TW200828975A - Optical module and methods for optically aligning and assembling the same - Google Patents

Optical module and methods for optically aligning and assembling the same Download PDF

Info

Publication number
TW200828975A
TW200828975A TW95149858A TW95149858A TW200828975A TW 200828975 A TW200828975 A TW 200828975A TW 95149858 A TW95149858 A TW 95149858A TW 95149858 A TW95149858 A TW 95149858A TW 200828975 A TW200828975 A TW 200828975A
Authority
TW
Taiwan
Prior art keywords
unit
optical module
lens unit
photosensitive
housing
Prior art date
Application number
TW95149858A
Other languages
Chinese (zh)
Other versions
TWI345906B (en
Inventor
ming-zhe Wu
Original Assignee
Universal Scient Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Scient Ind Co Ltd filed Critical Universal Scient Ind Co Ltd
Priority to TW95149858A priority Critical patent/TW200828975A/en
Priority to JP2007220120A priority patent/JP4562758B2/en
Publication of TW200828975A publication Critical patent/TW200828975A/en
Application granted granted Critical
Publication of TWI345906B publication Critical patent/TWI345906B/zh

Links

Landscapes

  • Lens Barrels (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lenses (AREA)

Abstract

An optical module and its alignment and assembly methods are disclosed. The optical module includes a housing unit, a photo-sensing unit fastened inside the housing unit and a lens unit for focusing light source at the photo-sensing unit. The housing unit has an opening formed at a side. The lens unit corresponds to the photo-sensing unit disposed on the housing unit and exposed within the opening. Accordingly, while in assembling, the lens unit passes through the housing unit from the opening. While in alignment, only if the central position of the lens unit overlapped between the photo-sensing unit and an object position is captured and a central position of the correction optical path is further subtracted so that the optical alignment can be completed, thereby substantially improving the accuracy and convenience of assembly.

Description

200828975 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種光學模組,特別是指一種可感测 影像的光學模組及其光學元件對準、組裝方法。 【先前技術】 . 麥閱圖1,以一般光學式影像輸入裝置如掃描器的光學 . 模組1為例,主要包含一殼座單元11、一感光單元12、一 φ 透鏡單元13及一發光單元14。該殼座單元11具有相互對 合的的一外殼111與一基座112,及形成在該外殼U1的一 凹槽113。該感光單元12具有沿直線排列在在該基座112 上的多數感光元件121,該感光元件121是一種 CMOS(C〇mPlementary Metal Oxide Semiconductor)影像感測 掃描器(Image Sensor Scanner)。該透鏡單元13是相對該 感光單元12嵌置在該外殼m的凹槽113内。該發光單元 14是相對一玻璃平台21設置在該外殼m,並具有數個發 ^ 光二極體141。 虽该等發光二極體141相對該玻璃平台21上的一物件 發射光源時,光源會由該物件位置折射且沿該z軸方向透 過忒透鏡單元13而聚焦成像於該等感光元件121,此時, 該等感光元件121會感測到光源訊號,而擷取該物件位置 上的影像。 由於該等感光元件121聚焦位置的精確度是決定前述 光學式輪入裝置解析度的首要關鍵,因此,該感光單元12 /、λ透鏡單元13所需要的對準精度要求較高,而目前主要 5 200828975 是將該外殼111、該基座112與該感光單元12預先組合為 一體,然後,依據估算的理論值,將該透鏡單元13安裝在 形成有預疋深度的凹槽113内’以設定該透鏡單元13與該 感光單元12的相對位置。最後,以封膠將該透鏡單元13 固定於該基座112,即完成對準與組裝。 • 惟’依成本考量5該光學模組1的透鏡單元13目前多 • 以人工直接置放於該凹槽η 3内進行組裝,忽略該透鏡單元 ^ 13本身光軸長度的誤差,約+/-400微米,且該透鏡單元 與該感光單元12間的相對位置,主要由該凹槽1 ^ 3的深度 以及透鏡光軸長度來決定,因此,過大的誤差常常有過度 焦或聚焦不足等對準精度不佳的情形,致使該光學模組1 的解析度無法提昇。 【發明内容】 因此’本發明之目的,即在提供一種可以提昇對準精 度而有效提高光學解析度的光學模組及其對準、組裝方法 〇 於是,本發明的光學模組,包含一感光單元、一殼座 單元及一透鏡單元。該感光單元具有可感測光源的至少一 ' 感光元件。該殼座單元是設置有該感光單元,並具有形成 在一側且沿長度方向延伸的一開口。該透鏡單元是相對該 感光單元架置在該殼座上且顯露在該開口内。藉此,透過 該開口且沿該光軸方向將該光點至一物件位置再扣除—修 正光程後的中心劃分有一第一中心線,使該第一中心線重 合於通過該透鏡單元中心的一第二中心線。 6 200828975 本發明光學模組的對準方法,包含下列步驟:步驟工: 沿一光轴方向擷取該感光單元的至少一感光元件,及以預 設的一物件位置,計算出該感光元件到該物件位置的一實 際總光程距離。步驟2 ··以該實際總光程距離扣除一修正光 程後,獲得一修正總光程距離。步驟3 :以該修正總光程距 離的一半,劃分出垂直該光軸的一第一中心線。步驟4:沿 該光軸方向擷取該透鏡單元的至少一第一端點與至少一第 二端點,計算出一透鏡長度。步驟5 :以該透鏡長度的一半 ,劃分出垂直該光軸的一第二中心線。步驟6 ••組裝該透鏡 單元與該殼座,且使該第二中心線重合於該第一中心線。 本發明光學模組的組裝方法,包含下列步驟:步驟工: 將該感光單7L安裝在該殼座單元内。步驟2 :沿垂直該光軸 的方向將該透鏡單元由該殼座單元的開口穿置入該殼座單 元内步驟3 .使邊透鏡單元的第二中心線重合於該第一中 心線,並獲得定位。 本發明的功效是能藉由侧向組裝的方式,及重合該第 一、第二中心線的對準方法,提昇對準精度,及組裝、對 準效率。 【實施方式】 、有關本發明之前述及其他技術内容、特點與功效,在 、下配S乡考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 茶閱圖2、圖3,本發明光學模組的—較佳實施例是應 用在光輸入裝置的光學系統,而相對一玻帛9投射光源。 7 200828975 該玻璃9具有可承置一物件一頂面91。該光學模組包含: 一殼座單元3、一感光單元4及一透鏡單元5。 該殼座單元3是沿一 X軸方向延伸,並具有概呈U形 的一外殼31、架置卡合在該外殼31上的一基座32、貫穿 該外殼31與該基座32二端部的二定位件33,及一蓋板34 . 。該外殼31具有形成在一侧且該又軸方向延伸的一開口 311。該基座32具有相互對合且界定出一插槽321的一第一 對合件322與一第二對合件323,該第二對合件323是由該 ® 外殼31的開口 311可卸離地與該第一對合件322卡合。該 等定位件33是抵靠在固定該玻璃9的構件上。該蓋板34 是可卸離地封閉該外殼31的開口 311。 該感光單元4是固設在該外殼31内,並具有沿該X軸 排列且可朝一 Z軸(即光軸)方向發射光線的多數感光元件 41。該等感光元件 41 在本實施例分別是一 CMOS(Complementary Metal Oxide Semiconductor)影像感測 元件(Image Sensor) 〇 該透鏡單元5是插置在該基座32第一、第二對合件 * 322、323間的插槽321内,參閱圖4,並具有沿該X軸排 列的多數柱狀透鏡51。該等柱狀透鏡51具有漸變折射率且 可聚焦光線,可以使光源由一物件位置入射的光程(物距)L〇 相當於聚焦後折射至該感光元件41的光程(像距)L〇。而光 線沿Z軸方向通過該等柱狀透鏡51的距離為透鏡長度Z〇, 错此’可知該等感光元件41沿該Z轴方向的理想總光程距 T C=2 L 〇+Z 〇 〇 8 200828975 參閱圖3、圖4,惟,由於光源會因為入射介質折射率200828975 IX. Description of the Invention: [Technical Field] The present invention relates to an optical module, and more particularly to an optical module capable of sensing images and an optical component alignment and assembly method thereof. [Prior Art] 1. In Fig. 1, a general optical image input device such as an optical module of a scanner is used as an example, and mainly includes a housing unit 11, a photosensitive unit 12, a φ lens unit 13, and a light emitting unit. Unit 14. The housing unit 11 has a housing 111 and a base 112 that are opposite to each other, and a recess 113 formed in the housing U1. The photosensitive unit 12 has a plurality of photosensitive elements 121 arranged in a line on the susceptor 112. The photosensitive element 121 is a CMOS (C〇mPlementary Metal Oxide Semiconductor) Image Sensor Scanner. The lens unit 13 is embedded in the recess 113 of the outer casing m with respect to the photosensitive unit 12. The light-emitting unit 14 is disposed on the outer casing m with respect to a glass platform 21 and has a plurality of light-emitting diodes 141. When the light emitting diodes 141 emit light from an object on the glass platform 21, the light source is refracted by the object position and is focused and imaged on the photosensitive elements 121 through the 忒 lens unit 13 along the z-axis direction. When the photosensitive element 121 senses the light source signal, the image at the position of the object is captured. Since the accuracy of the focus position of the photosensitive elements 121 is the primary key to determining the resolution of the optical wheeling device, the alignment accuracy required for the photosensitive unit 12 /, the λ lens unit 13 is relatively high, and currently the main 5 200828975, the outer casing 111, the base 112 and the photosensitive unit 12 are pre-combined into one body, and then the lens unit 13 is mounted in the groove 113 formed with the pre-depth depth according to the estimated theoretical value. The relative position of the lens unit 13 and the photosensitive unit 12. Finally, the lens unit 13 is fixed to the susceptor 112 with a sealant, that is, alignment and assembly are completed. • Only at the cost of 5, the lens unit 13 of the optical module 1 is currently more than manually placed in the recess η 3 for assembly, ignoring the error of the optical axis length of the lens unit 13 itself, about + / -400 microns, and the relative position between the lens unit and the photosensitive unit 12 is mainly determined by the depth of the groove 1 ^ 3 and the length of the optical axis of the lens. Therefore, excessive errors often have excessive focus or insufficient focus. In the case of poor quasi-precision, the resolution of the optical module 1 cannot be improved. SUMMARY OF THE INVENTION Therefore, the object of the present invention is to provide an optical module capable of improving alignment accuracy and effectively improving optical resolution, and an alignment and assembly method thereof. Therefore, the optical module of the present invention includes a photosensitive a unit, a housing unit and a lens unit. The photosensitive unit has at least one 'photosensitive element' that senses a light source. The housing unit is provided with the photosensitive unit and has an opening formed on one side and extending in the longitudinal direction. The lens unit is mounted on the housing relative to the photosensitive unit and is exposed within the opening. Thereby, the light spot is further deducted through the opening and along the optical axis direction to the position of the object—the center after the correcting optical path is divided into a first center line, so that the first center line coincides with the center of the lens unit. A second centerline. 6 200828975 The alignment method of the optical module of the present invention comprises the following steps: step: drawing at least one photosensitive element of the photosensitive unit along an optical axis direction, and calculating the photosensitive element to a predetermined position of the object An actual total optical path distance of the object position. Step 2 ·· After subtracting a correction path from the actual total optical path distance, a corrected total optical path distance is obtained. Step 3: dividing a first center line perpendicular to the optical axis by half of the corrected total optical path distance. Step 4: Draw at least a first end point and at least a second end point of the lens unit along the optical axis direction to calculate a lens length. Step 5: dividing a second center line perpendicular to the optical axis by half of the length of the lens. Step 6 • Install the lens unit and the housing with the second centerline coincident with the first centerline. The assembling method of the optical module of the present invention comprises the following steps: Step: The photosensitive sheet 7L is installed in the housing unit. Step 2: inserting the lens unit into the housing unit from the opening of the housing unit in a direction perpendicular to the optical axis. Step 3: aligning the second center line of the side lens unit with the first center line, and Get positioned. The effect of the present invention is to improve the alignment accuracy, assembly, and alignment efficiency by means of lateral assembly and alignment of the first and second centerlines. [Embodiment] The foregoing and other technical contents, features, and effects of the present invention will be apparent from the detailed description of a preferred embodiment of the present invention. Referring to Figures 2 and 3, a preferred embodiment of the optical module of the present invention is applied to the optical system of the optical input device and projects the light source relative to a glass bowl 9. 7 200828975 The glass 9 has a top surface 91 that can hold an object. The optical module comprises: a housing unit 3, a photosensitive unit 4 and a lens unit 5. The housing unit 3 extends in an X-axis direction and has a U-shaped outer casing 31, a base 32 that is mounted on the outer casing 31, and two ends extending through the outer casing 31 and the base 32. Two positioning members 33, and a cover plate 34. The outer casing 31 has an opening 311 formed on one side and extending in the axial direction. The base 32 has a first mating member 322 and a second mating member 323 that are opposite to each other and define a slot 321 . The second mating member 323 is detachable from the opening 311 of the ® housing 31 . The ground is engaged with the first pair of members 322. The positioning members 33 are abutted against members that fix the glass 9. The cover plate 34 is an opening 311 that detachably closes the outer casing 31. The photosensitive unit 4 is fixed in the casing 31 and has a plurality of photosensitive members 41 arranged along the X-axis and capable of emitting light toward a Z-axis (i.e., optical axis) direction. In this embodiment, the photosensitive elements 41 are respectively a CMOS (Complementary Metal Oxide Semiconductor) image sensing device (Image Sensor), and the lens unit 5 is interposed in the first and second counterparts of the base 32. Referring to Fig. 4, the 323 slots 321 have a plurality of lenticular lenses 51 arranged along the X axis. The lenticular lens 51 has a graded index of refraction and can focus light, and an optical path (object distance) L 入射 at which the light source is incident from an object position is equivalent to an optical path (image distance) refracted to the photosensitive element 41 after focusing. Hey. The distance of the light rays passing through the lenticular lenses 51 along the Z-axis direction is the lens length Z 〇. In this case, the ideal total optical path distance of the photosensitive elements 41 along the Z-axis direction is TC=2 L 〇+Z 〇〇 8 200828975 See Figure 3, Figure 4, but because the source will be due to the refractive index of the incident medium

的不同,而造成成像位置的差異,因此,該等感光元件々I 沿該z軸方向的實際總光程距離TC,必需考量該玻璃9折射 率所造成成像位置的修正,此修正光程△穴可以由公式 h(l-l/n)所獲得,其中h為玻璃厚度,n為玻璃折射率,或 由簡易的實際量測所獲得,也就是說,實際總光程距離丁c, = TC+ Ai? 〇 值得一提的是,在業界中,該光學模組投射品質中最 重要的性能指標稱為,,調製傳遞函數”(M〇dulati〇n TransfaThe difference in imaging position causes the difference in imaging position. Therefore, the actual total optical path distance TC of the photosensitive element 々I along the z-axis direction must be corrected by the correction of the imaging position caused by the refractive index of the glass 9. The hole can be obtained by the formula h(ll/n), where h is the thickness of the glass, n is the refractive index of the glass, or is obtained by a simple actual measurement, that is, the actual total optical path distance is c, = TC + Ai 〇 It is worth mentioning that in the industry, the most important performance indicator of the optical module projection quality is called, modulation transfer function" (M〇dulati〇n Transfa

Function,MTF),為業界公認作為光學元件解像力的指標, MTF(%)指數愈高,代表成像品質愈好。因此,參閱圖 、圖5-2〜圖7-1、圖7-2之MTF特性圖(擷取自SLA製造商 NSG: NIPPON SHEET GLASS),可以發現,只要物距(物件 位置)改變(如圖5-1、圖5-2)或該透鏡單元5與該感光單元 4的相對位置改變(如圖6-1、圖6-2),則mTF(%)指數就會 心劇下降,也就是說,先前技術中的透鏡單元,只要稍有 偏移,就會影響MTF(%)指數。惟,參閱圖、圖7_2,若 月b使1/2 z〇在1/2TC的位置,則即使tc的距離變化在數百 微米範圍内,MTF(%)指數仍可達到接近理想理論值,維持 極佳的光學成像品質。 以下即針對本發明較佳實施例的對準方法及組裝步驟 說明如下: 步驟61 ··參閱圖8、圖9,將該感光單元4安裝在該外 叙31内,再將該基座32的第一對合件322卡固在該外殼 9 200828975 31上,使該感光單元4的感光元件41與該插槽321顯露在 該外殼31的開口 311内。 步驟62:參閱圖9、圖10及圖n,以二感光耦合元件 (Charge Cmipled Device,CCd,圖未示)透過該外殼31的開 口 311,沿該Z軸即光軸方向擷取位於二側的二感光元件 • 41,及形成在該等定位件33的二物件位置參考點331。由 於本發明是以該等定位件33做為組裝時基準,因此,該等 φ 物件位置參考點331與預設的物件位置即該玻璃9頂面91 間具有一預設光程距離Z〇R,藉此,可計算出該感光元件 41至該物件位置即玻璃9頂面91的實際總光程距離Tc,。 步驟63 ··以該實際總光程距離tc,一修正光程δ/?, 獲得一修正總光程距離即理想總光程距離TC。 步驟64 :以1/2TC劃分出垂直該z軸的一第一中心線 L1 〇 步驟65:參閱圖8、圖9,以二感光耦合元件(charge % CouPled Device,CCD,圖未示)沿該z軸即光軸方向擷取該 透鏡單元5的二第一端點52與二第二端點53,計算出該透 鏡單元5的透鏡長度z〇。 步驟66:參閱圖8、圖10及圖η,以1/22〇劃分出垂 直該Ζ軸的一第二中心線L2。 步驟67:以一自動化取置機(圖未示)吸取該透鏡單元5 沿一 Υ軸方向通過該外殼31的開口 311穿置入該基座32 的插槽321内,使該透鏡單元5的第二中心線L2重合於該 第一中心線L1。 10 200828975 步驟68:參閱圖8'圖^,以黏膠預先黏結該透鏡單 元5與w亥基座32第一對合件322。 步驟69 :由該外殼31的開口 311,將該第二對合件 323牙置入該外殼31内,且與該第一對合件322對合,使 该透鏡單元5穩固於該第一、第二對合件322、323間的插 槽321内。 步驟70 :參閱圖12,以該蓋板34封合該外殼31的開 口 311,完成對準及組裝。 茶閱圖7、圖1〇,藉此,本發明可以使1/2 z〇在1/2Tc 的位置,所以,使得實際總光程距離TC,的距離變化即使在 數百微米變異的範圍内,MTF(%)指數仍可達到接近理想理 淪值,也就是說,本發明前述特殊的對準、組裝方法容 奔物件位置與該感光單元4間有小幅度的誤差,卻仍然可 以維持極佳的成像品質,相同的,在考慮玻璃的折射率後 ,雖然本發明光源由一物件(該玻璃9)位置入射的光程不等 於聚焦後折射至該感光元件41的光程,仍然不會影響本發 明的成像品質。 據上所述可知,本發明之光學模組及其對準、組裝方 法具有下列優點及功效: 1·該透鏡單元5只需進行單純吸取與置放(pick & piace) 的動作,因此,可以一般電子元件(SMT pick & piace Machine)或晶粒(Die)置放機(SMT)於10秒鐘以内完成對準 與組裝作業,不但能大幅簡化對準、組裝程序,縮減作業 時間,且能有效提昇生產效率,大幅降低成本,符合經濟 11 200828975 效益。 3.且本發明可以獲得相當接近MTF(%)最高理論值的光 學系統,有效提昇光學特性,使得高解析度的光學模組產 品得以實現。 以上所述只是本發明之較佳實施例而已,當不能以此 限定本發明實施之範圍,即大凡依本發明申請專利範圍及 發明說明内容所作之簡單的等效變化與修飾,皆仍屬本發 明專利涵蓋之範圍内。 200828975 【圖式簡單說明】 圖1疋一剖視圖,說明美國專利US6169564號案; 圖2是一立體分解圖,說明本發明一光學模組的一較 佳實施例; 圖3是該較佳實施例的一組合剖視圖; 圖4是該較佳實施例中一總光程距離的示意圖; 圖5-1、·圖5-2是一 MTF特性關係圖; % 圖6-1、圖6-2是一 MTF特性關係圖; 圖7-1、圖7-2是該較佳實施例一 MTF特性關係圖; 圖8是該較佳實施例的一對準、組裝流程圖; 圖9是該較佳實施例的一第一組裝立體圖; 圖10是該較佳實施例前述組裝立體圖的一剖視圖; 圖11是該較佳實施例的一第二組裝立體圖;及 圖12是該較佳實施例的一組合立體圖。 13 200828975 【主要元件符號說明】 *殼座單元 52,…… •第一端點 1 ♦*«*,《·*» ,外殼 53…"… *第二端點 3 11…… *開口 ***»·**»* •玻璃 3 *««,》*¥♦ *基座 9 1 ♦»·*♦*** *頂面 3 21…… ,插槽 L 〇 …* ” “ *光程 322…… •第一對合件 Z〇……… •透鏡長度 3 2 3…… *第二對合件‘ T C …·一 •修正總光程距離 33……… <定位件 TC,…… ,實際總光程距離 3 3 1…… ♦物件位置參考點 Z〇R…… •預設光程距離 34……… *蓋板 Li…,·… •第一中心線 * 9*9tr**** *感光单元 L 2 ******** ♦第二中心線 •感光元件 AR * * *修正光程 **?♦»«*♦* •透鏡單元 1 *-*ΐ*Λ*Λ* •柱狀透鏡 14Function, MTF), recognized by the industry as an indicator of the resolution of optical components, the higher the MTF (%) index, the better the imaging quality. Therefore, referring to the MTF characteristics of the figure, Figure 5-2 to Figure 7-1, and Figure 7-2 (taken from the SLA manufacturer NSG: NIPPON SHEET GLASS), it can be found that as long as the object distance (object position) changes (such as 5-1, FIG. 5-2) or the relative position of the lens unit 5 and the photosensitive unit 4 is changed (as shown in FIG. 6-1 and FIG. 6-2), the mTF (%) index is degraded, and That is to say, the lens unit of the prior art affects the MTF (%) index as long as it is slightly offset. However, referring to Fig. 7 and Fig. 7_2, if the monthly b makes 1/2 z 〇 at 1/2 TC, the MTF (%) index can reach the ideal theoretical value even if the distance of tc changes within a few hundred micrometers. Maintain excellent optical imaging quality. The following is an alignment method and an assembly step for the preferred embodiment of the present invention. Step 61: Referring to FIG. 8 and FIG. 9, the photosensitive unit 4 is mounted in the external view 31, and then the base 32 is The first mating member 322 is fastened to the outer casing 9 200828975 31 such that the photosensitive element 41 of the photosensitive unit 4 and the slot 321 are exposed in the opening 311 of the outer casing 31. Step 62: Referring to FIG. 9, FIG. 10 and FIG. 2, two photosensitive coupling elements (CCd, not shown) are transmitted through the opening 311 of the outer casing 31, and are located on the two sides along the Z-axis, that is, the optical axis direction. The two photosensitive elements 41, and the two object position reference points 331 formed in the positioning members 33. Since the present invention uses the positioning members 33 as a reference for assembly, the φ object position reference point 331 and the preset object position, that is, the top surface 91 of the glass 9 have a predetermined optical path distance Z〇R. Thereby, the actual total optical path distance Tc of the photosensitive member 41 to the object position, that is, the top surface 91 of the glass 9 can be calculated. Step 63 ·· With the actual total optical path distance tc, a corrected optical path δ/?, a corrected total optical path distance, that is, an ideal total optical path distance TC is obtained. Step 64: dividing a first center line L1 perpendicular to the z-axis by 1/2TC. Step 65: Referring to FIG. 8 and FIG. 9, along the two photosensitive coupling elements (charge % CouPled Device, CCD, not shown) The z-axis, that is, the optical axis direction, takes the two first end points 52 and the second second end points 53 of the lens unit 5, and calculates the lens length z〇 of the lens unit 5. Step 66: Referring to Fig. 8, Fig. 10 and Fig. η, a second center line L2 perpendicular to the boring axis is divided by 1/22 。. Step 67: The lens unit 5 is sucked into the slot 321 of the base 32 through the opening 311 of the outer casing 31 in an axial direction by an automatic loading machine (not shown), so that the lens unit 5 is The second center line L2 coincides with the first center line L1. 10 200828975 Step 68: Referring to FIG. 8', the first unit 322 of the lens unit 5 and the w-base 32 is pre-bonded with an adhesive. Step 69: The second pairing member 323 is placed in the outer casing 31 by the opening 311 of the outer casing 31, and is engaged with the first pairing member 322 to stabilize the lens unit 5 in the first The slot 321 between the second pair of members 322, 323. Step 70: Referring to Fig. 12, the opening 311 of the outer casing 31 is sealed by the cover plate 34 to complete the alignment and assembly. According to FIG. 7 and FIG. 1 , the present invention can make 1/2 z〇 at the position of 1/2Tc, so that the distance of the actual total optical path distance TC is changed even within the range of hundreds of micrometers. The MTF (%) index can still reach the ideal ideal value. That is to say, the special alignment and assembly method of the present invention accommodates a slight error between the position of the object and the photosensitive unit 4, but can still maintain the pole. Good image quality, the same, after considering the refractive index of the glass, although the optical path of the light source of the present invention from the position of an object (the glass 9) is not equal to the optical path of the photosensitive element 41 after focusing, it still does not Affects the image quality of the present invention. It can be seen from the above that the optical module of the present invention and the alignment and assembly method thereof have the following advantages and effects: 1. The lens unit 5 only needs to perform a pick and piace action, therefore, Alignment and assembly can be completed in less than 10 seconds using a general electronic component (SMT pick & piace machine) or die (Sie), which not only greatly simplifies alignment, assembly procedures, but also reduces work time. And can effectively improve production efficiency, significantly reduce costs, in line with the economic 11 200828975 benefits. 3. The present invention can obtain an optical system that is relatively close to the highest theoretical value of MTF (%), effectively improving optical characteristics, enabling high-resolution optical module products to be realized. The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are still Within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a preferred embodiment of an optical module of the present invention; FIG. 3 is a preferred embodiment of the present invention; FIG. Figure 1 is a schematic diagram of a total optical path distance in the preferred embodiment; Figure 5-1, Figure 5-2 is a relationship diagram of MTF characteristics; % Figure 6-1, Figure 6-2 FIG. 7-1 and FIG. 7-2 are diagrams showing an MTF characteristic relationship of the preferred embodiment; FIG. 8 is a flowchart of alignment and assembly of the preferred embodiment; FIG. Figure 1 is a cross-sectional view of the assembled perspective view of the preferred embodiment; Figure 11 is a second assembled perspective view of the preferred embodiment; and Figure 12 is a second embodiment of the preferred embodiment Combine stereograms. 13 200828975 [Description of main component symbols] * Housing unit 52, ... • First end point 1 ♦*««, "·*», housing 53..."... *Second end point 3 11...... * Opening * **»·**»* • Glass 3 *««,》*¥♦ *Base 9 1 ♦»·*♦*** *Top 3 21..., Slot L 〇...* ” “* Light Process 322... • First pair of parts Z〇......... • Lens length 3 2 3... *Second pair of parts 'TC ...·1·Correct total path length 33......... < positioning piece TC, ...... , the actual total optical path distance 3 3 1 ... ♦ object position reference point Z〇R... • preset optical path distance 34......... * Cover Li..., ·... • First center line * 9*9tr **** *Photosensitive unit L 2 ******** ♦Second center line • Photosensitive element AR * * *Correct optical path**?♦»«*♦* • Lens unit 1 *-*ΐ* Λ*Λ* • Cylindrical lens 14

Claims (1)

200828975 十、申請專利範圍: 1 · 一種光學模組的對準方法,該光學模組包含一殼座單元 、固定在該殼座單元内的一感光單元,及使光源聚焦在 该感光單元的一透鏡單元,該對準方法包含下列步驟: 步驟1 :沿一光軸方向擷取該感光單元的至少一感 光元件,及以預設的一物件位置,計算出該感光元件到 該物件位置的一實際總光程距離; 步驟2 .以該貫際總光程距離扣除一修正光程後, 獲得一修正總光程距離; 步驟3 :以該修正總光程距離的一半,劃分出垂直 該光軸的一第一中心線; 步驟4 :沿該光轴方向擷取該透鏡單元的至少一第 一端點與至少一第二端點,計算出一透鏡長度; 步驟5 ··以該透鏡長度的一半,劃分出垂直該光轴 的一第二中心線;及 步驟5 :組裝該透鏡單元與該殼座,且使該第二中 心線重合於該第一中心線。 2·依據申請專利範圍第i項所述之光學模組的對準方法, 其中,該步驟1是以形成在該殼座單元且與該物件位置 具有一預没物件距離的至少一物件位置參考點,释知今 物件位置參考點至該物件位置的距離。 3_依據申請專利範圍第2項所述之光學模組的對準方法, 其中,該物件位置參考點共有二點,是沿該第一中心線 形成在該殼座二端部。 15 200828975 4.依據申請專利範圍第2項所述之光學模組的對準方法 其中’該步驟1與該步驟4是以至少一感光耦合元件 (Charge Coupled Device,CCD)擷取該感光元件、該物件 *位置與該透鏡單元第一、第二端點的影像D 5·依據申請專利範圍第1項所述之光學模組的對準方法, 其中,該修正光程是依據光源折射率所造成的成像位置 而獲得。200828975 X. Patent Application Range: 1 · An optical module alignment method, the optical module comprises a housing unit, a photosensitive unit fixed in the housing unit, and a light source focusing on the photosensitive unit a lens unit, the alignment method comprises the following steps: Step 1: capturing at least one photosensitive element of the photosensitive unit along an optical axis direction, and calculating a position of the photosensitive element to the object by a predetermined position of the object Actual total optical path distance; Step 2. After subtracting a corrected optical path from the total optical path distance, a corrected total optical path distance is obtained; Step 3: dividing the vertical light by half of the corrected total optical path distance a first center line of the shaft; Step 4: drawing at least one first end point and at least one second end point of the lens unit along the optical axis direction to calculate a lens length; Step 5 ··· One half, dividing a second center line perpendicular to the optical axis; and step 5: assembling the lens unit and the housing, and causing the second center line to coincide with the first center line. 2. The alignment method of the optical module according to the invention of claim 1, wherein the step 1 is at least one object position reference formed on the housing unit and having a pre-object distance from the object position. Point, the distance from the reference point of the object position to the position of the object. The method of aligning an optical module according to claim 2, wherein the object position reference point has two points, and is formed at the two ends of the housing along the first center line. 15 200828975 4. The alignment method of the optical module according to claim 2, wherein the step 1 and the step 4 are: capturing the photosensitive element by at least one photosensitive coupled device (CCD), The method of aligning the object* with the first and second end points of the lens unit, and the method for aligning the optical module according to claim 1, wherein the corrected optical path is based on the refractive index of the light source. Obtained by the resulting imaging position. 依據申請專利範圍第1項所述之光學模組的對準方法, 其中,該透鏡單元的第一端點與第二端點分別共有1點 ,是沿該第二中心線形成在該透鏡單元二端。 一種光學模組,包含: 少一感光元件 感光單元’具有可感測光源 -殼座單元,是設置有該感光單元,並具有形成在 一側且沿長度方向延伸的一開口;及 -透鏡單元,是相對該感光單元架置在該殼座上且 顯露在該開口内; 藉此’透過該開口日沿,#击A十^ &該先軸方向將該光點至一物 件,扣除一修正程後的中心劃分有—第—中心線, 使該第-中^線重合於通過該透鏡單元中 心線。 W弟一 f 8. 依據中請專利範㈣7項所述 座蕈元且右执署兮予镇組,其中,該殼 庄早Hx置該感光單元的H 上且夾置該透鏡單元的―基座。 h置在該外设 9. 依據申請專利範圍第8項所述 饵組,其中,該基 16 200828975 厓更具有形成在 竣寻疋位件與該 源的物件位置間具有一預設物件距離。 ι〇·依射請專利範圍第8項所述之光學模組,其中,該殼 座早兀的開口是形成在該外殼_侧,且該基座具有相互 對口且界疋出一插槽的一第一對合件與一第二對合件, 該透鏡單元是插置在該插槽内。 11.The method for aligning an optical module according to claim 1, wherein the first end point and the second end point of the lens unit respectively share one point, and the lens unit is formed along the second center line. Two ends. An optical module comprising: a photosensitive element photosensitive unit having a sensible light source-shell unit provided with the photosensitive unit and having an opening formed on one side and extending in a length direction; and a lens unit And the photosensitive unit is mounted on the housing and exposed in the opening; thereby passing through the opening of the opening, #打 A十^ & the first axis direction to point the light to an object, deducting one The center of the correction process is divided into a first-center line, such that the first-middle line coincides with the center line passing through the lens unit. W Brother-f 8. According to the patent application (4) of the Chinese Patent Application No. 7 and the right-hand entrusted to the town group, wherein the shell is Hx placed on the H of the photosensitive unit and the base of the lens unit is sandwiched. seat. h is placed in the peripheral device 9. The bait set according to claim 8 wherein the base 16 200828975 has a predetermined object distance formed between the position of the object and the object of the source. The optical module of the eighth aspect of the invention, wherein the opening of the shell is formed on the side of the outer casing, and the base has a pair of openings and a slot is defined. a first pair of parts and a second pair of parts, the lens unit being inserted into the slot. 11. 依據=請專利範圍帛1G項所述之光學模組,其中,該基 座的第二對合件是由該外殼的F幵1Π可㈣地與該第一對 合件卡合。 12·依㈣請專利範圍第7項所述之光學模組,其中,該殼 座單元更具有可卸離地封閉該開口的一蓋板。 13·依據申請專利範圍第7項所述之光學模組,其中,該感 光單元的感光元件是一線形影像感測件。 14·依據申請專利範圍第7項所述之一種光學模組的組裝方 法,包含下列步驟: 步驟1 :將該感光單元安裝在該殼座單元内; 步驟2 :沿垂直該光軸的方向將該透鏡單元由該殼 座單元的開口穿置入該殼座單元内;及 步驟3 :使該透鏡單元的第二中心線重合於該第一 中心線,並獲得定位。 15·依據申請專利範圍第ι4項所述之光學模組的組裝方法, 更包含有一步驟2-1,該步驟2-1是在該透鏡單元穿置入 該殼座單元後,預先以黏膠固結該透鏡單元與該殼座單 元。 17 200828975The optical module according to the invention of claim 1 wherein the second mating member of the base is engaged with the first mating member by the outer casing of the outer casing. The optical module of claim 7, wherein the housing unit further has a cover that detachably closes the opening. The optical module according to claim 7, wherein the photosensitive element of the photosensitive unit is a linear image sensing member. 14. The method of assembling an optical module according to claim 7, comprising the following steps: Step 1: mounting the photosensitive unit in the housing unit; Step 2: in a direction perpendicular to the optical axis The lens unit is inserted into the housing unit by the opening of the housing unit; and step 3: the second center line of the lens unit is coincident with the first center line, and positioning is obtained. The method for assembling an optical module according to the invention of claim 1 further includes a step 2-1, wherein the step 2-1 is performed after the lens unit is inserted into the housing unit. The lens unit and the housing unit are consolidated. 17 200828975 16.依據申請專利範圍第14項所述之光學模組的組裝方法, 其中,該步驟2、3是以一自動化取置機透過該殼座單元 的開口觀察及計算該感光單元與該透鏡單元的相對位置 ,並取放該透鏡單元。 1816. The method of assembling an optical module according to claim 14, wherein the steps 2 and 3 are to observe and calculate the photosensitive unit and the lens unit through an opening of the housing unit by an automatic loading machine. The relative position of the lens unit is taken and placed. 18
TW95149858A 2006-12-29 2006-12-29 Optical module and methods for optically aligning and assembling the same TW200828975A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW95149858A TW200828975A (en) 2006-12-29 2006-12-29 Optical module and methods for optically aligning and assembling the same
JP2007220120A JP4562758B2 (en) 2006-12-29 2007-08-27 Optical alignment method of optical module, configuration of optical module thereby, assembly method, and attachment method to optical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95149858A TW200828975A (en) 2006-12-29 2006-12-29 Optical module and methods for optically aligning and assembling the same

Publications (2)

Publication Number Publication Date
TW200828975A true TW200828975A (en) 2008-07-01
TWI345906B TWI345906B (en) 2011-07-21

Family

ID=39699045

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95149858A TW200828975A (en) 2006-12-29 2006-12-29 Optical module and methods for optically aligning and assembling the same

Country Status (2)

Country Link
JP (1) JP4562758B2 (en)
TW (1) TW200828975A (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268350U (en) * 1985-10-19 1987-04-28
JPS62242929A (en) * 1986-04-16 1987-10-23 Fuji Xerox Co Ltd Optical writing device
JPH0437912U (en) * 1990-07-26 1992-03-31
JPH04117862A (en) * 1990-09-07 1992-04-17 Canon Inc Original reader and information processor using it
JP2662105B2 (en) * 1991-04-08 1997-10-08 キヤノン株式会社 Contact sensor, image scanner and facsimile
JPH05122438A (en) * 1991-10-30 1993-05-18 Kanegafuchi Chem Ind Co Ltd Contact image sensor unit
JPH05183677A (en) * 1991-12-27 1993-07-23 Kyocera Corp Assembly method for picture device
JP2000032214A (en) * 1998-07-09 2000-01-28 Oki Electric Ind Co Ltd Color image sensor

Also Published As

Publication number Publication date
TWI345906B (en) 2011-07-21
JP2008170940A (en) 2008-07-24
JP4562758B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
EP2244460B1 (en) Imaging device, and method for manufacturing the same
KR20200011560A (en) Camera lens module and its manufacturing methods
KR101626132B1 (en) unified Camera module
JP6142501B2 (en) Optical sensor
US9429423B2 (en) Ranging apparatus
JP5560316B2 (en) Image reading apparatus and image forming apparatus
JP2007036393A (en) Camera module and manufacturing method thereof
KR102523058B1 (en) Multi-lense group assembly,photographing module and assembly method thereof, and electronic device
JP7205486B2 (en) Imaging device
TW201348786A (en) Camera module and assembling method
JP2013070233A (en) Imaging apparatus
TW200828975A (en) Optical module and methods for optically aligning and assembling the same
JP2015001687A (en) Optical module and manufacturing method of the same
US7271402B1 (en) Optical module and methods for optically aligning and assembling the same
CN101242471B (en) Optical module and its alignment and assembly method
CN100523907C (en) Luminous module as well as method for aligning and assembling thereof
US7471395B2 (en) Light-emitting module and methods for optically aligning and assembling the same
JP2010278667A (en) Solid-state imaging unit, image capturing apparatus, and method of fixing solid-state image sensor
US20090086039A1 (en) Compound lens and camera comprising the same
TWI555397B (en) Lens device, positioning pad and image capturing device thereof
KR100944391B1 (en) Apparatus and method for image sensor alignment
JP5074285B2 (en) Light projecting device, light projecting unit for optical fiber sensor, light projecting unit for photoelectric sensor, method for aligning light projecting device
JP5601081B2 (en) Imaging element unit and imaging apparatus
KR101385958B1 (en) Optical module assembly and photographing apparatus comprising the same
WO2019188991A1 (en) Image reading device and assembling method for image reading device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees