoxydecane compound represented by the above formula (I) is hydrolyzed to form a hydroxyl group or an alcohol by hydrolysis. Subsequently, two molecules of the aforementioned alcohol are condensed to form a network of Si-0-Si to obtain a component (A). 200830046 In the above formula (I), R1 is a hydrogen atom or a monovalent organic group, and R2 is a monovalent organic group. In R1 and R2, a monovalent organic group such as an alkyl group, an aryl group, an allyl group or a glycidyl group. Among them, an alkyl group and an aryl group are preferred. The alkyl group and the aryl group may have a substituent. The substituent is not particularly limited, and examples thereof include a fluorine atom, a linear chain having 1 to 6 carbon atoms, a branched or cyclic alkyl group, and the like. In the present specification, "may have a substituent" means that a part or the whole of a hydrogen atom such as an alkyl group or an aryl group is substituted with a substituent. The alkyl group is preferably a carbon number of 1 to 5 (lower alkyl group), for example, a methyl group, an ethyl group, a propyl group, a butyl group or the like. Further, the alkyl group may be in the form of a linear chain or a branched chain, and as described above, for example, a hydrogen atom may be substituted by a fluorine atom or the like. The aryl group is preferably a carbon number of 6 to 20, for example, a phenyl group, a naphthyl group or the like. In the above formula (I), n is an integer of from 1 to 3. Specific examples of the alkoxydecane compound represented by the above formula (I) include the following compounds. (i) In the case of n = 1, a trialkoxy decane compound such as a trimethoxy decane compound, a triethoxy decane compound or a tripropoxy decane compound (in the case where R1 is a hydrogen atom) = monomethyltrimethoxy decane compound , monomethyl triethoxy decane compound, monomethyl tripropoxy decane compound, monoethyl trimethoxy decane compound, monoethyl triethoxy decane compound, monoethyl tripropoxy decane compound, monopropyl a monoalkyltrialkoxydecane compound of a trimethoxyoxane compound, a monopropyltriethoxydecane compound, etc. -8-200830046; a monophenyl group such as a monophenyltrimethoxydecane compound or a monophenyltriethoxydecane compound; A trialkoxy decane compound or the like. (ii) In the case of n=2, one of the dimethoxy decane compound, the diethoxy decane compound, the dipropoxy group, the hydrazine hydride compound, and the like a gas atom); dimethyl dimethoxy decane compound, dimethyl diethoxy decane compound, dimethyl dipropoxy decane compound, diethyl dimethoxy decane compound, diethyl diethoxy a dialkyldialkoxy group such as a decane compound, a diethyldipropoxydecane compound, a dipropyldimethoxydecane compound, a dipropyldiethoxydecane compound, or a dipropyldipropoxydecane compound a decane compound; a diphenyl dimethoxy decane compound, a diphenyl diethoxy decyl compound, or the like; a diphenyl bis oxene compound; and (iii) a methoxy decane compound, Ethoxy decane compound, propoxylated compound compound, etc. (in the case of R as an ammonia atom); trimethyl methoxy decane compound, trimethyl ethoxy decane compound, trimethyl propylene oxide Base decane compound, triethyl methoxy decane compound, triethyl a trialkylalkoxydecane compound such as an ethoxysilane compound, a triethylpropoxydecane compound, a tripropylmethoxydecane compound or a tripropylethoxysilane compound; a triphenylmethoxydecane compound, triphenyl a triphenyl alkoxy decane compound such as an ethoxysilane compound, etc. -9- 200830046 In the above, a trialkoxy decane compound such as a trimethoxy decane compound, a triethoxy decane compound or a tripropoxy decane compound is used. (wherein R1 is a hydrogen atom); a monomethyltrialkoxide compound such as a monomethyltrimethoxydecane compound, a monomethyltriethoxydecane compound or a monomethyltripropoxydecane compound is preferred, More preferably, it is a trialkyloxydecane compound (wherein R1 is a hydrogen atom), and among them, a triethoxyoxane compound is preferable. In the negative-type photoresist composition for an electron beam of the present invention, the above formula (I) The alkoxydecane compound shown may be used singly or in combination of two or more. The negative-type photoresist composition for an electron beam of the present invention contains the above formula (I). Show In the case of the condensate of the alkoxydecane compound, the mass average molecular weight (Mw) of the condensate (polystyrene equivalent of the gel permeation chromatography method) is preferably 200 to 50,000, and is 500 to 1,000,000. More preferably, it is preferably from 1,000 to 3,000. When it is within this range, the coating property of the negative-type photoresist composition for an electron beam can be improved, and the electron beam can be improved when a condensate is present. The adhesion of the photoresist film (hardened film) formed by the negative photoresist composition to the substrate. The condensate of the compound oxide sand compound of the above formula (I) is an alkane as a polymerization monomer. The oxoxane compound can be obtained by reacting in an organic solvent or an acid catalyst (hereinafter, the condensate solution containing the alkoxydecane compound obtained here is called "the coating liquid for forming a decane-based film" "). As the alkoxydecane compound which is a polymerization monomer, one type of -10-200830046 may be used alone, or two or more types may be combined and condensed. The organic solvent is preferably an alkanediol dialkyl ether, for example, from the viewpoint of improving the storage stability (e.g., the effect of preventing gelation) of the coating liquid for forming a decane-based film. The alkylene glycol dialkyl ether, such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether , diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl Ether, etc. Among them, preferred is a dialkyl ether of propylene glycol, and most preferably propylene glycol dimethyl ether. These organic solvents may be used singly or in combination of two or more kinds. The amount used is a ratio of 10 to 30 moles relative to the alkoxydecane compound 1 mole. The degree of hydrolysis of the alkoxydecane compound as a premise of condensation can be adjusted according to the amount of water to be added. [Generally, it is a total of the compound of the oxidized sand compound shown in the above formula (I). The number of ears 'add 1 to 倍 mole is better, and more preferably 1 · 5 to 8 times the molar ratio. When the amount of addition of water is 1 time or more, the degree of hydrolysis can be increased to further increase the reactivity of the alkoxy decane compound (the above-mentioned alcohol) with each other. When the amount is less than 10 times the molar amount, the gelation is suppressed, and the storage stability of the coating liquid for forming a decane-based film can be improved. Further, the acid catalyst used in the condensation of the oxonyl lanthanum compound represented by the above formula (1) is not particularly limited. It can be used in the conventionally used -11 - 200830046 organic acid, inorganic acid, etc. be usable. An organic acid such as an organic carboxylic acid such as acetic acid, propionic acid or butyric acid. Inorganic acids, for example, hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and the like. The acid catalyst may be directly added to the mixture of the alkoxydecane compound and water, or may be added as an acidic aqueous solution while being added to the water in the alkoxydecane compound. The hydrolysis reaction usually ends in about 5 to 100 hours. In addition, in an organic solvent containing one or more kinds of alkoxydecane compounds represented by the above formula (I), an aqueous solution of an acid catalyst is allowed to react in a heating temperature of not more than room temperature of 80 ° C. The reaction can be completed in a shorter reaction time. The hydrolyzed alkoxydecane compound is then subjected to a condensation reaction, and as a result, a component (A) in which a Si-0_si network is formed can be obtained. Further, the component (A) may contain a hydrolyzate of an alkoxydecane compound while containing a condensate of an alkoxydecane compound. In the production of the negative-type resist composition for an electron beam of the present invention, the component (A) is preferably used in the form of the above-described coating liquid for forming a decane-based film. In the coating liquid for forming a decane-based film, for example, a solution obtained by hydrolyzing and condensing the alkoxydecane compound represented by the above formula (I) may be concentrated or an organic solvent (preferably the above alkane two) may be used. Alcohol dialkyl ether, etc.) is diluted to the desired solid concentration. The solid component concentration can be measured, for example, by a weight drying method. In the weight drying method, for example, the mass (W 1 ) of the coating liquid for forming a decane-based film after the separation is measured, and dried at 500 ° C for 1 hour, and then the quality after drying is determined from -12 to 200830046 ( W2) 'Method of calculating the concentration of solid components according to the following mathematical formula. Mathematical formula: solid content concentration (% by mass) = W2 / Wlxl00 The concentration of the coating liquid for forming a decane-based film can be approximated by the concentration of SiO 2 in the component (A). The concentration of the SiO 2 conversion can be determined from the structure of the component (A) based on the solid component concentration (% by mass) calculated by the above mathematical formula. In the present invention, the SiO 2 conversion concentration of the coating liquid for forming a decane-based film can be appropriately adjusted in accordance with the purpose of use, and is usually preferably 2 to 15% by mass, more preferably 5 to 12% by mass. <(B) Component> In the present invention, the component (B) is a nonionic acid generator. The component (B) is a compound which generates an acid by sensing an electron beam. When the component (B) is contained, a photoresist pattern can be obtained by development. The reason for this is that it is caused by the occurrence of acid by irradiation of electron beams and the formation of a network in which (A) components form S i - Ο - S i with each other. Further, when the component (B) is contained, the film stability (PCD · post coating delay) after coating can be improved, and the solution has good solubility. The component (B) has a small change in solubility for the developer (especially the developer) and has stability. -13- 200830046 (B) The composition is not particularly limited, and it can be used as a component which has been proposed as an acid generator for enhancing chemical resistance. The nonionic acid generators 'to date' such as sulfonate acid generators; double-base or bisarylsulfonium diazobenzenes, poly(disulfonyl)diazomethane a diazomethane acid generator such as an oxadiamine acid generator, a bismuth acid generator, a -3-keto oxime acid generator, a diterpene acid generator, a nitrobenzyl sulfonate An acid generator, a sulfonic acid ester acid generator, a sulfonate acid generator of an N-hydroxyindenine compound, an sulfonate acid generator, and the like Know the substance. In the present specification and the patent application, an oxime sulfonate-based acid generator, for example, a compound (B-1) having at least one group represented by the following formula (II), which has an acid generated by electron beam irradiation Characteristics. These sulfonate-based acid generators (B-1) are often used in a reinforced chemical-type resist composition, which can be optionally used. [Chem. 2] -C=N—0—S〇2—R31 R32 (II) [In the formula (II), R31 and R3 2 each independently represent an organic group]. The organic group of R31 may be a linear, branched or cyclic alkyl group or an aryl group. The above alkyl group or aryl group may have a substituent. The substituent is not limited to any, and may be, for example, a fluorine atom, a linear one having a carbon number of 1 to 6, a branched chain or a 200830046 cyclic alkyl group. The alkyl group preferably has a carbon number of from 1 to 20, preferably has a carbon number of from 1 to 10, more preferably has a carbon number of from 1 to 8, and is preferably a carbon number of from 1 to 6, preferably a carbon number of from 1 to 4. . The alkyl group is particularly preferably an alkyl group partially or wholly halogenated (hereinafter also referred to as a halogenated alkyl group). Further, a partially halogenated alkyl group means an alkyl group in which a part of a hydrogen atom is replaced by a halogen atom, and a completely halogenated alkyl group means an alkyl group in which a hydrogen atom is entirely substituted by a halogen atom. A halogen atom, for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or the like, is preferably an atom. That is, the halogenated yard base is preferably a fluorinated yard base. The aryl group is preferably a carbon number of 4 to 20, preferably a carbon number of 4 to 10, and more preferably a carbon number of 6 to 10. The aryl group is particularly preferably a partially or fully halogenated aryl group. Further, a partially halogenated aryl group means an aryl group substituted by a halogen atom of a part of a hydrogen atom, and a completely halogenated aryl group means an aryl group obtained by completely replacing a hydrogen atom with a halogen atom. R31 is particularly preferably an alkyl group having 1 to 4 carbon atoms which has no substituent, or a fluorinated alkyl group having 1 to 4 carbon atoms. The organic group of R32 is preferably a linear, branched or cyclic alkyl group, aryl group or cyano group. The alkyl group or the aryl group of R32 is, for example, the same as the alkyl group or the aryl group exemplified in the above R31. R32 is particularly preferably a cyano group, an alkyl group having 1 to 8 carbon atoms which has no substituent, or a fluorinated group having 1 to 8 carbon atoms. The oxime sulfonate-based acid generator (B-1) is more preferably a compound represented by the following formula (B- -15-200830046 2) or (B-3). [Chem. 3] R34—C=N—Ο—S02—R35 R33 · · · (B-2) [In the formula (B-2), R33 is a cyano group, an alkyl group having no substituent or an alkyl halide; R34 is an aryl group; R3 5 is an alkyl group having no substituent or a halogenated alkyl group]. [Chemical 4] • C=N R36 ——Ο——S〇2——R38

· · (B-3) [式(B-3)中’ R36爲氰基、不具有取代基之烷基或鹵化烷基 ;R37爲2或3價之芳香族烴基;R38爲不具有取代基之烷基 或鹵化烷基,P”爲2或3]。 前述式(B-2)中,R33之不具有取代基之烷基或鹵化烷 基,以碳數1至1 0爲佳,以碳數1至8爲更佳,以碳數1至6 爲最佳。 R33以鹵化烷基爲佳,又以氟化烷基爲更佳。 R3 3中之氟化院基,其烷基中氫原子以5 0 %以上被氟化 者爲佳,更佳爲70%以上,又以90%以上被氟化者爲最佳 -16- 200830046 R34之芳基,例如苯基或聯苯基(biphenyl)、荀基 (fluorenyl)、萘基、蒽基(anthracyl)基、菲繞啉基等之芳 香族烴之環去除1個氫原子之基,及構成前述基之環的碳 原子之一部份被氧原子、硫原子、氮原子等雜原子取代所 得之雜芳基等。其中又以芴基爲更佳。 R34之芳基,可具有碳數1至10之烷基、鹵化烷基、烷 氧基等取代基亦可。該取代基中之烷基或鹵化烷基,以碳 數1至8爲佳,以碳數1至4爲更佳。又,該鹵化烷基以氟化 烷基爲更佳。 R35之不具有取代基之烷基或鹵化烷基,以碳數1至10 爲佳,以碳數1至8爲更佳,以碳數1至6爲最佳。 R3 5以鹵化烷基爲佳,以氟化烷基爲更佳,又以部份 氟化之烷基爲最佳。 R35中之氟化烷基,其烷基中氫原子以50%以上被氟化 者爲佳,更佳爲70%以上,又以90%以上被氟化時,可提 高所產生之酸而爲更佳。最佳者則爲氫原子100%被氟取 代之全氟化烷基。 前述式(B-3)中,R36之不具有取代基之烷基或鹵化烷 基,例如與上述(B-2)中R33所示之不具有取代基之烷基或 鹵化烷基爲相同之內容。 R37之2或3價之芳香族烴基,例如由上述(B-2)中R34 之芳基中再去除1或2個氫原子所得之基等。 R38之不具有取代基之烷基或鹵化烷基,例如與上述 (B-2)中R35所示之不具有取代基之垸基或鹵化烷基爲相同 -17- 200830046 之內容。 p”較佳爲2。 肟磺酸酯系酸產生劑(B -1)之具體例,如α - (p -甲苯磺 醯氧亞胺基)-苄基氰化物(cyanide)、α -(ρ-氯基苯磺醯氧 亞胺基)-苄基氰化物、α-(4-硝基苯磺醯氧亞胺基)-苄基 氰化物、α -(4 -硝基-2-三氟甲基苯磺醯氧亞胺基)-节基氰 化物、α -(苯磺醯氧亞胺基)-4-氯基苄基氰化物、α -(苯 磺醯氧亞胺基)-2,4-二氯基苄基氰化物、α-(苯磺醯氧亞 胺基)-2,6 -二氯基节基氰化物、α -(苯磺醯氧亞胺基)-4 -甲 氧基节基氰化物、α -(2 -氯基苯磺醯氧亞胺基)-4 -甲氧基 苄基氰化物、α -(苯磺醯氧亞胺基)-噻嗯-2_基乙腈、α -(4·十二烷基苯磺醯氧亞胺基)-苄基氰化物、α -[(ρ-甲苯磺 醯氧亞胺基)-4-甲氧基苯基]乙腈、α-[(十二烷基苯磺醯 氧亞胺基)-4-甲氧基苯基]乙腈、對甲苯磺醯氧亞胺基 )_4-噻嗯基氰化物、α -(甲基磺醯氧亞胺基)-1-環戊烯基乙 腈、α-(甲基磺醯氧亞胺基)-1-環己烯基乙腈、α-(甲基 磺醯氧亞胺基)-1-環庚嫌基乙腈、α 甲基磺醯氧亞胺基 )-1-環辛烯基乙腈、α-(三氟甲基磺醯氧亞胺基)-1-環戊烯 基乙腈、α -(三氟甲基磺醯氧亞胺基)-環己基乙腈、α ·( 乙基磺醯氧亞胺基)-乙基乙腈、α-(丙基磺醯氧亞胺基)-丙基乙腈、^ -(環己基磺醯氧亞胺基)-環戊基乙腈、^ 環己基磺醯氧亞胺基)-環己基乙腈、^ -(環己基磺醯氧亞 胺基)-1-環戊烯基乙腈、α-(乙基磺醯氧亞胺基)-1-環戊烯 基乙腈、α·(異丙基磺醯氧亞胺基)-1-環戊烯基乙腈、α- -18- 200830046 (η-丁基磺醯氧亞胺基)-1-環戊烯基乙腈、α-(乙基磺醯氧 亞胺基)-1-環己烯基乙腈、異丙基磺醯氧亞胺基)-1-環 己烯基乙腈、α -(η-丁基磺醯氧亞胺基)-1-環己烯基乙腈 、α-(甲基磺醯氧亞胺基)-苯基乙腈、α-(甲基磺醯氧亞 胺基)-ρ-甲氧基苯基乙腈、α-(三氟甲基磺醯氧亞胺基)-苯基乙腈、α-(三氟甲基磺醯氧亞胺基)-ρ-甲氧基苯基乙 腈、(乙基磺醯氧亞胺基)-ρ-甲氧基苯基乙腈、α-(丙 基磺醯氧亞胺基)-Ρ-甲基苯基乙腈、α-(甲基磺醯氧亞胺 基)·Ρ-溴基苯基乙腈等。 又,特開平9-208 5 54號公報(段落[0012]至[0014]之[ 化18]至[化19])所揭示之肟磺酸酯系酸產生劑,WO 04/074242號文獻(65至85頁之Example 1至40)所揭示之肟 磺酸酯系酸產生劑亦可配合需要使用。 又,較適當者例如下述所示之化合物等。 -19- 200830046 【化5】· (B-3) [In the formula (B-3), R36 is a cyano group, an alkyl group having no substituent or a halogenated alkyl group; R37 is a 2 or 3 valent aromatic hydrocarbon group; and R38 is a substituent having no substituent. The alkyl group or the halogenated alkyl group, P" is 2 or 3]. In the above formula (B-2), the alkyl group or the halogenated alkyl group having no substituent of R33 is preferably a carbon number of 1 to 10, The carbon number is preferably from 1 to 8, preferably from 1 to 6. The R33 is preferably a halogenated alkyl group and more preferably a fluorinated alkyl group. The hydrogen atom is preferably fluorinated at 50% or more, more preferably 70% or more, and more preferably 90% or more of the fluorinated group is an aryl group of 16-200830046 R34, such as phenyl or biphenyl ( A ring of an aromatic hydrocarbon such as a biphenyl), a fluorenyl group, a naphthyl group, an anthracyl group or a phenanthroline group, which removes one hydrogen atom and a part of a carbon atom constituting the ring of the aforementioned group. a heteroaryl group obtained by substituting a hetero atom such as an oxygen atom, a sulfur atom or a nitrogen atom, etc., wherein a fluorenyl group is more preferred. The aryl group of R34 may have an alkyl group having 1 to 10 carbon atoms, an alkyl halide group, A substituent such as an alkoxy group may also be used. The alkyl group or the halogenated alkyl group is preferably a carbon number of 1 to 8, more preferably a carbon number of 1 to 4. Further, the halogenated alkyl group is more preferably a fluorinated alkyl group. The alkyl group or the halogenated alkyl group is preferably a carbon number of 1 to 10, more preferably a carbon number of 1 to 8, and most preferably a carbon number of 1 to 6. R3 5 is preferably a halogenated alkyl group or a fluorinated alkyl group. More preferably, a partially fluorinated alkyl group is preferred. The fluorinated alkyl group in R35 preferably has a hydrogen atom in the alkyl group of 50% or more, more preferably 70% or more. When 90% or more is fluorinated, it is more preferable to increase the acid produced. The most preferred one is a perfluorinated alkyl group in which 100% of hydrogen atoms are replaced by fluorine. In the above formula (B-3), R36 is not The alkyl group or the halogenated alkyl group having a substituent is, for example, the same as the alkyl group or the halogenated alkyl group having no substituent represented by R33 in the above (B-2). The aromatic hydrocarbon group of 2 or 3 of R37 For example, a group obtained by further removing 1 or 2 hydrogen atoms from the aryl group of R34 in the above (B-2), an alkyl group having no substituent or a halogenated alkyl group of R38, for example, the above (B-2) a thiol group having no substituent represented by R35 or The halogenated alkyl group is the same as the content of -17-200830046. p" is preferably 2. Specific examples of the sulfonate-based acid generator (B-1), such as α-(p-toluenesulfonyloxyimido)-benzyl cyanide (cyanide), α-(ρ-chlorophenylsulfonate) Oxyimido)-benzyl cyanide, α-(4-nitrophenylsulfonyloxyimino)-benzyl cyanide, α-(4-nitro-2-trifluoromethylbenzenesulfonyloxy) Imino)-cathyl cyanide, α-(phenylsulfonyloxyimido)-4-chlorobenzyl cyanide, α-(phenylsulfonyloxyimino)-2,4-dichloro Benzyl cyanide, α-(phenylsulfonyloxyimino)-2,6-dichloro-based cyanide, α-(phenylsulfonyloxyimino)-4-methoxyoxycyanate , α-(2-chlorophenylsulfonyloxyimino)-4-methoxybenzyl cyanide, α-(phenylsulfonyloxyimino)-thiazol-2-ylacetonitrile, α-( 4. Dodecylbenzenesulfonyloxyimido)-benzyl cyanide, α-[(ρ-toluenesulfonyloxyimido)-4-methoxyphenyl]acetonitrile, α-[(10 Dialkylbenzenesulfonyloxyimido)-4-methoxyphenyl]acetonitrile, p-toluenesulfonyloxyimido)-4-thiol cyanide, α-(methylsulfonyloxyimino) )-1-cyclopentenylacetonitrile, α-(methylsulfonate -1 -cyclohexenylacetonitrile, α-(methylsulfonyloxyimido)-1-cycloheptyl acetonitrile, α-methylsulfonyloxyimido)-1-cyclooctenylacetonitrile , α-(trifluoromethylsulfonyloxyimido)-1-cyclopentenylacetonitrile, α-(trifluoromethylsulfonyloxyimido)-cyclohexylacetonitrile, α·(ethylsulfonate Oxyimido)-ethylacetonitrile, α-(propylsulfonyloxyimino)-propylacetonitrile, ^-(cyclohexylsulfonyloxyimino)-cyclopentylacetonitrile, cyclohexylsulfonium Oxyimido)-cyclohexylacetonitrile, (-cyclohexylsulfonyloxyimino)-1-cyclopentenylacetonitrile, α-(ethylsulfonyloxyimino)-1-cyclopentenyl Acetonitrile, α·(isopropylsulfonyloxyimino)-1-cyclopentenylacetonitrile, α- -18- 200830046 (η-butylsulfonyloxyimino)-1-cyclopentenylacetonitrile , α-(ethylsulfonyloxyimino)-1-cyclohexenylacetonitrile, isopropylsulfonyloxyimido)-1-cyclohexenylacetonitrile, α-(η-butylsulfonate Oxyimido)-1-cyclohexenylacetonitrile, α-(methylsulfonyloxyimino)-phenylacetonitrile, α-(methylsulfonyloxyimino)-ρ-methoxybenzene Acetonitrile, α-(trifluoromethyl Alkylsulfonyloxyimido)-phenylacetonitrile, α-(trifluoromethylsulfonyloxyimido)-ρ-methoxyphenylacetonitrile, (ethylsulfonyloxyimino)-ρ- Methoxyphenylacetonitrile, α-(propylsulfonyloxyimido)-fluorene-methylphenylacetonitrile, α-(methylsulfonyloxyimido)·Ρ-bromophenylacetonitrile, and the like. Further, an oxime sulfonate-based acid generator disclosed in JP-A-9-208 554 (paragraphs [0012] to [0014] [Chem. 18] to [Chem. 19]), WO 04/074242 ( The sulfonate-based acid generator disclosed in Examples 1 to 40) on pages 65 to 85 may also be used in combination. Further, for example, a compound shown below or the like is suitable. -19- 200830046 【化5】

-20- 200830046-20- 200830046

1=·|Ό~1=·|Ό~

C4H9 - 〇2$—Ο—N=C C=N—Ο一 S〇2 一C4H9C4H9 - 〇2$—Ο—N=C C=N—Ο一 S〇2 One C4H9

CN CNCN CN

CF3一〇2S—Ο—N=C CNCF3〇2S—Ο—N=C CN

ch3oCh3o

CH3-C=N-〇S〇2-{CH2)3CH3 CH3-C=N-OS〇2-(CH2)3CH3 200830046 上述例示化合物中,又以下述4個化合物爲更佳。 【化7】 C4H9-〇2S—Ο—N:CH3-C=N-〇S〇2-{CH2)3CH3 CH3-C=N-OS〇2-(CH2)3CH3 200830046 Among the above exemplified compounds, the following four compounds are more preferable. [Chem. 7] C4H9-〇2S—Ο—N:

Ν—0S02——(CH2)aCH3 N一0S02——(CH2)aCH3Ν—0S02——(CH2)aCH3 N-0S02——(CH2)aCH3

前述重氮甲烷系酸產生劑,例如雙(苯磺醯基)重氮甲 烷、雙(P-甲苯磺醯基)重氮甲烷、雙(二甲苯磺醯基)重氮 甲烷、雙(環己基磺醯基)重氮甲烷、雙(環戊基磺醯基)重 氮甲烷、雙(η-丁基磺醯基)重氮甲烷、雙(異丁基磺醯基) 重氮甲烷、雙(sec-丁基磺醯基)重氮甲烷、雙(η-丙基磺醯 基)重氮甲烷、雙(異丙基磺醯基)重氮甲烷、雙(tert-丁基 磺醯基)重氮甲烷、雙(n-戊基磺醯基)重氮甲烷、雙(異戊 基磺醯基)重氮甲烷、雙(sec-戊基磺醯基)重氮甲烷、雙 (tert_戊基磺醯基)重氮甲烷、1·環己基磺醯基丁 基磺基)重氮甲院、1-環己基磺_基_1_(^1·!:-戊基磺基 )重氮甲烷、l-tert-戊基磺醯基-l-(tert_ 丁基磺醯基)重氮 甲烷等。 前述乙二肟系酸產生劑,例如雙-〇 - (P -甲苯磺醯基)-二甲基乙二肟、雙-0-(p-甲苯磺醯基)-α-二苯基乙二 -22- 200830046 肟、雙-〇-(Ρ·甲苯磺醯基)-α-二環己基乙二肟、雙-〇-(p-甲苯磺醯基)-2,3-戊烷二酮乙二肟、雙-0-(p-甲苯磺醯基)-2·甲基-3,4-戊烷二酮乙二肟、雙-Ο-(η-丁烷磺醯基)-α-二 甲基乙二肟、雙(η-丁烷磺醯基α -二苯基乙二肟、 雙- 0-(η-丁烷磺醯基) α 二環己基乙二肟、雙- 〇·(η-丁烷 磺醯基)-2,3-戊烷二酮乙二肟、雙-0-(η-丁烷磺醯基)-2-甲 基-3,4-戊烷二酮乙二肟、雙-0-(甲烷磺醯基)-“-二甲基乙 二肟 '雙-〇-(三氟甲烷磺醯基)-α -二甲基乙二肟、雙-0-(1,1,1-三氟乙烷磺醯基)-α -二甲基乙二肟、雙- 0-(tert-丁 烷磺醯基)-α-二甲基乙二肟、雙-〇-(全氟辛烷磺醯基)-α -二甲基乙二肟、雙_〇-(環己烷磺醯基)-α -二甲基乙二 肟、雙-0-(苯磺醯基)-α·二甲基乙二肟、雙-0-(ρ-氟基苯 磺醯基)-α-二甲基乙二肟、雙-CKp-tert-丁基苯磺醯基)-α-二甲基乙二肟、雙-〇-(二甲苯磺醯基)-α-二甲基乙二 肟、雙-0-(莰烷磺醯基)-α -二甲基乙二肟等。 前述雙颯系酸產生劑,例如雙萘基磺醯基甲烷、雙三 氟甲基磺醯基甲烷、雙甲基磺醯基甲烷、雙乙基磺醯基甲 烷、雙丙基磺醯基甲烷、雙異丙基磺醯基甲烷、雙-Ρ-甲 苯磺醯基甲烷、雙苯磺醯基甲烷等。 前述/3-酮楓系酸產生劑,例如2-環己基羰基-2-(ρ-甲 苯磺醯基)丙烷、2-異丙基羰基-2-(ρ-甲苯磺醯基)丙烷等 〇 前述二颯系酸產生劑,例如二苯基二颯衍生物、二環 己基二礪衍生物等。 -23- 200830046 前述硝基苄基磺酸酯系酸產生劑,例如p-甲苯磺酸 2,6-二硝基苄酯、p-甲苯磺酸2,4-二硝基苄酯等。 前述磺酸酯系酸產生劑,例如1,2,3-三(甲烷磺醯基氧 基)苯、1,2,3-三(三氟甲烷磺醯基氧基)苯、1,2,3·三(p-甲 苯磺醯基氧基)苯等。 前述N-羥亞胺化合物之磺酸酯系酸產生劑,例如N-羥丁二醯亞胺(Succinimide)甲烷磺酸酯、N-羥丁二醯亞胺 三氟甲烷磺酸酯、N-羥丁二醯亞胺乙烷磺酸酯、N-羥丁二 醯亞胺1_丙烷磺酸酯、N-羥丁二醯亞胺2-丙烷磺酸酯、N-羥丁二醯亞胺1-戊烷磺酸酯、N-羥丁二醯亞胺1-辛烷磺酸 酯、N-羥丁二醯亞胺p-甲苯磺酸酯、N-羥丁二醯亞胺p-甲氧苯磺酸酯、N-羥丁二醯亞胺2-氯基乙烷磺酸酯、N-羥 丁二醯亞胺苯磺酸酯、N-羥丁二醯亞胺2,4,6-三甲基苯磺 酸酯、N-羥丁二醯亞胺1-萘磺酸酯、N-羥丁二醯亞胺2-萘 磺酸酯、N-羥-2-苯基丁二醯亞胺甲烷磺酸酯、N-羥馬來 醯亞胺甲烷馬來醯亞胺甲烷磺酸酯、N-羥馬來醯亞胺乙烷 磺酸酯、N-羥-2-苯基馬來醯亞胺甲烷磺酸酯、N-羥戊二 醯亞胺甲烷磺酸酯、N-羥戊二醯亞胺苯磺酸酯、N-羥酞醯 亞胺甲烷磺酸酯、N-羥酞醯亞胺苯磺酸酯、N-羥酞醯亞胺 三氟甲烷磺酸酯、N-羥酞醯亞胺p-甲苯磺酸酯、N-羥萘 二甲醯亞胺甲烷磺酸酯、N-羥萘二甲醯亞胺苯磺酸酯、N-羥-5-降冰片烯-2,3-二羧基亞胺甲烷磺酸酯、N-羥-5-降冰 片烯-2,3-二羧基亞胺三氟甲烷磺酸酯、N-羥-5-降冰片嫌_ 2,3-二羧基亞胺ρ-甲苯磺酸酯等。 -24- 200830046 (B )成份,可單獨使用1種該些酸產生劑,或將2種以 上組合使用亦可。 本發明中,就可形成良好之光阻圖型之觀點,(B)成 份以含有具有前述通式(II)所示之基之肟磺酸酯系酸產生 劑(B-1)爲最佳。 本發明之電子線用負型光阻組成物中,(B)成份之含 量’例如相對於上述矽烷系被膜形成用塗佈液中之(A)成 份的Si02換算濃度,爲3〜15質量%,較佳爲5〜10質量% 。於上述範圍內時,經由電子線之照射可促進(A)成份相 互間形成Si-O-Si鍵結,經由顯影而容易得到光阻圖型。 &lt;任意成份&gt; 本發明之電子線用負型光阻組成物,可再配合目的添 加具有混合性之成份,例如可再適當添加對比增強劑、有 機溶劑等。 本發明之電子線用負型光阻組成物中,可含有對比增 強劑。對比增強劑,可感應光(電子線)及/或熱,而對所形 成之光阻膜(硬化膜)的顯影液進行溶解度之控制,而以顯 影後之光阻膜的凹凸顯示增強對比之成份。 該些對比增強劑,只要具有上述機能時,並未有特別 限定,其可配合電子線用負型光阻組成物之組成、顯影液 之種類等,由公知之化合物之中適當地選擇使用。 該些對比增強劑之具體例,例如(B)成份以外之光酸 產生劑、熱酸產生劑、光鹼產生劑、熱鹼產生劑等。 -25- 200830046 光酸產生劑,只要爲(B)成份以外者,則並未有特別 之限定,例如可使用鎗鹽等。 前述鐵鹽具體而言,例如,三氟甲烷磺酸四甲基銨、 九氟丁烷磺酸四甲基銨、九氟丁烷磺酸四η-丁基銨、九 氟丁烷磺酸四苯基銨、ρ-甲苯磺酸四甲基銨、三氟甲烷磺 酸二苯基碘鑰、三氟甲烷磺酸(p-tert-丁氧基苯基)苯基碘 鐵、P-甲苯磺酸二苯基碘鑰、ρ-甲苯磺酸(p-tert-丁氧基苯 基)苯基碘鑰、三氟甲烷磺酸三苯基锍、三氟甲烷磺酸(ρ-tert-丁氧基苯基)二苯基毓、三氟甲烷磺酸雙(p_tert_ 丁氧 基苯基)苯基毓、三氟甲烷磺酸三(p_tert_丁氧基苯基)鏡、 ρ-甲苯磺酸三苯基锍、ρ-甲苯磺酸(p_tert-丁氧基苯基)二 苯基毓、P-甲苯磺酸雙(p-tert-丁氧基苯基)苯基鏟、ρ-甲 苯磺酸三(p-tert-丁氧基苯基)鏡、九氟丁烷磺酸三苯基毓 、丁烷磺酸三苯基毓、三氟甲烷磺酸三甲基銃、ρ—甲苯磺 酸三甲基毓、三氟甲烷磺酸環己基甲基(2-氧代環己基)锍 、ρ-甲苯磺酸環己基甲基(2-氧代環己基)鏡、三氟甲烷磺 酸二甲基苯基鏡、ρ-甲苯磺酸二甲基苯基鏑、三氟甲烷磺 酸二環己基苯基锍、ρ -甲苯磺酸二環己基苯基锍、三氟甲 烷磺酸三萘基毓、三氟甲烷磺酸環己基甲基(2_氧代環己 基)鏡、三氟甲烷磺酸(2-降冰片烷基)甲基(2-氧代環己基) 毓、乙烯雙[甲基(2 -氧代環戊基)毓三氟甲烷磺酸酯 (sulfonate)]、1,2’-萘基羰基甲基四氫硫代苯基三氟甲基 磺酸酯等。 前述熱酸產生劑爲,可感應熱而發生酸之化合物。 -26- 200830046 熱酸產生劑,並未有特別限定,例如可將至少含有1 種2,4,4,6-四溴環己二烯酮、苯醯甲苯磺酸酯、2-硝基苄 基甲苯磺酸酯、有機磺酸以外之其他烷基酯或其熱酸產生 劑之組成物等,作爲常用之熱酸產生劑使用。 前述光鹼產生劑爲,可感應光(電子線)而發生鹼之化 合物。 光鹼產生劑,並未有特別限定,例如三苯基甲醇、节 基胺基甲酸酯與苯醯基胺基甲酸酯等具有光活性之胺基甲 酸酯;〇-胺基甲醯羥基醯胺、〇-胺基甲醯肟、芳烴磺酸醯 胺、α -內酯與N-(2-烯丙基乙炔)醯胺等之醯胺及其他之 醯胺;肟酯、α -胺基乙醯苯、鈷錯合物等。 其中又以2-硝基苄基環己基胺基甲酸酯、三苯基甲醇 、〇-胺基甲醯羥基醯胺、〇-胺基甲醯肟、[[(2,6-二硝基苄 基)氧基]羰基]環己基胺、雙[[(2-硝基苄基)氧基]羰基]己 烷1,6-二胺、4-(甲基硫代苯醯基)-1-甲基-1-嗎啉乙烷、 (4-嗎啉基苯醯基)-1-苄基-1-二甲基胺基丙烷、N-(2-硝基 苄基氧羰基)吡咯烷、六氨鈷(III)三(三苯基甲基硼酸酯)、 2-苄基-2-二甲基胺基-1-(4-嗎啉基苯基)-丁酮等爲佳。 前述熱鹼產生劑爲,可感應熱而發生鹼之化合物。 熱鹼產生劑,並未有特別限定,例如可使用1 -甲基-1-(4-聯苯基-基)乙基胺基甲酸酯、1,1-二甲基-2-氰基乙基 胺基甲酸酯等之胺基甲酸酯衍生物;尿素或N,N-二甲基_ Ν’-甲基尿素等之尿素衍生物;1,4-二氫煙鹼醯胺等之二氫 吡啶衍生物;有機矽烷或有機硼烷之四級化銨鹽;二氰二 -27- 200830046 醯胺等。 其他,例如三氯乙酸胍、三氯乙酸甲基胍、三氯乙酸 鉀、苯基磺醯基乙酸胍、P-氯苯基磺醯基乙酸胍、P-甲烷 磺醯基苯基磺醯基乙酸胍、苯基丙醇酸鉀、苯基丙醇酸胍 、苯基丙醇酸鉋、P-氯苯基丙醇酸胍、P-伸苯基-雙-苯基 丙醇酸胍、苯基磺醯基乙酸四甲基銨、苯基丙醇酸四甲基 銨等。 本發明之電子線用負型光阻組成物中的對比增強劑之 添加量,相對於上述矽烷系被膜形成用塗佈液中之(A)成 份的Si02換算濃度,以0.1〜30質量%爲佳,以1〜15質量 %爲更佳,以5〜10質量%爲最佳。 對比增強劑之添加量爲0. 1質量%以上時,可充分得到 對比增強劑之效果,使經顯影液處理後所形成之光阻圖型 ,具有充分之對比。又,對比增強劑之添加量爲30質量% 以下時,於可提高電子線用負型光阻組成物之保存安定性 的同時,可防止顯影時曝光部之膜減少量之降低,而可防 止對比之降低。 本發明之電子線用負型光阻組成物,係以提昇塗佈性 與膜厚度之均勻性爲目的,故以含有有機溶劑(以下’亦 稱爲(S)成份)爲佳。 (S)成份,可使用以往一般所使用之成份。具體而言 ,例如,甲基醇、乙基醇、丙基醇、丁基醇、3 -甲氧基-3 -甲基-1-丁醇、3 -甲氧基-1-丁醇等一價醇;甲基-3 -甲氧 基丙酸酯、乙基-3-乙氧基丙酸酯等烷基羧酸酯;乙二醇 -28- 200830046 、二乙二醇、丙二醇等多價醇;乙二醇單甲基醚、乙二醇 單乙基醚、乙二醇單丙基醚、乙二醇單丁基醚、丙二醇單 甲基醚、丙二醇單乙基醚、丙二醇單丙基醚、丙二醇單丁 基醚、乙二醇單甲基醚乙酸酯、乙二醇單乙基醚乙酸酯、 丙二醇單甲基醚乙酸酯、丙二醇單乙基醚乙酸酯等多價醇 衍生物;乙酸、丙酸等脂肪酸;丙酮、甲基乙基酮、2 -庚 酮等酮等。 (S)成份,可單獨使用或將2種以上組合使用亦可。 (S)成份之量,並未有特別限定,以(S)成份以外之成 份(固體成份)的濃度爲5〜100質量%者爲佳,以20〜50質 量%者爲更佳。於上述範圍內時,可提高對基板等之塗佈 性。 又,本發明中,於無損本發明之效果的範圍內,可添 加其他之樹脂、界面活性劑、密著輔助劑等各種添加劑。 該添加劑可配合所欲賦予之機能等作適當之選擇。 添加界面活性劑之情形,可提高電子線用負型光阻組 成物之塗佈性,且可使所得之光阻膜的平坦度亦向上提昇 〇 該些界面活性劑,例如 Β Μ - 1 0 0 0 (商品名;Β Μ Chemie公司製);美格菲斯 F14 2 D、同 F172、同 F173、 與同F183(以上,商品名;大日本油墨化學工業(股)製); 普羅拉 FC-135、同 FC-170C、同 FC-43 0,及同 FC-43 1 ( 以上,商品名;住友3 Μ (股)製);沙氟隆S -1 1 2、同S -1 1 3 、同S-131、同S-141,及同S-145(以上,商品名;旭硝 -29- 200830046 子(股)製);SH-28PA、SH-190、SH-193、SZ-6032、SF-8428、DC-57,及DC-190(以上,商品名;東麗聚矽氧(股 )製)等之氟系界面活性劑等。 使用電子線用負型光阻組成物中之界面活性劑時之比 例,相對於界面活性劑以外之成份(固體成份)1〇〇質量份 ,一般以5質量份以下爲佳,更佳爲0.01〜2質量份。 又,使用增黏劑時,可提高電子線用負型光阻組成物 對基板等之黏著性。 該增黏劑,較佳爲,羧基、甲基丙烯醯基、異氰酸酯 基、環氧基等具有反應性取代基之矽烷化合物(官能性矽 烷偶合劑)等。 前述官能性矽烷偶合劑之具體例,例如三甲氧矽烷基 苯甲酸、7-甲烯丙烯氧丙烯醯氧基丙基三甲氧基矽烷、 乙烯基三乙醯氧基矽烷、乙烯基三甲氧矽烷、7-異氰酸 酯丙基三乙氧基矽烷、r-環氧丙氧基丙基三甲氧基矽烷 、/3 -(3,4-環氧基環己基)乙基三甲氧基矽烷等。 電子線用負型光阻組成物中,增黏劑之使用比例以相 對於增黏劑以外之成份(固體成份)1 〇 0質量份,一般以2 0 質量份以下爲佳,更佳爲〇 · 〇 5〜1 0質量份,最佳爲1〜1 0 質量份。 《光阻圖型之形成方法》 本發明之光阻圖型之形成方法,爲包含使用上述本發 明之電子線用負型光阻組成物於基板上形成光阻膜之步驟 -30- 200830046 ,使前述光阻膜曝光之步驟,與使前述光阻膜顯影以形成 光阻圖型之步驟的方法。 該光阻圖型之形成方法,例如可依以下之方式進行。 即,首先於矽晶圓等基板上,將上述電子線用負型光 阻組成物使用旋轉塗佈器(旋轉塗佈法)等進行塗佈,於 100〜2 5 0 °c之溫度條件下,進行20〜200秒間,較佳爲60 〜150秒間之塗佈後燒焙(p〇st-apply bake(PAB)),於其上 ,例如使用電子線描繪機等,將電子線介由所期待之光罩 圖型進行選擇性曝光。 其後,可於1〇〇〜25 0 °C之溫度條件下,進行20〜200 秒間,較佳爲60〜150秒間之曝光後燒焙(Post exposure bake,PEB)。其中,本發明中,可進行PEB(曝光後燒焙) 亦可,或不進行PEB亦可。 其次,將其使用鹼顯影液,例如5〜20質量%氫氧化 四甲基銨水溶液進行顯影處理。 如此,即可得到忠實反應光罩圖型之光阻圖型。 又,於基板與光阻組成物之塗佈層之間,可設置有機 系或無機系之抗反射膜。 如上所述般,本發明可提供一種新穎之電子線用負型 光阻組成物與使用前述電子線用負型光阻組成物之光阻圖 型之形成方法。 又,本發明之電子線用負型光阻組成物,例如將電子 線用負型光阻組成物塗佈於基板上,經由塗佈後燒焙 (PAB)所形成之光阻膜(硬化膜),具有優良之塗佈成膜後 -31 - 200830046 的膜安定性(PCD),且對鹼顯影液具有良好之溶解性。 使用本發明之電子線用負型光阻組成物所得之光阻圖 型,極適合作爲飩刻(i m p r i n t)微影用模型(原版)。 【實施方式】 [實施例] 其次,將以實施例對本發明作更詳細之説明,但本發 明並不受該些例示所限定。 &lt;電子線用負型光阻組成物之製作&gt; (實施例1) 使Si02換算濃度2質量%之三乙氧基矽烷73.9g(0.45莫 耳)溶解於丙二醇二甲基醚67 2.9 g (6.8莫耳)中,使其攪拌 溶解。 其次,將由純水24.2g(1.34莫耳)與濃硝酸5ppm混合 所得溶液,緩緩地於攪拌中滴入其中後,進行約3小時之 攪拌,其後,將其於室溫下靜置8日間,製得溶液。將該 溶液於120〜140mmHg、40T:下,進行2小時減壓蒸餾,以 製造Si02換算濃度爲1〇質量%、乙醇濃度爲1質量%之矽 院系被膜形成用塗佈液。 於上述所得之矽烷系被膜形成用塗佈液中,相對於該 塗佈液之1 0 0質量份,添加下述化學式所示之肟磺酸酯系 酸產生劑0.7質量份(對該塗佈液中之三乙氧基矽烷縮合物 之Si〇2換算濃度爲7質量%),以製作電子線用負型光阻組 -32- 200830046 成物。 【化8】The above diazomethane acid generator, for example, bis(phenylsulfonyl)diazomethane, bis(P-toluenesulfonyl)diazomethane, bis(xylsulfonyl)diazomethane, bis(cyclohexyl) Sulfhydryl)diazomethane, bis(cyclopentylsulfonyl)diazomethane, bis(η-butylsulfonyl)diazomethane, bis(isobutylsulfonyl)diazomethane, bis( Sec-butylsulfonyl)diazomethane, bis(η-propylsulfonyl)diazomethane, bis(isopropylsulfonyl)diazomethane, bis(tert-butylsulfonyl) Nitrogen methane, bis(n-pentylsulfonyl)diazomethane, bis(isopentylsulfonyl)diazomethane, bis(sec-pentylsulfonyl)diazomethane, bis(tert_pentyl) Sulfhydryl)diazomethane, 1·cyclohexylsulfonylbutylsulfonyl)diazotriene, 1-cyclohexylsulfonyl-yl_1_(^1·!:-pentylsulfonyl)diazomethane, L-tert-pentylsulfonyl-l-(tert_butylsulfonyl)diazomethane. The above-mentioned ethylene diterpenoid acid generator, for example, bis-indole-(P-toluenesulfonyl)-dimethylglyoxime, bis--0-(p-toluenesulfonyl)-α-diphenylethylene -22- 200830046 肟, bis-indole-(Ρ·toluenesulfonyl)-α-dicyclohexylethanediamine, bis-indole-(p-toluenesulfonyl)-2,3-pentanedione B Diterpenoid, bis--0-(p-toluenesulfonyl)-2·methyl-3,4-pentanedione ethanedioxime, bis-indolyl-(η-butanesulfonyl)-α-di Methylglyoxime, bis(η-butanesulfonyl α-diphenylglyoxime, bis- 0-(η-butanesulfonyl) α-dicyclohexylethylenedifluorene, bis- 〇·( Η-butanesulfonyl)-2,3-pentanedione ethanedioxime, bis--0-(η-butanesulfonyl)-2-methyl-3,4-pentanedione ethylene肟, double-0-(methanesulfonyl)-"-dimethylglyoxime" bis-indole-(trifluoromethanesulfonyl)-α-dimethylglyoxime, double-0-(1 , 1,1-trifluoroethanesulfonyl)-α-dimethylglyoxime, bis- 0-(tert-butanesulfonyl)-α-dimethylglyoxime, bis-indole- (Perfluorooctanesulfonyl)-α-dimethylglyoxime, bis-indole-(cyclohexanesulfonyl)-α-dimethylglyoxime, double-0-(phenylsulfonate) )-α·Dimethylglyoxime, bis--0-(ρ-fluorophenylsulfonyl)-α-dimethylglyoxime, bis-CKp-tert-butylbenzenesulfonyl)-α - dimethylglyoxime, bis-indole-(xylsulfonyl)-α-dimethylglyoxime, bis--0-(decanesulfonyl)-α-dimethylglyoxime, etc. The above big bismuth acid generator, such as bisnaphthylsulfonylmethane, bistrifluoromethylsulfonylmethane, bismethylsulfonylmethane, bisethylsulfonylmethane, bispropylsulfonyl Methane, diisopropylsulfonyl methane, bis-indole-toluenesulfonyl methane, bisbenzenesulfonyl methane, etc. The aforementioned /3-ketoflavoric acid generator, such as 2-cyclohexylcarbonyl-2-( ρ-Toluenesulfonyl)propane, 2-isopropylcarbonyl-2-(ρ-toluenesulfonyl)propane, etc., such as the above diterpenoid acid generator, such as diphenyl dinon derivative, dicyclohexyl Anthracene derivatives, etc. -23- 200830046 The aforementioned nitrobenzyl sulfonate acid generator, such as p-toluenesulfonic acid 2,6-dinitrobenzyl ester, p-toluenesulfonic acid 2,4-dinitro Benzyl ester, etc. The aforementioned sulfonate-based acid generator, for example, 1,2,3-tris(methanesulfonyloxy)benzene, 1 , 2,3-tris(trifluoromethanesulfonyloxy)benzene, 1,2,3·tris(p-toluenesulfonyloxy)benzene, etc. The sulfonate of the aforementioned N-hydroxyimine compound An acid generator such as Nucciximide methanesulfonate, N-hydroxybutylimine trifluoromethanesulfonate, N-hydroxybutylimine ethanesulfonate, N-hydroxybutanediamine 1-propane sulfonate, N-hydroxybutaneimine 2-propane sulfonate, N-hydroxybutaneimine 1-pentane sulfonate, N-hydroxybutyrate Diimine imine 1-octane sulfonate, N-hydroxybutaneimine p-tosylate, N-hydroxybutaneimine p-methoxybenzenesulfonate, N-hydroxybutane Imine 2-chloroethane sulfonate, N-hydroxybutylimine benzene sulfonate, N-hydroxybutaneimine 2,4,6-trimethylbenzene sulfonate, N-hydroxyl Butadiene imine 1-naphthalene sulfonate, N-hydroxybutaneimine 2-naphthalene sulfonate, N-hydroxy-2-phenylbutaneimine methane sulfonate, N-hydroxymalay Yttrium imide methane maleimide methane sulfonate, N-hydroxymaleimide ethane sulfonate, N-hydroxy-2-phenyl maleimide methane sulfonate, N-hydroxyl Dimethyleneimine methane sulfonate, N-hydroxypentadienic acid Aminobenzenesulfonate, N-hydroxyindole methanesulfonate, N-hydroxyindole benzsulfonate, N-hydroxyindoleimide trifluoromethanesulfonate, N-hydroxyindole Amine p-toluenesulfonate, N-hydroxynaphthyldimethylimide methanesulfonate, N-hydroxynaphthalene xylene sulfonate, N-hydroxy-5-norbornene-2,3- Dicarboxyimine methane sulfonate, N-hydroxy-5-norbornene-2,3-dicarboxyimino trifluoromethanesulfonate, N-hydroxy-5-norbornazole _ 2,3-dicarboxyl Imine ρ-toluenesulfonate and the like. -24- 200830046 (B) Ingredients, one type of these acid generators may be used alone or in combination of two or more. In the present invention, the (B) component is preferably an oxime sulfonate-based acid generator (B-1) having a group represented by the above formula (II). . In the negative-type resist composition for an electron beam of the present invention, the content of the component (B) is, for example, 3 to 15% by mass based on the SiO 2 conversion concentration of the component (A) in the coating liquid for forming a decane-based film. Preferably, it is 5 to 10% by mass. When it is in the above range, the irradiation of the electron beam promotes the formation of Si-O-Si bonds between the components (A), and the photoresist pattern can be easily obtained by development. &lt;Arbitrary component&gt; The negative-type photoresist composition for an electron beam of the present invention may be further added with a mixing component, for example, a contrast enhancer, an organic solvent or the like may be appropriately added. The negative resist composition for an electron beam of the present invention may contain a comparative reinforcing agent. The contrast enhancer can sense light (electron wire) and/or heat, and control the solubility of the formed photoresist film (hardened film), and enhance the contrast by the unevenness of the developed photoresist film. Ingredients. The above-mentioned contrast enhancing agent is not particularly limited as long as it has the above-mentioned function, and it can be appropriately selected from among known compounds by blending the composition of the negative-type resist composition for an electron beam, the type of developing solution, and the like. Specific examples of the contrast enhancer include, for example, a photoacid generator other than the component (B), a thermal acid generator, a photobase generator, a hot base generator, and the like. -25- 200830046 The photoacid generator is not particularly limited as long as it is other than the component (B). For example, a gun salt or the like can be used. Specifically, the aforementioned iron salt is, for example, tetramethylammonium trifluoromethanesulfonate, tetramethylammonium nonafluorobutanesulfonate, tetra-n-butylammonium nonafluorobutanesulfonate, and nonafluorobutanesulfonic acid Phenyl ammonium, tetramethylammonium p-toluenesulfonate, diphenyliodide trifluoromethanesulfonate, p-tert-butoxyphenyl)phenyl iodide, P-toluene Acid diphenyl iodide, p-tert-butoxyphenyl)phenyl iodide, triphenylsulfonium trifluoromethanesulfonate, trifluoromethanesulfonic acid (ρ-tert-butoxy Phenyl)diphenylphosphonium, bis(p_tert_butoxyphenyl)phenylphosphonium trifluoromethanesulfonate, tris(p_tert_butoxyphenyl)trifluoromethanesulfonate mirror, p-toluenesulfonic acid Phenylhydrazine, p-tert-toluenesulfonic acid (p_tert-butoxyphenyl)diphenylphosphonium, p-toluenesulfonic acid bis(p-tert-butoxyphenyl)phenyl scoop, p-toluenesulfonic acid (p-tert-butoxyphenyl) mirror, triphenylsulfonium nonafluorobutanesulfonate, triphenylsulfonium butanesulfonate, trimethylsulfonium trifluoromethanesulfonate, trimethylsulfonate Base, tricyclomethanesulfonate cyclohexylmethyl (2-oxocyclohexyl) fluorene, ρ- Cyclohexylmethyl benzenesulfonate (2-oxocyclohexyl) mirror, dimethylphenyl mirror of trifluoromethanesulfonate, dimethylphenyl sulfonate of p-toluenesulfonate, dicyclohexylbenzene trifluoromethanesulfonate Base, p-toluenesulfonic acid dicyclohexylphenylphosphonium, trinaphthyltrifluoromethanesulfonate, trifluoromethanesulfonate cyclohexylmethyl (2-oxocyclohexyl) mirror, trifluoromethanesulfonic acid ( 2-norbornylalkyl)methyl(2-oxocyclohexyl)anthracene, ethylene bis[methyl(2-oxocyclopentyl)phosphonium trifluoromethanesulfonate (sulfonate)], 1,2'- Naphthylcarbonylmethyltetrahydrothiophenyl trifluoromethanesulfonate and the like. The aforementioned thermal acid generator is a compound which can induce heat to generate an acid. -26- 200830046 The thermal acid generator is not particularly limited, and for example, it may contain at least one 2,4,4,6-tetrabromocyclohexadienone, benzoquinone tosylate, 2-nitrobenzyl A toluenesulfonate, a composition other than an alkyl sulfonate or a thermal acid generator thereof, or the like is used as a usual thermal acid generator. The photobase generator is a compound which can induce light (electron rays) to form a base. The photobase generator is not particularly limited, and is, for example, a photoactive urethane such as triphenylmethanol, a benzyl carbazate or a benzoguanyl carbazate; a fluorene-aminoformamidine; Hydroxyguanamine, hydrazine-aminoformamidine, arylamine sulfonamide, phthalamide and other decylamines such as N-lactone and N-(2-allylacetylene) decylamine; oxime ester, α- Aminoethyl benzene, cobalt complex, and the like. Among them, 2-nitrobenzylcyclohexylaminoformate, triphenylmethanol, hydrazine-aminoformamidine hydroxy guanamine, hydrazine-aminocarbamidine, [[(2,6-dinitro) Benzyl)oxy]carbonyl]cyclohexylamine, bis[[(2-nitrobenzyl)oxy]carbonyl]hexane 1,6-diamine, 4-(methylthiobenzoinyl)-1 -Methyl-1-morpholine ethane, (4-morpholinylbenzoyl)-1-benzyl-1-dimethylaminopropane, N-(2-nitrobenzyloxycarbonyl)pyrrolidine Preferably, hexaammine (III) tris(triphenylmethylborate), 2-benzyl-2-dimethylamino-1-(4-morpholinylphenyl)-butanone or the like is preferred. The above-mentioned hot base generating agent is a compound which can induce heat to generate a base. The hot base generator is not particularly limited, and for example, 1-methyl-1-(4-biphenyl-yl)ethylcarbamate or 1,1-dimethyl-2-cyano group can be used. a urethane derivative such as ethyl urethane; a urea derivative such as urea or N,N-dimethyl- Ν'-methyl urea; 1,4-dihydronicotinium amide or the like Dihydropyridine derivative; quaternized ammonium salt of organic decane or organoborane; dicyandi-27-200830046 decylamine and the like. Others, such as bismuth trichloroacetate, methyl hydrazine triacetate, potassium trichloroacetate, cesium phenyl sulfonate hydrazine, hydrazine P-chlorophenyl sulfonyl hydrazide, P-methanesulfonyl phenyl sulfonyl sulfhydryl Barium acetate, potassium phenylpropanoate, barium phenylpropanoate, phenylpropanoid, P-chlorophenylpropanoate, P-phenyl-bis-phenylpropanoate, benzene Tetramethylammonium sulfosuccinate, tetramethylammonium phenylpropanoate, and the like. The addition amount of the contrast enhancer in the negative-type resist composition for an electron beam of the present invention is 0.1 to 30% by mass based on the SiO 2 conversion concentration of the component (A) in the coating liquid for forming a decane-based film. Preferably, it is preferably 1 to 15% by mass, preferably 5 to 10% by mass. When the amount of the contrast enhancer added is 0.1% by mass or more, the effect of the contrast enhancer can be sufficiently obtained, and the resist pattern formed by the developer treatment is sufficiently contrasted. Further, when the amount of the contrast enhancer added is 30% by mass or less, the storage stability of the negative-type photoresist composition for an electron beam can be improved, and the film reduction amount of the exposed portion during development can be prevented from being lowered, thereby preventing the film from being reduced. The contrast is reduced. The negative-type photoresist composition for an electron beam of the present invention is intended to improve the uniformity of coatability and film thickness, and therefore it is preferable to contain an organic solvent (hereinafter referred to as "(S) component). For the (S) component, the ingredients generally used in the past can be used. Specifically, for example, methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, 3-methoxy-3-methyl-1-butanol, 3-methoxy-1-butanol, etc. Alkyl alcohol esters such as methyl-3-methoxypropionate and ethyl-3-ethoxypropionate; multivalent of ethylene glycol-28-200830046, diethylene glycol, propylene glycol, etc. Alcohol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl Multivalents such as ether, propylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate Alcohol derivatives; fatty acids such as acetic acid and propionic acid; ketones such as acetone, methyl ethyl ketone and 2-heptanone. The (S) component may be used singly or in combination of two or more. The amount of the component (S) is not particularly limited, and the concentration of the component other than the component (S) (solid component) is preferably 5 to 100% by mass, more preferably 20 to 50% by mass. When it is in the above range, the coating property to the substrate or the like can be improved. Further, in the present invention, various additives such as other resins, surfactants, and adhesion aids may be added to the extent that the effects of the present invention are not impaired. The additive can be suitably selected in accordance with the function desired. In the case where a surfactant is added, the coating property of the negative-type photoresist composition for an electron beam can be improved, and the flatness of the obtained photoresist film can also be raised upwards, such as Β Μ - 1 0 0 0 (trade name; Β Μ Chemie company); Megefis F14 2 D, with F172, with F173, and with F183 (above, trade name; Dainippon Ink Chemical Industry Co., Ltd.); Prola FC -135, with FC-170C, with FC-43 0, and with FC-43 1 (above, trade name; Sumitomo 3 Μ (share) system); Shaflon S-1 1 2, same as S -1 1 3 , with S-131, with S-141, and with S-145 (above, trade name; Asahi N-29-200830046 sub-share); SH-28PA, SH-190, SH-193, SZ-6032 , fluorine-based surfactants such as SF-8428, DC-57, and DC-190 (above, trade name; Toray Polyoxane Co., Ltd.). The ratio of the surfactant in the negative-type photoresist composition for the electron beam is preferably 5 parts by mass or less, more preferably 0.01 part by mass or less, based on 1 part by mass of the component other than the surfactant (solid content). ~ 2 parts by mass. Further, when a tackifier is used, the adhesion of the negative-type photoresist composition for an electron beam to a substrate or the like can be improved. The tackifier is preferably a decane compound (functional decane coupling agent) having a reactive substituent such as a carboxyl group, a methacryl group, an isocyanate group or an epoxy group. Specific examples of the aforementioned functional decane coupling agent include, for example, trimethoxyalkyl benzoic acid, 7-methene propylene oxy methoxy methoxy trimethoxy decane, vinyl triethoxy decane, vinyl trimethoxy decane, 7-Iocyanatepropyltriethoxydecane, r-glycidoxypropyltrimethoxydecane, /3-(3,4-epoxycyclohexyl)ethyltrimethoxydecane, and the like. In the negative-type photoresist composition for an electron beam, the use ratio of the tackifier is 1 〇0 parts by mass relative to the component other than the tackifier (solid content), preferably 20 parts by mass or less, more preferably 〇. · 〇 5 to 10 parts by mass, preferably 1 to 1 0 parts by mass. <<Formation Method of Photoresist Pattern>> The method for forming a photoresist pattern of the present invention is a step -30-200830046 for forming a photoresist film on a substrate by using the negative-type photoresist composition for an electron beam of the present invention. a step of exposing the photoresist film to a step of developing the photoresist film to form a photoresist pattern. The method of forming the photoresist pattern can be carried out, for example, in the following manner. In other words, the negative-working photoresist composition for the electron beam is applied to a substrate such as a tantalum wafer by a spin coater (spin coating method) or the like at a temperature of 100 to 250 ° C. For example, after baking for 20 to 200 seconds, preferably 60 to 150 seconds, p〇st-apply bake (PAB) is applied to the electronic wire, for example, using an electron beam drawing machine or the like. The reticle pattern is expected to be selectively exposed. Thereafter, post exposure bake (PEB) can be carried out at a temperature of from 1 Torr to 25 ° C for a period of from 20 to 200 seconds, preferably from 60 to 150 seconds. In the present invention, PEB (bake after exposure) may or may not be performed. Next, it is subjected to development treatment using an alkali developing solution, for example, a 5 to 20% by mass aqueous solution of tetramethylammonium hydroxide. In this way, a photoresist pattern of a faithful response mask pattern can be obtained. Further, an organic or inorganic antireflection film may be provided between the substrate and the coating layer of the photoresist composition. As described above, the present invention can provide a novel method of forming a negative resistive composition for an electron beam and a resist pattern using the negative resistive composition for an electron beam. Further, in the negative-type photoresist composition for an electron beam of the present invention, for example, a negative-type photoresist composition for an electron beam is applied onto a substrate, and a photoresist film (cured film) formed by baking after baking (PAB) is applied. ), has excellent film stability (PCD) after coating film formation -31 - 200830046, and has good solubility to alkali developing solution. The photoresist pattern obtained by using the negative-type photoresist composition for an electron beam of the present invention is highly suitable as a model for engraving (i m p r i n t) lithography (original). [Embodiment] [Embodiment] Next, the present invention will be described in more detail by way of examples, but the present invention is not limited by the examples. &lt;Preparation of Negative Photoresist Composition for Electron Wire&gt; (Example 1) 73.9 g (0.45 mol) of triethoxydecane having a SiO 2 conversion concentration of 2% by mass was dissolved in propylene glycol dimethyl ether 67 2.9 g (6.8 mol), it was stirred and dissolved. Next, a solution obtained by mixing 24.2 g (1.34 mol) of pure water and 5 ppm of concentrated nitric acid was slowly added dropwise thereto with stirring, and then stirred for about 3 hours, after which it was allowed to stand at room temperature. During the day, a solution was prepared. This solution was subjected to vacuum distillation under reduced pressure of 120 to 140 mmHg and 40T for 2 hours to produce a coating liquid for forming a film of a ceramsite film having a concentration of SiO 2 of 1% by mass and an ethanol concentration of 1% by mass. In the coating liquid for forming a decane-based film obtained above, 0.7 parts by mass of an oxime sulfonate-based acid generator represented by the following chemical formula is added to 100 parts by mass of the coating liquid (this coating is applied) The concentration of Si 〇 2 in the solution of the triethoxy decane condensate in the liquid was 7% by mass) to prepare a negative-type photoresist group for electron beams -32-200830046. 【化8】

丫《Ν-。一S〇2 - (CF2)4-H &lt;光阻圖型之形成&gt; 將上述所得之實施例1之電子線用負型光阻組成物’ 使用旋轉塗佈法塗佈於8英吋矽晶圓上之後’於1 8 〇它下進 行120秒鐘之燒焙(PAB),而形成膜厚30 Onm之光阻膜(硬 化膜)。 其次,對上述所得之光阻膜(硬化膜),使用電子線描 繪機(日立製HL-8 00D、70kV加速電壓),描繪電子線後 ,於23°C下,1〇質量%氫氧化四甲基銨(TMAH)水溶液進 行6 0秒鐘顯影、水洗、振動乾燥。 經由上述光阻圖型之形成方法,確認本發明之實施例 1的電子線用負型光阻組成物可形成5 00nm之L &amp; S圖型。 &lt;塗佈成膜後之膜安定性(PCD)評估&gt; 使用實施例1之電子線用負型光阻組成物,與單獨使 用上述矽烷系被膜形成用塗佈液(以下,稱「比較例1」) ,依上述相同方法,分別形成光阻膜(硬化膜)。 其次,對各光阻膜依表1〜3所示條件,即,於前述光 -33- 200830046 阻膜形成後立即(表1)、經過15日後(表2)、將前述光阻膜 浸漬水中10秒鐘後(表3),於23°c下使用10質量%氫氧化四 甲基銨(TMAH)水溶液進行60秒鐘顯影、水洗、振動乾燥 。測定此時之膜厚度,進行PCD評估。其結果如表1〜3 所示。 [表1] 光阻膜形成後,立即進行顯影處理時之膜厚度(nm) 光阻膜形成後 顯影後 實施例1 218 0 比較例1 215 0 [表2] 光阻膜形成後,經過15日後進行顯影處理時之膜厚度(nm) 光阻膜形成後 顯影後 實施例1 218 0 比較例1 215 確認出殘渣 [表3] 光阻膜形成後,將該光阻膜浸漬水中10 秒鐘後,進行顯影處理時之膜厚度(nm) 光阻膜形成後 浸漬水中10秒後 顯影後 實施例1 218 222 0 比較例1 215 221 135 由表1〜3之結果得知,本發明之實施例1之電子線用 負型光阻組成物,確認其於任一情形下,其顯影後之膜厚 -34- 200830046 度皆爲Onm,對未曝光部之顯影液具有良好溶解性,具有 優良PCD。 又,與本發明相異之比較例1,確認其於經過1 5日後 之顯影處理中發現殘渣(表2),又,浸漬水中1 〇秒鐘後之 顯影處理中亦發現殘膜(表3),具有不佳之PCD。 本發明之電子線用負型光阻組成物,例如將電子線用 負型光阻組成物塗佈於基板上,經塗佈後燒焙(PAB)所形 成之光阻膜(硬化膜),具有優良之塗佈成膜後之膜安定性 (P C D ),且對鹼顯影液具有良好之溶解性。 又’使用本發明之電子線用負型光阻組成物所得之光 阻圖型,極適合作爲蝕刻微影用模型(原版)。因此,本發 明極具有產業上利用價値。 -35-丫 "Ν-. One S〇2 - (CF2)4-H &lt;Formation of Photoresist Pattern> The negative-type photoresist composition for electron wires of Example 1 obtained above was applied to 8 inches by spin coating. After the wafer was mounted on the wafer, it was subjected to calcination (PAB) for 120 seconds under a temperature of 18 Å to form a photoresist film (hardened film) having a film thickness of 30 Onm. Next, the photoresist film (cured film) obtained above was subjected to an electron beam drawing machine (Hitachi HL-8 00D, 70 kV accelerating voltage), and after drawing an electron beam, at 23 ° C, 1 〇 mass% of NaOH 4 The methylammonium (TMAH) aqueous solution was developed for 60 seconds, washed with water, and dried by vibration. It was confirmed that the negative-type photoresist composition for an electron beam of Example 1 of the present invention can form an L & S pattern of 500 nm by the above-described method for forming a photoresist pattern. &lt;Evaluation of film stability (PCD) after coating film formation> The negative-type photoresist composition for electron beam of Example 1 was used, and the coating liquid for forming a decane-based film was used alone (hereinafter, referred to as "comparison" Example 1"), a photoresist film (cured film) was formed in the same manner as above. Next, the photoresist film was immersed in the water under the conditions shown in Tables 1 to 3 immediately after the formation of the light-33-200830046 film (Table 1) and after 15 days (Table 2). After 10 seconds (Table 3), development was carried out for 60 seconds at 23 ° C using a 10% by mass aqueous solution of tetramethylammonium hydroxide (TMAH), washed with water, and shaken. The film thickness at this time was measured, and PCD evaluation was performed. The results are shown in Tables 1 to 3. [Table 1] Film thickness (nm) after development of the photoresist film immediately after development of the photoresist film Example 1 218 0 Comparative Example 1 215 0 [Table 2] After the formation of the photoresist film, after 15 Film thickness (nm) at the time of development processing in the future After development of the photoresist film, Example 1 218 0 Comparative Example 1 215 Residue was confirmed [Table 3] After the photoresist film was formed, the photoresist film was immersed in water for 10 seconds. After that, the film thickness (nm) at the time of developing treatment was formed after the photoresist film was formed in the immersion water for 10 seconds, and then developed. Example 1 218 222 0 Comparative Example 1 215 221 135 From the results of Tables 1 to 3, the present invention was carried out. In the negative electrode resist composition of the electron beam of Example 1, it was confirmed that the film thickness after development was -34-200830046 degrees in both cases, and it was excellent in solubility to the unexposed portion developing solution. PCD. Further, in Comparative Example 1 which is different from the present invention, it was confirmed that the residue was found in the development treatment after 15 days (Table 2), and the residual film was also found in the development treatment after immersing in water for 1 second (Table 3). ), with a poor PCD. In the negative-type photoresist composition for an electron beam of the present invention, for example, a negative-type photoresist composition for an electron beam is applied onto a substrate, and after being coated, a photoresist film (cured film) formed by baking (PAB) is baked. It has excellent film stability (PCD) after film formation, and has good solubility to alkali developers. Further, the photoresist pattern obtained by using the negative-type photoresist composition for an electron beam of the present invention is very suitable as a model for etching lithography (original). Therefore, the present invention has a very high industrial price. -35-

Claims (1)

200830046 十、申請專利範圍 1 · 一種電子線用負型光阻組成物,其特徵爲,含有由 下述通式(I)所示之烷氧基矽烷化合物之水解物與下述通 式(I)所示之烷氧基矽烷化合物之縮合物所形成之群所選 出之至少1種的化合物(A),與非離子性酸產生劑(B), 【化1】 Rin,OR2)4-n …⑴ [式(I)中,R1爲氫原子或1價之有機基,R2爲1價之有機基 ,η爲1〜3之整數]。 2 .如申請專利範圍第1項之電子線用負型光阻組成物 ,其中,前述非離子性酸產生劑(Β)爲包含具有下述通式 (Π)所示之基的肟磺酸酯系酸產生劑(Β-1), 【化2】 -C=N—Ο—S〇2—R31 R32 …(I I) [式(II)中,R31、R32各別獨立表示有機基]。 3 . —種光阻圖型之形成方法,其特徵爲包含,使用申 請專利範圍第1或2項之之電子線用負型光阻組成物於基 板上形成光阻膜之步驟,使前述光阻膜曝光之步驟,與使 前述光阻膜顯影以形成光阻圖型之步驟。 -36- 200830046 明 說 單 無簡 :號 為符 圖件 表元 代之 定圖 :指表 圖案代 表本本 無 代 定一二 指c C 八、本案若有化學式時,請揭示最能顯示發明特徵的化學 式·無200830046 X. Patent Application No. 1 A negative-type photoresist composition for an electron beam, which comprises a hydrolyzate of an alkoxydecane compound represented by the following formula (I) and a formula (I) At least one compound (A) selected from the group consisting of the condensate of the alkoxydecane compound shown, and the nonionic acid generator (B), R1, OR2)4-n (1) [In the formula (I), R1 is a hydrogen atom or a monovalent organic group, R2 is a monovalent organic group, and η is an integer of 1 to 3]. 2. The negative-type photoresist composition for an electron beam according to the first aspect of the invention, wherein the non-ionic acid generator (Β) is an oxime sulfonic acid comprising a group represented by the following formula (Π). Ester-based acid generator (Β-1), [Chem. 2] -C=N-Ο-S〇2-R31 R32 (II) [In the formula (II), R31 and R32 each independently represent an organic group]. 3. A method for forming a photoresist pattern, comprising the steps of: forming a photoresist film on a substrate by using a negative photoresist composition for an electron beam according to claim 1 or 2; The step of exposing the resist film to the step of developing the photoresist film to form a photoresist pattern. -36- 200830046 succinctly, there is no simple: the number is the map of the map element: the table pattern represents the book without a set of two fingers c C VIII. If there is a chemical formula in this case, please reveal the best display of the characteristics of the invention. Chemical formula
TW96129039A 2006-09-26 2007-08-07 Negative resist composition for an electron beam and resist pattern formation method TW200830046A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260805A JP4772632B2 (en) 2006-09-26 2006-09-26 Negative resist composition for electron beam and method for forming resist pattern

Publications (1)

Publication Number Publication Date
TW200830046A true TW200830046A (en) 2008-07-16

Family

ID=39229888

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96129039A TW200830046A (en) 2006-09-26 2007-08-07 Negative resist composition for an electron beam and resist pattern formation method

Country Status (3)

Country Link
JP (1) JP4772632B2 (en)
TW (1) TW200830046A (en)
WO (1) WO2008038448A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5413185B2 (en) * 2008-12-25 2014-02-12 Jsr株式会社 Negative radiation sensitive composition, cured pattern forming method and cured pattern
JP5393282B2 (en) * 2009-06-17 2014-01-22 東京応化工業株式会社 Nanoimprinting composition and pattern forming method
JP5381508B2 (en) * 2009-08-27 2014-01-08 Jsr株式会社 Negative radiation sensitive composition, cured pattern forming method, and cured pattern

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3505990B2 (en) * 1997-01-31 2004-03-15 信越化学工業株式会社 High molecular silicone compound, chemically amplified positive resist material and pattern forming method
JP3918943B2 (en) * 1997-08-06 2007-05-23 信越化学工業株式会社 High molecular silicone compound, resist material and pattern forming method
JP4294521B2 (en) * 2004-03-19 2009-07-15 東京応化工業株式会社 Negative resist composition and pattern forming method using the same
JP4556639B2 (en) * 2004-11-26 2010-10-06 東レ株式会社 Negative photosensitive resin composition, transparent cured film formed therefrom, and element having cured film

Also Published As

Publication number Publication date
WO2008038448A1 (en) 2008-04-03
JP4772632B2 (en) 2011-09-14
JP2008083192A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4699140B2 (en) Pattern formation method
US7265234B2 (en) Silsesquioxane compound mixture, method of making, resist composition, and patterning process
TWI296736B (en) Chemical amplification type positive resist composition
JP5761182B2 (en) Positive radiation-sensitive composition, interlayer insulating film for display element, and method for forming the same
TW201005429A (en) Double patterning process
CN101086618B (en) Photosensitive compound, photosensitive composition, method for resist pattern formation, and process for elements production
TW201213467A (en) A composition for coating over a photoresist pattern
US9256126B2 (en) Methanofullerenes
JP5344869B2 (en) Process for producing alkali-soluble silsesquioxane
CN111234236A (en) Siloxane polymer containing isocyanuric acid and polyether skeleton, photosensitive resin composition, and pattern formation method
KR101684870B1 (en) Composition for forming monolayer or multilayer
TW200923572A (en) Novel compound, manufacturing method thereof, acid generator, resist composition and method of forming resist pattern
US20090226824A1 (en) Hardmask composition and associated methods
US20090155714A1 (en) Photosensitive compound and photoresist composition including the same
JP4774281B2 (en) Photoresist composition
US9323149B2 (en) Methanofullerenes
US9383646B2 (en) Two-step photoresist compositions and methods
TW200830046A (en) Negative resist composition for an electron beam and resist pattern formation method
JP3743491B2 (en) Resist material and pattern forming method
US20080305430A1 (en) Photo-sensitive compound and photoresist composition including the same
TW202028343A (en) Photosensitive resin composition photosensitive resin coating photosensitive dry film and black matrix
KR101757170B1 (en) Silane compound and composition for formation of monolayer or multilayer using same
JP2022053108A (en) Photosensitive resin composition, pattern formation method, cured film formation method, interlayer insulating film, surface protective film, and electronic component
US7947423B2 (en) Photosensitive compound and photoresist composition including the same
JP5204582B2 (en) Method for producing acylated silsesquioxane