200829083 九、發明說明: Λ 【發明所屬之技術領域】 本發明係相關於一種可提供回授控制與開路保護之驅動電路 及其相關驅動方法,尤指一種利用一分析與判斷電路來偵測發光 裝置之狀態以提供回授控制與開路保護之驅動電路及其相關驅動 方法。 【先前技#f】 由於發光二極體(Light Emitting Diode,以下簡稱LED )具有 尺寸小及低耗電量等優點,因此發光二極體目前已被發展應用於 背光模組中,以用來取代傳統冷陰極射線燈管(coldcathode Fluorescent Lamp,CCFL)。已經被廣泛運用於消費、廣告、工業、 軍事等應用上,成為電子產業研發的重點之一。發光二極體是半 導體裝置,直接將電能轉換成光,就如同其它電子零件一樣,當 承受過度的電流或是電壓時,極易遭受到破壞或是損毁。因此, 於需求量增加時,必須設計可以承受過度的電流或電壓之保護電 路。發光一極體常應用於發光指示器(Light indicator),或其它可攜 帶式電子產品的發光源,像是手機、筆記型電腦、個人數位助理 (Personal Data Assistant,PDA)等。然而,使用發光二極體之大型 顯示器(例如大型霓虹燈、液晶顯示器背光板)的需求也逐漸增 加,這些應用需要使用很多的發光二極體以提供大型顯示器足夠 的光源。因為發光二極體的正向偏壓電流會隨著其正向偏壓呈指 數型的增加,一般會使用電流源來驅動發光二極體,以使不同的 6 200829083 發光一極體能達到一致的發光亮度。 m 請參考第1圖,第1圖為先前技術一傳統驅動電路100之示意 圖。驅動電路100包含一電壓轉換電路110、一發光裝置12〇以及 一定電流供應器130。其中,電壓轉換電路11〇具有一第一輸入端 112用來接收一輸入電壓VlN,一第二輸入端114用來接收一回授 訊號FB,以及一輪出端116耦接於發光裝置120之一輪入端。電 壓轉換電路110係用來提供一驅動電壓VDD給發光裝置120。定電 B 流供應器130提供一定電流ie來驅動發光裝置丨2〇。換句話說,定 電流供應器130可根據調整定電流lc的電流值來動態調整發光裝 置120的免度值。 如第1圖所示,發光裝置120包含複數個發光二極體14〇。請 注意,每一個發光二極體140被稱為一個電源驅動裝置,而且, 發光二極體的亮度與定電流Ic成正比。也就是說每一個發光二極 # 體140的亮度會隨著定電流Ic的增加而增加。一般而言,為了使 複數個發光二極體140達到均勻的亮度,取決於以相同的電流來 驅動每一個發光二極體140。為了達到一致的發光量度的要求,複 數個發光二極體140須以串聯的方式來連接。也就是說,每多搞 接一個發光二極體140,發光裝置120所需要的正向偏壓電壓Vf 就會提高。〜因此,電壓轉換電路110必須提供更高的驅動電壓VDD 來供給足夠的正向偏壓電壓Vf給發光裝置120。 7 200829083 請參考第2圖,第2圖為先前技術另一傳統驅動電路200之示 意圖。驅動電路200包含一電壓轉換電路210、六個發光裝置221 一226、六個定電流供應器231 — 236以及一選擇電路250。驅動電 路200與第1圖中的驅動電路1〇〇相似,兩者的不同之處在於驅 動電路200係耦接於更多的發光裝置,且另包含選擇電路25〇。於 本實施例中,只有標示出六個發光裝置221 — 226,但可以擴充至 更多或者更少的發光裝置。電壓轉換電路210係用來提供驅動電 壓VDD給發光裝置221— 226。而第一個定電流供應器231提供一 第一定電流Ιι來驅動第一個驅動裝置221,以此類推,第六個定電 流供應器236提供一第六定電流16來驅動第六個驅動裝置226。 然而,由於受限於發光二極體的材質與製程,每一個發光二極 體240所需求的正向偏壓電壓並不相同。舉例來說,假設第一個 發光裝置221包含三個發光二極體240,且每一個發光二極體240 所需要的正向偏壓電壓並不相同。因此,發光裝置221一226擁有 不同的正向偏壓電壓Vfi-Vf6。於本例子中,驅動電路200會使用 選擇電路250從這六個電壓位準VdrQpi—VdrQp6當中選取最小的電 壓位準以輸出一最小電壓位準VN至電壓轉換電路210的一輸入端 214。也就是說,為了減少每一個定電流供應器231 — 236的功率 耗損並確保六個發光裝置221 — 226皆能正常運作,因此,選擇電 路250從這六個電壓位準Vdr()pl—Vdr()P6當中選取最小的電壓位準 以作為最小電壓位準Vn,並輸出回授訊號^^。其中,六個電壓 準Vdmp 1〜VdlOp6當中最小的電壓位準係對應於六個正向偏壓電 200829083 壓Vfl-Vf6當中最大的電壓位準。 m 請繼續參考第1圖及第2圖,可根據回授訊號FB來調整驅動 電壓Vdd。假使驅動電路需要驅動複數個發光裝置,選擇電路25〇 可從六個電壓位準VdiOpl _ Vdrcp6當中選取最小的電壓位準來作為 回授吼號FB。也就是說,可以減少每一個定電流供應器231〜2% 的功率耗損。假設當中的第二個發光裝置222燒毀(或者為開路》 _ 選擇電路250總是選擇第二個電壓位準vdr()P2當作回授訊號FB, 於這種情況下,驅動電壓vDD會不斷上升。假設驅動電壓大 於驅動電路200所能負荷之最大電壓時,此時,整個驅動電路或 者其内部的元件可能會跟著損毁。 【發明内容】 本發明之主要目的之一在於揭露一種可提供回授控制與開路 _ 保護之驅動電路,以改善先前技術中的缺點。 本發明係提供-種可提伽授控倾開路賴之驅動電路,該 驅動電路包含-第-1絲置、―第—定魏供應器、—電壓轉 ,電路、-分析與判斷電路以及―第—開關。該第—定電流供應 補雛於該第-發光裝置之—輸出端,时提供—第一定電流 給該第-發光裝置。該電壓轉換電路具有一第一輸入端用來接收 、 輸入電麗’一第二輸人端用來接收一回授訊號,以及一輸出端 .#接於該第—發光裝置之—輸人端。該電轉換電路制來提供 200829083 ^動a壓、’4第_發光裝置,且根據該回授訊號調整該驅動電 ΐ。該分析與判斷電路係_於該電壓轉換電路之輸出端以及該 弟-發絲置之輸出端,用來產生―第—開關控制訊號。該第一 開關具有-第-端輕接於該第—發光裝置之輪出端,—第二端輕 接於^電轉換電路之第二輸人端n㈣輪接於該分析 與判斷電路之—第—輸出端。該第—開關係根據該第-開關控制 訊號來控制其開啟與關閉。 ―於:實施例中’該第一發光裝置包含至少一個發光二極體。該 弟一定電流供絲係為—電流吸收源或者—電流供應源。 於-實施例中’該分析與判斷電路包含一第二比較器、一第_ 開路制器以及-控制邏輯。該第二比較器係用來將該分壓驅動 電壓與該第二參考賴進行比較以產生—第二味喊。該第一 開路制器係用來偵測該第一發光裝置之一狀態。該控制邏輯係 用來根據該第一比較訊號及該第一偵測訊號產生該第一開關控制 訊號。 於一實施例中,該驅動電路另包含一第二發光裝置、一第二定 電机供應$、-第二闕以及_選擇電路。該第二定電流供應器 係用^供-第二定電流給該第二發光裝置。該第二開關係^ 於=一發光裝置、該電壓轉換電路以及該分析與判斷電路,根 據第一開關控制訊號來控制其開啟與關閉。該選擇電路係輕接 200829083 .麟轉換電路、鄉-關以及該第二_,該選擇電路係 ^仗該弟-發絲置之輸出猶對叙—辦與該第二發 先裝置之輸出端所對應之一電壓位準當中,選擇一個最小的電壓 =準以作為朗授訊號,並輸出該_訊號至該電壓轉換電路之 第二輸入端。 本發明之主要目的之―在於揭露—種可提供回授控制與開路 _ 保護之驅動方法,以改善先前技術中的缺點。· 本發明係提供一種可提供回授控制與開路保護之驅動方法,該 驅動方法包含:提供-第一定電流給一第一發光裝置;提供一驅 動電壓至該第一發光裝置之一輸入端;產生一第一開關控制訊號 來控制一第一開關之開啟及關閉;將該第一開關耦接於該第一發 光裝置之輸出端與一回授訊號之間;根據該第一開關控制訊號來 產生該回授訊號;以及根據該回授訊號來調整該驅動電壓。 % 於一實施例中’該驅動方法另包含:提供一第二定電流給一第 二發光裝置;提供該驅動電壓至該第二發光裝置之一輸入端;產 生一第二開關控制訊號來控制一第二開關之開啟及關閉;從該第 一發光裝置之輸出端所對應之一電壓位準與該第二發光裝置之輸 出端所對應之一電壓位準當中,選擇一個最小的電壓位準以作為 一回授訊號;以及根據該回授訊號來調整該驅動電壓。 200829083 於一實施例中,該驅動方法另包含:將該分壓驅動電壓與一第 二參考電壓進行比較,以產生一第二比較訊號;偵測該第一發光 裝置之狀悲,以輸出一第一偵測訊號;偵測該第二發光裝置之狀 態,以輸出一第二偵測訊號;以及根據該第二比較訊號、該第一 偵測訊號及該第二偵測訊號,來產生該第一開關控制訊號及該第 二開關控制訊號。 【實施方式】 請參考第3圖,第3圖為根據本發明之一第一實施例中一提供 回授控制與開路保護之驅動電路3〇〇之示意圖。驅動電路3〇〇包 含一電壓轉換電路310、六個發光裝置321一326、六個定電流供 應器331 — 336、一選擇電路35〇、一分析與判斷電路36〇以及六 個開關swi-sw6。電壓轉換電路310具有一第一輸入端S12用 來接收一輸入電壓Vm,一第二輸入端314用來接收一回授訊號 FB,以及一輸出端316耦接於六個發光裝置321一326。電壓轉換 電路310係用來提供一驅動電壓Vdd給全部的發光裝置321 一 326。六個定電流供應器331一336分顧來提供一定電流來驅動 相對應的發光裝置。舉例來說,第一個定電流供應器331提供一 第一定電流I〗給第一個發光裝置321,依此類推。 於本實施例中,分析與判斷電路36〇包含一第二比較器 COMP2、六個開路偵測器381-386,以及一控制邏輯370。第二 比較器COMP2具有-第一輸入端362耦接於電壓轉換電路31〇 12 200829083 • 之輸出端316,用來接收驅動電壓VDD,以及一第二輸入端364用 來接收-第二參考電壓H二比較器c〇Mp2^_動電壓Vdd 與第二參考電壓V純進行比較以產生-第二比較訊號Sc2。假如驅 動電麼vDD係大於第二參考電壓&,分析與判斷電路36〇會利 用攻六個開路偵測器381-:386來谓測相對應的發光裝置之狀態。 換句話說,開路偵測器381-386侧相對應的發光裝置之狀態以 產生相對應的偵測訊號Sdi — Sd6至控制邏輯37〇。然後,控制邏輯 φ 370會產生六個開關控制訊號ss「Ss6來控制相對應的開關SW1 一SW6之開啟或者關閉。 考慮以下的幾種狀況;假如驅動電壓Vdd係小於第二參考電壓 vref2 ’則控制邏輯370根據六個開關控制訊號開啟全部 的開關SW1-SW6,此時全部的電壓位準Vdr〇p「%送至選擇 電路350。接著,選擇電路35〇從這些電壓位準%當中 選擇最小的㈣辦續岐小龍轉%,並送至電壓轉換電 路310的第二輸入端314。驅動電壓I可根據最小電壓位準% (回授訊號FB)來調整。 假設驅動電壓Vdd持續±升且A於第二參考麵m 與判斷電㈣G會利關路偵測器381—386來偵測相對應的發光 裝置之狀態。假如有任何—個發找置被偵測為開路時,於制 輯370會將其相對應的開關關閉。舉例來說’假如第二發錄置 322之狀態係為開路,則透過第二開關控制訊號紀將第二開關 13 200829083 、 .SW2關閉。於此種情況下,將除了第二個電壓位準VdiOp2以外的 其他電壓位準VdlOpl-VdlOp6傳送到選擇電路35〇。接著,電路 會從這五個電壓位準當中選擇最小的電壓位準以回: FB。由於第二發光裝置322被偵測為開路,將第二電壓二^喊 (於此種情況下大約為0V)從選擇電路35〇的選擇當中移除,二 避免第二辦\2影_峨訊號FB。到目前為止驅動電 壓VDD不會一值持續上升。整個驅動電路3〇〇或是其元件將免於 _ 受到毀損。 於一實施例中,發光裝置321 — 326可個包含至少一個發光二 極體(LED)。定電流供應器331-336可各為-電流吸引源或者 電流供應源。弟一比較态COMP2可為一磁滯比較器以避免誤動 作。此外’發光裝置的數量並不偶限於六各,亦可為其他數量。 上遠實施例中的各元件僅用來最為本發明之範例說明,該些元件 並非本發明的必要限制條件。 請參考第4圖及第3圖。第4圖為第3圖中之電壓轉換電路31〇 之示意圖。電壓轉換電路310包含一第一比較器C〇MPl以及一電 壓轉換單元318。第一比較器C0MP1具有一第一輸入端用來接收 回授訊號FB ’以及一第二輸入端用來接收一第一參考電壓。 第一比較器COMP1將回授訊號FB與第一參考電壓Vrefl進行比較 ★ 以輸出一第一比較訊號Scl。電壓轉換單元318係用來提供驅動電 壓VDD給發光裝置321〜326(如第3圖所示),且根據第一比較器 14200829083 IX. Description of the invention: Λ Technical field of the invention The present invention relates to a driving circuit and related driving method capable of providing feedback control and open circuit protection, in particular to detecting and emitting light by using an analysis and determination circuit The state of the device is to provide a drive circuit for feedback control and open circuit protection and its associated drive method. [Previous Technique #f] Since the Light Emitting Diode (LED) has the advantages of small size and low power consumption, the LED has been developed into the backlight module to be used. Replace the traditional cold cathode fluorescent lamp (CCFL). It has been widely used in consumer, advertising, industrial, military and other applications, and has become one of the focuses of research and development in the electronics industry. A light-emitting diode is a semiconductor device that directly converts electrical energy into light. Just like other electronic components, it is vulnerable to damage or damage when subjected to excessive current or voltage. Therefore, when the demand increases, it is necessary to design a protection circuit that can withstand excessive current or voltage. Light-emitting diodes are often used in light indicators, or in other portable electronic products such as cell phones, notebook computers, and personal data assistants (PDAs). However, there is an increasing demand for large displays using light-emitting diodes, such as large neon lights, liquid crystal display backlights, which require the use of many light-emitting diodes to provide a sufficient light source for large displays. Because the forward bias current of the LED is exponentially increased with its forward bias, a current source is generally used to drive the LED, so that different 6 200829083 emitters can be consistent. Luminous brightness. m Referring to Fig. 1, a first diagram is a schematic view of a conventional driving circuit 100 of the prior art. The driving circuit 100 includes a voltage converting circuit 110, a light emitting device 12A, and a constant current supplier 130. The voltage conversion circuit 11A has a first input terminal 112 for receiving an input voltage V1N, a second input terminal 114 for receiving a feedback signal FB, and a round of the output terminal 116 coupled to one of the illumination devices 120. Into the end. The voltage conversion circuit 110 is for supplying a driving voltage VDD to the light emitting device 120. The constant current B current supply 130 provides a certain current IE to drive the light emitting device 丨2〇. In other words, the constant current supply 130 can dynamically adjust the immunity value of the illumination device 120 according to the current value of the adjustment constant current lc. As shown in FIG. 1, the light-emitting device 120 includes a plurality of light-emitting diodes 14A. Note that each of the light-emitting diodes 140 is referred to as a power source driving device, and the luminance of the light-emitting diode is proportional to the constant current Ic. That is to say, the brightness of each of the light-emitting diodes 140 increases as the constant current Ic increases. In general, in order to achieve uniform brightness of a plurality of light-emitting diodes 140, it is necessary to drive each of the light-emitting diodes 140 with the same current. In order to achieve a consistent luminescence metric, a plurality of illuminating diodes 140 must be connected in series. That is to say, each time a light-emitting diode 140 is connected, the forward bias voltage Vf required by the light-emitting device 120 is increased. ~ Therefore, the voltage conversion circuit 110 must provide a higher driving voltage VDD to supply a sufficient forward bias voltage Vf to the light emitting device 120. 7 200829083 Please refer to FIG. 2, which is a schematic diagram of another conventional driving circuit 200 of the prior art. The driving circuit 200 includes a voltage converting circuit 210, six light emitting devices 221 to 226, six constant current suppliers 231 to 236, and a selection circuit 250. The driving circuit 200 is similar to the driving circuit 1A in Fig. 1, except that the driving circuit 200 is coupled to more light emitting devices and further includes a selecting circuit 25A. In this embodiment, only six illumination devices 221 - 226 are labeled, but may be expanded to more or fewer illumination devices. Voltage conversion circuit 210 is used to provide drive voltage VDD to illumination devices 221-226. The first constant current supply 231 provides a first constant current 来 to drive the first driving device 221, and so on, and the sixth constant current supply 236 provides a sixth constant current 16 to drive the sixth driving. Device 226. However, due to the limitations of the materials and processes of the light-emitting diodes, the forward bias voltage required for each of the light-emitting diodes 240 is not the same. For example, assume that the first light-emitting device 221 includes three light-emitting diodes 240, and the forward bias voltages required for each of the light-emitting diodes 240 are not the same. Therefore, the light-emitting devices 221 - 226 have different forward bias voltages Vfi - Vf6. In the present example, the driver circuit 200 uses the selection circuit 250 to select a minimum voltage level from the six voltage levels VdrQpi - VdrQp6 to output a minimum voltage level VN to an input 214 of the voltage conversion circuit 210. That is, in order to reduce the power consumption of each of the constant current supplies 231 - 236 and ensure that the six illumination devices 221 - 226 are all functioning properly, the selection circuit 250 is from the six voltage levels Vdr () pl - Vdr () The smallest voltage level is selected as the minimum voltage level Vn among P6, and the feedback signal ^^ is output. Among them, the smallest voltage level among the six voltage standards Vdmp 1 to VdlOp6 corresponds to the maximum voltage level among the six forward bias voltages 200829083 voltage Vfl-Vf6. m Please continue to refer to Figure 1 and Figure 2. The drive voltage Vdd can be adjusted according to the feedback signal FB. If the driving circuit needs to drive a plurality of illuminating devices, the selecting circuit 25 选取 can select the smallest voltage level from among the six voltage levels VdiOpl _ Vdrcp6 as the feedback FB. That is to say, it is possible to reduce the power consumption of 231 to 2% per constant current supply. Assuming that the second illuminator 222 is burned (or is open) _ the selection circuit 250 always selects the second voltage level vdr() P2 as the feedback signal FB, in which case the driving voltage vDD will continue Assume that the driving voltage is greater than the maximum voltage that can be applied by the driving circuit 200. At this time, the entire driving circuit or its internal components may be damaged. [Invention] One of the main purposes of the present invention is to disclose a provision that can be provided. The control and open circuit _ protection drive circuit is used to improve the shortcomings of the prior art. The present invention provides a drive circuit for the controllable tilting circuit, which includes -1 -1 wire, "first" Dingwei supply, voltage conversion, circuit, analysis and judgment circuit and "first" switch. The first constant current supply is provided at the output end of the first light-emitting device, and the first constant current is supplied to the a first light-emitting device having a first input for receiving and inputting a second input terminal for receiving a feedback signal, and an output terminal for connecting to the first The input end of the illuminating device is provided. The electric converting circuit is configured to provide a 200829083 constant voltage, a '4th illuminating device, and adjust the driving electric 根据 according to the feedback signal. The analyzing and judging circuit is _ The output end of the conversion circuit and the output end of the younger hairline are used to generate a "first" switch control signal. The first switch has a -first end lightly connected to the wheel of the first light emitting device, - The second end of the second power input circuit is connected to the first output terminal of the analysis and determination circuit. The first open relationship controls the opening and closing according to the first switch control signal. ― In the embodiment, the first illuminating device comprises at least one illuminating diode. The singular current supply wire is a current absorbing source or a current supply source. In the embodiment, the analysis and determination circuit comprises a second comparator, a first _ open circuit controller, and a control logic. The second comparator is configured to compare the divided voltage driving voltage with the second reference lag to generate a second scream. Open circuit system is used to detect the first hair a state of the optical device, the control logic is configured to generate the first switch control signal according to the first comparison signal and the first detection signal. In an embodiment, the driving circuit further includes a second illumination device, A second fixed motor supplies $, - a second 阙 and a _ selection circuit. The second constant current supply supplies a second constant current to the second illuminating device. The second open relationship is ??? The illuminating device, the voltage converting circuit and the analyzing and judging circuit control the opening and closing according to the first switch control signal. The selecting circuit is lightly connected to 200829083. The lining conversion circuit, the township-off and the second _, the selection The circuit system is selected from a voltage level corresponding to the output of the output device of the second device, and a minimum voltage is selected as a signal The _ signal is output to the second input of the voltage conversion circuit. The main object of the present invention is to disclose a driving method that provides feedback control and open circuit protection to improve the disadvantages of the prior art. The present invention provides a driving method capable of providing feedback control and open circuit protection, the driving method comprising: providing a first constant current to a first light emitting device; and providing a driving voltage to an input end of the first light emitting device Generating a first switch control signal to control the opening and closing of a first switch; coupling the first switch between the output end of the first illumination device and a feedback signal; and controlling the signal according to the first switch Generating the feedback signal; and adjusting the driving voltage according to the feedback signal. In an embodiment, the driving method further includes: providing a second constant current to a second illuminating device; providing the driving voltage to an input end of the second illuminating device; generating a second switch control signal to control Turning on and off a second switch; selecting a minimum voltage level from a voltage level corresponding to an output end of the first light emitting device and a voltage level corresponding to an output end of the second light emitting device As a feedback signal; and adjusting the driving voltage according to the feedback signal. In an embodiment, the driving method further includes: comparing the divided driving voltage with a second reference voltage to generate a second comparison signal; detecting the shape of the first lighting device to output a a first detection signal; detecting a state of the second illumination device to output a second detection signal; and generating the second comparison signal, the first detection signal, and the second detection signal The first switch control signal and the second switch control signal. [Embodiment] Please refer to FIG. 3, which is a schematic diagram of a driving circuit 3A for providing feedback control and open circuit protection according to a first embodiment of the present invention. The driving circuit 3A includes a voltage conversion circuit 310, six light-emitting devices 321-326, six constant current suppliers 331-336, a selection circuit 35A, an analysis and determination circuit 36, and six switches swi-sw6. . The voltage conversion circuit 310 has a first input terminal S12 for receiving an input voltage Vm, a second input terminal 314 for receiving a feedback signal FB, and an output terminal 316 coupled to the six illumination devices 321 - 326. The voltage conversion circuit 310 is operative to provide a drive voltage Vdd to all of the illumination devices 321 - 326. The six constant current supplies 331-336 provide a certain current to drive the corresponding illumination device. For example, the first constant current supply 331 provides a certain constant current I to the first illumination device 321, and so on. In the present embodiment, the analysis and determination circuit 36 includes a second comparator COMP2, six open detectors 381-386, and a control logic 370. The second comparator COMP2 has a first input terminal 362 coupled to the voltage conversion circuit 31〇12 200829083, an output terminal 316 for receiving the driving voltage VDD, and a second input terminal 364 for receiving the second reference voltage. The H comparator 〇Mp2^_dynamic voltage Vdd is compared with the second reference voltage V purely to generate a second comparison signal Sc2. If the drive power vDD is greater than the second reference voltage & the analysis and determination circuit 36 will utilize the six open circuit detectors 381-:386 to measure the state of the corresponding illumination device. In other words, the state of the corresponding light-emitting device on the open detector 381-386 side produces a corresponding detection signal Sdi_Sd6 to control logic 37A. Then, the control logic φ 370 generates six switch control signals ss "Ss6 to control the opening or closing of the corresponding switches SW1 - SW6. Consider the following conditions; if the drive voltage Vdd is smaller than the second reference voltage vref2 ' The control logic 370 turns on all of the switches SW1-SW6 according to the six switch control signals, at which time all voltage levels Vdr〇p "% are sent to the selection circuit 350. Then, the selection circuit 35 selects the smallest of these voltage levels. (4) Continue to send Xiaolong to %, and send it to the second input terminal 314 of the voltage conversion circuit 310. The driving voltage I can be adjusted according to the minimum voltage level % (return signal FB). It is assumed that the driving voltage Vdd continues to ± liter and A detects the state of the corresponding light-emitting device at the second reference surface m and the judgment electric (4) G-profit gate detectors 381-386. If any of the finds are detected as open circuits, 370 will turn off its corresponding switch. For example, if the state of the second recording device 322 is an open circuit, the second switch 13 200829083, .SW2 is turned off by the second switch control signal. In other words, the voltage level VdlOpl-VdlOp6 other than the second voltage level VdiOp2 is transmitted to the selection circuit 35. Then, the circuit selects the smallest voltage level from among the five voltage levels to return: FB Since the second illuminating device 322 is detected as an open circuit, the second voltage scream (in this case, approximately 0 V) is removed from the selection of the selection circuit 35 ,, and the second operation is avoided.峨 signal FB. So far the driving voltage VDD does not continue to rise by a value. The entire driving circuit 3 or its components will be protected from _ damage. In an embodiment, the illuminating devices 321 - 326 may comprise at least one Light-emitting diodes (LEDs). The constant current supplies 331-336 can each be a current sinking source or a current source. The comparator COMP2 can be a hysteresis comparator to avoid malfunctions. In addition, the number of illuminators is The components in the remote embodiment are only used for the most illustrative examples of the present invention, and the components are not necessary limitations of the present invention. Please refer to FIG. 4 and FIG. Figure 4 is the third picture The voltage conversion circuit 310 includes a first comparator C〇MP1 and a voltage conversion unit 318. The first comparator C0MP1 has a first input terminal for receiving the feedback signal FB 'and A second input terminal is configured to receive a first reference voltage. The first comparator COMP1 compares the feedback signal FB with the first reference voltage Vref1 to output a first comparison signal Scl. The voltage conversion unit 318 is configured to provide The driving voltage VDD is given to the light-emitting devices 321 to 326 (as shown in FIG. 3), and according to the first comparator 14
V 200829083 COMP1所輸出之第一比較訊號Sci來動態調整驅動電壓vdd。舉 例來說’假如回授訊號FB係大於第一參考電壓Vrefl,第一比較器 C0MP1會輸出第一比較訊號Sci來控制電壓轉換單元318以減少 驅動電壓vDD直到電壓位準Vn與第一參考電壓Vrefl相等;假如 回授訊號FB係小於第一參考電壓Vrefl,第一比較器C0MP1會控 制電壓轉換單元318來減少驅動電壓VDD直到電壓位準γΝ與第一 參考電壓Vrefl相等。一般而言,電壓轉換電路31〇可由任何一種 φ 傳統的電源供應器、穩壓器或者發光裝置的驅動晶片來實現,也 就是說,電壓轉換電路310可根據一交流電流源或者一直流電流 源來輸出想要的驅動電壓vdd。 明參考第5圖,第5圖為根據本發明之一第二實施例中一提供 回授控制與開路保護之驅動電路5〇〇之示意圖。驅動電路與 第3圖中的·_電路類似,兩者的不同之處在於,第$圖將V 200829083 The first comparison signal Sci output by COMP1 dynamically adjusts the driving voltage vdd. For example, if the feedback signal FB is greater than the first reference voltage Vref1, the first comparator C0MP1 outputs the first comparison signal Sci to control the voltage conversion unit 318 to reduce the driving voltage vDD until the voltage level Vn and the first reference voltage. Vref1 is equal; if the feedback signal FB is smaller than the first reference voltage Vref1, the first comparator C0MP1 controls the voltage conversion unit 318 to reduce the driving voltage VDD until the voltage level γ 相等 is equal to the first reference voltage Vref1. In general, the voltage conversion circuit 31 can be implemented by any conventional power supply, voltage regulator or illuminating device of the illuminating device, that is, the voltage converting circuit 310 can be based on an alternating current source or a current source. To output the desired drive voltage vdd. Referring to Figure 5, Figure 5 is a schematic diagram of a drive circuit 5A for providing feedback control and open circuit protection in accordance with a second embodiment of the present invention. The driver circuit is similar to the ·_ circuit in Figure 3, the difference between the two is that the $ map will
驅動電壓vDD經過—第—電阻R1以及—第二電阻μ的分壓後 生-分壓鶴電壓Vm。由於驅動電壓1通常擁有較高的電壓 經由分壓後可得雜小的分壓軸傾Vm,且較低電壓的第二丨 車乂益C0MP2比較容易實施。請注意,驅動電路·為第3圖所: 樣動電路30G之變化實施例,其中第一電阻&及第二電阻心 I非為必要H以上的實細伽來綱本發明,並不偈师 本發明之實際應用。 之一第三實施例中一提供 請參考第6圖’第6圖為根據本發明 15 200829083 、 .回授控制與開路保護之驅動電路600之示意圖。驅動電路600為 第3圖所不之驅動電路3〇〇之另_變化實施例,於前一個變化實 靶例不同之處在於,驅動電路6〇〇之控制邏輯37〇另具有一輸出 鈿用來輸出一輸出訊號s。以控制一開關64〇。其中,當輸出訊 號s。為,位準時,表示全部的發光震置32i—咖皆被偵測為開 路’此日守’將回授訊號FB箝制在一固定電壓位準%。於此種情 況下,驅動電壓VDD會被箝制在一固定電壓。請注意,回授訊號 ⑩FB可以被箝制在任何的電壓位準(可視使用者需求而設定),而 電壓位僅為用來說明之_實施例。此外,關於回授訊號阳 及驅動電壓vDD之實施方式,為所屬技術領域中具有通常知識者 所習知,在此不多加贅述。 請參考第7圖與第6圖。第7圖為根據本發明之一第四實施例 中-提供回授控制與開路保護之驅動電路之示意圖。驅動電 路700為第6圖所示之驅動電路_之一變化實施例,兩者不同 鲁之處敘述如下。驅動電路7〇〇另包含一開機延遲器,以及一或 閘730。開機延遲器720係用來轉認驅動電壓Vdd是否已到達一正 常電壓位準。假如發生上述的情況或者所有的發光裝置321—326 的狀態皆為開路,或閘730會輸出-訊號來控制開關_,將回授 訊f虎FB連接至電壓位準Vm,也就是說,假如所有的發光裝置321 -326的狀態皆為開路,回授訊號FB#被固定在賴位準%。 於此種情況下,驅動電壓VDD會被箝制在一固定電壓。請注音, 回授訊號FB可以被箝制在任何的電壓位準(可視使用者需求而設 16 200829083The driving voltage vDD passes through the -first resistor R1 and the second resistor μ, and the divided-divider voltage Vm. Since the driving voltage 1 usually has a higher voltage, a small voltage dividing axis Vm can be obtained by dividing the voltage, and the second braking benefit of the lower voltage is better. Please note that the drive circuit is a modified embodiment of the sample circuit 30G, wherein the first resistor & and the second resistor core I are not necessarily H or more. The practical application of the invention. One of the third embodiments provides a schematic diagram of a driving circuit 600 for feedback control and open circuit protection according to the present invention 15 200829083. The driving circuit 600 is another embodiment of the driving circuit 3 shown in FIG. 3, and the difference between the former and the real target is that the control circuit 37 of the driving circuit 6 has an output. To output an output signal s. To control a switch 64 〇. Among them, when the signal s is output. For example, when the position is on, it means that all the illuminating vibrations 32i are detected as open circuit 'this day' defensively clamps the feedback signal FB at a fixed voltage level %. In this case, the driving voltage VDD is clamped to a fixed voltage. Please note that the feedback signal 10FB can be clamped to any voltage level (which can be set according to user requirements), and the voltage level is only for the purpose of illustration. In addition, embodiments of the feedback signal yang and the driving voltage vDD are known to those of ordinary skill in the art and will not be further described herein. Please refer to Figure 7 and Figure 6. Figure 7 is a diagram showing a drive circuit for providing feedback control and open circuit protection in accordance with a fourth embodiment of the present invention. The driving circuit 700 is a modified embodiment of the driving circuit shown in Fig. 6, and the difference between the two is as follows. The drive circuit 7A further includes a power on retarder and an OR gate 730. The power-on delay 720 is used to recognize whether the driving voltage Vdd has reached a normal voltage level. If the above situation occurs or all the states of the light-emitting devices 321-326 are open, or the gate 730 outputs a signal to control the switch _, the feedback bus FB is connected to the voltage level Vm, that is, if All of the illumination devices 321 - 326 are open, and the feedback signal FB # is fixed at the % position. In this case, the driving voltage VDD is clamped to a fixed voltage. Please note, the feedback signal FB can be clamped at any voltage level (visible to the user's needs 16 200829083
' V .疋)’而電壓位準VM僅為用來說明之一實施例。此外,關於回授 訊號FB及驅動電壓、之實施方式,為所屬技術領域中具有通常 知識者所習知,在此不多加贅述。 口月多考第8圖,第8圖為根據本發明之一實施例中說明一種提 供回授控倾路健之,_方法的流程_之示意圖。流程_ 包含以下的步驟:'V.疋)' and the voltage level VM is only used to illustrate one embodiment. In addition, the embodiments of the feedback signal FB and the driving voltage are well known to those of ordinary skill in the art and will not be further described herein. Fig. 8 is a diagram showing a flow chart of a method for providing a feedback control path according to an embodiment of the present invention. Process _ contains the following steps:
步驟8002 :流程開始。 步驟8004 :提供電流給全部的發光襄置321-326。 步驟8006 ·提供驅動電壓Vdd給全部的發光裝置321—你。 步驟8008 :開啟全部的開關SW1 — SW6。 步驟8010 .從全部的發光裝置之輸出端所對應的電壓位準當 中,選擇其中最小的電壓位準以作為回授訊號FB 〇 田 步驟8012··根據回授訊號FB_整鶴電壓v㈤。 步驟8014: _驅動縣Vdd是否大於第二參考電壓v奶。 假如驅動電壓VDD係大於第二參考龍U,執行步驟嶋·否 則’執行步驟8010。 步驟祕:偵測是否有哪-個發絲置之狀態係為開路。假 如有任何-個發絲置之狀_為·,執行步驟_ 執行步驟8010。 、Step 8002: The process begins. Step 8004: Provide current to all of the illumination devices 321-326. Step 8006. Provide a driving voltage Vdd to all of the light-emitting devices 321 - you. Step 8008: Turn on all of the switches SW1 - SW6. Step 8010. From the voltage level corresponding to the output end of all the light-emitting devices, select the minimum voltage level as the feedback signal FB 步骤 步骤 step 8012 · According to the feedback signal FB_ the whole crane voltage v (five). Step 8014: _ drive county Vdd is greater than the second reference voltage v milk. If the driving voltage VDD is greater than the second reference dragon U, perform step 嶋·No then perform step 8010. Step Secret: Detect if there is any - the state of the hairline is open. If any of the hairpins are in the form of _, the execution step _ is performed in step 8010. ,
步驟8018 : 步驟8020 : 將對應至被侧為開路的發絲置之開闕關閉。 判斷是否全部的發光裝置之狀態皆為開路。假如 17 200829083 • 全部的發光裝置之狀態皆為開路,執行步驟8022 ;否則,執行步 • 驟 8010。 步驟8022 :將回授訊號FB箝制在驅動電壓Vdd。 步驟8024:流程結束。 明比知、第3圖所示之驅動電路3〇〇。於步驟中,所 有的發光裝置321 — 326係由定電流供應器33丨_336來提供電 流,且由驅動電路310來提供驅動電壓Vdd。於步驟_8中,一 開始將所有的_ SW1-SW6打開。此時,將所有的電壓位準 Vdr0p厂ν_6都傳送到選擇電路35〇,從電壓位準乂_广% 6各 中選擇-個最小的電壓位準以作為回授訊號FB (步驟Ρ8〇ι〇)= 此,可根據回授電壓FB來調整驅動電壓Vdd (麵觀)。然後, 第二比較器COMP2開始將驅動電壓Vdd與第二參考電歷做 比較(步㈣H),假如驅動龍1制、於第二參考電壓滅, 回到步驟8_ ’且健騎有的關s·打開;假如驅動 電壓Vdd係大於第二參考電壓%,則開路侧器38i—撕會债 測其相對應光裝置域縣檢蚊讨任何__個發絲置之 狀_路(步驟祕)。假如沒有任何一個發光裝置之狀態係為 開路% 口到步驟8〇1〇 ’假如其中一個發光裝置之狀態偵測為開 路時,將其相對應的開關_ (步驟_)。也就是說將侧為開 路之該發光裝置其所對應的位準從選擇電路35〇的選項中移 選擇電路35〇會從除了姻為開路之該發光裝置其所 對應的電龜較外的其他财賴辦#巾,辦最小的電壓 18 200829083 • 位準以作為回授訊號FB (回到步驟8010)。最後,根據更新後的 回授峨FB來調整驅動電壓&。於另一種情況下,假如所有的 發光裝置皆被偵測為開路裝置,則將回授訊號FB箝制在驅動電壓 Vdd (步驟8020 —8022)。此時,結束流程。 於一實施例中,上述的步驟8〇12可另包含幾個步驟: 鲁 步驟8102 :將回授訊號FB與第-參考電壓Vrefl進行比較。 假如回授訊號FB大於第一參考電壓Vrefi,執行步驟81〇4 ;否則, 執行步驟8106。 步驟8104 :減少驅動電壓Vdd。 步驟8106 :增壓驅動電壓Vdd。 於一實施例中,上述的步驟8014可由下列的步驟來取代: 鲁 步驟證:縣動賴VDD請分壓以產生—分壓驅動 VM。 步驟8204 ·將分壓驅動電壓VM與第二參考電壓兄祀進行比 較。 步驟8206 :判斷分壓驅動電壓Vm*否大於第二參考電壓 vref2。假如分壓驅動電壓vM係大於第二參考電壓VreQ,執行步驟 8016 ;否則,會到步驟8014。 19 200829083 請注意,第8圖中的各步驟的順序並非不可改變的,舉例而言, 步驟8004與步驟8006可合併成同一個步驟。 以上所述的實施例僅用來說明本發明,並不侷限本發明之範 驚。文中所提到的發光裝置321 — 326可包含至少一個發光二極體 (LED) ’且發光裝置的個數並不侷限於六個,亦可擴充為其他任 何的數目。定電流供應器331_336可以是一電流吸引源、一電流 _ 供應源、或者其他型式的定電流供應器。第二比較器C0MP2並不 侷限為一磁滯比較器,亦可為其他的比較器。此外,電壓轉換電 路310可由任何一種傳統的電源供應器、穩壓器或者發光裝置的 驅動晶片來實現。請注意,驅動電路5〇〇以及驅動電路4〇〇僅為 第3圖所示之驅動電路3〇〇之變化實施例,其中某些元件,像是 第-電阻1^、第二電阻r2、開機延遲器72()、或閘,、以及開 關64〇僅為選擇性元件。以上的實施^^列僅用來說明本發明,並不 侷限本發明之實際應用。此外,第8圖中的各步驟_序係為可 • 調整的。 由上可知, 本發明提_可倾㈤紐猶_賴之驅動電 路及其相關驅動方法。透過本發明所揭露之驅動電路,不僅可以 控制回授訊細以提供—合適的购電壓Vdd,而且可以糊出 發光裝置關路狀態。尤其當—驅動電路需要鱗大量的發光穿 明可提供足夠的驅纏(足夠的電流)來驅動所有 、先裝置。此外,選擇電路350可以從電壓位準、丨―、 20 200829083 當中選取最小的電壓位準以作為回授訊號FB,如此一來,可降低 每個定电流供應器331-336的功率消耗。假使有任何個發光 裝置已燒毀(或者為開路狀態),分析與判斷電路36〇會偵測出開 路狀態並將其從選擇電路350的選項中移除。因此,可避免整個 糸統及其兀件被損毁。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範 圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1圖為先前技術一傳統驅動電路之示意圖。 第2圖為先前技術另一傳統驅動電路之示意圖。 第3圖為根據本發明之一第一實施例中一提供回授控制與開路保 護之驅動電路之示意圖。 第4圖為第3圖中之電壓轉換電路之示意圖。 第5圖為根據本發明之一第二實施例中一提供回授控制與開路保 護之驅動電路之示意圖。 弟6圖為根據本發明之一第三實施例中一提供回授控制與開路保 護之驅動電路之示意圖。 第7圖為根據本發明之一第四實施例中一提供回授控制與開路保 護之驅動電路之示意圖。 ' 第8圖為根據本發明之一實施例中說明一種提供回授控制與開路 保護之驅動方法的流程之示意圖。 21 200829083 【主要元件符號說明】 100、200、300、500、600 驅動電路 110、210、310 電壓轉換電路 120、221—226、321 — 326 發光裝置Step 8018: Step 8020: Close the opening corresponding to the hair that is open on the side. It is determined whether the state of all the light-emitting devices is an open circuit. If 17 200829083 • All states of the illuminator are open, go to step 8022; otherwise, go to step 8010. Step 8022: The feedback signal FB is clamped to the driving voltage Vdd. Step 8024: The process ends. The drive circuit shown in Fig. 3 is shown in Fig. 3. In the step, all of the light-emitting devices 321 - 326 are supplied with current by the constant current supply 33 _ 336, and the drive voltage Vdd is supplied from the drive circuit 310. In step _8, all _SW1-SW6 are initially turned on. At this time, all the voltage levels Vdr0p factory ν_6 are transmitted to the selection circuit 35 〇, and the minimum voltage level is selected from the voltage level 乂 _ % % 6 as the feedback signal FB (step Ρ 8 〇 Ρ) 〇)= This adjusts the drive voltage Vdd (appearance) according to the feedback voltage FB. Then, the second comparator COMP2 starts to compare the driving voltage Vdd with the second reference electrical calendar (step (4) H), if the driving dragon 1 system, the second reference voltage is extinguished, return to the step 8_ 'and the health riding has a switch s ·Open; if the driving voltage Vdd is greater than the second reference voltage %, the open circuit side device 38i - tearing the debt test its corresponding optical device domain county inspection mosquitoes to discuss any __ hairline shape _ road (step secret) . If there is no illuminating device, the state of the illuminating device is open to step 8〇1〇. If the state of one of the illuminators is detected as open, the corresponding switch _ (step _). That is to say, the corresponding level of the light-emitting device whose side is open is removed from the option of the selection circuit 35A, and the selection circuit 35 is different from the electric turtle corresponding to the light-emitting device except for the open circuit. The financial management office #巾, do the minimum voltage 18 200829083 • The level is used as the feedback signal FB (back to step 8010). Finally, the drive voltage & is adjusted according to the updated feedback FB. In another case, if all of the illumination devices are detected as open circuits, the feedback signal FB is clamped to the drive voltage Vdd (steps 8020 - 8022). At this point, the process ends. In an embodiment, the foregoing step 8〇12 may further include several steps: Step 8102: Compare the feedback signal FB with the first reference voltage Vref1. If the feedback signal FB is greater than the first reference voltage Vrefi, step 81〇4 is performed; otherwise, step 8106 is performed. Step 8104: Reduce the driving voltage Vdd. Step 8106: boost driving voltage Vdd. In an embodiment, the above step 8014 can be replaced by the following steps: Lu Step card: The county is divided by VDD to generate a voltage-driven VM. Step 8204: Compare the divided driving voltage VM with the second reference voltage brother. Step 8206: Determine whether the divided voltage driving voltage Vm* is greater than the second reference voltage vref2. If the divided voltage driving voltage vM is greater than the second reference voltage VreQ, step 8016 is performed; otherwise, step 8014 is reached. 19 200829083 Please note that the order of the steps in Figure 8 is not immutable. For example, step 8004 and step 8006 can be combined into the same step. The above-described embodiments are merely illustrative of the invention and are not intended to limit the scope of the invention. The illumination devices 321 - 326 mentioned herein may comprise at least one light emitting diode (LED) ' and the number of illumination devices is not limited to six, and may be expanded to any other number. The constant current supply 331_336 can be a current draw source, a current source, or another type of constant current supply. The second comparator C0MP2 is not limited to a hysteresis comparator, but may be other comparators. Additionally, voltage conversion circuit 310 can be implemented by any conventional power supply, voltage regulator, or drive wafer for the illumination device. Please note that the driving circuit 5A and the driving circuit 4 are only the modified embodiment of the driving circuit 3 shown in FIG. 3, and some of the components, such as the first-resistance 1^ and the second resistor r2, The turn-on delay 72(), or gate, and switch 64A are only selectable components. The above embodiments are merely illustrative of the invention and are not intended to limit the practical application of the invention. In addition, the steps in Figure 8 are adjustable. As can be seen from the above, the present invention provides a driving circuit and related driving method for the tilting (five). Through the driving circuit disclosed in the present invention, not only the feedback fineness can be controlled to provide a suitable voltage Vdd, but also the state of the light-emitting device can be cleared. In particular, the drive circuit requires a large amount of illuminating to provide sufficient drive (sufficient current) to drive all of the devices. In addition, the selection circuit 350 can select the minimum voltage level from the voltage level, 丨-, 20 200829083 as the feedback signal FB, so that the power consumption of each of the constant current supplies 331-336 can be reduced. If any of the illumination devices have burned out (or are in an open state), the analysis and decision circuit 36 will detect the open state and remove it from the options of the selection circuit 350. Therefore, the entire system and its components can be prevented from being destroyed. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should fall within the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of a conventional driving circuit of the prior art. Figure 2 is a schematic diagram of another conventional drive circuit of the prior art. Fig. 3 is a view showing a drive circuit for providing feedback control and open circuit protection according to a first embodiment of the present invention. Figure 4 is a schematic diagram of the voltage conversion circuit of Figure 3. Fig. 5 is a view showing a drive circuit for providing feedback control and open circuit protection according to a second embodiment of the present invention. Figure 6 is a schematic diagram of a drive circuit for providing feedback control and open circuit protection in accordance with a third embodiment of the present invention. Fig. 7 is a view showing a driving circuit for providing feedback control and open circuit protection according to a fourth embodiment of the present invention. Figure 8 is a diagram showing the flow of a driving method for providing feedback control and open circuit protection according to an embodiment of the present invention. 21 200829083 [Description of main component symbols] 100, 200, 300, 500, 600 drive circuit 110, 210, 310 voltage conversion circuit 120, 221-226, 321 - 326 light-emitting device
140、240 130、231-236、331-336 112、212、312、362 114、214、314、364 116、216、316 VlN FB VDD IC 、工1一工6 、 111 一工66 vf、, Vfl-Vf6 Vdrop 、Vdropl — ~ Vdr〇p6 VN 250、 •350 選擇電路 381- -386 開路偵測器. SW1 -S W6、 640 開關 Sdi — •Sd6 偵測訊號 Ssi — Ss6 開關控制訊號 C0MP2 第二比較器 SC2 第二比較訊號 發光二極體 定電流供應為 第一輸入端 第二輸入端 輸出端 輸入電壓 回授訊號 驅動電壓 定電流 正向偏壓電壓 電壓位準 最小電壓位準 360 分析與判斷電路 370 控制邏輯 22 200829083140, 240 130, 231-236, 331-336 112, 212, 312, 362 114, 214, 314, 364 116, 216, 316 VlN FB VDD IC, work 1 work 6 , 111 work 66 vf,, Vfl -Vf6 Vdrop, Vdropl — ~ Vdr〇p6 VN 250, •350 Select Circuit 381--386 Open Detector. SW1 -S W6, 640 Switch Sdi — • Sd6 Detect Signal Ssi — Ss6 Switch Control Signal C0MP2 Second Comparison SC2 second comparison signal light-emitting diode constant current supply is the first input terminal second input terminal output terminal input voltage feedback signal driving voltage constant current forward bias voltage voltage level minimum voltage level 360 analysis and judgment circuit 370 Control Logic 22 200829083
Vref2 第二參考電壓 COMP1 第一比較器 S〇l 第一比較訊號 Vrefl 第一參考電壓 318 電壓轉換單元 Ri 第一電阻 r2 第二電阻 So 輸出訊號 Vm 分壓驅動電壓 720 開機延遲器 4 730 或閘 800 流程 8002-8024 步驟Vref2 second reference voltage COMP1 first comparator S〇l first comparison signal Vrefl first reference voltage 318 voltage conversion unit Ri first resistance r2 second resistance So output signal Vm divided drive voltage 720 power-on retarder 4 730 or gate 800 Process 8002-8024 Steps
23twenty three