TW200821647A - Surface warp resistant optical devices - Google Patents

Surface warp resistant optical devices Download PDF

Info

Publication number
TW200821647A
TW200821647A TW096137161A TW96137161A TW200821647A TW 200821647 A TW200821647 A TW 200821647A TW 096137161 A TW096137161 A TW 096137161A TW 96137161 A TW96137161 A TW 96137161A TW 200821647 A TW200821647 A TW 200821647A
Authority
TW
Taiwan
Prior art keywords
optical
module
sub
angle
optical component
Prior art date
Application number
TW096137161A
Other languages
Chinese (zh)
Inventor
Tat Ming Teo
song-yang Li
Original Assignee
Finisar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/864,687 external-priority patent/US7572069B2/en
Application filed by Finisar Corp filed Critical Finisar Corp
Publication of TW200821647A publication Critical patent/TW200821647A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Head (AREA)

Abstract

In at least one example, an optical component includes a central optical surface proximate an optical axis, a peripheral portion extending radially from the central optical surface, and a stepped portion between the central optical surface and the peripheral portion. The stepped portion may be formed to raise the central optical surface above the peripheral portion.

Description

200821647 九、發明說明: 【發明所屬之技術領域】 本發嚇1於光學裝置以及具有職提高光钱置表面耐 撓曲性之特徵之光學裝置。 【先前技術】 I 光纖技術在透過通訊網路之資料傳輪中得以不斷的應用。使 * 用光纖技術之網路被稱為光通訊網路,並且诵、二 鬲平見及可靠 響性、高速率之資料傳送為特徵。 為了使用光纖技術以透過光通訊網路而進行通訊,光纖元 件’例如光纖收發器或轉發器被用來發射及接收光學信號。通 常,-光敝發器包含有-個或多個具有光學轉換器的光ς次模 組(” OSA”)。舉例而言,發射器光學次模組(// t〇sa。具有 用以發射光信號的光電子轉換器,並且接收器光學次模 鲁顧A")具有用以接收光信號的光電子轉換器。詳細而言,發射 器光學次模組接收-電學資料信號且將此電學資料信號轉化為 v -光學資料信號以於-光學網路上進行像送。一接收器光學次模 /組自此光學網路接收-光學資料信號且將接收之光學資料信號 轉換為-電學資料信號以進-步使用與/或處理。發射器光學次 模組及接收ϋ光學次歡兩者均包含有執行上述功能之特定的 光學元件。 舉例而言…典型的發射器光學次模組.(.t〇sa)包含有一 200821647 光學發射器’例如-發光二極體或—雷射二極體,用以將光學信 號傳奴-先誠歧導。此絲發射賴常被—至少部份透^ 之罩體所駿’當令林㈣雜此絲職傳送至綠時,此 罩體能保護光學發射器。此罩體可包含有一用以聚焦光學信號傳 輸之透鏡。 ' ‘ —典削接㈣光學次模組包含有-光學接收器,例如一插 _針光電二極體或崩瀉光二極體(APD)。此光學接收器通常被至 =份_之罩體,此罩體絲護絲接錄且允許光學接 收益自-光雜收-光學信號。此罩體可包含有一用以聚焦自光 纜接收之光學信號傳輪之透鏡。 此魏及其他絲元舰常麵錢合應之光學 當-光學權人配合至—保持件中時,祕騎= 學_之表面輪廓。當此光學元件使雌軟或錢形之材料,例 •:塑料此問題尤為明顯。進一步而言,當光學次模組運作光 予70件時會經堂大量之熱能。此熱能會致使光學元件相對於保持 件產生膨脹,由於保持件及光學元件之熱膨脹係數㈤迅也她& 細nalexpansiGn5CTE)的獨而導致在絲秘上產錢力, 轉力會紐此絲元叙絲上赶應力。絲树表面上的 應力會較材_反射率與人錢折醉的變化。此種變化合透 過改變聚焦點尺寸、影像之位置與/或影像之質量而干擾此光學 元件的運作效率。 200821647 先前用於減少由於壓入配合與/或熱膨脹所引起的光學元 件表面應力的嘗試包含有使用具有相近的熱膨脹係數(CET)的 保持件及光學元件。此種方法往往是不切實際的,因為這樣的材 料往往難以獲得且/或材料之選擇已經至少部份地受到產品規 格的限制。其他的嘗試包含使用適應性的黏合材料以將光學元件 一 、Ό δ至保持件。然而這些方法至少部份會由於額外之處理步驟與 獲得及使用此種材料所帶來的額外費用而成本昂貴。 •【發明内容】 在本發明之至少一實施例中,一種光學元件包含有一中央光 學絲,係靠近於-絲,—外卿份,係自此巾央光學表面經 向延伸,以及-階梯部份,係配設於此中央光學表面與此外圍部 份之間。此階梯部份之形成係用以提升此中央光學表面於此外圍 部份^L。 鲁在本發明之另一實施例中,一種光學元件包含有一光學表 面,此光學表面具有-於其中延伸之光學軸線.;一外圍部份,係 '相鄰於此光學表面而配設:;以及一邊界部份,係相鄭於此外圍部 二份而配設。在這樣一實施例中,其中至少此外圍部份之一部份於 此邊界部份及此光學表面之間定義了一凹進部分。 在本發明之又-實施例中,一種光學次模組包含有一光機保 持件及—絲元件,財絲學元件侧定於此光鄉持件上。、 此光學元件可包含有-中央光學表面,係靠近於一光軸,一外園 200821647 4伤’係自此中央光學表面徑向延伸,以及一階梯部份,係配設 於此中央光學表面與此外圍部份之間,其中此階梯部份之形成用 以提升此中央光學表面於此外圍部份之上。 本發明之上述及其他特徵將在如下的說明書及所附之申請 專利範圍中更加全面地加以闡述,或者可以從下文提出之本發明 的實踐中得出。 【實施方式】 一本發明在此提供之裝置、系統及方法用以減少由於壓入配 合、熱膨脹和/或熱收_壓力所帶來的光學元件表面之應力。 林發明之至少-實施射,—絲元件包含有至少一光學表 面、-外圍部份及-邊界部份。此光學元件包含有至少一配設於 此外圍部份及光學表面間之階梯部份,此階梯部份相對於外圍部 '份提升了此光學表面,用謂成—提升之光學表面。此種配置至 鲁少能部份地將提升之絲表面與此提狀光學表_其他部份 上_力隔_。此邊界部份可摘於外_份與此提升之光學 表面而提升’以致在提升之光學表面與此邊界部份間形成一調 ….節。此種配置可允許邊界部份對提升之光學表面提供轴向及徑向 .保護。 、 具有歸絲絲姑學林㈣施衫關光學次模 、组,包含有任何的综合於光電子收發器及轉發器模組中的光學次 觀。此外,具有提升光學表面的光學元件能實施為與資料速 200821647 率作業波長、傳送標準、場合溫度範圍、連接器類型、模組類 型或到達的光學次模組無關的任何光學次模組。 ^ 7 至「第1D圖」係為一光學元件1〇之示意圖。 坪細而^ ’「第1A圖」係為一俯視圖、「第1B圖」係為一仰視 圖、「第ic圖」係為—平面圖、以及「第m圖」係為沿著「第 ‘ 1C圖」之A_A線剖開之一纖面圖。為了參閱方便,光學元件 10作為一同心的光學元件而描述,其圍繞一轴線n而同心,軸 、線11可與-組件之光轴相結合,組件中光學元件作為一部份。 ^此’-軸向尺寸通常對應於—深度尺相徑向尺寸通常對應於 見度尺寸。進-步而言,為了便於參閱,儘描述光學元件⑺之 一個侧面。本描述也同樣應用於光學元件10之其他側面。進一 步而言,當描述-成角度的光學表面時,光學元件可包含有平 :面、球形與/或非球形表面以形成透鏡、棱鏡或其他類型的光學 裝置。 ' 请蒼閱「第1D圖」,光學元件1〇通常包含有一靠近中央部 \、.伤之提升的絲表面12,例如—提升之透絲面或提升之棱鏡表 - 面。外圍部份13如圖所示自提升的光學表面12徑向延伸。在至 )貝例中’ &升的光學表面U透過一階梯部份14自外圍部 如13上攸升且分離。因此,階梯部份14在提升的光學表面 與外圍部份13間提供一轴向分離。 在至少一實施例中,光學元件1〇更包含有一邊界部份15。 200821647 邊界部份15可自賴赌13掏彻㈣上的延伸。詳 細而言’邊界部们5可依尺稍造以超缺升的 抽 向延:導致在提升的光學表面12與邊一 邊==15峨舰編12蝴可鱗邊界部份 保龜升的光學表面12。邊界部份b徑向超出賴部份13 的延伸,與外圍部份13及階梯部份14的配置一樣,可減少 之應力,透過光學表面12中的應力減少可減少 先予兀件Η)之絲触人顿鶴力顿果。當轉於—光學 次模_光學树健時,此應力可由於壓縮與/錄力產生。 「第2圖」係為一保護於一光機保持件20上的光學元件1〇 之橫截面®。光學元件1Ό可安裝或結合於光機保持❹。光學 元件中之應力可至少部份由於光機保持件2〇與光學元件ι〇間之 尺寸差別而產生。舉例而言,在將轉元件1()安驗入於光機 保#件20 可產生機械應力。詳細而言,當光學元件⑺之外部 尺寸略大於光機保持件20之内部尺寸時可產生安裝應力。祕 寸之不同產生了將光學裝置相對於光機保持件2〇保持於期望之: 位置及方向的壓力。 當加熱光學元件10與/或光機保持件2〇時可產生熱應力。 詳細而言,當光線通過光學元件時部份光線可被光學元件说 吸收。隨著光線被吸收,光學元件10被加熱且膨脹。光機保持 件20不能吸收很多的光線與/或可由在一給定的溫度差別範圍 200821647 内較之光學元件膨脹更少的材料製成。其他的熱條件可致使光機 保持件20較之光學元件1〇更供韵冷卻與,或虔縮。這些及其他 之獨可導致錢縣件2〇較之絲元件1()更小。此結果可產 生光學元件10上之額外之塵力,此麼力可產生光學元件⑺之 的應力。 此種光學元件10的配置可減少提升的光學表面12上產生的 應力,_言’隨著光學元件1G被_,例如被上述之光機 保持件_ ’此應力可首絲_界部份15。雜部份15透過 一間隙與提升的光學表面12相分離。結果,自邊界部份15傳送 '、-光學7D件10之其他部份之應力被傳送至外_份13。 自外_份I3傳送於光學元件其他部份之應力可由階梯部 份14所影響。詳細而言,來自賴部份之應力可集中或靠近於 :祷份14之晴♦這可部份由於_部份Η部份的幾何 突變所導致。騎慮此職,絲元件1G之配置了作 提升的光學表面!:2上的應力。 ^作用於 鮮轉K)之目猶齡齡絲絲上的應力也有助於 田經叉溫度升南、溫度降低、盥/咬來 、 I /、/絲“缝人或其他作業帶 來的應力時獲得-更加均句之表面形變。因此,不考岸岸力來 二光:元们。之配置有助卿^ 獲传一更加均勻之表面形變。 .「第3A圖」及「第3B圖」揭露了 —光學次模組⑽。光學 11 200821647 次模組⑽係為-發射器、光學次模組(T〇SA)。然而,因為本發 明實施例能綜合為-發射器光學次模組或接收器光學次模組,光 學次模組100可為一接收器光學次模組(R〇SA)。 光學次模組100包含有_圓桶搬,圓桶搬與圓柱型封裝 (TO-can)綱相連接。請參閱「第3B圖」,圓柱型封裝(τ〇•咖) 崩部份地配設於圓桶102中。圓柱型封裝(TO-can) 104包含 有-具有多個電導線應的頭部ϊ〇6,電導線1〇8配設為使用一 收發器或轉發器模組之印刷板及相關電路(圖未示)與圓柱. 型封裝(TO-can) 104之元件電性連接,其中光學次模組⑽組 裝於此收發器、或轉發器模組中。f導線1〇8使得電能及電信號傳 送來往於圓柱型封裝(TO_can)1〇4而傳送。圓柱型封裝⑽咖〉 104也包含有-與頭部106相連接之罩體ιι〇。如同這裡之其他 之處所揭露的_樣’罩體11()為不同之圓柱型封裝⑽猶)元 > 件產生一密封真空腔112。 圓柱型封裝(T0_can) 1〇4也可選擇地包含有一透鏡114, 其可部份地定位於罩體110中。「第3A圖」及「第则 厂、之透鏡114包含有一提升的光學表面、一外圍部份、及一邊界 .部份。-緩釋部份定義於此邊界部份及提升的光學表關。儘^ 圖不之透鏡114為-球形透鏡,透鏡114也可為其他類型之透 鏡,包含但不健限制於,一半球形透鏡。或者,在至少罩體HO •之對應部份為可透光之處可去除透鏡m,或者透鏡叫能被安 12 200821647 裝於罩體110中之一窗口所取代。 例舉之光學次模組100定義了與一第二腔體n7相通之第一 腔體116,兩者都由圓桶102所定義。此第一及第二腔體ns及 117能排空或容納一些種類之氣體,例如空氣。光學次模組1〇〇 也可包含有一管理背向反射之光學裝置2〇〇。以下將結合「第4a 圖」及「第4B圖」詳細描述光學裝置2〇〇。在此實施例中,光 學裝置200配設於第二腔體η?之中。光學次模組1〇〇可更包含 釀有由圓桶102所定義之第三腔體118。第三腔體118與第二腔體 117相對。離第二腔體U8最近的為一開口 。開口工如定義 於圓桶102之-終端。開π 120配設為接收一光學連接器,例如 一光纖頭套,以便於光纖與光學次模組1〇〇之耦合。在另一實施 例中,開口 120可配置為對應於光波導之光學連接器以便於光波 導與光學次模組100相結合。 I 如上所述,圓柱型封裝⑽娜)可包含有不同的元件。舉 =而言,例舉之光學次模組100之圓柱型封裝(τα随)綱包 S有-定位於密封真空腔112中之發射器122。發射器⑵可為 任何麵之發射1,包含但不健_胸梅A _糊之任何發 、时舉例而5,發射斋m可為法布里_伯羅雷射器、分散回饋 (DFB)雷射器或其他之邊緣發射器。發射器μ也能為一垂直 射H (VCSEL)或發光二極體(LED)。發射器m使 用由電導線108供紅電能以將電信號轉化為對應之光學信號 13 200821647 150 ° 在「第3A圖」及「第3B圖」中所示之實施例中,光學次 模組100之配設致使由發射器122產生之光學信號15〇穿過密封 真空腔112及透鏡114,透鏡114聚焦光學信號15〇。然後光學 #唬150穿過第一腔體116、穿過光學裝置2〇〇、穿過第三腔體 118亚且進人開π 120中。當—光縵(圖未示)之光學雜器插 入於開口 120中’光學信号虎15〇能進入光爨之光纖中,並且因 此通過此光麵傳送至另—光學元件。隨著光學信號15()穿過光 學裝置2GG,光學裝置進人光纖或光波導之前變向光學信號 150 -次或多次。在其他之事情中,此變向減少或避免發射器122 由於背向反射所產生的性能劣降。 一*圖」詳細揭露了光學裝置㈣,請參閱「第sa圖」 「弟3B圖」及「第从圖」。可使用不同之方式用以執行光勢 置200之功能。光學裝置包含有一提升的光學表面。光與 ^更^3有-外圍部份及—邊界部份。一轉部份定義於政 故界部份域相縣表關。因此,_露之絲裝置200 , 以 配f.包含有除了示例之架構外的多個不同方式實施方式用 理月向反射。 口此’可以理解的是在此揭露之架構僅僅是示例性的,且 ^村限制本發明之顧。而且,也綱樣使用任何直 有效貫施在此揭露之功能的其他架構或架構之組合。健透: 14 200821647 例舉之方式,於在此揭露之光學次模組之一些實施例中,任何能 夠兩次變向光學信號之光傳導裝置能用以取代光學裝置200。 光學襞置200也能單獨或與圓桶1〇2完整地形成。此外,根200821647 IX. Description of the invention: [Technical field to which the invention pertains] The present invention is directed to an optical device and an optical device having the feature of improving the surface flexural resistance of the optical cell. [Prior Art] I Fiber technology is continuously applied in the data transmission through the communication network. The network that uses * fiber optic technology is called an optical communication network, and features a high-speed, high-speed data transmission. In order to communicate using optical fiber technology through an optical communication network, fiber optic components such as fiber optic transceivers or transponders are used to transmit and receive optical signals. Typically, the optical chirp contains one or more optical submodules ("OSA") with optical transducers. For example, a transmitter optical sub-module (//t〇sa. having an optoelectronic converter for emitting an optical signal, and a receiver optical sub-mode A") has an optoelectronic converter for receiving an optical signal. In detail, the transmitter optical sub-module receives the electrical data signal and converts the electrical data signal into a v-optical data signal for image transmission on the optical network. A receiver optical submode/group receives the optical data signal from the optical network and converts the received optical data signal into an electrical data signal for further use and/or processing. Both the transmitter optical sub-module and the receiving optical sub-module contain specific optical components that perform the above functions. For example...a typical emitter optical submodule. (.t〇sa) contains a 200821647 optical emitter such as a light-emitting diode or a laser diode to pass optical signals to the slave - Xiancheng Discrimination. This ray is often used to protect the optical transmitter when the lining of the lining is at least partially transparent. The cover may include a lens for focusing optical signal transmission. ' ‘ — The coded (4) optical sub-module contains an optical receiver, such as a pin-connected photodiode or a collapsed photodiode (APD). The optical receiver is typically spliced to the cover, which is received and allows optical access to the optical-optical signal. The cover may include a lens for focusing the optical signal transmission received from the cable. This Wei and other silk ship ships face-to-face optics. When the optical right person fits into the holder, the secret ride = the surface contour of the school. This problem is especially noticeable when the optical element makes a soft or money-shaped material. Further, when the optical sub-module operates 70 pieces of light, it will consume a lot of heat. This thermal energy causes the optical element to expand relative to the retaining member. Due to the thermal expansion coefficient of the retaining member and the optical member (five), she & fine nalexpansiGn5CTE) alone leads to the production of money in the silk secret, the revolving force will be the silk element Suzie catches the stress. The stress on the surface of the silk tree will change from the material _ reflectivity and the drunk. This change interferes with the operational efficiency of the optical component by changing the size of the focus point, the position of the image, and/or the quality of the image. 200821647 Previous attempts to reduce the surface stress of optical components due to press fit and/or thermal expansion have included the use of retainers and optical components having similar coefficients of thermal expansion (CET). Such methods are often impractical because such materials are often difficult to obtain and/or the choice of materials has been at least partially limited by product specifications. Other attempts have included the use of an adaptive bonding material to bring the optical components, δ, to the holder. However, these methods are at least partially expensive due to the additional processing steps and the additional costs associated with obtaining and using such materials. • [Invention] In at least one embodiment of the present invention, an optical component includes a central optical fiber that is adjacent to the filament, and the outer portion is extended from the optical surface of the napkin, and the step portion The portion is disposed between the central optical surface and the peripheral portion. The stepped portion is formed to lift the central optical surface to the peripheral portion. In another embodiment of the invention, an optical component includes an optical surface having an optical axis extending therein, and a peripheral portion disposed adjacent to the optical surface: And a boundary part, which is arranged in two parts of the outer part. In such an embodiment, at least one of the peripheral portions defines a recess between the boundary portion and the optical surface. In still another embodiment of the present invention, an optical sub-module includes a optomechanical retaining member and a wire member, and the financial element is laterally positioned on the glazing member. The optical component may include a central optical surface adjacent to an optical axis, and an outer garden 200821647 4 indentation radially extending from the central optical surface, and a stepped portion disposed on the central optical surface Further, between the surrounding portions, the stepped portion is formed to lift the central optical surface above the peripheral portion. The above and other features of the present invention will be more fully described in the following description and the appended claims. [Embodiment] A device, system and method provided herein for reducing stress on the surface of an optical component due to press-fit, thermal expansion and/or heat-receiving pressure. At least the embodiment of the invention, the wire element comprises at least one optical surface, a peripheral portion and a - boundary portion. The optical component includes at least one stepped portion disposed between the peripheral portion and the optical surface. The stepped portion enhances the optical surface relative to the peripheral portion, and is used as an elevated optical surface. This configuration to Lu Shaoneng will partially raise the surface of the wire with this lifting optical table _ other parts on the _ force _. The boundary portion can be lifted from the outer portion and the raised optical surface so as to form a tone between the raised optical surface and the boundary portion. This configuration allows the boundary portion to provide axial and radial protection to the elevated optical surface. It has the optical sub-mode and group of the 丝丝丝姑学林 (4) 衣衣关, including any optical sub-view integrated in the optoelectronic transceiver and transponder module. In addition, an optical component having an elevated optical surface can be implemented as any optical sub-module that is independent of the data rate of the operating speed, the transmission standard, the temperature range of the connector, the type of connector, the type of module, or the optical sub-module that arrives. ^ 7 to "1D" is a schematic diagram of an optical component.坪细和^ '"1A" is a top view, "1B" is a bottom view, "the ic" is a plan, and the "m" is along the "1" The A_A line of the figure is a section of the fiber surface. For ease of reference, the optical element 10 is described as a concentric optical element that is concentric about an axis n that can be combined with the optical axis of the assembly with the optical elements in the assembly as part of it. ^ This 'axial dimension' generally corresponds to - the depth gauge phase radial dimension generally corresponds to the visibility dimension. For further steps, one side of the optical element (7) is described for ease of reference. This description is equally applicable to the other side of the optical component 10. Further, when describing an angled optical surface, the optical element can comprise a flat, spherical, and/or aspherical surface to form a lens, prism, or other type of optical device. 'Please read the 1D picture. The optical element 1〇 usually contains a raised surface 12 near the central part, such as a raised silk surface or a raised prism surface. The peripheral portion 13 extends radially from the elevated optical surface 12 as shown. The optical surface U of the & liter is lifted and separated from the peripheral portion such as 13 through a step portion 14. Thus, the stepped portion 14 provides an axial separation between the elevated optical surface and the peripheral portion 13. In at least one embodiment, the optical element 1 further includes a boundary portion 15. 200821647 The boundary part 15 can be extended from the gambling 13 (four). In detail, the 'boundary parts 5 can be slightly extended by the ultra-deflection: resulting in the optical surface of the raised surface 12 and the side of the side ==15 峨 编 蝴 蝴 蝴 蝴 蝴 蝴Surface 12. The boundary portion b extends radially beyond the extension of the portion 13 and, like the arrangement of the peripheral portion 13 and the step portion 14, reduces the stress, and the stress reduction through the optical surface 12 reduces the amount of the first member. Silk touches the human body. This stress can be generated due to compression and/or recording force when turning to the optical submode _ optical tree. The "Fig. 2" is a cross section ® of the optical element 1 保护 protected on a optomechanical holder 20. The optical element 1 can be mounted or bonded to the optomechanical holder. The stress in the optical element can be at least partially due to the difference in size between the optical holder 2 〇 and the optical ι. For example, mechanical stress can be generated by checking the rotating element 1() into the optical device #20. In detail, mounting stress can be generated when the outer dimension of the optical element (7) is slightly larger than the inner dimension of the optomechanical holder 20. The difference in the secret creates a pressure that maintains the optical device relative to the optomechanical holder 2 at the desired position and orientation. Thermal stress can be generated when the optical element 10 and/or the optomechanical holder 2 are heated. In detail, part of the light is absorbed by the optical element as it passes through the optical element. As the light is absorbed, the optical element 10 is heated and expanded. The optomechanical holder 20 is not capable of absorbing a significant amount of light and/or can be made of a material that swells less than the optical element within a given temperature differential range of 200821647. Other thermal conditions may cause the optomechanical holder 20 to cool and squash more than the optical element. These and other factors alone can cause the Qianxian component to be smaller than the silk component 1(). This result can create additional dust forces on the optical component 10 which can create stresses in the optical component (7). The configuration of such an optical element 10 can reduce the stress generated on the elevated optical surface 12, as the optical element 1G is _, for example, by the above-mentioned optical machine holder _ 'this stress can be the first line 15 . The impurity portion 15 is separated from the elevated optical surface 12 by a gap. As a result, the stress transmitted from the boundary portion 15 and the other portions of the optical 7D member 10 are transmitted to the outer portion 13 . The stress transmitted from the outer portion I3 to other portions of the optical element can be affected by the step portion 14. In detail, the stress from the Lai part can be concentrated or close to: the fineness of the prayer 14 ♦ This can be partly due to the geometrical mutation of the _ part of the Η part. Taking care of this position, the wire component 1G is configured for an enhanced optical surface! :2 stress on. ^The stress acting on the silk of the younger age K also contributes to the temperature rise of the Tianjing fork, the temperature drop, the 盥/bite, I /, / silk "stress caused by sewing or other operations" Obtained - the surface deformation of the more uniform sentence. Therefore, do not test the shore force to the second light: Yuan. The configuration helps the Qing ^ to pass a more uniform surface deformation. "3A" and "3B Revealed the optical sub-module (10). Optics 11 200821647 The sub-module (10) is a transmitter and an optical sub-module (T〇SA). However, since the embodiment of the present invention can be integrated into a transmitter optical sub-module or a receiver optical sub-module, the optical sub-module 100 can be a receiver optical sub-module (R〇SA). The optical sub-module 100 includes a _ barrel moving, and the drum is connected to a cylindrical package (TO-can). Please refer to "Picture 3B". The cylindrical package (τ〇•咖) is partially disposed in the drum 102. The cylindrical package (TO-can) 104 includes a head ϊ〇 6 having a plurality of electrical conductors, and the electrical wires 1 〇 8 are arranged to be printed boards and associated circuits using a transceiver or transponder module (Fig. Not shown) is electrically connected to the components of the cylindrical package (TO-can) 104, wherein the optical sub-module (10) is assembled in the transceiver or the transponder module. The f-wire 1〇8 allows the electrical and electrical signals to be transmitted to and from the cylindrical package (TO_can)1〇4. The cylindrical package (10) coffee package 104 also includes a cover ιι - connected to the head 106. The stencil's body 11 (), as disclosed elsewhere herein, produces a sealed vacuum chamber 112 for a different cylindrical package (10). The cylindrical package (T0_can) 1〇4 also optionally includes a lens 114 that is partially positionable within the housing 110. "3A" and "Fourth Factory Lens 114" comprise a raised optical surface, a peripheral portion, and a boundary portion. - The sustained release portion is defined at the boundary portion and the enhanced optical surface The lens 114 is a spherical lens, and the lens 114 may be other types of lenses, including but not limited to, a semi-spherical lens. Alternatively, it may be permeable to at least a corresponding portion of the cover HO. Wherein the lens m can be removed, or the lens can be replaced by a window mounted in the cover 110 by the Ans 12 200821647. The illustrated optical sub-module 100 defines a first cavity that communicates with a second cavity n7. 116, both defined by the drum 102. The first and second chambers ns and 117 can evacuate or contain some type of gas, such as air. The optical sub-module 1 can also include a management back. The optical device for reflection is 〇〇. The optical device 2 详细 will be described in detail below in conjunction with "Fig. 4a" and "Fig. 4B". In this embodiment, the optical device 200 is disposed in the second cavity η?. The optical sub-module 1 can further comprise a third cavity 118 defined by the drum 102. The third cavity 118 is opposite the second cavity 117. The closest to the second cavity U8 is an opening. The opening work is defined as the terminal of the drum 102. The opening π 120 is configured to receive an optical connector, such as a fiber ferrule, to facilitate coupling of the optical fiber to the optical sub-module. In another embodiment, the opening 120 can be configured to correspond to an optical connector of the optical waveguide to facilitate combining the optical waveguide with the optical sub-module 100. I As mentioned above, the cylindrical package (10) can contain different components. For example, the cylindrical package (τα) package S of the exemplary optical sub-module 100 has a transmitter 122 positioned in the sealed vacuum chamber 112. The transmitter (2) can be any surface of the emission 1, including but not healthy _ chest plum A _ paste any hair, time for example 5, launching m can be Fabry _ Burrow laser, decentralized feedback (DFB) A laser or other edge emitter. The emitter μ can also be a vertical ray H (VCSEL) or a light emitting diode (LED). The transmitter m uses red power from the electrical conductors 108 to convert the electrical signals into corresponding optical signals. 13 200821647 150 ° In the embodiment shown in "3A" and "3B", the optical sub-module 100 The arrangement causes the optical signal 15 产生 generated by the emitter 122 to pass through the sealed vacuum chamber 112 and the lens 114, and the lens 114 focuses the optical signal 15 〇. The optical #唬150 then passes through the first cavity 116, through the optical device 2, through the third cavity 118, and into the π 120. When an optical squirrel (not shown) is inserted into the opening 120, the optical signal can enter the optical fiber of the aperture and is thereby transmitted to the other optical element through the optical surface. As the optical signal 15() passes through the optical device 2GG, the optical device changes direction to the optical signal 150 one or more times before entering the optical fiber or optical waveguide. Among other things, this change reduces or avoids the performance degradation of the emitter 122 due to back reflections. The optical device (4) is disclosed in detail in the "Photo". Please refer to the "Sa Figure", "Division 3B" and "Second Diagram". Different methods can be used to perform the function of the light potential 200. The optical device includes a raised optical surface. Light and ^ have ^ - peripheral parts and - boundary parts. One part of the transition is defined in the political sector. Thus, the ray silk device 200, with f. including a plurality of different embodiments other than the exemplified structure, is used for moon reflection. It is to be understood that the architecture disclosed herein is merely exemplary and that the invention limits the invention. Moreover, the framework also uses any other architecture or combination of architectures that are effective in the functionality disclosed herein.健透: 14 200821647 By way of example, in some embodiments of the optical sub-module disclosed herein, any light-conducting device capable of two-way optical signals can be used in place of optical device 200. The optical device 200 can also be formed completely or separately from the drum 1〇2. In addition, the root

據特定應用之需要,光學m⑽能由與圓桶搬同樣之材料形 成,或由與圓桶102不同之材料形成。光學裝置2〇〇能由任何透 光材料所形成,包含但補僅關於,任何透級喊塑料。舉 例而a ’光學裝置200與圓桶1〇2其中之一或兩者能由聚醚酸亞 胺塑料(Ultem⑧)形成。形成光學裝置2〇〇之材料必須為透光的 用以允許光學信號150傳過光學装置2〇〇。 光千衣置200包含有兩個成角度之表面,絲信號15〇必須 通過此兩個表誠退出光學次模組·。在此所述之〃成角度 心-不垂直於域縣學路徑之縱軸的表面,例如,—光學次模 組/光學軸線⑸。此光學次模組/光學軸線152定義為發射器 122之表面上產生光學信號15〇之點與此光纖或光波導上光學信 號⑽最終導向之中心點間之路徑,如「第犯圖」所示,光學 次模組1〇0中之光學次模組/光學轴線152也對應於光學次模組 100之縱轴。舉例而言,光學I置2〇〇 之第一及第二表面202及 204相對於光學次模組/光學軸、線⑸形成角度。 成角度之第-及第二表面2〇2及綱其中之一或兩者可為平 面、球面、或非球面、或其中之—些組合。當此成角度之第一及 第二表面搬謂其中之—或兩者為球面或非球 球 15 200821647 之軸線將傾斜為成角度之第—及第二表面搬及施之期望的角 度。在—些應用中’用於成角度之第一及第二表面202及204其 中之一或兩者的球面或非球面的使用能將透鏡114之功能與此一 個或多個成角度之表面相結合,因此消除了對透鏡114之需求。 上述方面之個或多個之結合能微調表面輪靡以致能獲得最佳 的地點尺寸、結合效率、減少的背向反射及結合之穩定性。 光學裝置200定位於圓捅102之中以致光學信號15〇必須穿 » 過光學裝置200以通過開口 120退出光學次模組1〇〇。特別是, 光學4號150首先入射於第一表面202上且然後通過第二表面 204退出光學裝置2〇〇。在一實施例中,此成角度的第一表面2犯 可隨意地塗覆有抗反射塗層,隨著光學信號15〇穿過此成角度的 第一表面202,此有助於減少或避免背向反射。 通常,光學信號150透過光學裝置2〇〇的變向之幅度為第一 及第—表面202及204的表面角度之一功能。因此,透過改變第 一及第二表面202及204之表面角度其中之一或兩者,能獲得不 同的期望之效果。 隨著光學信號150穿過此成角度的第一表面2〇2,此成角度 /的第一表面202之角度致使光學信號15〇偏離光學次模組/光學 軸線152〃 λ〃度而導向。類似地,隨著光學信號150穿過此成角 度的第二表面204,隨著光學信號15〇接近插入於開口 120之任 何光纖,成角度的第二表面204之角度使得光學信號150偏離光 16 200821647 料模組/光學軸線152〃 ω〃度而變向。—般而言,角度,,①,, 洛入插入於開Π 120巾之任何光纖之數字雜巾。 參閱「第4B圖」’其揭露了光學襄置200之設計方法。為 了麥閱方便’所示之光學表關為平面。可紐解岐此光風壯 置也可包含有-提升之光學表面、一外圍部份、及一邊界部二衣 ▲此邊界部份巾之-_p份定射—轉雜,驗釋部份係配 叹於此提升之光學表面及外圍部份間。通常,「第4B目」揭露 相對於光學裝置 ^位之光欖加,親2ig之粒應致使其 能插入於「第3A圖」至「第4A圖」中之光學次模組舰之開 口 120中。「弟4B圖」展示了一第一距離以及第二距離心。第 一距離dl定麟沿著y軸的兩_之距離,點分 ,”過第-表面料入且穿過第二表面謝退 距離犯定義為沿著y軸的兩點間之距離,此兩點分別為光 子U虎150牙過成角度的第二表面2〇4退出之點及光學信號⑼ 入射於-光纖208之表面206上之點。請參閱「第3β圖」及「第 从圖」,光纖施可包含有插入於開口⑽中之规21〇之一部 份。在一實施射,第—距離di大約等於第二距賴,而在其 他實施何中,第一距離dl與第二距離汜不相等。 請茶閱「第4B圖」’角度β為成角度的第一表面2〇2及一假 心、的表面間之肖度’此假想的表面大致垂直於光學次模組/光學 Τ由、、泉152。成角度的第-表面2〇2之表面角度β之幅度應致使很少 17 200821647 樹產生背向反射,此背向反射隨著光學信號m入射於第一 表=上將反射鳴請。恤_朗第二表面綱 及U表面間之角度,此假想的表面垂直於光學次模組/光 學軸線152。在一實施例中,角度β及α為不相等的,而在其他實 施例中角度β及α為彼此大致相等的,。 / 斤如上所述,由光學裝置200變向之光學信號15〇之内容分別 為第一及第二表面202及204的表面角度β及CC之-功能。「第4Β >圖」所不之角度Θ1-Θ5 (Θ1至Θ5)最終由角度㈣且由形成光學 衣置2〇〇之材料所決定巧鄭如之相對值部份地由以下需要所 決定’即’入射於表面206上的光學信號150應照射於靠近光纜 210之光纖208的中心且落入於光纖2〇8之數字孔徑中。「第 圖」中所示之法線212、2i4、218及220各垂直於光學裝置· 之成角度的第一及第二表面202或204之一。 咕參閱第2B圖」’ 一種決定平面之角度口及以之方法能透過 -使用以下三個等式而表示: 1) sin 0! = η * sin02 2 ) sin θ4 = η * sin θ3 3 ) _ ㊀1 + 02 -03 Θ4 ^ Θ5 其中: • * . * ' ' . η為形成光學裝置200之材料之折射率; θι為在光學信號150穿過成角度的第一表面2〇2之前,光學 18 200821647 信號150及法線212間之角度; ㊀2為在光學信號150穿過成角度的第一表面202之後,光學 信號150及法線212間之角度; ㊀3為在光學信號150穿過成角度的第一表面2〇2之後且在光 學倍號150穿過成角度的第二表面204之前,光學信號15〇及法 線214間之角度; Θ4為在光學信號15〇穿過成角度的第二表面2〇4之後,光學 _信號150及法線214間之角度;以及 ㊀5為在光學信號15〇穿過成角度的第二表面2〇4之後且在光 學信號150穿過光縵21〇之光纖2〇8之表面2〇6之前,光學信號 150及光學次模組/光學軸線152間之角度。 舉例而έ,並且應用上述公式,其中θι=7。並且光學裝置2〇〇 由聚ϋ酿亞胺塑料(ultem⑧)所形成,其中聚醚醯亞胺塑料、 馨 (Ultem® )具有折射率=h63、且角度^ 4·3。、角度匕=8。、角姚 - m。、且角度θρy。此外,角度ρ = 7。且角度以=ιι〇。儘管光學 ‘ 衣置200配没為角度$大於〇。,光學裝置配設為確保角度h •不大於與光學次模組1〇〇相連接之规21〇之數字孔徑。在此所 使用之數字孔控"指作相對於光纖的縱軸之最大角度,此 角度條件下光線能進入且約束於光繞之光纖2〇8中。光纖2〇8 之縱軸在此實例中對應於光學次模組學軸、線I52。 如同在此其他之處所揭露,在當光學信號15〇入射於光學次 19 200821647 模組100中之一個或多個表面上時的一些情況下可產生背向反 射。舉例而言,當光學信號150之一部份被光纜210之光纖208 之表面206反射而不是穿過表面206進入光纖208中時能產生背 向反射222。然而,由於光學信號15〇以角度05穿透表面206之事 實’因此任何背向反射222以角度θ6朝向光學裝置200而導向。 角度θό為背向反射222與光學次模組/光學轴線152間之角度。 • 在一實施例中,角度㊀6大致與角度θ5相等。如「第4Β圖」所示, 隨著穿過成角度的第二及第一表面204及202,背向反射222變向 兩次。當與起始角度Θ6之效果相結合時,此變向產生背向反射222 之最終之行進方向224,此處行進方向224與「第4Β圖」所示之 :發射益122相遠離。舉例而言,在光學信號15〇以角度之與光 纖208之縱軸偏離2。穿透表面206之處,背向反射222之最終行 進方向224可與光纖208之縱軸偏離5。。 _ 在此揭露之光學裝置之實施例因此能以多種方式管理光學次 模組之月向反射的消極效杲。舉例而言,當結合於一發射器光學 .次模組中時,光學裝置之成角度的第一表面使得在此成角度的第 -表面產生之背向反射重新定向,以致此背向反射遠離發射器光 學次模組中之敏感光電子發射琴而定向。類似地,此光學裝置之 成角度表面使得在域或其他的紐導之表面產生的背向反射同 樣地重狀向㈣背向域_發職光學域組發射器而導 号田…〇於—接收器光學次模組中時,此光學裝置之成角度表 20 200821647 面此導引在接收器光學次模組中產生的任何背向反射遠離接收器 光學次模組之開口,喊背向反射不隨著—絲回饋而行進,其 中此賴牙過-域或其他級導向後至—遠方接收器光學次模 組中之敏感光電子發射器。Depending on the needs of the particular application, the optical m(10) can be formed from the same material as the drum or from a different material than the drum 102. The optical device 2 can be formed of any light transmissive material, including but only related to any transmissive plastic. For example, one or both of the optical device 200 and the drum 1 2 can be formed of polyetherimide plastic (Ultem 8). The material from which the optical device 2 is formed must be light transmissive to allow the optical signal 150 to pass through the optical device 2''. The light clothing set 200 contains two angled surfaces, and the silk signal 15〇 must exit the optical sub-module through the two tables. The angles described herein are angled - surfaces that are not perpendicular to the longitudinal axis of the domain county path, e.g., optical submodule/optical axis (5). The optical sub-module/optical axis 152 is defined as the path between the point at which the optical signal 15 产生 is generated on the surface of the emitter 122 and the center point of the final direction of the optical signal (10) on the optical fiber or optical waveguide, such as the "figure map" The optical sub-module/optical axis 152 of the optical sub-module 1 〇 0 also corresponds to the longitudinal axis of the optical sub-module 100 . For example, the first and second surfaces 202 and 204 of the optical I set are angled relative to the optical submodule/optical axis, line (5). One or both of the angled first and second surfaces 2〇2 and both may be planar, spherical, or aspheric, or a combination thereof. When the first and second surfaces of the angle are said to be - or both are spherical or non-spherical, the axis of the 200821647 will be inclined to the angled first - and the second surface will be moved to the desired angle. The use of a spherical or aspheric surface for one or both of the angled first and second surfaces 202 and 204 in some applications can function the lens 114 with the one or more angled surfaces. The combination thus eliminates the need for lens 114. Combinations of one or more of the above aspects can fine tune the surface rims to achieve optimum spot size, bonding efficiency, reduced back reflection, and stability of the bond. The optical device 200 is positioned in the dome 102 such that the optical signal 15 must pass through the optical device 200 to exit the optical sub-module 1 through the opening 120. In particular, optical No. 150 is first incident on first surface 202 and then exits optical device 2 through second surface 204. In one embodiment, the angled first surface 2 is optionally coated with an anti-reflective coating that helps reduce or avoid as the optical signal 15 passes through the angled first surface 202. Back reflection. Typically, the amplitude of the optical signal 150 transmitted through the optical device 2 is one of the surface angles of the first and first surfaces 202 and 204. Therefore, by changing one or both of the surface angles of the first and second surfaces 202 and 204, different desired effects can be obtained. As the optical signal 150 passes through the angled first surface 2〇2, the angle of the angled first surface 202 causes the optical signal 15〇 to be directed away from the optical submodule/optical axis 152 〃 λ 〃. Similarly, as the optical signal 150 passes through the angled second surface 204, the angle of the angled second surface 204 causes the optical signal 150 to deviate from the light 16 as the optical signal 15 turns close to any fiber inserted into the opening 120. 200821647 Material module / optical axis 152 〃 ω 而 and change direction. In general, the angle, 1, 1, is inserted into the digital kerchief of any fiber inserted in the 120 towel. Referring to "Fig. 4B", the method of designing the optical device 200 is disclosed. The optical table shown for convenience is a flat surface. This light wind can also include an elevated optical surface, a peripheral portion, and a boundary portion of the second garment ▲ the boundary portion of the towel - _p part of the fixed-transfer, the part of the inspection Sigh with the raised optical surface and the peripheral part. In general, "4B" reveals that the optical chip module can be inserted into the opening of the optical sub-module ship in "3A" to "4A" relative to the optical device. in. "Big 4B" shows a first distance and a second distance. The distance dl from the first distance dl along the y-axis, the point is divided, "the distance from the first surface into and through the second surface is defined as the distance between two points along the y-axis. The two points are the point at which the second surface 2〇4 exits the photon U-150 tooth angle and the point at which the optical signal (9) is incident on the surface 206 of the fiber 208. Please refer to the "3β map" and the "figure diagram". The fiber optic application may include a portion of the gauge 21 inserted in the opening (10). In one implementation, the first distance di is approximately equal to the second distance, and in other implementations, the first distance dl is not equal to the second distance 汜. Please read "4B" "angle β is the angle between the first surface 2〇2 and the surface of a false heart. The imaginary surface is substantially perpendicular to the optical submodule/optical Τ, Spring 152. The angle of the surface angle β of the angled surface-surface 2〇2 should be such that very little 17 200821647 trees produce back reflections which are reflected as the optical signal m is incident on the first table =. The angle between the second surface and the U surface, which is perpendicular to the optical submodule/optical axis 152. In one embodiment, the angles β and α are unequal, while in other embodiments the angles β and α are substantially equal to each other. As described above, the contents of the optical signal 15 变 redirected by the optical device 200 are the functions of the surface angles β and CC of the first and second surfaces 202 and 204, respectively. The angle Θ1-Θ5 (Θ1 to Θ5) of "4Β >图" is ultimately determined by the angle (4) and by the material forming the optical coating. The relative value of Zheng Ru is partly determined by the following requirements. The optical signal 150 incident on the surface 206 should illuminate the center of the fiber 208 near the cable 210 and fall into the digital aperture of the fiber 2〇8. The normals 212, 2i4, 218 and 220 shown in the "figure" are each perpendicular to one of the angled first and second surfaces 202 or 204 of the optical device.咕 Refer to Figure 2B"' A method of determining the angle of the plane and the method by which it can be transmitted - using the following three equations: 1) sin 0! = η * sin02 2 ) sin θ4 = η * sin θ3 3 ) _ A 1 + 02 -03 Θ 4 ^ Θ 5 where: • * . * ' ' . η is the refractive index of the material forming the optical device 200; θι is before the optical signal 150 passes through the angled first surface 2〇2, the optical 18 200821647 The angle between the signal 150 and the normal 212; one is the angle between the optical signal 150 and the normal 212 after the optical signal 150 passes through the angled first surface 202; a third is that the optical signal 150 passes through the angled The angle between the optical signal 15 and the normal 214 after the first surface 2〇2 and before the optical multiple 150 passes through the angled second surface 204; Θ4 is the second through the angled optical signal 15〇 After the surface 2〇4, the angle between the optical_signal 150 and the normal 214; and a 5 is after the optical signal 15〇 passes through the angled second surface 2〇4 and after the optical signal 150 passes through the aperture 21 Optical signal 150 and optical submodule/optical axis 152 before surface 2〇6 of fiber 2〇8 The angle. For example, and apply the above formula, where θι=7. And the optical device 2 is formed of polyimine plastic (ultem8), wherein the polyether phthalimide plastic, Ultem® has a refractive index = h63 and an angle of ^4.3. , angle 匕 = 8. , corner Yao - m. And the angle θρy. In addition, the angle ρ = 7. And the angle is = ιι〇. Although the optical ‘clothing 200 is not equipped with an angle of more than 〇. The optical device is configured to ensure an angle h • not larger than the digital aperture of the 21 〇 connected to the optical sub-module 1 。. The digital aperture control used herein refers to the maximum angle relative to the longitudinal axis of the fiber at which light can enter and be confined to the optical fiber 2〇8. The longitudinal axis of the fiber 2〇8 corresponds to the optical sub-modular axis, line I52 in this example. As disclosed elsewhere, back reflection can occur in some instances when optical signal 15 is incident on one or more surfaces of optical module 19 200821647 module 100. For example, back reflection 222 can be produced when a portion of optical signal 150 is reflected by surface 206 of fiber 208 of cable 210 rather than through surface 206 into fiber 208. However, since the optical signal 15 穿透 penetrates the surface 206 at an angle 05, any back reflection 222 is directed toward the optical device 200 at an angle θ6. The angle θ ό is the angle between the back reflection 222 and the optical submodule/optical axis 152. • In one embodiment, the angle one is substantially equal to the angle θ5. As shown in the "Fig. 4", the back reflection 222 is turned twice as it passes through the angled second and first surfaces 204 and 202. When combined with the effect of the starting angle Θ6, this directional direction produces a final direction of travel 224 of the back-reflecting 222, where the direction of travel 224 is further away from the launching benefit 122 as shown in the "Fig. 4". For example, the optical signal 15 is offset by an angle from the longitudinal axis of the fiber 208 by an angle of two. Where the surface 206 is penetrated, the final direction 224 of the retroreflection 222 can be offset from the longitudinal axis of the optical fiber 208 by five. . The embodiment of the optical device disclosed herein can thus manage the negative effects of the moon-reflection of the optical sub-module in a variety of ways. For example, when incorporated in a transmitter optical sub-module, the angled first surface of the optical device redirects the back-reflection produced at the angled first surface such that the back-reflection is far away The sensitive optoelectronics in the transmitter optical sub-module are oriented and oriented. Similarly, the angled surface of the optical device causes the back reflections generated on the surface of the domain or other guide to be equally heavy (4) to the domain _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In the receiver optical sub-module, the angle of the optical device 20 200821647 guides any back reflection generated in the receiver optical sub-module away from the opening of the receiver optical sub-module, shouting back reflection Does not travel with the wire feedback, where the tooth is over-domain or other level guided to the sensitive photoelectron emitter in the remote receiver optical sub-module.

進-步而言’在此揭露之光學装置能完整地作為光學次模組 之圓桶之-部份而製模。作為光學次模組之_之—部份而完整 地形成此絲裝置贿製絲較置之材_成本包含於圓桶的 成本中而且 <乍為圓桶之一部份而完整地形成此光學次模組消 除了將此光學裝置組裝於絲賴組巾之成本。 在「第3A圖」至「第犯圖」中揭露之配設的另一種選擇中 多個光學裝置200能包含於—單個光學賴組中以進—步隔離说 ^學次池中之任何背向反射。因此,可能且可職的是圖示之 4例具有連軌設於光學规財之翅絲裝置嫌。此外, 光學裝置於絲麵結合制喊少背岐射。舉 :光學裝置200能與四分之一波片相結合使用,以獲得關 :抵制背向反射的光學隔離之期望效果。 卜舉例而言,當光學裝置與四分之一波片相結合使用時, _於發射器122與透鏡114間、透_與 曰予衣置2〇〇間、或光學裝置2〇〇與光纖2〇8間之任何之處。而 請能用於其他的光學應用中。舉例而言,綱 Μ於仕何關注背向反射之光學元件之一金屬開口中。 21 200821647 μ本發明可現為其他具體之形式碰不麟其精神及實質特 徵。在此減之實_彳麵有方_堇是示讎嘯瞻生的。 【圖式簡單說明】 第1A圖至第1D目係為本發明一實施例之光學元件之示意 Τ^ί · 圖, 第2圖係為一光學元件安裝至一光機保持件之示意圖; 第3Α圖係為本發明一實施例之光學次模組之示意圖; 第3Β圖係為第3Α圖中之光學次模組之截面圖; 第4Α圖係為一光學裝置之示意圖,該光學裝置係配設為用以 處理第3Α圖及第3Β圖之光學次模組中之背向反射;以及 第4Β圖係為第4Α圖中之光學裝置之設計方法之截面示意 【主要元件符號說明】 10 . 光學元件 11 轴線 12 光學表面 13 外圍部份 14 、 階梯部份 15 邊界部份 20 光機保持件 100 光學次模耝 22 200821647In the further step, the optical device disclosed herein can be completely molded as part of the drum of the optical sub-module. As a part of the optical sub-module, the wire device is completely formed. The cost is included in the cost of the drum and < 乍 is a part of the drum and completely forms this The optical sub-module eliminates the cost of assembling the optical device to the silk tissue. In another option of the arrangement disclosed in "Picture 3A" to "Pseudo Map", a plurality of optical devices 200 can be included in a single optical ray group to further isolate any back in the pool. Reflective. Therefore, it is possible and feasible to use the four examples of the fins that are connected to the optical scheme. In addition, the optical device is combined with the silk surface to make a small back shot. The optical device 200 can be used in conjunction with a quarter wave plate to achieve the desired effect of resisting optical isolation of back reflections. For example, when the optical device is used in combination with a quarter-wave plate, between the emitter 122 and the lens 114, between the lens and the lens, or between the optical device 2 and the optical fiber. Any of the 2 to 8 rooms. Please be able to use it in other optical applications. For example, the focus is on the metal opening of one of the optical elements of the retroreflection. 21 200821647 μ The present invention may be embodied in other specific forms that are inconsistent with its spirit and substance. In this case, the _ 彳 有 有 有 有 堇 堇 堇 有 有 有 有 有 有 有 有BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A to 1D are schematic diagrams of an optical component according to an embodiment of the present invention, and FIG. 2 is a schematic view showing an optical component mounted to a optomechanical holder; 3 is a schematic view of an optical sub-module according to an embodiment of the present invention; FIG. 3 is a cross-sectional view of an optical sub-module in FIG. 3; and FIG. 4 is a schematic view of an optical device. It is configured to process the back reflection in the optical sub-module of the 3rd and 3rd drawings; and the 4th diagram is the cross-sectional illustration of the design method of the optical device in the 4th drawing [Main component symbol description] 10 Optical element 11 axis 12 optical surface 13 peripheral portion 14, step portion 15 boundary portion 20 optical machine holder 100 optical sub-module 22 200821647

102 104 106 108 110 112 114 116 117 118 120 122 150 152 200 202 204 206 208 210 212、214、218、220 圓桶 圓柱型封裝(TO-can) 頭部 電導線 罩體 密封真空腔 透鏡 第一腔體 第二腔體 第三腔體 開口 發射器 光學信號, 光學次模組/光學軸線 光學裝置 第一表面 第二表面 表面 光纖, 光纜 法線 23 200821647 222 背向反射 224 行進方向 dl 第一距離 d2 第二距離 θ!、θ2、θ3、θ4、θ5、θ6、β α、λ、ω V 角度 24102 104 106 108 110 112 114 116 117 118 120 122 150 152 200 202 204 206 208 210 212, 214, 218, 220 drum cylindrical package (TO-can) head electric wire cover sealed vacuum cavity lens first cavity Body second cavity third cavity opening emitter optical signal, optical submodule / optical axis optics first surface second surface surface fiber, cable normal 23 200821647 222 back reflection 224 direction of travel dl first distance d2 Second distance θ!, θ2, θ3, θ4, θ5, θ6, β α, λ, ω V angle 24

Claims (1)

200821647 十、申請專利範圍: 1. 一種光學元件,係包含有: —中央光學表面,係靠近於_光軸; 外圍晶’係自該中央光學表面徑向延伸;以及 係配設於辦央光學表破該外圍部份之 間’該階梯部份之形成係用以提升該中央光學表面至高於該外 • 圍部份。 φ 2·如申請專利範圍第_述之光學元件,更包含有一自該外圍 部份沿軸向及禋向延伸之邊界部份。 3·如申明專利範圍第2項所述之光學元件,其中該邊界部份係提 升至高於該中央光學表面。 4·如申請專利範圍第!項所述之光學元件,其中該光學元件包含 2-主體’該主體由至少部份透光之材料形成,該主體配設為 定位於一光學次模組中,該光學次模組配設於一光電子轉換器 • 與-光缦或光波導之間;並且其中該中央光學表面包含有該主 、 體之帛—表面’該第—表面具U-角度;並且其中該光 學兀件更包含有無第—表面滅之社體之一第二表面,該 第二表面具有一第二角度。 5·如申請專利範圍第!項所述之*學元件,其中該中央光學表面 包含有一平面、一球面、以及一非球面中的至少一種表面。 6·如申請專利範圍第1項所述之光學元件,其中該光學元件包含 有一棱鏡及一透鏡中的至少一種光學元件。 25 200821647 7· 一種光學元件,係包含有: 一光學表面,該光學表面具有一於該光學表面中延伸之光 學軸線; 一外圍部份,係相鄰於該光學表面而配設;以及 一邊界部份,係相鄰於該外圍部份而配設,其中至少該外 圍部份之一部份於該邊界部份及該光學表面之間定義了一凹 進部分。 8·如申請專利範圍第7項所述之光學元件,其中該光學元件相對 於該外圍部份被升高。 9·如申明專利範圍第7項所述之光學元件,其中該邊界部份係提 升至咼於該光學表面及該邊界部份。 10.如申請翻觀第7項所述之絲元件,更包含有—介於該外 圍部份與該光學表面之間的階梯部份。 如申請專利範目第7項所述之光學元件,更包含有一介於該外 圍部份與該邊界部份之間的階梯部份。 U如申請專利_ 7項所述之光學树,其中該光學表面係由 一種塑料材料形成。 13· —種光學次模組,係包含有: 一光機保持件,·以及 有-件包含 〒央九子衣面,細近於—光軸,—外圍部份,係自該中 26 200821647 央光學表面徑向延伸,以及一階梯部份,係配設於該中央光學 表面與該外圍部份之間,該階梯部份之形成係用以提升該中央 光學表面至高於該外圍部份。 14·如申明專利範圍第13項所述之光學次模組,其中該光學元件 包合有一透鏡及一處理背向反射之光學裝置中的至少一種光 學元件。 15·如申凊專利範圍第13項所述之光學次模組,其中該光學元件 係壓入配合至該光機保持件。 16·如申請專利範圍第15項所述之光學次模組,其中該光學元件 係由一種塑料材料形成。 17·如申請專利範圍第13項所述之光學次模组,其中該光學元件 包含有一主體,該主體由至少部份透光之材料形成,該主體配 设為定位於一光學次模組中,該光學次模組配設於一光電子轉 換益與一光纜或光波導之間;並且其中該中央光學表面包含有 該主體之一第一表面,該第一表面具有一第一角度;並且其中 該光學元件更包含有與該第一表面相反之該主體之一第二表 面該弟一表面具有一第二角度。 18·如申請專利範圍第17項所述之光學次模組,其中該第一角度 與該第二角度相等。 19·如申請專利範圍第17項所述之光學次模組,其中該第一角度 與該第二角度不相等。 27 200821647 20.如申請專利範圍第13項所述之光學次模組,其中該光學元件 更包含有一相鄰於該外圍部份之邊界部份。 28200821647 X. Patent application scope: 1. An optical component comprising: - a central optical surface, close to the optical axis; a peripheral crystal ' extending radially from the central optical surface; and a system disposed at the central optical The table breaks between the peripheral portions to form the step portion for raising the central optical surface to be higher than the outer portion. φ 2· The optical element as described in the scope of the patent application further includes a boundary portion extending from the peripheral portion in the axial direction and the yaw direction. 3. The optical component of claim 2, wherein the boundary portion is raised above the central optical surface. 4. If you apply for a patent scope! The optical component of the present invention, wherein the optical component comprises a 2-body', the body is formed of at least partially transparent material, the body is configured to be positioned in an optical sub-module, and the optical sub-module is disposed on An optoelectronic converter between: and - an optical or optical waveguide; and wherein the central optical surface comprises the main body - the surface - the surface has a U-angle; and wherein the optical element further comprises A second surface of the first surface-defining body, the second surface having a second angle. 5. If you apply for a patent scope! The element of claim 7, wherein the central optical surface comprises at least one of a flat surface, a spherical surface, and an aspheric surface. 6. The optical component of claim 1, wherein the optical component comprises at least one of a prism and a lens. 25 200821647 7. An optical component comprising: an optical surface having an optical axis extending in the optical surface; a peripheral portion disposed adjacent to the optical surface; and a boundary And a portion disposed adjacent to the peripheral portion, wherein at least a portion of the peripheral portion defines a recess between the boundary portion and the optical surface. 8. The optical component of claim 7, wherein the optical component is raised relative to the peripheral portion. 9. The optical component of claim 7, wherein the boundary portion is raised to the optical surface and the boundary portion. 10. If the application of the wire element of item 7 is applied, further comprising - a stepped portion between the outer portion and the optical surface. The optical component of claim 7, further comprising a stepped portion between the outer peripheral portion and the boundary portion. U. The optical tree of claim 7, wherein the optical surface is formed of a plastic material. 13·—A kind of optical sub-module, which includes: a optomechanical holder, and a plethora-containing 〒子九子衣面, close to the optical axis, the peripheral part, from the middle 26 200821647 The central optical surface extends radially, and a stepped portion is disposed between the central optical surface and the peripheral portion, and the stepped portion is formed to raise the central optical surface to be higher than the peripheral portion. The optical sub-module of claim 13, wherein the optical component comprises a lens and at least one optical component that processes the retroreflective optical device. The optical sub-module of claim 13, wherein the optical component is press-fitted to the optomechanical holder. The optical sub-module of claim 15, wherein the optical component is formed of a plastic material. The optical sub-module of claim 13, wherein the optical component comprises a body formed of at least partially transparent material, the body being configured to be positioned in an optical sub-module The optical sub-module is disposed between a photoelectron conversion and a fiber optic cable or an optical waveguide; and wherein the central optical surface includes a first surface of the body, the first surface having a first angle; and wherein The optical component further includes a second surface of the body opposite the first surface, the second surface of the body having a second angle. The optical sub-module of claim 17, wherein the first angle is equal to the second angle. The optical sub-module of claim 17, wherein the first angle is not equal to the second angle. The optical sub-module of claim 13, wherein the optical component further comprises a boundary portion adjacent to the peripheral portion. 28
TW096137161A 2006-10-04 2007-10-03 Surface warp resistant optical devices TW200821647A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US82816606P 2006-10-04 2006-10-04
US97307007P 2007-09-17 2007-09-17
US11/864,687 US7572069B2 (en) 2007-09-17 2007-09-28 Surface warp resistant optical devices

Publications (1)

Publication Number Publication Date
TW200821647A true TW200821647A (en) 2008-05-16

Family

ID=40691376

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096137161A TW200821647A (en) 2006-10-04 2007-10-03 Surface warp resistant optical devices

Country Status (4)

Country Link
EP (1) EP2076804A4 (en)
CN (1) CN101535854B (en)
TW (1) TW200821647A (en)
WO (1) WO2008043028A2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3958891B2 (en) * 1999-04-23 2007-08-15 矢崎総業株式会社 Optical connector
DE19961624B4 (en) * 1999-12-13 2005-01-20 Infineon Technologies Ag coupling arrangement
JP2003227968A (en) * 2002-02-01 2003-08-15 Sony Corp Optical link device
JP2004361583A (en) * 2003-06-03 2004-12-24 Matsushita Electric Ind Co Ltd Optical module
EP1722258A1 (en) * 2005-05-13 2006-11-15 STMicroelectronics S.r.l. Optical radiation coupling module
JP4898549B2 (en) * 2007-05-14 2012-03-14 アルプス電気株式会社 Optical coupling element and optical coupling unit

Also Published As

Publication number Publication date
WO2008043028A2 (en) 2008-04-10
WO2008043028A9 (en) 2008-05-22
EP2076804A2 (en) 2009-07-08
CN101535854B (en) 2012-10-31
EP2076804A4 (en) 2013-07-10
CN101535854A (en) 2009-09-16
WO2008043028A3 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
US8827572B2 (en) Side coupling optical fiber assembly and fabrication method thereof
US5940564A (en) Device for coupling a light source or receiver to an optical waveguide
US20180081132A1 (en) Coupling device having a structured reflective surface for coupling input/output of an optical fiber
US6567435B1 (en) VCSEL power monitoring system using plastic encapsulation techniques
US7782550B2 (en) Lens structure, optical transmitter, and method for producing same
WO2019080345A1 (en) Doublet-based transmission light device
TW200306711A (en) Optical part for two-way optical communication
US7572069B2 (en) Surface warp resistant optical devices
JP2007264411A (en) Optical module
KR100553877B1 (en) Optical module
JP7197435B2 (en) Optical receptacles and optical modules
WO2005036212A2 (en) Photodetector/optical fiber apparatus with enhanced optical coupling efficiency and method for forming the same
US6892010B2 (en) Photodetector/optical fiber apparatus with enhanced optical coupling efficiency and method for forming the same
US6879784B1 (en) Bi-directional optical/electrical transceiver module
WO2020196696A1 (en) Optical receptacle, optical module, and method for manufacturing optical module
TW200821647A (en) Surface warp resistant optical devices
US10547391B2 (en) Optical module
JP3689644B2 (en) Bidirectional optical communication device and bidirectional optical communication device
TWI438512B (en) Photoelectric module
JP2001188148A (en) Bi-directional optical communicator and bi-directional optical communication device
JP3821639B2 (en) 2-core type light emitting / receiving device for POF communication
US20240077688A1 (en) Optical assemblies comprising a prism
US9002208B2 (en) Optical transceiver system
JP3904985B2 (en) Optical communication module and optical communication system
JP2020030331A (en) Optical receptacle and optical module