200823429 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種影像掃描器,且特別有關於一種 具有多個鏡頭組之影像掃描斋。 【先前彳支#f】 在三維量測中,量測裝置通常具有一個光源與一個鏡 頭。光源可以發射雷射光至待測物體的表面。鏡頭可以接 p 收反射來自物體表面的光曲線圖案影像,並將其成像於影 像感測器上。量測裝置可以依據三角測距原理 (Triangulation Theory)與得到的光曲線圖案影像計算待測 物體表面的二維座標。 美國專利第6,529,280號案揭示一種用於測量待測物 三維座標的三維測量裝置及其测量方法。其中,該三維測 量裝置係採用單鏡頭變焦控制方式,搭配可見光帶由上而 下地掃描待測物,進而透過接收反射掃描光帶之複數影 ⑩ 像,分別運算以決定每一物點的相位值大小,並經三角幾 何關係校正以將各該相位值轉換成複數高度資訊,以計算 出該待測物之三維座標。 由於習知量測裝置大多是採用單一鏡頭與/或固定焦 長的鏡頭設計,一種量測裝置只能在一特定掃描範圍内提 供一種固定的解析度(精度)量測。然而,不同的待測物體 有不同的量測需求,舉例來說,3D的齒型外型需要高解析 度且小範圍的三維量測,而大型物件或人體掃描需要低解 0949-A21831TWF(N2);P51950109TW;yianhou 6 200823429 二二^三。由於上述兩種需求在光機設計 頭使用者必須同時擁有不同焦長鏡 、>m及不ί曰3D ^田為’才足以應付不同尺寸的物件量 /貝J以及不同1測解析度的要求。 【發明内容】 有龜於此,本發明提供多鏡頭組影像掃插p。 本發明實施例之多鏡頭組影像掃描器,包括 A *这 二、一光源、-第-鏡頭組、-第二鏡頭:二處:機 光源設置於旋轉機構之上,用以產生一 、 π卞曲,以照射至 一被測物之表面,從而產生相應被測物之表面之、: 圖案影像。第一鏡頭組設置於旋轉機構之上,=光,線 么刀 -第-- 角午析度,用以取得光平面上第一解析度 ^ ^ <九曲線圖案影 弟二^頭組設置於旋轉機構之上,具有1二解㈣, 用以取付光平面上第二解析度之光曲線圖案影像。声^口。 元決定一掃插速度與一掃描角度,依據掃描速声盥二 度致使旋轉機構帶動光源、第一鏡頭組或第二於-么 方疋轉掃描。處理單元依據被測物之表面上一第二、、^進行 域所相應之第一解析度之光曲線圖案影像,計皙,^描, 描區域之表面的三維座標值,或依據被測物之上j = 二被掃描區域所相應之第二解析度之光曲線圖第 算第二被掃描區域之表面的三維座標值。 水衫像,計 為使本發明之上述目的、特徵和優點能更 一 下文特舉實施例,並配合所附圖示,詳細說明如下酸 〇949-A21831TWF(N2);P519501〇9TW;yianhou 200823429 【實施方式】 第1圖顯示依據本發明實施例之多鏡頭組影像掃描 依據本發明實施例之多鏡頭組影像掃描器1〇〇包括一 旋轉機構110、一光源120、一第一鏡頭組130、一第二鏡 頭組140與一處理單元150。在本實施例中,光源120、第 一鏡頭組130、與第二鏡頭組140係架設於旋轉機構110 | 之上,且其相對位置係固定的。本實施例係採用單一光源 120,如雷射二極體,用以產生一雷射光平面,以照射在被 測物的表面,從而產生相應被測物表面之光曲線圖案影 像。第一鏡頭組130與第二鏡頭組140可以分別取得不同 範圍與解析度之光曲線圖案影像。處理單元150可以決定 一掃描速度與一掃描角度,且依據掃描速度與掃描角度致 使旋轉機構110帶動光源120、第一鏡頭組130與第二鏡 頭組140進行旋轉掃描。處理單元150可以依據三角測距 • 原理與影像光點分析來分析光曲線圖案影像,從而計算被 掃描過之區域表面的三維座標值。值得注意的是,處理單 元150可以同時透過第一鏡頭組130與第二鏡頭組140擷 取光曲線圖案影像,並計算被掃描過之區域表面的三維座 標值,或是由第一鏡頭組130與第二鏡頭組140中擇一進 行擷取,並計算被掃描過之區域表面的三維座標值。 第2圖顯示依據本發明實施例之設置於旋轉機構上之 光源與第一與第二鏡頭組。 0949-A21831 TWF(N2);P51950109TW;yianhou 200823429 在此實施例中,光源120、第一鏡頭組130與第二鏡 頭組140係設置於旋轉機構110之上。第一鏡頭組13〇與 第二鏡頭組140係位於光源120的同一侧,且第二鏡頭組 140係相疊於第一鏡頭組130之上。第一鏡頭組13〇與第 二鏡頭組140的解析度係不同的。第一鏡頭組13〇為低解 析度鏡頭組,第二鏡頭組140為高解析度鏡頭組。第一鏡 頭組130包括一柱面鏡組131、一定焦鏡頭133與一影像 感測器135。其中,柱面鏡組131係用以調整定焦鏡頭133 • 由光源120發射出之光平面200取得之光曲線圖案影像的 範圍。為了過濾雜光,可依據光源波長在定焦鏡頭133前 加進一濾光鏡132。此外,為了取得清晰的影像,可以在 影像感測器135前加入一斜角座134,使得影像感测器135 的感測面與定焦鏡頭133的光軸間有一夾角。類似地,第 二鏡頭組140包括一柱面鏡組141、一濾光鏡142、一定焦 鏡頭143、斜角座144與一影像感測器145。其中,柱面鏡 組141係用以調整定焦鏡頭143由光源12〇發射出之光平 春面200取得之光曲線圖案影像的範圍。其中,定焦鏡頭133 與143具有不同的焦長。值得注意的是,旋轉機構no之 旋轉轴RA方向與光源12〇所發射出之光平面2〇〇之法線 方向係垂直。 第3圖顯示依據本發明實施例之鏡頭組的取像範圍。 如第3圖所示,光源12〇發射出光平面2〇〇。兩鏡頭 以設定為不同。高解析度者(第二鏡頭 W田角度小,低解析度(第一鏡独13〇)者掃描角度大。其 0949-A21831TWF(N2);P5195〇1〇9Tw:yjanh〇u 200823429 中,第一鏡頭組130的取像範圍係範圍300,第二鏡頭組 140的取像範圍係範圍400。在此實施例中,高解析度之第 二鏡頭組140的量測距離及縱深寬度與高度小於低解析度 之第一鏡頭組130。被測物若置於範圍300,則光平面200 交於被測物表面之光曲線圖案影像會成像於影像感測器 135。若被测物置於範圍400,則光平面200交於被測物表 面之光曲線圖案影像會成像於影像感測器145。 如前所述,兩鏡頭組的掃描角度可以設定為不同。在 第3圖的例子中,第一鏡頭組130與第二鏡頭組140的取 像範圍係不重疊的,如第4A圖所示。然而,在一些實施 例中,依據不同的設計需求,第一鏡頭組130與第二鏡頭 組140的取像範圍亦可以相互重疊,如第4B圖所示。 在一些實施例中,第一鏡頭組130與第二鏡頭組140 可以採用不同的焦長鏡頭,搭配適當像素數目之影像感测 器,可以使得取像範圍400之解析度較高而取像範圍300 之解析度較低。設計上兩者達到一定程度之差距,則可應 用於不同大小尺寸及解析度需求之掃描量測。在一些實施 例中,高解析度且小取像範圍之鏡頭組可以用於掃描較小 型物件或大型物件局部位置之精細掃描,而低解析度且大 取像範圍之鏡頭組可以用於大型物件之掃描,從而快速獲 得其外觀之三維資料。 必須提醒的是,第2圖中相關構件的設置位置僅為本 發明之例子之一。相關構件的設置位置可以依據設計上空 間安排的需要而有各種變化。總之,維持兩鏡頭組共用同 0949-A21831TWF(N2);P51950109TW;yianhou 10 200823429 一光源之特性即可。舉例來說,第一鏡頭組13〇與第二铲 頭組140可以分別設置於光源120的兩側,如 ’兄 示3圖所不。 在一些情況中,為了縮減多鏡頭組影像掃描器1〇()所佔 空間,可以在光源120相應光平面2〇〇之投光路徑中加入 一平面反射鏡121,以透過反射使得光路轉折,如^ = 所示。此外,第一鏡頭組130或第二鏡頭組14〇取得光二 線圖案影像之取光路徑中亦可以加入一平面反射鏡,以使 得光路轉折。第6B圖顯示在第二鏡頭組14〇之取光路押 • 中加入平面反射鏡146的例子。透過平面反射鏡的使用可 以使得光源120及鏡頭組130與140之位置可以進行調整 而達到節省空間之目的。 & 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟悉此項技藝者,在不脫離本發明之精 神和範圍内,當可做些許更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。200823429 IX. Description of the Invention: [Technical Field] The present invention relates to an image scanner, and more particularly to an image scanning apparatus having a plurality of lens groups. [Previous 彳支#f] In three-dimensional measurement, the measuring device usually has a light source and a lens. The light source can emit laser light to the surface of the object to be tested. The lens can be connected to p to reflect the image of the light curve from the surface of the object and image it onto the image sensor. The measuring device can calculate the two-dimensional coordinates of the surface of the object to be tested according to the triangulation theory and the obtained light curve pattern image. U.S. Patent No. 6,529,280 discloses a three-dimensional measuring device for measuring a three-dimensional coordinate of a test object and a measuring method thereof. The three-dimensional measuring device adopts a single-lens zoom control mode, and scans the object to be tested from top to bottom with the visible light band, and then receives the complex image 10 of the reflected scanning light band to calculate the phase value of each object point. The size is corrected by a triangular geometric relationship to convert each phase value into a complex height information to calculate a three-dimensional coordinate of the object to be tested. Since conventional measuring devices are mostly designed with a single lens and/or a fixed focal length, a measuring device can only provide a fixed resolution (accuracy) measurement within a specific scanning range. However, different objects to be tested have different measurement requirements. For example, the 3D tooth profile requires high resolution and small range of 3D measurement, while large objects or human body scans require a low solution of 0949-A21831TWF (N2). ); P51950109TW; yianhou 6 200823429 Two two ^ three. Because the above two requirements in the optomechanical design head users must have different focal length mirrors, >m and no 曰3D ^ Tian is 'sufficient enough to cope with different sizes of objects / shell J and different 1 resolution Claim. SUMMARY OF THE INVENTION There is a turtle here, and the present invention provides a multi-lens group image sweeping p. The multi-lens group image scanner of the embodiment of the invention includes an A*, a light source, a -first lens group, and a second lens: two places: the machine light source is disposed on the rotating mechanism to generate one, π Distorted to illuminate the surface of an object to be measured, thereby producing a surface of the corresponding object to be tested: a pattern image. The first lens group is set on the rotating mechanism, = light, line knife - first - angle angle resolution, used to obtain the first resolution on the light plane ^ ^ < nine curve pattern shadow brothers ^ head group setting Above the rotating mechanism, there is a two-solution (four) for taking the image of the light curve pattern of the second resolution on the light plane. Sound ^ mouth. The element determines a sweeping speed and a scanning angle, and causes the rotating mechanism to drive the light source, the first lens group or the second one to scan according to the scanning speed. The processing unit calculates the three-dimensional coordinate value of the surface of the region according to the first resolution image corresponding to the second and second surfaces on the surface of the object to be tested, or according to the measured object Above j = the second resolution of the corresponding scanned light map corresponds to the three-dimensional coordinate value of the surface of the second scanned area. The above-mentioned objects, features and advantages of the present invention will be further exemplified by the following specific embodiments, and in conjunction with the accompanying drawings, the following acid 〇 949-A21831TWF(N2); P519501〇9TW; yianhou 200823429 1 is a multi-lens group image scanner according to an embodiment of the present invention. The multi-lens group image scanner 1 includes a rotating mechanism 110, a light source 120, and a first lens group 130. A second lens group 140 and a processing unit 150. In this embodiment, the light source 120, the first lens group 130, and the second lens group 140 are mounted on the rotating mechanism 110|, and the relative positions thereof are fixed. In this embodiment, a single light source 120, such as a laser diode, is used to generate a laser light plane to illuminate the surface of the object to be measured, thereby producing a light curve pattern image of the surface of the corresponding object. The first lens group 130 and the second lens group 140 can respectively obtain light curve pattern images of different ranges and resolutions. The processing unit 150 can determine a scanning speed and a scanning angle, and cause the rotating mechanism 110 to drive the light source 120, the first lens group 130 and the second lens group 140 to perform a rotational scanning according to the scanning speed and the scanning angle. The processing unit 150 can analyze the light curve pattern image according to the triangle ranging principle and the image spot analysis to calculate the three-dimensional coordinate value of the surface of the scanned area. It should be noted that the processing unit 150 can simultaneously capture the light curve pattern image through the first lens group 130 and the second lens group 140, and calculate the three-dimensional coordinate value of the surface of the scanned area, or by the first lens group 130. The second lens group 140 is alternatively selected and the three-dimensional coordinate value of the surface of the scanned region is calculated. Fig. 2 shows a light source and first and second lens groups disposed on a rotating mechanism in accordance with an embodiment of the present invention. 0949-A21831 TWF(N2); P51950109TW;yianhou 200823429 In this embodiment, the light source 120, the first lens group 130 and the second lens group 140 are disposed above the rotating mechanism 110. The first lens group 13A and the second lens group 140 are located on the same side of the light source 120, and the second lens group 140 is superposed on the first lens group 130. The resolution of the first lens group 13〇 and the second lens group 140 are different. The first lens group 13A is a low resolution lens group, and the second lens group 140 is a high resolution lens group. The first lens group 130 includes a cylindrical lens group 131, a fixed focus lens 133, and an image sensor 135. The cylindrical mirror group 131 is used to adjust the range of the fixed-focus lens 133 and the light curve pattern image obtained by the light plane 200 emitted from the light source 120. In order to filter the stray light, a filter 132 may be added in front of the fixed focus lens 133 depending on the wavelength of the light source. In addition, in order to obtain a clear image, a beveled seat 134 can be added in front of the image sensor 135 such that the sensing surface of the image sensor 135 has an angle with the optical axis of the fixed focus lens 133. Similarly, the second lens group 140 includes a cylindrical lens group 141, a filter 142, a fixed focus lens 143, a beveled seat 144, and an image sensor 145. The cylindrical mirror group 141 is for adjusting the range of the light curve pattern image obtained by the light level spring surface 200 emitted from the light source 12A by the fixed focus lens 143. Among them, the fixed focus lenses 133 and 143 have different focal lengths. It is to be noted that the direction of the rotation axis RA of the rotating mechanism no is perpendicular to the normal direction of the light plane 2〇〇 emitted from the light source 12A. Figure 3 shows the imaging range of the lens group in accordance with an embodiment of the present invention. As shown in Fig. 3, the light source 12 〇 emits a light plane 2 〇〇. The two lenses are set differently. High-resolution (the second lens W field angle is small, low resolution (first mirror alone 13 〇)) scanning angle is large. Its 0949-A21831TWF (N2); P5195 〇 1 〇 9Tw: yjanh〇u 200823429, the first The image capturing range of one lens group 130 is the range 300, and the image capturing range of the second lens group 140 is the range 400. In this embodiment, the measuring distance and the depth width and height of the second lens group 140 of the high resolution are smaller than The low-resolution first lens group 130. If the object to be tested is placed in the range 300, the light curve pattern image of the light plane 200 intersecting the surface of the object to be measured is imaged on the image sensor 135. If the object to be tested is placed in the range 400 Then, the light curve pattern image of the light plane 200 intersecting the surface of the object to be tested is imaged by the image sensor 145. As described above, the scanning angles of the two lens groups can be set to be different. In the example of FIG. 3, The image capturing range of one lens group 130 and the second lens group 140 does not overlap, as shown in Fig. 4A. However, in some embodiments, the first lens group 130 and the second lens group are different according to different design requirements. The imaging ranges of 140 may also overlap each other, as shown in FIG. 4B. In some embodiments, the first lens group 130 and the second lens group 140 can adopt different focal length lenses, and the image sensor with a suitable number of pixels can make the resolution of the image capturing range 400 higher and the image capturing range. The resolution of 300 is low. If the design achieves a certain degree of difference, it can be applied to scan measurement of different size and resolution requirements. In some embodiments, high resolution and small image range lens group It can be used to scan small objects or fine-grained scans of large objects, while low-resolution and large-range lens groups can be used for scanning large objects to quickly obtain 3D data of their appearance. It must be reminded that The setting position of the relevant member in Fig. 2 is only one of the examples of the present invention. The setting position of the related member can be variously changed according to the needs of the design space arrangement. In short, the two lens groups are shared with the same 0949-A21831TWF (N2). ; P51950109TW; yianhou 10 200823429 A characteristic of a light source. For example, the first lens group 13 〇 and the second shovel head group 140 can be separately set On both sides of the light source 120, as shown in the 'Brothers' diagram 3, in some cases, in order to reduce the space occupied by the multi-lens group image scanner 1 〇 (), the light source 120 can be projected at the corresponding light plane 2 A plane mirror 121 is added to the path to transmit the light path through the reflection, as shown by ^ =. In addition, the first lens group 130 or the second lens group 14 can also be added to the light-taking path of the image of the second-line image. The plane mirror is such that the optical path is turned. Fig. 6B shows an example in which the plane mirror 146 is added to the light-receiving path of the second lens group 14. Through the use of the plane mirror, the position of the light source 120 and the lens groups 130 and 140 can be adjusted to save space. The present invention has been described in its preferred embodiments as a matter of course, and is not intended to limit the scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
0949-A21831 TWF(N2);P51950109TW;yianhou 11 200823429 【圖式簡單說明】 第1圖為一示意圖係顯示依據本發明實施例之多鏡頭 組影像掃描器。 第2圖為一示意圖係顯示依據本發明實施例之設置於 旋轉機構上之光源與第一與第二鏡頭組。 第3圖為一示意圖係顯示依據本發明實施例之鏡頭組 的取像範圍。 第4A圖為一示意圖係顯示依據本發明實施例之相應 p 不同鏡頭組之不重疊的取像範圍。 第4B圖為一示意圖係顯示依據本發明實施例之相應 不同鏡頭組之重疊的取像範圍。 第5圖為一示意圖係顯示依據本發明另一實施例之構 件配置例子。 第6A圖為一示意圖係顯示依據本發明實施例之具有 平面反射鏡之構件配置例子。 第6B圖為一示意圖係顯示依據本發明另一實施例之 • 具有平面反射鏡之構件配置例子。 【主要元件符號說明】 100〜多鏡頭組影像掃描器; 110〜旋轉機構; 120〜光源; 130〜第一鏡頭組; 140〜第二鏡頭組; 0949-A21831TWF(N2);P51950109TW;yianhou 12 200823429 150〜處理單元; 131、 141〜柱面鏡組; 132、 142〜濾光鏡; 133、 143〜定焦鏡頭; 134、 144〜斜角座; 135、 145〜影像感測器; 2 00〜光平面, RA〜旋轉轴; 300、400〜取像範圍; 121、146〜平面反射鏡。 0949-A21831TWF (N 2) ; P51950109TW ;yianhou 130949-A21831 TWF(N2); P51950109TW;yianhou 11 200823429 [Simplified Schematic] FIG. 1 is a schematic diagram showing a multi-lens group image scanner according to an embodiment of the present invention. Figure 2 is a schematic view showing a light source and first and second lens groups disposed on a rotating mechanism in accordance with an embodiment of the present invention. Fig. 3 is a schematic view showing the image capturing range of the lens group according to the embodiment of the present invention. Figure 4A is a schematic diagram showing the non-overlapping imaging ranges of the respective p different lens groups in accordance with an embodiment of the present invention. Fig. 4B is a schematic view showing the overlapping imaging range of the respective different lens groups in accordance with an embodiment of the present invention. Fig. 5 is a view showing an example of a configuration of a member according to another embodiment of the present invention. Fig. 6A is a schematic view showing an example of a configuration of a member having a plane mirror according to an embodiment of the present invention. Fig. 6B is a schematic view showing an example of a configuration of a member having a plane mirror according to another embodiment of the present invention. [Main component symbol description] 100~multi-lens group image scanner; 110~rotating mechanism; 120~light source; 130~first lens group; 140~second lens group; 0949-A21831TWF(N2); P51950109TW;yianhou 12 200823429 150~processing unit; 131, 141~ cylindrical mirror group; 132, 142~ filter; 133, 143~ fixed focus lens; 134, 144~ angled seat; 135, 145~ image sensor; 2 00~ Light plane, RA ~ rotation axis; 300, 400 ~ image capture range; 121, 146 ~ plane mirror. 0949-A21831TWF (N 2) ; P51950109TW ;yianhou 13