TW200828955A - Mobile communication terminal - Google Patents

Mobile communication terminal Download PDF

Info

Publication number
TW200828955A
TW200828955A TW95149616A TW95149616A TW200828955A TW 200828955 A TW200828955 A TW 200828955A TW 95149616 A TW95149616 A TW 95149616A TW 95149616 A TW95149616 A TW 95149616A TW 200828955 A TW200828955 A TW 200828955A
Authority
TW
Taiwan
Prior art keywords
communication terminal
acceleration
mobile communication
lens module
image
Prior art date
Application number
TW95149616A
Other languages
Chinese (zh)
Inventor
Ga-Lane Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95149616A priority Critical patent/TW200828955A/en
Publication of TW200828955A publication Critical patent/TW200828955A/en

Links

Landscapes

  • Studio Devices (AREA)

Abstract

The present invention relates to a mobile communication terminal. The communication terminal includes a main body, a lens module, two acceleration sensors, a processor and a distance-measuring module. The lens module includes an image sensor. The two acceleration sensors are respectively used for measuring the acceleration of the lens module in two directions that perpendicular to the optical axis. The two directions are intersectant at right angle. The distance-measuring module is used for measuring the distance between the object and the lens module. The processor is used for processing the image obtained from the image sensor to remove the blurred image part.

Description

200828955 .九、發明說明: .【發明所屬之技術領域】 本發明涉及一種可拍照移動通訊終端,尤其涉及一種 拍照時能消除由抖動造成之影像模糊之移動通訊終端。 【先前技術】 隨著電訊技術之發展’移動通訊終端如手機等得以迅 速普及。目前之移動通訊終端大部分都安裝有鏡頭模組, 以於移動通訊終端上提供拍照功能。由於移動通訊終端攜 •帶之便利性,相比於採用專門之數位相機拍照,移動通訊 終端顯得更加方便。因此亦深受人們喜愛。另外,隨著電 訊技術之發展,視頻電話亦逐漸走入人們之生活,因此, 要求移動通訊終端上安裝採集視頻之鏡頭模組。 然,由於握持移動通訊終端時,手抖動會造成拍攝出 來之照片或視頻晝面出現模糊之現象。該現象係由於曝光 時内,鏡頭模組相較於被拍攝物體之方位不停發生變化, 0影像感测器之物體成像亦不停發生變化,將曝光時間内所 有之影像資料疊加時就發生了模糊現象。 由於拍照時使用者一般將鏡頭模組對準被拍攝物體, 亦即使光軸對準被拍攝之物體,一般來說,採用可拍照移 動通訊終端拍攝時,造成影像模糊之主要因素係於垂直於 鏡頭模組光轴方向上之平移。此種平移造成被拍攝之物體 上同一點之像於曝光時間内不同時刻被影像感測器上不同 之圖元點所感測到。而一般情況下於拍照時,只將曝光時 間内不同時刻從影像感測器上相同圖元點感測之影像資料 200828955 *進行疊加處理,因此被拍攝物體上同一個點具有複數像, •這些像與其他點之像相互重疊,故造成影像模糊。 有鑒於此,有必要提供一種可消除由於抖動造成影像 模糊之可拍照移動通訊終端。 【發明内容】 以下將以實施例說明一種可消除由於抖動造成影像模 糊之可拍照移動通訊終端。 一種移動通訊終端包括主體、鏡頭模組、兩個加速度 感測器、處理器及測距模組,所述鏡頭模組、兩個加速度 感測器、處理器及測距模組安裝於所述主體内。所述鏡頭 模組包括一影像感測器。所述兩個加速感測器分別用於感 測與所述鏡頭模組之光軸垂直之兩個方向上之加速度,所 述兩個方向相互垂直。所述測距模組甩於感測被拍攝之物 體與鏡頭模組之間之距離。所述處理器用於根據所述距離 以及所述加速度感測器感測到之加速度訊號對影像感測器 籲感測到之影像資料進行處理以消除由於抖動造成之影像模 糊。 一種移動通訊終端,其包括主體、鏡頭模組、兩個加 速度感測器、處理器及測距模組,所述鏡頭模組、兩個加 速度感測、處理器及測距模組安裝於所述主體内。所述 鏡頭杈組包括一影像感測器。所述兩個加速度感測器分別 用於感測鏡頭模組於兩個方向上之加速度。所述測距模組 用於測量物距。所述處理器用於根據所述物距以及所述加 速度感測器感測到之加速度訊號對影像感測器感測到之影 200828955 像資料進行處理以消除由於抖動造成之影像模糊。 相較於先前技術,所述移動通訊終端運用加速度感测 器感測與鏡頭模組光轴垂直之相五垂直之兩個方向上之振 動,並根據振動對影像感測器感測到之訊號進行補償運 算,從而消除了由於鏡頭模組抖動造成之影像模糊。 【實施方式] 參閱圖1,第一實施例之移動通訊終端包括主體10、 鏡頭模組12、加速度感測器141、142、處理器16及測距 模組18。主體1〇上設置有按鈕102。鏡頭模組12、加速度 感測器141、142、處理器16及測距模組18安裝於主體1〇 内。加速度感測器141、142還玎固定於鏡頭模組12上。 鏡頭核組12可為自動對焦式(Automatic Focusing,AF ), 圖元可為2〇〇萬至500萬或以上。測距模組18可為紅外式、 超聲波式或雷射式,其用於檢測待拍攝之物體與鏡頭模組 12中鏡片間之距離。 參閱圖2,處理器16可為移動通訊終端之中央處理 裔’亦可為單獨設置之數位訊號處理器(Digital Signal200828955. IX. INSTRUCTIONS: [Technical Field] The present invention relates to a camera mobile communication terminal, and more particularly to a mobile communication terminal capable of eliminating image blur caused by jitter when photographing. [Prior Art] With the development of telecommunications technology, mobile communication terminals such as mobile phones have been rapidly popularized. Most of the current mobile communication terminals are equipped with a lens module to provide a camera function on the mobile communication terminal. Due to the convenience of the mobile communication terminal, the mobile communication terminal is more convenient than taking a photo with a special digital camera. Therefore, it is also deeply loved by people. In addition, with the development of telecommunications technology, video telephony has gradually entered the lives of people. Therefore, it is required to install a lens module for collecting video on a mobile communication terminal. However, when the mobile communication terminal is held, the hand shake may cause blurring of the photograph or the video surface. This phenomenon is caused by the fact that the lens module is constantly changing compared to the orientation of the object being photographed during the exposure, and the image of the object of the image sensor is constantly changing, and occurs when all the image data in the exposure time are superimposed. The phenomenon of blurring. Since the user generally aligns the lens module with the object to be photographed when photographing, even if the optical axis is aimed at the object being photographed, in general, when photographing with a camera mobile communication terminal, the main factor causing image blurring is perpendicular to The translation of the lens module in the direction of the optical axis. This translation causes the image of the same point on the object being photographed to be sensed by different pixel points on the image sensor at different times during the exposure time. In general, when photographing, only the image data 200828955* sensed from the same pixel point on the image sensor is superimposed at different times during the exposure time, so that the same point on the object has a complex image, and these The image overlaps with the image of other points, resulting in blurred images. In view of the above, it is necessary to provide a camera mobile communication terminal that can eliminate image blur due to jitter. SUMMARY OF THE INVENTION A photographable mobile communication terminal capable of eliminating image blur due to jitter will be described below by way of example. A mobile communication terminal includes a main body, a lens module, two acceleration sensors, a processor and a distance measuring module, and the lens module, two acceleration sensors, a processor and a distance measuring module are installed in the Inside the subject. The lens module includes an image sensor. The two acceleration sensors are respectively configured to sense accelerations in two directions perpendicular to the optical axis of the lens module, the two directions being perpendicular to each other. The ranging module is configured to sense a distance between the object to be photographed and the lens module. The processor is configured to process the image data sensed by the image sensor according to the distance and the acceleration signal sensed by the acceleration sensor to eliminate image blur caused by the jitter. A mobile communication terminal comprises a main body, a lens module, two acceleration sensors, a processor and a distance measuring module, wherein the lens module, two acceleration sensing, a processor and a distance measuring module are installed in the office Inside the subject. The lens stack includes an image sensor. The two acceleration sensors are respectively used to sense the acceleration of the lens module in two directions. The ranging module is used to measure the object distance. The processor is configured to process the image sensor according to the object distance and the acceleration signal sensed by the acceleration sensor. The image is processed to eliminate image blur caused by the jitter. Compared with the prior art, the mobile communication terminal uses the acceleration sensor to sense the vibration in two directions perpendicular to the optical axis of the lens module, and senses the signal to the image sensor according to the vibration. The compensation operation is performed, thereby eliminating image blur caused by lens module shake. [Embodiment] Referring to FIG. 1, the mobile communication terminal of the first embodiment includes a main body 10, a lens module 12, acceleration sensors 141 and 142, a processor 16, and a distance measuring module 18. A button 102 is provided on the main body 1A. The lens module 12, the acceleration sensors 141, 142, the processor 16, and the distance measuring module 18 are mounted in the main body 1A. The acceleration sensors 141, 142 are also fixed to the lens module 12. The lens core group 12 can be an automatic focus (AF), and the picture element can be from 2 million to 5 million or more. The ranging module 18 can be an infrared, ultrasonic or laser type for detecting the distance between the object to be photographed and the lens in the lens module 12. Referring to FIG. 2, the processor 16 can be a central processing unit of a mobile communication terminal or a separately configured digital signal processor (Digital Signal).

Processor,DSp)。處理器16分別與測距模組is、加速度感 測器141、加速度感测器142及按鈕1〇2相連,按鈕102 用於控制處理器16是否開啟防抖功能。當然按鈕1〇2可以 省略,只需使處理器16之消除模糊功能常開即可。 加速度感測器141、142可為壓卩且式加速度感測器、電 容式加速度感測器、扭擺式加速度感測器或隧道式加速度 感測器。加速度感測器及加速度感測器142之感測方 200828955 *向相互垂直,並且感測方向分別與鏡頭模組12之光軸垂 •直,從而可實現對兩個與光軸垂直方向上振動之感測。記 加速度感測器141感測之方向為X方向,記加速度感測器 142感測之方向為Y方向。鏡頭模組12之光軸位於z方向。 圖3為本實施例採用之壓阻式加速度感測器示意圖, 其包括基體140,彈性臂142a、142b,質量塊144a、144b 及壓阻片146a、146b。彈性臂142a、142b —端分別連接於 基體140相對之兩侧上,另一端分別與質量塊144a、144b ⑩相連,壓阻片146a、146b分別貼於彈性臂142a、142b上。 參閱圖4,壓阻片146a、146b連於同一個惠斯登電橋 電路中,分別作為惠斯登電橋相鄰之兩臂。當有加速度輸 入時,彈性臂142a、142b分別於質量塊144&、1441)受到 之慣性力晕引下發生變形5導致壓阻片146a、146b亦隨之 發生變形,其電阻值就會由於壓阻效應而發生變化。記壓 阻片146a、146b,之初始電阻值分別為Rl,R2,形變導致 馨之電阻值變化為ΔΙΙ。假設是壓阻片146a之電阻增加,壓 阻片146b之電阻降低。電阻146c之阻值為R3。壓阻片 146a、146b電阻變化導致電橋失去平衡,此時調節可變電 阻146d使電橋重新平衡,此時可變電阻146d之電阻值為 R4。此時具有關係式(R1+ △ R)/(R2- △ R)=R3/R4。即可由公 式(R2xR3-RlxR4)/(R3+R4)計算△ R。由於△ R與壓阻片 146a、146b之形變之間存於一 一對應關係,而形變與慣性 力之大小相關,加速度正比於慣性力,因此即可計算出輸 入加速度之大小。此種加速度感測器之優點在於兩個壓阻 200828955 片之電阻變化方向剛好相反, 變化較大,惠斯卿罝有古二片“、146”且值相對 感測更為靈敏。有^破度’亦即說明加速度之 用防抖模式進行拍 本貝^例之可檇式移動通訊終端採 照時之具體過程如下: 假設拍照時鏡頭模組12之曝光時間為τ,由在於τ時 間内,鏡軌組12由於外力之施加而具有加速度,而且隨 外力之不斷變化其加速度會不停之發生變化,αχ方向為 例’記t時卿如)之鏡頭模組12之速度為%,於X方 向上之加速度為at,取一段時間間隔^〖,只要取得足 夠小,則於Δί内其加速度可以視為不發生變化,則後 鏡頭模組12之速度為Vt+atxM,At時間内發生之位移as 為(2Vt+atxM)xM/2,由於初始時鏡頭模組12之位移為零, 將其初始加速度視為零,則任意時刻t時之速度Vt即可計 异出來’亦即任意△ t内鏡頭模組12之位移△ $可以計算得 φ到,則於t時刻鏡頭模組12相較於初始位置之總位移& 亦可以計算出來。以上計算過程均由處理器16進行。因此 於拍照過程中’鏡頭模組12抖動之位移可藉由處理器16 進行即時之量測。 參閱圖5,其為鏡頭模組12成像光路示意圖。像124 為曝光開始時物體122之像,像126為t時刻物體122成之 像,像126相較於像124之位移為(L+像距)xSt/L。其中l 為物距,由測距模組18測量得到。對於設計好之鏡頭模組, 初始時像距為一固定之預設值,進行自動對焦後,由於鏡 200828955 •片之前後移動,像距會發生變化,因此像距為初始值加/減 -自動對焦時移動之距離。對焦距離一般為處理器根據物 距L進行計算。藉由上述過程可以對拍照過程中鏡頭模組 12所成之像之位移變化進行即時量測。 參閱圖6’當鏡頭模組12於X方向上發生位移&後, 影像感測器120於X方向上之位移亦為St,物體ι22之像 於X方向之位移為(L+像距)xSt/L,亦即說,以圖元點12〇1 為例’於t時刻其上成之像於開始曝光時應該成像於圖元點 1202上。圖元點1202相較於圖元點12〇1於χ方向上之位 移為(L+像距)xSt/L-St。 處理器於t時刻將圖元點1202感測到之訊號與圖元 點1201於開始曝光時感測到之訊號疊加,當然對於其他所 有之圖元點’都進行類似之運算處理。這只係t時刻進行之 一··人補彳員運异’於t+^t時刻,由於位移可能已經發生了變 化口此而要重新a十异-次影像感測器上成之像與開始曝 _光時成之in之平移輯,再進行補償運算。此過程一 直持續到拍照結束。Δί可以與影像感測器12G之資料讀取 間&相等。以上僅以x方向為例進行說明,當然於Y方向 上同時進行類似之過程。 ,以上以與光軸垂直之χ、γ方向為例進行説明,惟,X、 γ還可不與絲垂直。其消除影像模糊之過程亦屬類似。 於本實把例之移動通訊終端中,被拍攝物體上之同一 ^點:不同時刻之像雖然仍被影像感測器上不同之點感測 到,然而加速度感測器可感測鏡頭模組於相互垂直之兩個 200828955 .=上ί振動,處理11 16根據縣狀料算出每個時刻相 ::料置’所成像之偏移情況’並使同-個點之影像 二抖f互,加,而残同—個圖元點之影像資料相互疊 攸而消除由於鏡頭模、组抖動造成之影像模糊。 參閱圖7,第二實施例之移動通訊終端與 =同之處在於,還進-步包括-紅外線鏡頭模組22: 助鏡頭模組22拍照。使用者早獨拍照或者辅 式進行拍照。 用者可精㈣能表選擇制何種模 於辅助拍照模式下’處理器26將鏡頭模組22感測到 ,影像資料與紅外錢賴組挪感測狀影像資料進行 豐加。 本實施例之移動通訊終端中,採用紅外線鏡頭模板於 陰暗之環境下拍照或輔助拍照,提高了對於 應性。 衣兄·^週 …本實施方式移動通訊終端之優點在於:運用加速度感 ’則器感測與鏡頭模組光轴垂直之相互垂直之兩個方向上之 ,動,並根據振動對影像感冑器感測到之訊號進行補償運 算,從而消除了由於鏡頭模組抖動造成之影像模糊。 综上所述,本發明確已符合發明專利之要件,遂依法 提出專射請。惟,以上所述者僅為本發明之較佳實^方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化,皆 應涵於以下申請專利範圍内。 11 200828955 •【圖式簡單說明】 • 圖1係第一實施例之移動通訊終端示意圖。 圖2係第一實施例之移動通訊終端之硬體連接示意圖。 圖3係第一實施例之移動通訊終端中之加速度感測器 結構示意圖。 圖4係第一實施例之移動通訊終端拍照係之光路示意 圖。 圖5係第一實施例之移動通訊終端中影像感測器示意 鲁圖。 圖6係第一實施例之移動通訊終端中影響感測器圖原 點不意圖。 圖7係第二實施例之移動通訊終端示意圖。 【主要元件符號說明】 10 主體 12 ^ 22 鏡頭模組 141 、 142 加速度感測器 16、26 處理器 18 測距模組 102 按紐 140 基體 142a、142b 彈性臂 144a ^ 144b 質量塊 146a、146b 壓阻片 146c 電阻 146d 可變電阻 124 、 126 像 122 物體 120 影像感測器 1201 、 1202 圖元點 22b 紅外線鏡頭模組 12Processor, DSp). The processor 16 is respectively connected to the ranging module is, the acceleration sensor 141, the acceleration sensor 142 and the button 1〇2, and the button 102 is used to control whether the processor 16 turns on the anti-shake function. Of course, the button 1〇2 can be omitted, and the processor 16 can be simply turned off. The acceleration sensors 141, 142 can be compressed and accelerometer sensors, capacitive acceleration sensors, torsional pendulum acceleration sensors or tunneled acceleration sensors. The sensing sensor of the acceleration sensor and the acceleration sensor 142 200828955 * is perpendicular to each other, and the sensing direction is perpendicular to the optical axis of the lens module 12, thereby achieving vibration in two directions perpendicular to the optical axis Sensing. It is noted that the direction sensed by the acceleration sensor 141 is the X direction, and the direction sensed by the acceleration sensor 142 is the Y direction. The optical axis of the lens module 12 is located in the z direction. 3 is a schematic view of a piezoresistive acceleration sensor used in the present embodiment, which includes a base body 140, elastic arms 142a, 142b, masses 144a, 144b, and piezoresistive sheets 146a, 146b. The ends of the elastic arms 142a, 142b are respectively connected to opposite sides of the base body 140, and the other ends are respectively connected to the mass blocks 144a, 144b 10, and the piezoresistive pieces 146a, 146b are respectively attached to the elastic arms 142a, 142b. Referring to Figure 4, the piezoresistive plates 146a, 146b are connected to the same Wheatstone bridge circuit as the two arms adjacent to the Wheatstone bridge. When there is an acceleration input, the elastic arms 142a, 142b are deformed under the inertial force of the mass 144&, 1441) respectively, causing the piezoresistive sheets 146a, 146b to be deformed accordingly, and the resistance value is due to the pressure. The resistance changes and changes. The initial resistance values of the piezoresistive sheets 146a and 146b are R1 and R2, respectively, and the deformation causes the resistance value of the sensation to change to ΔΙΙ. Assuming that the resistance of the piezoresistive sheet 146a is increased, the resistance of the piezoresistive sheet 146b is lowered. The resistance of the resistor 146c is R3. The resistance change of the piezoresistive sheets 146a, 146b causes the bridge to lose balance. At this time, the variable resistor 146d is adjusted to rebalance the bridge, and the resistance of the variable resistor 146d is R4. At this time, there is a relationship (R1 + Δ R) / (R2 - ΔR) = R3 / R4. The Δ R can be calculated from the formula (R2xR3-RlxR4)/(R3+R4). Since there is a one-to-one correspondence between Δ R and the deformation of the piezoresistive sheets 146a, 146b, and the deformation is related to the magnitude of the inertial force, the acceleration is proportional to the inertial force, so the magnitude of the input acceleration can be calculated. The advantage of this kind of accelerometer is that the resistance of the two piezoresistive layers of 200828955 is just opposite, and the change is relatively large. Whistler has two ancient films, “146” and the value is relatively sensitive. There is a ^degree of breakage, which means that the acceleration is used in the anti-shake mode. The specific process of the mobile communication terminal is as follows: Assume that the exposure time of the lens module 12 is τ when photographing, In the τ time, the mirror track group 12 has an acceleration due to the application of an external force, and the acceleration thereof constantly changes as the external force changes continuously, and the speed of the lens module 12 in the direction of the αχ is as an example. %, the acceleration in the X direction is at, taking a time interval ^ 〖, as long as it is small enough, its acceleration can be regarded as not changing within Δί, then the speed of the rear lens module 12 is Vt+atxM, At The displacement as occurred in time is (2Vt+atxM)xM/2. Since the initial displacement of the lens module 12 is zero, and the initial acceleration is regarded as zero, the velocity Vt at any time t can be calculated. That is, the displacement Δ$ of the lens module 12 in any Δt can be calculated as φ to, and the total displacement & of the lens module 12 compared to the initial position at time t can also be calculated. The above calculation process is performed by the processor 16. Therefore, the displacement of the lens module 12 jitter during the photographing process can be measured by the processor 16 in real time. Referring to FIG. 5 , it is a schematic diagram of the imaging optical path of the lens module 12 . The image 124 is the image of the object 122 at the start of exposure, and the image 126 is the image of the object 122 at time t, and the displacement of the image 126 compared to the image 124 is (L + image distance) xSt/L. Where l is the object distance and is measured by the ranging module 18. For a designed lens module, the initial image distance is a fixed preset value. After autofocusing, since the mirror 200828955 • the image moves before and after, the image distance will change, so the image distance is the initial value plus/minus - The distance to move when autofocusing. The focus distance is generally calculated by the processor based on the object distance L. Through the above process, the displacement change of the image formed by the lens module 12 during the photographing process can be instantaneously measured. Referring to FIG. 6', when the lens module 12 is displaced in the X direction, the displacement of the image sensor 120 in the X direction is also St, and the displacement of the image of the object ι22 in the X direction is (L+image distance) xSt. /L, that is, taking the pixel point 12〇1 as an example. The image formed at time t should be imaged at the pixel point 1202 when the exposure is started. The pixel point 1202 is shifted to (L + image distance) xSt / L - St compared to the pixel point 12 〇 1 in the χ direction. At time t, the processor superimposes the signal sensed by the pixel point 1202 with the signal sensed by the primitive point 1201 at the beginning of the exposure, and of course, similar operations are performed for all other primitive points. This is only one of the moments of t·························································································· Exposure _ light into the translation of the in, and then perform compensation operations. This process continues until the end of the photo. Δί can be equal to the data reading of the image sensor 12G. The above is only explained by taking the x direction as an example, and of course, a similar process is performed simultaneously in the Y direction. The above description is made by taking the χ and γ directions perpendicular to the optical axis as an example, but X and γ may not be perpendicular to the wire. The process of eliminating image blur is similar. In the mobile communication terminal of the present example, the same point on the object to be photographed: the image at different times is still sensed by different points on the image sensor, but the acceleration sensor can sense the lens module. In the two verticals of the 200828955 .=Up ί vibration, the processing 11 16 calculates the phase of each moment according to the county material:: the material is set to 'the offset of the image' and the image of the same point is shaken, Plus, and the image data of the same----------------------------------------- Referring to FIG. 7, the mobile communication terminal of the second embodiment is the same as the step-in-step including the infrared lens module 22: the lens module 22 is photographed. The user takes photos alone or assists in taking pictures. The user can select (4) what kind of mode can be selected in the auxiliary camera mode. The processor 26 senses the lens module 22, and the image data and the infrared money source group are used for image acquisition. In the mobile communication terminal of the embodiment, the infrared lens template is used to take pictures or assist in taking pictures in a dark environment, thereby improving the compatibility.衣兄·^周... The advantage of the mobile communication terminal of the present embodiment is that the acceleration sense is used to sense the two directions perpendicular to the optical axis of the lens module, and the image is sensed according to the vibration. The sensed signal is compensated, thereby eliminating image blur caused by lens module shake. In summary, the present invention has indeed met the requirements of the invention patent, and has proposed a special shot in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included in the scope of the following claims. 11 200828955 • [Simplified description of the drawings] • Fig. 1 is a schematic diagram of a mobile communication terminal of the first embodiment. 2 is a schematic diagram showing the hardware connection of the mobile communication terminal of the first embodiment. Fig. 3 is a schematic structural view of an acceleration sensor in the mobile communication terminal of the first embodiment. Fig. 4 is a view showing the optical path of the photographing system of the mobile communication terminal of the first embodiment. Fig. 5 is a schematic diagram of an image sensor in the mobile communication terminal of the first embodiment. Fig. 6 is a diagram showing the intention of influencing the origin of the sensor map in the mobile communication terminal of the first embodiment. Figure 7 is a schematic diagram of a mobile communication terminal of the second embodiment. [Main component symbol description] 10 Main body 12 ^ 22 Lens module 141, 142 Acceleration sensor 16, 26 Processor 18 Ranging module 102 Button 140 Base 142a, 142b Elastic arm 144a ^ 144b Mass 146a, 146b Pressure Resistor 146c Resistor 146d Variable Resistor 124, 126 Image 122 Object 120 Image Sensor 1201, 1202 Element Point 22b Infrared Lens Module 12

Claims (1)

200828955 -十、申請專利範圍: -1· 一種移動通訊終端,其包括主體、鏡頭模組、兩個加速 度感測器、處理器及測距模組,所述鏡頭模組、兩個加速 度感測器、處理器及測距模組安裝於所述主體内,所述鏡 頭模組包括一影像感測器,所述兩個加速感測器分別用於 感測與所述鏡頭模組之光軸垂直之兩個方向上之加速度, 所述兩個方向相互垂直,所述測距模組用於測量物距,所 述處理器用於根據所述物距以及所述加速度感測器感測到 之加速度訊號對影像感測器感測到之影像資料進行處理以 消除由於抖動造成之影像模糊。 2·如申請專利範圍第1項所述之移動通訊終端,其中,該 移動通訊終端進一步包括一紅外線鏡頭模組,所述紅外線 鏡頭模組用於在陰暗環境下拍攝或輔助所述鏡瓸槿組轩 拍攝。 ^一 … 3·如申請專利範圍第1項所述之移動通訊終端,其中,所 修述測距模組為紅外式、超聲波式或雷射式。 4·如申請專利範圍第1項所述之移動通訊終端,其中,所 述加速度感測器為壓阻式加速度感測器、電容式加速产戌 、J = 扭擺式加速度感測器或随道式加速度感測器。 5 ·如申明專利範圍弟4項所述之移動通訊終端,其中,所 述壓阻式加速度感測器包括基體、兩個彈性臂、兩個質量 塊及兩個壓阻片,所述兩個彈性臂之—端分別連接於所ς 基體相對之兩側上,另一端分別與所述兩個質量塊相連, 所述兩個壓阻片分別貼於所述兩個彈性臂上,所述兩個麗 13 200828955 *阻片連接於—個惠斯登電橋電路内,分別作為相鄰之兩臂。 • 6.如申請專利範圍第1項所述之移動通訊終端,其中,所 述加速度感測器固定於所述鏡頭模組上。 7· —種移動通訊終端,其包括主體、鏡頭模組、兩個加速 度感測器、處理器及測距模組,所述鏡頭模組、兩個加速 度感測态、處理器及測距模組安裝於所述主體内,所述鏡 頭模組包括一影像感測器,所述兩個加速度感測器分別= _於感測鏡頭模組於兩個方向上之加速度,所述測距模組用 於測量物距,所述處理器用於根據所述物距以及所述加速 度感測器感測到之加速度訊號對影像感測器感測到之影像 資料進行處理以消除由於抖動造成之影像模糊。 8·如申請專利範圍第7項所述之移動通訊終端,其中,該 砂動通訊終端進一步包括一紅外線鏡頭模組,所述紅外線 鏡頭模組用於在陰暗環境下拍攝或辅助所述鏡頭模組進行 拍攝。 _ 9•如申睛專利範圍第7項所述之移動通訊終端,其中,所 述測距模組為紅外式、超聲波式或雷射式。 iO·如申請專利範圍第7項所述之移動通訊終端,其中, 所述加速度感測器為壓阻式加速度感測器、電容式加速度 感測器、扭擺式加速度感測器或隧道式加速度感測器。 11.如申請專利範圍第1〇項所述之移動通訊終端,其中, 所述屢阻式加速度感測器包括基體、兩個彈性臂、兩個質 量塊及兩個壓阻片,所述兩個彈性臂之一端分別連接於所 述基體相對之兩侧上,另一端分別與所述兩個質量塊相 200828955 •連,所述兩個壓阻片分別貼於所述兩個彈性臂上,所述兩 -個壓阻片連接於一個惠斯登電橋電路内,分別作為相鄰之 兩臂。 12.如申請專利範圍第7項所述之移動通訊終端,其中, 所述加速度感测器固定於所述鏡頭模組上。200828955 -10. Patent application scope: -1· A mobile communication terminal comprising a main body, a lens module, two acceleration sensors, a processor and a distance measuring module, the lens module and two acceleration sensing The processor, the processor and the ranging module are mounted in the main body, the lens module includes an image sensor, and the two accelerometers are respectively used for sensing an optical axis of the lens module Acceleration in two directions perpendicular to each other, the two directions being perpendicular to each other, the distance measuring module for measuring a object distance, the processor for sensing the object according to the object distance and the acceleration sensor The acceleration signal processes the image data sensed by the image sensor to eliminate image blur due to jitter. 2. The mobile communication terminal according to claim 1, wherein the mobile communication terminal further comprises an infrared lens module for capturing or assisting the mirror in a dark environment. Group Xuan shooting. The mobile communication terminal according to claim 1, wherein the ranging module is infrared, ultrasonic or laser. 4. The mobile communication terminal according to claim 1, wherein the acceleration sensor is a piezoresistive acceleration sensor, a capacitive acceleration calving, a J = torsion pendulum acceleration sensor or an accompanying channel Acceleration sensor. 5. The mobile communication terminal of claim 4, wherein the piezoresistive acceleration sensor comprises a base body, two elastic arms, two masses, and two piezoresistive pieces, the two The ends of the elastic arms are respectively connected to opposite sides of the base body, and the other ends are respectively connected to the two mass blocks, and the two piezoresistive pieces are respectively attached to the two elastic arms, the two丽丽13 200828955 * The resistance piece is connected to a Wheatstone bridge circuit as the adjacent two arms. 6. The mobile communication terminal of claim 1, wherein the acceleration sensor is fixed to the lens module. 7. A mobile communication terminal comprising a main body, a lens module, two acceleration sensors, a processor and a distance measuring module, the lens module, two acceleration sensing states, a processor and a distance measuring module The lens module is mounted in the main body, and the lens module includes an image sensor, wherein the two acceleration sensors respectively detect the acceleration of the lens module in two directions, and the distance measuring mode The group is configured to measure the object distance, and the processor is configured to process the image data sensed by the image sensor according to the object distance and the acceleration signal sensed by the acceleration sensor to eliminate the image caused by the jitter blurry. 8. The mobile communication terminal according to claim 7, wherein the sand communication terminal further comprises an infrared lens module for shooting or assisting the lens mode in a dark environment. The group is shooting. The mobile communication terminal according to the seventh aspect of the invention, wherein the distance measuring module is an infrared type, an ultrasonic type or a laser type. The mobile communication terminal according to claim 7, wherein the acceleration sensor is a piezoresistive acceleration sensor, a capacitive acceleration sensor, a torsion pendulum acceleration sensor or a tunnel acceleration. Sensor. 11. The mobile communication terminal of claim 1, wherein the resistance-resistance sensor comprises a base body, two elastic arms, two masses, and two piezoresistive sheets, the two One end of each of the elastic arms is respectively connected to the opposite sides of the base body, and the other end is respectively connected with the two mass blocks, and the two piezoresistive pieces are respectively attached to the two elastic arms. The two-piece piezoresistive sheets are connected in a Wheatstone bridge circuit as two adjacent arms. 12. The mobile communication terminal according to claim 7, wherein the acceleration sensor is fixed to the lens module. 1515
TW95149616A 2006-12-29 2006-12-29 Mobile communication terminal TW200828955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95149616A TW200828955A (en) 2006-12-29 2006-12-29 Mobile communication terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95149616A TW200828955A (en) 2006-12-29 2006-12-29 Mobile communication terminal

Publications (1)

Publication Number Publication Date
TW200828955A true TW200828955A (en) 2008-07-01

Family

ID=44817811

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95149616A TW200828955A (en) 2006-12-29 2006-12-29 Mobile communication terminal

Country Status (1)

Country Link
TW (1) TW200828955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114384091A (en) * 2021-12-16 2022-04-22 苏州镁伽科技有限公司 Automatic focusing device, panel detection equipment and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114384091A (en) * 2021-12-16 2022-04-22 苏州镁伽科技有限公司 Automatic focusing device, panel detection equipment and method thereof

Similar Documents

Publication Publication Date Title
JP4789614B2 (en) Anti-vibration control device and control method thereof
US7689107B2 (en) Anti-shake apparatus
US8619146B2 (en) Digital camera with integrated accelerometers
CN101212570B (en) Photographing mobile communication terminal
JP4994756B2 (en) Anti-vibration control device, optical apparatus including the same, imaging device, and control method of anti-vibration control device
TW200847771A (en) Vibration detecting device, imaging apparatus, and vibration detecting method
TW201225657A (en) Multiple anti-shake system and method thereof
JP5977611B2 (en) Blur amount detection device, imaging device, and blur amount detection method
CN109844632A (en) Shake correction device, photographic device and method of compensating for hand shake
JP2012128356A (en) Shake correction device and optical apparatus
JP4878320B2 (en) Imaging device and portable device
TW201003567A (en) Method and related device for image restoration for an electronic device
JP2012163824A (en) Shake correction apparatus and optical device
JP2005064699A (en) Camera
TW200828955A (en) Mobile communication terminal
JP2011151709A (en) Imaging device
JP2013054193A (en) Shake correction device and optical apparatus
JP6024031B2 (en) Blur correction device and optical apparatus
JP6811359B2 (en) Image blur correction device, image pickup device, image blur correction method, and image blur correction program
JP5957796B2 (en) Blur correction device and optical apparatus
TW201005657A (en) Method of automatic photo taking by facial recognition
JP2012237884A (en) Blur correction device and optical instrument
JP6887858B2 (en) Image blur correction device, imaging device and control method
JP5504741B2 (en) Imaging device
JP2018146992A (en) Tremor correction device, imaging device and tremor correction system