TW200821349A - Composition of electromagnetic wave absorption material and preparation method of the same - Google Patents

Composition of electromagnetic wave absorption material and preparation method of the same Download PDF

Info

Publication number
TW200821349A
TW200821349A TW95141547A TW95141547A TW200821349A TW 200821349 A TW200821349 A TW 200821349A TW 95141547 A TW95141547 A TW 95141547A TW 95141547 A TW95141547 A TW 95141547A TW 200821349 A TW200821349 A TW 200821349A
Authority
TW
Taiwan
Prior art keywords
electromagnetic wave
composition
absorbing material
wave absorbing
weight
Prior art date
Application number
TW95141547A
Other languages
Chinese (zh)
Other versions
TWI337189B (en
Inventor
Jen-Sung Hsu
Yuan-Yao Li
Meng-Dan Jiang
Chai-Tung Liu
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW95141547A priority Critical patent/TW200821349A/en
Publication of TW200821349A publication Critical patent/TW200821349A/en
Application granted granted Critical
Publication of TWI337189B publication Critical patent/TWI337189B/zh

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This invention provides the composition of an electromagnetic wave absorption material and the preparation method of the same. The electromagnetic wave absorption material composition comprises a liquid resin, nano sized carbon balls, carbon fibers and hallow glass beats, in which the liquid resin, nanometer carbon ball, carbon fiber and glass balloon are homogeneously mixed into a composition of electromagnetic wave absorption material. The preparation method of the electromagnetic wave absorption material composition includes steps of: (a) mixing the liquid resin, nano sized carbon ball, carbon fiber and hallow glass balloons homogeneously into a solution; (b) pour the solution into a mold; (c) cured and cooled for an electromagnetic wave absorption material composition. Density of the electromagnetic wave absorption material composition is 0.75-1.0g/ml that meets the requirements of light in weight and thin in thickness for high-tech industrial materials.

Description

200821349 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種電磁波吸收材料之組成物及其製備方法,尤其是指 一種密度介於0. 75-1· 0克/毫升的電磁波吸收材料之組成物及其製備方 法,該電磁波吸收材料之組成物係應用於電磁波的吸收材料。 【先前技術】 中華民國專利469283中介電性電磁波吸收材料的製造方法是於液態聚 鲁 胺基曱酸脂(Polyurethane,簡稱PU)樹脂中添加碳黑、碳粉、導電纖維及 中空玻璃球(microballoons)材料,經兩階段特殊裝置混合成漿狀半成品, 再將該漿狀半成品以適當模具製成微波吸收材。其中所述之介電性電磁波 吸收材料之製造方法因混合後之漿狀半成品具有較大的黏度,其製=方法 首先以樹脂混合部份碳黑,再以特殊設計的3〇〇〇—6〇〇〇 rpm高速研磨機分 散,再添加碳粉、導電纖維及中空玻璃球,此時該漿狀半成品之黏度會大 增,故需改用300-600 rpm低速高黏度攪拌機充分混合後再塗佈成試片, 如此會使製程及設備較繁複。 中華民國專利567643中所述之改良型Salbury Screen式電磁波吸收 •,,其中第一層為電性均質耗損材,第二層為低介電常數材,以第一層及 第=層兩種材料形成之複合層,再加上反射層組合成一微波吸收材。其中 所狀改良,Salbury Screen式電磁波吸收材,由於該第一層為電性均質 耗損材4第一層為低介電常數材,此種雙層材料在製作上比單層材料之 製作較繁複。 、中華民國專利566077中μ中空碳球含量5—5〇 wt%之多層混合樹脂製成 迅、波吸收材4專利中未提及電磁波吸收材之密度,但由此法所製成之 電魏=收材,估計其密度耻〇—L 4克/毫升,該電磁波吸收材密度太高 亚不付a目可鬲科技產業對材料輕薄之需求。 吴國專利6465098B2中述及之介電性電磁波吸收組成物為5—1〇份的碳 5 200821349 黑及HG份的氣相生成法所製成的麵 樹脂十,混合羽縣齡轉材 的碳纖維取代傳統的碳纖维,雖 仁乂乳相生成法所衣成 法所制成、、吏厌…、及石反纖維的添加量降低,但由此 法所衣成的财《材之密度料約4i(m. 合目前高科技產業對材料輕薄之需求。 見毛升,、在度太冋不付 綜上所述’習知電磁波讀材料之 不能符合紐賴卿_編度“ 袓成^ 吨術可改善,故提供—種電磁波吸收材料之 人電磁波爾料之組成ά的密度介於™. 0克 /么升/、此付&问科技產業對材料輕 帝 成物之製備方法較習知之f備方、m 5亥笔磁波吸收材料之組 〈衣備方相化,故可減少製作的成本。 【發明内容】 電磁波吸收材料之組成物及其製備 以符合南科技產業對材料輕薄之要 本發明之主要目的,在於提供一種 方法,以減少電磁波吸收材料的密度, 求0 本=之次要目的,在於提供—種電磁波吸收材料之組成物及其The invention relates to a composition of an electromagnetic wave absorbing material and a preparation method thereof, in particular to an electromagnetic wave absorbing material having a density of 0. 75-1·0 g/ml. The composition and the preparation method thereof, the composition of the electromagnetic wave absorbing material is applied to an electromagnetic wave absorbing material. [Prior Art] The method of manufacturing the dielectric electromagnetic wave absorbing material of the Republic of China Patent 469283 is to add carbon black, carbon powder, conductive fiber and hollow glass ball (microballoons) to a liquid polyurethane (PU) resin. The material is mixed into a slurry semi-finished product through a two-stage special device, and the slurry semi-finished product is made into a microwave absorbing material by a suitable mold. The manufacturing method of the dielectric electromagnetic wave absorbing material described above has a large viscosity due to the mixed slurry semi-finished product, and the method of the method comprises the steps of first mixing a part of carbon black with a resin, and then specially designing a 3-6. 〇〇〇rpm high-speed grinding machine disperses, then add carbon powder, conductive fiber and hollow glass ball. At this time, the viscosity of the slurry semi-finished product will increase greatly. Therefore, it needs to be mixed with 300-600 rpm low-speed high-viscosity mixer to fully mix and then apply. Having a test piece, this will make the process and equipment more complicated. The modified Salbury Screen electromagnetic wave absorption method described in the Republic of China Patent No. 567643, wherein the first layer is an electrically homogeneous lossy material, the second layer is a low dielectric constant material, and the first layer and the second layer are two materials. The composite layer formed, in addition to the reflective layer, is combined into a microwave absorbing material. Among them, the Salbury Screen type electromagnetic wave absorbing material, because the first layer is the electrical homogeneous loss material 4, the first layer is a low dielectric constant material, and the double layer material is more complicated to manufacture than the single layer material. . , Republic of China Patent 566077, μ hollow carbon sphere content of 5 - 5 〇 wt% of multi-layer mixed resin made of fast, wave absorption material 4 patent does not mention the density of electromagnetic wave absorption material, but the electricity produced by this method = Receipt, estimated its density shame - L 4 g / ml, the electromagnetic wave absorption material density is too high, Asia does not pay a target can be the technology industry's demand for light materials. The dielectric electromagnetic wave absorbing composition described in Wu Guo Patent No. 6445098B2 is 5-1 parts of carbon 5 200821349 The surface resin made by the gas phase formation method of black and HG parts, the carbon fiber of the mixed age and the age of the material Replacing the traditional carbon fiber, although the amount of the anti-fiber added by the method of the production of the 乂 乂 milk phase is reduced, the amount of the stone fiber is reduced, but the density of the material is 4i(m. In line with the current demand for light materials in the high-tech industry. See Mao Sheng, in the degree of too much to pay for the above-mentioned 'Immediate electromagnetic wave reading materials can not meet the New Laiqing _ editor's 袓 ^ ^ The technique can be improved, so the density of the composition of the electromagnetic wave absorbing material provided by the person of the electromagnetic wave absorbing material is between TM. 0 g / 升 liter /, this payment & ask the technology industry to compare the preparation method of the material light emperor The group of the magnetic wave absorbing material and the m 5 hai pen magnetic wave absorbing material can reduce the cost of production. [Summary of the invention] The composition of the electromagnetic wave absorbing material and its preparation are in conformity with the lightness of the material in the South technology industry. The main object of the present invention is to provide a method In order to reduce the density of the electromagnetic wave absorbing material, the second objective is to provide a composition of the electromagnetic wave absorbing material and

㈣讀錄之㈣紐較習知的製財法簡單便 利,以減少製備的時間及成本。 本1月之另目的’在於提供一種電磁波吸收材料之組成物及呈事備 方法’該電魏吸收_之域物之溶液具有較㈣黏度以偷混 伴。 本發明提供-種電磁波吸收材料之組成物及其製備方法5該電磁波吸 收材料之組成物,其係包括:液細脂、奈树球、錢維及巾空破璃球; 其中該液摘脂、該奈米碳球、該碳纖維及該中空玻璃球混合均句形成 一电磁波吸收材料之組成物。該電磁波吸收材料之組成物之製備方法,其 步驟包括.將液恶樹脂、奈米碳球、碳纖維及中空玻璃球混合均勻成一 6 200821349 /谷液,將該溶液灌入一模具;及熟化冷卻,即得到一電磁波吸收材料之 組成物。 【實施方式】 本發明電磁波吸收材料之組成物,其係包括:液態樹脂、奈米碳球(其 具有多層石墨結構)、碳纖維及中空玻璃球;其中該液態樹脂、該奈米碳 球、該碳纖維及該中空玻璃球混合均勻形成一電磁波吸收材料之組成 物。其中該電磁波吸收組成物之密度為o.m克/毫升,該電磁波吸收 組成物之厚度為1. 3-2. G 。驗態樹脂之重量為該電磁波吸收材料之組 成物重量的,且該液態樹聽選自環氧樹脂、聚胺基甲酸脂樹脂、 聚甲基丙烯酸酯樹脂、矽樹脂、聚酯樹脂之群組之其中之一者。兮夹米 碳球之重量為該電磁波吸收材料之組成物重量的Q. 2_2.⑽,且該奈米碳球 之内徑為5-H) nm’外徑為15_25 nm。該碳纖維重量為該電磁波吸㈣料 之組成物重量的5. (H5. G%,且該氣相生成法所製之碳纖維之平均長度為 10-20,,平均寬度為〇•心m。該中空玻璃球重量為該電磁波魏材 料之組成物重量的5· (Ho· 〇% ’且該中空玻璃球密度為ΐ5〇·5克/毫升, 其平均粒徑為50-55//m。 本發明電磁収收材料之組祕之韻方法,其步驟包括(如第一圖所 示): 成一溶液 S1將液態樹脂、奈米碳球、碳纖維及中空玻璃球昆合均勾 S2將该溶液灌入一模罝·及 3献~知到一電石兹波吸收材料之組成物。 7 200821349 八中乂液』月曰之重里為該溶液重量的8〇—篇,該奈米碳球重量為該 /合液重里的G. 2-2肩’該硬纖維之重量為該溶液重量的& 瓜⑽,該中 空玻璃球之重量為該溶液重量的5· G-10· 0%。 八 等X液心树月曰、叇奈米碳球、該碳纖維及中空玻璃球混合均 勻成命液之步.驟中,更包括使用—葉片式攪拌機攪伴該溶液之步 驟葉片式馳_速為麵_3_ _。該si步驟中包括先將該(4) Reading (4) New Zealand is simpler and easier than the conventional financial method to reduce the time and cost of preparation. Another object of the present month is to provide a composition of an electromagnetic wave absorbing material and a method for preparing the material. The solution of the electron absorbing material has a (four) viscosity to steal the mixing. The invention provides a composition of an electromagnetic wave absorbing material and a preparation method thereof, and the composition of the electromagnetic wave absorbing material, which comprises: liquid fine fat, nai tree ball, Qian Wei and towel empty glass ball; wherein the liquid pickled fat The nano carbon sphere, the carbon fiber, and the hollow glass sphere are mixed to form a composition of an electromagnetic wave absorbing material. The method for preparing the composition of the electromagnetic wave absorbing material comprises the steps of: mixing the liquid resin, the nano carbon ball, the carbon fiber and the hollow glass ball into a 6 200821349 / valley liquid, pouring the solution into a mold; and curing cooling That is, a composition of an electromagnetic wave absorbing material is obtained. [Embodiment] The composition of the electromagnetic wave absorbing material of the present invention comprises: a liquid resin, a nanocarbon sphere (having a multilayer graphite structure), a carbon fiber, and a hollow glass sphere; wherein the liquid resin, the nanocarbon sphere, the The carbon fiber and the hollow glass ball are uniformly mixed to form a composition of an electromagnetic wave absorbing material. I. The thickness of the electromagnetic wave absorbing composition is 1. 3-2. G. The weight of the test resin is the weight of the composition of the electromagnetic wave absorbing material, and the liquid tree is selected from the group consisting of epoxy resin, polyurethane resin, polymethacrylate resin, enamel resin, and polyester resin. One of them. The weight of the carbon sphere is Q. 2_2. (10), and the inner diameter of the nanocarbon sphere is 5-H) nm' outer diameter is 15_25 nm. The weight of the carbon fiber is 5. (H5. G%) of the composition of the electromagnetic wave (four) material, and the average length of the carbon fiber produced by the gas phase generation method is 10-20, and the average width is 〇•heart m. The weight of the hollow glass sphere is 5·(Ho· 〇% ' of the weight of the composition of the electromagnetic wave material and the density of the hollow glass sphere is ΐ5〇·5 g/ml, and the average particle diameter thereof is 50-55//m. The method for inventing the secret of the electromagnetic collecting material comprises the following steps (as shown in the first figure): forming a solution S1, filling the liquid resin, nano carbon ball, carbon fiber and hollow glass ball with S2 Into a model 及·and 3 献~ know the composition of a galvanic wave absorbing material. 7 200821349 八中乂液" The weight of the moon 为 is the weight of the solution 8 〇 - the weight of the nano carbon ball is / G. 2-2 shoulder in the weight of the liquid. The weight of the hard fiber is the weight of the solution & melon (10), and the weight of the hollow glass sphere is 5·G-10·0% of the weight of the solution. The liquid heart tree moon 曰, 叇 nano carbon ball, the carbon fiber and the hollow glass ball are evenly mixed into a life liquid step. The blade type mixer stirs the solution step by step, and the speed is _3_ _. The si step includes

米碳球、該雜綠合後,再加人該中空玻璃球混合均 勻=驟,且該溶液之_為·—麵哪。其中幻該熟化冷卻, P仟““磁波吸收材料之組成物之步驟中,該熟化步驟為在7〇肩。〔 下’烘乾0· 8〜1· 5小時。 /奈米碳球因具有優良導電性、化學穩定性,近年來極受重視,鑑於以 也兹波吸收材料中因添加導電碳黑而造成其浆狀半成品之黏度 大’加工性差的缺失,故本發明以奈米碳球取代部份導冑碳黑,同時於配 方中添加適里中空玻璃球來降低電磁波吸收材料的密度。 舰1、日進中華民國專利469283的混料方式,本發明選用—般葉片式授 U 4 ’但此裝置只能混合藥漿黏度小於25_哪以下的配方,基 中*,選職態樹脂’奈米碳球、汽相生成導電碳纖維、 空破璃球等填料也只能適量添加,以避免藥漿黏度過高。 =面電磁波經由空氣正向傳播至背面有導電金屬層之吸收材料時, 工H收材料交界面上電磁波之反射係數為下式: Ο) p _ tanh(/2(jr2) - Ζλ Z2 tanh(/2^2)-f 8 200821349 反射損失dB值則定義如下式: P⑽) = 101og|p|2) (2) …上式中下私1表空亂,下標2表吸收材料,^為反射係數,其為反射波 功率與入概辨之比值,“魏材料之厚度,4電磁波在吸收材料之 傳播係數: (3) (4) (5) 電磁場下有 氣之相對 空 Ϊ2 - W ε2^2 Ζι及&刀別為空氣及吸收材料之阻抗: H 得=377Ω S及A 77別代表材料之介電係數與導磁係數,因吸收材料在 極化現象,且其反應树間延遲意即有損耗,吸收材料相對於 "甩係數〜及相對導磁係、數〜常以複數型式表示: ⑹After the carbon spheres and the hybrid greens are combined, the hollow glass spheres are uniformly mixed and the _ is the surface of the solution. In the step of aging the cooling, P 仟 "" the composition of the magnetic wave absorbing material, the aging step is at 7 〇 shoulder. [Bottom' drying 0·8~1·5 hours. / Nano carbon spheres have been highly valued in recent years due to their excellent electrical conductivity and chemical stability. In view of the fact that the viscosity of the slurry-like semi-finished product is poor due to the addition of conductive carbon black in the absorbing material of the zibo wave, the processing property is poor. In the present invention, a part of the carbon black is replaced by a nano carbon ball, and a suitable hollow glass ball is added to the formulation to reduce the density of the electromagnetic wave absorbing material. Ship 1, Japan into the Republic of China patent 469283 mixing method, the invention selects the general blade type U 4 ' but this device can only mix the viscosity of the slurry less than 25_ which formula, base *, select the state of the resin' Fillers such as nano carbon spheres, vapor phase conductive carbon fibers, and empty glass spheres can only be added in an appropriate amount to avoid excessive viscosity of the slurry. = When the surface electromagnetic wave propagates forward through the air to the absorbing material with the conductive metal layer on the back side, the reflection coefficient of the electromagnetic wave at the interface of the H-receiving material is as follows: Ο) p _ tanh(/2(jr2) - Ζλ Z2 tanh( /2^2)-f 8 200821349 The reflection loss dB value is defined as follows: P(10)) = 101og|p|2) (2) ... In the above formula, the lower private table 1 is empty, the subscript 2 is the absorption material, ^ is The reflection coefficient, which is the ratio of the reflected wave power to the input, "the thickness of the Wei material, the propagation coefficient of the 4 electromagnetic waves in the absorbing material: (3) (4) (5) The relative air of the gas under the electromagnetic field 2 - W ε2 ^2 Ζι and & knife are the impedance of air and absorbing materials: H = 377 Ω S and A 77 represent the dielectric and magnetic permeability of the material, due to the polarization of the absorbing material, and the delay between the reaction trees Means loss, the absorption material relative to the "甩 coefficient~ and the relative magnetic permeability system, the number ~ often expressed in plural: (6)

Mr ~ j^rMr ~ j^r

Mr ⑺ ⑻ 才能獲 M〇 若要完全無反射,則由(1)式可得下式: Z2t3nh{y2d2)-Zx =〇 因此必須轉導钱導磁㈣及其含量,並浦㈣之厚度, 得最佳之吸收材料。 加奈米碳 本發明之電磁波吸收材料之組成物係採用以液態樹脂中添 9 200821349 ^ 球、氣相生成法所製碳纖維、中空玻璃球等介電填料,以一般葉片式攪 拌機以1000-3000 rpm轉速混合均勻,以布氏黏度儀在25t:量測溶液黏度, 藥漿倒入15 cmxl5 cm金屬模子中,上下放鋁板,以夾子夾住,並於8(fc 烘乾1小時(熟化步驟)後取出,待冷卻後除去鋁板將成品取出,經修飾後量 測厚度、重量及密度。 微波反射損失(Return Loss)量測方法採用自由空間(free space)測試 法’頻率範圍(2-18GHZ),使用微波網路分析儀HP g722ES及此腿业的公司 籲 free聊ce量測夾具,以同試片大小15 αηχ15 cm金屬片放上待測位置, 先校正水平,調整天权射角度⑵。)_始反射量,接著換試片並以該金 屬片當反射面再量測試片之反射損失衰減強度。 為使貴審查委員對本發明電磁波吸收材料之組成物及其製備方法之 特徵及步驟有更進-步之瞭解與認識,現以數個較佳實施例說明如後。 第一實施例 φ 將83,1 ^液悲裱氧樹脂,奈米碳球〇·9 g,氣相生成法所製碳纖維 (VGCF-H) 8.0 g加入混料容器中,以一般葉片式攪拌機3〇〇〇 rpm轉速攪 拌5刀|里’再加入中空破璃球總配料量搬忌,以下各例同)以ι_ rpm轉速麟4分鐘混合均勻,取樣量測溶液黏度為2〇5〇〇 cps,取34· 〇忌 /合液灌板,熟化後取出試片,量測重量為32· 〇 g,厚度為h 8麵,密度為 〇· 79 g/cc,微波反射損失量測如第二圖所示,高峰值在9· 9 GHz,具% $ dB的效果。本樣品特性可和美國專利6465〇98Β2中例一的試片比較,該專 利以6· 4 %導電碳黑,2· 7 %導電碳纖加入90· 9 %聚乙烯中混合製成厚 10 200821349 ' L 98刪之試片,微波反射損失高峰值在9.5 GHz,具37诎的嗖果 、 種試片之微波反射損失高峰值相當接近,本實施例之厚度比該專利例一降 低約-成;美國專利雖未提到該試片之密度,但由配方可估計其密度約1 〇 g/cc,兩種試片相比本發明之試片因密度低,厚度薄,因此相U段下試 片重量可降低約30%。 ' 第二實施例 關-之配方及配製法,取55.Gg溶液灌模,熟化後取出試片,量測 重量為49. 3 g ’厚度為2. 7刪,密度為Q. ?9 g如,微波反射損失量測如 第三圖所示’高峰值在6· 5 GHz,具22. 6 dB的效果。 第三實施例 將85.15 g液態環氧樹脂,奈米碳球〇. 45 g,氣相生成法所製碳纖維 (VGCF-H) 9.0 g ’加入混料容器中’以一般葉片式攪拌機議_轉速 授拌5分鐘,再加入中空玻璃球5.4 g(總配料量⑽g)以綱〇 _轉速 鲁 ㉟拌4分鐘混合均勻,取樣量測溶液黏度為176GG CPS,取38. G g溶液灌 模,熟化後取出試片’量測重量為35.3g,厚度為18刪,密度為〇 87_, 微波反射損失量測如第四圖所示,高峰值在8. 5挪,具18.(池的效果。 第四實施例 將82.8 g液態環氧樹脂’奈米碳球i 2 g,氣相生成法所製碳纖維 (VGCF-H) 6. 0 g ’加入混料容器中,以—般葉片式攪拌機3〇〇〇 rpm轉速 攪拌5分鐘,再加入中空玻璃球1(). 〇g(總配料量⑽g)卩酬_轉速 攪拌5分鐘混合均勻,取樣量測溶液黏度為115⑼cps,取28. G g溶液灌 200821349 模,熟化後取出試片,量測重量為26. i g,厚度為l 3咖,密度為〇· 89此, 微波反射損失量測如第五圖所示,高峰值在14·丨GHz,具23. 3诎的效果。 第五實施例Mr (7) (8) can obtain M 〇 If there is no reflection at all, then the following formula can be obtained from (1): Z2t3nh{y2d2)-Zx = 〇 Therefore, it is necessary to transduce the magnetic permeability (4) and its content, and the thickness of Pu (4), The best absorbent material. The composition of the electromagnetic wave absorbing material of the present invention is a dielectric filler made of a liquid resin, a carbon fiber, a hollow glass ball, or the like, which is added to a liquid resin, and is used in a general blade type mixer at 1000-3000 rpm. Mix the rotation speed evenly, measure the viscosity of the solution with a Brookfield viscometer at 25t: pour the slurry into a 15 cmxl5 cm metal mold, place the aluminum plate up and down, clamp it with a clip, and dry it at 8 (fc for 1 hour (maturing step) After taking out, remove the aluminum plate to remove the finished product, and measure the thickness, weight and density after modification. The method of measuring the loss of microwave loss (Return Loss) adopts the free space test method 'frequency range (2-18GHZ) Use the microwave network analyzer HP g722ES and the company of this leg industry to call the measurement fixture to put the test piece size 15 αηχ15 cm metal piece on the position to be tested, first correct the level and adjust the angle of the heavenly power shot (2). The amount of initial reflection is changed, and then the test piece is changed and the reflection loss attenuation intensity of the test piece is re-measured with the metal piece as the reflection surface. In order to enable the reviewing committee to have a better understanding and understanding of the features and steps of the composition of the electromagnetic wave absorbing material of the present invention and the preparation method thereof, the following description will be given by way of several preferred embodiments. First Embodiment φ 83,1 ^ liquid sputum oxime resin, nano carbon balloon 9 9 g, carbon fiber (VGCF-H) 8.0 g produced by gas phase formation method was added to a mixing container to use a general blade type mixer 3 rpm rpm stirring 5 knives | 里 'Add the hollow broken glass ball total batching amount of bogey, the following examples are the same) with ι rpm rpm Lin 4 minutes mixed evenly, the sampling measurement solution viscosity is 2 〇 5 〇〇 Cps, take 34· jealousy/liquid mixture plate, take out the test piece after aging, measure the weight is 32·〇g, the thickness is h 8 face, the density is 〇· 79 g/cc, the microwave reflection loss is measured as the first As shown in the second figure, the high peak is at 9·9 GHz with a effect of % $ dB. The characteristics of this sample can be compared with the test piece of Example 1 of US Pat. No. 6,465,98,2, which is made up of 6.4% conductive carbon black, 2.7 % conductive carbon fiber added to 90. 9 % polyethylene to make a thickness of 10 200821349 ' In the test piece deleted by L 98, the peak value of the microwave reflection loss is 9.5 GHz, and the peak of the microwave reflection loss of the test piece with 37 诎 is quite close, and the thickness of the embodiment is lower than that of the first example; Although the density of the test piece is not mentioned in the U.S. patent, the density of the test piece can be estimated to be about 1 〇g/cc. The test pieces of the present invention have a lower density and a thinner thickness than the test piece of the present invention. The sheet weight can be reduced by about 30%. The second embodiment of the present invention, the formula and the preparation method, the 55. Gg solution is filled, the test piece is taken out, the measured weight is 49. 3 g 'thickness is 2.7, the density is Q. ? 9 g For example, the measurement of the microwave reflection loss is as shown in the third figure, 'the high peak is at 6.5 GHz, with an effect of 22.6 dB. In the third embodiment, 85.15 g of liquid epoxy resin, nanocarbon balloon 45 45 g, carbon fiber (VGCF-H) prepared by gas phase formation, 9.0 g 'added to the mixing container' is a general blade type mixer. After mixing for 5 minutes, add 5.4 g of hollow glass ball (total dosage (10) g) to mix with 〇 _ _ _ _ _ 35 for 4 minutes to mix evenly, sample the measurement solution viscosity of 176GG CPS, take 38. G g solution filling, curing After taking out the test piece, the measured weight is 35.3 g, the thickness is 18, and the density is 〇87_. The microwave reflection loss is measured as shown in the fourth figure, and the high peak is at 8.5, with 18. (pool effect). In the fourth embodiment, 82.8 g of liquid epoxy resin 'nano carbon sphere i 2 g, carbon fiber (VGCF-H) 6. 0 g ' by gas phase formation method is added to the mixing container, and the general blade type mixer 3 〇〇〇 rpm rpm stirring for 5 minutes, then add hollow glass ball 1 (). 〇g (total dosage (10) g) _ _ rpm stirring for 5 minutes to mix evenly, sample measurement solution viscosity is 115 (9) cps, take 28. G g solution Immerse the 200821349 mold, remove the test piece after aging, measure the weight as 26. ig, the thickness is l 3 coffee, the density is 〇·89 this, micro The wave reflection loss measurement is as shown in the fifth figure, and the high peak value is 14·丨 GHz, and has an effect of 23.3 。.

將82.15 g液態環氧樹脂,奈米碳球〇. 35 g,氣相生成法所製錢維 (VGCF-H) 9.5 g,加入混料容器中,以一般葉片式攪拌機綱〇 _轉速 攪拌6分鐘’再加入中空玻璃球5.〇 g(總配料量1〇〇 g)以删_轉 速攪拌3分鐘混合均勻,取樣量測溶液黏度為觀〇 _,取48. 〇 §溶液 灌模,熟化後取出試片,量測重量為45. 2 g,厚度為2. 〇麵,密度為l 〇〇 g/cc,微波反射損失量測如第六圖所示,高峰值在7. 〇 GHz,具2诎 的效果。 綜上所述,本發明電雜魏材料之組成物及·備方法,該電磁波 吸收材料之域物密度介於^u克/毫升,魏減少習知《波吸收 材料的密度,哺合高職«對__之要求,城電磁波吸收材料 之組成物之溶液財她的減叫於混合及獅;該魏波吸收材料之 組成物之製備方法較習知的製備方法簡單便利,以減少製備的時間及成本。 惟以上崎,娜m麵爾㈣撕繼 利範圍所述之構造、特徵及精神所為之均 較佳實關‘轉梅㈣恤彻,㈣她申請專 明之申請專利範圍内。 等變化與修飾,均應包括於本發 200821349 ' 【圖式簡單說明】 Η為本發日月細吸酬德絲之崎㈣驟流程圖。 第二圖為本發”财魏材料之組成物之第—實補之紐反射損失 圖。 μ圖為本^月%磁波吸收材赤峰之組成物之第二實施例之微波反射損失 圖。 鲁 帛四圖為本發明電磁舰收材料之組成物之第至實施例之微波反射損失 圖。 第五圖為本發明電磁波吸收材料之組成物之第四實施例之微波反射損失 圖。 第六圖為本發明電磁波吸收材料之組成物之第五實施例之微波反射搞失 圖。 【主要元件符號說明】 1382.15 g of liquid epoxy resin, nano carbon sphere 〇 35 g, VGCF-H 9.5 g by gas phase formation method, added to the mixing container, and stirred by a general blade type mixer _ rpm Minutes 'Add hollow glass ball 5. 〇g (total dosage 1 〇〇g) to remove _ rpm for 3 minutes to mix evenly, sample the measurement solution viscosity is Guan _, take 48. 〇§ solution filling, curing After the test piece is taken out, the measured weight is 45. 2 g, the thickness is 2. The facet, the density is l 〇〇g / cc, the microwave reflection loss is measured as shown in the sixth figure, the high peak is at 7. GHz, With a 2-inch effect. In summary, the composition and preparation method of the electrowetting material of the present invention, the domain density of the electromagnetic wave absorbing material is between ^u g / ml, Wei reduces the density of the wave absorbing material, and feeds the higher vocational «The requirement of __, the solution of the composition of the electromagnetic wave absorbing material of the city, her reduction is called mixing and lion; the preparation method of the composition of the Weibo absorbing material is simpler and more convenient than the conventional preparation method to reduce the preparation Time and cost. However, the above structure, characteristics and spirit of the above-mentioned Kawasaki, Na M. (4) tearing the scope of the profit are better than the ‘transfer of the Mei (4), and (4) she applied for the patent application within the scope of the patent application. Such changes and modifications should be included in this issue 200821349 ' [Simple description of the diagram] Η This is the flow chart of the daily heat and rain. The second figure is the map of the first reflection of the composition of the financial and Wei materials. The μ map is the microwave reflection loss map of the second embodiment of the composition of the red peak of the magnetic wave absorbing material. The fourth figure is a microwave reflection loss diagram of the first embodiment of the composition of the electromagnetic ship receiving material of the present invention. The fifth figure is a microwave reflection loss diagram of the fourth embodiment of the composition of the electromagnetic wave absorbing material of the present invention. The microwave reflection loss diagram of the fifth embodiment of the composition of the electromagnetic wave absorbing material of the present invention. [Description of main component symbols] 13

Claims (1)

200821349 十、申請專利範圍: 1. 一種電磁波吸收材料之組成物,其係包括: 液態樹脂、奈米碳球、碳纖維及中空玻璃球; 其中該液態樹脂、該奈米碳球、該碳纖維及該中空玻璃球混合均 勻形成一電磁波吸收材料之組成物。 口 2. 如申請專利範圍第i項所述之電磁波吸收材料之組成物,其中該電磁 波吸收材料之組成物之密度為〇· 75—L 〇克/毫升。 3. 如申請專利範圍第1項所述之電磁波吸巧料之組成物,其中該電磁 波吸收材料之組成物之厚度為1· 3_2· 〇腿: 4·如申請專利範圍第1項所述之電磁波吸收材料之組成物,其中該液態 樹脂之重量為該電磁波吸收材料之組成物重量的.氣。 5. 如申請專利範圍第i項所述之電磁波吸收材料之組成物,其中該液態 樹脂係選自環氧樹脂、聚胺基⑽旨樹脂、聚甲基丙烯義樹脂、石夕 树月曰及聚自旨樹脂之群組之其中之一者。 6. ^申請專利範圍第丨項所述之電磁波吸收材料之組成物,其中該奈米 碳球之重量為該電磁波吸收材料之組成物重量的〇. 2_2 〇%。 7. t申請專機圍第丨項所狀電磁波吸收材料之組成物,其中該奈米 碳球之内徑為5-10 ,外徑為15-25 nm。 8·如申請專利範㈣丨項所述之電磁波吸收材料之組成物,其中該碳纖 維重量為該電磁波吸收材料之組成物重量的5〇—15〇%。 9· 士申明專利|巳圍第1項所述之電磁波吸收材料之組成物,其中該碳纖 維由一氣相生成法所製成。 10. 如f明專七乾圍第i項所述之電磁波吸收材料之組成物,其中該碳纖 維之平均長度為lG-20/zm,平均寬度為Q· 15_。 11. 如申請專利範圍第丨項所述之電磁波吸收材料之組成物,其中該中空 玻璃球重量為該電磁波吸收材料之組成物重量的5· 〇_1〇.⑽。 12. 如申請專利範圍第丨項所述之電磁波吸收材料之組成物,其中該中空 14 200821349 玻璃球之平均粒徑為50〜55//m。 13.=物細第i項所述之電磁波魏_之組祕 玻螭球之密度為〇· 15—〇· 5克/毫升。 /、中4中空 π -種電磁波吸收材料之組成物之製備方法,其步驟包括: 將液,讀月旨、奈米碳球、碳纖維及中空玻璃球混合均…· 將該溶液灌入一模具;及 ’谷液; 熟化冷卻’即_—電錢讀㈣讀祕。 申請專利範圍第14項所述之電磁波吸收材料之 其中該液態樹脂之重量為該溶液重量的80!_。 衣備方、去’ 16.======述之電磁波吸收材料之組成物之製備方法, /、甲H反球之重1為該溶液重量的Q· 2上〇%。 π·=料纖_ 14酬叙電磁舰㈣狀喊 其中該碳纖維之重量為該溶液重量的5〇—15〇%。 衣備方去 a如申請專利範圍第14項所逑之電磁波吸收材料之組成物之 其中該中空玻璃球之重量為該溶液重量的5〇—1〇.⑽。 19·如申请專利乾圍第14項所述之電磁波吸收材料之組成物之製備方法, 其中該將該液態樹脂、該奈米碳球、該碳纖維及該中空破璃球混二均 句成該溶液之步驟中,更包括使用一葉片式授拌機授伴該溶i之 步驟。 20·如申请專利犯圍第19項所述之電磁波吸收材料之組成物之製備方法, 其中该葉以攪拌機之轉速為丨咖—3_ _。 21·如申4專利補第14項所述之電磁波吸收材料之組成物之製備方法, 其中该將该液態樹脂、該奈米碳球、該破纖維及該中空玻璃球混合均 勻成該溶液之步驟中,包括先將該液態樹脂、該奈米碳球、該碳纖 維混合後,再加入該中空玻璃球混合均勻之步驟。 22·如申请專利範圍第14項所述之電磁波吸收材料之組成物之製備方法, 其中該溶液之枯度為11500-20500 cps。 15 200821349 • 23.如申請專利範圍第14項所述之電磁波吸收材料之組成物之製備方法, 其中該熟化冷卻’即得到該電磁波吸收材料之組成物之步驟中,該熟 化步驟為在70〜90°C下,烘乾0. 8〜1. 5小時。200821349 X. Patent application scope: 1. A composition of electromagnetic wave absorbing material, comprising: liquid resin, nano carbon sphere, carbon fiber and hollow glass sphere; wherein the liquid resin, the nano carbon sphere, the carbon fiber and the The hollow glass spheres are uniformly mixed to form a composition of an electromagnetic wave absorbing material. The composition of the electromagnetic wave absorbing material according to the invention of claim i, wherein the composition of the electromagnetic wave absorbing material has a density of 〇·75-L gram/ml. 3. The composition of the electromagnetic wave absorbing material according to claim 1, wherein the composition of the electromagnetic wave absorbing material has a thickness of 1·3_2· 〇 leg: 4· as described in claim 1 A composition of an electromagnetic wave absorbing material, wherein the weight of the liquid resin is the weight of the composition of the electromagnetic wave absorbing material. 5. The composition of an electromagnetic wave absorptive material according to claim i, wherein the liquid resin is selected from the group consisting of epoxy resin, polyamine (10) resin, polymethacrylic resin, and stone stalk One of the groups of the resin. 6. The composition of the electromagnetic wave absorbing material according to the invention, wherein the weight of the nanocarbon sphere is 〇. 2_2 〇% of the weight of the composition of the electromagnetic wave absorbing material. 7. t Apply for the composition of the electromagnetic wave absorbing material of the special item, wherein the inner diameter of the carbon sphere is 5-10 and the outer diameter is 15-25 nm. 8. The composition of an electromagnetic wave absorptive material according to the invention of claim 4, wherein the carbon fiber weight is from 5 to 15% by weight of the composition of the electromagnetic wave absorptive material. 9. The composition of the electromagnetic wave absorbing material according to Item 1, wherein the carbon fiber is produced by a gas phase generation method. 10. The composition of the electromagnetic wave absorbing material according to item i of the above-mentioned item, wherein the carbon fiber has an average length of lG-20/zm and an average width of Q·15_. 11. The composition of the electromagnetic wave absorptive material according to claim 2, wherein the hollow glass ball weight is 5·〇_1〇. (10) of the weight of the electromagnetic wave absorbing material. 12. The composition of an electromagnetic wave absorptive material according to the invention of claim 2, wherein the hollow glass of the 200821349 glass sphere has an average particle diameter of 50 to 55 //m. 13.=The electromagnetic wave described in item i is the secret of the group. The density of the glass ball is 〇·15—〇·5 g/ml. /, a method for preparing a composition of a medium-sized hollow π-type electromagnetic wave absorbing material, the steps comprising: mixing a liquid, a reading moon, a carbon sphere, a carbon fiber, and a hollow glass ball, etc., pouring the solution into a mold ; and 'Valley; mature cooling' _ - electricity money read (four) read secret. The electromagnetic wave absorbing material according to claim 14 wherein the weight of the liquid resin is 80!_ by weight of the solution. The preparation method of the composition of the electromagnetic wave absorbing material, /, the weight 1 of the H H anti-ball is the Q·2 upper 〇% of the weight of the solution. π·=material fiber _ 14 reciprocal electromagnetic ship (four) screaming wherein the weight of the carbon fiber is 5〇-15% of the weight of the solution. The composition of the electromagnetic wave absorbing material as recited in claim 14 is wherein the weight of the hollow glass sphere is 5 〇 -1 〇 (10) of the weight of the solution. 19. The method for preparing a composition of an electromagnetic wave absorptive material according to claim 14, wherein the liquid resin, the carbon nanosphere, the carbon fiber, and the hollow glass ball are mixed into the same The step of the solution further includes the step of using the one-blade mixer to dispense the solution. 20. The method for preparing a composition of an electromagnetic wave absorbing material according to claim 19, wherein the leaf is rotated at a speed of 3 to _. The method for preparing a composition of an electromagnetic wave absorbing material according to claim 14, wherein the liquid resin, the nanocarbon ball, the broken fiber, and the hollow glass ball are uniformly mixed into the solution. In the step, the liquid resin, the nano carbon sphere, and the carbon fiber are mixed, and then the hollow glass sphere is uniformly mixed. The method for preparing a composition of an electromagnetic wave absorptive material according to claim 14, wherein the solution has a dryness of 11500-20500 cps. The method for preparing the composition of the electromagnetic wave absorbing material according to claim 14, wherein the aging cooling step is the step of obtaining the composition of the electromagnetic wave absorbing material, and the aging step is 70~ 5小时。 After drying at 0. 8~1. 5 hours. 1616
TW95141547A 2006-11-09 2006-11-09 Composition of electromagnetic wave absorption material and preparation method of the same TW200821349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95141547A TW200821349A (en) 2006-11-09 2006-11-09 Composition of electromagnetic wave absorption material and preparation method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95141547A TW200821349A (en) 2006-11-09 2006-11-09 Composition of electromagnetic wave absorption material and preparation method of the same

Publications (2)

Publication Number Publication Date
TW200821349A true TW200821349A (en) 2008-05-16
TWI337189B TWI337189B (en) 2011-02-11

Family

ID=44770447

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95141547A TW200821349A (en) 2006-11-09 2006-11-09 Composition of electromagnetic wave absorption material and preparation method of the same

Country Status (1)

Country Link
TW (1) TW200821349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI393755B (en) * 2008-11-28 2013-04-21 Ind Tech Res Inst Powder coating method and paint thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI393755B (en) * 2008-11-28 2013-04-21 Ind Tech Res Inst Powder coating method and paint thereof

Also Published As

Publication number Publication date
TWI337189B (en) 2011-02-11

Similar Documents

Publication Publication Date Title
Feng et al. Synthesis of a hierarchical carbon fiber@ cobalt ferrite@ manganese dioxide composite and its application as a microwave absorber
Feng et al. Fabrication of NiFe 2 O 4@ carbon fiber coated with phytic acid-doped polyaniline composite and its application as an electromagnetic wave absorber
US20080311373A1 (en) Electromagnetic wave absorbing material and method for preparing the same
CN109280457A (en) A kind of novel graphene slurry modified epoxy zinc powder anticorrosive paint and preparation method thereof
CN105131607B (en) Point, line, surface 3 D stereo carbon material composite heat-conducting silica gel and preparation method thereof
CN104151521B (en) A kind of imide-urethane-graphene/nanometer carbon fiber is blended inhales ripple foamed materials and preparation method thereof
CN102044319A (en) Composite wave absorbing material and preparation method thereof
CN108929542B (en) Polydimethylsiloxane/graphene flexible composite film with negative dielectric constant and preparation method thereof
CN110128910A (en) Anticorrosive paint and preparation method thereof
CN113429784B (en) Graphene oxide chiral polypyrrole hybrid material, anti-corrosion wave-absorbing coating and preparation method
CN111925630A (en) High-strength electromagnetic shielding and heat conducting PBT/PET nano composite material and preparation method thereof
CN108834388A (en) A kind of electromagnetic shielding film and preparation method thereof
CN108314380B (en) Graphene oxide-ferroferric oxide magnetic liquid-cement-based composite material and preparation method thereof
CN113881287A (en) Water-based graphene conductive ink composition, water-based graphene conductive ink, and preparation method and application thereof
CN110911114B (en) Composite magnetic separation sheet for high-thermal-conductivity wireless charging receiving end and preparation method thereof
CN101950597B (en) Silver aluminum slurry for electromagnetic shielding and preparation method thereof
TW200821349A (en) Composition of electromagnetic wave absorption material and preparation method of the same
CN110993149A (en) Silver paste for metal grid capacitive flexible touch screen and preparation method and application thereof
Mehdizadeh et al. Effect of carbon black content on the microwave absorbing properties of CB/epoxy composites
Wang et al. Three-layer composite coatings with compatibility of low infrared emissivity and high wave transmittance
Liu et al. Hybrids of glass fibers coated with carbon nanotubes and nickel for high‐performance electromagnetic wave absorption composites
CN107936480A (en) A kind of broadband composite wave-suction material containing thermal expansion graphene
CN107256753A (en) The preparation of high-effect iron sial powder and screening technique
CN110591579A (en) Electromagnetic shielding heat dissipation film and preparation method and application thereof
CN109486462A (en) A kind of conductive silver glue and preparation method thereof