TW200821568A - Pathogen and particle detector system and method - Google Patents

Pathogen and particle detector system and method Download PDF

Info

Publication number
TW200821568A
TW200821568A TW95142126A TW95142126A TW200821568A TW 200821568 A TW200821568 A TW 200821568A TW 95142126 A TW95142126 A TW 95142126A TW 95142126 A TW95142126 A TW 95142126A TW 200821568 A TW200821568 A TW 200821568A
Authority
TW
Taiwan
Prior art keywords
light
optical
detector
particles
lens
Prior art date
Application number
TW95142126A
Other languages
Chinese (zh)
Other versions
TWI424154B (en
Inventor
Michael Morrell
Jien-Ping Jiang
Original Assignee
Biovigilant System Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biovigilant System Inc filed Critical Biovigilant System Inc
Priority to TW95142126A priority Critical patent/TWI424154B/en
Publication of TW200821568A publication Critical patent/TW200821568A/en
Application granted granted Critical
Publication of TWI424154B publication Critical patent/TWI424154B/en

Links

Abstract

The system includes an excitation source for providing a beam of electromagnetic radiation having a source wavelength. A first wavelength selective device is positioned to be impinged by the beam of electromagnetic radiation. The first wavelength selective device is constructed to transmit at least a portion of any radiation having the source wavelength and to reflect radiation of other wavelengths. A medium containing particles is positioned to be impinged by the beam of electromagnetic radiation. At least a portion of the beam of electromagnetic radiation becomes scattered within the medium, the scattered electromagnetic radiation including forward scattered electromagnetic radiation and backward scattered electromagnetic radiation. An optical detector is positioned to receive backward and/or forward scattered electromagnetic radiation.

Description

200821568 九、發明說明: 【發明所屬之技術領域】 本發明大Μ上有關於一種用於偵測氣懸顆粒或水懸顆 粒的系統和方法,以及更明確而言係關於一種用於偵測氣 *200821568 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a system and method for detecting aerosol particles or water suspended particles, and more particularly to a method for detecting gas *

懸顆粒或水懸顆粒及藉由大小分類該測得顆粒的系統和方 法。本發明在憤測和藉由大小分類過敏原和生物戰爭藥劑 方面具有特殊用途,以及以下將藉由此用途來說明本發 明,但本發明亦可具有其他的用途。 【先前技術】 涉及釋放如厌疽桿菌(anthrax)等生物戰劑的都市恐怖 攻擊行為目前已成為值得關注的問題。武器性炭疽菌孢子 由於可進入人類肺部而具有極高的危險性。對於人類而 吕,厌症菌抱子的致死吸入劑量LD5〇(足以殺死50%暴露 者的致死劑量)約為2,5〇〇至50,〇〇〇個孢子,參閱T.V.Hanging particles or water-suspended particles and systems and methods for classifying the particles by size. The present invention has particular utility in terms of anger and by size classification of allergens and biological warfare agents, and the following description will be made by this use, but the invention may have other uses. [Prior Art] Urban terrorism attacks involving the release of biological warfare agents such as anthrax have become a problem of concern. Weapon anthrax spores are extremely dangerous due to their access to human lungs. For humans, Lv, the lethal inhaled dose of LD5〇 (sufficient to kill 50% of the exposed dose) is about 2,5〇〇 to 50, a spore, see T.V.

Inglesby等人之標題為「生物武器的炭疽菌」,/第281 卷第1 7 3 5頁,1 9 9 9的發表文獻。一些其他可能的武器性生 物製劑為耶爾辛氏桿菌(鼠疫)、肉毒梭狀芽孢桿菌(肉毒中 毋)以及弗蘭斯氏兔熱菌(francisella tularensis)。鑑於此種 潛在性的威脅,目前亟需一種能偵測此類攻擊的早期預警 系統。 、 雷射顆粒計數 通過一樣本,並偵 本内顆粒的散射光 器是已知的偵測工具 測和分析通過該樣本 。現行用於偵測散射 ’其引導雷射光線 光線以偵測來自樣 光之偵測器或顆粒 5 200821568The title of Inglesby et al. is "Anthrax of Biological Weapons", / Vol. 281, pp. 1 7 3 5, 1 9 9 . Some other possible weaponic biological agents are Yersinia (plague), Clostridium botulinum (bots botulinum) and francisella tularensis. Given this potential threat, there is an urgent need for an early warning system that can detect such attacks. The laser particles are counted through the same sample, and the scatterer inside the detector is known to be a detection tool for measurement and analysis through the sample. Currently used to detect scatter's which directs laser light to detect detectors or particles from sample light 5 200821568

計數器的問題在於必需從入射光源信號中萃取出散射信 號。此意味著必需從雜訊極多的背景(來自雷射光源的炫光) 中偵测一弱信號(來自細顆粒的散射光)。此特性為長久以 來造成雷射顆粒計數器之儀器偵測困難的主要原因。雷射 顆粒計數器的習知設計運用高價和費力的方法降低來自雷 射光源的眩光以及從大量背景雜訊中測量顆粒散射光,因 而使計數器變得極為脆弱和昂責。目前習知設計的雷射顆 粒計數器均極脆弱和昂貴,因此不適用於此應用用途中。 用於雷射顆粒計數的習知技術包括測量顆粒速度而推算出 顆粒大小的雷射都卜勒(Doppler)法、測定顆粒通過一感應 區所需時間的暫態時間法(tr ansi ent time metho d)以及僅 能夠測定小顆粒的廣角多感測器設計。在T.H. Jeys等人於 Proc· IRIS Active Systems 期刊第 1 卷第 235 頁(1998)中敘 述一種利用脈衝紫外線(UV)雷射之雷射誘發螢光的生物 感測器。此生物感測器能夠偵測每升空氣中5個顆粒的氣 霧濃度,但其造價極為昂責並且脆弱。其他顆粒計數器的 製造商為奥勒岡州Grants Pass市的^1^1:〇116儀器公司、科 羅拉多州 Boulder 市的顆粒测量系統公司,以及加州 Anaheim市的Terra國際股份有限公司。基於設計上的關 係,這些顆粒計數器的構造需要極精密的光學校正及極為 敏感的感測器和電子儀器。這些產品均朝向實驗室使用的 方向發展並且極為昂貴。因此,不適合作為現場使用的偵 測器,亦不適合作為專用於生物戰劑偵測的設計。 已設計出可偵測流體懸浮過敏原顆粒的各種偵測器, 6 200821568 2 y在當偵測到空氣樣本中顆粒數目超過一預設最小值時 對敏感者提出警告。這些偵測係均描述於Hamburger等人 禾、、國專利案 5,646,597、5,969,622、5,986,555、6,008,729 • 6’〇 8 7,947號中。這些偵測器均涉及引導一光束通過一 鬌 μ見卫氣樣本,使得部份光束將被空氣中的任何顆粒所散 、:利用可傳輸對應於預設過敏原大小角度範圍之散射光 的光束阻擋裝置,以及一用於偵測該傳輸光線的偵測器。 該偵測器所測得的光線若超過一預設值時,則啟動一挲 =。這些偵測器雖然可根據是否存在有過敏原顆粒來提供 警告指示’但是其並不適合用於現場的佈署並且不符合作 為谓測生物戰劑之病原偵測器的更嚴格需求。 【發明内容】 本發明提供一種改良的病原和顆粒偵測之系統和方 法。更明確而言,本發明發展出一種完全利用非彈性散射 強度(即來自顆粒的螢光)之獨特角度分佈模式的新穎營光 4。歲收集方法。理論上和實驗上均已證明顆粒的非彈性散 射在反向(最強)和正向(第二強)方向上具有較佳的強度角 度分佈(參考文獻1 「來自微球簇和色胺酸顆粒的反向強 化蝥光」Yong-Le Pan等人,四月第41卷,第2994頁 2〇〇2 ;參考文獻2 「微球之散射螢光與不相干拉曼光譜角 度和尺寸依賴特性j Igor Veselovskii等人,四月第41 卷,第5783頁,2002)。簡言之,在一實施例中,該系統包 #〜用以提供具有光源波長之電磁輻射束的激發光源。如 200821568 二色性分光鏡等第一波長選擇裝置置於可受到電磁輻射光 束照射的位置。第一波長選擇裝置可傳送至少一部份任核 具有光源波長的輻射以及反射其他波長的輻射。含顆粒的 介質(m e d i u m)置於可被電磁輻射光束照射的位置。至少一 部份電磁輻射光束在介質内被散射,該散射電磁輻射包括 正向散射電磁輕射及反向散射電磁輕射。設置光偵測裔以 收集正向和反向散射電磁輻射。 本發明亦可視為提供用於偵測病原體及顆粒的方法。 在這方面,此類方法的其中一實施例可大略摘要出下列步 驟:發射一電磁輻射光束;經由第一波長選擇裝置傳送至 少一部份的電磁輻射光束;以該部份電磁輻射光束照射含 顆粒之介質,其中該顆粒以正向和反向方向散射該電磁輻 射;以第一波長選擇裝置反射至少一部份該反向散射電磁 輻射;以及,在第一光學偵測器收集至少一部份該正向和 反向散射電磁輻射,從而測定出於正向和反向方向散射該 電磁輕射之顆粒的尺寸。 φ 在檢視下列附圖和詳細說明之後,熟習本技術之人士 將可更清礎瞭解本發明的其他系統、方法、特徵及優點。 本發明的其他此類系統、方法、特徵和優點均屬於本說明 書内容及本發明範圍内,並且受到後附申請專利範圍的保 護。 【實施方式】 第1圖顯示用於根據本發明第一舉例性實施例所作之 8 200821568 流體懸浮顆粒偵測器系統中的光學系統。該系統之第一舉 例性實施例特別是有關於用來偵測恐怖份子或他人所散播 之空氣或水散播性生化恐怖戰劑,但亦可作為都市設施以 偵測可能存在於自然界如黴菌或細菌或是如食品和製造工 廠等其他工業設施意外、不慎、自然或刻意釋出有害濃度 的其他氣懸或水懸顆粒,以及用於室内清淨的用途被。The problem with counters is that the scatter signal must be extracted from the incident source signal. This means that a weak signal (scattered light from fine particles) must be detected from the background of a lot of noise (the glare from a laser source). This feature is the main reason for the difficulty in detecting the laser particle counter instrument for a long time. The conventional design of the laser particle counter uses a costly and laborious method to reduce glare from a laser source and to measure particle scatter from a large amount of background noise, thereby making the counter extremely fragile and blameless. Currently known laser particle counters are extremely fragile and expensive and are therefore not suitable for this application. Conventional techniques for laser particle counting include a laser Doppler method for measuring particle velocity to estimate particle size, and a transient time method for determining the time required for particles to pass through a sensing region (tr ansi ent time metho) d) and wide-angle multi-sensor design that is only capable of measuring small particles. A biosensor utilizing laser-induced fluorescence of a pulsed ultraviolet (UV) laser is described in T. H. Jeys et al., Proc. IRIS Active Systems, Vol. 1, pp. 235 (1998). This biosensor is capable of detecting the aerosol concentration of 5 particles per liter of air, but its cost is extremely high and fragile. Other particle counter manufacturers are ^1^1:〇116 Instruments, Grants Pass, Oregon, Particle Measurement Systems, Boulder, Colorado, and Terra International, Anaheim, Calif. Based on the design relationship, the construction of these particle counters requires extremely precise optical correction and extremely sensitive sensors and electronics. These products are moving in the direction of laboratory use and are extremely expensive. Therefore, it is not suitable as a detector for field use, and it is not suitable as a design dedicated to biological warfare agent detection. Various detectors have been designed to detect fluid-suspended allergen particles, 6 200821568 2 y Alerts sensitive persons when it is detected that the number of particles in the air sample exceeds a predetermined minimum. These detection systems are described in Hamburger et al., U.S. Patent Nos. 5,646,597, 5,969,622, 5,986,555, 6,008,729, 6' 〇 8 7,947. These detectors all involve directing a beam of light through a sample of the wei wei so that part of the beam will be scattered by any particles in the air: using a beam that transmits scattered light corresponding to a range of angles of the preset allergen size a blocking device and a detector for detecting the transmitted light. If the light measured by the detector exceeds a preset value, a 挲 = is initiated. These detectors provide warning indications based on the presence or absence of allergen particles', but they are not suitable for deployment on site and do not meet the more stringent requirements of pathogen detectors as biological warfare agents. SUMMARY OF THE INVENTION The present invention provides an improved system and method for pathogen and particle detection. More specifically, the present invention develops a novel camp light 4 that utilizes a unique angular distribution pattern of inelastic scattering intensity (i.e., fluorescence from particles). Aged collection method. Theoretically and experimentally, it has been demonstrated that the inelastic scattering of particles has a better intensity angular distribution in the reverse (strongest) and positive (second strong) directions (Reference 1 "from microsphere clusters and tryptophan particles" Inverse Strengthening Twilight" Yong-Le Pan et al., Vol. 41, April 2994, 2〇〇2; Reference 2 "Scattered and Incoherent Raman Spectral Angle and Size Dependent Characteristics of Microspheres j Igor Veselovskii et al., Vol. 41, April, p. 5783, 2002). Briefly, in one embodiment, the system package #~ is used to provide an excitation source having a beam of electromagnetic radiation having a source wavelength. For example, 200821568 A first wavelength selective device such as a spectroscope is placed at a position illuminable by a beam of electromagnetic radiation. The first wavelength selecting means can transmit at least a portion of the radiation having a source wavelength and reflecting radiation of other wavelengths. The medium is placed at a position that can be illuminated by the beam of electromagnetic radiation. At least a portion of the electromagnetic radiation beam is scattered within the medium, the scattered electromagnetic radiation comprising forward scattered electromagnetic light and backscattered electromagnetic light Photodetectors are provided to collect forward and backscattered electromagnetic radiation. The invention may also be considered to provide methods for detecting pathogens and particles. In this regard, one of the embodiments of such methods may broadly summarize the following Step: transmitting an electromagnetic radiation beam; transmitting at least a portion of the electromagnetic radiation beam via the first wavelength selective device; irradiating the particle-containing medium with the portion of the electromagnetic radiation beam, wherein the particle scatters the electromagnetic in the forward and reverse directions Radiation; reflecting at least a portion of the backscattered electromagnetic radiation by the first wavelength selective device; and collecting at least a portion of the forward and backscattered electromagnetic radiation at the first optical detector to determine the forward direction The dimensions of the electromagnetically illuminating particles are scattered in the reverse direction. φ Other systems, methods, features and advantages of the present invention will become apparent to those skilled in the <RTIgt; Other such systems, methods, features, and advantages are within the scope of the present specification and the scope of the present invention, and are subject to the scope of the appended claims. [Embodiment] Fig. 1 shows an optical system for use in a 200821568 fluid suspended particle detector system according to a first exemplary embodiment of the present invention. The first exemplary embodiment of the system has in particular It is used to detect air or water-spreading bioterrorism warfare agents spread by terrorists or others, but can also be used as an urban facility to detect other industrial facilities such as mold or bacteria that may exist in nature or such as food and manufacturing plants. Accidental, inadvertent, natural or deliberate release of other airborne or waterborne particles of detrimental concentration, and use for indoor cleaning.

「流體傳播顆粒(fluid borne particles)」一詞在此處 意指經由空氣和水傳播的顆粒。 「病原體」一詞在此處指任何經由空氣或水媒介的顆 粒、生物製劑或毒素,若其在空氣或水源中存在足夠量時 可能造成人類潛在性的傷害或甚至死亡。此處「生物製劑 (b i ο 1 〇 g i c a 1 a g e n t)」定義為任何的微生物、病原體或感染 物質、毒素、生物毒素,或不論來源或製造方法經由任何 此類微生物、病原體或感染物質所產生的任何天然、生物 工程或合成成分。此類生物製劑包括例如生物毒素、細菌、 病毒、立克次氏體、孢子、真菌和原蟲,以及技術中習知 的其他任何病原體。 「生物毒素」為活體植物、動物或微生物所產生或衍 生出的毒性物質,但亦可藉由化學方法製造或改造。然而, 毒素通常由宿主生物所自然產生(即,渦鞭藻毒素係由海藻 所產生),但實驗室環境内已可製造出基因改造和/或合成 製造的毒素。與微生物相較之下,毒素具有相對較簡單的 生化組成物並且無法自我繁殖。在許多方面,生物毒素可 視為是一種化學劑。此類生物毒素為例如肉毒素和破傷風 9 200821568 毒素、鏈球菌内毒素β、梭黴菌毒素、蓖麻毒素(ricin)、 渦鞭藻毒素(saxitoxin)、志贺(Shiga)和類志贺毒素、樹突 毒素(dendrotoxins)、半環扁尾蛇毒素_b(erabut〇xin_b)以及 其他已知的毒素。 該彳貞測系統的設計為偵測空氣或水傳播的顆粒及產生 顯不例如債測樣本内各種顆粒尺寸範圍中的顆粒數目的輸 出値’以及顯不該些顆粒是否為生物性或非生物性顆粒。 • 該系統在顆粒超過正常背景一預設值和/或為可能造成危 害之生物有機體或生物製劑時亦可發出警告信號或其他反 應。 第1圖為用於根據本發明第一舉例性實施例之水懸顆 粒偵測系統的光學系統210。如第1圖所示,該光學系統 2 1 0包括一激發光源2 1 2,用以提供具有一光源波長的電磁 輻射光束2 1 4。在一實施例中,第一波長選擇裝置2丨6包 括一受到電磁輻射光束2丨4所照射的二色性分光鏡 (dichroic beamsplitter)。該第一波長選擇裝置216的構造 Φ 可傳运至少一部份任何具有該光源波長的輻射以及反射其 他波長的輻射。該第一波長選擇裝置2〗6可反射來自激發 光源 2 1 2 的可能混附波(Spuri〇us spectral emissi〇ns)。一部 份電磁輻射光束2 1 4可被第一波長選擇裝置2丨6反射朝向 一功率監控偵測器2 5 0。該功率監控偵測器2 5 0可與激發 光源2 1 2聯繫’以及視需要可作為維持該激發光源2 1 2恒 定輸出功率之反饋迴路中的一部份。可藉由功率監控透鏡 256來集中(聚焦)被第一波長選擇裝置216所反射朝向功 10 200821568 率監控偵測器250的電磁輻射光束214。The term "fluid borne particles" as used herein means particles that are transmitted via air and water. The term "pathogen" as used herein refers to any particle, biological agent or toxin that is transported through air or water. If it is present in sufficient amounts in air or water, it may cause potential harm or even death to humans. Here, "bi ο 1 〇gica 1 agent" is defined as any microorganism, pathogen or infectious substance, toxin, biotoxin, or produced by any such microorganism, pathogen or infectious substance regardless of source or manufacturing method. Any natural, bioengineered or synthetic ingredient. Such biological agents include, for example, biotoxins, bacteria, viruses, rickettsia, spores, fungi, and protozoa, as well as any other pathogen known in the art. "Biotoxin" is a toxic substance produced or derived from living plants, animals or microorganisms, but can also be produced or modified by chemical methods. However, toxins are usually produced naturally by the host organism (i.e., vortexin is produced by seaweed), but genetically engineered and/or synthetically produced toxins have been produced in the laboratory environment. In contrast to microorganisms, toxins have relatively simple biochemical compositions and are not self-reproducing. In many ways, biotoxins can be considered a chemical agent. Such biotoxins are, for example, botulinum toxin and tetanus 9 200821568 toxin, streptococcal endotoxin beta, cyanotoxin, ricin, saxitoxin, Shiga and Shiga toxin, Dendrotoxins, semi-loop caterpillar toxin _b (erabut〇xin_b) and other known toxins. The detection system is designed to detect air or water-borne particles and produce an output that is not indicative of the number of particles in various particle size ranges within the sample, and whether the particles are biological or non-living. Sex particles. • The system may also issue a warning signal or other response when the particles exceed a normal background by a predetermined value and/or are biological organisms or biological agents that may be hazardous. Fig. 1 is an optical system 210 for a water suspension particle detecting system according to a first exemplary embodiment of the present invention. As shown in Fig. 1, the optical system 210 includes an excitation source 2 1 2 for providing an electromagnetic radiation beam 2 1 4 having a source wavelength. In one embodiment, the first wavelength selective device 2丨6 includes a dichroic beamsplitter that is illuminated by the beam of electromagnetic radiation 2丨4. The configuration Φ of the first wavelength selective device 216 can transport at least a portion of any radiation having the wavelength of the source and radiation reflecting other wavelengths. The first wavelength selecting means 2 can reflect a possible splicing wave from the excitation source 2 1 2 (Spuri〇us spectral emissi ns). A portion of the electromagnetic radiation beam 2 1 4 can be reflected by the first wavelength selective device 2丨6 toward a power monitor detector 250. The power monitor detector 250 can be coupled to the excitation source 2 1 2 and can optionally be used as part of a feedback loop that maintains a constant output power of the excitation source 2 1 2 . The electromagnetic radiation beam 214 reflected by the first wavelength selective device 216 toward the power monitoring detector 250 can be concentrated (focused) by the power monitoring lens 256.

含顆粒2 2 0的介質2 1 8置於可被電磁輻射光束2 1 4照 射的位置。至少一部份電磁輻射光束2 1 4成為在介質2 1 8 内的散射電磁輕射。該散射電磁輪射包括正向散射電磁幸备 射222及反向散射電磁輻射224。第一光學偵測器226置 於可接收反向散射電磁輻射224的位置。該反向散射電磁 輻射224可藉由第一波長選擇裝置21 6被反射至第一光學 偵測器226。第一波長選擇裝置216和光學偵測器226之 間可利用帶通濾光器2 5 2以減少來自電磁輻射光束2 1 4的 任何背向散射光和/或用來選出準備測定之光譜的特定部 份。第一波長選擇裝置2 1 6和光學偵測器226之間可利用 聚焦透鏡254以聚焦朝向光學偵測器226的反向散射電磁 輻射224。 如第1圖所示,可引導該正向散射電磁輻射222照射 至第一光束阻斷透鏡2 60。該第一光束阻斷透鏡260的設 計可反射電磁輻射光束2 1 4中的非散射元素,以避免在光 學偵測器上產生眩光。第一光束阻斷透鏡2 6 0具有附著於 前表面用以反射電磁輻射光束2 14之非散射元素的材料, 例如乙烯。第一光束阻斷透鏡260的其他考量事項已述於 專利申請案序號1 1/1 93,204内,將其併入於本文中以供參 照0 該正向散射電磁輻射隨後可被引導至第一光學元件 262,其係為一低通濾波器或類似第三舉例性實施例中的波 長選擇元件。第一光學元件262容許至少一部份正向散射 11 200821568 電磁輻射2 2 2通過並反射掉一部份的正向散射電磁輻射 222。更明確而言’該第一光學元件262可反射正向散射雷 磁輻射222的螢光信號部份,同時可讓其餘的正向散射電 磁輻射222通過。第二光束阻斷透鏡264可聚焦朝向顆粒 偵測器266之正向散射電磁輻射222的通過部份。該顆粒 偵測器266可為例如一用於測量該等顆粒220之大小的光 二極體(photoiode) 〇The medium 2 18 containing the particles 2 2 0 is placed at a position illuminable by the electromagnetic radiation beam 2 1 4 . At least a portion of the electromagnetic radiation beam 2 1 4 becomes a scattered electromagnetic light shot within the medium 2 18 . The scattered electromagnetic wheel includes forward scattered electromagnetic imaging 222 and backscattered electromagnetic radiation 224. The first optical detector 226 is positioned to receive backscattered electromagnetic radiation 224. The backscattered electromagnetic radiation 224 can be reflected by the first wavelength selective device 216 to the first optical detector 226. A bandpass filter 252 can be utilized between the first wavelength selective device 216 and the optical detector 226 to reduce any backscattered light from the electromagnetic radiation beam 2 1 4 and/or to select a spectrum to be measured. Specific part. A focusing lens 254 can be utilized between the first wavelength selective device 2 16 and the optical detector 226 to focus backscattered electromagnetic radiation 224 toward the optical detector 226. As shown in Fig. 1, the forward scattered electromagnetic radiation 222 can be directed to the first beam blocking lens 260. The first beam blocking lens 260 is designed to reflect non-scattering elements in the electromagnetic radiation beam 2 1 4 to avoid glare on the optical detector. The first beam blocking lens 206 has a material, such as ethylene, attached to the front surface for reflecting the non-scattering elements of the beam of electromagnetic radiation 214. Other considerations for the first beam blocking lens 260 are described in the patent application Serial No. 1 1/1,93,204, which is incorporated herein by reference in its entirety for reference to the same. Element 262 is a low pass filter or a wavelength selective element like in the third exemplary embodiment. The first optical element 262 allows at least a portion of forward scattering 11 200821568 electromagnetic radiation 2 2 2 to pass and reflect a portion of the forward scattered electromagnetic radiation 222. More specifically, the first optical element 262 can reflect the portion of the fluorescent signal of the forward scattered magnetic radiation 222 while allowing the remaining forward scattered electromagnetic radiation 222 to pass. The second beam blocking lens 264 can focus the portion of the forward scattered electromagnetic radiation 222 that faces the particle detector 266. The particle detector 266 can be, for example, a photodiode for measuring the size of the particles 220.

可引導該正向散射電磁輻射222的反射螢光信號部份 通過介質218而返回後被第一波長選擇裝置216反射朝向 光學偵測器2 2 6。在第一波長選擇裝置2 1 6和光學偵測器 226之間可使用聚焦透鏡254來聚焦朝向光學偵測器226 的正向散射電磁輻射222之反射螢光信號部份。 第2圖為根據本發明第一舉例性實施例之顆粒偵測系 統的方塊圖,其納入第1圖的光學系統2 1 0。該光學系統 2 1 0包括引導電磁輻射光束2 1 4進入第一波長選擇襄置2 1 6 的激發光源2 1 2。該電磁輻射光束2 1 4通過第一波長選擇 裝置2 1 6進入介質2 1 8,並且一部份的電磁輪射光束2 1 4 被反向散射至讓第一光學债測器226,以及另一部份的電 磁輻射光束214被正向散射朝向該顆粒偵測器266。 兩個信號除法器(signal divider)230A、230B將第一光 學偵測器226和顆粒偵測器266的輸出分別除以功率監控 偵測器250的輸出。兩個放大器232 A ' 23 2B連接至該信 號除法器230A、230B的輸出端。一類比數位轉換器234 連接至放大器 232A、232B。一窗型比較電路(wind〇w 12 200821568 comparator circuit)23 6連接至該類比數位轉換器2 34。一 控制輸出顯示器(control and output display unit)238 連接 至該窗型比較電路236的輸出端。一低信號偵測電路240 連接至激發光源2 1 2的輸出端,其可提俱該電磁輻射光束 214的功率強度。該低信號偵測電路240的輸出端亦連接 至該控制輸出顯示器23 8。一警報裝置242亦連接至該控 制輸出顯示器2 3 8。該控制輸出顯示器2 3 8可以是一電腦 或各製的軟體/硬體,以控制該顆粒偵測器的操作。 第3圖為用於根據本發明第二舉例性實施例之水懸顆 粒偵測系統的光學系統。如第3圖所示,該光學系統3 i 〇 包括激發光源3 1 2,以提供具有一光源波長的電磁輻射光 束3 14。一第一波長選擇裝置316,例如二色性分光鏡,係 置於可被電磁輻射光束314所照射之位置。該第一波長選 擇裝置316的構造可傳送至少一部份之任何具有光源波長 的輕射以及反射其他波長的轄射。該第—波長選擇裝置 ”6可反射來自激發光源312 @可能軸皮。一部份的電 磁輪射光束3 1 4可被第—浊 皮長廷擇衣置316反射朝向功率 ,測器350。該功率.監控谓測器35〇可與激發光源312 :繫’以及視需要可作為維持該激發光源312恒定輸出功 率之反饋迴路中的一部份D -1* “ # 可耩由功率監控透鏡356來聚 ’、、、被第一波長選擇裝詈7 6反射朝向功率監控偵測器3 的電磁輻射光束3 1 4。 含顆粒3 2 0的介質^e 、 、 置於可被電磁輻射光束3 1 4昭 射的位置。至少一部份電 “、、The reflected fluorescent signal portion of the forward scattered electromagnetic radiation 222 can be directed back through the medium 218 and reflected by the first wavelength selective device 216 toward the optical detector 2 26 . A focusing lens 254 can be used between the first wavelength selective device 2 16 and the optical detector 226 to focus the portion of the reflected fluorescent signal that is directed toward the forward scattered electromagnetic radiation 222 of the optical detector 226. Fig. 2 is a block diagram of a particle detecting system according to a first exemplary embodiment of the present invention, which incorporates the optical system 210 of Fig. 1. The optical system 210 includes an excitation source 2 1 2 that directs the beam of electromagnetic radiation 2 1 4 into the first wavelength selective set 2 1 6 . The electromagnetic radiation beam 2 14 enters the medium 2 1 8 through the first wavelength selection device 2 16 and a portion of the electromagnetic wheel 2 1 4 is backscattered to the first optical detector 226, and another A portion of the electromagnetic radiation beam 214 is forward scattered toward the particle detector 266. Two signal dividers 230A, 230B divide the outputs of the first optical detector 226 and particle detector 266 by the output of the power monitor detector 250, respectively. Two amplifiers 232 A ' 23 2B are connected to the output of the signal dividers 230A, 230B. An analog to digital converter 234 is coupled to amplifiers 232A, 232B. A window type comparison circuit (wind〇w 12 200821568 comparator circuit) 23 6 is connected to the analog digital converter 2 34. A control and output display unit 238 is coupled to the output of the window type comparison circuit 236. A low signal detection circuit 240 is coupled to the output of the excitation source 2 1 2 which can provide the power level of the electromagnetic radiation beam 214. The output of the low signal detection circuit 240 is also coupled to the control output display 238. An alarm device 242 is also coupled to the control output display 238. The control output display 238 can be a computer or a variety of software/hardware to control the operation of the particle detector. Fig. 3 is an optical system for a water suspension particle detecting system according to a second exemplary embodiment of the present invention. As shown in Fig. 3, the optical system 3 i 包括 includes an excitation light source 3 1 2 to provide an electromagnetic radiation beam 3 14 having a source wavelength. A first wavelength selective device 316, such as a dichroic beam splitter, is placed at a position that can be illuminated by the electromagnetic radiation beam 314. The first wavelength selective device 316 is configured to transmit at least a portion of any light having a source wavelength and reflecting other wavelengths. The first wavelength selecting means 6 can reflect from the excitation source 312 @ possible axis. A portion of the electromagnetic wheel beam 3 1 4 can be reflected by the first turbidity beam 316 toward the power, the detector 350. The power monitor monitor 35 can be coupled to the excitation source 312: and optionally as part of a feedback loop that maintains a constant output power of the excitation source 312. D -1* The 356 is condensed, and is reflected by the first wavelength selective device 71 toward the electromagnetic radiation beam 3 1 4 of the power monitoring detector 3. The medium containing particles 3 2 0 , is placed at a position that can be illuminated by the electromagnetic radiation beam 3 1 4 . At least part of the electricity ",,

?田射光束314可成為該介質31S 13The field beam 314 can become the medium 31S 13

200821568 内的散射電磁輻射。該散射電磁輻射包括正向散射 射322及反向散射電磁輻射3 24。第一光學偵測器 設置用以接收反向散射電磁輻射 3 24。該反向散射 射3 24可藉由第一波長選擇裝置316被反射至光學 326。第一波長選擇裝置316和光學偵測器326之間 帶通濾光器3 5 2以減少來自電磁輻射光束3 1 4的任 散射光和/或用以選出準備測定之光譜的特定部份。 長選擇裝置 3 1 6和光學偵測器326之間可利用聚 3 5 4以聚焦朝向光學偵測器3 2 6的反向散射電磁輻: 如第3圖所示,該正向散射電磁輻射322可被 照射至第一光束阻斷透鏡3 60。該第一光束阻斷透 係設計用以反射電磁輻射光束3 1 4的非散射元素, 免光學偵測器上的眩光。該正向散射電磁輻射隨後 導至一光學元件 3 7 0,其為第四舉例性實施例中的 長選擇裝置316。該第一光學元件370容許至少一 向散射電磁輻射322的通過,並反射一部份的正向 磁輻射322。更明確而言,該第一光學元件370可 向散射電磁輻射322的螢光信號部份,同時可讓其 向散射電磁輻射322通過。第二光束阻斷透鏡364 朝向顆粒偵測器 3 6 6的正向散射電磁輻射 3 2 2之 份。該顆粒偵測器3 66可為例如一用於測定該顆粒 大小的光二極體。 可引導該正向散射電磁輻射3 2 2的反射螢光信 朝向第二光學偵測器376。第一光學元件370和第 電磁輻 3 26係 電磁幸§ 偵測器 可利用 何背向 第一波 焦透鏡 it 3 24° 引導而 鏡 3 60 而可避 可被引 第二波 部份正 散射電 反射正 餘的正 可聚焦 通過部 320之 號部份 二光學 14 200821568 偵測器376之間可使用一第二器 f通濾光器3 72,以減少來 自電磁輻射光束 3 1 4的任何昔&amp; u 4月向散射光和/或用以選出準 備測定之光譜的特定部份。第—土 β 吊先學元件3 70和第二光學 偵測器3 76之間可利用聚焦透错 逐鏡374以聚焦朝向第二光學 偵測器3 7 6之正向散射電磁Μ ^ ^ ^ a ^ &amp;射322的反射螢光信號部 份。該第二光學债測器376可俐石灰 止+处π - mum 4例如為一光電倍增管(PMT) 光學偵測器。Scattered electromagnetic radiation within 200821568. The scattered electromagnetic radiation includes forward scatter 322 and backscattered electromagnetic radiation 324. The first optical detector is configured to receive backscattered electromagnetic radiation 3 24 . The backscatter 3 4 can be reflected to the optical 326 by the first wavelength selective device 316. A bandpass filter 325 is coupled between the first wavelength selective device 316 and the optical detector 326 to reduce any scattered light from the electromagnetic radiation beam 3 1 4 and/or to select a particular portion of the spectrum to be measured. The poly 3 5 4 can be utilized between the long selection device 3 16 and the optical detector 326 to focus the backscattered electromagnetic radiation toward the optical detector 3 26 : as shown in FIG. 3, the forward scattered electromagnetic radiation 322 can be illuminated to the first beam blocking lens 366. The first beam blocking transmissive system is designed to reflect the non-scattering elements of the electromagnetic radiation beam 3 1 4 to avoid glare on the optical detector. The forward scattered electromagnetic radiation is then directed to an optical element 330, which is a long selection device 316 in the fourth exemplary embodiment. The first optical element 370 permits passage of at least one of the scattered electromagnetic radiation 322 and reflects a portion of the forward magnetic radiation 322. More specifically, the first optical element 370 can scatter the portion of the fluorescent signal of the electromagnetic radiation 322 while allowing it to pass toward the scattered electromagnetic radiation 322. The second beam blocking lens 364 is directed toward the forward scattered electromagnetic radiation 3 2 2 of the particle detector 36. The particle detector 3 66 can be, for example, a photodiode for determining the particle size. The reflected fluorescent signal that can direct the forward scattered electromagnetic radiation 3 2 2 is directed toward the second optical detector 376. The first optical element 370 and the electromagnetic radiation 266 can be guided by the back to the first wave lens it 3 24° while the mirror 3 60 can avoid the second wave partial positive scattering. The positive reflection of the positive reflection can pass through the portion of the portion 320. The second optics 14 200821568 A second device f-pass filter 372 can be used between the detectors 376 to reduce any radiation from the electromagnetic radiation beam 3 1 4 The light &amp; u April is scattered light and / or used to select a specific part of the spectrum to be measured. A focus-transmission-by-mirror 374 can be used between the first-soil beta hang-up element 3 70 and the second optical detector 3 76 to focus the forward-scattering electromagnetic Μ ^ ^ ^ toward the second optical detector 376 a ^ &amp; 322 reflects the fluorescent signal portion. The second optical debt detector 376 can be 俐 lime stop + at π - mum 4 such as a photomultiplier tube (PMT) optical detector.

第4圖為根據本發明第二舉例性實施例之顆粒偵測系 統3 01的方塊圖,其納入第3圖之光學系統3〗〇。該光學 系統3 1 0包括引導電磁輻射光束3丨4進入第一波長選擇裝 置3 1 6的激發光源3 1 2。該電磁輻射光束3〗4通過第一波 長選擇裝置316進入介質318中’並且一部份的電磁輻射 光束3 1 4被反向散射至該第一光學偵測器3 2 6以及另一部 份的電磁輻射光束314被正向散射朝向顆粒偵測器366。 二個L 5虎除法裔3 30 A、3 3 0 B、3 3 0 C將第一光學偵測 器326、顆粒偵測器366和第二光學偵測器3 76的輸出分 別除以功率監控偵測器3 5 0的輸出。三個放大器332A、 332B、332C連接至該信號除法器330A、330B、330C的輪 出。一類比數位轉換器334連接至放大器332A、332B、 3 3 2C。一窗型比較電路336被連接至該類比數位轉換器 334。一控制輸出顯示器33 8連接至該窗型比較電路336 的輸出端。一低信號偵測電路340連接至激發光源3 12的 輸出端’其提供該電磁輻射光束3 1 4的功率強度。該低信 號偵測電路3 40的輸出亦連接至該控制輸出顯示器3 3 8。 15 200821568 一警報裝置342亦連接至該控制輸出顯示器3 3 8。該控制 輸出顯示器3 3 8可以是一電腦或客製化軟體/硬體,用以控 制該顆粒偵測器的操作。Fig. 4 is a block diagram of a particle detecting system 301 according to a second exemplary embodiment of the present invention, which incorporates the optical system 3 of Fig. 3. The optical system 310 includes an excitation source 3 1 2 that directs the beam of electromagnetic radiation 3丨4 into the first wavelength selective device 3 16 . The electromagnetic radiation beam 3 4 enters the medium 318 through the first wavelength selection device 316 and a portion of the electromagnetic radiation beam 3 14 is backscattered to the first optical detector 3 26 and another portion The electromagnetic radiation beam 314 is forward scatter toward the particle detector 366. The two L 5 tigers are divided into 3 30 A, 3 3 0 B, and 3 3 0 C to divide the outputs of the first optical detector 326, the particle detector 366, and the second optical detector 3 76 by power monitoring, respectively. The output of the detector 3 50. Three amplifiers 332A, 332B, 332C are connected to the rotation of the signal dividers 330A, 330B, 330C. An analog to digital converter 334 is coupled to amplifiers 332A, 332B, 3 3 2C. A window type comparison circuit 336 is coupled to the analog digital converter 334. A control output display 337 is coupled to the output of the window type comparison circuit 336. A low signal detection circuit 340 is coupled to the output terminal of the excitation source 3 12 which provides the power intensity of the beam of electromagnetic radiation 3 1 4 . The output of the low signal detection circuit 340 is also coupled to the control output display 338. 15 200821568 An alarm device 342 is also coupled to the control output display 3 3 8 . The control output display 3 3 8 can be a computer or a custom software/hardware for controlling the operation of the particle detector.

該系統設計係根據顆粒大小相當於光波長的米氏(Mi e) 散射原理。在米氏散射狀況中,散射光的角度分佈和強度 皆與顆粒的大小和形狀密切相關。散射的特徵為具有下列 的特性:1)該散射光聚焦於正向和反向之方向;2)該散 射光強度的角度分佈情形對散射顆粒的大小極為敏感;以 及 3)該顆粒的散射截面以單調但複雜的方式與顆粒的大 小成比例。利用可見光,例如波長〇 · 6 7微米之可見雷射二 極光輸出光束,該米氏散射法適合用於偵測和定性微米級 範圍的懸浮顆粒。第5圖為說明米氏散射截面與顆粒半徑 之間的關係圖。 該根據本發明第二舉例性實施例,偵測系統3 0 1的光 學系統3 1 0係利用散射角度與顆粒大小成比例的原理,利 用置於通過樣本之光路徑上的第一光束阻斷透鏡3 6 0來除 去預設範圍之外的散射光。由於如第5圖所述與描繪般, 該顆粒的散射截面以單調但複雜方式與顆粒大小成比例, 該顆粒偵測器3 6 6係設計成可藉由分辨所測得之脈波高度 的差異來偵測樣本内顆粒大小的分佈情形。因此,從顆粒 偵測器3 6 6輸出之電脈衝的高度取決於顆粒的尺寸。 如第4圖所示,顆粒偵測器3 6 6的輸出端係連接至第 二信號除法器3 3 0B的一輸入端,同時該功率監控偵測器 3 5 0(其相當於激發光源31 2)的輸出端連接至第二信號除法 16 200821568 器33 0B的另一輸入端,以及從第二 ^ Λ ^ ^ 琥除法器330Β輪出 足些仏嬈的比値。第6圖係由本 類比數位轉換哭334、介刑、^ +弟一舉例性實施例中 付佚σ〇 J *3 4、自型比車父電路 Βξ λλο ,, ^ ^ 36及控制輸出顯示 33 8所構成之脈衝高度測量電路的 ^ ^ . 鬼圖’同時第7圖 為更砰細說明該類比數位轉換器334 哭ΑΑ认1 50略圖。該顆粒偵測 益366的輸出可為一脈衝信號 t π # I / 弟6圖中所繪示一 糸列類比脈衝信號中的信號6。’各脈衝代表介質川内一The system design is based on the Mee scattering principle of particle size equivalent to the wavelength of light. In the Mie scattering state, the angular distribution and intensity of the scattered light are closely related to the size and shape of the particles. Scattering is characterized by the following characteristics: 1) the scattered light is focused in the forward and reverse directions; 2) the angular distribution of the scattered light intensity is extremely sensitive to the size of the scattering particles; and 3) the scattering cross section of the particle It is proportional to the size of the particles in a monotonous but complex way. Using visible light, such as a visible laser dipole output beam with a wavelength of 6 · 67 μm, the Mie scattering method is suitable for detecting and characterizing suspended particles in the micron range. Figure 5 is a graph showing the relationship between the Mie scattering cross section and the particle radius. According to a second exemplary embodiment of the present invention, the optical system 310 of the detection system 310 uses the principle that the scattering angle is proportional to the particle size, and is blocked by the first beam placed on the light path through the sample. The lens 306 removes scattered light outside the preset range. Since the scattering cross section of the particle is proportional to the particle size in a monotonous but complex manner as depicted and depicted in Figure 5, the particle detector 366 is designed to resolve the measured pulse height by Differences are used to detect the distribution of particle sizes within the sample. Therefore, the height of the electrical pulse output from the particle detector 366 depends on the size of the particles. As shown in FIG. 4, the output of the particle detector 366 is connected to an input of the second signal divider 3 3 0B, and the power monitor detector 350 (which is equivalent to the excitation source 31). The output of 2) is connected to the other input of the second signal division 16 200821568 33 0B, and from the second ^ ^ ^ ^ 除 Β Β 330 Β 値 値 値. Figure 6 is the analogy of digital conversion, 334, imprisonment, ^ + brother, an exemplary embodiment, 佚 佚 〇 J * 3 4, self-form than the parent circuit Βξ λλο, ^ ^ 36 and control output display 33 The pulse height measurement circuit composed of 8 ^ ^ . Ghost diagram ' at the same time Figure 7 is a more detailed description of the analog digital converter 334 crying recognition 1 50 thumbnail. The output of the particle detection 366 can be a pulse signal t π # I / 。 6 shows a signal 6 in a 类 column analog pulse signal. ' each pulse represents a medium in the river

種顆粒的散射$ ’並且該脈衝之高度與該顆粒的大小成比 例。為了除去DC背景,來自顆粒偵測器3“的各個輸入 脈衝—。nnng pluse)均通過一高通滤波器Q,然後通過一 緩衝器64而抵至峰值檢波器65 ’其將可測量出該輸入脈 :的高度。峰值檢波器65的輸出將為—系列具有脈衝高度 資料的脈衝計數信號。_比數位轉換器川和峰值偵測電 路的-實施例詳細說明於第7圖中,第7a圖繪示該電路 中各點的脈衝輸出值。f 7 A圖中的「ΡΕΑκ 〇υτ」輸出信 號被傳送至窗型比較電路336以進行分類。繪示於第 圖的其他脈衝為時間和啟動信號,以通知該窗型比較電路 336擷取及儲存該數據。 該窗型比較電路336具有一系列窗型比較器66(第6 圖之實施例中標示為1〜10),分別用以偵測在預設電壓範 圍内(窗電壓,wind〇w v〇itage)之脈衝。各窗型比較器 66 僅在當該輸入脈衝高度落於其窗電壓範圍(例如,比較器#5 為5至7.5亳伏特)内時,傳送一信號至其相關的數位計數 器68 °該相關數位計數器68(塊,bin)的輸出端係連接至 17 200821568 一顯示板7 0,其將顯示各粒徑尺寸的顆粒數。因此,該控 制輸出顯示器3 3 8可包括由發光二極體(LED)陣列來點亮 的條形圖,該等發光二極體根據各顆粒尺寸來自相關計數 器的輸入值而依序點亮,以產生粒徑分佈的柱狀圖。該條 形圖中不同粒徑可具有不同的顏色。該輸出值亦可、或者 連接至一程式化電腦以在其銀幕上顯示粒徑分佈的柱狀 圖。The scattering of the particles is $' and the height of the pulse is proportional to the size of the particles. In order to remove the DC background, each input pulse from the particle detector 3 ".nnng pluse" passes through a high pass filter Q and then passes through a buffer 64 to the peak detector 65' which will measure the input. The height of the pulse: The output of the peak detector 65 will be - a series of pulse count signals with pulse height data. The embodiment of the digital converter and the peak detection circuit is described in detail in Figure 7, Figure 7a. The pulse output values of the points in the circuit are shown. The "ΡΕΑκ 〇υτ" output signal in the figure f 7 A is sent to the window type comparison circuit 336 for classification. The other pulses shown in the figure are time and enable signals to inform the window type comparison circuit 336 to retrieve and store the data. The window type comparison circuit 336 has a series of window type comparators 66 (labeled as 1 to 10 in the embodiment of FIG. 6) for detecting within a preset voltage range (window voltage, wind 〇 wv 〇 itage) Pulse. Each window comparator 66 transmits a signal to its associated digital counter 68 ° when the input pulse height falls within its window voltage range (eg, comparator #5 is 5 to 7.5 volts). The output of counter 68 (block) is connected to 17 200821568 a display panel 70 which will display the number of particles of each particle size. Therefore, the control output display 338 may include a bar graph illuminated by an array of light emitting diodes (LEDs) that are sequentially illuminated according to input values from respective counters of respective particle sizes. To produce a histogram of the particle size distribution. The different particle sizes in the bar graph can have different colors. The output value can also be connected to a stylized computer to display a histogram of the particle size distribution on its screen.

該窗型比較電路3 3 6具有複數個窗型比較器6 6和數位 計數器6 8以計算在目標範圍内之對應於粒徑的脈衝。在第 6圖中,顯示10個此類的塊。然而,從1至7微米的粒徑 之間以0.5微米的間隔可提供14塊。若需要較小或較大的 粒徑範圍時可提供較少或較多的比較器和計數器,例如介 於1至5微米的較窄病原體大小範圍。第8圖為說明粒徑 大小分佈之柱狀圖的一實施例。其雖然顯示從1至1 9微米 的分佈範圍,但是應瞭解可程式化控制輸出顯示器3 3 8可 以顯示1〜7微米較窄範圍或任何所欲範圍的粒徑分佈柱狀 圖。該控制輸出顯示器3 3 8的輸出端亦可連接至一視覺和/ 或聽覺警報裝置 342,例如位於外殼前端的警示燈及蜂鳴 器等。 可使用任何適合的軟體來以產生該輸出顯示柱狀圖, 例如德州Austin市國家儀器公司供應的Lab View軟體。若 一病原體或生物製劑粒徑範圍内的計數量超過正常環境之 預設濃度時,此軟體亦可用於產生啟動警報裝置3 42的輸 出。此將有助於降低或甚至消除誤報的危險。該電腦的輸 18 200821568 出亦可用於觸發一更精細的生物製劑偵測裝置,例如一利 用PCR技術的炭疽菌偵測儀。此結合偵測法將具有成本效 益以及進一步降低誤報的危險。 在本發明的一改良配置中,由於已知道用於處理此類The window type comparison circuit 363 has a plurality of window type comparators 6 6 and a digital counter unit 6 8 to calculate pulses corresponding to the particle diameter within the target range. In Figure 6, 10 such blocks are shown. However, 14 pieces can be provided at intervals of 0.5 μm between the particle diameters of 1 to 7 μm. Fewer or more comparators and counters may be provided if a smaller or larger particle size range is desired, such as a narrower range of pathogen sizes between 1 and 5 microns. Fig. 8 is a view showing an embodiment of a histogram of the particle size distribution. Although it shows a distribution range from 1 to 19 microns, it should be understood that the programmable control output display 3 3 8 can display a narrower range of 1 to 7 microns or a particle size distribution histogram of any desired range. The output of the control output display 338 can also be coupled to a visual and/or audible alarm device 342, such as a warning light and buzzer at the front end of the housing. Any suitable software can be used to generate the output display histogram, such as the Lab View software supplied by National Instruments, Austin, Texas. The software can also be used to generate an output of the activation alarm device 42 if the counted amount within the particle size range of a pathogen or biological agent exceeds a predetermined concentration in the normal environment. This will help reduce or even eliminate the risk of false positives. The computer's input 18 200821568 can also be used to trigger a more sophisticated biologic detection device, such as an anthrax detector using PCR technology. This combined detection method will be cost effective and further reduce the risk of false positives. In an improved configuration of the invention, as is known for processing such a

物質的處理程序,並已知對於該處理程序中所使用的儀器 具有獨特的識別尺寸分佈模式,因此可將該懸浮顆粒之尺 寸分佈的柱狀圖與已知的武器化生物製劑的分佈圖相比 較。因此,本發明之偵測系統可提供可能來源之生物製劑 製造商的鑑識資訊。 如上所述,最可能被用於恐怖攻擊的生物製劑之粒徑 範圍介於1至7微米之間。下表1顯示疾病管制中心所記 載之生物恐怖戰劑種類的特性: 表1 、生物恐怖戰劑的種類 生物戰劑 尺寸特性 炭疽菌 桿狀:寬1.〇-1.2微米,長3.0-5.0 微米(孢子1.0X1 ·5微米) 耶爾辛氏桿菌(鼠疫) 隋圓形:1.0-2.0微米 肉毒梭狀芽孢桿菌 桿狀:寬0.8-1.3微米,長4·4-8.6 微米 弗蘭斯氏兔熱菌 桿狀:寬0.2微米,長0.7微米 環境空氣中自然存在之大小約介於1至7微米的流體 懸浮顆粒極微量且具有恒定濃度。都會區域及突然發生的 局部粉塵源的煙霧侵入粒徑範圍的峰値分別為〇. 3微米和 5微米。在花季時,空氣中亦可能存在花粉和其他的過敏 原,以及過敏原顆粒的大小介於約5至5 0微米之間。因此, 這些天然的懸浮顆粒中僅有少數落在生化戰劑的粒徑範圍 19 200821568The processing of the substance, and it is known that there is a unique pattern of identification size distribution for the instrument used in the treatment procedure, so that the histogram of the size distribution of the suspended particles can be compared with the profile of known weaponized biological agents. Comparison. Thus, the detection system of the present invention provides forensic information from manufacturers of biologics from potentially available sources. As noted above, biological agents most likely to be used in terrorist attacks range in particle size from 1 to 7 microns. Table 1 below shows the characteristics of the bioterrorist agent types recorded by the Centers for Disease Control: Table 1. Types of bioterrorist agents Biological warfare agent size characteristics Anthrax rods: width 1. 〇-1.2 μm, length 3.0-5.0 μm (spore 1.0X1 · 5 microns) Yersinia (plague) 隋 round: 1.0-2.0 micron botulinum botulinum rod shape: 0.8-1.3 microns wide, 4·4-8.6 micron Frans Rabbit heat bacteria rod shape: 0.2 micrometers wide, 0.7 micrometers long. The fluid suspension particles naturally present in the ambient air of about 1 to 7 micrometers are extremely small and have a constant concentration. The peaks of the smoke intrusion particle size in the metropolitan area and the sudden occurrence of local dust sources are 微米.3 μm and 5 μm, respectively. During the flower season, pollen and other allergens may also be present in the air, and the size of the allergen particles is between about 5 and 50 microns. Therefore, only a few of these natural suspended particles fall within the particle size range of biochemical warfare agents.

内(1至7微米)。此外,黴菌雖然具有約1至5微米的粒 徑,但是在任何特定區域内的黴菌顆粒數通常不會突然地 改變。因此根據第四舉例性實施例之該偵測系統3 0 1的設 計可偵測在此特定尺寸範圍内的粒徑,並以〇. 5微米之間 隔來產生代表該粒徑偵測範圍的輸出。任何顆粒尺寸介於 1至7微米内之懸浮顆粒數目的突然及區域性增加最可能 為刻意地釋出侵略性生物戰劑或病原體。該系統可設定為 偵測和儲存所欲顆粒大小範圍内之顆粒天然背景濃度,然 後利用此背景濃度作為其後輸出柱狀圖的比較濃度,以在 偵測到顆粒突然增加的情形時啟動該警報器。第8圖的粒 徑分佈柱狀圖顯示一可能的危險狀態,在圖中,介於1至 7微米粒徑範爵内所偵測的顆粒數目已遠超過正常值。 雖然如上所述之顆粒偵測系統無法分辨特定的顆粒, 但由於在正常都市空氣環境中,此目標範圍内的懸浮顆粒 通常相對較為稀少,故其可作為警告懸浮生物戰劑攻擊的 一種敏感和具成本效益的方法。大小落在此範圍内的顆粒 可能侵入人類肺部而產生可能的傷害或甚至造成吸入者死 亡。該警報裝置3 42可對附近民眾提出警告而立刻進行疏 散以減少暴露於該毒劑中的危險。 該偵測系統3 0 1亦可用於偵測工廠中有害粉塵的危險 程度。例如^有害石綿纖維的大小約為5微米,其通常具 有约5微米或更長的長度以及約1 -2微米的直徑。若將大 小介於1- 5微米間的鈹塵被吸入肺部時亦會造成傷害。該 偵測系統3 0 1可置於含石綿的建築物内,或當建築工人在 20 200821568Inside (1 to 7 microns). Further, although the mold has a particle diameter of about 1 to 5 μm, the number of mold particles in any specific region does not usually change abruptly. Therefore, the detection system 301 according to the fourth exemplary embodiment is designed to detect the particle size within the specific size range and generate an output representing the particle size detection range at intervals of 微米.5 μm. . The sudden and regional increase in the number of suspended particles with any particle size between 1 and 7 microns is most likely to deliberately release aggressive biological warfare agents or pathogens. The system can be configured to detect and store the natural background concentration of the particles within the desired particle size range and then use the background concentration as the comparative concentration of the subsequent output histogram to initiate the detection of a sudden increase in particle size. Alarm. The particle size histogram in Figure 8 shows a possible dangerous state. In the figure, the number of particles detected in the 1 to 7 micron particle size has far exceeded the normal value. Although the particle detection system described above cannot distinguish specific particles, since the suspended particles in this target range are usually relatively rare in a normal urban air environment, they can be used as a sensitive and warning for suspended biological warfare agents. A cost-effective approach. Particles falling within this range may invade the human lungs and cause possible injury or even death of the inhaler. The alarm device 3 42 can immediately dissipate warnings to nearby people to reduce the risk of exposure to the agent. The detection system 310 can also be used to detect the hazard of hazardous dust in the factory. For example, the harmful asbestos fibers are about 5 microns in size, which typically have a length of about 5 microns or more and a diameter of about 1-2 microns. Damage can also be caused if whisk dust between 1 and 5 microns is inhaled into the lungs. The detection system 310 can be placed in a building containing asbestos or as a construction worker at 20 200821568

此類建築物内工作時,以便在偵測到1至5微米範圍内之 異常峰値時產生警告信號,其表示空氣中存在危險量的石 綿纖維。同樣,該偵測系統3 0 1可置於製造含鈹零件之工 人的附近,以便當介於1至5微米的顆粒數目突然增加時 產生警告信號,其表示鈹塵可能已達到危險的濃度。該偵 測系統3 0 1於正常情況下雖然無法分辨在該相同粒徑範圍 内的石綿或鈹塵,但是當工作於石綿或鈹環境下時若此粒 徑範圍内的顆粒突然增加應聽從可能存在危險狀態的指示 立刻疏散該區域之後再作進一步的檢測。 同樣,該偵測系統3 01亦可被用於無菌製造工廠,例 如食品或醫藥製造廠,以連績監控微生物的溢出,而可在 第一時間採取緊急的補救措施。同樣,該偵測系統3 01已 被用作一持續監控系統,以便根據無塵室的要求,提醒工 廠管理人有關微生物偵測的歷史數據和趨勢資訊。 在上述偵測系統3 01内,係使用兩階段的偵測及鑑別 過程,該具有光學系統3 1 0的系統首先將落在該包含目標 粒徑範圍之預設角度範圍以外的散射光除去。接著,根據 脈波高度來識別所偵得輸出脈衝,計算各高度的脈波數目 並轉換成例如 0.2微米内的粒徑,並將結果顯示為柱狀 圖,並且每隔適當的時間間隔便產生一新的柱狀圖以說明 顆粒分佈情形的改變。然而,除了以粒徑分佈柱狀圖顯示 之外,該偵測系統3 0 1的光學部份或可配置成僅將相當於 1至7微米粒徑範圍的散射光信號部份引導至偵測器1 4, 以及偵測系統3 0 1的其餘部份則配置成當偵測系統3 0 1的 21When working in such buildings, a warning signal is generated when an abnormal peak in the range of 1 to 5 microns is detected, indicating a dangerous amount of asbestos fibers in the air. Similarly, the detection system 310 can be placed in the vicinity of a worker who manufactures a defective part to generate a warning signal when the number of particles between 1 and 5 microns suddenly increases, indicating that the dust may have reached a dangerous concentration. The detection system 310 can not distinguish the asbestos or dust in the same particle size range under normal conditions, but when working in the asbestos or sputum environment, if the particles within the particle size range suddenly increase, it should be possible to listen. An indication of a dangerous state immediately evacuates the area for further testing. Similarly, the detection system 301 can also be used in aseptic manufacturing plants, such as food or pharmaceutical manufacturing plants, to monitor microbial spills in a continuous manner, and to take emergency remedial measures in the first place. Similarly, the detection system 301 has been used as a continuous monitoring system to alert the plant manager of historical data and trend information about microbiological detection based on the requirements of the clean room. In the above detection system 310, a two-stage detection and discrimination process is used, and the system having the optical system 310 first removes scattered light that falls outside the predetermined angular range including the target particle size range. Next, the detected output pulse is identified based on the pulse height, the number of pulses at each height is calculated and converted to a particle size of, for example, 0.2 microns, and the result is displayed as a histogram and generated at appropriate intervals. A new histogram to illustrate the change in particle distribution. However, in addition to the particle size distribution histogram display, the optical portion of the detection system 310 can be configured to direct only portions of the scattered light signal corresponding to the 1 to 7 micron particle size range to detection. The first portion of the detection system 3 0 1 and the detection system 3 0 1 are configured to detect the system 3 0 1 of 21

200821568 輸出若超過一預設閥值時會發出一警告信號。此將提 不準確的輸出,並且無法判斷在該偵測大小範圍内的 識別,但若有相當於已知懸浮病原體、過敏原或如鈹 石綿等其他有害顆粒之大小範圍内的顆粒數目不尋常 增加時,仍能產生一相對準確的警報。第3圖的光學 3 0 1僅需改良成可提供較大的中央阻斷區,以阻斷尺 於約7微米之顆粒的散射光,並且該輸出電路被改良 在顆粒偵測器3 6 6的輸出端提供一閥值鑑別器,以在 測信號若高於所選擇之閥值時,從該鑑別器提供一輸 號來啟動一警報器。 本發明的病原體偵測器可用於各種用途。例如, 體偵測器可實施成現場人員使用的電池供電式可攜、 偵測器。在此情況下,其外殼可容納光學設備和依尺 圍來計算顆粒的電路,以及具有用以顯示各粒徑之目 粒計數的顯示器,如一 LED顯示器。其亦可包含一 器,以傳送無線信號至一基地台。其亦可包含一聲音 器及一用以提示雷射電力不足的警示燈。亦可提供用 公大樓等建築物内的獨立式、桌上型儀器。此獨立式 上型儀器類似用於現場的機型,但其經由一 AC/DC轉 而使用牆壁上的標準電源插座來供電。在後者的情況 偵測器可提供對辨公桌上被生物戰劑所污染之信件或 的保護。 該偵測器亦可作為一多功能建築物保全系統中的 份,其包括置於不同房間内並連接至中央監控電腦或 供較 粒徑 塵或 大量 糸統 寸大 成可 該偵 出信 病原 手持 寸範 前顆 傳輸 警報 於辨 、桌 換器 ’該 包裹 一部 控制 22 200821568 台的多台偵測器。可程式化該控制台以監控各房間的顆粒 數,及分析任何病原體大小顆粒的異常增加來源,以及預 測病源體顆粒在該建築物内的可能散播模式。該偵測器可 利用實體線路相連接,或具有無線電傳送器以便將資料傳 送至中央控制台,以分析任何生物戰劑顆粒增加之來源以 及任何生物戰劑煙塵的可能擴散模式。200821568 A warning signal will be sent if the output exceeds a preset threshold. This will provide an inaccurate output and will not be able to determine the identification within the size range of the detection, but if there is an equivalent amount of particles known to be suspended pathogens, allergens or other harmful particles such as ochre, the number of particles is unusual. When added, a relatively accurate alert can still be generated. The optical 310 of Figure 3 only needs to be modified to provide a larger central blocking zone to block scattered light of particles of about 7 microns, and the output circuit is modified in the particle detector 3 6 6 The output provides a threshold discriminator to provide an alarm from the discriminator to activate an alarm if the measured signal is above the selected threshold. The pathogen detector of the present invention can be used in a variety of applications. For example, the body detector can be implemented as a battery powered portable, detector for field personnel. In this case, the outer casing can accommodate the optical device and the circuit for calculating the particles by the circumference, and the display having the count of the particles for displaying the respective particle diameters, such as an LED display. It may also include a device to transmit wireless signals to a base station. It may also include a sounder and a warning light to indicate that the laser power is insufficient. Stand-alone, desktop instruments in buildings such as public buildings are also available. This stand-alone upper model is similar to the one used in the field, but it is powered by an AC/DC to a standard power outlet on the wall. In the latter case, the detector provides protection against letters or documents contaminated with biological warfare agents. The detector can also be used as a part of a multi-purpose building security system, which is placed in a different room and connected to a central monitoring computer or for larger particle size dust or a large number of sturdy systems. In front of the transmission of the alarm, the table changer 'the package is a control unit 22 200821568 multiple detectors. The console can be programmed to monitor the number of particles in each room, as well as to analyze the source of abnormal increase in particle size for any pathogen, and to predict the possible mode of dissemination of pathogen particles within the building. The detector can be connected using physical lines or have a radio transmitter to transmit data to the central console to analyze the source of any increase in biological warfare agent particles and the possible diffusion patterns of any biological warfare agent.

揭示於此處的流體懸浮顆粒偵測器亦可用於監控無塵 室,以防可能之污染和/或材料損失。 較大範圍地利用偵測系統3 0 1時,僅在符合下列兩種 情況之下啟動該警報裝置 3 42 : (1 )當偵測到在預設粒徑 範圍(約1至約7奈米)内的氣懸顆粒數目突然增加時;以 及(2)當利用如下述之雷射誘發螢光偵測到生物有機體、生 物戰劑或有機物質時。 粒徑感測器本身具有環境顆粒誤報的缺點。若該病原 偵測系統3 0 1為結合有利用紫外線誘發螢光感測器以分辨 生物性或非生生物性顆粒之顆粒尺寸測定能力的生物有機 體或生物戰劑辨認偵測器時,可進一步減少這些誤報的情 形。本發明之偵测系統301包括一第一光學偵測器326和 一具有雷射誘發螢光感測器以偵測生物有機體之代謝物或 如生物戰劑等生物製劑的第二光學偵測器 3 76。更明確而 言,該光學系統3 1 0包括一可在約2 7 0至約4 1 0奈米波長, 較佳為在約3 50至約410奈米下操作的激發光源312。當 生物製劑含有三種主要代謝物:色胺酸,其通常約270奈 米(在約220至約300奈米範圍内)下發出螢光;菸醯胺腺 23 200821568 嗓吟雙核皆(NADH),其通常在約34〇奈米(從約3〇〇至約 400奈米範圍)下發出螢光;以及核黃素(rib〇flavin),其通 常在約400奈米(從約320至約42〇奈米範圍)下發出螢光 的情況下’選擇約270至約4丨〇奈米波長。然而,該激發 光源3 1 2較佳為具有約3 5 〇至約4 1 〇奈米的波長。此波長 確保可激發生物製劑内上述三種主要代謝物中的兩種,即 生物製劑NADH和核黃素,但不激發其他干擾物質,如柴 _ 油引擎廢氣和其他如粉塵或爽身粉等惰性顆粒。因此,在 第四實施例中,係使激發光源3丨2的遴選波長範圍能夠保 留激發NADH和核黃素之螢光的能力(上述激發色胺酸的 能力),同時不激發其他如柴油廢氣等干擾物。此步驟可減 少因柴油廢氣(可被如266奈米之光線等短11¥波長所激發 而產生的誤報。 第9圖顯示上述四種代謝物的螢光光譜。光譜分析, 特別5玄些利用不同激發波長的光譜分析,可探測微生物的 組成成份’並可將所產生的資料用於微生物的偵測和分類The fluid suspended particle detector disclosed herein can also be used to monitor a clean room to prevent possible contamination and/or material loss. When the detection system 300 is used to a larger extent, the alarm device 3 42 is activated only when the following two conditions are met: (1) When it is detected in the preset particle size range (about 1 to about 7 nm) When the number of aerosol particles in the chamber suddenly increases; and (2) when a biological organism, a biological warfare agent or an organic substance is detected by laser-induced fluorescence as described below. The particle size sensor itself has the disadvantage of environmental particle false alarms. If the pathogen detection system 310 is a bioorganism or biological warfare agent detector that incorporates an ultraviolet-induced fluorescence sensor to distinguish the particle size of the biological or non-bio-particles, further Reduce these false positives. The detection system 301 of the present invention includes a first optical detector 326 and a second optical detector having a laser-induced fluorescence sensor to detect metabolites of biological organisms or biological agents such as biological warfare agents. 3 76. More specifically, the optical system 310 includes an excitation source 312 that is operable at a wavelength of from about 270 to about 410 nm, preferably from about 3 50 to about 410 nm. When the biologic contains three major metabolites: tryptophan, which typically emits fluorescence at about 270 nm (in the range of about 220 to about 300 nm); the nicotinamide 23, 200821568 嗓吟 dinuclear (NADH), It typically emits fluorescence at about 34 〇 nanometers (ranging from about 3 〇〇 to about 400 nm); and rib flavin, which is usually at about 400 nm (from about 320 to about 42) In the case of fluorescing under the 〇 nanometer range) 'Select about 270 to about 4 丨〇 nanometer wavelength. However, the excitation source 3 1 2 preferably has a wavelength of from about 3 5 〇 to about 4 1 〇 nanometer. This wavelength ensures that two of the three major metabolites in the biologics, the biological agents NADH and riboflavin, are excited, but do not excite other interfering substances such as diesel-oil engine exhaust and other inert particles such as dust or talcum powder. . Therefore, in the fourth embodiment, the selection wavelength range of the excitation light source 3丨2 is capable of retaining the ability to excite the fluorescence of NADH and riboflavin (the above-described ability to stimulate the tryptophan acid) while not exciting other interference such as diesel exhaust gas. Things. This step can reduce the false alarm caused by diesel exhaust gas (which can be excited by a short 11¥ wavelength such as 266 nm light. Figure 9 shows the fluorescence spectrum of the above four metabolites. Spectral analysis, special 5 Spectral analysis of different excitation wavelengths can detect the composition of microorganisms' and can be used to detect and classify microorganisms

該光學偵測器326、3 76的輸出端係分別連接至除法器 3 30A、33 0C,進而經由放大器3 3 0A、3 3 0C和類比數位轉 換器334連接至控制顯示裝置3 3 8,從而連接至警報裝置 342 ° 必需強調的是,上述本發明實施例’特別指任何「較 佳」實施例為可行的實施例,僅為幫助更清礎瞭解本發明 之原理而作的說明。上述本發明之實施例可進行許多不同 24 200821568 的改良,但其實質上仍未偏離本發明的精神和原理。全部 此類的改良和變化均屬於本文揭示内容及本發明範圍内, 並且受到下列申請專利範圍的保護。 【圖式簡單說明】The outputs of the optical detectors 326, 768 are connected to the dividers 3 30A, 33 0C, respectively, and are further connected to the control display device 3 3 via the amplifiers 3 3 0A, 3 3 0C and the analog digit converter 334. </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; The above-described embodiments of the present invention can be modified in many different ways, but without departing from the spirit and principles of the present invention. All such improvements and variations are within the scope of the disclosure and the scope of the invention, and are protected by the scope of the following claims. [Simple description of the map]

參考下列附圖可更加暸解本發明的多種態樣。圖示内 的組件並不需定出其比例尺寸,而是在於清楚圖解本發明 之原理。此外,在該數幀附圖中均以相同元件符號來代表 相對應的部件。 第1圖係根據本發明第三舉例性實施例之用於一流體 懸浮顆粒偵測系統的光學系統。 第2圖係根據本發明第三實施例並納入第1圖光學系 統的顆粒偵測系統方塊圖。 第3圖係根據本發明第四舉例性實施例之用於一流體 懸浮顆粒偵測系統701的光學系統。 第4圖係根據本發明第.三實施例並納入第3圖之光學 系統的顆粒偵測系統方塊圖。 第5圖係米氏散射截面對顆粒半徑的關係圖。 第6圖係根據本發明第四舉例性實施例之由類比數位 轉換器、窗型比較器電路和控制輸出顯示器所構成之脈波 高度測量電路的方塊圖。 第7圖係根據本發明第四舉例性實施例之類比數位轉 換器的示意圖。 第 7A圖係根據本發明第四舉例性實施例之類比數位 轉換器在各點之輸出的圖解說明。 25 200821568 第8圖為說明一粒徑分佈柱狀圖的範例。 第9圖顳示四種代謝物的螢光發光光譜。A wide variety of aspects of the invention will be apparent from the following drawings. The components in the figures are not necessarily to scale, but rather to clearly illustrate the principles of the invention. In addition, the same component symbols are used to denote corresponding components in the drawings. Fig. 1 is an optical system for a fluid-suspended particle detecting system according to a third exemplary embodiment of the present invention. Figure 2 is a block diagram of a particle detection system incorporating the optical system of Figure 1 in accordance with a third embodiment of the present invention. Figure 3 is an optical system for a fluid suspended particle detection system 701 in accordance with a fourth exemplary embodiment of the present invention. Fig. 4 is a block diagram of a particle detecting system of the optical system according to the third embodiment of the present invention and incorporated in Fig. 3. Figure 5 is a plot of the Mie scattering cross section versus particle radius. Figure 6 is a block diagram of a pulse height measuring circuit constructed by an analog-to-digital converter, a window comparator circuit, and a control output display in accordance with a fourth exemplary embodiment of the present invention. Fig. 7 is a schematic diagram of an analog digital converter according to a fourth exemplary embodiment of the present invention. Figure 7A is a graphical illustration of the output of an analog-to-digital converter at various points in accordance with a fourth exemplary embodiment of the present invention. 25 200821568 Figure 8 is an illustration of a histogram of particle size distribution. Figure 9 shows the fluorescence luminescence spectra of the four metabolites.

【主要元件符號說明】 14 偵測器 62 高通濾波器 65 峰值檢波器 68 數位計數器 210光學系統 2 1 4電磁輻射光束 21δ介質 222正向散射電磁輻射 226第一光學偵測器 2 3 0Β信號除法器 23 2Β放大器 2 3 6窗型比較電路 240低信號偵測電路 252帶通濾光器 2 5 6功率監控透鏡 262第一光學元件 266顆粒偵測器 3 10光學系統 3 1 4電磁輻射光束 60 信號 64 缓衝器 6 6 窗型比較器 7 0 顯示板 2 12激發光源 216第一波長選擇裝置 2 2 0顆粒 224反向散射電磁輻射 23 0Α信號除法器 232Α放大器 234類比數位轉換器 2 3 8控制輸出顯示器 2 5 0功率監控偵測器 2 5 4聚焦透鏡 260第一光束阻斷透鏡 2 6 4 ,第二光束阻斷透鏡 3 0 1顆粒偵測系統 3 12激發光源 3 1 6第一波長選擇裝置 318介質 320顆粒 3 2 2正向散射電磁輻射 3 2 4反向散射電磁輻射 26 200821568 326第一光學偵測器 3 30A信號除法器 3 3 0B信號徐法器 3 3 0C.信號除法器 3 32A放大器 332B放大器 3 3 2 C放大器 3 3 4類比數位轉換器 3 3 6 窗型比較電路 3 3 8控制輸出顯示器 3 40低信號偵測電路 342警報裝置 3 5 0功率監控偵測器 3 5 2帶通濾光器 * 0 356功率監控透鏡 3 60第一光束阻斷透鏡 3 64第二光束阻斷透鏡 3 6 6顆粒偵測器 370第一光學元件 3 7 2第二帶通濾光器 3 74聚焦透鏡 3 7 6第二光學偵測器 • 27[Main component symbol description] 14 Detector 62 High-pass filter 65 Peak detector 68 Digital counter 210 Optical system 2 1 4 Electromagnetic radiation beam 21 δ Medium 222 Forward scatter electromagnetic radiation 226 First optical detector 2 3 0 Β Signal division 23 Β amplifier 2 3 6 window type comparison circuit 240 low signal detection circuit 252 band pass filter 2 5 6 power monitoring lens 262 first optical element 266 particle detector 3 10 optical system 3 1 4 electromagnetic radiation beam 60 Signal 64 Buffer 6 6 Window Comparator 7 0 Display Board 2 12 Excitation Source 216 First Wave Selector 2 2 0 224 Backscattered Electromagnetic Radiation 23 0Α Signal Divider 232 Α Amplifier 234 Analog Digital Converter 2 3 8 Control output display 2 50 power monitoring detector 2 5 4 focusing lens 260 first beam blocking lens 2 6 4 , second beam blocking lens 3 0 1 particle detecting system 3 12 excitation light source 3 1 6 first wavelength Selection device 318 medium 320 particles 3 2 2 forward scattered electromagnetic radiation 3 2 4 backscattered electromagnetic radiation 26 200821568 326 first optical detector 3 30A signal divider 3 3 0B signal Xu 3 3 C 0. Divider 3 32A Amplifier 332B Amplifier 3 3 2 C Amplifier 3 3 4 Analog Digital Converter 3 3 6 Window Type Comparison Circuit 3 3 8 Control Output Display 3 40 Low Signal Detection Circuit 342 Alarm Device 3 5 0 Power Monitoring Detector 3 5 2 bandpass filter* 0 356 power monitoring lens 3 60 first beam blocking lens 3 64 second beam blocking lens 3 6 particle detector 370 first optical element 3 7 2 second band pass filter Lighter 3 74 Focusing Lens 3 7 6 Second Optical Detector • 27

Claims (1)

200821568 十、申請專利範圍: 1. 一種顆粒偵測系統,其包含: 一外殼,其具有一樣本槽區; 一光源,位在該樣本槽區的一側,用於傳送一 束通過該樣本,因而使部份的該光束被樣本區内的 小顆粒以各種角度散射,而該光束未散射的部份則 未被散射狀態; 一光束阻斷裝置,位在該樣本槽區的相反側, 斷至少一部份該未散射部份的光束以及限制顆粒的 圍; 一第一偵測器,置於該光束阻斷裝置後方的 中,用於偵測一部份的正向散射光,以及產生一含 路徑中落在一預設粒徑範圍内之正向散射顆粒數目 輸出; 一第二偵測器,置於該空氣樣本槽的光源側, 測一部份的反向散射光,以及產生一含有該光路徑 一預設粒徑範圍内之反向散射顆粒數目資訊的輸出 2.如申請專利範圍第1項所述之系統,其中上述反 介質内的反向散射光係進一步被第一波長選擇 反射,以被該偵測器所接收。 聚焦光 各種大 保持在 用於阻 測定範 光路徑 有該光 資訊的 用於偵 中落在 射自該 裝置所 28200821568 X. Patent Application Range: 1. A particle detection system comprising: a housing having the same groove area; a light source positioned on one side of the sample slot for transmitting a beam through the sample, Thus, a portion of the beam is scattered by small particles in the sample region at various angles, and the unscattered portion of the beam is not scattered; a beam blocking device is located on the opposite side of the sample slot, At least a portion of the unscattered portion of the beam and the perimeter of the limiting particle; a first detector disposed in the rear of the beam blocking device for detecting a portion of the forward scattered light and generating a number of forward scattering particles falling within a predetermined particle size range; a second detector placed on the light source side of the air sample slot, measuring a portion of the backscattered light, and generating An output comprising the information of the number of backscattered particles within a predetermined particle size range of the optical path. The system of claim 1, wherein the backscattered light system in the anti-media is further Wavelength selection Reflection to be received by the detector. Focusing light, various large, used to resist the measurement of the light path, the information used for the detection of the fall in the device. 200821568 3 ·如申請專利範圍第1項所述之系統,更包括一警 用以在當該預設粒徑範圍内的顆粒數超過預設約 微米之預設粒徑範圍的正常值時提供一警報信號 4.如申請專利範圍第1項所述之系統,其中該光源 外線。 Φ 5.如申請專利範圍第1項所述之系統,其中該光源 發光二極體(LED)。 6.如申請專利範圍第5項所述之系統,更包括一準 其置於該光源和該第一波長選擇裝置之間。 7.如申請專利範圍第1項所述之系統,更包括一處 該處理器連接至一脈波高度鑑別器之輸出端,用 指定時間根據各脈波高度來處理粒徑分佈,而產 懸粒徑分佈的柱狀圖,以及在一輸出裝置上顯示 圖。 8.如申請專利範圍第1項所述之系統,更包括: 一第一透鏡,置於被光束照射之位置; 一第一濾光器,置於被光束照射之位置; 一第二透鏡,設置用以傳送至少一部份的該正 報器, 1至7 〇 發射紫 包括一 直鏡, 理器, 以在一 生一氣 該柱狀 向散射 29 200821568 光; 一第一光學元件,置於被至少一部份的該正向散射光 所照射之位置,其中該第一光學元件僅傳送該部份正向散 射光的一特定波帶;以及 一第二光學偵測器,設置用以接收傳送通過該第一光 學元件所像送的該部份正向散射光,因而該第二光學偵測 器測定出該介質内顆粒的尺寸。200821568 3 - The system of claim 1, further comprising a policeman for providing a normal value when the number of particles in the predetermined particle size range exceeds a preset particle size range of about 10 micrometers The alarm signal is the system of claim 1, wherein the light source is outside. Φ 5. The system of claim 1, wherein the light source is a light emitting diode (LED). 6. The system of claim 5, further comprising a portion disposed between the light source and the first wavelength selective device. 7. The system of claim 1, further comprising a processor coupled to the output of a pulse height discriminator for processing the particle size distribution according to the height of each pulse wave at a specified time, and suspending A histogram of the particle size distribution and a graph on an output device. 8. The system of claim 1, further comprising: a first lens placed at a position illuminated by the beam; a first filter placed at a position illuminated by the beam; a second lens, Provided to transmit at least a portion of the positive reporter, 1 to 7 〇 emit violet including a mirror, to filter the columnar scattering 29 200821568 light; a first optical component placed at least a portion of the position at which the forward scattered light is illuminated, wherein the first optical element transmits only a specific band of the portion of forward scattered light; and a second optical detector is configured to receive and transmit The portion of the first optical element that is imaged forward scatters light, such that the second optical detector determines the size of the particles within the medium. 9.如申請專利範圍第8項所述之系統,其中該第一透鏡更 包括一準直鏡。 1 0.如申請專利範圍第 8項所述之系統,更包括一偵測透 鏡,設置用以接收和傳送被該第一波長選擇裝置所反射 的輻射,以及一偵測器,其設置於用以接收來自該偵測 透鏡的輻射,其中該偵測器係與該光源聯繫。9. The system of claim 8 wherein the first lens further comprises a collimating mirror. The system of claim 8, further comprising a detecting lens configured to receive and transmit radiation reflected by the first wavelength selective device, and a detector disposed for use Receiving radiation from the detection lens, wherein the detector is in communication with the light source. 1 1 .如申請專利範圍第8項所述之系統,更包括一第三光學 偵測器,其中該第三光學元件係一第二波長選擇裝置用 以反射至少一部份的該正向散射光朝向該第三光學偵 測器。 1 2.如申請專利範圍第8項所述之系統,其中該第一光學元 件係一濾光器,設置用於僅傳送該部份正向散射光的一 30 200821568 特定波帶,其中其他波帶被該濾光器反射而沿著光學徑 路朝向該第一光學偵測器。 1 3 .如申請專利範圍第8項所述之系統,其中該光源波長係 介於約3 50至400奈米之間以及該第一濾光器傳送約低 於400奈米的光。The system of claim 8, further comprising a third optical detector, wherein the third optical component is a second wavelength selective device for reflecting at least a portion of the forward scattering The light is directed toward the third optical detector. 1 2. The system of claim 8 wherein the first optical component is a filter disposed to transmit only a portion of the forward scattered light of a 30 200821568 specific band, wherein the other waves The strip is reflected by the filter and faces the first optical detector along the optical path. The system of claim 8, wherein the source wavelength is between about 35 and 400 nanometers and the first filter transmits light of less than about 400 nanometers. 1 4.如申請專利範圍第8項所述之系統,更包括至少一光束 阻斷透鏡,其光學性地設置於該介質和該第二光學偵測 器之間,其中該光東阻斷透鏡傳送散射光以及反射或吸 收非散射光。 1 5 .如申請專利範圍第1項所述之系統,更包括至少一濾光 器,其光學性地設置於該介質和該第一光學偵測器之 間,其中該濾光器傳送來自該介質的反向散射光以及反 射來自該光源的電磁輕射。 1 6.如申請專利範圍第5項所述之系統,更包括複數個用於 將來自該LED之光線塑造成接近準直光線的光學透鏡。 1 7.如申請專利範圍第1項所述之系統,其中該光源包括複 數個用於塑形光線和/或將雜訊從該光束中除去的光學 透鏡。 31 200821568 1 8.如申請專利範圍第1項所述之系統,其中該樣本槽包括 一空氣樣本槽。 1 9.如申請專利範圍第1項所述之系統,其中該樣本槽包括 一水樣本槽。 φ 20.如申請專利範圍第1項所述之系統,其中該第一波長選 擇裝置包括一二色性分光鏡。 2 1 .如申請專利範圍第1 1項所述之系統,其中該第一波長 裝置包括二色性分光鏡。 22.如申請專利範圍第12項所述之系統,其中該第一光學 元件係一低通濾波器。The system of claim 8, further comprising at least one beam blocking lens optically disposed between the medium and the second optical detector, wherein the optical blocking lens The scattered light is transmitted and the non-scattered light is reflected or absorbed. The system of claim 1, further comprising at least one filter optically disposed between the medium and the first optical detector, wherein the filter is transmitted from the Backscattered light from the medium and reflected electromagnetic light from the source. 1 6. The system of claim 5, further comprising a plurality of optical lenses for shaping light from the LED to be near collimated light. The system of claim 1, wherein the light source comprises a plurality of optical lenses for shaping the light and/or removing noise from the light beam. The system of claim 1, wherein the sample well comprises an air sample tank. The system of claim 1, wherein the sample well comprises a water sample tank. The system of claim 1, wherein the first wavelength selective device comprises a dichroic beam splitter. The system of claim 1, wherein the first wavelength device comprises a dichroic beam splitter. 22. The system of claim 12, wherein the first optical component is a low pass filter. 2 3 . —種偵測病原體和顆粒的方法,該方法包括下列的步 驟: 發射一光束; 傳送至少一部份的該光束通過一第一波長選擇裝置; 以該部份光束照射一含顆粒的介質,其中該等顆粒以 正向及反向散射該光線;以及 镇測和測量該正向散射光和該反向散射光。 32 200821568 24.如申請專利範圍第23項所述之方法,更包括: 以該第一波長選擇裝置反射至少一部份的該反向散射 光; 在該第一光學偵測器接收至少一部份的該反向散射 光,因而測定出以反向散射該光線之該等顆粒的尺寸。 2 5 .如申請專利範圍第23項所述之方法,更包括: 傳送至少一部份該正向散射光通過一第二透鏡;A method for detecting a pathogen and a particle, the method comprising the steps of: emitting a light beam; transmitting at least a portion of the light beam through a first wavelength selective device; and irradiating the particle beam with the partial light beam a medium, wherein the particles scatter the light in forward and reverse directions; and the backscattered light and the backscattered light are measured and measured. The method of claim 23, further comprising: reflecting at least a portion of the backscattered light with the first wavelength selective device; receiving at least one portion of the first optical detector The backscattered light is thus determined to measure the size of the particles that backscatter the light. The method of claim 23, further comprising: transmitting at least a portion of the forward scattered light through a second lens; 僅傳送該部份正向散射光的一特定波帶通過一第一光 學元件;以及 以一第二光學债測器接收被傳送通過該第一光學元件 的該部份正向散射光,使得該第二光學偵測器測定出正向 散射該光線之該等顆粒的尺寸。 26.如申請專利範圍第23項所述之方法,更包括: 利用該第一光學元件反射一部份的該正向散射光朝向一第 三光學偵測器,其中該第一光學元件係一第二波長選擇裝 置。· 2 7 .如申請專利範圍第2 3項所述之方法,更包括: 以一第三透鏡聚焦該被傳送通過該第一光學元件朝向該第 二光學偵測器的該部份正向散射光,其中該第三透鏡反射 非散射光。 2 8 .如申請專利範圍第2 3項所述之方法,更包括: 33 200821568 以一第四透鏡聚焦被該第一波長選擇裝置反射朝向該第一 光學偵測器的該部份反向散射光。 2 9,如申請專利範圍第2 3項所述之方法,更包括: 以一濾光器來過濾被該第一波長選擇裝置所反射朝向該第 一光學偵測器的該部份反向散射光。Transmitting only a particular band of the portion of forward scattered light through a first optical element; and receiving, by a second optical debt detector, the portion of forward scattered light transmitted through the first optical element such that A second optical detector measures the size of the particles that forwardly scatter the light. 26. The method of claim 23, further comprising: reflecting, by the first optical component, a portion of the forward scattered light toward a third optical detector, wherein the first optical component is Second wavelength selection device. The method of claim 23, further comprising: focusing, by a third lens, the portion of the first optical element that is transmitted through the first optical element toward the second optical detector for forward scattering Light, wherein the third lens reflects non-scattered light. The method of claim 23, further comprising: 33 200821568 focusing a fourth lens to be backscattered by the first wavelength selective device toward the portion of the first optical detector Light. The method of claim 23, further comprising: filtering, by a filter, the backscattered portion of the first optical detector that is reflected by the first wavelength selective device Light. 3434
TW95142126A 2006-11-14 2006-11-14 Pathogen and particle detector system and method TWI424154B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95142126A TWI424154B (en) 2006-11-14 2006-11-14 Pathogen and particle detector system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95142126A TWI424154B (en) 2006-11-14 2006-11-14 Pathogen and particle detector system and method

Publications (2)

Publication Number Publication Date
TW200821568A true TW200821568A (en) 2008-05-16
TWI424154B TWI424154B (en) 2014-01-21

Family

ID=44770549

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95142126A TWI424154B (en) 2006-11-14 2006-11-14 Pathogen and particle detector system and method

Country Status (1)

Country Link
TW (1) TWI424154B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110612443A (en) * 2016-12-26 2019-12-24 原子能和替代能源委员会 Method and device for observing radiation backscattered by an object
TWI831007B (en) * 2020-05-27 2024-02-01 美商應用材料股份有限公司 Method and apparatus for detection of particle size in a fluid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251733A (en) * 1978-06-29 1981-02-17 Hirleman Jr Edwin D Technique for simultaneous particle size and velocity measurement
US6087947A (en) * 1996-07-11 2000-07-11 Robert N. Hamburger Allergen detector system and method
US7126687B2 (en) * 1999-08-09 2006-10-24 The United States Of America As Represented By The Secretary Of The Army Method and instrumentation for determining absorption and morphology of individual airborne particles
WO2006039192A1 (en) * 2004-09-29 2006-04-13 Telco Testing Solutions, Llc Apparatus and method for detection of contaminant particles or component defects

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110612443A (en) * 2016-12-26 2019-12-24 原子能和替代能源委员会 Method and device for observing radiation backscattered by an object
CN110612443B (en) * 2016-12-26 2022-08-16 原子能和替代能源委员会 Method and device for observing radiation backscattered by an object
TWI831007B (en) * 2020-05-27 2024-02-01 美商應用材料股份有限公司 Method and apparatus for detection of particle size in a fluid

Also Published As

Publication number Publication date
TWI424154B (en) 2014-01-21

Similar Documents

Publication Publication Date Title
US7738099B2 (en) Pathogen and particle detector system and method
JP4351676B2 (en) Airborne pathogen detection system
JP4871868B2 (en) Pathogen and particulate detection system and detection method
JP5388846B2 (en) Pathogen detection by simultaneous measurement of particle size and fluorescence
US7436515B2 (en) Fluid borne particle analyzers
CA2474036C (en) System and method for detecting and classifying biological particles
EP2235736B1 (en) Pathogen detection by simultaneous size/fluorescence measurement
US8628976B2 (en) Method for the detection of biologic particle contamination
TWI447394B (en) Pathogen detection by simultaneous size/fluorescence measurement
TW201407150A (en) Pathogen and particle detector system and method
TWI424154B (en) Pathogen and particle detector system and method
GB2434444A (en) Fluid borne particle analysers
Luoma et al. Fluorescence particle detector for real-time quantification of viable organisms in air

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees