TW200828022A - System and method for implementing a single-wire serial protocol - Google Patents

System and method for implementing a single-wire serial protocol Download PDF

Info

Publication number
TW200828022A
TW200828022A TW96138762A TW96138762A TW200828022A TW 200828022 A TW200828022 A TW 200828022A TW 96138762 A TW96138762 A TW 96138762A TW 96138762 A TW96138762 A TW 96138762A TW 200828022 A TW200828022 A TW 200828022A
Authority
TW
Taiwan
Prior art keywords
pulse
controller
receiver
drive
data
Prior art date
Application number
TW96138762A
Other languages
Chinese (zh)
Other versions
TWI459207B (en
Inventor
Curtis Robinson
Original Assignee
Monolithic Power Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monolithic Power Systems Inc filed Critical Monolithic Power Systems Inc
Publication of TW200828022A publication Critical patent/TW200828022A/en
Application granted granted Critical
Publication of TWI459207B publication Critical patent/TWI459207B/en

Links

Landscapes

  • Dc Digital Transmission (AREA)
  • Selective Calling Equipment (AREA)

Abstract

A method and apparatus for a single-wire serial communication includes defining a predetermined short pulse as data and a predetermined long pulse as a data separator. A method of arbitrating between multiple controllers in a serial communication includes interchanging the role of a controller and a receiver; defining said controller as idle if its communication line has no transition for a predetermined interval of inactivity; and addressing listening controllers using a presiding controller so as to poll and select a next controller to preside through an addressed instruction packet. A single wire serial communication system comprising a controller that operates as a transmitter when said controller includes a strong drive only.

Description

200828022 九、發明說明: 【發明所屬之技術領域】 本發明涉及通k系統領域,更具體地涉及用在電子串 列通信系統。 【先前技術】 現代電子讀的電路逐漸需要更高級別的功能,並且 (、 冑常使用具有通信埠的電路來設置臨界參數。儘管需要高 級別的功能,但是很多傳統應用卻往往只用一個或兩個管 二(pm)來進行控制。比如說,通常在空間非常珍貴的緊 始、式電話的鉸鏈區中將_個管腳介面用作一條單線。這些 傳統應用的新-代部件也必須仍舊使用一個或兩個管卿作 為介面。 士在單線串舰定巾,其模式為必須傳送:祕極性和資 料μ里。為了實現這—點,一些已知的單線串列通信協定 c 使用脈衝計數。在這些協議中,接收由暫停分隔的脈衝圖 案,並且接收器對於在暫停之後的脈衝進行計數。計數值 ρ為脈衝包的值。重複的圖案發送多個值到接收器,以用 ^處理D卩令。然而計數脈衝本身是一種低效率的技術。— 些其他的協定包括脈寬調製,以通過高低占空比來區分高 低位。在一個要求占空比解析(resolution)的電路中,有 必要進仃週期和脈衝寬度的測量來確定高和低之間的區 別。這些方法需要占空比估測的整個週期,並且這些方^ 本身效率較低。 典型的現有技術的單線介面協定需要相對大量的複雜 6 200828022 私路來貫現。以下描述一種能夠有效實現的優選的單線串 列協定。 【發明内容】 本發明通過多個系統、設備和方法來描述和說明。除 了在务明内谷部分中所述的本發明的這些方面之外,通過 芩照附圖和閱讀隨後的詳細說明可使得本發明的其他方面 ^ 變得清楚。一種用於單線串列通信的方法和設備包括:定 義作為資料的預定短脈衝和作為資料分隔符號的預定長脈 衝。 . 在该方法中,還包括··當傳輸相同極性的連續資料脈 衝時,在所述連續資料脈衝之間僅提供一個所述資料分隔 符號;以及當傳輸極性交替的連續資料脈衝時,在所述極 性交替的連續資料脈衝之間不提供資料分隔符號。 在該方法中,所述預定短脈衝包括··用以定義脈衝可 U 接受寬度的最小寬度和最大寬度;以及所述縱長脈衝包 括最小寬度,以及如果使用休止間隔則可選地包括最大寬 度。 、 在该方法中’所述串列通信包括在強弱控制器驅動的 結合與僅僅強控制器驅動之間進行選擇。 在該方法中,所述串列通信還包括接收器,所述接收 器在所述控制器使用強驅動和弱驅動時直接驅動通信線 路’或者在使用所述強驅動和電流或電壓感測器的控制器 的協助下間接驅動通信線路;其中由所述接收器進行的對 通“線路的所述驅動包括碎認和回應。 7 200828022 在該方法中,還包括··發射雙長脈衝終止符,所述雙 長脈衝終止符進一步包括兩個連續長脈衝作為可選的= 終止符。 喊 在該方法中,所述串列通信還包括··在控制器發射所 述雙,脈衝終止符的第一個長脈衝之後,通過直接或間接 翻轉第二個長脈衝的極性來確認資料包通信的終止;以及 當二述接收器在等待間隔内未成功確認之後,強制所述控 制器改變所述第二個長脈衝的極性。 在該方法中,還包括··使用主控制器將資料發送到多 個2器和控制器中的所選接收器;使用所述主控制器發 达在雙長脈衝終止符中㈣—脈衝,使得該所難收器能 夠將極性改變至第二長脈衝;以及使用所述主控制器發送 靖接收11可以以相同協定晴 \ 直至该所璉接收器發送雙長脈衝終止符為止。 ,驅叙ίί方法中,還包括··通過來自該所選接收器的直接 動送侧助_該所職收11的間接驅 足夠伯f巾碗括·持績將資料回讀,直至在得到 衝終止 釋放完所述、,或者由該所選接收器 向所述回所述雙長脈衝終止符出現而 中斷或者,卿卿脈衝終止符 在"方法中,與所述強弱驅動相結合地使用接收器計 8 200828022 厅述短脈衝和所述長脈衝中的過早變化。 在该方法中,所述主控制器使用 所選::;:Γ從而在所述回讀期間内該 得協議_ 恤咖獅蝴的末尾以使 (、200828022 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to the field of systems, and more particularly to electronic serial communication systems. [Prior Art] Circuits of modern electronic reading gradually require higher-level functions, and (often, circuits with communication ports are often used to set critical parameters. Although high-level functions are required, many traditional applications often use only one or Two tubes (pm) are used for control. For example, the _ pin interface is usually used as a single line in the hinge area of a very space-critical, compact telephone. The new-generation components of these traditional applications must also Still using one or two squadrons as the interface. In the single-line string warping, the mode must be transmitted: secret polarity and data μ. In order to achieve this, some known single-line serial communication protocol c uses pulses. In these protocols, a pulse pattern separated by a pause is received, and the receiver counts the pulse after the pause. The count value ρ is the value of the pulse packet. The repeated pattern sends a plurality of values to the receiver to use ^ Handling D commands. However, the counting pulse itself is an inefficient technique. - Some other protocols include pulse width modulation to distinguish between high and low duty cycles. Low. In a circuit that requires duty cycle resolution, it is necessary to measure the difference between high and low in the measurement of the period and pulse width. These methods require the entire period of duty cycle estimation, and these The square ^ is inherently less efficient. A typical prior art single-wire interface protocol requires a relatively large number of complex 6 200828022 private paths. The following describes a preferred single-line serial protocol that can be effectively implemented. The system, the device and the method are described and illustrated. In addition to the aspects of the invention described in the section of the disclosure, other aspects of the invention may be made by referring to the figures and reading the following detailed description. It is clear that a method and apparatus for single-line serial communication includes: defining a predetermined short pulse as data and a predetermined long pulse as a data separator. In the method, it also includes · when transmitting continuous data of the same polarity When pulsed, only one of the data separators is provided between the consecutive data pulses; and when the transmission polarity is In the case of a continuous data pulse, no data separation symbol is provided between consecutive data pulses of alternating polarity. In the method, the predetermined short pulse includes a minimum width and a maximum width for defining a pulse width U acceptable width. And the lengthwise pulse includes a minimum width, and optionally includes a maximum width if a rest interval is used. In the method, the serial communication includes a combination of a strong and weak controller drive and only a strong controller drive. In the method, the serial communication further includes a receiver that directly drives the communication line when the controller uses a strong drive and a weak drive' or uses the strong drive and current or The communication line is indirectly driven by the controller of the voltage sensor; wherein the "pass" of the line by the receiver includes the shredding and response. 7 200828022 In this method, the A long pulse terminator further comprising two consecutive long pulses as an optional = terminator. In the method, the serial communication further includes: after the controller transmits the double long pulse of the double, pulse terminator, confirming the packet communication by directly or indirectly flipping the polarity of the second long pulse Termination of the second long pulse; and when the two receivers are not successfully acknowledged within the waiting interval, the controller is forced to change the polarity of the second long pulse. In the method, further comprising: transmitting the data to the plurality of devices and the selected one of the controllers by using the main controller; using the main controller developed in the double long pulse terminator (four)-pulse, so that The receiver can change the polarity to the second long pulse; and the master controller can use the same controller to clear the same protocol until the receiver receives the double long pulse terminator. In the method of reprinting ίί, it also includes the direct indirect side assistance from the selected receiver. The indirect drive of the office is sufficient to read the information and read the information until it is obtained. The rush termination is terminated, or is interrupted by the selected receiver to the occurrence of the double long pulse terminator, or the qing qing pulse terminator is used in conjunction with the strong and weak drive in the " method The meter 8 200828022 describes short pulses and premature changes in the long pulses. In the method, the main controller uses the selected ::::Γ to thereby make the end of the agreement _ _ _ _ _ _ _ _

裁的=,::_中在多個控制器之間仲 空閒=t:有躍遷’則定義所述控制器為 定址到的指令包來進行控制。 h 響應來自放棄控㈣的接管指令,在雔 ==:,脈衝確™ 在財法巾’所述控·包括細紐,其 t長而比财休止咖時_的概、 鮮控制_驅動保持新的極性 。 間隔之後通過使用弱驅動嘗試輕錄=變I 一控制,並且具有最長時間間隔的所述競爭V:! ;:!^ r純長;以及在未能通過所補鶴改變線路極性 ===侧猶姆__下一休止 在該方法中,主控制器通過維持線路極性'忽略仲裁 9 200828022 曰试以及專待來自所述I兄爭控制器的讀出電流消失,或者 通過發射長脈衝的㈣相雜止賴嘗試,來拒絕釋放 控制。 ,本發明還提供-種單線串列通信系統,包括控制器, 當所述控制n僅包含強驅動時,所述控制㈣作發射器。 (In the =, ::_, between the multiple controllers, the idle = t: there is a transition, then the controller is defined as the addressed instruction packet for control. h response from the takeover control (four) takeover command, in 雔 ==:, pulse Exact TM in the financial law 'the control · including the fine button, its t is longer than the financial cessation _ the general control _ drive to keep New polarity. After the interval, try to lightly record by using a weak drive = change I - control, and the competition V:!;:!^ r having the longest time interval is purely long; and changing the line polarity === side in the failure to pass the compensated crane犹姆__Next Rest In this method, the main controller maintains the line polarity 'ignoring arbitration 9 200828022 以及 test and the readout current from the I brother controller disappears, or by transmitting long pulses (4) Try to stop the release control. The present invention also provides a single-line serial communication system including a controller. When the control n includes only a strong drive, the control (4) acts as a transmitter. (

在該系統中,當所述控制器包含所述強驅動和電流或 電壓感測糾,所述控制器用作所述發射器和—接收器。 在該系統中,當所述控制器包含所述強驅動和一弱驅 動時,所述控制器用作所述發射器和所述接收器,巧所 賴收器包括弱于所述強驅紅餅所述弱鶴的中間驅 .术+ 文队裔两°」疋址或不可定址的接收 =田斤賴收器是所述不可定址的接收器時,所述接收 =眠餘f、;㈣所述接㈣是所述可纽的接收器 呀,所述接收器為休眠接收器或確認接收 認接收器進—步包括非回讀接收器或回讀接收器崔 用以峨串列通信系統,包括:計時器, 以彦jr脈衝的用於資料的時鐘域,以及用 用輸4分隔符號的非時鐘信 ;的::=資r至所述物,基於所述產 低脈=二=^=:„ 和該低脈寬識別器,用以確定接收到的脈 200828022 是所述資料分隔符號。 =系=中,所述計時器進—步包括:第—雙穩態多 #振《 ’用以儲存出現的高長脈衝 盘哭,用u冲六丨 弟一又知匕、夕的振 :;出=的低長脈衝;和組合邏輯電路,用以 二=長脈衝終止符是來自於所述第-雙穩態多譜 振盪σσ逖疋所述第二雙穩態多諧振盪器。In the system, the controller acts as the transmitter and receiver when the controller includes the strong drive and current or voltage sense corrections. In the system, when the controller includes the strong drive and a weak drive, the controller functions as the transmitter and the receiver, and the receiver includes a weaker than the strong drive red cake The intermediate drive of the weak crane, the two-degree address of the corps, or the unreceivable reception = the receiver is the unaddressable receiver, the reception = sleepy f,; (d) The connection (4) is the receiver of the button, and the receiver is a dormant receiver or an acknowledge receiver. The step further comprises a non-return receiver or a readback receiver Cui for the serial communication system. Including: a timer, a clock domain for data with a jr pulse, and a non-clock signal with a 4-separated symbol; ::= to r to the object, based on the low pulse = two = ^ =: „ and the low pulse width identifier to determine the received pulse 200828022 is the data separator symbol. = system =, the timer advance step includes: the first - bistable multi-vibration " ' Used to store the high-frequency pulse discs that appear, crying with u, smashing six scorpions, and knowing the sounds of 夕, 夕: the low-long pulse of ==; and combinatorial logic Road for two terminator = long pulse from the first - spectrum oscillation σσ flip-Di Cloth the second flip-flop.

ί 【實施方式】 °° 2明提供—種驗單線串職定的方法和設備。本 ^曰巾的具體實闕财了本發日㈣ 貫際地而非限制性地示出了本笋明而# ^ 非。在下述的描述 I為了更好的說明,闡述了报多的具體細節,以提供對 的全面理解。然而,對於本領域的技術人員來說清 二勺疋’在沒有這些具體細節的情況下本發明仍舊可以實 說明書中引用的“-個實施例,,或“實施例,,表示與 ^含在至少—個發明實施例中的實施例關聯的具體的特 後、、^構特性。在說明書種各處出現的短語“在一個實 施例中”,或“在一些實施例中,,並非全表示同-個實施 例,也並非在其他實施例中獨立存在或唯一存在。 ^清楚的是,本協議可用於控制器和接收器之間的通 ^控制态可為傳輸資料的任意設備,接收器可為接收資 料的任意設備。本協定也可用於能接收資料的控制器和能 傳輪資料的接收器。這裏講的資料用以表示任意資訊,= 包含但不局限於指令、命令、代碼、位址或可用二進位碼 200828022 表示的其他任意資訊。 基本原理 本協議規定:短於預定寬度的脈衝被認為是資料脈 衝’長於該預定寬度的脈衝被忽略。因此,其脈衝寬度在 預疋覓度内的資料脈衝表示為有效位元值,其脈衝寬度大 於預疋寬度表示為忽略位值。被接受為資料的短脈衝的高 低極性分別確定高值或低值。如果長脈衝是長度足夠被認 為不是資料的脈衝,則不考慮其高低。 某些貫施例還支持在末尾使用兩個長脈衝作為終止 符。由於在資料通信協定中不需要具有兩個長脈衝,因此 可將兩個連續的忽略位值序列用作通信終止符。 圖1示出该協議的基本資料模型。圖1示出使用最大 脈衝寬度通信方式的具有的發送模型。在開始 處100的躍遷可用於設置第一個資料脈衝的邏輯極性。如 上所述,接收為可被設置為忽略具有其在前寬度大於可接 义見度的躍遷。在圖1的示例中,第一個短脈衝為高 脈衝。該短高脈衝在接收器的移位寄存器中按時鐘記錄 南。為了避免在咼後按時鐘記錄低值,隨後的低脈衝撤 為長脈衝。示例性序列按時鐘依次為高1〇3,低1〇4,高1〇5 和低106。脈衝103-106都足夠短,以在預定可接受寬度之 内。對於資料接收的最大脈衝寬度13〇可被指定。連續高 或連續低可在兩個短脈衝之間按時鐘記錄一個長脈衝。圖j 的示例中,在高脈衝1〇1和103之間使用長低值脈衝1〇2。 同樣,在低脈衝106和1〇8之間使用長高值脈衝1〇7。因此, 12 200828022 其寬度在預定接受寬度之内的脈衝被認定為是表示資料 值,例如位元的邏輯高或邏輯低。 由於矽電路的物理局限或雜訊消除要求,實現該協議 的控制器和接收器的電實施例需要最小脈衝寬度。在一些 實施例中,單引線介面協定可採用例如〇丨微秒的最小脈衝 寬度來實現。也就是說,其高或低脈衝值保持小於微秒 的咼低脈衝將不認為是資料脈衝。根據物理或邏輯因素也 可以定義其他的最小脈衝寬度。 本協議可定義一個短脈衝,其脈衝寬度大於最小脈衝 覓度並小於任意選擇的可接受值。在一些實施例中,短於5 从秒並大於〇·1微秒的脈衝被定義為短脈衝。大於5微秒的 脈衝定義為長脈衝。在—些實闕巾,也可贿職脈衝 和長脈衝間的保護頻帶、其他的最小或最大時間段。 、圖4示出使用上述協定分類資料的方法。步驟4〇ι定 義有效數位的標準脈衝寬度(PWs)。在步驟4〇2中,將接 收資料位元脈衝寬度(PWi)和標準脈衝寬度(pWs)進行 比較。如果接收資料位元脈衝寬度(PWi)大於標準脈衝寬 度(PWs),則在步,驟4〇3中,資料被分類成一個長脈衝或 稱資料分隔魏(separator),並且不_定為有效資料位 元。 在步驟404中,如果接收資料位元脈衝寬度 大於標準脈衝寬度(隱),則該資料被分類成短脈衝或稱 有效貧料位元。如果在步驟彻中檢測到資料分 如兩個連續的長脈衝),則按時鐘記騎效資料。如果^ 13 200828022 知405中未檢測到貧料分隔符 ⑷一欠上丨/ 丁知則執仃步驟402,即將拯 收—貝料位兀脈衝寬度(PWi)和栌 接 比較。 4彳4脈健度(PWs)進行 終止 f t ^上所述’本協射在連續高或低的之祕使用 入長脈衝。最後,本齡_賴極性減的兩個連續 長脈衝來結束本狀,並表示資料被較。圖丨示出氏 脈衝120隨後跟著長高脈衝121。因為前面的有效位^為 高’所以終止以向長低脈_躍刺始。本實例的躍遷順 序可用以表示終止。雖然未在圖中表示,如果前面的有效 位為低貝h、’、止序列也可以是長高脈種,和隨後的長低脈衝 啟動。 終止是可選的,在一些實施例中不使用。例如,當不 ,要從移位寄存器中鎖定資料時,如在一對控制器和^收 器的情況下,沒必要終止。在這些實施例巾,由於不使用 終止付的接收杰只包含長脈衝,所以可以忽略它。 圖2Α和2Β示出不採用例如由圖j中的脈衝和 形成的終止的實例。圖M表示了和圖丨中相同的資料序列 <1101001> ’但沒有資料值ln。圖2B表示了和圖1相同 的資料序列<11010011〉。在兩個實施例中都示出資料接受 寬度201。 在一些貝施例中,控制器使用的長脈衝可以接近或長 於接收器提供的所有脈衝。如果接收器休眠(silent),長脈 衝可以為任意長。 14 200828022 不同類型的控制器和接收器的協定應用 這裏描述的協定可以應用於一個控制器的情況,也可 以應用於在同—根引線的多控制器的情況。本協議也可以 應用於和-個或多個休眠的接收器、資料確認接收器或資 料回讀^readback)接收器結合的場合。此外,可使用多種 方法來貫現在先前列出的設備間的協定。ί [Embodiment] ° ° 2 Ming provides - a method and equipment for the inspection of single-line string assignments. The specific actual wealth of this 曰 了 本 本 本 本 本 本 本 本 本 本 本 本 四 本 本 本 本 四 四 四 四 四 四 四 四 四 四 四In the following description I, for a better description, the specific details of the report are set forth to provide a comprehensive understanding of the pair. However, it will be apparent to those skilled in the art that, in the absence of these specific details, the present invention may still be described in the specification as "an embodiment," or "embodiment," Specific specific features associated with the embodiments of the embodiments of the invention. The phrase "in one embodiment" or "in some embodiments," does not denote the same embodiment, and is not independently or exclusively present in other embodiments. The protocol can be used for any device that transmits data between the controller and the receiver, and the receiver can be any device that receives the data. This protocol can also be used for controllers and devices that can receive data. Receiver of the data transmission. The information mentioned here is used to represent any information, = including but not limited to instructions, commands, codes, addresses or any other information represented by the binary code 200828022. Basic Principles This Agreement provides: Short A pulse of a predetermined width is considered to be a data pulse. A pulse longer than the predetermined width is ignored. Therefore, a data pulse whose pulse width is within a pre-turn degree is represented as a significant bit value, and a pulse width greater than a pre-turn width is expressed as The bit value is ignored. The high and low polarities of the short pulses accepted as data are respectively determined to be high or low. If the long pulse is long enough, it is considered not to be The pulse does not take into account its height. Some implementations also support the use of two long pulses at the end as terminators. Since there is no need to have two long pulses in the data communication protocol, two consecutive ignore bit values can be used. The sequence is used as a communication terminator. Figure 1 shows the basic data model of the protocol. Figure 1 shows the transmission model with maximum pulse width communication. The transition at the beginning 100 can be used to set the logical polarity of the first data pulse. As described above, the reception can be set to ignore a transition having its previous width greater than the audibility. In the example of Figure 1, the first short pulse is a high pulse. The short high pulse is at the receiver. Record the south by clock in the shift register. In order to avoid recording the low value by clock after the ,, the subsequent low pulse is retracted as a long pulse. The exemplary sequence is 1〇3, 1〇4, and 1〇5 by clock. And low 106. Pulses 103-106 are both short enough to be within a predetermined acceptable width. The maximum pulse width 13 对于 for data reception can be specified. Continuous high or continuous low can be pressed between two short pulses The clock records a long pulse. In the example of Figure j, a long low value pulse of 1〇2 is used between the high pulses 1〇1 and 103. Similarly, a long high value pulse is used between the low pulses 106 and 1〇8. 7. Thus, 12 200828022 A pulse whose width is within a predetermined acceptance width is considered to represent a data value, such as a logic high or a logic low of a bit. Due to the physical limitations of the circuit or the noise cancellation requirement, the protocol is implemented. Electrical embodiments of the controller and receiver require a minimum pulse width. In some embodiments, a single lead interface protocol can be implemented with a minimum pulse width of, for example, 〇丨 microseconds. That is, its high or low pulse values remain less than The microsecond depletion pulse will not be considered a data pulse. Other minimum pulse widths can be defined based on physical or logical factors. This protocol defines a short pulse whose pulse width is greater than the minimum pulse width and less than any acceptable selection. value. In some embodiments, a pulse that is shorter than 5 seconds and greater than 〇 1 microsecond is defined as a short pulse. A pulse greater than 5 microseconds is defined as a long pulse. In some real scarves, it is also possible to protect the guard band between the pulse and the long pulse, and other minimum or maximum time periods. FIG. 4 shows a method of classifying data using the above agreement. Step 4〇 defines the standard pulse width (PWs) of the significant digits. In step 4〇2, the received data bit pulse width (PWi) is compared with the standard pulse width (pWs). If the received data bit pulse width (PWi) is greater than the standard pulse width (PWs), then in step, step 4〇3, the data is classified into a long pulse or data separation, and is not determined to be valid. Data bit. In step 404, if the received data bit pulse width is greater than the standard pulse width (hidden), the data is classified as a short pulse or an effective poor bit. If the data is detected as two consecutive long pulses in the step, the clocking data is clocked. If ^ 13 200828022 knows that the poor material separator is not detected in 405 (4), the upper limit / Ding Zhi is executed in step 402, and the recovery - Bay level, pulse width (PWi) and the comparison are compared. 4彳4 pulse health (PWs) is terminated. f t ^ The above-mentioned co-shooting uses a long pulse in the continuous high or low secret. Finally, two consecutive long pulses of the age-reduced polarity are used to end the shape and indicate that the data is compared. The graph shows that the pulse 120 is followed by a long high pulse 121. Since the previous valid bit ^ is high', it is terminated to start with a long low pulse. The transition order of this example can be used to indicate termination. Although not shown in the figure, if the previous valid bit is low, h, ', the stop sequence can be a long high pulse, and the subsequent long low pulse starts. Termination is optional and is not used in some embodiments. For example, when not, when locking data from the shift register, as in the case of a pair of controllers and receivers, it is not necessary to terminate. In these embodiments, since the receiving receiver that does not use the termination payment contains only a long pulse, it can be ignored. 2A and 2B show an example in which termination such as that formed by the pulse sum in Fig. j is not employed. Figure M shows the same data sequence <1101001>' as in Figure 但 but without the data value ln. Fig. 2B shows the same data sequence <11010011> as Fig. 1. The data acceptance width 201 is shown in both embodiments. In some examples, the long pulse used by the controller can be close to or longer than all pulses provided by the receiver. If the receiver is silent, the long pulse can be arbitrarily long. 14 200828022 Protocol application for different types of controllers and receivers The protocol described here can be applied to the case of one controller or to multiple controllers with the same-root lead. This protocol can also be used in conjunction with one or more dormant receivers, data acknowledgment receivers or data readback (readback) receivers. In addition, a variety of methods can be used to implement the agreement between the previously listed devices.

可實現串列介面的控制器-接收器組合的多種實施例。 例如’設備可以為可交互的或使用以下任一組合的專用接 收器或控制器,所述組合包括:輸出驅動力、資料鎖定、 雙長脈衝終止符識別或確認。休眠接收器不需要驅動功 能。沒有位址的接收器不需要鎖資料或雙長脈衝終止符的 硪別,並接收所有到來的資料。有位址的休眠接收器可以 使用協定中編碼的的位址,以選擇哪個通信包接收 在雙長脈衝終止序列可發生鎖定。回應接收器可具有這樣 ’即Ϊ用中間驅動來執行資料確認或使用短脈衝計 ¥來貫現回讀期間的中間驅動改變。如果+間 功,則能夠檢測電流或電壓。 ’又成 用^支援資料確認或資料回讀的單獨控制器可通過只使 用強輸出猶來實現。它將㈣定址到多個接" 在不與其他控制器制其線路的情況下忽略返回;、。’ =料確認和資料回讀的控制器可以與多個控制器和接收 二仃通j5。以下的不例示例性示出本協議的-此垂於 例,但不局限於此。 一K % 例如,可通過使用控制器和接收器中不同程度的輪出 15 200828022 力::貝現雙向通信。按照遞減力順序的驅動輸出可以 、立強驅動,接收器中間驅動,控制器弱驅動和無驅 力或任μ對控制器_接收器的高阻抗。在這個應用中,當 4制叩回復卿驅動時,接收器可在適當的點插入它的線 路極性改變。標準的非定制(off-the-shelf)控制器可通過 〇Various embodiments of a controller-receiver combination of serial interfaces are possible. For example, the device may be a dedicated receiver or controller that is interactive or uses any combination of the following: output drive, data lock, double long pulse terminator identification or confirmation. The sleep receiver does not require a drive function. Receivers without an address do not require the lock data or double long pulse terminator to identify and receive all incoming data. A dormant receiver with an address can use the address encoded in the protocol to select which communication packet is received. The lock can occur in the double long pulse termination sequence. The responding receiver may have such an 'intermediate drive' to perform data acknowledgment or use a short pulse meter to traverse the intermediate drive change during readback. If the + work is done, the current or voltage can be detected. A separate controller that uses ^ support data confirmation or data readback can be implemented by using only strong output. It will (4) address multiple connections " ignore the return without making other lines with other controllers; '= The controller for material confirmation and data readback can be connected to multiple controllers and receivers. The following examples illustrate the present invention exemplarily, but are not limited thereto. A K%, for example, can be rotated by using different degrees in the controller and receiver. 15 200828022 Force::Bai now communicates in both directions. The drive output in the order of decreasing force can be driven by the vertical force, the intermediate drive of the receiver, the weak drive of the controller and the driveless or the high impedance of the μ to the controller_receiver. In this application, the receiver can insert its line polarity change at the appropriate point when the system is driven. Standard off-the-shelf controllers are available through 〇

L I夕種、。構引腳使用不同值的電阻而並非使用可變驅動輸 出以形成多個轉串來實現這個方法。 上使施器上使用強驅動’在接收器 接收器和控制器具有電流感測器或與 °。在^虎射進行所有的躍遷,但將檢測下接收器的内部 =::定的適合點上是否存在與弱驅動狀二 器的驅二i來二=地^ 接收哭來的和古4呆持。控制益的電流感測器檢測從 = 根據協定的階段來確定是否改變極性。 行__,在 它的閒置階段也檢測另—個控制 :j 在 彳 衝_到_可作為= 可用以表不咼優先順序 负之遲 (inactivity )時間段、長於脱 遲紐於預定的休止 脈衝接雙寬度,以阻止新的控制 200828022 器關聯或資料傳輸。主控制器可通過發 :來保持閒置控制。然而,在這個例子中,:=: 二請求控制器等待預定的休止時間段,;如:個: 它們使用弱_長脈衝的咖線 、ρ〜勺參生反向保持—預料間。主控齡卜、則雷、、六、, 選擇是否釋放、線路控制。該_ W 、丨1•亚 Ο c 消失。若、力…、… 忽略該電流直到它 二待'到’資料傳輸回復。_ 、、另外一&休止日寸間段來重新嘗試。如果已 的:了仲裁。通過使用基於每個控制器優先順序 二驅動’並嘗試使線路極性翻轉。如 段ιϋι則控制器放棄嘗試並等待下一休止時間 ^弱驅動器内翻轉線路的極性。假設強控制占優並進行 ί她tr些細中,咖侧電流檢測 在另-個實施例中’一種仲裁方法使用來自主控制器 白、貝科指令包來得到來自等待控制器的確認。週期性地, 間置主控制器可使用二元搜索或另外一種搜索方法來輪詢 具有適當優先順序的料控制器。—旦候選控制器被找 到:主控制H將向等待控制II傳送資料指令,以控制線路。 在等待控制器發送的雙長脈衝終止符的確認翻轉時發生切 換不需要優先順序延遲計時器和電流感測器,並且可使 17 200828022 用標準非定制控制器。 對這些方法進行多種改變,以通過使用單引線串列 協疋貫現雙向通信。作為非限制性的示例,協議機制可包 ,控制器資料傳輸、接收器確認、接收器資料回讀、控制 器仲裁和控制器切換。 確s忍協議 士協議的一些實施例可包含一個可選的確認功能。在 —二貝細例中,可通過以預定方式使用雙長脈衝終止符來 貫見崔^圖3A和圖3B描述了相關的示例。在這些示例 中叙送資料模型<〇11〇>。在將一位元或多位元 資料^時鐘記錄於接收設備巾之後,控· _雙長脈衝 、、、ς止付在控制杰發出第一個長脈衝後,跟隨長於預 疋可接受寬度的任意長度脈衝抓後,控制器將其輸出設 置為高阻抗或弱驅動。在點3G7,如果接收設備正在確認控 制器,則其可將控制器信號的邏輯極性翻轉。因此,如果 執行確認,則高信號3〇5在點3〇7將被轉換到低確認信號 3〇6。控制器可以使用在高阻抗狀態的驅動器檢查翻轉狀 態。如果沒有執行確認,則信號如虛線3〇8所示保持不變, 控制為可隨第二個長脈衝3〇8結束協議,接受沒有通信確 認。無確認表現為終止序列中的長起始脈衝。在一些實施 例中,接收器嘗試在適當資料條目之後以預定時間間隔進 行確認。只使用強驅動的控制器可翻轉使用弱驅動的接收 器的確認信號。該接收器可被設置用於檢測是否在任意一 種情況下能翻轉信號。這可用于在資料鎖定時進行信號傳 18 200828022 輸0 回應接 當本協定不需要休眠接收器驅動資料線路時 ,器被配置跡在不同確認餅τ,_巾間高、 為弱驅動強 回讀協議 =阻抗。接收器的中間驅動力比控制器強驅動弱但比控制L I 夕,. This method is implemented by using pins of different values instead of using variable drive outputs to form multiple strings. Use a strong drive on the applicator 'at the receiver and the controller has a current sensor or with °. In the ^ tiger shot all transitions, but will detect the internal ==: the appropriate point of the fixed point and the weak drive of the second two to the second = ground ^ receive crying and ancient 4 stay hold. The control current sense sensor detects from = the phase of the agreement to determine whether to change the polarity. Line __, also detects another control in its idle phase: j in the buffer _ to _ can be used as = can be used to indicate the priority of the inactivity time period, longer than the delay in the scheduled rest The pulse is double-widthed to prevent new control 200828022 association or data transfer. The main controller can maintain idle control by sending : . However, in this example, :=: The two request controllers wait for a predetermined rest period; for example: one: they use weak _ long pulse coffee line, ρ ~ spoon to participate in reverse hold - expected. The main control age, then Lei,, six,, choose whether to release, line control. The _W, 丨1•亚亚 c disappears. If, force...,... ignore the current until it waits for 'to' data transmission. _, and another & rest period to try again. If yes: Arbitration. By using a driver based on the priority of each controller, two drives ' and tries to flip the line polarity. If the segment ιϋι, the controller gives up the attempt and waits for the next rest time. ^ The polarity of the line is reversed in the weak drive. Assuming strong control is dominant and is performed, in another embodiment, an arbitration method uses the white and Becky instruction packets from the main controller to get confirmation from the waiting controller. Periodically, the intervening master controller can use a binary search or another search method to poll the material controller with the appropriate priority. Once the candidate controller is found: the main control H will send a data command to the wait control II to control the line. Switching occurs while waiting for the acknowledgment rollover of the double long pulse terminator sent by the controller. The priority delay timer and current sensor are not required, and the standard non-custom controller can be used for 2008 200828022. A number of changes have been made to these methods to facilitate two-way communication by using a single-lead serial. As a non-limiting example, protocol mechanisms may include, controller data transmission, receiver acknowledgment, receiver data readback, controller arbitration, and controller switching. Some embodiments of the protocol may include an optional confirmation function. In the -Beibei example, a related example can be described by using the double long pulse terminator in a predetermined manner to see Cui, Fig. 3A and Fig. 3B. In these examples, the data model <〇11〇> is presented. After the one-bit or multi-bit data is recorded in the receiving device towel, the control _ double-long pulse, and ς stop payment is followed by the first long pulse after the control is issued, and the following is longer than the acceptable width of the preview. After any length of pulse capture, the controller sets its output to either high impedance or weak drive. At point 3G7, if the receiving device is confirming the controller, it can flip the logic polarity of the controller signal. Therefore, if an acknowledgment is performed, the high signal 3〇5 will be switched to the low acknowledgment signal 3〇6 at point 3〇7. The controller can check the flip state using a driver in a high impedance state. If no acknowledgment is performed, the signal remains unchanged as indicated by the dashed line 3〇8, and the control is such that the protocol can be terminated with the second long pulse 3〇8, accepting no communication acknowledgment. No confirmation appears as a long start pulse in the termination sequence. In some embodiments, the receiver attempts to confirm at a predetermined time interval after the appropriate data entry. Only use a strongly driven controller to reverse the acknowledgment signal of a weakly driven receiver. The receiver can be configured to detect if the signal can be flipped in either case. This can be used to transmit signals when data is locked. 18 200828022 Input 0 Response When this protocol does not require a dormant receiver to drive the data line, the device is configured to trace the difference between the τ and _, and the weak drive is strongly read back. Protocol = impedance. The intermediate driving force of the receiver is weaker than the controller but the control is stronger than the control.

C ί. --些實施例可支援確認和資料回讀功能。圖5和圖6 不出數據回讀的示例性協議。確認功能啟動資料回讀序 歹J回項之刚,控制為、線上路上施加強驅動來為接收設備 傳輸指令。圖5示出了兩個例子。在第—個例子中,驅動 ,態則的最後資料位元為♦。在第二個例子中,驅動狀 悲550的最後資料位元為<1;>。 在雙長脈衝終止信號510的前半週期下,控制器終止 序歹j在後半週期’控制盗不番_前一脈衝的極性,但使 用弱驅動Ml維持脈衝。回應接收器隨後用其自身的中間 驅動強制進行極性翻轉512。該翻轉確認控制器。 控制器隨後通過計時出一全長脈衝來回應,狹後使用 ,驅=4強制翻轉極性513。這向接收器傳輪信號以發送 第-貧,位7〇 ’若該位元極性和當前線路狀態姻,則首 先發送最高有效位。短脈衝的極性表示了傳輸的資料位元 的極性。如果触糾資齡元極性和錢線路一致,則 ,收器將在控制器回復到弱驅動或控制器弱驅動改變極性 時強制轉換極性。極性改變將被計時來產生一短脈衝,用 以傳輸發送有效資料位元的信號。 19 200828022 妾收器在如下的躍遷中比較隨後的資料位元。如果位 和㈣線路極性不匹配,則接收器將盡可能長時間 3保持線路祕,同時忽略㈣絲極性改變。當 j極&與線路極性匹崎,接U可在控儀的弱驅動 、、夂或小於脈衝可接受寬度的預定時間後產生短脈衝。由 1長脈衝為&、略脈衝,触触雜持電流位直到短脈衝 白、正確極性出現。因此,該協議可在兩個短脈衝間的不多 於一個的長脈衝來實現資料傳輸。 控制器還可繼續使用弱驅動翻轉,直到出現長脈衝。 在長脈衝的結束端,控制器使㈣軸來強制極性翻轉和 貧料回讀相的持續。接收器檢_線路改變並根據電流 位祕性目消縣蚊使祕脈觸是舰衝。如果接 收口口才欢測到控制為僅使用強驅動,則接收器將使用計時哭 插入想驅動以強制躍遷。接收器計時器可被設置成大於 &制為的騎來允許控制器對在混合控制器驅動情況下的 =進行計時。這種情況允許控制器檢查接收器的短脈衝 疋π在些貫她例中,控制器僅在接收器和控制器的標 準定時模型的假設下來控制定時。序列繼續傳輸,直到控 制器檢測到某一數目的短脈衝、檢測到雙長脈衝終止序 t ”過_動_結束。該序列可用於任意位元數的 貝料回谓。在-些實施例中,回讀序列的資料或資料長度 可不同,用於將回讀數據和其他接收器的控制器命令區別 開來。 可以採用多種不同的檢查和回讀模式。如圖5所示, 20 200828022 如果資料位元為<G>,可以使用強高檢查模式56G、弱高檢 查模式570、短高回讀模式580和長高回讀模式590。若資 料4元為<1>,貝彳可使用強低檢查模式561、弱低檢查模式 571、紐低回讀模式581和長低回讀模式591。圖5示出了 在強和弱驅動狀態599下的部分回讀模式的實例。 ΓC ί. -- Some embodiments support the confirmation and data readback functions. Figures 5 and 6 show no exemplary protocol for data readback. Confirm function start data readback sequence 歹J return item, control is, strong drive is applied on the line to transmit instructions for the receiving device. Figure 5 shows two examples. In the first example, the last data bit of the driver, state is ♦. In the second example, the last data bit of the drive lag 550 is <1;>. During the first half of the double long pulse termination signal 510, the controller terminates the polarity of the previous pulse in the second half cycle, but maintains the pulse using the weak driver M1. The response receiver then forces polarity flipping 512 with its own intermediate driver. This flip confirms the controller. The controller then responds by timing a full length pulse, which is used in a narrow manner, and drive = 4 to force the polarity 513 to be reversed. This passes the signal to the receiver to transmit the first-lean, bit 7〇'. If the bit polarity is in line with the current line state, the most significant bit is transmitted first. The polarity of the short pulse indicates the polarity of the transmitted data bit. If the polarity of the touch and the money line are the same, the receiver will force the polarity when the controller returns to the weak drive or the controller weakly changes the polarity. The polarity change will be clocked to generate a short pulse for transmitting the signal transmitting the valid data bit. 19 200828022 The receiver compares the following data bits in the following transitions. If the bit and (4) line polarity do not match, the receiver will keep the line secret for as long as possible 3 while ignoring (4) the wire polarity change. When the j pole & and the line polarity, the U can generate a short pulse after a weak drive of the controller, 夂 or a predetermined time less than the acceptable width of the pulse. From 1 long pulse to & slightly pulse, touch the mixed current bit until the short pulse white, the correct polarity appears. Therefore, the protocol can achieve data transmission with no more than one long pulse between two short pulses. The controller can also continue to use a weak drive flip until a long pulse occurs. At the end of the long pulse, the controller causes the (four) axis to force the polarity flip and the lean back phase to continue. The receiver check _ line changes and according to the current level of the secret state of the mosquito to make the secret pulse is the ship. If the receiving port only detects that the control is to use only a strong drive, the receiver will use the timer to insert the driver to force the transition. The receiver timer can be set to a ride greater than & to allow the controller to time = in the case of a hybrid controller drive. This situation allows the controller to check the receiver's short pulses 疋π. In some cases, the controller only controls the timing under the assumption of the receiver and controller's standard timing model. The sequence continues to be transmitted until the controller detects a certain number of short pulses and detects a double long pulse termination sequence t ”over_moving_end. This sequence can be used for the singularity of any number of bits. In some embodiments The data of the readback sequence or the length of the data can be different, which is used to distinguish the readback data from the controller commands of other receivers. A variety of different check and readback modes can be used, as shown in Fig. 5, 20 200828022 If the data bit is <G>, the strong high check mode 56G, the weak high check mode 570, the short high readback mode 580, and the long high readback mode 590 can be used. If the data 4 is <1>, Bellow A strong low check mode 561, a weak low check mode 571, a low low readback mode 581, and a long low readback mode 591 can be used. Figure 5 shows an example of a partial readback mode in the strong and weak drive states 599.

為實現本協議,控制器可驅動弱和強電平,並檢測來 自接收器的相應驅動電平。如圖6所示,控制器可通過使 用兩個輪入-輪出引腳6〇1和6〇2或其他類似的方式來實 現。引腳601和線路6〇4直接相連,另一引腳6〇2通過— 弱驅動電阻6〇3和線路_相連。作為非限制性的示例, 直接驅動引腳601電阻可為丨千歐姆,弱驅動電阻6〇3電 阻可為約25千歐姆。接收器可有5千歐姆的中間驅動電 尸 以^控制為回復到弱驅動時驅動線路。 廷晨描述的實現本協議的控制器可包含電流感測器以 及,輸入.輸出引腳組合的鶴控制。在—些實施例中,控 =只I在強驅動TJ1作,除了控制器放棄線路控制給另 匕制為之外。接收器可試著用弱驅動改變線路,但不能 在胁制器驅動下完成。接收器可用—内部計時器在脈衝 ί日Γ!擇—合適的時間進行翻轉。在—些實施例中,接收 :=可長於控制器使用的短脈衝定時。這使得標準控制 狀日谱用強和弱驅動,以使得接收器驅動線路。 齡若=衝為ΐ ’則在—些實施例中,接收器將嘗試極性 :Μ使付控制H在—個長脈衝之後實現極性翻轉。 如果接收11正在確認.的資料,則接收器將嘗試將第— 21 200828022 個長脈衝的極性改變為第二個長脈衝。控制器通過檢測來 自接收^鶴處判起的電絲實現觀。若個示波器 進订觀祭,則控制益可延長確認相位中的第一個長脈衝來 更清楚的顯示沒有弱驅動,因此線上路上沒有檢測到嫁認 信號。 現在參照圖8,其示出了根據本發明實施例的回讀方案 _的示例。在這個示例中,資料模型<1〇1_1〇>被發送, 貧料模型<011001〉被讀回。回讀方案_示出僅使用了呈 有控制器的電流感測器的強驅動,以及僅使用了接收器的 弱驅動:首先,控制器以無源線路811開始,並發送資料 812:在貧料傳輸810的末尾,控制器實現雙脈衝終止符_ 的第-個躍遷821。此時,接收器被適當定址,並準備確句、 所,送的資料。通過在長脈衝的開始啟動其弱驅動奶或 在第一個長脈衝所在的開始啟動弱驅動823來使得接收哭 ,認。檢測弱驅動的結果,控制器使得極性改變似變: 第二個長脈衝。如果來自確認接收器的弱脈衝不存在,則 電平825保持直到出現這裏沒有表述的時間。一旦確認成 功,控制器通過翻轉極性831完成第二個長脈衝。因此對 確認的接收器進行信號傳輸’以在回讀請期間首先相應 最高有效資料位元。接收器使用其弱驅動832來保持線^ 或根本不使用驅動。控制器檢測到沒有相反的電流,經過 長脈衝並將極性改變833變為低。接收器檢測到與其必須 發送的位極性匹配的低條件。接收器設置其弱驅動834以 使得長脈衝相反。通過進行極性改變835來使得控制哭回 22 200828022 應,以生成短資料脈衝。對於高脈衝836、837和忽略的低 脈衝838、839重複相同的操作。在完成資料回讀之後,接 收器或控制器將使得雙長脈衝終止符顯示。 在些貫施例中,接收部分可有一介面,其將輸入_輸 出功旎和電流感測器相結合。使用電流感測器,該部分可 同日㈣應弱和_崎況,以在正確雜轉極性。可使用 0、兩個不同的驅動模式。在第—種情況下,弱確認驅動 採用驅動貫現弟二個長脈衝的翻轉。在資料模式中,若資 料回讀位元和線路極性不匹配,則弱驅動將嘗試保持長脈 衝,或者,若資料回讀位元和線路極性匹配,則弱驅動將 在短脈衝時間間隔後嘗試翻轉脈衝。接收部分的短脈衝延 遲可長於控制益中使用的短脈衝定時。在一些實施例中, 控制器在控制線路時經常使用強驅動。電流感測器可用於 確定是否存在回應。 、 在第二種情況下,強_弱驅動讓控制器對向弱驅動轉變 的邊緣轉變定時。在只有強驅動的情況下,控制器等待更 長的時間來檢測來自該部分極性翻轉嘗試的電流。 在些貝施例中’單引線埠的邏輯電平被匹配,這樣 供電不匹配將不會使一個部分驅動該供電範圍外的另一個 部分。在一些實施例中,邏輯擺動範圍可降低到2V,這樣 在使用達5V的供電情況下〇.8Vil和12Vih_Uvih為大致 的極限。該極限可通過設定合適的極限保護頻帶來配置用 於解決強驅動電壓電平上產生的弱驅動感應變化。 在一些實施例中,一個反跳電路(deb〇uncecircuit)(未 23 200828022 不出)可用於防止對資料產生干擾。100納秒或更長的時間 過滤用於抑制不需要的電壓和電流干擾。 電路貫施例 、在—些實施例中,可使用相對簡單電路來測量脈衝寬 度並確定脈衝的接收。圖9中示出這種序列埠電路的一個 實施例。 如圖9所示,串列計時器91〇監測短脈衝,如果發現 短脈衝,則線上915上產生窄時鐘脈衝,送至移位寄存器 950的移位輸入端。反相器9〇5對資料線9〇1上的資料極ς 進行反相’並將導線9〇3上反相後的資料輸&至移位寄存 砂鎖存95G。在-些實施例中,將反相後㈣信號作為 私位寄存ϋ 950的輸人,因為在電脈衝結束卿遷之前需 要fU的邏輯電平已經被接收。例如,窄高脈衝在躍遷到 低%結束。因此,在CLK信號915脈衝為高時低信號有效。 所以’反相1 9〇5能用來儲存資料極性。在其他實施例中, 如果不需要資料極性或其已存儲、已知或可被確^,則可 省略反相器905。 當RDY信號916觸發,移位寄存器95〇㈣標準資料 2 RDY信號916的上升沿按時鐘記錄在鎖存器中。在一些 貝%例中㈣91G巾高低脈衝是對稱的。在那些 $施例中,助H 906可選。可知姆助器9()6會翻轉 雨出U虎L1 920和L2 925的極性方向,但不會影響電路的 工作。 當移位寄存器和鎖存器95〇被描述為-個集成功能單 24 200828022 元時’可將舰分_很乡魏單元巾 和鎖存器95〇能驅動輸出匯流排_。在所述示例中可= 匯机排此被s又置為傳送更多或更少位 _ =彳個仙:信號902可用來重啟串:刚:: 矛夕位寄存器和鎖存器960。 ΓTo implement this protocol, the controller can drive weak and strong levels and detect the corresponding drive level from the receiver. As shown in Figure 6, the controller can be implemented by using two wheel-in-out pins 6〇1 and 6〇2 or the like. Pin 601 is directly connected to line 6〇4, and the other pin 6〇2 is connected to line _3 through weak drive resistor 6〇3. As a non-limiting example, the direct drive pin 601 can have a resistance of one thousand ohms and the weak drive resistance 6 〇 3 can have a resistance of about 25 kilo ohms. The receiver can have an intermediate drive corpse of 5 kilo ohms to control the drive line when returning to a weak drive. The controllers described in this morning to implement this protocol may include current sensors and crane control with input and output pin combinations. In some embodiments, control = only I is forced to drive TJ1, except that the controller abandons the line control to another. The receiver can try to change the line with a weak drive, but it cannot be done under the controller drive. The receiver is available - the internal timer is flipped at the appropriate time. In some embodiments, receiving := may be longer than the short pulse timing used by the controller. This allows the standard control profile to be driven with strong and weak signals so that the receiver drives the line. If the age = rush to ΐ ' then in some embodiments, the receiver will try the polarity: Μ 付 控制 控制 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 If the data of 11 is being acknowledged, the receiver will attempt to change the polarity of the 21st 200828022 long pulse to the second long pulse. The controller realizes the view of the wire from the receipt of the crane. If an oscilloscope subscribes to the spectator, the control benefit can extend the first long pulse in the phase to more clearly show that there is no weak drive, so no acknowledgment signal is detected on the line. Referring now to Figure 8, an example of a readback scheme _ is illustrated in accordance with an embodiment of the present invention. In this example, the data model <1〇1_1〇> is sent, and the poor model <011001> is read back. The readback scheme _ shows that only the strong drive with the current sensor of the controller is used, and only the weak drive of the receiver is used: first, the controller starts with the passive line 811 and sends the data 812: in the poor At the end of the material transfer 810, the controller implements a first transition 821 of the double pulse terminator _. At this point, the receiver is properly addressed and ready to confirm the sentence, the information sent. The reception is cried by starting its weakly driven milk at the beginning of the long pulse or starting the weak drive 823 at the beginning of the first long pulse. Detecting the result of the weak drive, the controller causes the polarity change to change: the second long pulse. If a weak pulse from the acknowledgment receiver does not exist, the level 825 remains until there is a time not stated here. Once the acknowledgment is successful, the controller completes the second long pulse by flipping polarity 831. Therefore, the acknowledged receiver is signaled' to first correspond to the most significant data bit during the readback request. The receiver uses its weak driver 832 to hold the line ^ or not use the driver at all. The controller detects that there is no opposite current, passes a long pulse and changes the polarity change 833 to low. The receiver detects a low condition that matches the polarity of the bit it must transmit. The receiver sets its weak drive 834 so that the long pulses are reversed. The control is cried back by performing a polarity change 835 22 200828022 to generate a short data pulse. The same operation is repeated for the high pulses 836, 837 and the ignored low pulses 838, 839. After the data is read back, the receiver or controller will cause the double long pulse terminator to be displayed. In some embodiments, the receiving portion may have an interface that combines the input_output power and the current sensor. Using a current sensor, this part can be weaker and _stable in the same day (d), in order to correct the polarity. Can use 0, two different drive modes. In the first case, the weak confirmation drive uses the flip of the two long pulses of the drive. In the data mode, if the data readback bit and the line polarity do not match, the weak drive will try to keep the long pulse, or if the data readback bit and the line polarity match, the weak drive will try after the short pulse interval. Flip the pulse. The short pulse delay of the receiving section can be longer than the short pulse timing used in the control gain. In some embodiments, the controller often uses a strong drive when controlling the line. A current sensor can be used to determine if there is a response. In the second case, the strong_weak drive causes the controller to time the edge transition to the weak drive transition. In the case of only strong drives, the controller waits for a longer time to detect the current from the partial polarity flip attempt. In some of the examples, the logic levels of 'single-lead turns' are matched so that a power mismatch will not cause one part to drive another part of the power supply. In some embodiments, the logic swing range can be reduced to 2V, such that V8Vil and 12Vih_Uvih are approximate limits when powering up to 5V is used. This limit can be configured to address the weak drive induced variations in the strong drive voltage levels by setting the appropriate limit guard band. In some embodiments, a debounce circuit (not 23 200828022) can be used to prevent interference with data. 100 nanoseconds or longer Filtering is used to suppress unwanted voltage and current disturbances. Circuitry, in some embodiments, a relatively simple circuit can be used to measure the pulse width and determine the reception of the pulses. One embodiment of such a serial port circuit is shown in FIG. As shown in Figure 9, the serial timer 91 monitors the short pulses. If a short pulse is found, a narrow clock pulse is generated on line 915 and sent to the shift input of shift register 950. The inverter 9〇5 inverts the data pole on the data line 9〇1 and outputs the data inverted on the conductor 9〇3 to the shift register sand latch 95G. In some embodiments, the inverted (four) signal is used as the input to the private register 950, since the logic level of the fU is required to be received before the electrical pulse ends. For example, a narrow high pulse ends at a transition to a low %. Therefore, the low signal is active when the CLK signal 915 pulse is high. So 'inverting 1 9〇5 can be used to store data polarity. In other embodiments, the inverter 905 can be omitted if the data polarity is not required or it is stored, known, or can be determined. When the RDY signal 916 is triggered, the shift register 95 〇 (4) Standard Data 2 The rising edge of the RDY signal 916 is clocked in the latch. In some cases, the high-low pulse of the 91G towel is symmetrical. In those $examples, the H 906 is optional. It can be seen that the driver 9 () 6 will flip the rain direction of the U Tiger L1 920 and L2 925, but will not affect the operation of the circuit. When the shift register and latch 95 are described as an integrated function list 24 200828022, the ship can be driven to output the bus _. In the example, the destination can be set to transmit more or fewer bits. _ = 仙 :: Signal 902 can be used to restart the string: just :: Spears register and latch 960. Γ

圖U)中不出串列計時器91〇 一個實施例。該示例電路 中使用了兩個脈衝識職,高脈衝識廳娜和低脈 廳麵。脈衝寬度識別器包括能實現延遲的—個或㈣ 叙置。脈衝寬度識別器刚5包括不對稱計時器刪和不 對稱計時器觀。作為一個非限制性示例,不對稱計時器 1003被設置為上料間接近Gns,τ降時間職s,不對稱 計時器1002被設置為上升時間5us,下降時間挪則。不對 稱計時H 1GG2的輸出還可連接至反相器麵。脈衝寬度識 別器麵包括不對稱計時器1_、贿和反相器1006。 不對稱計時器1_和蘭的延時時間可選為與不對稱計 時器1003、1〇〇2相同或相異。 —若資料線1017上的輸入脈衝,無論為高或低,長於預 疋I度,則脈衝寬度識別器1〇〇5和將分別線上⑺^$ 和1016上輸出一個高信號。任何來自反及閘]〇〇4或反及 閘1005的高脈衝均會防止反或閘1〇2〇對寄存器進行時鐘 所必需的鬲脈衝。一些實施例還包括D雙穩態多諧振盪器 1025和1030以存儲長脈衝。如果在一行中有兩個長脈衝, 如前面所討論的,信號L1 1040和l2 1045將為高,而且反 25 200828022 相器1049的rdY輸出腦也會為高,作為協定的级 號。 > 口 在一些實施例中,如果在移位寄存器95〇中不需要鎖 存貝料,觸發器1025和1030,反及閘1048和反相器1〇49 中所有或-部分可被省略。這些元件的省略在獨立接收器 應用中可節省空間。 r 圖11中示出高脈衝寬度鑒別的時序圖。低脈衝寬 Γ _圖與此類似。如前所述,擁有各自不同= 降邊沿時間的不對稱計時器產生時鐘和準備脈衝。圖u示 出兩個高脈衝,第一個1150窄,第二個116〇寬。在躍遷 1101,窄咼脈衝開始。這個脈衝使得不對稱計時器1〇〇3的 輸出在躍遷1111處變高·,反及閘聰的輪出在躍遷 1112處變低11G3。由於脈衝⑽的窄寬度,不對稱計時器 1002沒有時間變高,因此反相器麵的輸出保持為高。當 c f脈衝1150在躍遷1顺處結束時,不對稱計時器刪^ 遲於躍遷1105後將其輸出下降1〇〇ns。這使得反及閘刪 的輸出在躍遷1106處變高前維持為低電平丨ι〇3丨⑻仍。 因為相應的低脈衝寬度識別器在反及閘丨〇〇9的輸出在 低=衝開始時會變低,這和反及閘麵的輸出在高脈衝開 始時一樣,這兩個低電平會在時鐘輸出產生一個1〇〇ns的 南脈衝1113 〇 低反及閘1004在窄脈衝1150於躍遷Π04處終止時按 時鐘記錄在觸發器1025,使得輸出u 1〇4〇為低_窄脈衝 1114。低脈衝1114的寬度不會影響下一次的上升躍遷輸出 26 200828022 1130 1131和1132,因為脈衝的最小寬度比計時器〖ο。? 或1002的下降沿時間長。 在以躍遷1130和1140為邊界的寬脈衝116〇的情況 下,不對稱計時器1003的處理與窄脈衝的情況相同。但是·, 不對稱汁時裔1002有充足的時間達到它的5us定時。計時 器1002在躍遷1107處變為高,導致反相器醜的輸出在 躍遷1108處變為低,而與非們1〇〇4的輸出在躍遷_處 變為高。因為計時器1002的關斷時間為25〇ns,計時器1〇〇3 的瞒時間為10〇ns,脈衝i 16〇在躍遷j 14〇處的下降沿不 會被傳送至時鐘輸出。計時器膽有效地阻止了躍遷測 和1141引起的脈衝。反及閑綱輸出的高電平導致寬脈 衝1160在躍遷114〇處的下降沿,以將高電平時鐘記錄在 雙穩態多諧振ill 1025。然後輸出L1觸躍遷至高111〇, 以表示長脈衝。對稱地,如果將同樣的相送至雙穩態多 諧振盪S 1030和輸丨L2 1045,在rdy輸幻㈣處將會 產生一個雙倍的長脈衝終止信號以終止協定。 圖12中不出另—實施例。在這個實施例中未用到圖$ 中的反相器905。而且’串列計時器1201不包括輸出L1 或L2,相應地在圖9中表示為920和925。如圖13中所示, 在-些實施例中,移位寄存器和鎖存器·可在沒有重置 輸入的情況下實現。耻,t置信號線服能直接輸入至 串列計時器1310· 在-些貫施例中’資料並不被鎖存。圖14中示出該種 實施例的—個實例。如圖14中所示,移位寄存H剛可 27 200828022 哭ί4Γ/ 鲜備域。在該實施例中,串列計時 态1410可配置為不需要 J十日守 衝寬度料枝砰轉’根據脈 實施例中,接納立^ 錄。在圖14所示的 代接縣位寄存器刚的資料線〗有 1425 ’但沒有決定電路。 口口 圖=示出圖14中所示實施例所用的串列計時哭 時哭例中,計時器1501_1504是不對稱延時計 二物杰150Μ5()4 (和其他任何提到的計時器) 時間能被各自編程或設置,以梅 Η吏月b根據協定要求進行脈衝寬度鑒別。在—些實施 ^計=15G0可僅通過在f_5()5上的反相器⑽ 貫見。物心ίο也可不使輕健乡魏i 和邏輯結構。 Ί 結論 本發明揭示了—個用於串列通㈣統的新協定。其 中’短脈衝代表資料,長脈衝代表資料分隔符號。短脈衝 的極性代表他們的值。 在-些實施例中,-個控制器和多個控制器可以與連 接至它們的-條根通信線(路)上的接收器互換使用。接 收器可包括-個或多個休眠接收器、資料確認接收器、和/ ,貧料回讀接㈣。控制II和接㈣根據他們線路控制狀 態可以輸㈣輪出驅動、弱輸出购、巾間輸出驅動或無 輸出驅動(高輸出阻抗)。 在使用單一控制器的實施例中,如果接收器休眠,則 200828022 二強輪出驅動。如果使用多個 資料回讀,還是控制仲 以支板任_輪出驅動麵的組合。通常 = 收器不使用驅動。伊^ ^ 不了互換的接 使用中間輪^她和_時,他們可以 ΓThe serial timer 91 is not shown in Figure U). One embodiment. Two pulse trains are used in this example circuit, with high pulse detection and low pulse chambers. The pulse width recognizer includes one or (four) representations that enable delay. The pulse width recognizer just 5 includes an asymmetric timer deletion and an asymmetric timer view. As a non-limiting example, the asymmetry timer 1003 is set to approach Gns, the τ drop time s, and the asymmetry timer 1002 is set to a rise time of 5 us, and the fall time is shifted. The output of the misaligned timing H 1GG2 can also be connected to the inverter face. The pulse width discriminator face includes an asymmetric timer 1_, a bribe, and an inverter 1006. The delay time of the asymmetric timer 1_ and the blue may be selected to be the same as or different from the asymmetric timers 1003, 1〇〇2. - If the input pulse on data line 1017, whether high or low, is longer than the pre-I degree, then pulse width recognizer 1〇〇5 and will output a high signal on lines (7)^$ and 1016, respectively. Any high pulse from the inverse gate 〇〇4 or the inverse gate 1005 will prevent the 或 pulse necessary for the counter or gate 1〇2〇 to clock the register. Some embodiments also include D flip-flops 1025 and 1030 to store long pulses. If there are two long pulses in a row, as discussed earlier, the signals L1 1040 and l2 1045 will be high, and the rdY output brain of the phase 2049 will be high as the agreed number. > Port In some embodiments, if it is not necessary to lock the batting in the shift register 95, all or - portions of the flip-flops 1025 and 1030, the inverse gate 1048 and the inverter 1 〇 49 may be omitted. The omission of these components saves space in a separate receiver application. r A timing diagram of high pulse width discrimination is shown in FIG. The low pulse width Γ _ is similar to this. As mentioned earlier, asymmetric timers with their own different = falling edge times generate clocks and ready pulses. Figure u shows two high pulses, the first 1150 narrow and the second 116 wide. In transition 1101, a narrow chirped pulse begins. This pulse causes the output of the asymmetrical timer 1〇〇3 to go high at the transition 1111. In contrast, the turn of the gate is turned low by 11G3 at the transition 1112. Due to the narrow width of the pulse (10), the asymmetric timer 1002 does not have time to go high, so the output of the inverter face remains high. When the c f pulse 1150 ends at the transition 1 suffix, the asymmetric timer deletes the output by 1 ns after the transition 1105. This causes the output of the inverse gate to remain low before the transition 1106 goes high 丨ι〇3丨(8) still. Because the corresponding low pulse width recognizer will turn low at the output of the opposite gate 9 at the beginning of the low = punch, which is the same as the output of the opposite gate at the beginning of the high pulse, the two low levels will A 1 ns south pulse 1113 is generated at the clock output. The low gate 1004 is clocked at the flip flop 1025 when the narrow pulse 1150 terminates at the transition Π04, so that the output u 1 〇 4 〇 is low _ narrow pulse 1114 . The width of the low pulse 1114 does not affect the next rising transition output 26 200828022 1130 1131 and 1132 because the minimum width of the pulse is greater than the timer ο. ? or 1002 has a long falling edge. In the case of a wide pulse 116 为 bounded by transitions 1130 and 1140, the processing of the asymmetry timer 1003 is the same as in the case of a narrow pulse. However, the asymmetrical juice of the 1002 has sufficient time to reach its 5us timing. Timer 1002 goes high at transition 1107, causing the ugly output of the inverter to go low at transition 1108, while the output of NAND1 becomes high at transition_. Since the off time of the timer 1002 is 25 ns, the 瞒 time of the timer 1 〇〇 3 is 10 〇 ns, and the falling edge of the pulse i 16 〇 at the transition j 14 不 is not transmitted to the clock output. The timer has effectively prevented the transition and the pulse caused by 1141. The high level of the inverted output causes the wide pulse 1160 to fall at the transition 114〇 to record the high level clock at the bistable multi-resonance ill 1025. The output L1 then transitions to a high 111 〇 to indicate a long pulse. Symmetrically, if the same phase is sent to the bistable multi-resonant S 1030 and the 丨 L2 1045, a double long pulse termination signal will be generated at the rdy illusion (4) to terminate the agreement. Another embodiment is shown in FIG. The inverter 905 in the figure $ is not used in this embodiment. Moreover, the serial timer 1201 does not include the output L1 or L2, and is accordingly represented as 920 and 925 in FIG. As shown in Figure 13, in some embodiments, the shift register and latch can be implemented without a reset input. Shame, t signal line service can be directly input to the serial timer 1310. In some cases, the data is not latched. An example of such an embodiment is shown in FIG. As shown in Figure 14, the shift register H is just 27 200828022 crying Γ4Γ / fresh field. In this embodiment, the serial timed state 1410 can be configured to not require a J-day guard width to be rotated. According to the pulse embodiment, the recording is accepted. In the data line of the docking county register shown in Figure 14, there is 1425' but there is no decision circuit. Mouth map = in the example of the serial timing crying crying used in the embodiment shown in Fig. 14, the timer 1501_1504 is an asymmetric delay meter two objects 150 Μ 5 () 4 (and any other mentioned timer) time Can be individually programmed or set, with the pulse width discrimination according to the agreement requirements. In some implementations, the calculation = 15G0 can only be seen through the inverter (10) on f_5()5. The physical heart ίο can also not make the light health town Wei and the logical structure. Ί Conclusion The present invention discloses a new protocol for the serial communication system. Among them, 'short pulse represents data, and long pulse represents data separator. The polarity of the short pulses represents their value. In some embodiments, a controller and controllers may be used interchangeably with receivers connected to their - root communication lines (routes). The receiver may include one or more dormant receivers, a data acknowledgement receiver, and/or a poor material readback interface (4). Control II and (4) can be driven according to their line control state (4) wheel drive, weak output purchase, towel output drive or no output drive (high output impedance). In an embodiment using a single controller, if the receiver is dormant, the 200828022 second strong drive. If you use multiple data to read back, you can still control the combination of the _ wheel drive surface. Usually = the receiver does not use the driver. Yi ^ ^ can not be interchanged with the use of the middle wheel ^ her and _ when they can Γ

:些實施例中,在強驅動過程中,控制 助3=從而允許間接從接收器_和回讀’而不ΐ借 以被選擇用於克服裝載和周邊環境的雜:: 壯/^,祕長/短脈衝的日铸規格可以被選擇用以克服 衣载、雜訊以及線路傳輸特性等問題。 在一些實施例中,一個休眠接收器不鎖定資料,也不 使用終止符。此外,休眠接收器不驅動線路。多個可定址 的接收器可以在適當定址時回應雙長脈衝終止符鎖定資 料。另:方面,回應接收器在回讀和確認情況下可以= 更弱的咼驅動和更弱的低驅動,甚至無驅動。 廷裏描述的協定可以僅使用有限電路結構就可以有效 執行。能夠使用該協議通信的控制器和接收器可使用上^ 電路來實現。料實補的魏可賴結合顺他實施: 中,這裏闡述的各實施例可以在沒有這裏描述的所有特徵 或方面的情況下而同樣得到實現。本領域技術人員應妒 識到’儘管為了說明這裏闡述了系統和方法的許多二 實例和實施例,但是可以在不偏離本發明的精神和範^内 進行各種修改。本發明的實施例可以用於許多不同類型的 29 200828022 2輸系統。此外,—個實_的幾轉徵可以結合到其他 貝知例’甚至有些特徵可能沒有在這裏通過一個單一實施 例一起被闡述。 、 Γ 在說明書中和圖Μ5中闡述了本發明的某些實施例的 夕個具體細節,以提供對這些實施例的全面理解。然而, 所屬領域普通技術人員可以理解的是,在沒有這些細節或 向本發明增加其他細節的情況下也可以實現本發明。沒有 2示出或描述公㈣結構和魏,叫免沒必要地掩蓋 對本發明貫施例的描述。如上所述,彼此“連接,,的一個 元件可以直接(即,在連接的元件之間沒有其他元 =。(即,在連接的元件之間存在—個或多個其他 圍中==顯地需【:在=明書和申請專利範 並非唯一或詳盡的含義;二^?^包含的含義’ M 沉疋呪疋包括,但不限於” 、”3義。‘此外,在本中請中使用的詞語“其中,,、“上 ^ 卩下淨口類似意義的詞語應指 本中請的任—特定部分。在上下文允=二 二:==::使_或複數的詞語也 的^ ί 兩個或更多個專案的列表中引用 §戈包讀該詞語的以下所有解釋:列表中的任 ―項^列表中的所有項目和列表中任—專案的组合 限制m實==述詳細說明並非詳盡的或使本發明 a 4確形式。_本购的具體實施例、 30 200828022 實例示例性如上所述,但是所屬領域普通技術人員可以認 識到的是在本發明的範_可以進行各種㈣修改。例 如,儘管以給定順序呈現了多個處理和方框,但是可秩代 實施例可以以不同的順序執行具有這些步驟的程式、^採 用具有這些方㈣祕,並且某些處理或方框可以刪除、 移動、添加、拆分、組合和/或修改,以提供可替代的或重 新組合的處理和方框。其巾每—處理和方框可以以多種不 :方式實現。此外,儘管這麵理或方框有時示出為串聯 執订,但是處理或雜也可以储地並職行 在不同的時刻執行。 一j裏提供的本發明的教導可應用於其他系統,沒必要 -定是上述的系統。上述各實施例的元件和操作可以組合 或改變以提供其他實施例。 根據上述具體實施方式部分的描述,可以齡發明推In some embodiments, during the strong drive process, the control assists 3 = thus allowing indirect reception from the receiver _ and the readback 'is not used to overcome the load and the surrounding environment:: Zhuang / ^, secret /Short pulsed daily casting specifications can be selected to overcome problems such as on-board, noise, and line transmission characteristics. In some embodiments, a dormant receiver does not lock the data and does not use a terminator. In addition, the sleep receiver does not drive the line. Multiple addressable receivers can respond to double long burst terminator locks when properly addressed. On the other hand, in response to the receiver, in the case of readback and confirmation, it can be = weaker 咼 drive and weaker low drive, or even no drive. The protocol described in Tinley can be effectively executed using only a finite circuit structure. Controllers and receivers that can communicate using this protocol can be implemented using the upper circuit. The implementation of the exemplified Weikelai is implemented in conjunction with: In the following, the various embodiments set forth herein may be implemented without all of the features or aspects described herein. A person skilled in the art will recognize that many modifications and variations can be made without departing from the spirit and scope of the invention. Embodiments of the present invention can be used with many different types of 29 200828022 2 transmission systems. In addition, several transitions of a real _ can be combined with other examples. Some features may not be elaborated here by a single embodiment. The details of some embodiments of the present invention are set forth in the specification and in FIG. 5 to provide a comprehensive understanding of these embodiments. However, it will be understood by those skilled in the art that the present invention may be practiced without these details or additional details of the invention. No. 2 shows or describes the public (four) structure and Wei, and the description does not necessarily obscure the description of the embodiments of the present invention. As mentioned above, one element that is "connected" to each other can be directly (ie, there are no other elements between the connected elements = (ie, there is one or more other enclosures between the connected elements == explicit) Needs [: in the = book and the patent application is not the only or detailed meaning; the meaning of the two ^ ^ ^ contains "M, including but not limited to", "3 meaning." In addition, in this article The words "in,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ί The list of two or more projects refers to the following explanations of the vocabulary reading the words: all items in the list in the list and all the items in the list - the combination of the project limits m == The description is not exhaustive or makes the invention a form. The specific embodiment of the invention, 30 200828022 Examples are exemplified above, but one of ordinary skill in the art will recognize that various variations can be made in the invention. (iv) Modifications, for example, although presented in the order given Multiple processing and blocks, but the rank generation embodiment may execute the program with these steps in a different order, employ these parties, and some processes or boxes may be deleted, moved, added, split, Combinations and/or modifications to provide alternative or recombined processes and blocks. The towel-per-process and block can be implemented in a variety of ways: in addition, although this aspect or block is sometimes shown as The ordering is performed, but the processing or miscellaneous can also be stored and the job is performed at different times. The teachings of the present invention provided in one j can be applied to other systems, and it is not necessary to be the above system. The elements and operations may be combined or altered to provide other embodiments. In accordance with the description of the Detailed Description section above,

在具體實施方式部分巾所使用的術語旨在以最大的合 理方式進行解釋,儘 的詳細描述來使用的 儘官是以結合本發的某些具體實施例 制方式解釋的任一 體地定義。通常, 的甚至可強調某些術語,然而,以限 後申請專利範圍中使用的術語應理 術語具體實施方式部分中均被公開和具 在隨後申請專刺餘ΙΠ + a π — 31 200828022 角午為將本發明限制在說明書中所公開的特定實施例,除非 明5二體實%方式部分清楚定義了這些術語。因此,本發 明的貫際範圍不僅 專利範圍内可奮招、3上述公開的實施例,還包含在申請 或貫施本發明的所有等同方式。 32 200828022 【圖式簡單說明】 通過附圖示出本發明的實例。這些附圖應理解為示例 性,而非限制性。 圖1示出示例性協議序列。 圖2A和圖2B示出沒有終止符的示例性協議序列。The terms used in the detailed description are intended to be interpreted in the broadest sense, and the detailed description is to be used in any way that is to be construed in conjunction with the specific embodiments of the present invention. In general, some terms may be emphasized, however, the terms used in the scope of the limited patent application are disclosed in the specific implementation section and are subsequently applied for the special thorns + a π — 31 200828022 Noon To limit the invention to the specific embodiments disclosed in the specification, these terms are clearly defined in the section of the 5%. Therefore, the scope of the present invention is not limited to the scope of the patent, and the above-disclosed embodiments of the present invention, and all equivalents of the application or the application of the present invention. 32 200828022 [Simplified illustration of the drawings] Examples of the invention are shown by the drawings. These drawings are to be considered as illustrative and not restrictive. Figure 1 shows an exemplary protocol sequence. 2A and 2B show an exemplary protocol sequence without a terminator.

圖3A和圖3B示出具有資料確認的示例性協定序列。 圖4示出資料分類的方法。 圖5示出用於回讀的示例性協定序列。 圖6示出示例性控制器的結構。 圖7不出用混合的強弱控制器驅動的示例性回讀協議 序列。 圖8不出用強控制器驅動的示例性回讀協議序列。 圖9示出單線序列埠的示例性電路。 圖10不出區分脈衝寬度的示例性串列計時器。 圖11示出示例性輸入輸出序列。 圖丨2示出示例性序列埠電路。 圖丨3示出示例性序列埠電路。 圖14示出示例性序列埠電路。 圖15示出區分脈衝寬度的示例性串列計時器。 【主要元件符號說明】 PWi接收資料位元脈衝 寬度 PWs標準脈衝寬度 1〇〇開始處 101、103、105短高脈衝 104、106、108短低脈衝 102長低值脈衝 107長高值脈衝 33 2008280223A and 3B illustrate an exemplary protocol sequence with data validation. Figure 4 shows the method of data classification. Figure 5 shows an exemplary protocol sequence for readback. Figure 6 shows the structure of an exemplary controller. Figure 7 shows an exemplary readback protocol sequence driven by a hybrid strong and weak controller. Figure 8 illustrates an exemplary readback protocol sequence driven by a strong controller. Figure 9 shows an exemplary circuit of a single line sequence. Figure 10 illustrates an exemplary serial timer that distinguishes between pulse widths. Figure 11 shows an exemplary input and output sequence. Figure 2 shows an exemplary serial port circuit. Figure 3 shows an exemplary sequence 埠 circuit. Figure 14 illustrates an exemplary serial port circuit. Figure 15 illustrates an exemplary serial timer that differentiates pulse widths. [Main component symbol description] PWi receiving data bit pulse width PWs standard pulse width 1〇〇 beginning 101, 103, 105 short high pulse 104, 106, 108 short low pulse 102 long low value pulse 107 long high value pulse 33 200828022

108低脈衝 111有效位 120長低脈衝 130最大脈衝寬度 121長高脈衝 201資料接受寬度 301-304 —位元或多位元 資料 305高信號 306低確認信號 307任意長度脈衝 308第二個長脈衝 501驅動狀態 510雙長脈衝終止信號 550驅動狀態 511弱驅動 512極性翻轉 5113強制翻轉極性 514強驅動 560強局檢查模式 561強低檢查模式 570弱高檢查模式 571弱低檢查模式 580短高回讀模式 581短低回讀模式 590長高回讀模式 591長低回讀模式 599強和弱驅動狀態 601-602輸入-輸出引腳 603弱驅動電阻 604線路 800回讀方案 810資料傳輸 811無源線路 812資料 820雙脈衝終止符 821躍遷 830回讀 822弱驅動 823弱驅動 824極性改變 825電平 831翻轉極性 832弱驅動 833極性改變 834弱驅動 835極性改變 836、837高脈衝 34 200828022108 low pulse 111 valid bit 120 long low pulse 130 maximum pulse width 121 long high pulse 201 data acceptance width 301-304 - bit or multi-bit data 305 high signal 306 low acknowledgment signal 307 any length pulse 308 second long pulse 501 drive state 510 double long pulse termination signal 550 drive state 511 weak drive 512 polarity flip 5113 forced flip polarity 514 strong drive 560 strong check mode 561 strong low check mode 570 weak high check mode 571 weak low check mode 580 short high readback Mode 581 short low readback mode 590 long high readback mode 591 long low readback mode 599 strong and weak drive state 601-602 input-output pin 603 weak drive resistance 604 line 800 readback scheme 810 data transmission 811 passive line 812 data 820 double pulse terminator 821 transition 830 readback 822 weak drive 823 weak drive 824 polarity change 825 level 831 flip polarity 832 weak drive 833 polarity change 834 weak drive 835 polarity change 836, 837 high pulse 34 200828022

838、839低脈衝 901資料線 902RESET 信號 903導線 905、906反相器 910串列計時器 915CLK信號 916RDY信號 920信號L1 925信號L2 950移位寄存器 960匯流排 1001、 1049反相器 1002、 1003不對稱計時器 1004、1048反及閘 1005高脈衝寬度識別器 1010低脈衝寬度識別器 1015、1016分別線上 1017資料線 1020反或閘 1025、1030多諧振盪器 1040信號L1 1045信號L2 1050RDY 輸出 1150窄高脈衝 1160寬高脈種f 1100 、 1101 、 1104-1109 躍遷 11Π、1112、1140、1141 躍遷 1102變高 1103變低 1113向脈衝1 1114低_窄脈衝 1130,1131-32上升躍遷輸 出 1160寬脈衝 1201 、 1310 、 1410 、 15〇〇 串列計時器 1302重置信號線 1305移位寄存器和鎖存器 1405移位寄存器 1420資料線 1425、1510反相器 1501-1504計時器(不對稱 延時計時器) 1505資料線 35838, 839 low pulse 901 data line 902RESET signal 903 wire 905, 906 inverter 910 serial timer 915CLK signal 916RDY signal 920 signal L1 925 signal L2 950 shift register 960 bus 1001, 1049 inverter 1002, 1003 not Symmetrical timers 1004, 1048 and gate 1005 high pulse width recognizer 1010 low pulse width recognizer 1015, 1016 respectively on line 1017 data line 1020 reverse or gate 1025, 1030 multivibrator 1040 signal L1 1045 signal L2 1050RDY output 1150 narrow High pulse 1160 wide high pulse type f 1100 , 1101 , 1104-1109 transition 11 Π , 1112 , 1140 , 1141 transition 1102 high 1103 low 1113 to pulse 1 1114 low _ narrow pulse 1130 , 1131-32 rising transition output 1160 wide pulse 1201, 1310, 1410, 15〇〇 serial timer 1302 reset signal line 1305 shift register and latch 1405 shift register 1420 data line 1425, 1510 inverter 1501-1504 timer (asymmetric delay timing 1505 data line 35

Claims (1)

申請專利範圍: 信的方法,包括:定義 資料分隔符號的預定長 一種用於提供資料流程串列通 作為資料的預定短脈衝和作為 脈衝。 如申請專利範圍第1項所述的方法,還包括: 當傳輸相同極性的連續#料脈衝時,在所述連續資料 脈衝之間僅提供-個所述資料分隔符號;以及 當傳輸極性㈣的_#舰_,在所述極性交替 的連續資魏衝之糾提供:雜分隔符號。 如申請專娜圍第1項所述的方法,其情述預定短 脈,包括定義脈衝可接受寬度的最小寬度和最 大寬度;以及 所述預枝脈衝包括最小寬度,以及如果個休止間 隔則可選地包括最大寬度。 如申請專機圍第1顧述的方法,其巾所述串列通 信包括在_ H驅_結合龍健控制器驅動 之間進行選擇。 如申請專利範圍第1項所述的方法,其中所述串列通 k遢包括接收器,所述接收器在所述控制器使用強驅 動和弱驅動時直接驅動通信線路,或者在使用所述強 驅動和電流或電壓感測器的控制器的協助下間接驅動 通信線路,·其中由所述接收器進行的對通信線路的所 述驅動包括確認和回應。 如申請專利範圍第1項所述的方法,還包括:發射雙 200828022 ,脈衝終止符,所述雙長脈衝終止符進—步包括兩個 連縯長脈衝作為可選的協議終止符。 7· ϋ請專利範圍第6項所述的方法,其中所述串列通 信還包括: 在控制器發射所述雙長脈衝終止符的第一個長脈衝之 ,、通過直接或間接轉第二個長脈衝的極性來確認 資料包通信的終止;以及 、田所述接收為在等待間隔内未成功確認之後,強制所 述控制器改變所述第二個長脈衝的極性。 8·如申明專利範圍第7項所述的方法,還包括: 使用主控制器將資料發送到多個接收器和控制器中的 所選接收器; 使用所述主控制器發送在雙長脈衝終止符中的第一脈 〇使得4所接收$能夠將極性改變至第二長脈 衝;以及 使^所述主控制器發送初始極性變化,使得該所選接 收器可以以相同協定開始發送回讀數據,直至該所選 接收器發送雙長脈衝終止符為止。 9·如申請專利範圍第8項所述的方法,還包括: 通過來自該所選接收器的直接驅動或由所述主控制界 協助的來自該所選接收器的間接驅動來發送回讀^ 據。 、 10.如申請專利範圍第9項所述的方法,還包括: 持續將資料回讀,直至在得到足夠但不必是全部的資 37 200828022 料之後由所述主控制器使得雙長脈衝終止符中斷或者 協議為止;或者由該所選接收轉放完所述回 通過使所述雙長脈衝終止符出現而向所述回 尾兔域,而使得所述雙長脈衝終止符中斷 或者終止該協議為止。 11·:::青::範圍第10項所述的方法’其中與所述強弱Patent Application Range: The method of the letter, including: Defining the predetermined length of the data separator symbol. A predetermined short pulse and as a pulse for providing data flow through the data. The method of claim 1, further comprising: providing only one of the data separation symbols between the consecutive data pulses when transmitting consecutive #material pulses of the same polarity; and when transmitting polarity (four) _#ship_, in the continuous alternating of the polarity of Wei Chongzhi provides: miscellaneous separator symbol. The method of claim 1, wherein the method defines a short pulse, including a minimum width and a maximum width defining a pulse acceptable width; and the pre-pulse pulse includes a minimum width, and if the rest interval is The ground selection includes the maximum width. For example, if the application for the special machine is described in the first aspect, the serial communication includes the selection between the _ H drive _ combined with the Longjian controller drive. The method of claim 1, wherein the serial communication comprises a receiver that directly drives a communication line when the controller uses a strong drive and a weak drive, or The communication circuit is indirectly driven by the driver of the strong drive and current or voltage sensor, wherein the drive to the communication line by the receiver includes confirmation and response. The method of claim 1, further comprising: transmitting double 200828022, a pulse terminator, wherein the double long pulse terminator comprises two consecutive long pulses as an optional protocol terminator. The method of claim 6, wherein the serial communication further comprises: transmitting, by the controller, the first long pulse of the double long pulse terminator, by directly or indirectly transferring the second The polarity of the long pulse is used to confirm the termination of the packet communication; and the field is forced to change the polarity of the second long pulse after the reception is not successfully acknowledged within the waiting interval. 8. The method of claim 7, further comprising: transmitting data to a plurality of receivers and selected ones of the controllers using the primary controller; transmitting the double long pulses using the primary controller The first pulse in the terminator causes 4 received $ to change the polarity to the second long pulse; and the master controller sends an initial polarity change such that the selected receiver can begin transmitting back read data with the same protocol Until the selected receiver sends a double long pulse terminator. 9. The method of claim 8, further comprising: transmitting back to read by direct drive from the selected receiver or by an indirect drive from the selected receiver assisted by the primary control community. according to. 10. The method of claim 9, further comprising: continuously reading back the data until the double-long pulse terminator is interrupted by the primary controller after obtaining sufficient but not necessarily all of the resources 37 200828022 Or the protocol; or by the selected reception being transferred to the returning rabbit by the occurrence of the double long pulse terminator, causing the double long pulse terminator to interrupt or terminate the protocol. 11·:::青:: The method described in item 10 of the scope’ it使用接U計時器’以避免所述短脈衝 和所述長脈衝中的過早變化。 12· ===,11項所述的方法’其中所述主控制 ^吏I、自㈣序去回應該所選接收器的處理,從而 在所述回讀期間内形成短脈衝。 13. Μ請專利難㈣彻述的方法,其中所述主控制 為運仃在長脈衝的末尾以使得協議繼續。 Η· -種在串列通信中在多個控制器之間仲裁的方法 括: ° 互換控制器和接收器的角色; 如果其通信線路在預定休止間隔内沒有躍遷,則 所述控制器為空閒;以及 A 使用主控制器對聽控制器進行定址,以輪詢和選擇下 一個控制器通過定址到的指令包來進行押制。 15.=申請專利範圍第14項所述的方法,其工中回應來自放 莱控制器的接管指令,在雙長脈衝終止it程中在對第 二脈衝確認極性改變時在任意—對控制器之間發生切 換0 38 200828022 16.如申請專利範圍第]4項所述的方法,且中 所述控制器包括分配地址,其與晰、 休止間隔時間短的仲裁時間延遲成:例預疋 在2釋放後線路極性的改變引起控制線路的競爭, 亚且各競爭控制器用強驅動保持新的極性.It uses a U-timer' to avoid premature changes in the short pulses and the long pulses. 12· ===, the method of item 11 wherein the main control ^吏I, from (4) order is returned to the processing of the selected receiver, thereby forming a short pulse during the readback period. 13. The patent is difficult (4) to describe the method in which the main control is at the end of the long pulse to allow the protocol to continue. - A method of arbitrating between multiple controllers in a serial communication: ° swapping the roles of the controller and receiver; if the communication line does not transition within a predetermined rest interval, the controller is idle And A uses the host controller to address the listening controller to poll and select the next controller to be bound by the addressed instruction packet. 15.=Apply the method described in item 14 of the patent scope, which responds to the takeover command from the release controller, and in the double long pulse termination process, when the polarity is changed for the second pulse, the controller is arbitrary The method of claim 4, the method of claim 4, wherein the controller includes an allocation address, and the arbitration time is short with a clear and rest interval: 2 After the release, the change of the polarity of the line causes the competition of the control line, and the competing controllers maintain a new polarity with a strong drive. 二 =在各自設置的時間間隔之後通過使用弱驅 動旨4'、泉路極性的改變來競爭線路控制,並且 ㈣=隔的所述競爭控制器赢得對線路控制的競 尹、中對於較高優先順序將施加間隔設置得較長; 以及 在未能通過所述弱驅動改變線路極性時,所述競爭控 制器通過義其輸出驅動以等待下—休止間隔來放^ 線路。 17 ·=中請專利麵第14項所述的控制方法,其中主控制Second = after the respective set time interval, by using the weak drive 4', the change of the polarity of the spring road to compete for the line control, and (4) = the competition controller of the interval wins the competition for the line control, the middle for the higher priority The sequence sets the application interval longer; and when the line polarity is not changed by the weak drive, the competing controller drives the line by waiting for the output to wait for the next-rest interval. 17 ·= Please refer to the control method described in item 14 of the patent, in which the main control 器^過維持線路極性、忽略仲裁嘗試以及等待來自工所 述競爭控制器的讀出電流消失,或者通過發射長脈衝 的持續序列以阻止仲裁嘗試,來拒絕釋放控制。 18 · 一種單線串騎信系統,包括控彻,當所述控制器 僅包含強驅動時,所述控制器用作發射器。 如申明專利範圍第18項所述的單線串列通信系統,其 中语所述控制器包含所述強驅動和電流或電壓感測器 0寸,所述控制器用作所述發射器和一接收器。 〇·如申%專利範圍第18項所述的單線串列通信系統,其 中當所述控制器包含所述強驅動和一弱驅動時,所述 39 200828022 控制為用作所述發射器和所述接收器,其中所述接收 為包括弱于戶斤返強驅動且強於所述弱驅動的中間驅 動。 1·如申明專利範圍帛項所述的單線串列通信系統,其 中所述接收器為可定址或不可定址的接收器, 當所述接收器是所述不可定址的接收器時,所述接收 裔為休眠接收器;而 當所述接收器是所述可定址的接收器時,所述接收器 為休眠接收11或確認魏ϋ;其巾所述輕接收器進 一步包括非回讀接收器或回讀接收器。 22· —種單線串列通信系統,包括: 十守用以產生作為預定短脈衝的用於資料的時鐘 乂及用以產生作為預定長脈衝的用於資料分隔 符號的非時鐘信號;和 移位寄存器,連接至所述計時器,用以基於所述產生 的時鐘信號存儲資料。 3·如申明專利範圍第22項所述的單線串列通信系統,其 中所述計時器進一步包括: ^ 高脈寬識別器; 低脈寬識別器;和 組,輯電路,連接于該高脈寬識別器和該低脈寬識 別器,用以確定接收_脈衝是所述:倾還是 ; 料分隔符號。 、 24.如申請專利範圍第22項所述的單線串列通信系統,其 40 200828022 中所述計時器進一步包括: 第一雙穩態多諧振盪器,用以儲存出現的高長脈衝; 第二雙穩態多諧振盪器,用以儲存出現的低長脈衝; 和 組合邏輯電路,用以確定出現的雙長脈衝終止符是來 自於所述第一雙穩態多諧振盪器還是所述第二雙穩態 多諧振盪器。 41The device rejects the line polarity, ignores the arbitration attempt, and waits for the read current from the competing controller to disappear, or rejects the release control by transmitting a continuous sequence of long pulses to prevent the arbitration attempt. 18. A single-line string riding system comprising a control, the controller acting as a transmitter when the controller includes only a strong drive. The single-line serial communication system according to claim 18, wherein the controller comprises the strong drive and the current or voltage sensor, and the controller is used as the transmitter and a receiver. . The single-line serial communication system of claim 18, wherein when the controller includes the strong drive and a weak drive, the 39 200828022 is controlled to be used as the transmitter and the The receiver, wherein the receiving is an intermediate drive that is weaker than the hard drive and stronger than the weak drive. 1. The single-line serial communication system of claim 1, wherein the receiver is an addressable or non-addressable receiver, and when the receiver is the non-addressable receiver, the receiving Is a dormant receiver; and when the receiver is the addressable receiver, the receiver is dormant to receive 11 or confirm Wei; the towel of the light receiver further includes a non-readback receiver or Read back the receiver. 22. A single-line serial communication system comprising: a clock for generating data as a predetermined short pulse and a non-clock signal for generating a data separation symbol as a predetermined long pulse; and shifting a register coupled to the timer for storing data based on the generated clock signal. 3. The single-line serial communication system according to claim 22, wherein the timer further comprises: a high pulse width identifier; a low pulse width identifier; and a group, a circuit connected to the high pulse A wide identifier and the low pulse width identifier are used to determine whether the receive_pulse is said: tilt or; 24. The single-line serial communication system of claim 22, wherein the timer of 40 200828022 further comprises: a first bistable multivibrator for storing high-intensity pulses that occur; a bi-stable multivibrator for storing the occurrence of low long pulses; and a combinational logic circuit for determining whether the double long pulse terminator is from the first bistable multivibrator or the Two bistable multivibrators. 41
TW096138762A 2006-10-17 2007-10-16 System and method for implementing a single-wire serial protocol TWI459207B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82982906P 2006-10-17 2006-10-17

Publications (2)

Publication Number Publication Date
TW200828022A true TW200828022A (en) 2008-07-01
TWI459207B TWI459207B (en) 2014-11-01

Family

ID=39334376

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096138762A TWI459207B (en) 2006-10-17 2007-10-16 System and method for implementing a single-wire serial protocol

Country Status (2)

Country Link
CN (1) CN101165675B (en)
TW (1) TWI459207B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI720005B (en) * 2015-08-24 2021-03-01 南韓商三星電子股份有限公司 Data processing system, data processing device, and method of operating a slave device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571555B (en) * 2009-06-10 2010-09-08 东南大学 Triggering method for serial peripheral interface bus signal
CN104460406B (en) * 2014-10-13 2017-04-26 深圳市江波龙电子有限公司 Single-line communication method and single chip microcomputer firmware updating method based on single-line communication
CN106201973B (en) * 2016-06-30 2020-08-11 珠海智融科技有限公司 Method and system for single-wire serial communication interface

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829296A (en) * 1986-04-30 1989-05-09 Carey S. Clark Electronic lock system
US4941126A (en) * 1987-07-24 1990-07-10 Advanced Micro Devices, Inc. Weak/strong bus driver
US5007042A (en) * 1989-09-08 1991-04-09 Santi Larry D Method and apparatus for transmitting analog data embedded in a digital pulse train
US5357621A (en) * 1990-09-04 1994-10-18 Hewlett-Packard Company Serial architecture for memory module control
JP2826404B2 (en) * 1991-06-04 1998-11-18 三菱電機株式会社 Semiconductor integrated circuit device and burn-in test method for semiconductor integrated circuit device
GB2271690B (en) * 1992-10-17 1996-09-11 Motorola Israel Ltd A communications system
JPH0884374A (en) * 1994-09-14 1996-03-26 Alpine Electron Inc Security device
KR100378112B1 (en) * 1995-07-25 2003-05-23 삼성전자주식회사 Automatic locking/unlocking system using wireless communication and method for the same
TWI227975B (en) * 2003-04-24 2005-02-11 Benq Corp Communication system, signal pre-processing apparatus and signal receiving apparatus thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI720005B (en) * 2015-08-24 2021-03-01 南韓商三星電子股份有限公司 Data processing system, data processing device, and method of operating a slave device

Also Published As

Publication number Publication date
CN101165675A (en) 2008-04-23
CN101165675B (en) 2012-09-12
TWI459207B (en) 2014-11-01

Similar Documents

Publication Publication Date Title
US8719613B2 (en) Single-wire serial interface with delay module for full clock rate data communication between master and slave devices
US10169282B2 (en) Bus serialization for devices without multi-device support
CN107852382A (en) Time-based equilibrium for the phase emitters of C PHY 3
CN107710183A (en) For 50 nanosecond spike wave filter test
CN107925564A (en) Multi-phase clock data recovery circuit is calibrated
JP4276981B2 (en) Serial communication apparatus, communication method thereof, and system apparatus using the serial communication apparatus
CN109644020A (en) C-PHY training mode for adaptive equalization, adaptive edge tracking and delay calibration
JP2016538747A (en) Method for improving MIPI D-PHY link rate with minimal PHY changes and without changing protocols
TW200828022A (en) System and method for implementing a single-wire serial protocol
JP4141373B2 (en) COMMUNICATION SYSTEM, REAL TIME CONTROL DEVICE AND INFORMATION PROCESSING SYSTEM
CN105393237A (en) Multi-phase clock generation method
TW200926600A (en) Clockless serialization using delay circuits
CN106409325B (en) Electronic system and associated method with interface circuit
CN107534548A (en) Clock and data recovery for more wired links based on pulse
TW200841595A (en) Flip-flop and shift register
US9880895B2 (en) Serial interface with bit-level acknowledgement and error correction
JP2022552852A (en) Small loop delay clock and data recovery block for high speed next generation C-PHY
JP4856090B2 (en) Bus communication system
JP4364041B2 (en) Data transfer circuit
WO2017089543A1 (en) Communication system
TW200837570A (en) A communication apparatus
TW201217975A (en) Digital NRZI signal for serial interconnect communications between the link layer and physical layer
EP3699769B1 (en) Method for arbitration of access to a shared memory, and corresponding electronic device
EP1304841A1 (en) Data transmission device, data transfer system and method
JP2008535305A (en) Electronic circuit that realizes asynchronous delay

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees